
Privacy and Security of FIDO2 Revisited

Manuel Barbosa1,4, Alexandra Boldyreva2, Shan Chen3, Kaishuo Cheng2, and Lúıs Esqúıvel1

1 Universidade do Porto (FCUP) & INESC TEC, Portugal
mbb@fc.up.pt, luis.esquivel.costa@gmail.com

2 Georgia Institute of Technology, USA
{sasha, kcheng89}@gatech.edu

3 Southern University of Science and Technology, China⋆

dragoncs16@gmail.com
4 Max Planck Institute for Security and Privacy, Germany

Abstract. We revisit the privacy and security analyses of FIDO2, a widely deployed standard for
passwordless authentication on the Web. We discuss previous works and conclude that each of them
has at least one of the following limitations: (i) impractical trusted setup assumptions, (ii) security
models that are inadequate in light of state of the art of practical attacks, (iii) not analyzing FIDO2
as a whole, especially for its privacy guarantees. Our work addresses these gaps and proposes revised
security models for privacy and authentication. Equipped with our new models, we analyze FIDO2
modularly and focus on its component protocols, WebAuthn and CTAP2, clarifying their exact security
guarantees. In particular, our results, for the first time, establish privacy guarantees for FIDO2 as a
whole. Furthermore, we suggest minor modifications that can help FIDO2 provably meet stronger
privacy and authentication definitions and withstand known and novel attacks.

Keywords: FIDO2, CTAP2, WebAuthn, Privacy, Authentication

1 Introduction . 2
2 Background . 6
3 (m)PACA Protocol Syntax . 11
4 Authentication Properties . 12

4.1 (m)PACA Authentication Model . 12
4.2 Authentication Security of CTAP 2.1 . 16
4.3 Authentication Security of FIDO2 . 18
4.4 CTAP 2.1+ for Stronger Authentication . 19

5 Privacy Properties . 21
5.1 (m)PACA Privacy Model . 21
5.2 Privacy of CTAP 2.1 and CTAP 2.1+ . 23
5.3 CTAP 2.1++ for Stronger Privacy . 25
5.4 Composed Privacy of FIDO2 and of WebAuthn and CTAP 2.1++ 25

6 Practical considerations . 28
7 Conclusion . 29
A Description of WebAuthn . 30
B Descriptions of CTAP 2.1, CTAP 2.1+, CTAP 2.1++ . 32
C Preliminary Definitions . 37

⋆ Affiliated with both the Research Institute of Trustworthy Autonomous Systems and the Department of Computer
Science and Engineering

D Security Proofs . 40

D.1 Proof of Theorem 1 . 40

D.2 Proof of Theorem 2 . 42

D.3 Proof of Theorem 4 . 43

D.4 Proof of Theorem 5 . 44

E CTAP 2.1 Security for PIN/UV Auth Protocol 1 . 45

F Proof Shortcomings in Nina et al. [5] . 46

G PlA Models and WebAuthn Analysis . 47

G.1 PlA Protocol Syntax . 47

G.2 PlA Authentication Model and WebAuthn Authentication 49

G.3 PlA Privacy Model and WebAuthn Privacy . 52

H Composed Authentication Model . 53

I Authentication Security of FIDO2 . 57

J Formal CTAP Privacy Attacks . 62

K IND-1$PA-LHPC Proof for CBC . 62

L CTAP 2.1+ Authentication Proof . 70

1 Introduction

The fast-growing adoption of FIDO2 [13], actively supported by software giants Microsoft,
Google and Apple, makes it a de-facto standard for passwordless authentication. FIDO2 is
maintained by the FIDO (Fast IDentity Online) Alliance5, a community of stakeholders that
manages the specifications of the protocol and promotes its adoption.

The basic flows of FIDO2 are shown in Fig. 1, inspired by the corresponding figure in [2].
At its core, FIDO2 is composed of two sub-protocols: WebAuthn (W3C’s Web Authentica-
tion) [23,24] and CTAP2 (Client to Authenticator Protocol version 2.x) [12,1].

WebAuthn specifies how a user can register a credential (a public signature verification
key) at a server—associating it to a new or an existing account—and later rely solely on the
corresponding private signing key for passwordless authentication. A user, in this context,
normally refers to a human, who uses a client (typically a browser) to interact with the
server. Cryptographically, an authentication run consists of a challenge-response exchange,
in which the server issues a challenge and then checks if this challenge has been correctly
digitally signed (along with relevant public metadata) by a public key that identifies the user.
The private signing keys associated with WebAuthn credentials are often stored in secure
hardware devices called authenticators (or tokens). Registration runs allow a user to create
a server-specific public-key and associate it with an account at the server. New credentials
uploaded to the server may also be signed using a (long-term) attestation private key that
guarantees that the credential has indeed been generated by a secure device. This process is
referred to as attestation and WebAuthn supports several different attestation modes.

5 https://fidoalliance.org

2

https://fidoalliance.org

User

Authenticator Client Server

1. Reg/Auth3. PIN
5. u

ser
inte

rven
tion

2. challenge4. challenge

6. response 7. response

Fig. 1. The simplified FIDO2 flow adapted from Fig. 2 in [2], where the CTAP2 authorized command is highlighted
in blue. The dashed line means the communication with the server is established through the client.

CTAP2 (simply referred to as CTAP in this paper) specifies an access-control protocol
that allows a client to issue authorized commands to unlock a FIDO2 authenticator with a
set of permissions, which may allow creating a new credential for registration or using an
existing credential for authentication. Access is granted only after human intervention, e.g.,
providing a PIN to the client, pressing a button on the token (known as user presence),
providing biometric information to the token (known as user verification), etc.

Known security results and open problems. The design rationale and threat model
for FIDO2 are described informally by the FIDO Alliance in [13]. The privacy properties of
FIDO2 have been formally analyzed in [15,16,6] but they, so far, focus only on WebAuthn.
A formal view of FIDO2’s authentication properties has been established by a sequence of
research papers that focused, first on the provable security of WebAuthn [15] and, more
recently, on the overall FIDO2 as composed by WebAuthn and CTAP [2,5]. While these
works offered comprehensive studies of FIDO2’s provable security, there are still gaps in the
results they provided, both for privacy and authentication goals.

Results on FIDO2 privacy. User privacy is one of the key features claimed by FIDO,
but it has received less attention from researchers compared to authentication. Hanzlik et
al. [16] formally defined privacy (unlinkability) to analyze the WebAuthn component. Their
definition assures that different registrations do not reveal if they are performed using the
same token, and hence different interactions of the tokens are unlinkable. They proved that
WebAuthn provides user privacy. Their work focused on non-resident keys—a variant of the
protocol where the token keeps only a symmetric key and re-generates a signing key whenever
it is needed for authentication—and does not consider attestation. Bindel et al. [6] extended
their privacy results to cover several attestation modes and focused on resident keys, i.e., the
case where the token stores authentication signing keys securely. However, their work also
considered privacy guarantees of WebAuthn only.

We stress that at this point, to the best of our knowledge, there is no prior analysis of
FIDO2 that considered the potential impact of the CTAP component on user privacy6. It
was acknowledged in [16] that metadata can be used to link interactions of the token, but
the authors do not consider data exchanged outside of WebAuthn. This means that, for
example, it is not immediately clear whether CTAP preserves user privacy, given that a user

6 Kepkowski et al. [18] identified a timing attack that links user accounts across services, exploiting implementation
flaws on hardware tokens. This is an attack on a full implementation of FIDO2. However, since it is based on
side-channel analysis, is does not directly relate to the cryptographic notions of unlinkability we consider here.

3

may reuse the same PIN across different tokens. Moreover, the communication with the token
may reuse meta-information or cryptographic material, potentially breaking unlinkability.

Results on FIDO2 authentication. On the authentication front, a recent work [3]
demonstrated several man-in-the-middle attacks on FIDO2 USB tokens that are launched
by wrapping the system library that the client browser uses to exchange messages with the
hardware token. The attacks are deployed using a simple malware that does not require
privileged access to the user’s machine. In one type of attacks called rogue key attacks, only
the final token-to-client message in a registration run is replaced, causing an uncompromised
client (also called an honest client) to send to the server a public key that is actually under
the attacker’s control. Such attacks are possible because FIDO2 credentials sent from a
token to a client are not cryptographically protected. Even more recently, the authors in [8]
demonstrated successful message injection attacks on a USB bus by another USB device.
Interestingly, the reported attacks coincide exactly with what is needed to launch a rogue
key attack on FIDO2: first, monitor USB communication until the very end of the protocol
and, second, override the final message sent by the target USB authenticator back to the
host machine.

How can the existing provable security results for FIDO2 co-exist with rogue key attacks?
The work [2] assumed that each token has a unique attestation private key, whose paired
attestation public key is known to the servers a priori, so that rogue key attacks do not
apply. However, this assumption does not reflect the practical setup: either no attestation is
used, or many tokens share the same long-term attestation key pair (which is an imperative
to prevent tracking and guarantee some form of user privacy). The work [5] considered only
attackers that are passive during registration, which is not realistic as the aforementioned
attacks demonstrate. The work [6] considered only the WebAuthn protocol, which means
that the security of client-token communications is not considered. Finally, the full version
of [2] considered only batch attestation (also known as Basic attestation mode), where many
tokens share the same attestation key pair. However, in this case, a server cannot distinguish
tokens from the same batch, which leaves open the possibility for an attacker to launch a
rogue key attack with a valid token from the same batch as the user’s token.

Our contributions. Our work closes the gaps we identified in prior work. For both security
goals of privacy and authentication, our analysis is modular: we provide the security models
and proofs for CTAP and WebAuthn separately, and then show how they compose to imply
the security of the whole FIDO2. Our detailed contributions are listed as follows.

Privacy. We present the following new results on FIDO2 privacy:

– We propose a new security model for user privacy (anonymity). The goal of privacy is to
ensure that multiple registrations involving the same token cannot be linked together, in
order to avoid tracking. Unlike prior works [16,6], we consider a more powerful attacker,
which can compromise the servers and moreover, collaborate with local network attackers
working at the CTAP level. Our security model allows to capture scenarios where an
attacker can access and manipulate CTAP communications (e.g., when the token is lost,
stolen or inserted into a corrupt USB hub or an untrusted machine) and wants to determine
if it has observed some protocol execution that involved this authenticator or even has

4

interacted with it in the past. Moreover, this attacker could be in collusion with a malicious
server.

– We analyze FIDO2 in our privacy model. We observe that, formally, its privacy could be
compromised by the reuse of ephemeral cryptographic parameters (Diffie-Hellman shares).
This can happen when users register or authenticate multiple accounts without rebooting
the token (by remaining plugged-in and not putting the computer to sleep). Our privacy
definitions also highlight potential risks to user privacy that may be enabled by meta-
information that is exposed by the token to the client, in excess of what CTAP specifies.
For example, leakage of the contents in error messages or device identification information
may lead to trivial breaks of the privacy guarantees of FIDO2 in our model.

– We prove that, with minor protocol changes that prevent the above Diffie-Hellman (DH)
share reuse and by enforcing no leakage of the above meta-information, the cryptographic
design of FIDO2 indeed guarantees strong privacy properties for the user, even considering
local network attackers. We also show that the current FIDO2 guarantees privacy, as
long as the attacker does not observe CTAP traces where a token reuses the same DH
share when interacting with clients to register multiple accounts. The take-away message
from these results is that the cryptographic traces produced by CTAP do not undermine
privacy as long as DH shares are not repeated between usages. We do not argue that the
concrete attack scenarios where DH share reuse could be exploited to break privacy are a
significant reason for concern. Our claim here is that our results establish the first leakage
upper bound for CTAP (and FIDO2 as a whole): if CTAP privacy attacks contribute
to compromise FIDO2 privacy, then it can only be due to DH share reuse. Additionally,
our results show that CTAP authentication security also plays a crucial role in the overall
privacy guarantees of FIDO2. Intuitively, CTAP access control prevents tokens from being
unlocked and then tracked, e.g., an attacker could unlock a stolen token and check if any
of its stored signing keys is associated with a given credential observed elsewhere.

Authentication. We present the following new results on FIDO2 authentication:

– We present a counterexample to the security claim for CTAP in [5] in the form of an
attack that breaks the protocol in the security model for authentication adopted by [5].
The attack highlights a subtle oversight in their security proof and effectively shows that
their model is too strong, and that FIDO2 can only be proved secure in a slightly weaker
model.

– We fix the security definitions under which the current version of FIDO2 can be proved to
provide passwordless authentication. Our model is similar to that of [2,5] and guarantees
the following: (i) a server registers only credentials generated by valid physical authenti-
cators, (ii) if the server successfully authenticates a registered credential, then the token
that generated that credential must be involved in the authentication, and (iii) if a token
is interacting with an honest client, then it will only answer registration/authentication
requests if the client unlocks this token using the correct user PIN.7 We give a detailed
proof of FIDO2 authentication security in this model that addresses the shortcomings we

7 Note that, as in prior work and due to the lack of token-to-client authentication, FIDO2 guarantees only that
the same token is used in registration and authentication. However, it does not ensure that the token used in

5

identified in prior work. Our proof applies to the attestation modes most commonly used
by USB tokens: None, Self and Basic.

– We propose a stronger variant of the authentication model that captures rogue key attacks
and USB injection attacks demonstrated in [3,8]. Intuitively, this stronger model further
guarantees that (iv) if a server successfully registers or authenticates a credential via an
honest client, then the user must have authorized that specific client to unlock the token
that generated that credential. Crucially, this model does not assume TOFU: the client
(browser) plays a role in ensuring the server (and to the user) that, if the server is talking
to a client through an authenticated channel (e.g., a TLS connection), then only a token
unlocked by this specific client can successfully register a credential.

– We propose a simple fix to CTAP that appends a message authentication code (MAC) to
the token responses before they are sent to the client (and then delivered to the server).
We then prove that, with this fix, FIDO2 is provably resistant to rogue key attacks and
meets our stronger security. Again, our results apply to the aforementioned attestation
modes: None, Self and Basic.

Responsible disclosure. We communicated our findings to the FIDO Alliance.

Structure of this paper. In the next section we expand on the background and relation
to prior work. Then, we describe the formal protocol syntax that captures CTAP, as most
of our contributions focus on CTAP analyses. In Section 4 we start with the analysis of
authentication properties of FIDO2, since our privacy results depend on it. In Section 5
we focus on the privacy properties of the protocol. In Section 6 we discuss the practical
implications of our proposed fixes. Section 7 concludes our work.

2 Background

Before deep diving into the definitions and proofs, we explain the big picture, introduce some
terminology, and further clarify the relation to prior work.

Notation. Throughout the paper, {0, 1}n represents the set of all n-length bit strings and
{0, 1}∗ the set of all finite length bit strings, including the empty string ϵ. We write x← F

(resp. x
$← F) to denote that x is the return value of a deterministic (resp. probabilistic)

algorithm F , x ← y to assign y to variable x, and x
$← S to assign an element from S,

chosen uniformly at random (unless specified otherwise), to x. When initializing an empty
set L, we write L ← ∅. We use ⊥ to denote any uninitialized variable, as well as the return
value from an algorithm that executes incorrectly.

Security Games. We follow closely [5] in our approach to formalizing security games.
The games are presented in code form and they offer the adversary a number of oracles
that allow it to animate arbitrary executions of the target protocols, in which it can select
participants from four sets of entities: servers, human users, tokens and clients. Human users
are represented in the model by the PIN they use to configure FIDO2 authenticators. We

authentication is bound to the (user-controlled) client through which the authentication run is carried out, even
when assuming trust on first use (TOFU), i.e., the attacker was passive during registration.

6

adopt here the typical approach to modelling password-based primitives in the cryptographic
literature: users are represented by their identity and an associated PIN sampled from some
(low entropy) distribution. The oracles allow the adversary to emulate the process of a user
inserting its PIN via a client: the adversary identifies the client and the user in the oracle call,
and the game then executes the client code on the user’s PIN. The actions of other parties
are captured by running the code prescribed by the protocol on their internal states and
adversary-provided inputs, if any: different oracles capture different phases in the protocol
execution, where the output of an oracle typically signals some event or information transfer
that is visible to the adversary, and therefore may be used by the adversary in launching the
next phase of its attack.

The games keep complex state to guarantee an accurate model of reality, and also to
keep track of whether the adversary succeeded in breaking the protocol. In authentication
games, breaking the protocol means that the adversary activated a winning condition: it
caused some party to accept a message that allows the adversary to impersonate another
party. In privacy games, breaking the protocol means that the adversary is able to link two
protocol executions that should appear unrelated given the adversary’s knowledge of the
internal states of parties.

PlA and PACA. Barbosa et al. [2] defined the syntax and authentication security of
FIDO2 by introducing two primitives called Passwordless Authentication (PlA) and PIN-
Based Access Control for Authenticators (PACA). WebAuthn is cast as an instance of PlA,
and CTAP as an instance of PACA. This terminology is also adopted by Bindel et al. [5],
where the authors refined the syntax and security models to more closely reflect the structure
(and various versions) of the FIDO2 specification. Bindel et al. [5] focused on settings where
no long-term attestation keys are used and hence assumed passive attackers in registration
flows. Later, Bindel et al. [6] continued the work of [5], focusing only on WebAuthn, but
considered various attestation modes and extended the analysis to privacy guarantees. More
detailed background is summarized next.

WebAuthn and PlA. We depict the WebAuthn protocol (with attestation mode Basic) in
Figure 2 by following the descriptions in [5,6]. As in [6], our WebAuthn description captures
the cryptographic core of both the current stable version WebAuthn 2 [23] and a working
draft for WebAuthn 3 [24], so we henceforth simply refer to this protocol as WebAuthn8.

WebAuthn has two challenge-response flows, one for registering a new credential at the
server (with algorithms rChal, rCom, rRsp, and rVrfy) and one for authenticating under a
previously registered credential (with algorithms aChal, aCom, aRsp, and aVrfy).

On registration, the authenticator (token) generates a new key pair (pk, sk) and, unless
the attestation mode is None, it signs the new credential pk, received random challenge and
other relevant metadata. When using attestation mode Basic, the attestation parameters
gpars allow the server to verify the signature and ensure that pk was indeed generated by
a secure hardware device; depending on the application, the server may have different ways

8 WebAuthn 3 [24] introduces new features to enhance usability (e.g., support for cross-origin iFrames), expand API
functionality (e.g., support for passkey authenticators), etc., but its cryptographic core (as abstracted in our work
and [6]) is not changed.

7

Server S (idS, gpars) Client C (ˆidS/ ¯idS) Authenticator T (rcT)

Registration

mrch
$← rChal(idS, tb,UV)

mrch−−−→
(mrcl,mrcom)← rCom(ˆidS, tb,mrch)

mrcom−−−−→
(mrrsp, rcT , cid, sid, agCon)

$← rRsp(T,mrcom)
mrcl,mrrsp←−−−−−−−−−−−−−−−−−−−−−

(b, rcS, cid, sid, agCon)← rVrfy(idS,mrcl,mrrsp, gpars)

Authentication

mach
$← aChal(idS, tb,UV)

mach−−−→
(macl,macom)← aCom(¯idS, tb,mach)

macom−−−−→
(marsp, rcT , cid, sid, agCon)

$← aRsp(T,macom)
macl,marsp←−−−−−−−−−−−−−−−−−−−−−

(b, rcS, cid, sid, agCon)← aVrfy(idS,macl,marsp)

Fig. 2. The WebAuthn protocol (see Appendix A for complete descriptions of the algorithms). For attestation mode

Basic, attestation material is generated by the group initialization algorithm (gpars, rc)
$← GInit, which for our purposes

can be thought of as a signature key generation algorithm where gpars contains the attestation verification key vk,
c.f., Appendix G). The token’s registration context rcT is initialized as rc, which contains the attestation private key
ak; the server inputs its identity idS and attestation info gpars. For attestation modes None and Self, both rcT and
gpars are empty.

to validate the attestation public keys vk used to verify the above attestation signatures but
here, for simplicity, we assume the server can extract the valid vk from the input gpars. In
attestation mode Self, the attestation signing key is the credential’s associated private key
sk itself, so this mode can be viewed as the same as None with an extra proof by the token
that it knows the signing key for the freshly generated credential. In an authentication run,
the process is similar, but the token now always uses sk to sign the challenge and metadata.
Note that, in cases where the client can verify the identity of the server (e.g., through a TLS
connection), the user can rely on the client to abort any WebAuthn runs where the metadata
sent to the token does not encode the correct intended server identity ˆidS/ ¯idS.

The PlA authentication security models in [2,5,6] capture the following server-side guar-
antee of WebAuthn: if a server instance accepts an authentication run, then it is uniquely
partnered with a token instance. Crucially, partnership in this setting guarantees that the
response issued by the token can be linked back to a unique registration flow between the
same server and token. In practice, the guarantee that a registered credential was indeed gen-
erated in a physical authenticator is achieved only if tokens can store long-term attestation
keys.

We adopt the PlA authentication model of [6] with small changes: we simplify the model
by removing attestation modes that are not commonly used in FIDO2 tokens, and we slightly
modify the winning conditions for the adversary in order to clarify the overall guarantees
provided by FIDO2. More precisely, we take the partnership definition from [2], which is
more restrictive and therefore makes the model stronger. The details are in Appendix G,
where we discuss the model differences to [6] and explain why the proofs in [6] actually still

8

apply to our stronger model. We do not claim novelty at the PlA level, except for clarifying
the security experiments and the implications of prior proofs.

CTAP 2.1 and PACA. The structure of the CTAP 2.1 protocol [1] is shown in Figure 3
(with details in Appendix B). Here, we outline CTAP 2.1 instantiated with the so-called
PIN/UV Auth Protocol 2, denoted by puvProtocol, and omit the other PIN/UV Auth Pro-
tocol 1 instantiation that is essentially the legacy protocol in a previous version CTAP
2.0 [12]. Their core differences are highlighted in Appendix B, where we present the details
of CTAP protocols.

With CTAP 2.1, a client can set up, bind to, and unlock an authenticator (token) with
a user PIN (pin). In addition to the possibility that the token may be rebooted and then
regenerate some ephemeral cryptographic parameters, the protocol has two phases.

The Setup phase is typically executed once and is independent of WebAuthn operations;
it is used to configure the token with a hash of the user pin. More precisely, the client first
obtains some information about the token’s capabilities and informs it that Setup is about
to start; the token then returns a DH share pkT . The client completes Setup by sending its
own DH share c along with an authenticated encryption (cp, tp) of the user pin. The token
stores only the hash of the pin, named pinHash.

When the user wants to register a new credential or authenticate to a server using an
existing one, the client executes a sequence of Bind, Auth-C and Validate-T subprotocols.
Bind starts with a Diffie-Hellman key exchange as the one performed in Setup (where the
token might reuse its DH share generated from Setup but the client always regenerates a
fresh DH share); then, rather than transmitting an authenticated encryption of the pin, the
client transmits an unauthenticated CBC encryption cph of the pinHash. The token completes
Bind by transmitting back a CBC encryption of pt, the so-called pinToken9, using the same
symmetric key that encrypted the pinHash. The pinToken is simply a fresh MAC key that
can be used by the client in Auth-C to send authorized commands to the token, which
then validates them in Validate-T. These commands are WebAuthn requests (challenges) for
registration or authentication operations. Token responses are sent back to the client, but
not cryptographically protected at the CTAP level.

The PACA authentication security model in [2] assumes the adversary to be passive
during Setup, as there is no prior common context between the client and token. This trust
assumption is adopted by all subsequent works. Furthermore, the adversary is not allowed
to actively attack the client during Bind, since CTAP uses unauthenticated Diffie-Hellman
key exchange. However, the adversary is allowed to actively try to establish new bindings to
the token. Additionally, the adversary can ask client instances that completed a binding to
authorize commands of its choice, and its goal is to forge one such authorized command. A
forgery here is defined as having a token instance accept a command that was not transmitted
by its unique binding partner (a client instance).

The PACA model given in [5] refines the one in [2] in a number of ways, in order to more
closely capture CTAP 2.1 operations. Furthermore, their model was strengthened such that
it allows a limited active attack on clients during Bind: in the concrete case of the CTAP 2.1

9 In CTAP 2.1, the full name of pt is pinUvAuthToken, which we simply call pinToken.

9

Client C (pinU) Authenticator T

Reboot
authPowerUp-T(stT)

Setup
info←−−−− info← getInfo-T(πi

T)

puvProtocol
$← obtainSharedSecret-C-start(πj

C , info)
puvProtocol−−−−→ pkT

$← obtainSharedSecret-T(πi
T , puvProtocol)

c
$← obtainSharedSecret-C-end(πj

C , pkT)
pkT←−−−−

(cp, tp)
$← setPIN-C(πj

C , pinU)
c, cp, tp−−−−→ status← setPIN-T(πi

T , puvProtocol, c, cp, tp)

Bind
Bind-C Bind-T

if πj
C .stexe =⊥:

info←−−−− info← getInfo-T(πi
T)

puvProtocol
$← obtainSharedSecret-C-start(πj

C , info)
puvProtocol−−−−→ if πi

T .stexe =⊥:

if πj
C .stexe = waiting :

pkT←−−−− pkT ← obtainSharedSecret-T(πi
T , puvProtocol)

c
$← obtainSharedSecret-C-end(πj

C , pkT)

cph
$← obtainPinUvAuthToken-C-start(πj

C , pinU)
c, cph−−−−→ if πi

T .stexe = waiting :

cpt
$← obtainPinUvAuthToken-T(πi

T , puvProtocol, c, cph)

if πj
C .stexe = bindStart :

cpt←−−−−
obtainPinUvAuthToken-C-end(πj

C , cpt)

Auth-C Validate-T

if πj
C .stexe = bindDone :

M, t−−−−→ if πi
T .stexe = bindDone :

(M, t)
$← auth-C(πj

C ,M) status← validate-T(πi
T ,M, t, d)

Validate-C Auth-T

if πj
C .stexe = bindDone :

R, t←−−−− if πi
T .stexe = bindDone :

status← validate-C(πj
C , R, t) (R, t)

$← auth-T(πi
T , R)

Fig. 3. The CTAP 2.1 protocol (black), our fixed CTAP 2.1+ protocol (with red-colored block), and our fixed CTAP
2.1++ protocol (where the token’s DH share pkT is regenerated in every obtainSharedSecret-T execution). Complete
descriptions of the algorithms are shown in Appendix B.

protocol, this means that the attacker now has the power to control the last message sent
from the token back to the client, which contains the encrypted pinToken. We show that this
strengthened model gives too much power to the adversary, by identifying an attack that
renders CTAP 2.1 insecure in such a model, invalidating the security claim made in [5]. The
attack and our fix are discussed in detail in Section 4.2.

Composing PlA and PACA. The authentication security of FIDO2 as a whole is captured
in [2,5] by a composed model that considers the joint operation of PlA and PACA protocols.
In this model, the adversary has access to all the PACA oracles that model Setup and Bind.
Additionally, it can run PlA+PACA challenge-response interactions that involve client and
token instances that it may have set up in arbitrary ways: formally, the PlA registration
and authentication oracles are replaced by PlA+PACA oracles that model the need for
authorizing and validating WebAuthn requests (and in this work also WebAuthn responses)
with CTAP operations in the full FIDO2. The goal of the adversary is to break the guarantees
we described in our authentication results (second bullet) in the Introduction. Results in [2,5]
show that the only way to break these guarantees is to break either the underlying PlA or
PACA primitive.

Crucially, the above models assume that the attacker has the power to feed the server
arbitrary responses to its challenges during authentication (and registration) runs, which

10

reflects the choice of FIDO2 to confer no protection to responses when they are transmitted
from tokens back to clients. However, neither of them captures security against rogue-key
attacks.The model in [5] focuses on attestation mode None, so it explicitly disallows active
attacks during registration and calls this assumption trust on first use. When attestation
mode Basic is in use, the model in the full version of [2] allows active attacks in registration,
but it cannot prevent rogue key attacks since the attacker can successfully register with a
valid token from the same batch as the user’s token.

In the next section we specify the syntax for PIN-based access control for authenticators
(PACA) protocols that capture CTAP, and refer to Appendix G for the syntax and security
models for passwordless authentication (PlA) protocols.

3 (m)PACA Protocol Syntax

Our PACA syntax closely follows [5], which itself follows [2]. To capture our authentication
fix of CTAP, we later extend PACA to an mPACA protocol, where the leading “m” stands
for “mutually authenticated”.

A PACA protocol is an interactive protocol between 3 parties: a client C, an authenticator
(or token) T and a user U . It comprises five subprotocols: Reboot, Setup, Bind, Auth-C and
Validate-T. Below, when we say a protocol takes as input C and/or T , we mean the states
of them, which are updated during the protocol execution.

Reboot: inputs a token T and initializes (or refreshes) its state, to prepare for the execution
of the other PACA subprotocols. This subprotocol powers up the token and always requires
user interaction (e.g., a USB token being plugged out and then plugged in to a machine).

Setup: inputs a token T , client C, and user U who participates by providing a pin to C.
During this subprotocol execution, C securely transmits pin to T , then T saves information
about this pin (e.g., a hash thereof) in its static storage (i.e., not affected by Reboot) such
that later it can be used by U to authorize clients access to T . This subprotocol is typically
executed once per token.

Bind: inputs a token T , client C, and user U who again provides C with a pin. This
subprotocol aims to create an authenticated channel from C to T . It can be expressed as
multiple runs of client-side and token-side processing Bind-C and Bind-T. Bind-C inputs
C, U and a message m and outputs a message m′. Bind-T inputs T and a message m and
outputs a message m′. Depending on the stage of execution of Bind-C or Bind-T, m and
m′ will represent different types of information.

Auth-C: inputs a client C, commandM , and outputs (M, t), where t is a tag that authorizes
command M . This subprotocol authorizes commands that C sends to token T (using the
authenticated channel established from Bind).

Validate-T: inputs a token T , command M , tag t and user decision bit d. This subprotocol
validates command M given tag t and user decision bit d, and outputs a bit as the result
of the validation.

11

We extend the PACA syntax with a function Public(T) that models the information a
user or an attacker can learn about the current public state of token T (e.g., the token
version). This information must be properly defined for the analyzed protocol.

Correctness imposes that a client-authorized command is accepted by the token if and
only if a user approves the command (d = 1); the formal definition is essentially the same as
that in [2] and omitted here.

Syntax for mPACA protocols. An mPACA protocol extends the syntax of PACA with
two additional subprotocols:

Auth-T: inputs a token T , command M , and outputs (M, t), where t is a tag that authorizes
command M . This subprotocol authorizes responses that T sends to client C (using the
authenticated channel established from Bind).
Validate-C: inputs a client C, command M and tag t. This subprotocol validates command
M given tag t and outputs a bit as the result of the validation.

Correctness is extended to further impose that a token-authorized command is accepted by
the client.

Session oracles and states. We consider two types of session oracles πi
T and πj

C to specify
the ith and jth instance of token T and client C, respectively. An (m)PACA protocol imple-
ments certain states for client and tokens. Client session oracles are completely independent
from each other and maintain no global state for any given C. Session oracles of token T each
share a global state stT , which contains the associated user identifier stT .user, some infor-
mation about the pin, and some initialization data stT .initialData; the latter includes static
configuration data like the supported protocol versions, and other protocol-specific states like
a public counter that limits the maximum number of failed PIN tries. πi

T and πj
C have a bind-

ing state bs, session identifier sid and execution state stexe ∈ {⊥,waiting, bindStart, bindDone}.
Here ⊥ indicates that the session (oracle) is not yet initialized, in which case we simply write
πi
T =⊥ or πj

C =⊥. When describing CTAP protocols as (m)PACA instances in this paper,
following prior work, we use session oracles to simplify presentation and model the fact that
an incoming message is processed in the context of a specific session.

4 Authentication Properties

We start with the goal of authentication, because this was the main focus of previous works
and, as mentioned in the Introduction, our privacy analysis relies on the authentication
results.

4.1 (m)PACA Authentication Model

We closely follow [5] to define our authentication security model for PACA protocols, and
extend it to capture mPACA security. As presented in Figures 4, 5, the authentication
security of a PACA protocol PACA is defined with a security experiment ExptSUF-tPACA executed
between a challenger and an adversary A. The security notion is called strong unforgeability

12

with trusted-binding (SUF-t), which ensures that a token can only accept a command that
was authorized by a client bound to the token under user permission.

Trust model. The model assumes a fully authenticated channel for all communications
between clients and tokens during Setup. It also assumes that no active attacks can be
carried out against any client during the whole execution of Bind, while fully active attacks
on tokens are allowed. As stated in the Background, this is the same assumption made in [2],
which differs from the model in [5] that allows for stronger adversaries that may carry out
active attacks against clients at the end of Bind. We later expand on the impossibility of
achieving this stronger security in Section 4.2.

Experiment-specific boolean variables. Each session (oracle) has a isValid variable stat-
ing if this session is available for interaction with the adversary. Additionally, each token
session has a πi

T .pinCorr variable determining if the pin associated with token T has been
corrupted, and each client session has a πj

C .compromised variable determining if its internal
state has been compromised.

Experiment oracles. We showcase the ExptSUF-tPACA oracles in Figure 5, which closely follow
the code-based description in [5]. NewT and NewU generate new tokens and new users,
respectively. In this model, a user is simply a holder of a pin, which can then be used to run
Setup with multiple tokens. CorruptUser permanently corrupts a user U (by flagging it as
corrupt) and returns his/her pin to A. The Setup oracle performs a full Setup subprotocol run
between two sessions πj

C and πi
T with user U ’s pin, and returns the trace of communications

to A. Likewise, Execute performs a full Bind subprotocol run between two sessions πj
C and

πi
T , using the pin that was stored in T , invalidating all of T ’s previous sessions; the full trace

of communications is then given to A. Compromise returns a client session’s binding state
πj
C .bs and permanently marks this session as compromised. Reboot on a token session πi

T

calls Reboot subprotocol on T and marks all of T ’s sessions as invalid. Auth-C authorizes a
message M on a client session πj

C using its binding state and outputs the same message and
a tag t. Validate-T inputs a message M , tag t and user decision bit d on a token session πi

T

and outputs a boolean response. Finally, Send-Bind-T allows A to send a message m to a
token session πi

T to initiate, continue or complete Bind; in the latter case, it also invalidates
all of T ’s previous sessions, including πi

T if the query caused T to reboot.

Session partnership.We say sessions πj
C and πi

T are partners if, and only if, they completed
Bind and agree on the session identifier sid. The concrete instantiation of sid depends on the
concrete protocol to be analyzed. In our analysis of CTAP 2.1, we take the sid to be the full
trace of the Bind run.

Winning conditions. For a PACA protocol PACA, we say that an adversary A against the
security experiment ExptSUF-tPACA wins if it gets a message-tag pair (M, t) accepted by a token
session πi

T through the Validate-T oracle and one of the following holds: (i) the user decision
bit d ̸= 1, (ii) two token sessions complete Bind with the same sid, (iii) two client sessions
complete Bind with the same sid, or (iv) T ’s pin was not corrupted and either πi

T has no
partner or its partner was not compromised and did not output (M, t). This is captured by
the winning condition Token-Win-SUF-t in Fig. 4, which is checked whenever the adversary
queries Validate-T.

13

tokenBindPartner (T, i):

1: if ∃(C, j) s.t. πi
T .sid = πj

C .sid then
2: return (C, j)
3: return (⊥,⊥)

ExptSUF-tPACA (A):
1: LauthC ← ∅
2: win-SUF-t← 0
3: ()

$← AO(1λ)
4: return win-SUF-t

Token-Win-SUF-t (T, i,M, t, d):

1: if d ̸= accepted then return 1
2:
3: if ∃(C1, j1), (C2, j2)

s.t. (C1, j1) ̸= (C2, j2) and πj1
C1

.stexe = πj2
C2

.stexe = bindDone

and πj1
C1

.sid = πj2
C2

.sid then return 1
4:
5: if ∃(T1, i1), (T2, i2) s.t. (T1, i1) ̸= (T2, i2) and πi1

T1
.stexe =

πi2
T2
.stexe = bindDone

and πi1
T1
.sid = πi2

T2
.sid then return 1

6:
7: (C, j)← tokenBindPartner(T, i)
8: if (C, j,M, t) /∈ LauthC then
9: if (C, j) = (⊥,⊥) or πj

C .compromised = false then
10: if πi

T .pinCorr = false then
11: return 1
12: return 0

clientBindPartner (C, j):

1: if ∃(T, i) s.t. πj
C .sid = πi

T .sid then
2: return (T, i)
3: return (⊥,⊥)

ExptSUF-tmPACA (A):
1: LauthC,LauthT ← ∅
2: win-SUF-t← 0
3: ()

$← AO(1λ)
4: return win-SUF-t

Client-Win-SUF-t (C, j,M, t):

1: if ∃(C1, j1), (C2, j2)
s.t. (C1, j1) ̸= (C2, j2) and πj1

C1
.stexe = πj2

C2
.stexe = bindDone

and πj1
C1

.sid = πj2
C2

.sid then return 1
2:
3: if ∃(T1, i1), (T2, i2)

s.t. (T1, i1) ̸= (T2, i2) and πi1
T1
.stexe = πi2

T2
.stexe = bindDone

and πi1
T1
.sid = πi2

T2
.sid then return 1

4:
5: (T, i)← clientBindPartner(C, j)
6: if (T, i,M, t) /∈ LauthT then
7: if πj

C .compromised = false then
8: if πi

T .pinCorr = false then
9: return 1
10: return 0

Fig. 4. (m)PACA authentication security experiments and winning conditions. Code in red only for the mPACA
model. O denotes all oracles available to A, as shown in Fig. 5. The winning conditions are checked in Validate-T and
Validate-C.

14

NewT (T , initialData):

1: if stT ̸=⊥ then return ⊥
2: stT .initialData← initialData
3: Reboot(stT)
4: return

CorruptUser (U):

1: if Lvalid[U] =⊥ then return ⊥
2: Lcorrupt[U]← true
3: pin← Lvalid[U]
4: return pin

Reboot (T):

1: if stT =⊥ then return ⊥
2: for all i s.t. πi

T ̸=⊥ do

3: πi
T .isValid← false

4: Reboot(stT)
5: return

Send-Bind-T (T, i,m):

1: if stT =⊥ then return ⊥
2: if πi

T =⊥ then

3: πi
T ← stT

4: if πi
T .stexe = bindDone or πi

T .isValid = false then return ⊥
5: πi

T .pinCorr← Lcorrupt[stT .user]

6: if πi
T .stexe = waiting then

7: mT ← Bind-T(πi
T ,m)

8: cpt || calledReboot← m′

9: if calledReboot = true then
10: for all i′ s.t. πi′

T ̸=⊥ do

11: πi′
T .isValid← false

12: else if πi
T .stexe = bindDone then

13: for all i′ ̸= i and πi′
T ̸=⊥ do

14: πi′
T .isValid← false

15: else
16: mT ← Bind-T(πi

T ,m)

17: Lbdch
∪← {(T, i)}

18: return mT

NewU (U):

1: if Lvalid[U] =⊥ then

2: pin D← P
3: Lvalid[U]← pin
4: Lcorrupt[U]← false
5: return

Setup (T, i, C, j, U):

1: pin← Lvalid[U]

2: if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pin =⊥ then return ⊥
3: πi

T ← stT

4: trans
$← Setup(πi

T , πj
C , pin)

5: πi
T .isValid, πj

C .isValid← false
6: stT .user← U
7: return trans

Compromise (C, j):

1: if πj
C =⊥ or πj

C .stexe ̸= bindDone then return ⊥
2: πj

C .compromised = True

3: Lcorr ∪← {(C, j)}
4: return πj

C .bs

Execute (T, i, C, j):

1: pin← Lvalid[stT .user]

2: if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pin =⊥ then return ⊥
3: πi

T ← stT
4: trans,mC ,mT ←⊥
5: while πj

C .stexe ̸= bindDone do

6: mT
$← Bind-T(πi

T ,mC)

7: mC
$← Bind-C(πj

C , U,mT)
8: trans← trans || mT || mC

9: for all i′ ̸= i and πi′
T ̸=⊥ do

10: πi′
T .isValid← false

11: Lbdch
∪← {(T, i), (C, j)}

12: return trans

Auth-C (C, j,M):

1: if πj
C =⊥ or πj

C .stexe ̸= bindDone or πj
C .isValid = false then

return ⊥
2: (M, t)

$← auth-C(πj
C ,M)

3: LauthC ∪← {(C, j,M, t)}
4: Lopch

∪← {(C, j)}
5: return (M, t)

Auth-T (T, i,M):

1: if πi
T =⊥ or πi

T .stexe ̸= bindDone or πi
T .isValid = false then

return ⊥
2: (M, t)

$← auth-T(πi
T ,M)

3: LauthT ∪← {(T, i,M, t)}
4: Lopch

∪← {(T, i)}
5: return (M, t)

Validate-T (T, i,M, t, d):

1: if πi
T =⊥ or πi

T .stexe ̸= bindDone or πi
T .isValid = false then

return ⊥
2: status← validate-T(πi

T ,M, t, d)
3: if status = accepted then win-SUF-t←

Token-Win-SUF-t(T, i,M, t, d)

4: Lopch
∪← {(T, i)}

5: return status

Validate-C (C, j,M, t):

1: if πj
C =⊥ or πj

C .stexe ̸= bindDone or πj
C .isValid = false then

return ⊥
2: status← validate-C(πj

C ,M, t)
3: if status = accepted then win-mSUF-t←

Client-Win-SUF-t(C, j,M, t)

4: Lopch
∪← {(C, j)}

5: return status

Fig. 5. Oracles for (m)PACA security experiments. Changes from [5] in blue. Code in red only for mPACA introduced
later. Code in teal only for privacy described in Fig. 7.

15

Security for mPACA protocols. The mPACA authentication model extends the PACA
authentication model with two additional oracles Auth-T and Validate-C as shown in Figure 5
that provide the adversary with the power to observe token-authorized commands and check
validity of such commands. The winning conditions for the mPACA security experiment
ExptSUF-tmPACA (shown in Figure 4) is also extended to reflect the additional attack vectors: an
additional winning condition Client-Win-SUF-t is checked whenever the adversary queries
Validate-C.

Advantage measures. For protocol prot ∈ {PACA,mPACA}, the authentication advantage
of A is defined as:

AdvSUF-tprot (A) = Pr[ExptSUF-tprot (A) = 1] .

Differences to [5].Our security model modifies the Execute and Send-Bind-T oracles from [5]
back to the modeling approach of [2], in order to exclude active attacks on clients. This means
that Execute captures a full Bind execution between two sessions πj

C and πi
T , whereas Send-

Bind-T allows the adversary to arbitrarily attempt to bind with a token session πi
T . We

remove the Send-Bind-C oracle defined in [5], which further allows the adversary to behave
actively when completing Bind on the client side.

Another minor difference is that we modify the Execute oracle’s input, which no longer
includes the user U . Therefore, Execute always uses the configured PIN information stored in
the involved token. Not doing so, as in [5], implies that the adversary could always convince
another user to interact with a token, and trivially win the game if the PINs coincide. This
adds to the advantage of the adversary a non-negligible term that depends on the number
of passive protocol executions, which is non-standard in the modeling of low-entropy secrets
such as passwords and PINs.

4.2 Authentication Security of CTAP 2.1

While the proof in [5] gives undoubtedly a valuable and comprehensive security analysis of
CTAP 2.1 that broadens the coverage and corrects some aspects in the initial proof given
in [2], it still has some shortcomings that we fix in this paper. In the following, we first briefly
discuss the main issue with the proof and its implications—with further details and proof
fixes described in Appendix F—then show our security results.

Active attacks against clients during Bind. The problem lies in step of the proof of
CTAP 2.1 [5, Appendix I, Game 16] that justifies removing PIN hashes from CBC encryptions
during Bind. There, it is argued that CBC security guarantees that an attacker delivering
a mauled ciphertext back to the client in the final step of the Bind subprotocol has no
information on the resulting decrypted pinToken. We show that this is not true by presenting
a simple attack, inspired by CBC padding oracle attacks [7]. Recall that the adversary obtains
a CBC encryption cph of the pinHash in the last-but-one flow of Bind, and that the client is
expecting to receive back a pinToken encrypted under the same symmetric key in the final
flow. The attacker can therefore take the CBC encryption of the pinHash and echo it back to
the client, who will recover a pinToken that encodes the hash of the user pin—see Appendix F
for a detailed flow. When the client issues a command under this pinToken, the adversary

16

immediately obtains enough information to perform an offline dictionary attack and recover
the user pin.

We draw two conclusions from our attack: (i) the strongest model in which one can prove
authentication security of CTAP 2.1 must assume the adversary to be passive against clients
during Bind, and (ii) this gives further evidence that the Bind subprotocol of CTAP 2.1
should better be modified to withstand active attacks as recommended in [2]. As mentioned
in the background Section 2, the current version of CTAP cannot be proved secure if the
adversary can actively attack clients during Bind, because Bind uses unauthenticated Diffie-
Hellman key exchange.10 Nevertheless we note that, as noted in [8], man-in-the-middle atacks
are much harder to launch over an USB channel than the final message injection required
for a rogue-key attack. In what follows we will therefore propose a minimal change to CTAP
that mitigates rogue-key injection only. We do not propose further patches to Bind to thwart
more powerful man-in-the-middle attacks, and refer the interested readers to [2] for a (much
more intrusive) solution to this problem based on a standard PAKE.

CTAP 2.1 security. Now, we state our authentication security result for the PACA proto-
col, CTAP 2.1 instantiated with PIN/UV Auth Protocol 2, which is described in Fig. 3 and
Appendix B. Though we do not formally analyze its PIN/UV Auth Protocol 1 instantiation
here, in Appendix E we present how its security can be proved by adapting our proof for
Theorem 1 shown below.

We assume that every user pin is sampled according to some distribution D with min-
entropy hD over the set P of all valid pins. We also assume that HKDF-SHA-256 [19] is
modeled as a random oracle H2. Then, for other CTAP 2.1 building blocks, hash function H
outputs the leftmost 128 bits of the SHA-256 digest, q is the prime order of the underlying
elliptic-curve Diffie-Hellman (ECDH) group (for NIST curve P-256) [17], the underlying sym-
metric encryption scheme SKE denotes AES-256 in CBC mode with random IV [9], and the
message authentication code MAC denotes HMAC-SHA-256 with 256-bit keys [4]. A query
to Send-Bind-T on a session πi

T is considered to be active, if A delivers a DH share c and
ciphertext cph to πi

T and (c, cph) was not output by any client session that was involved in a
previous Execute query with a token session using the same token DH share. The following
theorem states the SUF-t security of CTAP 2.1.

Theorem 1. For every efficient adversary A that makes at most qS, qE, qSend, qNT and qR
queries to Setup, Execute, Send-Bind-T, NewT and Reboot, and at most qactSend active queries
to Send-Bind-T, there exist efficient adversaries B1, B4, B5, B6 and B10 such that:

AdvSUF-tCTAP 2.1(A) ≤ qactSend/2
hD + (qS + qE + qSend) Adv

sCDH
ECDH(B1)

+ (qS + qE + qNT + qR + 2qSend)
2/(2q) + AdvcollH (B4)

+ qS AdvIND-1$PA-LHPC
SKE (B5) + qE AdvIND-1$PA-LPC

SKE (B6)
+ (qE + qSend)

2/(22λ+1) + (qE + qSend) Adv
SUF-CMA
MAC (B10) .

10 Using authenticated encryption during Bind would eliminate the specific attack we describe, but active attacks
against clients in other part of Bind are still possible.

17

We provide security definitions of the underlying primitives used in the theorem in Ap-
pendix C, the proof sketch in Appendix D.1 and the full code-based proof in Appendix L.

4.3 Authentication Security of FIDO2

Recall that the latest version of FIDO2 consists of WebAuthn and CTAP 2.1. WebAuthn
has been proved in [6] to offer PlA authentication security. We reuse these results with minor
modifications, and the syntax and security model of PlA protocols in Appendix G. We now
briefly discuss what we obtain in terms of composed security for FIDO2. These results follow
along the lines of those outlined in [5], with natural adaptations due to our fixes to their
CTAP 2.1 results. As we do not claim significant novelty for these results, we summarize the
core ideas here and leave more details in Appendix I. Then, we explain rogue key attacks
and how they affect the model.

Composed authentication of FIDO2. The composed model in which the current version
of FIDO2 in attestation modes None and Self can be proved secure requires assuming trust
on first use (TOFU), i.e., the adversary is passive during the full registration run. Under
this restriction, we can show that the server gets all the guarantees provided by PlA in
these attestation modes. In attestation mode Basic, one can lift the TOFU assumption and
guarantee the server that the accepted registered credentials is generated by valid tokens
from the attested batch, as guaranteed by the PlA primitive. This is to be expected. But
what does PACA provide, in addition to PlA security? As discussed at the end of Appendix I,
PACA guarantees that no attacker can authenticate under a credential stored in the user’s
token, unless it breaks the PACA access-control mechanism (modeled by compromising the
client connected to the user’s token), or simply corrupts the user pin.

Note here that the main differences to the result in [5] are that we further clarify what
composed authentication security means for attestation modes None, Self and Basic, and that
we highlight the need to assume that the composed model must still disallow active attacks
against clients during Bind of the PACA protocol. At the end of Appendix I, we also remark
that the authentication guarantee of FIDO2 can be strengthened if the server is looking
a priori for a specific credential identifier that is associated with the authenticating user.
Otherwise, although the attacker cannot impersonate the user due to the PACA protection
captured by the composed model, it is still possible for the attacker to launch an attack
similar to rogue key attacks, but here targeting an authentication run; this may allow an
attacker to authenticate the user under a credential that is under the attacker’s control. I.e.,
if the user is authenticating via an honest client, the best the attacker can do is to log the
user in to an account that is under the attacker’s control. Our proposed fixes to the protocol
also eliminate this attack.

Rogue key attacks. In Figure 6 we recall the setting described in [3] in which an attacker
manages to register a rogue key pk⋆ instead of the user’s legitimate credential pk. To launch
the attack in attestation modes None or Self, the attacker doesn’t need any special equipment
and can just create the rogue credential by itself. However, if using attestation mode Basic
and the server has information that allows recognizing a target batch (or group), then the

18

Server/Client (vk, ptc) Attacker (ptat) Tokens

ch←− rChal User Token (ak)

tc ←− auth-C(ptc, ch)
ch−−→
tc

ch−−→
tc

ch−−→
tc

token checks user presence

(pk, σc)←−−−−−− σc ←− Sign(ak, (pk, ch))

Attacker Token (ak)

tat ←− auth-C(ptat, ch)
ch−−→
tat

token checks user presence

1←− Ver(vk, (pk⋆, ch), σat)
(pk⋆, σat)←−−−−−−−

(pk⋆, σat)←−−−−−−−
(pk⋆, σat)←−−−−−−− σat ←− Sign(ak, (pk⋆, ch))

Fig. 6. The rogue key attack (against a registration run) in Basic attestation. Right arrows represent commands for
requesting a credential and left arrows are the respective responses. Procedures are simplified for better presentation.

attacker must have access to its own token, from the same batch as the user’s token (and
hence sharing the same attestation private key ak). The figure shows this latter case.

In the top part of Figure 6, the server issues a challenge ch for the registration run, which
is authorized with pinToken ptc by the client and then sent to the user’s token. The attacker
can easily observe the challenge because it is not encrypted. If this attacker is able to inject a
message that replaces the response sent by the user’s token to the client, as described in [3,8],
then it can perform the actions shown in the bottom part of the figure: it takes the same
challenge and uses its own token (using some other pinToken ptat to access it) to generate
and sign a new credential. This malicious credential will be accepted by the server, since the
attacker’s token is from the same batch as the user’s token and uses the same ak.

Failure to capture rogue key attacks formally. The security model in [5] and our
composed model sketched above do not capture rogue key attacks, because in the entire
registration flow it is assumed that the adversary is passive. If this was not the case, then
the rogue key attack would lead to a break of the protocol in these models because the
messages sent by the token to the client are not authenticated (formally in Appendix H it
is captured by the setting in which Validate-C always returns true). This means that an
adversary can simply use its PACA oracles in the security experiment to gain control over
some other token, use it to generate a credential for the challenge created by the target
server, and feed it to the honest client who will pass it along to the server.

As a side note, we recall the observation in [3] that if the server knows a priori a unique
attestation public key for the user’s token (e.g., it is in a batch of size 1), as assumed in [2],
then the adversary will never be able to find a token that allows launching the attack. So,
the model could be strengthened to prevent rogue key attacks by restricting the batch size
as 1, but this hypothesis is not realistic.

4.4 CTAP 2.1+ for Stronger Authentication

In this section, we capture rogue key attacks by removing the restriction that the adversary
cannot be active during the registration run. Clearly, this security is unachievable for the
current version of FIDO2, so we investigate how to fix it to resist rogue key attacks.

19

CTAP 2.1+ and its authentication security. We propose a modification to CTAP 2.1,
the fixed protocol called CTAP 2.1+, that achieves SUF-t security in our stronger mPACA
authentication model and, therefore, provides protection against rogue key attacks. Our
CTAP 2.1+ modifications are highlighted in red in Figure 3, with detailed descriptions
provided in Appendix B.

As with CTAP 2.1, CTAP 2.1+ still authorizes a client-to-token command M with Auth-
C and validates a client-authorized command (M, t) with Validate-T; moreover, CTAP 2.1+
introduces two more algorithms Auth-T and Validate-C to authorize a token-to-client response
R and validate a token-authorized response (R, t). Regarding low-level functions, our CTAP
2.1+ protocol stops using the pinToken provided by the token directly as a MAC key, but
uses a key derivation function KDF to expand it to two MAC keys, and use them to authorize
commands in both directions.

The following theorem states our result for CTAP 2.1+, with the above KDF modeled as
a random oracle H3.

Theorem 2. For every efficient adversary A that makes at most qS, qE, qSend, qNT and qR
queries to Setup, Execute, Send-Bind-T, NewT and Reboot, at most qactSend active queries to
Send-Bind-T, and at most qH3 queries to H3, there exist efficient adversaries B1, B4, B5, B6,
B11 and B12 such that:

AdvSUF-tCTAP 2.1+(A) ≤ qactSend/2
hD + (qS + qE + qSend)Adv

sCDH
ECDH(B1)

+ (qS + qE + qNT + qR + 2qSend)
2/(2q) + AdvcollH (B4)

+ qS AdvIND-1$PA-LHPC
SKE (B5) + qE AdvIND-1$PA-LPC

SKE (B6)
+ (qE + qSend)

2/(22λ+1) + qH3(qE + qSend)/2
2λ

+ (qE + qSend) Adv
SUF-CMA
MAC (B11) + qE AdvSUF-CMA

MAC (B12) .

We provide the proof sketch in Appendix D.2 and the full code-based proof in Appendix L.

Composing CTAP 2.1+ and WebAuthn. The composed model in which we analyze
the composition of an mPACA protocol with a PlA protocol is given in Appendix H. At
the high level, the main differences to the model in [5] are that we consider active attackers
during registration and that we formally cover, not only attestation mode None, but also Self
and Basic. Recall that uncompromised CTAP 2.1+ client sessions will only accept messages
transmitted by a unique token session to which they are bound and that, in the composed
model, honest client sessions are assumed to be uniquely bound to a server session (e.g., via
a TLS connection).

In summary, we state and prove two theorems in Appendix I that establish the following
intuitive results:

– For attestation modes None and Self one must consider that registration is carried out via
an honest client, as otherwise one gets no PlA guarantees. In particular, the server would
not even be assured that the credential comes from a hardware token.

– For attestation mode Basic we can guarantee PlA security even if the server is interacting
with a compromised client. However, rogue key attacks are still possible in this setting.

20

– For all attestation modes, if a token is interacting with an honest client, then the token
will only reply to challenges if it is unlocked by a client or attacker using the correct user
PIN.

– For all attestation modes, if an interaction with the server occurs via an honest client
session (be it in authentication or registration), then the composed PlA+mPACA security
guarantees that the server session connected to that honest client session will only ever
accept a PlA session originating in the unique token session bound to that client session
via mPACA. This means in particular that we guarantee security against rogue key attacks.

5 Privacy Properties

User privacy is an important security goal for FIDO2. Informally, privacy means that different
registrations do not reveal whether they are linked to the same or different tokens, and hence
users. In this section, we provide the first formal provable privacy analysis of CTAP 2.1 and
FIDO2 as a whole, then propose a simple fix to achieve a natural stronger privacy guarantee.

5.1 (m)PACA Privacy Model

We start by defining PACA privacy, a property that guarantees a strong form of unlinkabil-
ity between PACA sessions. The adversarial capabilities are modeled similarly to those in
the model for PACA authentication and our privacy model inherits the same trust model,
but here the adversarial goal is different. Figure 7 shows our privacy security experiment
ExptprivPACA, associated with an adversary A and a PACA protocol PACA. Our privacy defini-
tions follow the style of PlA privacy definition presented in [16,6] and recalled and adapted
in Appendix G.3.

Experiment phases and oracles. The experiment ExptprivPACA has 3 phases. In Phase 1, we
let the adversary freely interact with the oracles available in the PACA authentication exper-
iment ExptSUF-tPACA (see Figure 5). This is captured via the O oracle notation. In the challenge
phase Phase 2, the adversary specifies two (not necessarily distinct) uncorrupted “challenge”
tokens T0 and T1, two clients C0 and C1, and two users U0 and U1. The challenger then calls
InitRL, which will sample a random bit b and use (Tb, Cb) and (T1−b, C1−b) to respectively
initialize oracles with suffixes LEFT and RIGHT. Finally, in Phase 3, the adversary can con-
tinue interacting with oracles in O as in Phase 1, but cannot create new tokens. However, it
can query LEFT and RIGHT oracles. We note that it is necessary for the experiment to have
challenge clients, in addition to challenge tokens: the state of clients, which may be leaked
to the server, could also leak information that compromises privacy.

Winning conditions. In order to win the experiment, the adversary A has to guess the
secret random bit b, meaning being able to distinguish the interaction between (T0, C0) and
(T1, C1).

To avoid trivial wins, we follow the PlA privacy models [16,6] to perform context sep-
aration checks. Check-priv-PACA will return 1 if all checks are passed, the experiment then
proceeds to return 1 if adversary guess the bit correctly, and 0 otherwise. If at least one check

21

Expt
(w)priv
PACA/mPACA(A):

1: Lcorr ← ∅,Lbd
ch ← ∅,Lbd

lr ← ∅,Lop
ch ← ∅,Lop

lr ← ∅, pb← 1,
freshDH← 1

2: st1
$← AO(1λ) // Phase 1

3: T0, T1, C0, C1, U0, U1, st2 ← A(1λ, st1) // Phase 2
4: b← InitRL(T0, T1, C0, C1, U0, U1)
5: O′ ← (O\{NewT})
6: b′ ← AO′,LEFT,RIGHT(1λ, st2) // Phase 3

7: r
$← {0, 1}

8: if Check-priv-PACA()=1 then return b = b′

9: else return r

Check-priv-PACA():

1: for all (Tch, i) ∈ Lbd
ch , (Tlr, j) ∈ Lbd

lr do
2: if Tch = Tlr and no Reboot is performed between (Tch, i)

and (Tlr, j) then
3: freshDH← 0

4: for two consecutive queries qn, qm do
5: if qn is LEFT/RIGHT query and qm is regular query, or vice

versa and Public(T0) ̸= Public(T1) after qn then
6: pb← 0
7: Check ← T0.pinCorr = false and T1.pinCorr = false and Lbd

lr ∩
Lcorr = ∅

8: S← (Lbd
ch ∩ Lop

lr) ∪ (Lop
ch ∩ L

bd
lr) ∪ (Lbd

ch ∩ Lbd
lr)

9: if S = ∅ and Check and pb = 1 and freshDH = 1 then
return 1

10: else return 0

InitRL(T0, T1, C0, C1, U0, U1):

1: b
$← {0, 1}

2: Initialize LEFT and RIGHT oracles
3: return b

Setup-LEFTTb,Cb,Ub(i, j):

1: return Setup(Tb, i, Cb, j, Ub)

Setup-RIGHTT1−b,C1−b,U1−b(i, j):

1: return Setup(T1−b, i, C1−b, j, U1−b)

Bind-LEFTTb,Cb(i, j):

1: Lbd
lr

∪← {(T0, i), (C0, j)}, Lbd
lr

∪← {(T1, i), (C1, j)}
2: return Execute(Tb, i, Cb, j)

Bind-RIGHTT1−b,C1−b(i, j):

1: Lbd
lr

∪← {(T0, i), (C0, j)}, Lbd
lr

∪← {(T1, i), (C1, j)}
2: return Execute(T1−b, i, C1−b, j)

Send-LEFTTb(i,M)

1: Lbd
lr

∪← {(T0, i)}, Lbd
lr

∪← {(T1, i)}
2: return Send-Bind-T(Tb, i,M)

Send-RIGHTT1−b(i,M)

1: Lbd
lr

∪← {(T0, i)} , Lbd
lr

∪← {(T1, i)}
2: return Send-Bind-T(T1−b, i,M)

Auth-C-LEFTCb(j,M):

1: Lop
lr

∪← {(C0, j)}, Lop
lr

∪← {(C1, j)}
2: (M, t)← Auth-C(Cb, j,M)
3: return (t, πj

Cb
.bs)

Auth-C-RIGHTC1−b(j,M):

1: Lop
lr

∪← {(C0, j)}, Lop
lr

∪← {(C1, j)}
2: (M, t)← Auth-C(C1−b, j,M)
3: return (t, πj

C1−b
.bs)

Validate-T-LEFTTb(i,M, t, d):

1: Lop
lr

∪← {(T0, i)}, Lop
lr

∪← {(T1, i)}
2: d← Validate-T(Tb, i,M, t, d).
3: return (d, πi

Tb
.bs)

Validate-T-RIGHTT1−b(i,M, t, d):

1: Lop
lr

∪← {(T0, i)}, Lop
lr

∪← {(T1, i)}
2: d← Validate-T(T1−b, i,M, t, d).
3: return (d, πi

T1−b
.bs)

Auth-T-LEFTTb(i,M):

1: Lop
lr

∪← {(T0, i)}, Lop
lr

∪← {(T1, i)}
2: (M, t)← Auth-T(Tb, i,M)
3: return (t, πi

Tb
.bs)

Auth-T-RIGHTT1−b(i,M):

1: Lop
lr

∪← {(T0, i)}, Lop
lr

∪← {(T1, i)}
2: (M, t)← Auth-T(T1−b, i,M)
3: return (t, πi

T1−b
.bs)

Validate-C-LEFTCb(j,M, t, d):

1: Lop
lr

∪← {(C0, j)}, Lop
lr

∪← {(C1, j)}
2: d← Validate-C(Cb, j,M, t, d).
3: return (d, πj

Cb
.bs)

Validate-C-RIGHTC1−b(j,M, t, d):

1: Lop
lr

∪← {(C0, j)}, Lop
lr

∪← {(C1, j)}
2: d← Validate-C(C1−b, j,M, t, d)
3: return (d, πj

C1−b
.bs)

Fig. 7. (m)PACA privacy security experiments. ExptprivPACA for PACA privacy (without red or blue parts), ExptwprivPACA for
PACA weak privacy (without red parts), ExptprivmPACA for mPACA privacy (without blue parts), ExptwprivmPACA for mPACA
weak privacy (with everything). AO indicates that the adversary A has access to all PACA authentication oracles
denoted by O (defined in Fig. 5).

fails, Check-priv-PACA will return 0 and the experiment will ignore bit b′ output by advasary,
and output a random bit r. Now we get into the details of Check-priv-PACA. Intuitively, after
a particular Bind run between sessions πi

T and πj
C , suppose that A could specify (T0, C0)

as (T,C) and (T1, C1) as some pair such that πi
T1

and πj
C1

do not have a matching Bind
state; then A could trivially identify (T0, C0) by asking the challenge clients to authorize a
command on session j or asking the challenge tokens to validate an authorized command on

22

session i, because only πi
T0

and πj
C0

have a binding state. Therefore, we require that, if A
queries an Execute oracle, the involved sessions cannot be queried to a LEFT/RIGHT oracle
for Auth-C or Validate-T; this also applies to the converse case. The above is captured by
requiring (Lbd

ch ∩ L
op
lr) ∪ (Lop

ch ∩ Lbd
lr) to be empty. Additionally, we require that A cannot

query the same sessions via both regular oracles and LEFT/RIGHT oracles for Bind runs.
Otherwise, A can, for instance, query regular Execute on token T0 with some session index
i, and later query Bind-LEFT with the same session index i. If Bind-LEFT uses T0, the oracle
will return failure, otherwise, it runs Bind and returns success. This is captured by requiring
empty Lbd

ch ∩ Lbd
lr .

Recall that each token T may have public information that is available upon request,
e.g., token version, number of remaining allowed failed PIN retries, and whether T has been
set up. This is captured by Public(T) defined in Section 3. To avoid trivial wins, we require
Public(T0) = Public(T1) holds whenever A makes a LEFT/RIGHT query after a regular query,
or vice versa. Furthermore, the Check flag ensures that challenge tokens are not corrupted
and challenge client sessions are not compromised.

Privacy for mPACA protocols. The privacy model for mPACA protocols is the same,
except that we extend the experiment oracles to include Auth-T and Validate-C, and extend
the winning conditions accordingly. See ExptprivmPACA in Figure 7.

Advantage measures. For protocol prot ∈ {PACA,mPACA}, the privacy advantage of A is
defined as:

Advprivprot(A) = |2Pr[Exptprivprot(A) = 1]− 1| .

5.2 Privacy of CTAP 2.1 and CTAP 2.1+

Privacy attacks against CTAP 2.1 and CTAP 2.1+. We observe that neither CTAP
2.1 nor CTAP 2.1+ meets our privacy definitions. The reason is that tokens do not generate
a fresh Diffie-Hellman share for each key exchange. Formally, in our model an adversary
can observe repeated DH shares sent by a token to break privacy, e.g., the adversary first
observes a token session in Phase 1 to collect its DH share used in Setup, then chooses this
same token in Phase 2, and finally in Phase 3 checks if the trace returned by the Bind-LEFT
oracle repeats the DH share or not. This attack is formalized in Appendix J, where we
describe an efficient adversary A such that:

Advprivprot(A) = 1− 1/q ≈ 1− 2−2λ ,

where prot ∈ {CTAP 2.1,CTAP 2.1+}, q is the order of the underlying ECDH group, and
λ = 128.

For the above attack, we do not claim that it has significant practical implications.
Nevertheless, our tests show that, when a USB token is used to register or authenticate to
multiple accounts without rebooting (by remaining plugged-in and not putting the computer
to sleep), the token will reuse its DH share. This can allow a malicious server (that can
access the CTAP communication, e.g., via malware with low-privilege access installed on
the computer [3]) to link accounts (perhaps for different servers) of the same user, especially

23

when multiple users share the same machine (e.g., a corporate or public computer). As we
will show shortly, this potential privacy leak can be easily fixed by enforcing DH shares to
be always refreshed on the token.

Weak privacy of CTAP 2.1 and CTAP 2.1+. In order to analyze the privacy guarantees
achieved by CTAP 2.1 and CTAP 2.1+, we define weak privacy notions for both PACA and
mPACA protocols. Figure 7 defines experiments ExptwprivPACA and ExptwprivmPACA. The only difference
introduced in these weak privacy notions is an additional flag freshDH, which rules out the
trivial win where no Reboot is performed to a token involved in any pair of queries to a regular
oracle and a LEFT/RIGHT oracle for Bind runs. For protocol prot ∈ {PACA,mPACA}, the
weak privacy advantage of A is defined as:

Advwprivprot (A) = |2Pr[Exptwprivprot (A) = 1]− 1| .

For CTAP 2.1 and CTAP 2.1+, Public(T) in particular contains the token version, sup-
ported PIN/UV Auth Protocol list and PIN retry counter. The following theorem shows that
CTAP 2.1 achieves PACA weak privacy and CTAP 2.1+ achieves mPACA weak privacy.

Theorem 3. For every efficient adversary A that makes at most qS, qE, qSend, qNT and qR
queries to Setup, Execute, Send-Bind-T, NewT and Reboot, and at most qactSend active queries
to Send-Bind-T, for some PIN-sampling distribution D with minimum entropy hD , there exist
efficient adversaries B1, B4, B5, B6 such that:

Advwprivprot (A) ≤ 2 · [qactSend/2
hD + (qS + qE + qSend) Adv

sCDH
ECDH(B1)

+ (qS + qE + qNT + qR + 2qSend)
2 / (2q) + AdvcollH (B4)

+ qS AdvIND-1$PA-LHPC
SKE (B5) + qE AdvIND-1$PA-LPC

SKE (B6)] ,

where prot ∈ {CTAP 2.1,CTAP 2.1+}.

Intuitively, this theorem shows that privacy is achieved if the attacker does not observe
CTAP traces where a token reuses the same DH share when interacting with clients to
register multiple accounts. We give main ideas of the proof here, and delay the full proof to
until Theorem 4, as proofs for these two theorems are identical. Interestingly, the proof reuses
many of the arguments used to prove the authentication properties of the protocol. This is
the case because the access control mechanism of the token, which is crucial to guarantee
authentication, also safeguards the token from interactions that might reveal its long-term
state (in practice this includes the credentials it stores inside). Therefore, when we follow
similar footsteps of authentication proof to switch tokens’ PIN to all 0, and pintokens to
be random, the two challenged tokens are essentially indistinguishable if we enforce tokens
do not reuse DH shares across different phases (freshDH check) and exclude other trivial
attacks. We also remark that, as shown in the proof, the additional mPACA token-to-client
authentication in CTAP 2.1+ does not affect privacy and hence the privacy security bounds
for CTAP 2.1 and CTAP 2.1+ are the same.

24

5.3 CTAP 2.1++ for Stronger Privacy

We propose a small modification in CTAP 2.1+ so that procedure obtainSharedSecret-T al-
ways regenerates and outputs a fresh Diffie-Hellman share. We refer to this modified protocol
as CTAP 2.1++, with modification details formally shown in Figure 12. We then prove its
privacy guarantees.11 Here the Public function is the same as that for CTAP 2.1 and CTAP
2.1+. The following theorem states the result. Its proof is in Appendix D.3.

Theorem 4. For every efficient adversary A that makes at most qS, qE, qSend, qNT and qR
queries to Setup, Execute, Send-Bind-T, NewT and Reboot, and at most qactSend active queries
to Send-Bind-T, for some PIN-sampling distribution D with minimum entropy hD , there exist
adversaries B1, B4, B5, B6 such that:

AdvprivCTAP 2.1++(A) ≤ 2 · [qactSend/2
hD + (qS + qE + qSend) Adv

sCDH
ECDH(B1)

+ (qS + qE + qNT + qR + 2qSend)
2 / (2q) + AdvcollH (B4)

+ qS AdvIND-1$PA-LHPC
SKE (B5) + qE AdvIND-1$PA-LPC

SKE (B6)] .

We remark that the above theorem also applies to CTAP 2.1 once the same modification
with respect to token’s DH share regeneration is introduced to the protocol.

5.4 Composed Privacy of FIDO2 and of WebAuthn and CTAP 2.1++

PlA privacy model and WebAuthn privacy. In Appendix G.3 we recall the PlA privacy
model from [6], discuss how we slightly strengthen and generalize it, and define PlA privacy
advantage AdvprivPlA. Theorem 7 in Appendix G.3 states the WebAuthn privacy result, for which

the proof from [6] still applies. It shows that for any A, AdvprivWebAuthn(A) = 0, for all attestation
modes we consider.

Composed privacy model. We define privacy for the composition of PlA and (m)PACA,
denoted by PlA+(m)PACA, in order to assess the composed privacy guarantees provided
by FIDO2 and the protocol composed with WebAuthn and CTAP 2.1++. The security
experiments Exptcom-priv

PlA+PACA, Expt
com-priv
PlA+mPACA are shown in Fig. 8.

The composed privacy experiments give the adversary access to all (m)PACA privacy
oracles except those Auth and Validate oracles and to all PlA oracles except rResp, aResp,
r/aLEFT and r/aRIGHT. Similar to the composed authentication model shown in Appendix H,
the above PlA oracles are modified to perform additional (m)PACA token validation before
creating the token’s PlA response, and perform token authorization before returning the
response. Such changes are colored in blue in Fig. 8.

At the end of the experiments, the adversary outputs its guess b′, and the experiment
checks both conditions for the underlying PlA and (m)PACA privacy. In particular, the

11 Note that CTAP 2.1++ still achieves mPACA authentication security. The only change to the proof given in
Appendix D.2 is in bound |Pr2 − Pr3|, which becomes (2qS + 2qE + qNT + qR + 2qSend)

2 / (2q). This captures the
slight increase in the total number of fresh Diffie-Hellman shares generated in Setup and Execute.

25

Expt
com-(w)priv
PlA+PACA/PlA+mPACA(A):

1: LPlA
corr ← ∅, Lr

ch ← ∅, Lr
lr ← ∅, La

ch ← ∅, La
lr ← ∅, LPACA

corr ← ∅,
Lbd

ch ← ∅, Lbd
lr ← ∅, Lop

ch ← ∅, Lop
lr ← ∅, pb← 1, freshDH← 1

2: st1
$← AO(1λ) // Phase 1

3: T0,T1,C0, C1, U0, U1, SL, SR, st2 ← A(1λ, st1) // Phase 2
4: b←InitRL(T0, T1, C0, C1, U0, U1, SL, SR)
5: O′ ← O\{NewT,NewToken}
6: b′ ← AO′,LEFT,RIGHT(1λ, st2) // Phase 3

7: r
$← {0, 1}

8: if Check-priv-PlA() ∧ Check-(w)priv-PACA() then return
b = b′

9: else return r

InitRL(T0, T1, C0, C1, U0, U1, SL, SR):

1: b
$← {0, 1}

2: Initialize r/aLEFTTb,SL , r/aRIGHTT1−b,SR

3: Initialize (m)PACA LEFT/RIGHT oracles
4: return b

rResp’ ((T, j), j′,m, tcl, d): // helper function

1: status
$← validate-T(πj′

T ,mrcom, tcl, d)
2: if status ̸= accepted then return ⊥
3: if π̃j

r,T ̸=⊥ or T.gid =⊥ then return ⊥
4: (mrrsp, rcT , cid, sid, agCon)

$← rRsp(π̃j
r,T ,mrcom)

5: (mrrsp, ttk)
$← auth-T(πj′

T ,mrrsp)
6: Lr

lr
∪← {cid},Lop

lr
∪← {(T, j′)}

7: return (mrrsp, ttk)

aResp’ ((T, j), j′,m, tcl, d): // helper function

1: status
$← validate-T(πj′

T ,macom, tcl, d)
2: if status ̸= accepted then return ⊥
3: if π̃j

a,T ̸=⊥ or T.gid =⊥ then return ⊥
4: (marsp, rcT , cid, sid, agCon)

$← aRsp(π̃j
a,T ,macom)

5: (marsp, ttk)
$← auth-T(πj′

T ,marsp)
6: La

lr
∪← {cid}, Lop

lr
∪← {(T, j′)}

7: return (marsp, ttk)

rResp (T, j, j′,mrcom, tcl, d):

1: status
$← validate-T(πj′

T ,mrcom, tcl, d)
2: if status ̸= accepted then return ⊥
3: if π̃j

r,T ̸=⊥ or T.gid =⊥ then return ⊥
4: (mrrsp, rcT , cid, sid, agCon)

$← rRsp(π̃j
r,T ,mrcom)

5: (mrrsp, ttk)
$← auth-T(πj′

T ,mrrsp)
6: Lr

ch
∪← {cid},Lop

ch
∪← {(T, j′)}

7: return (mrrsp, ttk)

aResp (T, j, j′,macom, tcl, d):

1: status
$← validate-T(πj′

T ,macom, tcl, d)
2: if status ̸= accepted then return ⊥
3: if π̃j

a,T ̸=⊥ or T.gid =⊥ then return ⊥
4: (marsp, rcT , cid, sid, agCon)

$← aRsp(π̃j
a,T ,macom)

5: (marsp, ttk)
$← auth-T(πj′

T ,marsp)
6: if tokenBindPartner(T, j′) ̸= ⊥ then
7: (C, j)← tokenBindPartner(T, i)
8: if (C, j,macom, tcl) ∈ LauthC then
9: La

ch
∪← {cid},Lop

ch
∪← {(T, j′)}

10: return (marsp, ttk)

r/aLEFTTb,SL(j
′,m, tcl, d)

1: Obtains intended server S from m
2: if S ̸= SL then return ⊥
3: j ← 0, while πj

Tb
̸= ⊥: j ← j + 1

4: return rResp’ ((Tb, j), j
′,m, tcl, d) // in rLEFT

5: return aResp’ ((Tb, j), j
′,m, tcl, d) // in aLEFT

r/aRIGHTT1−b,SR(j
′,m, tcl, d)

1: Obtains intended server S from m
2: if S ̸= SR then return ⊥
3: j ← 0, while πj

T1−b
̸= ⊥: j ← j + 1

4: return rResp’ ((T1−b, j), j
′,m, tcl, d) // in rRIGHT

5: return aResp’ ((T1−b, j), j
′,m, tcl, d) // in aRIGHT

Fig. 8. Composed privacy experiments Exptcom-priv
PlA+mPACA (with red code) and Exptcom-priv

PlA+PACA (without red code). They

each also has a “weak” privacy version, Exptcom-wpriv
PlA+mPACA and Exptcom-wpriv

PlA+PACA, which capture (m)PACA weak privacy. O
contains all (m)PACA privacy oracles (Fig. 7) except those Auth and Validate oracles and all PlA oracles (Fig. 19
in Appendix G) except rResp, aResp, r/aLEFT and r/aRIGHT. These PlA oracles are re-defined for composed model,
where rResp’, and aResp’ are internal helper functions called inside r/aLEFT and r/aRIGHT; differences are highlighted
in blue.

26

composed check is the conjunction of Check-priv-PlA (defined in Appendix G.3) and Check-
priv-PACA (defined in Fig. 7).

Fig. 8 also shows experiments Exptcom-wpriv
PlA+PACA, Expt

com-wpriv
PlA+mPACA that define the weak composed

privacy for PlA+(m)PACA protocols to capture (m)PACA weak privacy, where the winning
conditions of (m)PACA weak privacy is written as Win-wpriv-PACA.

Advantage measures. For notion ∈ {com-priv, com-wpriv} and prot ∈ {PlA+ PACA,PlA+
mPACA} we define the advantages as

Advnotionprot (A) = |2Pr[Exptcom-priv
prot (A) = 1]− 1| .

Authentication in composed privacy. As described above, our composed model naturally
combines privacy models for PlA and (m)PACA. Here we highlight that it also captures the
following privacy attack related to (m)PACA authentication. An adversary can break privacy
by first breaking (m)PACA authentication to unlock a token and then ask it to respond to
any server authentication requests; this could link the token to its prior registrations. In
practice, this means an attacker can steal a token and then try to break into it to correlate
its internal state with previously observed FIDO2 runs. As we will show in our theorems,
protection against this attack is ensured by (m)PACA authentication security.

Formally, to capture such attacks, we add additional checks inside aResp as shown in
Figure 8 also colored in blue (lines 6-9) such that context separation is only enforced when
the adversary is interacting with the tokens via an honest client. That is, if the adversary can
forge an authorized command to trick the aResp oracle to accept and respond, then it breaks
(m)PACA authentication nontrivially and hence the context separation is not enforced.

Composed privacy of WebAuthn and CTAP 2.1++. The following theorem states our
composition privacy result for PlA+mPACA, with the proof in Appendix D.4. It shows that
composed privacy of PlA+mPACA reduces to the authentication and privacy of (m)PACA
and the privacy of PlA.

Theorem 5. For every efficient A, there exist efficient adversaries B1, B2 and B3 such that:

Advcom-priv
PlA+mPACA(A) ≤ AdvSUF-tmPACA(B1) + AdvprivmPACA(B2) + AdvprivPlA(B3) .

The composed privacy of WebAuthn+CTAP 2.1++ follows from the above Theorem 5,
together with Theorem 2 adapted to CTAP 2.1++ (CTAP 2.1++ achieves mPACA authen-
tication), Theorem 4 (CTAP 2.1++ achieves mPACA privacy), and Theorem 7 (WebAuthn
achieves PlA privacy, shown in Appendix G.3).

Composed privacy of FIDO2. In order to analyze privacy of the original FIDO2, we
derive a similar composition theorem for PlA+PACA. with proof (omitted for simplicity)
essentially the same as that of Theorem 5, by replacing mPACA results with PACA ones.

Theorem 6. For every efficient A, there exist efficient adversaries B1, B2 and B3 such that:

Advcom-wpriv
PlA+PACA(A) ≤ AdvSUF-tPACA(B1) + AdvwprivPACA(B2) + AdvprivPlA(B3) .

27

The composed privacy of the current version of FIDO2 follows from the above Theorem 6,
together with Theorems 1 (CTAP 2.1 achieves PACA authentication) , Theorem 3 (CTAP
2.1 achieves PACA weak privacy), and Theorem 7 (WebAuthn achieves PlA privacy, shown
in Appendix G.3). The result implies that the unmodified FIDO2 achieves privacy as long as
the attacker does not observe CTAP traces where a token reuses the same DH share when
interacting with clients to register multiple accounts.

Remark. Again, we note that our results highlight an interesting correlation between privacy
and authentication. The results show that the authentication properties of CTAP 2.1 play
a crucial role in the privacy properties of FIDO2 as a whole. Intuitively, CTAP 2.1 enforces
an access control mechanism that prevents everyone other than the user who can unlock
the token to use the secret signing keys locked inside. If this was not the case, then any
process in any machine to which the token is connected could check if a given credential is
associated with one of the signing keys stored in the token. To the best of our knowledge,
this correlation between privacy and authentication has not been formalized before.

6 Practical considerations

We briefly justify our claim that the fix we propose to CTAP 2.1 has minimal impact in
practical implementations, which is why we argue that the security benefits it brings could
be easily brought to real-world applications.

We have implemented our modifications to CTAP 2.1 in forks ([10,11]) of two popu-
lar open-source implementations of FIDO2, one for token-side operations and the other for
client-side operations. These implementations are respectively maintained by Nitrokey [21]
and Mozilla [20]. Our implementations was introduced as a new version of the CTAP pro-
tocol, which can be reported as supported by the token and recognized by the client. The
new implementation co-exists naturally with previous versions. In terms of changes to the
cryptographic cores on both sides of the protocol, we needed to add a new symmetric key
expansion step on both sides, plus MAC generation on the token-side and MAC verification
on the client-side. However, the impact on the code footprint is very small (0.35% increase
in the binary size for the token) because we can reuse pre-existing key expansion and MAC
computation code. The bandwidth increase is 32-bytes in token-to-client responses, and the
impact on round trip time is 13.4% (the difference is in the range of 0.09 seconds). Note
that these results were obtained over a naive adaptation of the code, without any attempt
to perform non-trivial optimizations.

Finally, we also investigated the impact of our proposed modification to token-side code to
improve privacy, where we require the token to always use a fresh DH share. We implemented
the most naive solution, which is to generate the new DH share just before it is transmitted
to the client, and measured the impact on round-trip time. We measured the overhead at
around 0.6% (less than 0.01 seconds), which is imperceptible to human users.

28

7 Conclusion

We revisit the privacy and security of FIDO2 by focusing on the role of the CTAP component.
We look for the first time at the impact of CTAP on privacy, and we clarify the contribution
of CTAP on authentication properties. We show that, by improving CTAP, one can mitigate
rogue key attacks and other related attacks. For this, we propose a simple fix that has very
limited impact on code base and performance: adding a symmetric key expansion step to
obtain two MAC keys instead of one, and an extra MAC computation to protect messages
sent from the token to the client. On the privacy front, we show that the only thing that can
compromise security is the reuse of DH shares, and this can be prevented with a simple CTAP
protocol change or by the user ensuring that the token is rebooted between registrations.

Acknowledgments

Shan Chen was supported by the research start-up grant from the Southern University
of Science and Technology. Alexandra Boldyreva and Kaishuo Cheng were supported by
the National Science Foundation under Grant No.1946919. Lúıs Esqúıvel was supported by
Fundação para a Ciência e Tecnologia (FCT), Portugal - 2021.07225.BD.

References

1. Alliance, F.: Client to authenticator protocol (CTAP) – proposed standard (June 2022), https:

//fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.

1-ps-errata-20220621.html

2. Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security analysis of FIDO2. In: Advances
in Cryptology - CRYPTO 2021. Lecture Notes in Computer Science, vol. 12827, pp. 125–156. Springer
(2021). https://doi.org/10.1007/978-3-030-84252-9_5, https://doi.org/10.1007/978-3-030-84252-9_5,
Full version: https://eprint.iacr.org/2020/756

3. Barbosa, M., Cirne, A., Esqúıvel, L.: Rogue key and impersonation attacks on FIDO2: from theory to practice. In:
Proceedings of the 18th International Conference on Availability, Reliability and Security, ARES 2023, Benevento,
Italy, 29 August 2023- 1 September 2023. pp. 14:1–14:11. ACM (2023). https://doi.org/10.1145/3600160.
3600174, https://doi.org/10.1145/3600160.3600174

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: CRYPTO 1996.
pp. 1–15. Springer (1996)

5. Bindel, N., Cremers, C., Zhao, M.: Fido2, ctap 2.1, and webauthn 2: Provable security and post-quantum instan-
tiation. In: 2023 IEEE Symposium on Security and Privacy (SP). pp. 1471–1490. IEEE (2023)

6. Bindel, N., Gama, N., Guasch, S., Ronen, E.: To attest or not to attest, this is the question–provable attestation
in fido2. In: ASIACRYPT 2023. pp. 297–328. Springer (2023)

7. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in a SSL/TLS channel. In:
Advances in Cryptology - CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 583–599.
Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_34, https://iacr.org/archive/crypto2003/
27290581/27290581.pdf

8. Dumitru, R., Genkin, D., Wabnitz, A., Yarom, Y.: The impostor among US(B): Off-Path injection attacks on USB
communications. In: 32nd USENIX Security Symposium (USENIX Security 23). pp. 5863–5880. USENIX As-
sociation, Anaheim, CA (Aug 2023), https://www.usenix.org/conference/usenixsecurity23/presentation/
dumitru

9. Dworkin, M.: Recommendation for block cipher modes of operation. Methods and Techniques (2001)
10. Esqúıvel, L.: authenticator-rs-fork. https://github.com/esquivel71/authenticator-rs_fork (2025)
11. Esqúıvel, L.: nitrokey-3-firmware-fork. https://github.com/esquivel71/nitrokey-3-firmware_fork (2025)

29

https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/978-3-030-84252-9_5
https://eprint.iacr.org/2020/756
https://doi.org/10.1145/3600160.3600174
https://doi.org/10.1145/3600160.3600174
https://doi.org/10.1145/3600160.3600174
https://doi.org/10.1145/3600160.3600174
https://doi.org/10.1145/3600160.3600174
https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1007/978-3-540-45146-4_34
https://iacr.org/archive/crypto2003/27290581/27290581.pdf
https://iacr.org/archive/crypto2003/27290581/27290581.pdf
https://www.usenix.org/conference/usenixsecurity23/presentation/dumitru
https://www.usenix.org/conference/usenixsecurity23/presentation/dumitru
https://github.com/esquivel71/authenticator-rs_fork
https://github.com/esquivel71/nitrokey-3-firmware_fork

12. FIDO Alliance: Client to authenticator protocol (CTAP) – proposed standard (January 2019),
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.

0-ps-20190130.html

13. FIDO Alliance: User authentication specifications overview. https://fidoalliance.org/specifications/ (Ac-
cessed August 2024)

14. Fischlin, M., Mittelbach, A.: An overview of the hybrid argument. Cryptology ePrint Archive, Report 2021/088
(2021), https://eprint.iacr.org/2021/088

15. Guirat, I.B., Halpin, H.: Formal verification of the W3C web authentication protocol. In: 5th Annual Symposium
and Bootcamp on Hot Topics in the Science of Security. p. 6. ACM (2018)

16. Hanzlik, L., Loss, J., Wagner, B.: Token meets wallet: Formalizing privacy and revocation for fido2. In: 2023
IEEE Symposium on Security and Privacy (SP). pp. 1491–1508. IEEE (2023)

17. Igoe, K., McGrew, D., Salter, M.: Fundamental Elliptic Curve Cryptography Algorithms. RFC 6090 (Feb 2011).
https://doi.org/10.17487/RFC6090, https://www.rfc-editor.org/info/rfc6090

18. Kepkowski, M., Hanzlik, L., Wood, I.D., Kaafar, M.A.: How not to handle keys: Timing attacks on fido authen-
ticator privacy. Proceedings on Privacy Enhancing Technologies (2022)

19. Krawczyk, D.H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation Function (HKDF). RFC 5869
(May 2010). https://doi.org/10.17487/RFC5869, https://www.rfc-editor.org/info/rfc5869

20. Mozilla: authenticator-rs. https://github.com/mozilla/authenticator-rs (2025)

21. Nitrokey: nitrokey-3-firmware. https://github.com/Nitrokey/nitrokey-3-firmware (2025)

22. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Paper
2004/332 (2004), https://eprint.iacr.org/2004/332

23. W3C: Web authentication: An API for accessing public key credentials level 2 – W3C recommendation (April
2021), https://www.w3.org/TR/2021/REC-webauthn-2-20210408/

24. W3C:Web authentication: An API for accessing public key credentials level 3 –W3C recommendation (September
2023), https://www.w3.org/TR/webauthn-3/

A Description of WebAuthn

This section describes the protocol algorithms of WebAuthn, as shown in Fig. 9, which
follows the descriptions presented in [5,6]. For better presentation, we omit some details that
are irrelevant to the attestation modes considered in this work: None, Self, Basic.

Recall that, as shown in Fig. 2, WebAuthn has two challenge-response flows, one for
registering a new credential with the server, with algorithms rChal, rCom, rRsp, and rVrfy,
and one for authenticating under a previously registered credential, with algorithms aChal,
aCom, aRsp, and aVrfy.

On registration, the server runs rChal, which inputs the server identity idS, token binding
state tb and user verification condition UV (indicatign whether the user should be verified
with PIN or biometrics), and samples a new random challenge chS and user identifier uidS. All
these variables, except the token binding state, compose the challenge message mrch, which
is output and delivered to the client C. C then runs rCom, which inputs the server domain
ˆids, the token binding state tb and the challenge message mrch, and first checks if the received
server idS identity in mrch matches ˆids. If it does, then it combines the server challenge ch and
the token binding state tb into a client messagemrcl, which is then hashed. The digest h, along
with the server identity idS, the user identifier uid and the user verification condition UV,
are grouped into a command message mrcom, which is output and sent to the authenticator
T . The authenticator runs rRsp, which inputs mrcom and generates a new assertion key pair
(pk, sk), samples a new credential identifier cid and sets the signature counter n to zero.
Next, it combines the received idS, the signature counter n, the cid, the new public key pk

30

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specifications/
https://eprint.iacr.org/2021/088
https://doi.org/10.17487/RFC6090
https://doi.org/10.17487/RFC6090
https://www.rfc-editor.org/info/rfc6090
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://www.rfc-editor.org/info/rfc5869
https://github.com/mozilla/authenticator-rs
https://github.com/Nitrokey/nitrokey-3-firmware
https://eprint.iacr.org/2004/332
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://www.w3.org/TR/webauthn-3/

and the received UV into a message m and, depending on the attestation mode required by
relying party (Basic in Figure. 2), produces a new attestation signature σatt on m and h (the
hash of mrcl) using the authenticator’s private attestation ak. The authenticator then sets,
in its registration context rcT , and for the server identity idS, the received user identifier uid,
the sampled cid, the assertion secret key sk and the signature counter n, and also sets the
idS, h, cid, n, pk, UV and attestation mode used as the agreed content agCon (data that
must be the same both from the perspective of the server and the token). Finally, it sets the
hash of idS, the cid and the signature counter as the session identifier sid, and returns the
token response message mrrsp, composed by m and (optionally) σatt back to the client, which
in turn forwards mrrsp and its own mrcl to the server. To conclude the registration, the server
runs rVrfy, which inputs idS, mrcl, mrrsp and public parameters gpars, and then checks if the
information that came from the token and client is correct, including the server identity idS,
the token binding state tbS, the sampled challenge chS, the user verification condition UVS,
the signature counter n (which must be zero) and, depending on the attestation mode, the
attestation signature σatt. If everything is correct, it sets the agreed content agCon and the
session identifier idS identically to the token, sets the user identifier uidS, the token assertion
public key pk and the public signature counter n in its registration context rcS, for the
specified cid, and finishes by returns successfully.

rChal(idS , tb,UV):

1: chS
$← {0, 1}≥λ, tbS ← tb

2: UVS ← UV, uidS
$← {0, 1}≤4λ

3: mrch ← (idS , chS , uidS ,UVS)
4: return mrch

aChal(idS , tb,UV):

1: chS
$← {0, 1}≥λ, tbS ← tb

2: UVS ← UV
3: mach ← (idS , chS ,UVS)
4: return mach

rCom(ˆidS , tb,mrch):

1: (idS , ch, uid,UV)← mrch

2: if idS ̸= ˆidS then
3: abort
4: mrcl ← (ch, tb)
5: h← H(mrcl)
6: mrcom ← (idS , uid, h,UV)
7: return (mrcl,mrcom)

aCom(¯idS , tb,mach):

1: (idS , ch,UV)← mach

2: if idS ̸= ¯idS then
3: abort
4: macl ← (ch, tb)
5: h← H(macl)
6: macom ← (idS , h,UV)
7: return (macl,macom)

rRsp(T,mrcom):

1: (idS , uid, h,UV)← mrcom

2: (pk, sk)
$← KG(), cid

$← {0, 1}≥λ, n← 0
3: m← (H(idS), n, cid, pk,UV)

4: σatt
$← Sign(rcT .ak, (m,h))

5: mrrsp ← (m,σatt)
6: rcT [idS]← (uid, cid, sk, n)
7: agCon← (idS , h, cid, n, pk,UV, basic)
8: sid← (H(idS), cid, n)
9: return (mrrsp, rcT , cid, sid, agCon)

aRsp(T,macom):

1: (idS , h,UV)← macom

2: rcT [idS].n← rcT [idS].n+ 1
3: ad← (H(idS), rcT [idS].n,UV)
4: σ ← Sign(rcT [idS].sk, (ad, h))
5: marsp ← (rcT [idS].cid, ad, σ, rcT [idS].uid)
6: agCon← (idS , h, rcT [idS].n,UV)
7: sid← (H(idS), rcT [idS].cid, h, rcT [idS].n)
8: return (marsp, rcT , cid, sid, agCon)

rVrfy(idS ,mrcl,mrrsp, gpars):

1: (ch, tb)← mrcl, (m,σatt)← mrrsp

2: (h, n, cid, pk,UV)← m
3: if chS ̸= ch ∨ tbS ̸= tb ∨ h ̸= H(idS) ∨ UVS ̸= UV ∨ n ̸= 0 ∨

Ver(gpars.vk, (m,H(idS)), σatt) = 0 then
4: return (0, rcS ,⊥,⊥,⊥)
5: agCon← (idS ,H(mrcl), cid, n, pk,UV, basic)
6: rcS [cid]← (uidS , pk, n)
7: sid← (H(idS), cid, n)
8: return (1, rcS , cid, sid, agCon)

aVrfy(idS ,macl,marsp):

1: (ch, tb)← macl, (cid, ad, σ, uid)← marsp

2: (h, n,UV)← ad
3: if chS ̸= ch ∨ tbS ̸= tb ∨ h ̸= H(idS) ∨ UVS ̸= UV ∨ n ≤ rcS [cid].n ∨

Ver(rcS [cid].pk, (ad,H(macl)), σ) = 0 then
4: return (0, rcS ,⊥,⊥,⊥)
5: agCon← (idS ,H(macl), n,UV)
6: rcS [cid].n← n
7: sid← (h, cid,H(macl), n)
8: return (1, rcS , cid, sid, agCon)

Fig. 9. WebAuthn protocol functions.

31

On authentication, the procedure is very similar. The server starts with aChal, which is
identical to rChal except that it does not sample a new uidS, which is therefore excluded from
the output server message mach. The same is true of the aCom algorithm, which differs only
in the output message macom that no longer contains uid. The token, upon receiving macom,
runs aRsp, which first increments the signature counter n stored in its registration context.
Next, the hashed server identity idS, along with n, the user verification condition UV and
the hashed macl client message h are signed using the assertion secret key sk generated in
the previous registration run to produce a signature σ. Then, it sets the idS, h, n and UV as
the agreed content agCon and the hashed idS, the cid (sampled and stored in the previous
registration run), h and n as the session identifier sid. Finally, it sets the cid, the hashed
idS, n, UV, the assertion signature σ and the user identifier uid as the response message
marsp, which is returned to the client, and then forwarded, along with the client message
macl, to the server. The aVrfy algorithm is also similar to rVrfy. It inputs macl and marsp and
verifies if the information received is correct, with the major difference being that it now
verifies the assertion signature σ using the previously stored assertion public key pk, and
also checks if the signature counter received is not greater than the counter stored in the
previous registration/authentication session. If everything is correct, it sets the agCon and
sid identically to the token, updates the signature counter n, and returns successfully.

B Descriptions of CTAP 2.1, CTAP 2.1+, CTAP 2.1++

High-level flow of CTAP 2.1. We refer here to Figure 3 for the high-level flow of the
protocol, which proceeds as follows.

Reboot is performed via the authPowerUp-T function, which inputs the state of the token
stT and freshly samples a new ECDH key pair and pinToken for each supported protocol. It
also resets the consecutive pin attempts counter stT .m. The variable stT .initialData contains
the token version and supported PIN/UV Auth Protocol list, and is used only the first time
authPowerUp-T is called (for a token T) to set stT .version and stT .puvProtocolList.

During the Setup phase, the authenticator T first outputs its info, which contains the
list of supported PIN/UV Auth Protocol (max. 2) and sends it to the client C. C runs
obtainSharedSecret-C-start, which selects the protocol it is going to use and outputs it to
T . T then runs obtainSharedSecret-T, sets its puvProtocol chosen by C and outputs its
ECDH share pkT back to C. At this stage, C runs two different functions. First, it executes
obtainSharedSecret-C-end, which runs the puvProtocol function encapsulate. This function de-
rives the shared secret K from the client’s ECDH share and the received share pkT from the
token, and outputs c, which is the client’s ECDH share. Then, C runs setPIN-C, which inputs
the user pin, encrypts it with K to create ciphertext cp, and then authenticates cp to create
tp. In the end, C sends c, cp, tp to the token. Finally, after receiving this data, the token
executes setPIN-T, which runs puvProtocol function decapsulate to derive the same shared
secret K, and uses it to verify and decrypt cp. The resulting pin is then hashed and stored
in the token’s static storage stT . The token’s retry counter stT .pinRetries is also initialized to
pinRetriesMax (which is at most 8).

32

The Bind phase is essentially identical to Setup until the execution of obtainSharedSecret-
C-end on the client’s side. Afterwards, C runs obtainPinUvAuthToken-C-start, which encrypts
the hash of the user pin, and sends its ECDH share and the resulting ciphertext c and cph
to token T . The token executes obtainPinUvAuthToken-T, which, as long as stT .pinRetries is
not 0, runs decapsulate to obtain K, decrements stT .pinRetries, decrypts cph and then verifies
if the result matches the saved pinHash from Setup. If it does not, then it regenerates the
token’s ECDH share for the currently in use puvProtocol, decrements the token’s consecutive
tries counter stT .m and, if stT .m reaches 0, forces a token reboot. If verification succeeds,
then it samples a new pinToken for every supported PIN/UV Auth Protocol, sets the correct
pinToken as its binding state, encrypts it with K and sends the resulting ciphertext cpt to
the client. Finally, C runs obtainSharedSecret-C-end, which decrypts cpt and sets the result
as its binding state.

After a client C and token T have finished Bind, C can use its binding state πj
C .bs as the

key to authenticate a command M by running auth, which outputs M and a tag t, and then
the token can validate (M, t) with the same binding state πi

T .bs by running validate.
We present the full code-based description of all CTAP 2.1 functions in Figure 12.

Session and protocol variables. As in [5], we specify here the relevant variables for tokens
and clients specific for CTAP 2.1. All variables defined for PACA are inherited in CTAP 2.1.
A token’s internal state stT is composed of: (i) a token version stT .version (e.g., CTAP2.0 or
CTAP2.1), (ii) a list of available PIN/UV protocols stT .puvProtocolList, (iii) the currently
selected PIN/UV protocol stT .puvProtocol, (iv) the counter for the maximum amount of
pin failed attempts stT .pinRetries, (v) the counter for the number of consecutive pin failed
attempts stT .m and (vi) the stored hashed pin stT .pinHash. Both tokens and clients (i.e. all
session oracles πj

C and πi
T) share: (i) the binding state bs which is set as the pinToken and

(ii) the session identifier sid, which is defined as the full trace of Bind. Client sessions have:
(i) the selected PIN/UV protocol πj

C .puvProtocol, and (ii) the ephemeral session key derived
from ECDH πj

C .K. Additionally, we added a new πi
T .canValidate variable to token sessions,

which we explain later in this section.

Low-level CTAP 2.1 description. The original CTAP 2.1 protocol specifies an abstract
PIN/UV Auth Protocol, which provides an interface for a set of lower level cryptographic
functions, and provides two distinct instantiations, referred to as PIN/UV Auth Protocol 1
and PIN/UV Auth Protocol 2 (seen in Figures 11 and 10 respectively).12 We start by first
describing PIN/UV Auth Protocol 2, which is the protocol we considered for our CTAP 2.1
security analysis and results, and thus adapted for CTAP 2.1+, and then describe PIN/UV
Auth Protocol 1 for completeness.

The initialize function, which is called by a token on reboot or a client when starting
a new Bind run, generates a fresh ECDH key pair over the NIST P-256 curve and a fresh
2λ-bit pinToken (with λ = 128). Both actions can also be executed separately via regenerate
and resetPuvToken, respectively. The generated ECDH share can then be obtained (but not
regenerated) via getPublicKey. The encrypt and decrypt functions both input a 4λ-bit key K

12 For CTAP 2.1+, we extend only PIN/UV Auth Protocol 2 (which we simply call PIN/UV Auth Protocol) by
adding a new function expand.

33

initialize ():

1: regenerate()
2: resetPuvToken()

getPublicKey ():

1: return pk

expand (pt):

1: pte ← H3(pt)
2: Parse(KC ,KT) ← pte, s.t. |KC | = 2λ
3: return (KC ,KT)

regenerate ():

1: (pk, sk)
$← ECDH.KG()

resetPuvToken ():

1: pt
$← {0, 1}2λ

encrypt (K,m):

1: Parse(K1,K2) ← K, s.t. |K1| = 2λ
2: c← SKE.Enc(K2,m)
3: return c

decrypt (K, c):

1: Parse(K1,K2) ← K, s.t. |K1| = 2λ
2: m← SKE.Dec(K2, c)
3: return m

encapsulate (pk′):

1: Z ← XCoordinateOf(sk · pk′)
2: K1 ← H2(Z, ”CTAP2 HMAC KEY”)
3: K2 ← H2(Z, ”CTAP2 AES KEY”)
4: K ← (K1,K2)
5: c← pk
6: return (c,K)

decapsulate (c):

1: Z ← XCoordinateOf(sk · c)
2: K1 ← H2(Z, ”CTAP2 HMAC KEY”)
3: K2 ← H2(Z, ”CTAP2 AES KEY”)
4: K ← (K1,K2)
5: return K

authenticate (K′,m):

1: Parse(K′
1,K

′
2) ← K′, s.t. |K′

1| = 2λ
2: t← MAC(K′

1,m)
3: return t

verify (K′,m, t):

1: Parse(K′
1,K

′
2) ← K′, s.t. |K′

1| = 2λ
2: t← MAC(K′

1,m)
3: return [[t = t′]]

Fig. 10. Pin UV Auth Protocol 2. All original functions are presented as shown in [5], with our proposed addition of
expand for CTAP 2.1+ in blue.

encrypt (K,m):

1: c← SKE.Enc(K,m)
2: return c

decrypt (K, c):

1: m← SKE.Dec(K, c)
2: return m

resetPuvToken ():

1: pt
$← {0, 1}µλ

encapsulate (pk′):

1: Z ← XCoordinateOf(sk · pk′)
2: K ← H1(Z)
3: c← pk
4: return (c,K)

decapsulate (c):

1: Z ← XCoordinateOf(sk · c)
2: K ← H1(Z)
3: return K

authenticate (K′,m):

1: t← MAC(K′,m)
2: return t

verify (K′,m, t):

1: t← MAC(K′,m)
2: return [[t = t′]]

Fig. 11. PIN/UV Auth Protocol 1. Only functions that are different from PIN/UV Auth Protocol 2 are shown.

34

authPowerUp-T(stT):

1: if stT .version =⊥ ∧ stT .puvProtocolList =⊥ then
2: (version, puvProtocolList)← stT .initialData
3: stT .version← version
4: stT .puvProtocolList← puvProtocolList
5: for all puvProtocol ∈ stT .puvProtocolList do
6: stT .puvProtocol.initialize()
7: stT .m← 3

obtainSharedSecret-C-start(πj
C , info):

1: Parse(version, puvProtocolList)← info
2: if version = 2.0 then return ⊥
3: select puvProtocol← puvProtocolList
4: πj

C .puvProtocol← puvProtocol
5: πj

C .puvProtocol.initialize()
6: πj

C .stexe ← waiting
7: πj

C .sid← πj
C .sid || info || puvProtocol

8: return puvProtocol

obtainPinUvAuthToken-C-start(πj
C , pin):

1: pinHash← H(pin)

2: cph
$← πj

C .puvProtocol.encrypt(π
j
C .K, pinHash)

3: πj
C .stexe ← bindStart

4: πj
C .sid← πj

C .sid || cph
5: return cph

obtainPinUvAuthToken-C-end(πj
C , cpt):

1: πj
C .bs← πj

C .puvProtocol.decrypt(π
j
C .K, cpt)

2: πj
C .stexe ← bindDone

3: πj
C .sid← πj

C .sid || cpt || false
4: return

setPIN-C(πj
C , pinU):

1: if pinU /∈ P then return ⊥
2: cp

$← πj
C .puvProtocol.encrypt(π

j
C .K, pinU)

3: tp
$← πj

C .puvProtocol.authenticate(π
j
C .K, cp)

4: return (cp, tp)

setPIN-T(πi
T , puvProtocol, c, cp, tp):

1: if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinHash ̸=⊥ then
2: return ⊥
3: K ← stT .puvProtocol.decapsulate(c)
4: if K =⊥ ∨stT .puvProtocol.verify(K, cp, tp) = false then
5: return ⊥
6: pin← stT .puvProtocol.decrypt(K, cp)
7: if pin /∈ P then return ⊥
8: stT .pinHash← H(pin)
9: stT .pinRetries← pinRetriesMax
10: return accepted

auth-C (πj
C ,M):

1: t
$← πj

C .puvProtocol.authenticate(π
j
C .bs,M)

2: return (M, t)

— CTAP 2.1+ below

auth-C (πj
C ,M):

1: (KauthC,)← πj
C .puvProtocol.expand(π

j
C .bs)

2: t
$← πj

C .puvProtocol.authenticate(KauthC,M)
3: return (M, t)

validate-C (πj
C ,M, t):

1: (,KauthT)← πj
C .puvProtocol.expand(π

j
C .bs)

2: if πj
C .puvProtocol.verify(KauthT,M, t) = true then return accepted

3: return rejected

getInfo-T(πi
T):

1: info← (stT .version, stT .puvProtocolList)
2: πi

T .sid← πi
T .sid || info

obtainSharedSecret-T(πi
T , puvProtocol):

1: if puvProtocol /∈ stT .puvProtocolList then return ⊥
2: stT .puvProtocol.regenerate()
3: pkT ← stT .puvProtocol.getPublicKey()
4: πi

T .stexe ← waiting
5: πi

T .sid← πi
T .sid || puvProtocol || pkT

6: return pkT

obtainSharedSecret-C-end(πj
C , pkT):

1: (c,K)← πj
C .puvProtocol.encapsulate(pkT)

2: πj
C .K← K

3: πj
C .sid← πj

C .sid || pkT || puvProtocol || c
4: return c

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

1: if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0 then
2: return (⊥, false)
3: K ← stT .puvProtocol.decapsulate(c)
4: if K =⊥ then return (⊥, false)
5: stT .pinRetries← pinRetries− 1
6: pinHash← stT .puvProtocol.decrypt(K, cph)
7: if pinHash ̸= stT .pinHash then
8: stT .puvProtocol.regenerate()
9: stT .m← stT .m− 1
10: if stT .m = 0 then
11: authPowerUp-T(stT)
12: return (⊥, true)
13: else
14: return (⊥, false)
15: stT .m← 3
16: stT .pinRetries← pinRetriesMax
17: for all puvProtocol’ ∈ stT .puvProtocolList do
18: stT .puvProtocol’.resetPuvToken()
19: πi

T .bs← πi
T .puvProtocol.pt

20: cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
21: πi

T .stexe ← bindDone
22: πi

T .canValidate← true
23: πi

T .sid← πi
T .sid || puvProtocol || c || cph || cpt || false

24: return (cpt, false)

validate-T (πi
T ,M, t, d):

1: if stT .puvProtocol.verify(π
i
T .bs,M, t) = true then

2: return d
3: return rejected

— CTAP 2.1+ below

auth-T (πi
T ,M):

1: (,KauthT)← πj
C .puvProtocol.expand(π

i
T .bs)

2: t
$← stT .puvProtocol.authenticate(KauthT,M)

3: return (M, t)

validate-T (πi
T ,M, t, d):

1: (KauthC,)← πj
C .puvProtocol.expand(π

i
T .bs)

2: if πi
T .canValidate = true then

3: if stT .puvProtocol.verify(KauthC,M, t) = true then
4: πi

T .canValidate← false
5: return d
6: return rejected

Fig. 12. CTAP 2.1 protocol functions. The current auth-C and validate-T functions are marked in red. Code below
corresponds to CTAP 2.1+, where we highlight in blue the changes to the current version of the protocol: deriving
two MAC keys instead of one and using them for bi-directional authentication. Additionally, we mark in orange our
proposed CTAP 2.1++ modification of the token always sampling a fresh ECDH share.

35

and a message m or ciphertext c, then take the last 2λ bits as K2, and use K2 to respectively
encryptm or decrypt c, using the underlying encryption scheme SKE, instantiated as AES-256
in CBC-mode with random IV. authenticate inputs a key K, which can be 2λ or 4λ bits long
(depending on whether the pinToken is the key or if a session key from Setup is used instead)
and a message m, and uses the first 2λ bits as a key to authenticate m, producing a tag
t using the underlying MAC. verify is almost identical, but also inputs a tag t and simply
outputs if t is a valid tag for m or not. In both cases, the underlying MAC is HMAC-SHA-
256 using a 256-bit key. The encapsulate and decapsulate functions perform the ECDH key
exchange and then produce K1 and K2 by passing the ECDH result through a KDF (modeled
by H2), instantiated as HKDF-SHA-256. In encapsulate, which is only executed by a client,
both K = (K1, K2) and the ECDH share c are output, while in decapsulate, which is only
executed by the token, only K is returned.

PIN/UV Auth Protocol 1 is identical to PIN/UV Auth Protocol 2 in the initialize, get-
PublicKey and regenerate functions. The resetPuvToken is almost identical, but can sample a
fresh pinToken that is λ-bit or 2λ-bit in length. encrypt and decrypt receive a 2λ-bit key K
and use it directly to encrypt or decrypt the input m or c. SKE is instantiated as AES-256 in
CBC-mode with zero IV. authenticate and verify use a key K (which can be the same key used
for encrypt or decrypt) to authenticate a message m, producing a λ-bit tag t. In practice, t
is the result of truncating the leftmost λ bits from the HMAC-SHA-256 2λ-bit output. Fi-
nally, encapsulate and decapsulate perform the same ECDH key exchange, but pass the ECDH
shared secret through SHA-256 (modeled by H1) to produce a single, 2λ-bit symmetric key
K.

Remark. While we generally maintained the CTAP 2.1 description as close as possible to
the original work in [5], we do propose another modification to the description, which we
also include in CTAP 2.1+. We include a new flag πi

T .canValidate set to true in the protocol
function obtainPinUvAuthToken-T. This flag determines if validate-T can verify the received
tag or not for a given token session πi

T . This modification to the protocol description aims at
more closely following the CTAP 2.1 protocol specifications, which state that any command
sent to a token which requires user presence (modeled by the bit d) and verifies correctly
cause the token to revoke permissions from the currently in use binding state, effectively
removing the possibility of validating more commands using the same binding state after the
first successful validation.

CTAP 2.1+ description. For CTAP 2.1+, we propose a PIN/UV Auth Protocol which is
identical to PIN/UV Auth Protocol 2 from CTAP 2.1 but with the addition of a new func-
tion expand, which inputs a 2λ-bit pinToken pt (binding state), produces a 4λ-bit expanded
pinToken pte with a key derivation function modeled by H3 and then parses pte into two
2λ-bit keys, to be used for authenticating client-to-token and token-to-client messages. In
practice, H3 could be instantiated with HKDF-SHA-256 called twice with two labels distinct
from those in CTAP 2.1, similar to how (K1, K2) are derived, or simply instantiated with
SHA-512. The CTAP 2.1+ protocol is identical to CTAP 2.1 until Bind is finished. The modi-
fications can be seen in Figures 3, 12 and 10. After a client C and token T have finished Bind,
C runs auth-C, which expands the binding state πj

C .bs to produce a new authentication key

36

KauthC, and uses KauthC to produce a tag t on message M . Afterwards, the token can validate
(M, t) with the same binding state by running validate-T, which obtains KauthC and verifies
(M, t). After validating (M, t) the token runs auth-T, which expands the binding state πi

T .bs
into a new authentication key KauthT (different from KauthC) and uses it to produce a new
tag t on its response R. Finally, the client receives (R, t) and runs validate-C, which obtains
KauthT and verifies (R, t). Notice that the reason we expand the binding state during au-
thentication is to minimize as much as possible the modifications needed to achieve mutual
authentication in CTAP 2.1+. This expansion allows us to ensure that every part of CTAP
2.1 up until the authentication of commands and responses is exactly the same, including
the pinToken transmission from a token to the client.

CTAP 2.1++ description. CTAP 2.1++ is identical to CTAP 2.1+ with the exception of
function obtainSharedSecret-T, where a fresh ECDH share is now always sampled by calling
regenerate from the underlying PIN/UV Auth Protocol before obtaining it with getPublicKey.

C Preliminary Definitions

Definition 1. Let H : K × D → R be a family of functions such that H(k, ·) = Hk(·)
is efficient for all k. We say that H is collision resistant if the advantage of any efficient
adversary A defined below is negligible.

AdvcollH (A) =Pr[k
$← K, (m1,m2)

$← A(k) : m1 ̸= m2

∧ Hk(m1) = Hk(m2)] .

Definition 2. Let G be a cyclic group of prime order q and generator g. The Strong Com-
putational Diffie-Hellman (sCDH) assumption states that given a, b

$← Zq, g, g
a, gb, and an

oracle Oa which, for any group elements Y, Z ∈ G checks if Y a = Z, it is computationally
infeasible for any efficient adversary A to compute gab. That is, the advantage of any efficient
adversary A defined below is negligible.

AdvsCDH
G (A) = Pr[gab ← A(G, g, ga, gb,Oa)] .

Definition 3. For any message authentication code MAC = (Kg,Auth,Ver), we say MAC is
SUF-CMA secure if for any efficient adversary A against the security experiment ExptSUF-CMA

MAC

(Fig. 13), the advantage of A defined below is negligible.

AdvSUF-CMA
MAC (A) = Pr[ExptSUF-CMA

MAC (A) = 1] .

ExptSUF-CMA
MAC (A):
K

$← MAC.KG()
S ← ∅
(m, t)

$← AOAuth,OVer()
return OVer(m, t) ∧ (m, t) /∈ S

OAuth(m):

t← MAC(K,m)
S ← S ∪ (m, t)
return t

OVer(m, t):

t′ ← MAC(K,m)
return t′ = t

Fig. 13. SUF-CMA Challenger and corresponding oracles OAuth and OVer.

37

Definition 4. Let P be a set of all keyed functions F : {0, 1}l×{0, 1}m → {0, 1}m, where F is
bijective and there exists an efficient algorithm to compute F(k, ·) and F−1(k, ·), ∀k ∈ {0, 1}l.
Let F be the set of all truly random permutations on {0, 1}m. Then, we say F is a pseudo-
random permutation if, for all efficient adversary A and all k ∈ {0, 1}l, its advantage defined
below is negligible.

AdvprpF (A) = Pr[F
$← P : AF(k,·)() = 1]− Pr[f

$← F : Af(·)() = 1] .

Definition 5. For any symmetric encryption scheme SKE = (Kg,Enc,Dec), we say SKE is
IND-1$PA secure if for any efficient adversary A against the security experiment ExptIND-1$PA

SKE

(Fig. 14), the advantage of A defined below is negligible.

AdvIND-1$PA
SKE (A) =

∣∣∣ 2 Pr[ExptIND-1$PA
SKE (A) = 1]− 1

∣∣∣ .

Definition 6. For any symmetric encryption scheme SKE = (Kg,Enc,Dec), we say SKE
is IND-1$PA-LPC secure if for any efficient adversary A against the security experiment
ExptIND-1$PA-LPC

SKE (Fig. 15), the advantage of A defined below is negligible.

AdvIND-1$PA-LPC
SKE (A) =

∣∣∣ 2 Pr[ExptIND-1$PA-LPC
SKE (A) = 1]− 1

∣∣∣ .

Definition 7. For any symmetric encryption scheme SKE = (Kg,Enc,Dec), we say SKE
is IND-1$PA-LHPC secure if for any efficient adversary A against the security experiment
ExptIND-1$PA-LHPC

SKE (Fig. 16), the advantage of A defined below is negligible.

AdvIND-1$PA-LHPC
SKE (A) =

∣∣∣ 2 Pr[ExptIND-1$PA-LHPC
SKE (A) = 1]− 1

∣∣∣ .

Definition 8. For any symmetric encryption scheme SKE = (Kg,Enc,Dec), we say SKE is
IND-1$PA-LHPC-H secure if for any efficient adversary A against the security experiment
ExptIND-1$PA-LHPC-H

SKE (Fig. 17), the advantage of A defined below is negligible.

AdvIND-1$PA-LHPC-H
SKE (A) =

∣∣∣ 2 Pr[ExptIND-1$PA-LHPC-H
SKE (A) = 1]− 1

∣∣∣ .

ExptIND-1$PA
SKE (A):
b

$← {0, 1}
K

$← SKE.KG()
state← 0
(m0,m1)

$← A()
cchal

$← OLR(m0,m1)

b′
$← AOLR,ORAND(cchal)

return (b = b′)

OLR(m0,m1):

if state ̸= 0 then
return ⊥

if | m0 | ≠ | m1 | then
return ⊥

cchal
$← SKE.Enc(K,mb)

state← 1
return cchal

ORAND(l):

m′
0,m

′
1

$← {0, 1}l

c′
$← SKE.Enc(K,m′

b)
return (m′

0,m
′
1, c

′)

Fig. 14. IND-1$PA Challenger, and corresponding Left-Right oracle OLR and RAND oracle ORAND.

38

ExptIND-1$PA-LPC
SKE (A):
b

$← {0, 1}
K

$← SKE.KG()
state← 0
(m0,m1)

$← A()
cchal

$← OLR(m0,m1)

b′
$← AOLR,ORAND,OLPC(cchal)

return (b = b′)

OLR(m0,m1):

if state ̸= 0 then
return ⊥

if | m0 | ≠ | m1 | then
return ⊥

cchal
$← SKE.Enc(K,mb)

state← 1
return cchal

ORAND(l):

m′
0,m

′
1

$← {0, 1}l

c′
$← SKE.Enc(K,m′

b)
return (m′

0,m
′
1, c

′)

OLPC(c):

if c = cchal then
return ⊥

return m0 = SKE.Dec(K, c)

Fig. 15. IND-1$PA-LPC Challenger, and corresponding Left-Right oracle OLR, RAND oracle ORAND and LPC oracle
OLPC.

ExptIND-1$PA-LHPC
SKE (A):
b

$← {0, 1}
K

$← SKE.KG()
state← 0
(m0,m1)

$← A()
cchal

$← OLR(m0,m1)

b′
$← AOLR,ORAND,OLHPC(cchal)

return (b = b′)

OLR(m0,m1):

if state ̸= 0 then
return ⊥

if | m0 | ≠ | m1 | then
return ⊥

cchal
$← SKE.Enc(K,mb)

state← 1
return cchal

ORAND(l):

m′
0,m

′
1

$← {0, 1}l

c′
$← SKE.Enc(K,m′

b)
return (m′

0,m
′
1, c

′)

OLHPC(c):

if c = cchal then
return ⊥

return H(m0) = SKE.Dec(K, c)

Fig. 16. IND-1$PA-LHPC Challenger, and corresponding Left-Right oracle OLR, RAND oracle ORAND and LHPC oracle
OLHPC.

39

ExptIND-1$PA-LHPC-H
SKE (A):
b

$← {0, 1}
K

$← SKE.KG()
state← 0
(m0,m1)

$← A()
cchal

$← OLR(m0,m1)

tchal
$← H(K, cchal)

b′
$← AOLR,ORAND,OLHPC(cchal, tchal)

return (b = b′)

OLR(m0,m1):

if state ̸= 0 then
return ⊥

if | m0 | ≠ | m1 | then
return ⊥

cchal
$← SKE.Enc(K,mb)

state← 1
return cchal

ORAND(l):

m′
0,m

′
1

$← {0, 1}l

c′
$← SKE.Enc(K,m′

b)
return (m′

0,m
′
1, c

′)

OLHPC(c):

if c = cchal then
return ⊥

return H(m0) = SKE.Dec(K, c)

Fig. 17. IND-1$PA-LHPC-H Challenger, and corresponding Left-Right oracle OLR, RAND oracle ORAND and LHPC
oracle OLHPC.

We present the full proof for the IND-1$PA-LHPC security of CBC in Appendix K, as-
suming AES is a pseudo-random permutation.

D Security Proofs

Our proofs follow the game-based technique (see [22] for a tutorial) and some proofs require
a hybrid argument (see [14] for a tutorial).

D.1 Proof of Theorem 1

Before showing the proof of this theorem, we note that it can be expressed differently if the
adversary’s queries are counted in a different way, which may lead to more relevant bounds
for different threat models. As expected, the adversary has negligible advantage, except if
it actively interacts with a token via Send-Bind-T enough times to guess a user pin. As
stated, the theorem captures an adversary that is not constrained in its number of attempts,
except by an arbitrary upper bound qactSend. In practice, however, the attacker may have more
restrictions and our bound can be adapted to reflect them, as we remark at the end of the
proof.

Proof. (Sketch.) Let Pri denote the probability that Game i outputs 1.

Game 0. This is the original experiment. Therefore,

Pr0 = AdvSUF-tCTAP 2.1(A) .

Game 1. In this game, we replace every symmetric session key K1 and K2 calculated in
encapsulate and decapsulate from Fig. 10 as K1 ← H2(Z, ·) and K2 ← H2(Z, ·), where Z is
the ECDH shared secret derived by a client session πj

C and token session πi
T in a Setup or

Execute query, with independent random values K̃1 and K̃2. We define bad as the event

40

that, at some point during the game, πj
C and πi

T are involved in a Setup or Execute and
A queries H2 with Z, and bound the probability of bad by constructing an adversary B1
against the sCDH security of the underlying ECDH group, such that if A causes bad, B1
wins the sCDH game. Since token public keys are only given to A in Setup, Execute and
Send-Bind-T oracles, we have |Pr0 − Pr1| ≤ (qS + qE + qSend) Adv

sCDH
ECDH(B1).

Game 2. In this game, in every Setup query, the pin is no longer stored in the token
state stT , instead being stored in a new strucuture accessible only by the challenger. Since
this model never allows A to corrupt any token, Games 1 and 2 are functionally identical.
Therefore, Pr1 = Pr2.

Game 3. In this game, A immediately loses if the challenger samples two identical ECDH
public keys from a client or token. Given that client ECDH public keys are sampled only in
Setup and Execute queries, and token ECDH public keys are sampled in NewT, Reboot
and Send-Bind-T queries, we have |Pr2 − Pr3| ≤ (qS + qE + qNT + qR + 2qSend)

2 / (2q).

Game 4. In this game, A loses if a collision occurs on some output of H when called by the
challenger. Since H is assumed to be collision resistant, there exists an adversary B4 such
that |Pr3 − Pr4| ≤ AdvcollH (B4).
Game 5. This game replaces every encrypted pin in Setup queries with an encrypted con-
stant pin 0000. Additionally, if the ECDH client and token public keys used in Setup are
used again in Send-Bind-T, the token encrypts and outputs a random pinToken p̃t while
setting the real pinToken as its binding state. We bound the advantage of A against Game
5 by reduction to the IND-1$PA-LHPC security of the underlying encryption scheme SKE.
Therefore, we construct an adversary B5 against the IND-1$PA-LHPC security of SKE such
that |Pr4 − Pr5| ≤ qS AdvIND-1$PA-LHPC

SKE (B5).
Game 6. This game replaces every encrypted hashed pin H(pin) and pinToken pt in Execute
queries with an encrypted hashed constant H(0000) and a random pinToken p̃t respectively.
We bound the advantage of A against Game 6 by reduction to the IND-1$PA-LPC security
of the underlying encryption scheme SKE. Therefore, we construct an adversary B6 against
the IND-1$PA-LPC security of SKE such that |Pr5 − Pr6| ≤ qE AdvIND-1$PA-LPC

SKE (B6).
Game 7. In this game, user pins are no longer sampled in NewU, being sampled instead
only when relevant to answer to some query from A, which happens only in Corrupt and
Send-Bind-T queries. Since every pin is independently sampled from D , it is independent
from anything that happens during the experiment, and thusGames 6 and 7 are functionally
identical. Therefore, Pr6 = Pr7.

Game 8. In this game, the challenger rejects any attempt from A to actively guess the
correct pin, unless the pin for the target token has been corrupted. By considering qactSend the
maximum number of active queries to Send-Bind-T, where A actively attempts at guessing
the pin, and 1/2hD as the maximum probability that A can guess the pin in any query, we
have |Pr7 − Pr8| ≤ qactSend/2

hD .

Game 9. In this game, A loses if two pinTokens that are sent to the adversary in either an
Execute or Send-Bind-T query collide. Since, at most, one pinToken is generated and given
to A in each Execute or Send-Bind-T query, we have |Pr8 − Pr9| ≤ (qE + qSend)

2 / 22λ+1.

41

Game 10. In this game, when A queries Validate-T with message M and a tag t on a
token session πi

T that finished Bind passively (which happens only in Execute and passive
Send-Bind-T queries), such that (M, t) would constitute a valid forgery, the challenger still
rejects (recall that A cannot win against any token session πi

T that was actively attacked in
Send-Bind-T queries, since afterGame 8 this means T ’s pinmust have been corrupted). We
consider this bad event and bound the advantage of A by reducing to the SUF-CMA security
of the underlying MAC, by constructing an efficient adversary B10 against the SUF-CMA
security of MAC such that if bad happens, B10 wins the SUF-CMA game. Therefore, we have
|Pr9 − Pr10| ≤ (qE + qSend) Adv

SUF-CMA
MAC (B10).

Final analysis. After the modifications in Game 10, A can no longer win. Indeed, for
A to win, it must satisfy at least one of the four conditions in Token-Win-SUF-t. The first
condition is always false, since d = 1 must always be true for any Validate-T query to
accept a tag t. The second and third conditions are also always false. Collisions between
sid values in client sessions have been ruled out in Game 3, by avoiding client public key
collisions, while collisions between sid values in token sessions have been ruled out in Game
9, by removing collisions between any pinToken that is encrypted and sent to A. Therefore,
it can never be the case that two different client or token sessions have the same sid. Finally,
A can never win via the last condition, because in Game 10 every valid forgery attempt
against any token session via a Validate-T query is rejected by the challenger. Therefore,
it is always true that Pr10 = 0. Note that the running times of all adversaries are close to
that of A.
Remark. In Game 8, we bound A’s advantage as a function of qactSend, i.e., how many active
attacks A makes against any token. This captures the worst case scenario where A can
always reset pinRetries by executing a passive Bind for any token (i.e., the adversary may
have access to any user from any token to input the correct pin). However, it is also reasonable
to consider the case where A has access to an arbitrary number of tokens but not to their
users, which limits the amount of active attacks on any token to pinRetriesMax. Considering
qactNT as the number of tokens created that are actively attacked by A during the experiment,
we could write the bound as |Pr7 − Pr8| ≤ pinRetriesMax · qactNT/2

hD .

D.2 Proof of Theorem 2

The proof of security of CTAP 2.1+ is identical to the proof of CTAP 2.1 (as sketched in
Appendix D.1) until Game 9. We summarize the modifications and extra steps next.

Game 10. In this game, A loses if it queries random oracle H3 with any pinToken generated
throughout the experiment and set as the binding state of a token or client session, but
for which the adversary has no information. These pinTokens correspond to sessions where
the adversary behaved passively, which includes all of the Execute queries, and possibly
some of the Send-Bind-T queries. The two games are identical until bad, and so we have
|Pr9− Pr10| ≤ qH3 (qE + qSend)/2

2λ. After this game, the MAC keys used by these sessions to
authenticate commands are information theoretically hidden from the adversary.

Game 11. In this game, when A queries Validate-T with message M and a tag t on a
token session πi

T that finished Bind passively (which happens only in Execute and passive

42

Send-Bind-T queries), such that (M, t) would constitute a valid forgery, the challenger still
rejects (recall that A cannot win against any token session πi

T that was activelly attacked in
Send-Bind-T queries, since after Game 8 this means T ’s pin must have been corrupted). We
consider this bad event and bound the advantage of A by reducing to the SUF-CMA security
of the underlying MAC, by constructing an efficient adversary B11 against the SUF-CMA
security of MAC such that if bad happens, B11 wins the SUF-CMA game. Therefore, we have
|Pr10 − Pr11| ≤ (qE + qSend) Adv

SUF-CMA
MAC (B11).

Game 12. In this game, when A queries Validate-C with message M and a tag t and a client
session πj

C that finished Bind (which happens only in Execute queries), such that (M, t) would
constitute a valid forgery, the challenger still rejects. Much like in Game 11, we bound the
advantage of A against Game 11 via reduction to the SUF-CMA security of MAC. Therefore,
there exists an efficient adversary B12 such that |Pr11 − Pr12| ≤ qE AdvSUF-CMA

MAC (B12).
Final analysis. After the modifications in Game 12, A can no longer win. Indeed, for
A to win, it must satisfy at least one of the four conditions in Token-Win-SUF-t or one
of the three conditions in Client-Win-SUF-t. The reasoning for A not being able to win
via Token-Win-SUF-t is identical to the reasoning used for the previous CTAP 2.1 security
proof. Additionally, A cannot win Game 12 via the conditions from Client-Win-SUF-t. In-
deed, the first and second conditions are identical to the second and third conditions from
Token-Win-SUF-t, and are therefore always false, since no collisions between client session
sid values and token session sid values can occur after Games 3 and 9 respectively. A can
also never win via the third condition in Client-Win-SUF-t, because in Game 12 every valid
forgery attempt against any client session via Validate-C query is rejected by the challenger.
Therefore, it is always true that Pr12 = 0. Note that the running times of all adversaries are
close to that of A.

D.3 Proof of Theorem 4

Let G0 be the original experiment ExptprivCTAP 2.1++(A). We consider a series of hybrid games
analogous to the proof of Theorem 2 (authentication of CTAP 2.1+). To save space, we briefly
mention what each hybrid does without providing details. G1 replaces every symmetric
session key K1 and K2 with independent random keys. G2 will store PIN in a new structure
instead of token state. G3 will remove collisions in sampled ECDH shares. G4 removes hash
collisions of H. G5 will replace encrypted PIN with encrypted constant PIN 0000. In G6, we
switch encryption of hashed PIN and encryption of pintoken to be encryption of H(0000)
and encryption of random pintoken during Execute in Phase 1. In G7, we will sample PIN
only when adversary queries CorruptUser or Send-Bind-T. In G8, we will reject attempts from
A to actively guess the PIN through Send-Bind-T operations.

Suppose A that makes at most qS, qE, qSend, qNT and qR queries to Setup, Execute, Send-
Bind-T, NewT and Reboot, and at most qactSend active queries to Send-Bind-T. Then there exist
efficient adversaries B1, B4, B5, B6 such that the following claims hold: (where Pri denote
the probability that Gi outputs 1)

Pr0 = AdvprivCTAP 2.1++(A)/2 + 1/2 (1)

43

Pr0−Pr8 ≤ (qS + qE + qSend) Adv
sCDH
ECDH(B1)

+ (qS + qE + qNT + qR + 2qSend)
2 / (2q)

+ AdvcollH (B4)
+ qS AdvIND-1$PA-LHPC

SKE (B5)
+ qE AdvIND-1$PA-LPC

SKE (B6)
+ qactSend/2

hD

(2)

Pr8 = 1/2 (3)

The above claims are justified as follows. Equation (1) is by definition of AdvprivCTAP 2.1++(A).
Inequality (2) follows from the mPACA security proof of CTAP 2.1+ (proof of Theorem 2
in Section 4.4).

To justify equality (3), we note that adversary’s view includes public information of
different tokens and communications within each session. In ExptprivCTAP 2.1++(A), we require
that two challanged token’s users cannot be corrupted. Therefore, by G8, we have swapped
encryption of pin and pin hashes to be encryption of 0000 and H(0000). Diffe-Hellman shares
are also freshly generated. Therefore, the attacker’s view is almost independent of the actual
bit b. Special care is needed to prevent trivial attacks. Suppose b is 0, and attacker makes a
LEFT query. If the attacker queries regular query T0 on the same index, token T0 will reject
(while T1 will accept). If the LEFT query is bind, and attacker queries regular Auth/Validate
on T0 on the same index, it will accept (while T1 will reject). If the LEFT query is Setup, and
attacker makes regular queries on T0, it will accept (while T1 will reject). If attacker inputs
a wrong PIN in LEFT query, the pinRetry of T0 will decrease by 1. We addresses these
subtleties specifically and carefully by introducing different checks. Therefore, either the
attacker has broken these checks, which automatically fails (the game will return a random
bit, which gives attacker advantge 0), or it can only guess the challenge bit with probability
1/2.

D.4 Proof of Theorem 5

Let Pri be the probability that Game i outputs 1.

Game 0. This is the original composed privacy experiment Exptcom-priv
PlA+mPACA when the under-

lying challenge bit b = 0.

Game 1. This game is identical to Game 0 except that in aResp, the oracle will always add
cid to La

ch and add (T, j′) to Lbd
ch . We can introduce a new flag bad, and set bad← true when

tokenBindPartner(T, j′) is ⊥, or if the binding partner is (C, j),(C, j,macom, tcl) /∈∈ LauthC,
which means message, tag pair (macom, tcl) is not output by client session πj

C .
Now, Pr0−Pr1 = Pr[bad ← true]. We claim that there exists a mPACA authentication

adversary B1 such that Pr[bad ← true] ≤ AdvSUF-tmPACA(B1). B1 samples bit b, and simulates
mPACA oracles using its own oracles provided in mPACA authentication experiment. B1
then internally initializes PlA oracles and LEFT and RIGHT challenge oracles. In Game

44

1, if bad is true, then composed unlinkability adversary A has let mPACA token session
(T, j′) to accept a command where either (T, j′) does not have a binding partner, or the
command is not authorized by the partner. Both cases are winning conditions for mPACA
authentication experiment. Since B1 forwards all mPACA operations to its own oracles, it
will trigger the winner conditions in Token-Win-Auth in mPACA authentication experiment.
Therefore, Pr[bad← true ≤ AdvSUF-tmPACA(B1).
Game 2. Game 2 is identical to Game 1, except that two helper functions rResp’ and aResp’
that are used in r/aLEFT and r/aRIGHT, will take in both tokens T0 and T1 (the order is
permuted depending on whether it is called inside LEFT or RIGHT). rResp’ and aResp’ will
use the first token to perform authorization, just like Game 1, but will use the other token
to get PlA response through rRsp or aRsp. Essentially, LEFT (RIGHT) oracle will now use
Token T1’s (T0’s) PlA response, but authorizing it using T0’s(T1’s) binding state.

We claim that there exists a PlA privacy adversary B2 such that |Pr1−Pr2 | ≤ AdvprivPlA(B2).
We construct B2 such that it queries its own PlA oracles to get token responses, and will
sample corresponding mPACA instances to simulate the rest of mPACA queries. In the PlA
privacy game that B2 is playing, when the underlying bit bPlA is 0, B2 is simulating Game 0;
while when bPlA is 1, C is simulating Game 1.

Game 3. This is the original composed privacy game Exptcom-priv
PlA+mPACA when the underlying

challenge bit b = 1.
We claim that there exists an mPACA privacy adversary B3 such that |Pr2−Pr3 | ≤

AdvprivmPACA(B3). We construct B3 such that it simply queries its own oracle provided in the
mPACA privacy experiment for all mPACA queries. For queries to the PlA oracles, B3
simulate PlA oracles, and always use T1’s PlA response in LEFT, and T0’s PlA response in
RIGHT, just like Game 2. Now, in the mPACA privacy game that B3 is playing, when the
underlying bit bmPACA is 0, B is simulating Game 2; while when bmPACA is 1, B is simulating
Game 3.

Final analysis. The proof is concluded as follows:

Advcom-priv
PlA+mPACA(A) =|Pr0−Pr3 |

≤|Pr0−Pr1 |+ |Pr1−Pr2 |+ |Pr2−Pr3 |
≤AdvSUF-tmPACA(B1) + AdvprivmPACA(B2)
+AdvprivPlA(B3) .

E CTAP 2.1 Security for PIN/UV Auth Protocol 1

We present a brief overview of the CTAP 2.1 security proof when instantiated with PIN/UV
Auth Protocol 1, by outlining its differences from the CTAP 2.1 proof when using PIN/UV
Auth Protocol 2.

Most games from the CTAP 2.1 security proof that was presented in Section 4 remain
unchanged, since they are not affected from which protocol is instantiated. Therefore, we
focus only on Games 5, 9 and 10, which differ when CTAP 2.1 is instantiated with PIN/UV
Auth Protocol 1.

45

Game 5. This game replaces all encrypted pins on Setup with constant values, and then
also replaces all pinTokens sent during Bind with random values only when using the same
symmetric key used on Setup. When considering PIN/UV Auth Protocol 1, we can no longer
reduce to the IND-1$PA-LHPC security of the underlying encryption scheme SKE, because
during Setup the same symmetric key K is used to encrypt H(0000) into cp and then to
authenticate cp by producing a tag tp. Therefore, we must reduce to a variant of this security
definition, which we call IND-1$PA-LHPC-H.

Game 9. This game eliminates collisions between pinTokens that are sent to A in Execute
or Send-Bind-T queries. When considering PIN/UV Auth Protocol 1, each pinToken has size
µλ, for µ ∈ {1, 2}, which means the upper bound for the probability that a collision between
two pinTokens occurs is 1/λ. Therefore, we have |Pr8 − Pr9| ≤ (qE + qSend)

2/2λ+1.

Game 10. In this game, each tag t corresponds to the leftmost λ bits from the 2λ-bit output
of MAC, instantiated as HMAC-SHA-256. The reduction is the same, under the assumption
that the truncated output of HMAC-SHA-256 is still a secure MAC.

F Proof Shortcomings in Nina et al. [5]

We show the shortcomings of the CTAP 2.1 proof in Nina et al. [5] as follows.

Active binding attacks against clients are too strong.We present here a more detailed
explanation of the attack that an adversary can perform during Bind if allowed to be active
when delivering the final message containing the encrypted pinToken from the token to the
client.

CTAP 2.1 with PIN/UV Auth Protocol 2 uses AES-256 in CBC mode with random IV to
encrypt the 128-bit pinHash that is sent from a client to a token during Bind and, immediately
after that, to encrypt the 256-bit pinToken back to the client. Crucially, both encryptions use
the same symmetric key (this is true for both PIN/UV Auth Protocol versions). Consider a
ciphertext cph = IV || AES(IV⊕ pinHash), generated by a client session πj

C . If the hash of the
PIN checks out, πi

T will accept and output a ciphertext cpt: this is a CBC encryption with a
fresh IV and two blocks encoding a pinToken to be decrypted by πj

C . Now, A can create a new
ciphertext c̃pt = IV || AES(IV⊕pinHash) || AES(IV⊕pinHash) and deliver c̃pt to πj

C . Since AES
in CBC mode is not an authenticated encryption scheme, πj

C always decrypts c̃pt, recovering a
mauled pinToken of the form: πj

C .bs = pinHash || IV⊕pinHash⊕AES(IV⊕pinHash). Formally,
and this is where the proof in [5] is incorrect, this means that the recovered pinToken can
actually depend on the user’s PIN. In practice, this means that when the client issues a
command authenticated with this mauled pinToken, producing a tag t, the adversary can use
the MAC verification algorithm to perform an offline dictionary attack, by hashing values in
the PIN space and checking if they produce an identical tag on the same command issued
by the client. This is possible because the pinHash is the only part of the mauled pinToken
the adversary does not know. This will allow the adversary to win the game with probability
close to 1, and so there is no hope of proving CTAP 2.1 secure in such a model.

46

IND-1CPA is not enough. We also identified a minor oversight in the proof in [5] (Ap-
pendix I, Game 12) that applies only to unlikely cases where tokens do not refresh their DH
shares after Setup. We explain this next.

The reduction to the security of the symmetric encryption scheme used to communicate
with tokens has been improved in [5] compared to [2]. In particular, it was shown that, during
Bind, a stronger (plaintext-checking) assumption was needed to deal with active attacks on
the token. However, this was considered to be unnecessary during Setup, which is not the
case if DH shares are reused by the token. Indeed, while it is true that a query to Setup
always results in a new Diffie-Hellman key exchange between πj

C and πi
T , it cannot be said,

even when excluding collisions between DH shares and symmetric keys, that the symmetric
key used to encrypt the pin sent to πi

T will not be used again later in the experiment. Since
every Setup trace is given to A, the adversary can attempt to start a Bind run with another
token session πi′

T of the same token, using a DH share that was previously used by πj
C during

Setup. If T did not regenerate its DH share, then it will derive the same symmetric key that
was used in Setup, and therefore might encrypt a pinToken with the same key used to encrypt
the pin in Setup. Therefore, the encryption scheme that encrypts the user pin during Setup
must be IND-1$PA-LHPC secure (defined in Appendix C), rather than only IND-1CPA. This
is a minor change to the proof, which we handle, and it will not be necessary if the token is
guaranteed to reset its state (via Reboot) after Setup.

G PlA Models and WebAuthn Analysis

G.1 PlA Protocol Syntax

We closely follow [5,6] to define the syntax for passwordless authentication (PlA) protocols.
Our syntax is very similar to the ePlA protocol defined in [5] and the ePlAA protocol defined
in [6]; we simply call our PlA primitive a PlA protocol.

A PlA protocol PlA consists of two phases Register and Authenticate:

Register: a two-pass challenge-response protocol run among a token T , a client C, and a
server S, which is run at most once per tuple (T, S). At the end of Register, both T and
S hold registration contexts, which are relevant for subsequent authentications. Register
can be decomposed into the following algorithms:
mrch

$← rChal(S, tb,UV): inputs a server S,13 a token binding state tb, and a user verifica-
tion condition UV ∈ {T,F}, and outputs a challenge message mrch. It does not change
the state of the server S.

(mrcl,mrcom)
$← rCom(idS,mrch, tb): run by the stateless client; it inputs the intended server

identity idS, a challenge messagemrch, and a token binding state tb, and outputs a client
message mrcl and a command message mrcom.

(mrrsp, rcT , cid, sid, agCon)
$← rRsp(T,mrcom): inputs a token T and a command message

mrcom and outputs a response message mrrsp, the token-side registration context rcT ,

13 When we say an algorithm inputs a server, a client, or a token, we mean all of its state. The outputs of the
algorithm make it explicit which parts of the state may be changed that are relevant for the security game.

47

a credential identifier cid, a session identifier sid, and agreed contents agCon from the
perspective of the token T .

(b, rcS, cid, sid, agCon)
$← rVrfy(S,mrcl,mrrsp, gpars): inputs a server S, a client messagemrcl,

a response message mrrsp, and attestation group parameters gpars, and outputs a bit
b ∈ {0, 1} to indicate whether the registration request was accepted. It also outputs
the server-side context rcS, a credential identifier cid, a session identifier sid, and agreed
contents agCon from the perspective of the server S.

Authenticate: a two-pass challenge-response protocol run among a token T , a client C, and
a server S after a successful run of Register, in which both T and S generated their regis-
tration contexts. At the end of Authenticate, S either accepts or rejects the authentication
attempt. Similarly to Register, Authenticate can be decomposed into four algorithms:

mach
$← aChal(S, tb,UV): inputs a server S, a token binding state tb, and a user verification

condition UV ∈ {T,F}, and outputs a challenge message mach. This algorithm does not
change the state of the server S.

(macl,macom)
$← aCom(idS,mach, tb): run by the stateless client; it inputs the intended

server identity idS, a challenge message mach, and a token binding state tb, and outputs
a client message macl and a command message macom.

(marsp, rcT , cid, sid, agCon)
$← aRsp(T,macom): inputs a token T , and a command message

macom, and outputs a response message marsp, the updated token-side registration con-
text rcT , a credential identifier cid, a session identifier sid, and agreed contents agCon
from the perspective of the token T .

(b, rcS, cid, sid, agCon)
$← aVrfy(S,macl,marsp): inputs a server S, a client message macl, and

a response message marsp, and outputs a bit b ∈ {0, 1} indicating whether the authenti-
cation request was accepted. It also outputs the updated server-side registration context
rcS, a credential identifier cid, a session identifier sid, and agreed contents agCon from
the perspective of the server S.

Attestation modes. Unlike [6], our model captures only attestation modes None, Self, and
Basic (also known as batch attestation), as the other modes attCA and anonCA are not as
commonly used and, in particular, they are not used for USB tokens that rely on CTAP, the
main focus of this work.

Therefore, for simplicity, we deviate from [6] and define a group initialization algorithm

(gpars, rc)
$← GInit that creates a new group, which is cryptographically defined by some

public group parameters gpars and a private registration context rc. This public gpars is taken
as input by the servers and the private rc is taken as input by tokens in the same group as their
initial registration context. For attestation modes None and Self, such attestation material
gpars and rc are empty; while for the Basic mode, GInit uses a key generation algorithm to
output an attestation key pair, then assign the private key to rc and assign the public key
(with potentially other public parameters) to gpars.

48

G.2 PlA Authentication Model and WebAuthn Authentication

Again, we closely follow [5,6] to define our authentication security model for PlA protocols.
Our model is very similar to the ePlA model defined in [5] and the ePlAA model defined
in [6], with some important changes that we discuss in this subsection below.

Trust model. For attestation modes None and Self, we assume that the PlA adversary is
passive during registration, since the server has no prior knowledge of attestation material
stored in the specific token of interest. Indeed, if the adversary can be active during reg-
istration, it is impossible to prove WebAuthn secure for these modes, as noted in [6]. For
mode Basic, and as in [6], we can prove PlA security even with active registration, because
the guarantee provided to the server is merely that the credential has been created by some
token in the target group. However, the server does not know which token in the group
produced the credential and, in fact, we know from our discussion of rogue key attacks and
known unlinkability results that it is impossible for the server to know if this token is owned
by a given user or by an adversary. As mentioned in the introduction, our fix to CTAP
allows us to strengthen this authentication guarantee and assure the server that the token
generating an attested credential is actually cryptographically bound to a specific client. We
allow groups to be dynamically generated by the adversary. For attestation mode Basic, this
corresponds to creating a new batch. The adversary is allowed to create as many groups as it
wants and to assign tokens to these groups at will. (Note that in modes None and Self there
is only one group.) Then, the adversary is allowed to corrupt the attestation material of all
tokens except the tokens in the target batch of interest. Fine-grained credential corruption
(not including the attestation material) is still allowed within the batch. This is a strength-
ening of the model in [6]; meanwhile it does not have a significant impact on the WebAuthn
security proof and simplifies the description of the model.

Session oracles and registration contexts. To model concurrent or sequential PlA pro-
tocol instances (i.e., sessions) of a server S (associated with idS) and sequential PlA sessions
of a token T , we use πi

r,S and πj
r,T to denote their i-th and j-th registration instances, and

πi
a,S and πj

a,T to denote their i-th and j-th authentication instances. The execution sta-

tus of a session oracle πk
ph,P (ph ∈ {r, a}, P ∈ {S, T}), denoted by πk

ph,P .stexe, is either of
{⊥, running, accepted}; here ⊥ means the session oracle is not yet initialized, in which case
we simply write πk

ph,P =⊥. Session identifiers sid and agreed contents agCon are specific to
a session. Registration contexts rcS, rcT are global to a server or token, respectively, and we
abuse notation to allow them to be indexed by the (unique) identity of a token or server,
respectively, as rcS[T] or rcT [S]. This is well defined as we impose a single registration run
between a given pair (S, T).

Session partnership. We say that a server registration session πi
r,S partners with a token

registration session πj
r,T if and only if πi

r,S.sid = πj
r,T .sid. We define partnership for authenti-

cation sessions as πi
a,S.sid = πj

a,T .sid, and, furthermore, we require that they can be associated

to unique partnered registration sessions πi′
r,S.sid = πj′

r,T .sid such that πi
a,S.cid = πi′

r,S.cid. In
other words, authentication partnership guarantees that there is unique registration part-
nership between the same server and token that establish the (unique) credential identifier

49

that the server recovers at the end of the authentication run. Many authentication runs can,
of course, be bound to the same registration sessions.

Looking ahead, with the above session partnership, our model is stronger than the models
in [5,6], in the sense that our model further guarantees that authentication binds the user to
a unique registration that took place before between the same server/token pair, identified
by a credential identifier cid. This also allows us to capture the typical scenario where cid is
used by the server to identify the correct application-specific identifier. Note that our session
partnership definition is, in the above sense, the same as [2].

Advantage measure. For a PlA protocol PlA, its advantage (with respect to the security
experiment Exptpla-authPlA shown in Fig. 18) is defined for any adversary A as

Advpla-authPlA (A) = Pr[Exptpla-authPlA (A) = 1]

Authentication security of WebAuthn. We do not restate the authentication security of
WebAuthn in this model, as it has been proved in [2]. Indeed, the security proofs given in [2]
suffice to show that WebAuthn satisfies the PlA authentication notion we consider here: the
proof begins by excluding collisions in credential identifiers, and then relies on the uniqueness
of credential identifiers to pinpoint a unique registration session that established the public
key under which the authentication took place. For attestation modes None, Self in which
no hardcoded attestation material is used, the proof holds when the adversary is restricted
only to passive registration attacks and can create only one group for which the attestation
parameters are empty. For batch attestation the adversary can create an arbitrary number of
groups. Rather than fixing a group a priori, we just allow the adversary to choose the target
group adaptively, but this is of no consequence to the proof: as stated in [2], the only way
the attacker could succeed in registering a key that is outside of the group fixed by a server
verification run would be to either corrupt the group or forge an attestation signature.

Differences to prior work. As discussed above, our model introduces two differences
to [5,6], in order to capture a guarantee provided by FIDO2, which was captured by the
original model in [2] but lost in the more recent works [5,6]: a separation between registration
and authentication sessions for modeling the partnership between them, and the explicit
handling of credential identifiers and group identifiers.14 As mentioned before, we simplify
our model to capture the simplest attestation modes, as they are the most commonly used
modes in practical USB-based tokens today and handling all possible attestation modes is
not our focus. In particular, there is no interactive set-up of a token, which is required for
the more complicated certification-based attestation modes. Instead, we tailor our definition
to the settings where there is no attestation (or just simple Self attestation) or where batch
attestation is used. For this, we let the server registration verification algorithm input some
group parameters, and impose that the server can only accept registrations from tokens
whose attestation material is consistent with a given set of group parameters.

14 For simplicity, we also keep the algorithm negotiation parts of PlA implicit in the experiment code.

50

Partnerships(S, i, cid):

1: if ∃i′ such that πi′
r,S .cid = cid then

2: Retrieve (S, i′, gid, cid) from Lreg

3: if ∃T, j′ such that πi′
r,S .sid = πj′

r,T .sid then

4: if ∃j such that πi
a,S .sid = πj

a,T .sid then
5: return (gid, i′, T, j′, j)
6: else return (gid, i′, T, j′,⊥)
7: else return (gid, i′,⊥,⊥,⊥)
8: return (⊥,⊥,⊥,⊥,⊥)

Exptpla-authPlA (A):
1: Lreg ← ∅; Lcorr ← ∅; LcorrG ← ∅; G← ∅;

gid← 0
2: win-auth← 0
3: ()

$← AO(1λ)
4: return win-auth

Win-auth (S, i, cid):

1: if ∃(S1, i1, ph1) ̸= (S2, i2, ph2) s.t. π
i1
ph1,S1

.sid = πi2
ph2,S2

.sid ̸=⊥ then return 1

2: if ∃(T1, j1, ph1) ̸= (T2, j2, ph2) s.t. π
j1
ph1,T1

.sid = πj2
ph2,T2

.sid ̸=⊥ then return 1

3: if ∃(S1, i1) ̸= (S2, i2) s.t. π
i1
r,S1

.cid = πi2
r,S2

.cid ̸=⊥ then
4: return 1

5: if ∃(S′, i′, ph′), (T ′, j′, ph′) s.t. πi′

ph′,S′ .sid = πj′

ph′,T ′ .sid ̸=⊥ and (S′, T ′) /∈ Lcorr and T ′.gid /∈ LcorrG and πi′

ph′,S′ .agCon ̸= πj′

ph′,T ′ .agCon
then return 1

6: (gid, , T, , j)← Partnerships(S, i, cid)
7: // Attestation broken: wrong group or no registration partner
8: if gid =⊥ or (gid /∈ LcorrG and (T =⊥ or T.gid ̸= gid)) then
9: return 1
10: else
11: // Authentication broken: no authentication partner
12: if gid /∈ LcorrG then
13: if (S, T) /∈ Lcorr and j =⊥ then return 1
14: return 0

Reg ((S, i), (T, j), tb,UV, gid):

1: // This oracle replaces the rChall, rResp, rCompl oracles in the passive registra-
tion mode

2: if T.gid =⊥ or πi
r,S ̸=⊥ or πj

r,T ̸=⊥ or rcT [S] ̸=⊥ or G[gid] =⊥ then return ⊥
3: mrch

$← rChal(πi
r,S , tb,UV)

4: (mrcom,mrcl)← rCom(idS ,mrch, tb)

5: (mrrsp, rcT , cid, sid, agCon)
$← rRsp(πj

r,T ,mrcom)

6: (d, rcS , cid, sid, agCon)
$← rVrfy(πi

r,S ,mrcl,mrrsp, G[gid].gpars)
7: Lreg ← Lreg ∪ {(S, i, gid, cid)}
8: return (d,mrch,mrcl,mrcom,mrrsp)

NewGroup ():

1: (gpars, rc)
$← GInit

2: G[gid]← (gpars, rc)
3: gid← gid+ 1

NewToken (gid, T):

1: if G[gid] =⊥ then return ⊥
2: if T.gid ̸=⊥ then return ⊥
3: T.gid← gid
4: rcT ← G[gid].rc

rChall ((S, i), tb,UV):

1: if πi
r,S ̸=⊥ then return ⊥

2: mrch
$← rChal(πi

r,S , tb,UV)
3: return mrch

Corrupt (S, T):

1: if rcT [S] =⊥ then return ⊥
2: Lcorr ← Lcorr ∪ {(S, T)}
3: return rcT [S]

rCompl ((S, i),mrcl,mrrsp, gid):

1: if πi
r,S =⊥ or πi

r,S .stexe ̸= running or G[gid] =⊥ then return ⊥
2: (d, rcS , cid, sid, agCon)

$←
rVrfy(πi

r,S ,mrcl,mrrsp, G[gid].gpars)
3: if d = 1 then Lreg ← Lreg ∪ {(S, i, gid, cid)}
4: return d

rResp ((T, j),mrcom):

1: if πj
r,T ̸=⊥ or T.gid =⊥ then return ⊥

2: (mrrsp, rcT , cid, sid, agCon)
$←

rRsp(πj
r,T ,mrcom)

3: Lr
ch ← Lr

ch ∪ {cid}
4: return mrrsp

aChall ((S, i), tb,UV):

1: if πi
a,S ̸=⊥ then return ⊥

2: mach
$← aChal(πi

a,S , tb,UV)
3: return mach

CorruptGroup (gid):

1: if G[gid] =⊥ then return ⊥
2: LcorrG ← LcorrG ∪ {gid}
3: return G[gid]

aCompl ((S, i),macl,marsp):

1: if πi
a,S =⊥ or πi

a,S .stexe ̸= running then return ⊥
2: (d, rcS , cid, sid, agCon)

$← aVrfy(πi
a,S ,macl,marsp)

3: if d = 1 and win-auth = 0 then
4: win-auth←Win-auth(S, i, cid)
5: return d

aResp ((T, j),macom):

1: if πj
a,T ̸=⊥ or T.gid =⊥ then return ⊥

2: (marsp, rcT , cid, sid, agCon)
$←

aRsp(πj
a,T ,macom)

3: La
ch ← La

ch ∪ {cid}
4: return marsp

Fig. 18. Security experiment, winning conditions, and oracle definitions for PlA authentication security experiment.
Code in blue represents the added modifications with respect to [5,6]. Code in teal is unique to the PlA privacy
experiment as defined in Fig. 19. We let O denote the set of all of the security experiment oracles that are available
to A. The winning condition procedure Win-auth is called in the aCompl oracle whenever the server authentication
session accepts.

51

G.3 PlA Privacy Model and WebAuthn Privacy

Our privacy PlA model closely follows [6]. Except for the changes in PlA oracles and picking
the attestation group that are already explained in Section G.2, we change how context
separation is checked. Instead of adding token and indices to L, we decide to follow [16] and
add credential id cid to L instead. Compared to [6] adding token itself to L, this has two
advantages: 1) We allow tokens to be registered and authenticated multiple times in Phase
1 and Phase 3, and we only prohibit authentications on the particular registration request
that is done via LEFT/RIGHT oracles. [6] prohibits all regular authentication requests, if the
challenge token is ever registered via LEFT/RIGHT oracles. 2) This prevents trivial attack
caused by index colliding. Consider the scenario: an attacker can perform Register-LEFT,
then perform a regular authenticate on token T0 (suppose two challenge tokens are T0 and
T1). In [6], this will be allowed. However, the attacker can identify which token is used
by Register-LEFT. If Register-LEFT uses T0, the authentication will succeed (although the
attacker loses eventually), if Register-LEFT uses T1, the authentication will fail, and the
attacker thus conclude the bit b is 1.

Additionally, [16] requires instance freshness, which prohibits the attacker from querying
regular oracles on the j-th instace of challenge token if the j-th instance of corresponding
token is used in LEFT/RIGHT oracles. We strengthen that requirement to prohibit the at-
tacker from querying regular oracle on j-th instance of either challenge tokens, if the j-th
instance of at least one token is used inside LEFT/RIGHT oracle. Consider the following
scenario: an attacker can query Register-LEFT, then query regular Register(T0, 0). If Register-
LEFT uses T0, the registration will fail (and the attacker loses eventually), if Register-LEFT
uses T1, the registration will succeed, and the attacker thus conclude the bit b is 1. We stress
that the above two attacks are not real-world attacks, and do not refute privacy results in
[6] [16]. They are merely “model attacks” caused by collision of indices. Nonetheless, we fix
them in our model.

We provide the privacy experiment in detail in Figure 19. For any adversary A, its
advantage is defined as

AdvprivPlA(A) = |2Pr[Expt
priv
PlA(A) = 1]− 1| .

We remark that in [6] the advantage is incorrectly defined as the probability of the
experiment returning 1. With such definition, an adversary randomly guessing the challenge
bit will have advantage 1/2, which is non-negligible. In [16] the advantage is defined as how
we define it above, but the experiment returns 0 if the adversary does not follow the rules.
But then the advantage of such adversary will be 1. In our definition, the experiment returns
a random bit in case the adversary misbehaves, yielding advantage 0, as expected.

We then establish the following theorem:

Theorem 7. For any adversary A, we have that

AdvprivWebAuthn(A) = 0

We note that the proofs in [6] still work for the stronger model.

52

ExptprivPlA(A):
1: Lcorr ← ∅,Lr

ch ← ∅,La
lr ← ∅,La

ch ← ∅,Lr
lr ← ∅

2: st1
$← AO(1λ) // Phase 1

3: T0, T1, SL, SR, st2
$← A(1λ, st1) // Phase 2

4: b← InitRL(T0, T1, SL, SR)
5: O′ ← (O\{NewToken})
6: b′ ← AO′,LEFT,RIGHT(1λ, st2) // Phase 3

7: r
$← {0, 1}

8: if Check-priv-PlA() then return b = b′

9: else return r

Check-priv-PlA(b, b′):

1: S← (Lr
ch ∩ La

lr) ∪ (La
ch ∩ Lr

lr) ∪ (Lr
ch ∩ Lr

lr)
2: if b = b′ and S = ∅ and

(SL, T0), (SR, T1), (SL, T1), (SR, T0) /∈ Lcorr and
T0.gid=T1.gid then

3: return 1
4: else
5: return 0

InitRL(T0, T1, SL, SR):

1: b
$← {0, 1}

2: Initialize oracles r/aLEFTTb,SL and r/aRIGHTT1−b,SR

3: return b

r/aLEFTTb,SL(m)

1: Obtains intended server S from m
2: if S ̸= SL then
3: return ⊥
4: j ← 0 while πj

Tb
̸= ⊥:

5: j ← j + 1
6: return rResp’ ((Tb, j),m) // in rLEFT
7: return aResp’ ((Tb, j),m) // in aLEFT

r/aRIGHTT1−b,SR(m)

1: Obtains intended server S from m
2: if S ̸= SR then
3: return ⊥
4: j ← 0 while πj

T1−b
̸= ⊥:

5: j ← j + 1
6: return rResp’ ((T1−b, j),m) // in rRIGHT
7: return aResp’ ((T1−b, j),m) // in aRIGHT

rResp’ ((T, j),macom): // helper function

1: if πj
T ̸= ⊥or T.gid =⊥ then

2: return ⊥
3: (mrrsp, rcT , cid, sid, agCon)

$←rResp ((T, j),macom)
4: Lr

lr
∪← {cid}

5: return mrrsp

aResp’ ((T, j),macom): // helper function

1: if πj
T ̸= ⊥ or T.gid =⊥ then

2: return ⊥
3: (marsp, rcT , cid, sid, agCon)

$←aResp ((T, j),macom)
4: La

lr
∪← {cid}

5: return mrrsp

Fig. 19. Experiment ExptprivPlA for PlA privacy with oracles O defined in Fig.18. Similar to Fig.18 , code in blue
represents the added modifications with respect to [6].

H Composed Authentication Model

We introduce our composed model for authentication security, based on the PlA authen-
tication security model presented in Appendix G and the proposed mPACA model from
section 4.

Following the approach from [2,5], we consider a security experiment ExptuaPlA+mPACA, pre-
sented in figures 21, 20, which is executed between a challenger and an adversary A against
the ua (user authentication) security of PlA+mPACA.

Trust model. Like in [2,5], we assume the communication channel between servers and
clients is authenticated in the sense that the client is assured as to the identity of the server
(capturing the guarantees of a secure connection, e.g., established by TLS). We maintain
the trust model from mPACA unchanged, which means any client session can only complete
Bind passively. However, we now allow active composed model adversaries during registration
runs, regardless of the attestation mode, whereas in the PlA model we can only deal with
active registration when using Basic (batch) attestation. Indeed the only difference between
attestation modes None/Self with respect to mode Basic is that for the former we do not
allow mPACA clients to be compromised during registration, whereas for the latter we can
allow this. We note that this is a stronger model than that adopted in [5], in that we can
deal with active attacks during registration, because we have upgraded PACA to mPACA
to provide a bidirectional authenticated channel.

53

Session oracles and partnership. We maintain the session oracles defined for PlA and
mPACA, as well as all protocol variables, internal states and partnership definitions, but
follow the approach from [5] by using π̃ and π to refer to PlA and mPACA sessions respec-
tively.

Experiment oracles. The ua experiment gives the adversary access to all of the SUF-t
experiment’s oracles except for Auth-C, Validate-T, Auth-T and Validate-C. Furthermore, the
adversary also has access to all unchanged oracles from the pla-auth experiment, except for
rChall, rResp, rCompl, aChall, aResp and aCompl, which are redefined for this experiment in
Fig. 20, and except for Reg, which is absent due to the assumption that A can always actively
interfere with any registration session. The rChall oracle now additionally takes a client session
as input, which prepares the message from the server session π̃i

r,S by calling rCom to produce
a client message mrcl and a command mrcom. This command is then authenticated using the
mPACA oracle Auth-C, producing a tag tcl. In addition to mrch, both messages output by
rCom and tcl are given to A. The changes to aChall are analogous. The rResp oracle now
additionally inputs an mPACA token session, a tag tcl and a user decision bit d. It starts by
querying the Validate-T oracle on the mrcom message and tag tcl, aborting if the status is not
accepted. Then, it authenticates the PlA token response mrrsp via the mPACA oracle Auth-T,
producing a tag ttk, which is also given to A. The changes to aResp are analogous. Finally,
the rCompl oracle additionally receives a tag ttk, fetches the client session associated with
the current server session, and queries Validate-C on the token response mrrsp and ttk, failing
if the status is not accepted. The changes to aCompl are analogous, with the addition that it
now calls Win-ua (described below) to verify the winning conditions whenever π̃i

a,S accepts.
We also define two lists Lpla-paca-S and Lpla-paca-T to, respectively, link every PlA server session
with its associated mPACA client session in rChall and aChall, and every PlA token session
with its associated mPACA token session in rResp and aResp.

Winning conditions and advantage measure. The winning conditions specified in
Win-ua (see Fig. 21) intuitively guarantee that PlA and mPACA sessions can be uniquely
identified by their derived session identifiers and, furthermore, as in the PlA experiments,
that registration sessions obtain unique credential identifiers. Then, the adversary wins if it
breaks the PlA authentication security at any point, regardless of whether it is using com-
promised mPACA clients or not. Furthermore, when using uncompromised mPACA clients,
the adversary also wins if it can convince the PlA server to pair with a registration or au-
thentication session that is hosted by some other token than the one bound to the unique
client that it communicates with. For a composed PlA+mPACA protocol, its ua advantage
is defined for any adversary A as

AdvuaPlA+mPACA(A) = Pr[ExptuaPlA+mPACA(A) = 1]

Differences to prior work. We adopt the style of presentation of [5], but our composed
model expresses the winning condition in a way that is closer to the one defined in [2]:
we express the adversary’s advantage purely as a function of its probability of breaking a
server-side authentication guarantee and we do not include PACA-specific command forgery

54

rChall (S, i, C, k, tb, UV):

1: if π̃i
r,S ̸=⊥ then return ⊥

2: mrch
$← rChal(π̃i

r,S , tb,UV)

3: (mrcl,mrcom)
$← rCom(idS ,mrch, tb)

4: resp
$← Auth-C(C, k,mrcom)

5: if resp =⊥ then return ⊥
6: (mrcom, tcl)← resp
7: Lpla-paca-S ← Lpla-paca-S ∪ {(reg, S, i, C, k)}
8: return (mrch,mrcl,mrcom, tcl)

aChall (S, i, C, k, tb, UV):

1: if π̃i
a,S ̸=⊥ then return ⊥

2: mach
$← aChal(π̃i

a,S , tb,UV)

3: (macl,macom)
$← aCom(idS ,mach, tb)

4: resp
$← Auth-C(C, k,macom)

5: if resp =⊥ then return ⊥
6: (macom, tcl)← resp
7: Lpla-paca-S ← Lpla-paca-S ∪ {(auth, S, i, C, k)}
8: return (mach,macl,macom, tcl)

rResp (T , j, j′, mrcom, tcl, d):

1: if π̃j
r,T ̸=⊥ or T.gid =⊥ then return ⊥

2: status
$← Validate-T(T, j′,mrcom, tcl, d)

3: if status ̸= accepted then return ⊥
4: (mrrsp, rcT , cid, sid, agCon)

$← rRsp(π̃j
r,T ,mrcom)

5: (mrrsp, ttk)
$← Auth-T(T, j′,mrrsp)

6: Lpla-paca-T ← Lpla-paca-T ∪ {(reg, T, j, j′)}
7: return (mrrsp, ttk)

aResp (T , j, j′, macom, tcl, d):

1: if π̃j
a,T ̸=⊥ or T.gid =⊥ then return ⊥

2: status
$← Validate-T(T, j′,macom, tcl, d)

3: if status ̸= accepted then return ⊥
4: (marsp, rcT , cid, sid, agCon)

$← aRsp(π̃j
a,T ,macom)

5: (marsp, ttk)
$← Auth-T(T, j′,marsp)

6: Lpla-paca-T ← Lpla-paca-T ∪ {(auth, T, j, j′)}
7: return (marsp, ttk)

rCompl (S, i, mrcl, mrrsp, gid, ttk):

1: if π̃i
r,S =⊥ or π̃i

r,S .stexe ̸= running or G[gid] =⊥ then re-
turn ⊥

2: Retrieve (reg, S, i, C, k) from Lpla-paca-S

3: status← Validate-C(C, k,mrrsp, ttk)
4: if status ̸= accepted then return ⊥
5: (d, rcS , cid, sid, agCon)

$←
rVrfy(π̃i

r,S ,mrcl,mrrsp, G[gid].gpars)
6: if d = 1 then
7: Lreg ← Lreg ∪ {(S, i, gid, cid)}
8: return d

aCompl (S, i, macl, marsp, ttk):

1: if π̃i
a,S =⊥ or π̃i

a,S .stexe ̸= running then return ⊥
2: Retrieve (auth, S, i, C, k) from Lpla-paca-S

3: status← Validate-C(C, k,marsp, ttk)
4: if status ̸= accepted then return ⊥
5: (d, rcS , cid, sid, agCon)

$←
aVrfy(π̃i

a,S ,macl,marsp)
6: if d = 1 and win-ua = 0 then
7: win-ua←Win-ua(S, i, cid)
8: return d

Fig. 20. Oracle definitions for ua security experiment for the composed model. Code in blue highlights the differences
to the PlA oracles shown in G. Differences that are specific from mPACA are colored in red.

55

ExptuaPlA+mPACA(A):
1: Lreg ← ∅; Lcorr ← ∅; LcorrG ← ∅; G← ∅; gid← 0 // From PlA
2: LauthC,LauthT ← ∅ // From mPACA
3: Lpla-paca-S,Lpla-paca-T ← ∅ // For grouping PlA and mPACA sessions
4: win-ua← 0
5: ()

$← AO(1λ)
6: return win-ua

Win-ua (S, i, cid):

1: // If there exists any collision between server or token PlA sessions, A wins

2: if ∃(S1, i1, ph1) ̸= (S2, i2, ph2) s.t. π̃i1
ph1,S1

.sid = π̃i2
ph2,S2

.sid ̸=⊥ then return 1

3: if ∃(T1, j1, ph1) ̸= (T2, j2, ph2) s.t. π̃j1
ph1,T1

.sid = π̃j2
ph2,T2

.sid ̸=⊥ then return 1

4:
5: // If there exists any collision between client or token mPACA sessions, A wins

6: if ∃(C1, k1), (C2, k2) s.t. (C1, j1) ̸= (C2, j2) and πk1
C1

.stexe = πk2
C2

.stexe = bindDone

and πk1
C1

.sid = πk2
C2

.sid then return 1

7: if ∃(T1, j′1), (T2, j′2) s.t. (T1, j′1) ̸= (T2, j′2) and π
j′1
T1

.stexe = π
j′2
T2

.stexe = bindDone

and π
j′1
T1

.sid = π
j′2
T2

.sid then return 1

8:
9: // If there exist two distinct server sessions with the same cid, A wins

10: if ∃(S1, i1) ̸= (S2, i2) s.t. π̃i1
r,S1

.cid = π̃i2
r,S2

.cid ̸=⊥ then return 1

11:
12: // If there exists a server session and a token session that agree on the sid but not on the agCon, A wins. This captures a rogue key

attack by registering a key from another batch.

13: if ∃(S′, i′, ph′), (T ′, j′, ph′) s.t. π̃i′
ph′,S′ .sid = π̃j′

ph′,T ′ .sid ̸=⊥ and (S′, T ′) /∈ Lcorr and T ′.gid /∈ LcorrG and π̃i′
ph′,S′ .agCon ̸= π̃j′

ph′,T ′ .agCon

then return 1
14:
15: // If the server session π̃i

a,S that accepted has no corresponding server registration session, A wins. If A never corrupted the token group

associated with π̃i′
r,S , and π̃i

a,S has no registration partner T , or π̃i
a,S registered with the wrong gid, A wins. If π̃i

a,S is not partnered
with one of T ’s authentication sessions, and A never corrupted T , A wins

16: (gid, i′, T, j′, j)← Partnerships(S, i, cid)
17: if gid =⊥ or (gid /∈ LcorrG and (T =⊥ or T.gid ̸= gid)) then return 1
18: else
19: if gid /∈ LcorrG then

20: // The PlA registration token session π̃j′

r,T that is partnered with π̃i′
r,S is associated with an mPACA token session πl′

T that is the

Bind partner of a client session πk1
C1

that is partnered with π̃i′
r,S (unless πk1

C1
was compromised).

21: Retrieve (reg, T, j′, l′) from Lpla-paca-T // Because we know at this point that π̃j′

r,T has completed a registration with π̃i′
r,S (from

Partnerships), we know from the code in rResp that mPACA session πl′
T must exist in the list

22: Retrieve (reg, S, i′, CS , kS) from Lpla-paca-S
23: (CT , kT)← tokenBindPartner(T, l′)
24: // The client CT to which the token T is bound is not the same as CS , which is the client linked to the server session π̃i

S
25: if (CS , kS) ̸= (CT , kT) then
26: (TS ,m)← clientBindPartner(CS , kS)

27: if π
kS
CS

.compromised = false and πm
TS

.pinCorr = false then return 1

28: if ((CT , kT) = (⊥,⊥) or π
kT
CT

.compromised = false) and πl′
T .pinCorr = false then return 1

29: if (S, T) /∈ Lcorr and j =⊥ then return 1
30: else if (S, T) /∈ Lcorr then
31: // The PlA authentication token session π̃j

a,T that is partnered with π̃i
a,S is associated with an mPACA token session πl

T

that is the Bind partner of a client session πk2
C2

that is partnered with π̃i
a,S (unless πk2

C2
was compromised).

32: Retrieve (auth, T, j, l) from Lpla-paca-T // Because we know at this point that π̃j
a,T has completed an authentication with π̃i

a,S ,

we know from the code in aResp that mPACA session πl
T must exist in the list

33: Retrieve (auth, S, i, C′
S , k

′
S) from Lpla-paca-S

34: (C′
T , k′T)← tokenBindPartner(T, l)

35: if (C′
S , k

′
S) ̸= (C′

T , k′T) then
36: (T ′

S ,m
′)← clientBindPartner(CS , kS)

37: if π
k′
S

C′
S
.compromised = false and πm′

T ′
S
.pinCorr = false then return 1

38: if ((C′
T , k′T) = (⊥,⊥) or π

k′
T

C′
T
.compromised = false) and πl

T .pinCorr = false then return 1

39: return 0

Fig. 21. The ua security experiment and winning conditions for the PlA+mPACA composed model. We call O the
set of all of the security experiment’s oracles that are available to A. The winning condition procedure Win-ua is
called in the aCompl oracle whenever the server session accepts. Composed model-specific winning conditions are in
blue.

56

checks.15 We can do this because we establish a stronger result based on mPACA. A winning
condition closer to the one in [5] needs to be considered to capture the composed security of
the current version current of FIDO2, as discussed at the end of Appendix I. Furthermore,
our composed model inherits from our mPACA and PlA definitions the strengthenings we
introduced for each of these primitives, namely the ability to dynamically choose attestation
groups and the explicit guarantee that a PlA authentication session is bound to a unique
registration session in the same token. Finally, the main novelty is that we explicitly deal with
active attacks in the composed model for the registration phase, even for attestation modes
None and Self, even though in these settings we need to restrict ourselves to uncompromised
clients in registration.

I Authentication Security of FIDO2

Here we first present our main result for composed security relying on mPACA and later
explain the weaker guarantees provided by current FIDO2.

Composed security of PlA+mPACA. The following theorem shows that mPACA guar-
antees a strong form of composed security than in prior works, since we can allow partial
active attacks (the realistic model when using USB tokens as discussed in the introduction)
during both registration and for all modes even without attestation. The intuition here is
that the composed model speaks only about the guarantees provided to servers that are
uniquely bound to honest clients that are out of the adversary’s control: excluding a break
of mPACA, we know that such clients (if uncompromised) will be communicating with a
unique token instance via a bi-directional secure channel, which means that we do not need
to consider an active PlA attacker in the analysis of composed model security.

We provide two theorems, which intuitively capture the security guarantees for different
attestation modes.

Theorem 8. (Attestation none and self) Consider the setting in which the adversary is only
allowed to create a single attestation group and forbid the possibility to compromise clients
involved in registration sessions.

Then, if there exists an adversary A against the composed security of an mPACA protocol
mPACA and a PlA protocol PlA, then there exist adversaries B1 and B2 such that:

AdvuaPlA+mPACA(A) ≤ AdvSUF-tmPACA(B1) + Advpla-authPlA (B2) .

Furthermore, B2 only requires access to a passive PlA registration oracle.

Proof. (Sketch.) Our proof proceeds in two game hops. In the first hop, we modify the
composed security model to declare the adversary a loser whenever it breaks the mPACA
security guarantee when interacting with oracles rResp, rCompl, aResp or aCompl (seen
in Fig. 22). Any adversaryA for which the probability of winning the composed security game

15 The authors in [2] also consider user-side guarantees, which are also provided by FIDO2, but we do not consider
them here and leave clarifying and expanding the study of these guarantees as future work.

57

varies visibly can be transformed into an mPACA attacker B1 with the same advantage via a
trivial reduction. Note that B1 controls all the details of the PlA protocol in this reduction.
Also observe that, after this hop, and because we disallow the compromise of clients involved
in registration runs, the adversary is now restricted to passive behavior when dealing with
these sessions.

In the second hop, we declare the adversary a loser if it breaks a PlA guarantee (seen in
Fig. 23). We reduce any distinguishing advantage between the two games by constructing
a reduction B2 to PlA security. Note here that we need to argue that we can program the
trace of a passive registration run into the composed model oracles, where the adversary has
some active attacking power. Here is how the reduction can do this:

– when the adversary calls rChall, there are two cases. Either the client has a unique token
partner, or it does not have any binding state: this is guaranteed by passive binding
and the mPACA winning guarantees. If the client has no binding state, then note that
the authentication oracle Auth-C will fail and so will the rChall oracle. Otherwise, the
reduction can pinpoint the unique token and choose an unused PlA registration session to
use its own PlA registration oracle and obtain a registration trace. The first message in
this trace is programmed into the output of rChall.

– when the adversary calls rResp, it is either the case that it is delivering the message to
the unique mPACA oracle associated with some prior registration query or not. If not,
then the mPACA validate condition will fail and there is nothing to do. Otherwise, the
reduction maps the j-th token session in the composed model to the token session in
the PlA model that it prehemptively chose to obtain the registration trace. The second
message of the passive registration trace is programmed in the output of the oracle.

– when the adversary calls rCompl, the reduction simply needs to check if the message
received comes from an mPACA token session that is linked with the PlA token session
that is the registration partner of the server session that was involved in the initial rChall
oracle.

The remaining part of the behavior of B2 is a simple reduction where it uses its own oracles
to answer the queries placed by A.

At this point the composed model adversary can only win if it breaks a composed-model
specific condition: the server accepts an authentication run, but the bound PlA oracles are
not residing in the token that is bound to the correct mPACA client.

This can only happen when at least one of the conditions in lines 27, 28, 37 or 38 from
Fig. 23 is true, which requires that the client session bound to the token that completed
the registration/authentication run is not the same as the client session linked to the server
session that finished that registration/authentication run. Also note, if these winning condi-
tions were activated, it is at a point in the experiment where we can always find the unique
relationship between registration and authentication sessions of servers and tokens, via the
Partnerships method. We now explain why this cannot occur.

The condition in line 27 models the rogue key attack scenario: the adversary is able to
register a key generated by a token PlA session that is not protected by the mPACA session
of the client that is connected to the server, and this mPACA session is not compromised.

58

rResp (T , j, j′, mrcom, tcl, d):

1: if π̃j
r,T ̸=⊥ or T.gid =⊥ then return ⊥

2: status
$← Validate-T(T, j′,mrcom, tcl, d)

3: if status ̸= accepted then return ⊥
4: if Token-Win-SUF-t(T, j′,mrcom, tcl, d) = 1 then
5: game ends returning 0

6: (mrrsp, rcT , cid, sid, agCon)
$← rRsp(π̃j

r,T ,mrcom)

7: (mrrsp, ttk)
$← Auth-T(T, j′,mrrsp)

8: Lpla-paca-T ← Lpla-paca-T ∪ {(reg, T, j, j′)}
9: return (mrrsp, ttk)

aResp (T , j, j′, macom, tcl, d):

1: if π̃j
a,T ̸=⊥ or T.gid =⊥ then return ⊥

2: status
$← Validate-T(T, j′,macom, tcl, d)

3: if status ̸= accepted then return ⊥
4: if Token-Win-SUF-t(T, j′,macom, tcl, d) = 1 then
5: game ends returning 0

6: (marsp, rcT , cid, sid, agCon)
$← aRsp(π̃j

a,T ,macom)

7: (marsp, ttk)
$← Auth-T(T, j′,marsp)

8: Lpla-paca-T ← Lpla-paca-T ∪ {(auth, T, j, j′)}
9: return (marsp, ttk)

rCompl (S, i, mrcl, mrrsp, gid, ttk):

1: if π̃i
r,S =⊥ or π̃i

r,S .stexe ̸= running or G[gid] =⊥ then re-
turn ⊥

2: Retrieve (reg, S, i, C, k) from Lpla-paca-S

3: status← Validate-C(C, k,mrrsp, ttk)
4: if status ̸= accepted then return ⊥
5: if Client-Win-SUF-t(C, k,mrcom, ttk) = 1 then
6: game ends returning 0

7: (d, rcS , cid, sid, agCon)
$←

rVrfy(π̃i
r,S ,mrcl,mrrsp, G[gid].gpars)

8: if d = 1 then
9: Lreg ← Lreg ∪ {(S, i, gid, cid)}
10: return d

aCompl (S, i, macl, marsp, ttk):

1: if π̃i
a,S =⊥ or π̃i

a,S .stexe ̸= running then return ⊥
2: Retrieve (auth, S, i, C, k) from Lpla-paca-S

3: status← Validate-C(C, k,marsp, ttk)
4: if status ̸= accepted then return ⊥
5: if Client-Win-SUF-t(C, k,macom, ttk) = 1 then
6: game ends returning 0

7: (d, rcS , cid, sid, agCon)
$←

aVrfy(π̃i
a,S ,macl,marsp)

8: if d = 1 and win-ua = 0 then
9: win-ua←Win-ua(S, i, cid)
10: return d

Fig. 22. First hop of the composed model proof. Code in red represents the changes to the code correspoding to the
first hop. The changes in Win-ua are redundant, because if the game reaches this function, then it must have passed
through mPACA and triggered the same conditions inside Client-Win-SUF-t. We show them only for keeping changes
consistent.

Note that for the server to have accepted the registered key, the client connected to it must
have accepted the message containing that key. However, this would have implied an mPACA
break which we excluded in hop 1.

The condition in line 28 models the scenario where A is successful in registering a key
generated by a token that is out of its control: the adversary, controlling a possibly compro-
mised client that is connected to the server, registers a key generated by a token PlA session
in an uncorrupted token mPACA session that has no relation to the client controlled by the
adversary. This would imply the adversary was able to break mPACA by breaking into this
token and convincing it to answer a response request, which we excluded in hop 1.

The justification for the winning conditions in lines 37 and 38 being unreachable is the
same as above, but these lines correspond to different practical attack scenarios that are
excluded by our proof. In line 37, the adversary would be hijacking an authentication session
established via an uncorrupted client and authenticating using its own token. In line 38, the
adversary is able to break into the user’s token and impersonate the user in an authenticated
session that it controls.

This leaves only one last option for A to try to win, which is through the conditions in
lines 3 and 4. However, these are also never reached, since they mean that A wins by breaking
the mPACA guarantees regarding uniqueness of sid values in client and token sessions, which
is not also possible after hop 1.

Therefore, at this point A can never win the game, and the proof is concluded.

59

Win-ua (S, i, cid):

1: if ∃(S1, i1, ph1) ̸= (S2, i2, ph2) s.t. π̃i1
ph1,S1

.sid = π̃i2
ph2,S2

.sid ̸=⊥ then game ends returning 0

2: if ∃(T1, j1, ph1) ̸= (T2, j2, ph2) s.t. π̃j1
ph1,T1

.sid = π̃j2
ph2,T2

.sid ̸=⊥ then game ends returning 0

3: if ∃(C1, k1), (C2, k2) s.t. (C1, j1) ̸= (C2, j2) and πk1
C1

.stexe = πk2
C2

.stexe = bindDone

and πk1
C1

.sid = πk2
C2

.sid then return 1

4: if ∃(T1, j′1), (T2, j′2) s.t. (T1, j′1) ̸= (T2, j′2) and π
j′1
T1

.stexe = π
j′2
T2

.stexe = bindDone

and π
j′1
T1

.sid = π
j′2
T2

.sid then return 1

5:
6: if ∃(T1, j′1), (T2, j′2) s.t. (T1, j′1) ̸= (T2, j′2) and π

j′1
T1

.stexe = π
j′2
T2

.stexe = bindDone

and π
j′1
T1

.sid = π
j′2
T2

.sid then game ends returning 0

7:
8: if ∃(S1, i1) ̸= (S2, i2) s.t. π̃i1

r,S1
.cid = π̃i2

r,S2
.cid ̸=⊥ then game ends returning 0

9:
10: if ∃(S′, i′, ph′), (T ′, j′, ph′) s.t. π̃i′

ph′,S′ .sid = π̃j′

ph′,T ′ .sid ̸=⊥ and (S′, T ′) /∈ Lcorr and T ′.gid /∈ LcorrG and π̃i′
ph′,S′ .agCon ̸=

π̃j′

ph′,T ′ .agCon then game ends returning 0

11:
12: (gid, i′, T, j′, j)← Partnerships(S, i, cid)
13: if gid =⊥ or (gid /∈ LcorrG and (T =⊥ or T.gid ̸= gid)) then game ends returning 0
14: else
15: if gid /∈ LcorrG then
16: Retrieve (reg, T, j′, l′) from Lpla-paca-T
17: Retrieve (reg, S, i′, CS , kS) from Lpla-paca-S
18: (CT , kT)← tokenBindPartner(T, l′)
19: if (CS , kS) ̸= (CT , kT) then
20: (TS ,m)← clientBindPartner(CS , kS)

21: if π
kS
CS

.compromised = false and πm
TS

.pinCorr = false then return 1

22: if ((CT , kT) = (⊥,⊥) or π
kT
CT

.compromised = false) and πl′
T .pinCorr = false then return 1

23: if (S, T) /∈ Lcorr and j =⊥ then game ends returning 0
24: else if (S, T) /∈ Lcorr then
25: Retrieve (auth, T, j, l) from Lpla-paca-T
26: Retrieve (auth, S, i, C′

S , k
′
S) from Lpla-paca-S

27: (C′
T , k′T)← tokenBindPartner(T, l)

28: if (C′
S , k

′
S) ̸= (C′

T , k′T) then
29: (T ′

S ,m
′)← clientBindPartner(CS , kS)

30: if π
k′
S

C′
S
.compromised = false and πm′

T ′
S
.pinCorr = false then return 1

31: if ((C′
T , k′T) = (⊥,⊥) or π

k′
T

C′
T
.compromised = false) and πl

T .pinCorr = false then return 1

32: return 0

Fig. 23. Second hop of the composed model proof. Code in red represents the changes to the code correspoding to
the second hop.

60

Theorem 9. (Attestation basic) If there exists an adversary A against the composed security
of an mPACA protocol mPACA and a PlA protocol PlA, then there exist adversaries B1 and
B2 such that:

AdvuaPlA+mPACA(A) ≤ AdvSUF-tmPACA(B1) + Advpla-authPlA (B2) .

The proof of this theorem is similar to the previous one, only that the reduction to PlA
security is now simpler given the adaptive power of the adversary.

Note that the results we give in Section 4 for the mPACA security of CTAP 2.1+ and
in Appendix G for the security of WebAuthn in various attestation modes imply that these
composed security results apply to this improved version of FIDO2. We next discuss how our
results capture rogue key attacks.

Rogue key attacks. The rogue key attack against the current instantiation of FIDO2 is
possible because the client has no way of verifying the origin of a token response (in CTAP
2.1) and because the server may not have any information that uniquely identifies the token
from which is expects a response (in WebAuthn). That is indeed the case for the most
common attestation modes None, Self and Basic.

To see how our result addresses rogue key attacks above, in all attestation modes, consider
the scenario where an active attacker is trying to launch a rogue key attack against the
composed PlA+mPACA protocol, but it does not have the ability to corrupt the client that
the user is relying on. Then, our results above guarantee that the server will only accept
a credential generated by the token that is uniquely bound to that client, which in turn
is uniquely bound by a TLS connection to the server. As soon as the client is under the
adversary’s control this guarantee no-longer holds, and rogue key attacks can take place.
We note that this is only true for the upgraded version of mPACA that we proposed in this
paper. We discuss next what these results mean for the current version of FIDO2.

Composed security for current FIDO2. When considering the current version of FIDO2
we can no longer rely on its PACA component CTAP 2.1 to resolve the problem of rogue
key attacks. However, we can consider a weaker security model in which composed security
holds: trust on first use. In this setting one assumes that the composed protocol adversary
is fully passive during registration, as in [5].

However, even in this case, the adversary can try to take advantage of the lack of au-
thentication in messages going from the authenticator back to the client that is bound to
the server. The composed model guarantee for current FIDO2 is therefore much weaker than
what we have presented above. We describe the implications in detail next.

First of all, one cannot guarantee that the server only accepts an authentication response
that comes from the token that is PACA-bound to the client. Indeed, the attacker could
potentially convince the client to send back to the server a response that comes from his own
maliciously-controlled token, thereby leading the server to log-in the user under a different
account. The implications of such an attack could be similar to those of Cross-Site Request
Forgery (CSRF) attacks.16

16 https://owasp.org/www-community/attacks/csrf

61

https://owasp.org/www-community/attacks/csrf

Second, even though such an attack is still possible, the role of PACA in composed FIDO2
security is still relevant: it guarantees that, if the user’s token is not compromised and only
interacts with honest clients, then the attacker cannot break into the token and impersonate
the user. Formally this can be captured by taking the approach in [5] to composed model
security: one requires that the attacker cannot break PlA security and, furthermore, that
tokens bound to honest clients only issue responses to PlA authentication requests if these
requests come from their unique PACA partner.

Finally, we remark that we could strengthen the composed model guarantees for current
FIDO2 with a different use of credential identifiers. Indeed, assuming trust on first use,
the server will record a unique credential identifier cid for each credential. Hence, if this is
associated with a server-side user identifier, the server could potentially impose a priori a cid
when authenticating the user. In this case, the attack we described above will not work, as
the attacker’s credential will be rejected because it does not match the cid that the server is
looking for. We expect that, in this setting, FIDO2 meets the stronger notion of composed
security for authentication runs we propose here, but we do not pursue this line of analysis
because this does not seem to be the common use case for cids.

J Formal CTAP Privacy Attacks

Figure 24 describes the adversary A that breaks PACA privacy (defined in Section 5.1)
of CTAP 2.1 and CTAP 2.1+ by taking advantage of the reuse of ECDH shares on the
authenticator side. Since each ECDH share pkT is sampled randomly, A will identify the
correct token with probability 1 − 1/q, where q is the prime order of the underlying ECDH
group (from curve P-256).

Apriv
CTAP 2.1/CTAP 2.1+(λ):

For some distinct tokens T0, T1, some clients C0, C1, and some user U

1: Phase 1: trans0 ← Setup(T0, 1, C0, 1, U), trans1 ← Setup(T1, 1, C1, 1, U)
2: Extract token T ’s DH share pk0 from trans0 and DH share pk1 from trans1
3: Phase 2: Outputs T0, T1, C0, C1, U, U
4: Phase 3: trans← Bind-LEFTT0,C0(2, 2)
5: Extract token T ’s DH share pk from trans
6: if pk = pk0 then
7: return 0
8: else
9: return 1

Fig. 24. Privacy adversary for CTAP 2.1 and CTAP 2.1+.

K IND-1$PA-LHPC Proof for CBC

In this section, we show our code-based proof of the IND-1$PA-LHPC security of CBC via a
sequence of games. Our proof is based on the IND-1$PA-LPC proof for CBC from [5], with

62

a few modifications to accomodate the differences in the two security definitions. Therefore,
much like the authors in [5], we define CBC as an instance of a symmetric encryption scheme
SKE = (Kg,Enc,Dec), seen in 25. We also define F as an invertible pseudo-random permu-
tation F : K ×M → C, with K := {0, 1}f1(λ), M := {0, 1}f2(λ) and C := {0, 1}f2(λ) for
polynomials f1 and f2. We model H as a random oracle H1 : {0, 1}∗ → {0, 1}l1 , available to
A.

Theorem 10. For every efficient adversary A that makes at most qLHPC and qRAND queries
to OLHPC and ORAND, there exist adversaries B1, B2 and B3 such that:

AdvIND-1$PA-LHPC
CBC (A) ≤ AdvprpF (B1)

+ 1/2l1

+
qLHPC

2f2(λ) − 1− qLHPC
+ qRAND⌈

lmax

f2(λ)
⌉ 2−f2(λ)

+ AdvprpF (B2)
+ AdvIND-1$PA

CBC (B3)

KG(1λ):

1: K
$← K

2: return K

Enc(c):

1: x1 || ... || xn ← m s.t. | xi |=
f2(λ) ∀i ∈ {1, ..., n}

2: y0 ← SetIV()
3: for all i ∈ {1, ..., n} do
4: yi ← F(K, yi−1 ⊕ xi)
5: y ← y0 || ... || yi
6: return y

Dec(K, c):

1: y0 || ... || yn ← c s.t. | yi |= f2(λ) ∀i ∈
{0, ..., n}

2: for all i ∈ {1, ..., n} do
3: xi ← yi−1 ⊕ F−1(K, yi)
4: m← x1 || ... || xn

5: return m

Fig. 25. CBC instantiated as a symmetric encryption scheme SKE = (Kg,Enc,Dec), as defined in [5].

Let Prg denote the probability that game g outputs 1. Modifications applied to the game
are showcased in orange. Specific events that may cause the challenger to abort if some
bad event happens are showcased in red, and are relevant only for the game where they are
defined. Code that is specific to reductions is showcased in green.

Game 0

This is the original ExptIND-1$PA-LHPC
CBC . Therefore,

Pr0 = AdvIND-1$PA-LHPC
CBC (A) (4)

Game 1

Let F be the set of all invertible random permutations f : {0, 1}f2(λ) −→ {0, 1}f2(λ).

63

In this game, the challenger uniformly samples a invertible random permutation in the
begginning of the experiment. Then, whenever it executes Enc(K,m) or Dec(K, c), the com-
putation of F(K, ·) and F−1(K, ·) is replaced by f(·) and f−1(·), respectively.

Game1(A):
b

$← {0, 1}
K

$← CBC.KG()
state← 0
(m0,m1)

$← A()
cchal

$← OLR(m0,m1)

f
$← F

b′
$← AOLR,ORAND,OLHPC (cchal)

return (b = b′)

Fig. 26. Game 1.

Enc(c):

1: x1 || ... || xn ← m s.t. | xi |=
f2(λ) ∀i ∈ {1, ..., n}

2: y0 ← SetIV()
3: for all i ∈ {1, ..., n} do
4: yi ← f(yi−1 ⊕ xi)
5: y ← y0 || ... || yi
6: return y

Dec(K, c):

1: y0 || ... || yn ← c s.t. | yi |= f2(λ) ∀i ∈
{0, ..., n}

2: for all i ∈ {1, ..., n} do
3: xi ← yi−1 ⊕ f−1(yi)
4: m← x1 || ... || xn

5: return m

Fig. 27. Modifications to CBC - Game 1.

Advantage measure The only modification in game 1 corresponds to the replacement
of the underlying invertible pseudo-random permutation in the encryption scheme with an
invertible, truly random permutation. Therefore, we can bound the advantage ofA by consid-
ering an adversary B1 that can distinguish between f and F(K, ·) by invoking A. Therefore:

Pr0 − Pr1 ≤ AdvprpF (B1) (5)

Game 2

In this game, the challenger aborts if H1(mb) is a prefix of, but not equal to, mb.

64

Game2(A):
b

$← {0, 1}
K

$← CBC.KG()
state← 0
(m0,m1)

$← A()
bad← false
t←H1(mb)
▷ ⌈ |x|

f2(λ)
⌉ is the number of blocks of size f2(λ) for some

string x.

n← ⌈ |t|
f2(λ)

⌉, t1 || .. || tn ← t

if n < ⌈ |mb|
f2(λ)

⌉ then
if (t1 || .. || tn) = (x1 || .. || xn) then

bad← true
abort

cchal
$← OLR(m0,m1)

f ← F
b′

$← AOLR,ORAND,OLHPC (cchal)
return (b = b′)

Fig. 28. Game 2.

Advantage measure We bound the advantage of A against game 2 by considering the
bad event bad which happens exactly when mb is at least one block longer than H1(mb) and
H1(mb) is a prefix of mb.

Since mb’s blocks are fixed in the beggining, for bad to occur, H1 must output exactly
x1 || .. || xn, which happens with probability 1/2l1 .

Since games 1 and 2 proceed identically until bad, through the difference lemma, we have:

| Pr1 − Pr2 | ≤ Pr2[bad] (6)

Pr2[bad] ≤ 1/2l1 (7)

Therefore,

| Pr1 − Pr2 | ≤ 1/2l1 (8)

Game 3

In this game, when b = 0 and A delivers a ciphertext c to OLHPC, with c ̸= cchal, and
H1(m0) = Dec(K, c), the challenger returns 0.

65

Game3(A):
b

$← {0, 1}
K

$← CBC.KG()
state← 0
(m0,m1)

$← A()
t←H1(mb)

n← ⌈ |t|
f2(λ)

⌉, t1 || .. || tn ← t

if n < ⌈ |mb|
f2(λ)

⌉ then
if (t1 || .. || tn) = (x1 || .. || xn)
then

abort
cchal

$← OLR(m0,m1)
f ← F
bad← false
b′

$← AOLR,ORAND,OLHPC (cchal)
return (b = b′)

OLHPC(c):

if c = cchal then
return ⊥

if b = 0 then
if H1(m0) = CBC.Dec(K, c) then

bad← true
return 0

return H1(m0) = CBC.Dec(K, c)

Fig. 29. Game 3.

Advantage measure We bound the advantage of A against game 3 by considering the bad
event bad which happens exactly when b = 0 and A delivers a ciphertext c to OLHPC which
correctly decrypts into H1(m0) and is different from the challenge ciphertext cchal.

We know from the definition of H1 that the target ciphertext c must have length exactly
⌈ l1
f2(λ)
⌉+ 1. Let n = ⌈ l1

f2(λ)
⌉+ 1.

In order for A to produce c = y0 || ... || yn, for a message m = H1(m0) = x1 || ... || xn, it
must be able to produce, depending on m0, one or more of its blocks without having access
to f or f−1.

If m0 ̸= H1(m0), and m0 and H1(m0) share the first p blocks, for 0 ≤ p < n, then A
must be able to generate all n − p blocks of the target ciphertext c. The best possible case
for A is when p = n − 1, i.e., when H1(m0) shares all of its blocks with m0 except for the
last one. Therefore, A only has to produce the last block yn for c to decrypt into m0.

However, since yn = f(yn−1 ⊕ xn), and A does not have access to f or f−1, A has no
information about yn, and therefore has only two options: either guess yn directly, or obtain
it through the ORAND oracle.

The probability that A guesses yn directly can be upper bounded by considering qLHPC

as the maximum number of queries to OLHPC, and that for the first OLHPC query, A can
guess yn with probability at most 1

2f2(λ)−1 (in case m0 has more blocks than H1(m0), in

which case the last block of c must be different from the first distinct block of cchal), on the
second attempt with probability 1

2f2(λ)−2 and so on. Each query attempted by A effectively
reduces the probability space to guess the correct block yn. Therefore, A can guess y1 with
probability at most

qLHPC∑
i=0

1

2f2(λ) − 1− i
≤ qLHPC

2f2(λ) − 1− qLHPC
(9)

The probability that ORAND inputs yn−1⊕xn to f is, at most, 2−f2(λ) per block per query,
since each query to ORAND can produce the same input to f more than once. Therefore, we
can upper bound the probability of f(yn−1 ⊕ xn) occuring throughout the game as

66

qRAND⌈
lmax

f2(λ)
⌉ 2−f2(λ) (10)

, where lmax is the largest length l given to ORAND by A, and ⌈ lmax

f2(λ)
⌉ is the maximum

number of times each query to ORAND calls f .
In these circunstances, A can produce c such that H1(m0) = Dec(K, c) with a maximum

probability of

qLHPC
2f2(λ) − 1− qLHPC

+ qRAND⌈
lmax

f2(λ)
⌉ 2−f2(λ) (11)

If m0 = H1(m0), then A must produce a target ciphertext c that is different from cchal.
However, in order to produce this c, A must use a new IV.

Recall that A must produce c = y0 || ... || yn such that Dec(K, c) = Dec(K, cchal) but c
cannot share all of its blocks with cchal, and that in CBC mode, each ciphertext block yi is
calculated as yi ← f(yi−1⊕xi),∀i ∈ {1, ..., n}. If c and cchal share the same first block y0 (the
IV), then y1 = f(y0 ⊕ x1) will always be the same when calculated with the same random
permutation f over the same message m = x1 || ... || xn. This follows for all yi, which always
depends on the previous block yi−1. Therefore, by sharing the first block, c necessarily shares
all of its blocks with cchal, and thus is either the same as or a prefix of cchal.

After generating a new IV, which is block y0, A must be able to create all remaining
⌈ l1
f2(λ)
⌉ blocks, which are calculated by f(yi−1 ⊕ xi),∀i ∈ 1, .., n, without having access to f

or f−1. The best possible case for A is when ⌈ l1
f2(λ)
⌉ = 1, and thus n = 2, which means A

must only produce y1, which is also the last block. From the previous case, we know that A
can produce y1 with probability at most

qLHPC
2f2(λ) − 1− qLHPC

+ qRAND⌈
lmax

f2(λ)
⌉ 2−f2(λ) (12)

Notice that each of these cases is mutually exclusive, but that the absolute best case
scenario for A in either case can be upper bounded by equations 11/12.

Since games 2 and 3 proceed identically until bad happens, through the difference lemma,
we have:

| Pr2 − Pr3 | ≤ Pr3[bad] (13)

Since bad can only happen if b = 0 ∧H1(m0) = Dec(K, c), we have:

Pr3[bad] ≤ 2−1 (
qLHPC

2f2(λ) − 1− qLHPC
+ qRAND⌈

lmax

f2(λ)
⌉ 2−f2(λ)) (14)

Therefore,

| Pr2 − Pr3 | ≤ 2−1
qLHPC

2f2(λ) − 1− qLHPC
+ 2−1 qRAND⌈

lmax

f2(λ)
⌉ 2−f2(λ) (15)

67

Game 4

In this game, when b = 1 and A delivers a ciphertext c to OLHPC, with c ̸= cchal, and
H1(m0) = Dec(K, c), the challenger returns 0.

Game4(A):
b

$← {0, 1}
K

$← CBC.KG()
state← 0
(m0,m1)

$← A()
t←H1(mb)

n← ⌈ |t|
f2(λ)

⌉, t1 || .. || tn ← t

if n < ⌈ |mb|
f2(λ)

⌉ then
if (t1 || .. || tn) = (x1 || .. || xn)
then

abort
cchal

$← OLR(m0,m1)
f ← F
bad← false
b′

$← AOLR,ORAND,OLHPC (cchal)
return (b = b′)

OLHPC(c):

if c = cchal then
return ⊥

if b = 0 then
if H1(m0) = CBC.Dec(K, c) then

return 0
if b = 1 then

if H1(m0) = CBC.Dec(K, c) then
bad← true
return 0

return H1(m0) = CBC.Dec(K, c)

Fig. 30. Game 4.

Advantage measure We bound the advantage of A against game 4 by considering the bad
event bad which happens exactly when b = 1 and A delivers a ciphertext c to OLHPC which
correctly decrypts into H1(m0).

The analysis is identical to game 3.

Let n = ⌈ l1
f2(λ)
⌉ + 1. Unless A provides a message m1 such that m1 = H1(m0), which

results in A having to generate all n blocks of ciphertext c, A must generate, at least, one
block yn of ciphertext c. This happens with probability at most

qLHPC
2f2(λ) − 1− qLHPC

+ qRAND⌈
lmax

f2(λ)
⌉ 2−f2(λ) (16)

Since games 3 and 4 proceed identically until bad happens, through the difference lemma,
we have:

| Pr3 − Pr4 | ≤ Pr4[bad] (17)

Since bad can only happen if b = 1 ∧H1(m0) = Dec(K, c), we have:

Pr3[bad] ≤ 2−1 (
qLHPC

2f2(λ) − 1− qLHPC
+ qRAND⌈

lmax

f2(λ)
⌉ 2−f2(λ)) (18)

Therefore,

| Pr3 − Pr4 | ≤ 2−1
qLHPC

2f2(λ) − 1− qLHPC
+ 2−1 qRAND⌈

lmax

f2(λ)
⌉ 2−f2(λ) (19)

68

Game 5

In this game, whenever A calls oracle OLHPC with a ciphertext c ̸= cchal, the oracle returns 0.

OLHPC(c):

if c = cchal then
return ⊥

return 0

Fig. 31. Game 5.

Advantage measure In the previous game, the oracle OLHPC always returns 0 to A when
c ̸= cchal, regardless of b. Therefore, this game is functionally identical to game 4, and we
have:

Pr4 = Pr5 (20)

Game 6

In this game, whenever the challenger executes Enc(K,m) or Dec(K, c), the computation of
f(·) and f−1(·) is replaced by F(K, ·) and F−1(K, ·), respectively.

Enc(c):

1: x1 || ... || xn ← m s.t. | xi |=
f2(λ) ∀i ∈ {1, ..., n}

2: y0 ← SetIV()
3: for all i ∈ {1, ..., n} do
4: yi ← F(K, yi−1 ⊕ xi)
5: y ← y0 || ... || yi
6: return y

Dec(K, c):

1: y0 || ... || yn ← c s.t. | yi |= f2(λ) ∀i ∈
{0, ..., n}

2: for all i ∈ {1, ..., n} do
3: xi ← yi−1 ⊕ F−1(K, yi)
4: m← x1 || ... || xn

5: return m

Fig. 32. Modifications to CBC - Game 6.

Advantage measure The only modification in game 6 corresponds to the replacement
of the underlying invertible truly random permutation in the encryption scheme with an
invertible, pseudo-random permutation. Therefore, we can bound the advantage of A by
considering an adversary B2 that can distinguish between F(K, ·) and f by invoking A.
Therefore:

Pr5 − Pr6 ≤ AdvprpF (B2) (21)

Final Analysis

We can now calculate an upper bound for the advantage of A against game 6 by reduction
to the IND-1$PA security of CBC.

69

Let B3 be an adversary against the IND-1$PA security of CBC. We show that if A wins
game 6, then B3 wins the IND-1$PA game.

B3(A,OIND-1$PA
LR ,OIND-1$PA

RAND):

(m0,m1)
$← A()

t←H1(mb)

n← ⌈ |t|
f2(λ)

⌉, t1 || .. || tn ← t

if n < ⌈ |mb|
f2(λ)

⌉ then
if (t1 || .. || tn) = (x1 || .. || xn)
then

abort
cchal

$← OLR(m0,m1)

b′
$← AOLR,ORAND,OLHPC (cchal)

return (b′)

OLR(m0,m1):

cchal ← OIND-1$PA
LR (m0,m1)

return cchal

OLHPC(c):

if c = cchal then
return ⊥

return 0

ORAND(l):

(m′
0,m

′
1, c

′)← OIND-1$PA
RAND (l)

return (m′
0,m

′
1, c

′)

Fig. 33. Game 6 simulated by B3, with corresponding Left-Right oracle OLR, RAND oracle ORAND and LHPC oracle
OLHPC.

Advantage measure From the definition of B3, if A wins game 6, then B3 wins against
the IND-1$PA security of CBC.

Pr6 ≤ PrIND-1$PA
CBC (B3) (22)

Note that the running times of all adversaries are close to that of A.
This concludes the proof.

L CTAP 2.1+ Authentication Proof

In this section, we give a fully detailed, code-based proof for the authentication security of
CTAP 2.1+, as an instance of mPACA, with a sequence of games. We base our modifications
for each game on the mPACA model oracles and CTAP 2.1+ syntax as presented in Sections 4
and B, respectively.

Let Prg denote the probability that game g outputs 1. Each game’s modifications that
are persistent throughout the proof are showcased in orange. Modifications that exist only
when employing a hybrid argument or a reduction, and therefore are only relevant to a
specific game, are shown in green. Finally, modifications in red flag bad events or the end of
a reduction and, as a consequence, are also relevant only to their respective game.

Game 0

This game is the original ExptSUF-tCTAP 2.1+(A) security experiment. Therefore,

Pr0 = AdvSUF-tCTAP 2.1+(A) (23)

70

Game 1

In this game we replace every key K1 and K2 derived from Z by all passive ECDH key
exchange sessions with two independent and uniformly random session keys K̃1 and K̃2, and
bound the advantage of A by reducing to the sCDH security of ECDH.

We maintain two structures LsCDH and LH2 respectively to save ocurrences of client
and token public keys in order to maintain consistency throughout the game and to save
adversary queries to random oracle H2. Every execution of encapsulate, which happens only
on clients, will first check if the current pair of public keys has appeared before. If it hasn’t,
the experiment samples the two session keys K̃1 and K̃2 and saves them in LsCDH. Otherwise,
the challenger uses the K̃1 and K̃2 which were previously stored in LsCDH. On the token side,
everytime decapsulate executes, it performs the same check. If the pair does not exist, then
the public key received must not have been generated by an honest client, since LsCDH is
only ever set by the client in encapsulate. In that situation, the regular ECDH key derivation
is used. If it does exist, then both keys have already appeared in the experiment before, in a
previous execution of encapsulate, which means the same K̃1 and K̃2 must be used, in order
to maintain consistency. It is clear that, unless A ever queried H2 with the shared secret Z
derived in a Setup or Execute query, Game 1 proceeds identically to Game 0.

Game1(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2 ← ∅
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

AdvH2 (u1, u2):

v ←H2(u1, u2)
LH2 [u1, u2]← v
return v

Fig. 34. Game 1 on the left, and H2 wrapper AdvH2 on the right - Game 1. AdvH2 is a wrapper that A can use to
call the random oracle, so that we can distinguish calls to H2 made specifically by A.

encapsulate (pk′):

if LsCDH[pk
′, pk] =⊥ then

K̃1
$← {0, 1}2λ, K̃2

$← {0, 1}2λ
K̃ ← (K̃1, K̃2)
LsCDH[pk

′, pk]← K̃
else

K̃ ← LsCDH[pk
′, pk]

K ← K̃
c← pk
return (c,K)

decapsulate (c):

K̃ ← LsCDH[pk, c]
if K̃ ̸=⊥ then

K ← K̃
return K

Z ← XCoordinateOf(sk · c)
K1 ←H2(Z, ”CTAP2 HMAC KEY”)
K2 ←H2(Z, ”CTAP2 AES KEY”)
K ← (K1,K2)
return K

Fig. 35. Modifications to PIN/UV Auth Protocol functions encapsulate and decapsulate - Game 1. Variables sk and
pk refer to the stored keys being used by the client session or the token session.

Hybrid Argument We bound the advantage of A against Game 1 by creating nTokenPK

hybrid games between Game 0 and Game 1, where nTokenPK is the total number of token
public keys sampled throughout the experiment that are output to A in Setup, Execute
and Send-Bind-T queries, via the obtainSharedSecret-T function. We then define a bad event
bad on game 0.i, where the game aborts and A loses if it queries H2 with u1 = Z =

71

XCoordinateOf(sk · pki
token), and pki

token and c exist in LsCDH at any point in the game, with
pki

token as the ith token public key and sk and c any client private and public key generated
by a client session that received pki

token.
We use the notation from regular Diffie-Hellman instead of Elliptic Curve Diffie-Hellman to

simplify the code and make it more legible. For example, instead of Z ← XCoordinateOf(sk ·
pk′), we use Z ← (pk′)sk during this hybrid and the reduction to sCDH. However, every
operation used in this proof uses ECDH.

Game0.i(A):
LauthC,LauthT ← ∅,Lvalid ←
∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
hy← i,Lhy ← ∅
(pkitoken, sk

i
token)← (⊥,⊥)

bad← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

AdvH2 (u1, u2):

v ←H2(u1, u2)
for all (pkT , pkC ,) ∈ LsCDH s.t.
pkT = pkitoken do

if u1 = (pkC)sk
i
token then

bad← true
abort

LH2
[u1, u2]← v

return v

Fig. 36. Hybrid game 0.i on the left and random oracle wrapper AdvH2 on the right.

obtainSharedSecret-T(πi
T , puvProtocol):

if puvProtocol /∈ stT .puvProtocolList then
return ⊥

pkT ← stT .puvProtocol.getPublicKey()
if (T, pkT) /∈ Lhy then
Lhy ← Lhy ∪ (T, pkT)
if size(Lhy) = hy then

(pkitoken, sk
i
token) ←

(pkT , stT .puvProtocol.sk)
selectpuvProtocol← puvProtocolList
πi
T .stexe ← waiting

πi
T .sid← πi

T .sid || puvProtocol || pkT
return pkT

encapsulate (pk′):

if (, pk′) ∈ Lhy [0 : hy[then
if LsCDH[pk

′, pk] =⊥ then

K̃1
$← {0, 1}2λ, K̃2

$← {0, 1}2λ
K̃ ← (K̃1, K̃2)
LsCDH[pk

′, pk]← K̃
if pk′ = pkitoken then

if LH2
[(pk′)sk,] ̸=⊥ then

bad← true
abort

else
K̃ ← LsCDH[pk

′, pk]
K ← K̃
c← pk
return (c,K)

if (, pk′) ∈ Lhy [hy : nTokenPK[then

Z ← (pk′)sk

K1 ←H2(Z, ”CTAP2 HMAC KEY”)
K2 ←H2(Z, ”CTAP2 AES KEY”)
K ← (K1,K2)
c← pk
return (c,K)

decapsulate (c):

if (, pk) ∈ Lhy [0 : hy[then

K̃ ← LsCDH[pk, c]
if K̃ ̸=⊥ then

K ← K̃
return K

Z ← csk

K1 ←H2(Z, ”CTAP2 HMAC KEY”)
K2 ←H2(Z, ”CTAP2 AES KEY”)
K ← (K1,K2)
return K

if (, pk) ∈ Lhy [hy : nTokenPK[then

Z ← csk

K1 ←H2(Z, ”CTAP2 HMAC KEY”)
K2 ←H2(Z, ”CTAP2 AES KEY”)
K ← (K1,K2)
return K

Fig. 37. obtainSharedSecret-T on the left and PIN/UV Auth Protocol encapsulate and decapsulate functions on the
right, from hybrid game 0.i.

Reduction to the sCDH security of ECDH We now construct an adversary Bi
1 that

simulates game 0.i to A, in such a way that when bad happens, Bi
1 wins against the sCDH

security of ECDH.
Throughout the simulation of game 0.i, Bi

1 sets the ith token public key as the sCDH
challenge public key ga and any client public key generated by a client session that receives

72

ga to be gb+rw , for rw ← Zq and w ≥ 1. In such client sessions, Bi
1 checks if u1 = Z is in

LsCDH using its Oa oracle. Additionally, everytime A calls random oracle H2 (always through
AdvH2) Bi

1 also checks if for any public key pair in LsCDH that includes ga, u1 = Z.
It is not hard to see that, whenever bad happens during Bi

1’s simulation, Bi
1 wins by

using A’s input to the random oracle H2. Indeed, if A ever calls H2 with input u1 = Z =
(gb+rw)a,∀rw ∈ Lrw , then Bi

1 can output Z ′ ← u1 · (ga)−rw ≡ (gb+rw)a · (ga)−rw ≡ gab and win
the sCDH game.

ChallengersCDH
ECDH:

(a, ga)
$← ECDH.KG()

(b, gb)
$← ECDH.KG()

Z′ ← AOa (g, ga, gb)
Z ← (gb)a

win-sCDH← (Z = Z′)
return win-sCDH

Oa(c, Z):

Z′ ← ca

return (Z = Z′)

Bi1(g, ga, gb,A,Oa):

LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2 ← ∅
hy← i,Lhy ← ∅
(pkitoken, sk

i
token)← (⊥,⊥)

Lrw ,LFakeH2
← ∅

Z′ $← Zq

win-SUF-t← 0
()

$← AO(1λ)
▷ If bad ever happened, Z′ has the correct value
because it was set during the game simulation
from Bi1.
return Z′

Fig. 38. sCDH Challenger and oracle on the left and adversary Bi
1’s simulation of game 0.i on the right.

H2 (u1, u2):

if t1[u1, u2] ̸=⊥ then
return t1[u1, u2]

else
for (c, (K̃1, K̃2)) ∈ LFakeH2

do
if Oa(c, u1) = true then

if u2 = ”CTAP2 HMAC KEY” then
t1[u1, u2]← K̃1

return K̃1

else if u2 = ”CTAP2 AES KEY”
then

t1[u1, u2]← K̃2

return K̃2

v
$← {0, 1}2λ

t1[u1, u2]← v
return v

AdvH2 (u1, u2):

v ←H2(u1, u2)
for all (rw, gb · grw) ∈ Lrw do

if LsCDH[g
a, gb · grw] ̸=⊥ then

if Oa(gb · grw , u1) = true then
Z′ = u1 · (ga)−rw

win-sCDH
LH2

[u1, u2]← v
return v

Fig. 39. Random Oracle H2 and wrapper AdvH2 simulated by Bi
1.

Advantage measure By the definition of Bi
1, if bad happens, then A found the solution to

the problem given by the sCDH challenger to Bi
1, i.e., g

ab. Therefore:

Pr0.i[bad] ≤ AdvsCDH
ECDH(Bi

1) (24)

Since games 0.i and 0.(i − 1) are identical until bad happens, through the difference
lemma, we have:

73

obtainSharedSecret-T(πi
T , puvProtocol):

if puvProtocol /∈ stT .puvProtocolList then
return ⊥

pkT ← stT .puvProtocol.getPublicKey()
if (T, pkT) /∈ Lhy then
Lhy ← Lhy ∪ (T, pkT)
if size(Lhy) = hy then

(pkitoken, sk
i
token)← (ga,)

selectpuvProtocol← puvProtocolList
πi
T .stexe ← waiting

πi
T .sid← πi

T .sid || puvProtocol || pkT
return pkT

encapsulate (pk′):

if (, pk′) ∈ Lhy [0 : hy[then
if pk′ = pkitoken then

w ← size(Lrw) + 1

rw
$← Zq

pk ← gb · grw
Lrw ← Lrw ∪ {(rw, pk)}

if LsCDH[pk
′, pk] =⊥ then

K̃1
$← {0, 1}2λ, K̃2

$← {0, 1}2λ
K̃ ← (K̃1, K̃2)
LsCDH[pk

′, pk]← K̃
if pk′ = pkitoken then

for all (u1, u2, v) ∈ LH2 do
if Oa(pk, u1) = true then

▷ u1 = (gb · grw)a

Z′ = u1 · (ga)−rw

win-sCDH
else

K̃ ← LsCDH[pk
′, pk]

K ← K̃
c← pk
return (c,K)

if (, pk′) ∈ Lhy [hy : nTokenPK[then

Z ← (pk′)sk

K1 ←H2(Z, ”CTAP2 HMAC KEY”)
K2 ←H2(Z, ”CTAP2 AES KEY”)
K ← (K1,K2)
c← pk
return (c,K)

decapsulate (c):

if (, pk) ∈ Lhy [0 : hy[then

K̃ ← LsCDH[pk, c]
if K̃ ̸=⊥ then

K ← K̃
return K

if pk = pkitoken then
for all (u1, u2, v) ∈ LH2 do

if Oa(c, u1) = true then
K1 ← H2(u1, ”CTAP2
HMAC KEY”)
K2 ← H2(u1, ”CTAP2 AES
KEY”)
K ← (K1,K2)
return K

K̃1
$← {0, 1}l3, K̃2

$← {0, 1}l3
LFakeH2

[c]← (K̃1, K̃2)

K̃ ← (K̃1, K̃2)
K ← K̃
return K

else
Z ← csk

K1 ←H2(Z, ”CTAP2 HMAC KEY”)
K2 ←H2(Z, ”CTAP2 AES KEY”)
K ← (K1,K2)
return K

if (, pk) ∈ Lhy [hy : nTokenPK[then

Z ← csk

K1 ←H2(Z, ”CTAP2 HMAC KEY”)
K2 ←H2(Z, ”CTAP2 AES KEY”)
K ← (K1,K2)
return K

Fig. 40. obtainSharedSecret-T on the left and PIN/UV Auth Protocol encapsulate and decapsulate functions on the
right, simulated by Bi

1.

Pr0.i[bad] ≥ | Pr0.(i−1) − Pr0.i |,∀i ∈ [1, nTokenPK] (25)

AdvsCDH
ECDH(Bi

1) ≥ | Pr0.(i−1) − Pr0.i |,∀i ∈ [1, nTokenPK] (26)

nTokenPK∑
i=1

AdvsCDH
ECDH(Bi

1) ≥
nTokenPK∑

i=1

| Pr0.(i−1) − Pr0.i | (27)

nTokenPK∑
i=1

AdvsCDH
ECDH(Bi

1) ≥ | Pr0.0 − Pr0.nTokenPK
| (28)

Let B1 be the adversary with the highest advantage against the sCDH game out of all
adversaries Bi

1, ∀i ∈ [1, nTokenPK]. Then, it is always true that:

nTokenPK AdvsCDH
ECDH(B1) ≥ | Pr0.0 − Pr0.nTokenPK

| (29)

Since Game 0.0 corresponds to Game 0 and Game 0.nTokenPK corresponds to Game 1, we
have:

nTokenPK AdvsCDH
ECDH(B1) ≥ | Pr0 − Pr1 | (30)

74

Given that token ECDH public keys can only be given toA in Setup, Execute or Send-Bind-T
queries, we know nTokenPK ≤ (qS + qE + qSend). Therefore:

(qS + qE + qSend) Adv
sCDH
ECDH(B1) ≥ | Pr0 − Pr1 | (31)

Game 2

In this game, the pinHash is no longer saved in the token’s state, being saved instead on a
new structure LTokenSetup which is not available to A.

Game2(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Fig. 41. Game 2.

setPIN-T(πi
T , puvProtocol, c, cp, tp):

if puvProtocol /∈ stT .puvProtocolList ∨
LTokenSetup[T] ̸=⊥ then return ⊥
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ ∨ stT .puvProtocol.verify(K, cp, tp) = false
then return ⊥
pin← stT .puvProtocol.decrypt(K, cp)
if pin /∈ P then return ⊥
LTokenSetup[T]← H(pin)
stT .pinRetries← pinRetriesMax
return accepted

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0 then
return (⊥, false)

K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
pinHash← stT .puvProtocol.decrypt(K, cph)
pinHashT ← LTokenSetup[T]
if pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 42. Modified CTAP 2.1+ setPIN-T and obtainPinUvAuthToken-T functions - Game 2.

Advantage measure Since this model does not allow tokens to be corrupted to reveal their
state stT , Game 2 is functionally identical to Game 1, and we have:

Pr1 = Pr2 (32)

75

Game 3

In this game, A loses by causing a bad event bad if and only if the challenger samples two
identical ECDH public keys, in either a token session or a client session. Both client and
token sessions will sample a fresh ECDH key pair through the regenerate function.

Game3(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
bad← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Fig. 43. Game 3. The flag bad in red is only used in
this game, to signal when a collision happens.

regenerate ():

(pk, sk)
$← ECDH.KG()

if pk ∈ Lpk then
bad← true
abort

Lpk ← Lpk ∪ {pk}

Fig. 44. Modifications regenerate - Game 3.

Advantage measure Each client-side ECDH public key is generated either on Setup or
Execute queries, in the obtainSharedSecret-C-start function. Since each query always generates
an ECDH public key, we have at most qS+qE client ECDH public keys during the experiment.

Each token-side ECDH public key can be generated either during the creation of the token
with the NewT oracle, by rebooting the token via the Reboot oracle, or during the Send-Bind-
T oracle, in the obtainPinUvAuthToken-T function, whenever the pinHash verification fails.
Since each NewT or Reboot query generates a new ECDH key pair every time, and each Send-
Bind-T generates at most 2 ECDH key pairs (recall that obtainPinUvAuthToken-T regenerates
whenever the pinHash verification fails but also when stT .m reaches 0, which can happen
during the same execution), we have at most qNT + qR + 2qSend token ECDH public keys
during the experiment.

Let npk = qS+ qE+ qNT+ qR+2qSend be the total number of ECDH public keys generated
through these oracles.

Considering the maximum probability of a collision between two keys as 1/q, where q is
the prime order of the ECDH group used by the challenger throughout the experiment, and
n2
pk/2 as an upper bound for the amount of ECDH public keys pairs that can exist, we have:

Pr3[bad] ≤ n2
pk/(2q) (33)

Since games 2 and 3 are identical until bad, by the difference lemma, we have:

Pr3[bad] ≥ | Pr2 − Pr3 | (34)

And, therefore:

n2
pk/(2q) ≥ | Pr2 − Pr3 | (35)

Finally, from the definition of npk, we have:

76

(qS + qE + qNT + qR + 2qSend)
2

2q
≥ | Pr2 − Pr3 | (36)

Game 4

In this game, the game aborts and A loses if when a collision occurs on some output of H
when called by the challenger.

In order to easily represent the changes in code, and ensure every time a call to H is made
the game checks for collisions, we create a wrapper function Hw which calls H and performs
the collision check, and change every location in the entire experiment where H is called with
Hw.

Game4(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
bad← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Fig. 45. Game 4. The flag bad in red is only used in this
game, to signal when a pinHash collision happens.

Hw (pin):

pinHash← H(pin)
for all (pin′, pinHash′) ∈ Lhash do

if pinHash′ = pinHash ∧ pin′ ̸= pin then
bad← true
abort

Lhash[pin]← pinHash
return pinHash

Fig. 46. New wrapper function Hw which calls H and
aborts if a collision is found - Game 4.

obtainPinUvAuthToken-C-start(πj
C , pin):

pinHash← Hw(pin)

cph
$← πj

C .selectedPuvProtocol.encrypt(πj
C .K, pinHash)

πj
C .stexe ← bindStart

πj
C .sid← πj

C .sid || cph
return cph

setPIN-T(πi
T , puvProtocol, c, cp, tp):

if puvProtocol /∈ stT .puvProtocolList ∨
LTokenSetup[T] ̸=⊥ then return ⊥
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ ∨ stT .puvProtocol.verify(K, cp, tp) = false
then return ⊥
pin← stT .puvProtocol.decrypt(K, cp)
if pin /∈ P then return ⊥
LTokenSetup[T]← Hw(pin)
stT .pinRetries← pinRetriesMax
return accepted

Fig. 47. Modified CTAP 2.1+ functions obtainPinUvAuthToken-C-start and setPIN-T - Game 4.

Advantage measure Because Games 3 and 4 are identical until bad, through the difference
lemma, we have:

| Pr3 − Pr4 | ≤ Pr4[bad] (37)

Since H is assumed to be collision resistant, there exists an adversary B4 such that:

Pr4[bad] ≤ AdvcollH (B4) (38)

Therefore:

77

| Pr3 − Pr4 | ≤ AdvcollH (B4) (39)

Game 5

In this game, we replace all pins encrypted by any client session and sent to any token session
during Setup with a constant pin 0000. Additionally, on any token session that shares the
same session key K̃ with a different token session of the same token involved in a previous
Setup query, we replace the encryption of the pinToken pt with the encryption of a uniform
random value p̃t.

Game5(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Setup (T, i, C, j, U):

pinU ← Lvalid[U]

if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pinU =⊥ then
return ⊥

πi
T ← stT
Lpin[πi

T]← pinU

trans
$← Setup(πi

T , πj
C , pinU)

πi
T .isValid, πj

C .isValid ← false
stT .user ← U
return trans

Fig. 48. Game 5 and modified Setup oracle.

setPIN-C(πj
C , pinU):

if pinU /∈ P then
return ⊥

cp
$← πj

C .selectedPuvProtocol.encrypt(πj
C .K, 0000)

tp
$← πj

C .selectedPuvProtocol.authenticate(πj
C .K, cp)

return (cp, tp)

setPIN-T(πi
T , puvProtocol, c, cp, tp):

if puvProtocol /∈ stT .puvProtocolList ∨
LTokenSetup[T] ̸=⊥ then return ⊥
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ ∨ stT .puvProtocol.verify(K, cp, tp) = false
then return ⊥
pin← Lpin[πi

T]
if pin /∈ P then return ⊥
LsetupKeys[T]← (stT .puvProtocol.pk, c)
LTokenSetup[T]← Hw(pin)
stT .pinRetries← pinRetriesMax
return accepted

Fig. 49. Modified CTAP 2.1+ functions setPIN-C and setPIN-T - Game 5.

We bound the advantage of A by reducing to the IND-1$PA-LHPC security of SKE. The
reason it does not suffice to reduce to the IND-1CPA security results from the observation
that it is not guaranteed that the session key K̃ that encrypts the constant pin will not be
used again to create more ciphertexts in the experiment. If A saves a client public key c used
to perform a Setup with a token session πi

T and then sends the same key c to another session
πi′
T of the same token during a Bind execution via the Send-Bind-T oracle, πi′

T might use the
same session key K̃2 to encrypt a pinToken, provided A can pass the pinHash verification
step. This is possible because it is not guaranteed that a token T will always generate a fresh
ECDH key pair for every new key agreement.

78

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0 then
return (⊥, false)

K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
pinHash← stT .puvProtocol.decrypt(K, cph)
pinHashT ← LTokenSetup[T]
if pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
▷ If this happens, then the ECDH key pair used in this execution was already used in
a previous Setup query for token T .
if (stT .puvProtocol.pk, c) = LsetupKeys[T] then

p̃t
$← {0, 1}len(πi

T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

else
cpt

$← stT .puvProtocol.encrypt(K,πi
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 50. Modified CTAP 2.1+ function obtainPinUvAuthToken-T - Game 5.

In order to know, during the execution of obtainPinUvAuthToken-T, if the token session
πi
T is reusing the same session key used in a previous Setup query, we create a structure
LsetupKeys which, during Setup, will fix the ECDH client and token public keys on token T .
Later, if the ECDH public keys used in obtainPinUvAuthToken-T are the same for the given
token T , we know it will be reusing the same session key, and thus we must replace the
pinToken being encrypted.

Hybrid Argument To bound A’s advantage against Game 5, we begin by creating nsetup

hybrid games between Game 4 and Game 5, where nsetup is the maximum number of (valid)
calls to the Setup oracle (valid refers to calls that actually result in executing the Setup
between a client session and token session). Then, we replace the pin with the constant value
0000 and fix the ECDH public keys in LsetupKeys only until the ith execution of Setup.

Reduction to the IND-1$PA-LHPC security of SKE We now construct an adversary Bi
5

against the IND-1$PA-LHPC security of SKE that simulates game 4.i to A perfectly, except
when A performs the ith valid query to Setup. In this case, when executing setPIN-C, Bi

5

sends pin and 0000 to OLR and receives a challenge ciphertext cp, instead of encrypting it
normally with the derived session key K̃2. Then, when running setPIN-T on the correspoding
token session, Bi

5 flags the public key pair that was used during this ith Setup, to maintain
consistency everytime the same public key pair appears later in the simulation, and sets the

79

Game4.i(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
hy← i, countsetup ← 0
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Setup (T, i, C, j, U):

pinU ← Lvalid[U]

if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pinU =⊥ then
return ⊥

πi
T ← stT

countsetup ← countsetup + 1
Lpin[πi

T]← pinU

trans
$← Setup(πi

T , πj
C , pinU)

πi
T .isValid, πj

C .isValid ← false
stT .user ← U
return trans

Fig. 51. Hybrid game 4.i.

setPIN-C(πj
C , pinU):

if pinU /∈ P then
return ⊥

if countsetup ≤ hy then

cp
$← πj

C .selectedPuvProtocol.encrypt(πj
C .K, 0000)

tp
$← πj

C .selectedPuvProtocol.authenticate(πj
C .K, cp)

return (cp, tp)
else

cp
$← πj

C .selectedPuvProtocol.encrypt(πj
C .K, pinU)

tp
$← πj

C .selectedPuvProtocol.authenticate(πj
C .K, cp)

return (cp, tp)

setPIN-T(πi
T , puvProtocol, c, cp, tp):

if puvProtocol /∈ stT .puvProtocolList ∨
LTokenSetup[T] ̸=⊥ then return ⊥
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ ∨ stT .puvProtocol.verify(K, cp, tp) = false
then return ⊥
if countsetup ≤ hy then

pin← Lpin[πi
T]

else
pin← stT .puvProtocol.decrypt(K, cp)

if pin /∈ P then return ⊥
if countsetup ≤ hy then
LsetupKeys[T]← (stT .puvProtocol.pk, c)

LTokenSetup[T]← Hw(pin)
stT .pinRetries← pinRetriesMax
return accepted

Fig. 52. Modified CTAP 2.1+ functions setPIN-C and setPIN-T for hybrid game 4.i.

pinHash correspoding to the pin that was saved in Lpin in the begginning of the Setup oracle
execution.

If A later queries Send-Bind-T to the target token session πi
T that was involved in the

ith Setup query with the public key c that was used in that Setup (which will be identifiable
by the flag set before in setPIN-T), Bi

5 must perform a query to its LHPC oracle OLHPC to
check if the correct pinHash is present in the received ciphertext. If it’s not, then the pinHash
verification fails. Otherwise, the verification succeeds, and Bi

5 must now use the RAND oracle
ORAND to encrypt a random pinToken to send to A.

Advantage measure The advantage of Bi
5 against the IND-1$PA-LHPC security of SKE is:

AdvIND-1$PA-LHPC
SKE (Bi

5) = | PrIND-1$PA-LHPC[b
′ = 0|b = 1]− PrIND-1$PA-LHPC[b

′ = 0|b = 0] | (40)

When oracle OLR encrypts m0, which corresponds to the real pin, then Bi
5 is simulating

Game 4.(i− 1) to A. If instead it encrypts m1, corresponding to the constant pin 0000, then
it simulates Game 4.i.

From the definition of Bi
5, it follows that:

AdvIND-1$PA-LHPC
SKE (Bi

5) = | Pr4.i[win-SUF-t = 1]−Pr4.(i−1)[win-SUF-t = 1] |, ∀i ∈ [1, nsetup] (41)

80

Bi5(A,OLR,ORAND,OLHPC):

LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
hy← i, countsetup ← 0
pkiT , pkiC ←⊥
cchal ←⊥
win-SUF-t← 0
b′ ←⊥
()

$← AO(1λ)
if win-SUF-t = 1 then

return b′ ← 0
else

return b′ ← 1
return b′

Setup (T, i, C, j, U):

if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pinU =⊥ then
return ⊥

πi
T ← stT

countsetup ← countsetup + 1
Lpin[πi

T]← pinU

trans
$← Setup(πi

T , πj
C , pinU)

πi
T .isValid, πj

C .isValid← false
stT .user← U
return trans

Fig. 53. Adversary Bi
5’s simulation of game 4.i.

setPIN-C(πj
C , pinU):

if pinU /∈ P then
return ⊥

if countsetup = hy then

cp
$← OLR(pinU , 0000)

cchal ← cp

tp
$← πj

C .selectedPuvProtocol.authenticate(πj
C .K, cp)

else if countsetup < hy then

cp
$← πj

C .selectedPuvProtocol.encrypt(πj
C .K, 0000)

tp
$← πj

C .selectedPuvProtocol.authenticate(πj
C .K, cp)

else
cp

$← πj
C .selectedPuvProtocol.encrypt(πj

C .K, pinU)

tp
$← πj

C .selectedPuvProtocol.authenticate(πj
C .K, cp)

return (cp, tp)

setPIN-T(πi
T , puvProtocol, c, cp, tp):

if puvProtocol /∈ stT .puvProtocolList ∨
LTokenSetup[T] ̸=⊥ then return ⊥
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ ∨ stT .puvProtocol.verify(K, cp, tp) = false
then return ⊥
if countsetup = hy then

pkiT ← πi
T .puvProtocol.pk

pkiC ← c
if countsetup ≤ hy then

pin← Lpin[πi
T]

else
pin← stT .puvProtocol.decrypt(K, cp)

if pin /∈ P then return ⊥
if countsetup ≤ hy then
LsetupKeys[T]← (stT .puvProtocol.pk, c)

LTokenSetup[T]← Hw(pin)
stT .pinRetries← pinRetriesMax
return accepted

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
if πi

T .puvProtocol.pk = pkiT ∧ c = pkiC then
if cph = cchal then

pin← Lvalid[stT .user]
if H(pin) = pin then

pinHash← H(pin)
else

pinHash←⊥
else if OLHPC(cph) = true then

pinHash← LTokenSetup[T]
else

pinHash←⊥
else

pinHash← stT .puvProtocol.decrypt(K, cph)
pinHashT ← LTokenSetup[T]
if pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if (stT .puvProtocol.pk, c) = LsetupKeys[T] then

if πi
T .puvProtocol.pk = pkiT ∧ c = pkiC then

(, , cpt)← ORAND(len(π
j
C .bs))

else
p̃t

$← {0, 1}len(πi
T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

else
cpt

$← stT .puvProtocol.encrypt(K,πi
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 54. CTAP 2.1+ functions setPIN-C, setPIN-T and obtainPinUvAuthToken-T simulated by Bi
5.

81

AdvIND-1$PA-LHPC
SKE (Bi

5) = | Pr4.i − Pr4.(i−1) |,∀i ∈ [1, nsetup] (42)

nsetup∑
i=1

AdvIND-1$PA-LHPC
SKE (Bi

5) =

nsetup∑
i=1

| Pr4.i − Pr4.(i−1) | (43)

nsetup∑
i=1

AdvIND-1$PA-LHPC
SKE (Bi

5) ≥ | Pr4.0 − Pr4.nsetup | (44)

Let B5 be the adversary with the highest advantage against the IND-1$PA-LHPC game,
∀i ∈ [1, nsetup]. Then, it is always true that:

nsetup AdvIND-1$PA-LHPC
SKE (B5) ≥

nsetup∑
i=1

AdvIND-1$PA-LHPC
SKE (Bi

5) (45)

And thus,

nsetup AdvIND-1$PA-LHPC
SKE (B5) ≥ | Pr4.0 − Pr4.nsetup | (46)

Since Game 4.0 corresponds to Game 4 and Game 4.nsetup corresponds to Game 5, we
have:

nsetup AdvIND-1$PA-LHPC
SKE (B5) ≥ | Pr4 − Pr5 | (47)

And, since nsetup is the maximum amount of valid Setup queries made by A, we have that
nsetup ≤ qS. Therefore:

qS AdvIND-1$PA-LHPC
SKE (B5) ≥ | Pr4 − Pr5 | (48)

Game 6

In this game, we replace all pinHashes encrypted by any client session in Execute with the hash
of a constant value 0000 and replace all pinTokens encrypted by any token session that was
not actively attacked by A with a random pinToken instead. We skip any pinHash verification
for any passive attempt (when c and cph were delivered to the token via an Execute query or
when A delivers some c and cph to a token via the Send-Bind-T oracle that were output by a
client session in a previous Execute, as long as the token is using the same public key). We
then bound the advantage of A by reducing to the IND-1$PA-LPC security of SKE.

We create a new structure Lct which saves important information from the client session,
namely its public key c and ciphertext cph containing the constant pinHash. Then, the game
behaves differently depending on which oracle called obtainPinUvAuthToken-T.

If c and cph are transmitted to a token session πi
T during an Execute query by a client

session πj
C , which is guaranteed to be passive, then the pinHash verification is skipped, and

82

Game6 (A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Execute (T, i, C, j):

pinU ← Lvalid[stT .user]

if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pinU =⊥ then
return ⊥

πi
T ← stT

trans,mC ,mT ←⊥
▷ Each πj

C and πi
T can be used only once in each Execute,

Send-Bind-T and Send-Bind-C.
Lct[πj

C , πi
T]← (⊥,⊥,⊥)

while πj
C .stexe ̸= bindDone do

mT
$← Bind-T(πi

T ,mC)

mC
$← Bind-C(πj

C , U,mT)
trans← trans || mT || mC

for all i′ ̸= i and πi′
T ̸=⊥ do

πi′
T .isValid← false

return trans

obtainPinUvAuthToken-C-start(πj
C , pin):

pinHash← Hw(0000)

cph
$← πj

C .puvProtocol.encrypt(πj
C .K, pinHash)

πj
C .stexe ← bindStart

πj
C .sid← πj

C .sid || cph
Lct[πj

C ,]← (πj
C .puvProtocol.pk, cph,⊥)

return cph

obtainPinUvAuthToken-C-end(πj
C , cpt):

(, , pt)← Lct[πj
C ,]

πj
C .bs← pt

πj
C .stexe ← bindDone

πj
C .sid← πj

C .sid || cpt || false
return

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
activekey, activecph ← true

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph,) ∈ Lct s.t. T ′ = T ∧
πi′
T ′ .puvProtocol.pk = πi

T .puvProtocol.pk do
if c′ = c then

activekey ← false
if c′ph = cph ∧ c′ = c then

activecph ← false
break

verifyPin← activekey ∨ activecph
if verifyPin = true then

pinHash← stT .puvProtocol.decrypt(K, cph)
pinHashT ← LTokenSetup[T]
if pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if activekey = true ∧ (stT .puvProtocol.pk, c) ̸= LsetupKeys[T]
then

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

Lct[, πi
T]← (c′, c′ph, π

i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 55. Game 6, modified Execute oracle and modified CTAP 2.1+ functions obtainPinUvAuthToken-C-start,
obtainPinUvAuthToken-C-end and obtainPinUvAuthToken-T - Game 6.

83

a new random pinToken is encrypted instead of the real pinToken generated by πi
T that is

set as the binding state πi
T .bs and saved in Lct. The ciphertext cpt is then sent to πj

C , which
simply discards it and sets the same binding state as πi

T .

If c and cph are sent by A to a token session πi
T via a Send-Bind-T query, the received c

and cph are treated differently in obtainPinUvAuthToken-T depending on their origin. If both

c and cph were created by a client session πj′

C that completed a Bind with a different token
session πi′

T via an Execute query, and πi′
T and πi

T share the same ECDH public key, then the
experiment skips the pinHash verification (we say that c and cph are passive). Recall that
any Bind session from the Execute oracle is passive, which means that client sessions involved
in an Execute query for some token T must have not only received T ’s public key, but also
be the only client sessions to have received that key (collisions between public keys were
removed in a previous game, ruling out different tokens with the same public key). Any one
of those client sessions, as a result, encrypts the same pin in the original experiment, in such
a way that any of T ’s sessions can always correctly decrypt into the pinHash if they derive
the same session key K. Therefore, a token session πi

T can always determine that, as long as
A delivers a c and cph that were created in a client session that received πi

T ’s ECDH public
key, cph contains the correct pinHash.

If c has never appeared in an Execute query with token T before, then πi
T must derive the

session key normally, since it means that A has started a Bind session with πi
T without any

client session being involved, and decrypt cph normally. If c has appeared in a client session
πj
C before, and πi

T ’s ECDH public key is the same that πj
C received, but cph is different, then

it must be decrypted normally in order to verify the decrypted pinHash.

After the verification step, if c is passive, a new random pinToken p̃t is encrypted instead
of the real pinToken pt that was set as the binding state, resulting in a ciphertext cpt. The
resulting binding state is stored in Lct, and cpt is sent to A.

Hybrid Argument To bound A’s advantage against Game 6, we begin by creating nexecute

hybrid games, where nexecute is the maximum number of (valid) calls to the Execute oracle
(valid refers to calls that actually result in executing the Execute between a client session and
token session). We replace the hashed pin with the hash of the constant value 0000 in client
sessions and stop pinHash verification and replace pinToken encryption with the encryption
of a random value in token sessions only until the ith execution of Execute.

Additionally, we also skip verifications of the pinHash in any token session that receives
passive c and cph that were involved in the first ith Execute queries, as long as the token
session is reusing the same ECDH public key, and replace all pinTokens with random values
in any token session that receives a passive c and passes pinHash verification, as long as c
came from one of the first ith Execute queries and the token session is reusing the same ECDH
public key.

A new temporary structure LexecutePk is created so that each client and token session can
be tracked throughout the experiment, by linking each client and token ECDH public key
pair with a specific Execute query. This allows us to maintain consistency with A whenever

84

it queries Send-Bind-T with an ECDH public key c that was used by a previous client session
during Execute.

Reduction to the IND-1$PA-LPC security of SKE We now construct an adversary Bi
6

against the IND-1$PA-LPC security of SKE that simulates game 5.i to A perfectly, except
when A performs the ith valid query to Execute. In this case, Bi

6 sends H(pin) and H(0000)
to OLR and receives a challenge ciphertext cph, instead of encrypting it normally with the
derived session key K̃2. When these are delivered to the token session πi

T , verification always
succeeds when performed during Execute. Bi

6 calls ORAND to produce ciphertext cpt and saves
pt0 as the binding state. Since this was all during Execute, cph is delivered to the client session
πj
C , which simply keeps the correct binding state pt0.
If A calls Send-Bind-T on a token session πi

T such that the provided public key c and πi
T ’s

public key pk were involved in the ith Execute query, but cph was not the output ciphertext
(cph is not the challenge ciphertext output by OLR), then Bi

6 must use the OLPC oracle to
check if pinHash is in the received ciphertext cph. In this situation, if the verification succeeds,
then Bi

6 still uses the ORAND oracle to encrypt a random pinToken, and delivers cpt to A.

Advantage measure The advantage of Bi
6 against the IND-1$PA-LPC security of SKE

during game 5.i is:

AdvIND-1$PA-LPC
SKE (Bi

6) = | PrIND-1$PA-LPC[b
′ = 0|b = 1]− PrIND-1$PA-LPC[b

′ = 0|b = 0] | (49)

When oracle OLR encrypts m0, which corresponds to H(pin), the oracle ORAND encrypts
pt0, which is the pinToken being stored as the binding state in πi

T .bs. Then, Bi
6 is simulating

Game 5.(i− 1) to A, where both cph and cpt have the correct pinHash and pinToken respec-
tively. If OLR instead encrypts m1, which is H(0000), then ORAND encrypts pt1, and Bi

6 is
simulating Game 5.i.

From the definition of Bi
6, it follows that:

AdvIND-1$PA-LPC
SKE (Bi

6) = | Pr5.i[win-SUF-t = 1]−Pr5.(i−1)[win-SUF-t = 1] |,∀i ∈ [1, nexecute] (50)

AdvIND-1$PA-LPC
SKE (Bi

6) = | Pr5.i − Pr5.(i−1) |, ∀i ∈ [1, nexecute] (51)

nexecute∑
i=1

AdvIND-1$PA-LPC
SKE (Bi

6) =
nexecute∑
i=1

| Pr5.i − Pr5.(i−1) | (52)

nexecute∑
i=1

AdvIND-1$PA-LPC
SKE (Bi

6) ≥ | Pr5.0 − Pr5.nexecute | (53)

Let B6 be the adversary with the highest advantage against the IND-1$PA-LPC game out
of all adversaries Bi

6, ∀i ∈ [1, nexecute]. Then, it is always true that:

85

Game5.i (A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
hy← i, countexecute ← 0,LexecutePk ← ∅
π∗
C , π∗

T ←⊥
win-SUF-t ← 0
()

$← AO(1λ)
return win-SUF-t

Execute (T, i, C, j):

pinU ← Lvalid[U]

if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pinU =⊥ then
return ⊥

πi
T ← stT

trans,mC ,mT ←⊥
Lct[πj

C , πi
T]← (⊥,⊥,⊥)

countexecute ← countexecute + 1
π∗
C ← πj

C , π∗
T ← πi

T

while πj
C .stexe ̸= bindDone do

mT
$← Bind-T(πi

T ,mC)

mC
$← Bind-C(πj

C , U,mT)
trans← trans || mT || mC

for all i′ ̸= i and πi′
T ̸=⊥ do

πi′
T .isValid← false

return trans

obtainPinUvAuthToken-C-start(πj
C , pin):

if countexecute ≤ hy then
pinHash← Hw(0000)

else
pinHash← Hw(pin)

pkclient ← π∗
C .puvProtocol.pk

pktoken ← π∗
T .puvProtocol.pk

LexecutePk[pkclient, pktoken]← countexecute

cph
$← πj

C .puvProtocol.encrypt(πj
C .K, pinHash)

πj
C .stexe ← bindStart

πj
C .sid← πj

C .sid || cph
Lct[πj

C ,]← (πj
C .puvProtocol.pk, cph,⊥)

return cph

obtainPinUvAuthToken-C-end(πj
C , cpt):

if countexecute ≤ hy then
(, , pt)← Lct[πj

C ,]

πj
C .bs← pt

else
πj
C .bs← πj

C .puvProtocol.decrypt(πj
C .K, cpt)

πj
C .stexe ← bindDone

πj
C .sid← πj

C .sid || cpt || false
return

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
activekey, activecph ← true

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph,) ∈ Lct s.t. T ′ = T ∧
πi′
T ′ .puvProtocol.pk = πi

T .puvProtocol.pk do
if c′ = c then

activekey ← false
if c′ph = cph ∧ c′ = c then

activecph ← false
break

verifyPin← activekey ∨ activecph
countexecute ← LexecutePk[c, πi

T .puvProtocol.pk]
if verifyPin = true ∨ countexecute > hy then

pinHash← stT .puvProtocol.decrypt(K, cph)
pinHashT ← LTokenSetup[T]
if pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if (activekey = true ∨ countexecute > hy) ∧
(stT .puvProtocol.pk, c) ̸= LsetupKeys[T] then

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

Lct[, πi
T]← (c′, c′ph, π

i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 56. Hybrid game 5.i, Execute oracle and modified CTAP 2.1+ functions obtainPinUvAuthToken-C-start,
obtainPinUvAuthToken-C-end and obtainPinUvAuthToken-T from hybrid game 5.i.

86

Bi6(A,OLR,ORAND,OLPC):

LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
hy← i, countexecutePk ← 0,Lexecute ← ∅
π∗
C ←⊥, π

∗
T ←⊥

win-SUF-t← 0
()

$← AO(1λ)
b′ ←⊥
if win-SUF-t = 1 then

return b′ ← 0
else

return b′ ← 1
return b′

Execute (T, i, C, j):

pinU ← Lvalid[U]

if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pinU =⊥ then
return ⊥

πi
T ← stT

trans,mC ,mT ←⊥
Lct[πj

C , πi
T]← (⊥,⊥,⊥)

countexecute ← countexecute + 1
π∗
C ← πj

C , π∗
T ← πi

T

while πj
C .stexe ̸= bindStart do

mT
$← Bind-T(πi

T ,mC)

mC
$← Bind-C(πj

C , U,mT)
trans← trans || mT || mC

return trans

obtainPinUvAuthToken-C-start(πj
C , pin):

if count = hy then

cph
$← OLR(Hw(pin),Hw(0000))

else if countexecute ≤ hy then
pinHash← Hw(0000)

cph
$← πj

C .puvProtocol.encrypt(πj
C .K, pinHash)

else
pinHash← Hw(pin)

cph
$← πj

C .puvProtocol.encrypt(πj
C .K, pinHash)

pkclient ← π∗
C .puvProtocol.pk

pktoken ← π∗
T .puvProtocol.pk

LexecutePk[pkclient, pktoken]← countexecute
πj
C .stexe ← bindStart

πj
C .sid← πj

C .sid || cph
Lct[πj

C ,]← (πj
C .puvProtocol.pk, cph,⊥)

return cph

obtainPinUvAuthToken-C-end(πj
C , cpt):

if countexecute ≤ hy then
(, , pt)← Lct[πj

C ,]

πj
C .bs← pt

else
πj
C .bs← πj

C .puvProtocol.decrypt(πj
C .K, cpt)

πj
C .stexe ← bindDone

πj
C .sid← πj

C .sid || cpt || false
return

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
activekey, activecph ← true

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph,) ∈ Lct s.t. T ′ = T ∧
πi′
T ′ .puvProtocol.pk = πi

T .puvProtocol.pk do
if c′ = c then

activekey ← false
if c′ph = cph ∧ c′ = c then

activecph ← false
break

verifyPin← activekey ∨ activecph
countexecute ← LexecutePk[c, πi

T .puvProtocol.pk]
if verifyPin = true ∨ countexecute > hy then

pinHashT ← LTokenSetup[T]
if countexecute = hy then

if OLPC(cph) = true then
pinHash← pinHashT

else
pinHash←⊥

else
pinHash← stT .puvProtocol.decrypt(K, cph)

if pinHash ̸= pinHashT then
stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if (activekey = true ∨ countexecute > hy) ∧
(stT .puvProtocol.pk, c) ̸= LsetupKeys[T] then

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else if countexecute = hy then

(pt0, pt1, cpt)
$← ORAND(len(π

i
T .bs))

πi
T .bs← pt0
Lct[, πi

T]← (c′, c′ph, π
i
T .bs)

else
p̃t

$← {0, 1}len(πi
T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

Lct[, πi
T]← (c′, c′ph, π

i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 57. Adversary Bi
6’s simulation of game 5.i, Execute oracle and modified CTAP 2.1+ functions

obtainPinUvAuthToken-C-start, obtainPinUvAuthToken-C-end and obtainPinUvAuthToken-T.

87

nexecute Adv
IND-1$PA-LPC
SKE (B6) ≥

nexecute∑
i=1

AdvIND-1$PA-LPC
SKE (Bi

6) (54)

It then follows that:

nexecute Adv
IND-1$PA-LPC
SKE (B6) ≥ | Pr5.0 − Pr5.nexecute | (55)

Since Game 5.0 corresponds to Game 5 and Game 5.nexecute corresponds to Game 6, we
have:

nexecute Adv
IND-1$PA-LPC
SKE (B6) ≥ | Pr5 − Pr6 | (56)

And, since nexecute is the maximum amount of valid Execute queries made by A, we have
that nexecute ≤ qE. Therefore:

qE AdvIND-1$PA-LPC
SKE (B6) ≥ | Pr5 − Pr6 | (57)

Game 7

In this game, no user pins are sampled until the pin is necessary to respond to some interaction
with A. This happens only when A corrupts a user U to obtain its pin, or when it provides
a pinHash of its own when actively attacking token T during the Bind session by calling
Send-Bind-T, where the pinHash must be verified.

Game7(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2 ← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lsampled ← ∅
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

NewU (U):

if Lvalid[U] =⊥ then
pin← 0
Lvalid[U]← pin
Lcorrupt[U]← false
Lsampled[U]← false

return

CorruptUser (U):

if U /∈ Lvalid then return ⊥
if Lsampled[U] = false then

pin
$← P

Lvalid[U]← pin
Lsampled[U]← true

Lcorrupt[U]← true
pin← Lvalid[U]
return pin

Fig. 58. Game 7, with modified NewU and CorruptUser oracles.

Advantage measure The modifications in Game 7 affect only when a pin is sampled from a
distribution D over P , and in such a way that it is identical for an adversary to play Game 6
and Game 7.

In fact, since each sampling of a pin is independent from any other sampling of any other
pin, it is irrelevant when that sampling occurs, as long as it occurs before the adversary
interacts with said pin. Thus, we can sample the pin exactly when one of these events occurs,
and the game proceeds identically to Game 6.

88

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0 then
return (⊥, false)

K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
activekey, activecph ← true

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph,) ∈ Lct s.t. T ′ = T∧πi′
T ′ .puvProtocol.pk = πi

T .puvProtocol.pk

do
if c′ = c then

activekey ← false
if c′ph = cph ∧ c′ = c then

activecph ← false
break

verifyPin← activekey ∨ activecph
if verifyPin = true then

pinHash← stT .puvProtocol.decrypt(K, cph)
if Lsampled[stT .user] = false then

pin
$← P

Lvalid[stT .user]← pin
Lsampled[stT .user]← true

pinHashT ← Hw(Lvalid[stT .user])
if pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if activekey = true ∧ (stT .puvProtocol.pk, c) ̸= LsetupKeys[T] then

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

Lct[, πi
T]← (c′, c′ph, π

i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 59. Modified CTAP 2.1+ function obtainPinUvAuthToken-T - Game 7.

Therefore,

Pr6 = Pr7 (58)

Game 8

In this game, all of A′s active attempts at guessing the pin for a given token are rejected,
unless A has corrupted the user pin associated with the target token.

Recall that at this point, A has no information whatsoever about any pin for any token
whose user it has not already corrupted. No pin was ever sampled until this point, and all
ciphertexts sent by any client session contain constant values.

89

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
activekey, activecph ← true

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph,) ∈ Lct s.t. T ′ = T ∧
πi′
T ′ .puvProtocol.pk = πi

T .puvProtocol.pk do
if c′ = c then

activekey ← false
if c′ph = cph ∧ c′ = c then

activecph ← false
break

verifyPin← activekey ∨ activecph
if verifyPin = true then

pinHash← stT .puvProtocol.decrypt(K, cph)
▷ NOTE: The value of Lsampled[stT .user] will always be
true if the User has been corrupted. Therefore, it is kept
only for simplifying the hybrid game’s code.
if Lcorrupt[stT .user] = true ∧ Lsampled[stT .user] = false
then

pin
$← P

Lvalid[stT .user]← pin
Lsampled[stT .user]← true

pinHashT ← Hw(Lvalid[stT .user])
if Lcorrupt[stT .user] = false ∨ pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if activekey = true ∧ (stT .puvProtocol.pk, c) ̸= LsetupKeys[T]
then

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

Lct[, πi
T]← (c′, c′ph, π

i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 60. Modified CTAP 2.1+ obtainPinUvAuthToken-T function - Game 8.

Hybrid Argument We bound the advantage of A against Game 8 by considering qactSend

hybrid games, where qactSend represents the total amount of active queries made by A to Send-
Bind-T (where the pin must be verified). On game 7.i, in the first ith active queries to
Send-Bind-T, every attempt at guessing the pin is rejected. On the ith attempt, we define a
bad event that causes the experiment to abort and A to lose if A guesses the correct pin but
the challenger still rejects.

Advantage measure Recall that during any game 7.i, no pin was ever sampled for any
token before attempt i (except for when A corrupts a user, which makes it impossible to
cause bad). Therefore, it is always true that:

Pr7.i[bad] =
1

2hD
,∀i ∈ [1, qactSend] (59)

Since games 7.i and 7.(i − 1) are identical until bad, through the difference lemma, we
have:

Pr7.i[bad] ≥ | Pr7.(i−1) − Pr7.i |,∀i ∈ [1, qactSend] (60)

90

Game7.i(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lsampled ← ∅
hy← i, countActSendT ← 0
bad← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Fig. 61. Hybrid game 7.i.

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
activekey, activecph ← true

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph,) ∈ Lct s.t. T ′ = T ∧
πi′
T ′ .puvProtocol.pk = πi

T .puvProtocol.pk do
if c′ = c then

activekey ← false
if c′ph = cph ∧ c′ = c then

activecph ← false
break

verifyPin← activekey ∨ activecph
if verifyPin = true then

countActSendT ← countActSendT + 1
pinHash← stT .puvProtocol.decrypt(K, cph)
if (Lcorrupt[stT .user] = true ∨ countActSendT ≥ hy) ∧
Lsampled[stT .user] = false then

pin
$← P

Lvalid[stT .user]← pin
Lsampled[stT .user]← true

pinHashT ← Hw(Lvalid[stT .user])
if (Lcorrupt[stT .user] = false ∧ countActSendT ≤ hy) ∨
pinHash ̸= pinHashT then

if countActSendT = hy then
if pinHash = pinHashT then

bad← true
abort

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if activekey = true ∧ (stT .puvProtocol.pk, c) ̸= LsetupKeys[T]
then

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

Lct[, πi
T]← (c′, c′ph, π

i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 62. Modified CTAP 2.1+ function obtainPinUvAuthToken-T - Game 7.i.

91

qactSend∑
i=1

Pr7.i[bad] ≥
qactSend∑
i=1

| Pr7.(i−1) − Pr7.i | (61)

qactSend∑
i=1

Pr7.i[bad] ≥ | Pr0 − Pr7.qactSend
| (62)

Since bad has the same probability of 1/2hD for every i ∈ [1, qactSend], we can write:

qactSend/2
hD ≥ | Pr0 − Pr7.qactSend

| (63)

Since Game 7.0 corresponds to Game 7 and Game 7.qactSend corresponds to Game 8, we have:

qactSend/2
hD ≥ | Pr7 − Pr8 | (64)

Game 9

In this game, A loses by causing a bad event if and only if a collision between two pinTokens
that are sent (encrypted) to A occurs. More specifically, we are only considering pinTokens
that i. are generated by an actively attacked token session πi

T that gives the pinToken directly
to A, which happens only in Send-Bind-T queries, or ii. are generated by an honest execution
of Bind through an Execute query, in which case the pinToken being considered is the random
value p̃t that is sent in ciphertext c̃pt and not the pinToken pt set as the binding state (recall
that this c̃pt will be part of the session identifier).

In either case, each query to Execute or Send-Bind-T will always, at most, result in one
pinToken that is sent (encrypted) to A.

Game9(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lsampled ← ∅
Lpt ← ∅
bad← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Fig. 63. Game 9. The flag bad in red is only used in this game, to signal when a pinToken collision happens.

92

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
(c′, c′ph, ,)← Lct[, πi

T]

activekey ← c′ ̸= c
activecph ← c′ph ̸= cph

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph, ,) ∈ Lct s.t. T ′ = T do

if c′ph = cph ∧ c′ = c then

activecph ← false
activekey ← false

verifyPin← activekey ∨ activecph
if verifyPin = true then

pinHash← stT .puvProtocol.decrypt(K, cph)
if Lcorrupt[stT .user] = true ∧ Lsampled[stT .user] = false
then

pin
$← P

Lvalid[stT .user]← pin
Lsampled[stT .user]← true

pinHashT ← Hw(Lvalid[stT .user])
if Lcorrupt[stT .user] = false ∨ pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if activekey = true ∧ (stT .puvProtocol.pk, c) ̸= LsetupKeys[T]
then

if πi
T .bs ∈ Lpt then
bad← true
abort

Lpt ← Lpt ∪ {πi
T .bs}

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

if p̃t ∈ Lpt then
bad← true
abort

Lpt ← Lpt ∪ {p̃t}
cpt

$← stT .puvProtocol.encrypt(K, p̃t)
Lct[, πi

T]← (c′, c′ph, cpt, π
i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 64. Modified CTAP 2.1+ function obtainPinUvAuthToken-T - Game 9.

Advantage measure Since each query to Execute or Send-Bind-T creates and sends to A, at
most, one pinToken, the maximum amount of such pinTokens being created in the experiment
is qE + qSend.

Since the pinToken is a random byte string of length 2λ (for the PIN/UV Auth Protocol
being analyzed), the maximum number of pinTokens that can possibly exist is 22λ.

Considering the probability of a collision between two pinTokens as 1/22λ, and (qE +
qSend)

2/2 as an upper bound for the amount of pinToken pairs, we have:

Pr9[bad] ≤
(qE + qSend)

2

22λ+1
(65)

Since games 8 and 9 are identical until bad, by the difference lemma, we have:

Pr9[bad] ≥ | Pr8 − Pr9 | (66)

And, therefore:

(qE + qSend)
2

22λ+1
≥ | Pr8 − Pr9 | (67)

93

Game 10

In this game, A loses if, at any point in the game, it causes a bad event, which happens when
it queries random oracle H3 with any pinToken generated throughout the experiment and
set as the binding state of some token or client session, but for which the adversary has no
information.

We maintain two new structures Lbs and LH3 to keep track of all binding states about
which A has no information and of all of A’s queries to H3, respectively.

Game10(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lsampled ← ∅
Lpt ← ∅
Lbs,LH3

← ∅
bad← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

AdvH3 (u1):

v ←H3(u1)
if u1 ∈ Lbs then

bad← true
abort

LH3
[u1]← v

return v

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
(c′, c′ph, ,)← Lct[, πi

T]

activekey ← c′ ̸= c
activecph ← c′ph ̸= cph

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph, ,) ∈ Lct s.t. T ′ = T do

if c′ph = cph ∧ c′ = c then

activecph ← false
activekey ← false

verifyPin← activekey ∨ activecph
if verifyPin = true then

pinHash← stT .puvProtocol.decrypt(K, cph)
if Lcorrupt[stT .user] = true ∧ Lsampled[stT .user] = false
then

pin
$← P

Lvalid[stT .user]← pin
Lsampled[stT .user]← true

pinHashT ← Hw(Lvalid[stT .user])
if Lcorrupt[stT .user] = false ∨ pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if activekey = true ∧ (stT .puvProtocol.pk, c) ̸= LsetupKeys[T]
then

if πi
T .bs ∈ Lpt then
abort

Lpt ← Lpt ∪ {πi
T .bs}

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

if p̃t ∈ Lpt then
abort

Lpt ← Lpt ∪ {p̃t}
if πi

T .bs ∈ LH3 then
bad← true
abort

Lbs ← Lbs ∪ {πi
T .bs}

cpt
$← stT .puvProtocol.encrypt(K, p̃t)

Lct[, πi
T]← (c′, c′ph, cpt, π

i
T .bs)

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 65. Game 10. The flag bad in red is only used in this game.

Advantage measure At this point in the game, A has no information about any binding
state that results from Execute queries or Send-Bind-T queries where it behaves passively,
because in these circumstances the cpt given to A no longer contains any information about

94

πi
T .bs. Therefore, we can upper bound the amount of binding states that can cause the bad

event as (qE + qSend).
Let qH3 be the maximum amount of queries A performs during game 10. Given that the

maximum amount of pinTokens that can possibly exist is 22λ, we know that:

Pr10[bad] ≤ qH3 (qE + qSend)/2
2λ (68)

Since games 9 and 10 are identical until bad, by the difference lemma, we have:

Pr10[bad] ≥ | Pr9 − Pr10 | (69)

And, therefore:

qH3 (qE + qSend)/2
2λ ≥ | Pr9 − Pr10 | (70)

Game 11

In this game, when A delivers a message M and a tag t to a token session πi
T that finished

Bind passively (πi
T did not finish Bind through an active Send-Bind-T query) by querying

oracle Validate-T, the challenger always rejects, provided M and t were not output by any of
πi
T ’s partner (if it has one), the partner was not compromised and the pin associated with πi

T

was not corrupted. In sum, given M and t that would result in A winning the experiment,
the challenger rejects instead, making it impossible for A to win by forging a message tag
and delivering it to any token session. We flag this event by creating a bad event bad11.

Game11(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lsampled ← ∅
Lpt ← ∅
Lbs,LH3

← ∅
bad11 ← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Token-Win-SUF-t (T, i,M, t, d):

if d ̸= accepted then return 1

if ∃(C1, j1), (C2, j2) s.t. (C1, j1) ̸= (C2, j2) and πj1
C1

.stexe =

πj2
C2

.stexe = bindDone

and πj1
C1

.sid = πj2
C2

.sid then return 1

if ∃(T1, i1), (T2, i2) s.t. (T1, i1) ̸= (T2, i2) and πi1
T1

.stexe =

πi2
T2

.stexe = bindDone

and πi1
T1

.sid = πi2
T2

.sid then return 1

(C, j)← tokenBindPartner(T, i)
if (C, j,M, t) /∈ LauthC then

if (C, j) = (⊥,⊥) or πj
C .compromised = false then

if πi
T .pinCorr = false then
return 1 ∧ bad11 ̸= true

return 0

Fig. 66. Game 11 and modified function Token-Win-SUF-t.

Notice that, after Game 9, every token session that finishes Bind has at most one partner.
Indeed, for two sessions πj

C and πi
T to be partnered, they must have finished binding and

have matching sid values (πj
C .sid = πi

T .sid). The sid, after binding is completed, is mainly a
concatenation of the Bind session’s client and token ECDH public keys c and pk, the pinHash

95

Auth-C (C, j,M):

if πj
C =⊥ or πj

C .stexe ̸= bindDone or

πj
C .isValid = false then
return ⊥

(M, t)
$← auth-C(πj

C ,M)
LauthC ← LauthC ∪ {(C, j,M, t)}
return (M, t)

Validate-T (T, i,M, t, d):

if πi
T =⊥ or πi

T .stexe ̸= bindDone or πi
T .isValid = false then

return ⊥
(C, j)← tokenBindPartner(T, i)
status← validate-T(πi

T ,M, t, d)
if (C, j,M, t) /∈ LauthC then

if (C, j) = (⊥,⊥) or πj
C .compromised = false then

if πi
T .pinCorr = false then
if status = accepted then

bad11 ← true
win-SUF-t← Token-Win-SUF-t(T, i,M, t, d)

return rejected
if status = accepted then

win-SUF-t← Token-Win-SUF-t(T, i,M, t, d)
return status

Fig. 67. Modified Auth-C and Validate-T oracles - Game 11.

ciphertext cph and the pinToken ciphertext cpt. Since we have eliminated collisions of client
ECDH public keys c in Game 3, we know that every client session sid is unique. For token-side
sid values on the other hand, it is still possible that two or more token sessions of the same
token T had the same c delivered to them by A and the same token ECDH public key for
multiple Bind sessions (since the same token can reuse the same public key), which means
avoiding collisions between token public keys is not enought to guarantee a unique sid for
each token session.

However, in Game 9, we have also eliminated collisions between every pinToken that is
encrypted into a ciphertext cpt and sent to A in Execute or Send-Bind-T queries, which
means that cpt can never repeat for the same c and pk, as long as the underlying symmetric
encryption scheme SKE is correct. Therefore, every token session πi

T also has a unique sid.

This is an important observation, as it gives a guarantee that if a token session πi
T has a

partner πj
C , then πj

C is its unique partner.

After Game 8, it is also always the case that every token session where bad11 can happen
must have finished Bind passively, through an Execute query or a passive Send-Bind-T query.
Indeed, after Game 8, A can no longer actively attack a token session πi

T via the Send-Bind-T
oracle without corrupting the pin. However, if A does corrupt the pin, then she can never
cause bad11, i.e., can never win the game via a valid forgery against any session of token T .

Therefore, only passive executions of Bind can create token sessions where bad11 can hap-
pen. This also gives us an additional guarantee that such sessions always have a binding state
sampled uniformly at random, since these binding states were never checked for collisions in
Game 9 because they are never transmitted to A. 17

Reduction to the SUF-CMA security of MAC To boundA’s advantage against Game 11,
we consider an adversary B11 simulating Game 11 and fix a value nTS for the maximum
amount of token sessions that finished Bind passively. Then, B11 guesses at random in which
token session bad11 will happen first. We refer to that target session as πi

T,target.

17 This guarantee is especially significant when considering the proof for the original CTAP 2.1, since it allows to
bound A’s advantage by reducing to the SUF-CMA security of MAC.

96

If A ever queries Compromise on the client session that is partnered with πi
T,target, then

the simulation aborts, since it is now impossible to cause bad11 on the target session πi
T,target

(recall that if πj
C .compromised = true, then A can never win via a valid forgery against its

partner token session).
Whenever A queries the Auth-C oracle with a message M such that πj

C is the partner of
the target session πi

T,target, B11 calls the OAuth oracle to obtain a challenge tag t for M , and
returns (M, t) to A.

Whenever A queries the Validate-T oracle with message M and tag t such that πi
T is

the target session πi
T,target, B11 immediately returns M and t to its challenger and ends the

simulation. If πi
T is not the target session, B11 continues simulating Game 11 until either A

queries Validate-T for session πi
T,target or bad11 happens.

It is not hard to see then, that if bad11 ever happens in the target session πi
T,target, B11

always wins the SUF-CMA game by returning the (M, t) given to πi
T,target by A in a Validate-T

query.

B11(A,OAuth,OVer):

LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2 ← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lsampled ← ∅
Lpt ← ∅
bad11 ← false

guess
$← {0, ..., nTS − 1}

LTS ← ∅, (Mchal, tchal)← (⊥,⊥)
win-SUF-t← 0
()

$← AO(1λ)
return (Mchal, tchal)

Fig. 68. Adversary B11’s simulation of game 11.

Advantage measure The advantage of B11 against the SUF-CMA security of MAC can be
calculated as:

AdvSUF-CMA
MAC (B11) ≥

Pr11[bad11]

nTS
(71)

nTS AdvSUF-CMA
MAC (B11) ≥ Pr11[bad11] (72)

Since games 10 and 11 are identical until bad11, by the difference lemma, we have:

Pr11[bad11] ≥ | Pr10 − Pr11 | (73)

Thus, we have:

nTS AdvSUF-CMA
MAC (B11) ≥ | Pr10 − Pr11 | (74)

97

Auth-C (C, j,M):

if πj
C =⊥ or πj

C .stexe ̸= bindDone or πj
C .isValid = false then

return ⊥
πi
T,target ← LTS[guess− 1]

if πi
T,target ̸=⊥ ∧ (C, j) = tokenBindPartner(T, i) then

(M, t)← OAuth(M)
else

(M, t)
$← auth-C(πj

C ,M)
LauthC ← LauthC ∪ {(C, j,M, t)}
return (M, t)

Compromise (C, j):

if πj
C =⊥ or πj

C .stexe ̸= bindDone then
return ⊥

πi
T,target ← LTS[guess− 1]

if πi
T,target ̸=⊥ ∧ (C, j) = tokenBindPartner(T, i) then
abort

πj
C .compromised = True

return πj
C .bs

Validate-T (T, i,M, t, d):

if πi
T =⊥ or πi

T .stexe ̸= bindDone or πi
T .isValid = false then

return ⊥
(C, j)← tokenBindPartner(T, i)
if πi

T = LTS[guess− 1] then
(Mchal, tchal)← (M, t)
return

else
status← validate-T(πi

T ,M, t, d)
if (C, j,M, t) /∈ LauthC then

if (C, j) = (⊥,⊥) or πj
C .compromised = false then

if πi
T .pinCorr = false then
if status = accepted then

bad11 ← true
(Mchal, tchal)← (M, t)
return

return rejected
if status = accepted then

win-SUF-t← Token-Win-SUF-t(T, i,M, t, d)
return status

Fig. 69. Modified Auth-C, Validate-T and Compromise oracles simulated by bad11.

obtainPinUvAuthToken-T(πi
T , puvProtocol, c, cph):

if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
then

return (⊥, false)
K ← stT .puvProtocol.decapsulate(c)
if K =⊥ then

return (⊥, false)
stT .pinRetries← pinRetries− 1
(c′, c′ph, ,)← Lct[, πi

T]

activekey ← c′ ̸= c
activecph ← c′ph ̸= cph

for all (πj′

C′ , π
i′
T ′ , c

′, c′ph, ,) ∈ Lct s.t. T ′ = T do

if c′ph = cph ∧ c′ = c then

activecph ← false
activekey ← false

verifyPin← activekey ∨ activecph
if verifyPin = true then

pinHash← stT .puvProtocol.decrypt(K, cph)
if Lcorrupt[stT .user] = true ∧ Lsampled[stT .user] = false
then

pin
$← P

Lvalid[stT .user]← pin
Lsampled[stT .user]← true

pinHashT ← Hw(Lvalid[stT .user])
if Lcorrupt[stT .user] = false ∨ pinHash ̸= pinHashT then

stT .puvProtocol.regenerate()
stT .m← stT .m− 1
if stT .m = 0 then

authPowerUp-T(stT)
return (⊥, true)

else
return (⊥, false)

stT .m← 3, stT .pinRetries← pinRetriesMax
for all puvProtocol’ ∈ stT .puvProtocolList do

stT .puvProtocol’.resetPuvToken()
πi
T .bs← πi

T .puvProtocol.pt
if activekey = true ∧ (stT .puvProtocol.pk, c) ̸= LsetupKeys[T]
then

if πi
T .bs ∈ Lpt then
abort

Lpt ← Lpt ∪ {πi
T .bs}

cpt
$← stT .puvProtocol.encrypt(K,πi

T .bs)
else

p̃t
$← {0, 1}len(πi

T .bs)

if p̃t ∈ Lpt then
abort

Lpt ← Lpt ∪ {p̃t}
if πi

T .bs ∈ LH3
then

abort
Lbs ← Lbs ∪ {πi

T .bs}
cpt

$← stT .puvProtocol.encrypt(K, p̃t)
Lct[, πi

T]← (c′, c′ph, cpt, π
i
T .bs)

LTS ← LTS ∪ {πi
T }

πi
T .stexe ← bindDone

πi
T .canValidate← true

πi
T .sid← πi

T .sid || puvProtocol || c || cph || cpt || false
return (cpt, false)

Fig. 70. obtainPinUvAuthToken-T function simulated by B11.

98

Since each token session can finish Bind passively only in Execute and Send-Bind-T queries,
we know that nTS ≤ qE + qSend. Therefore:

(qE + qSend) Adv
SUF-CMA
MAC (B11) ≥ | Pr10 − Pr11 | (75)

Game 12

In this game, when A delivers a message M and a tag t to a client session πj
C by querying

oracle Validate-C, the challenger always rejects, provided M and t were not output by πj
C ’s

partner, πj
C was not compromised and the pin associated with πj

C ’s partner was not corrupted.
In sum, given M and t that would result in A winning the experiment, the challenger rejects
instead, making it impossible for A to win by forging a message tag and delivering it to any
client session. We flag this event by creating a bad event bad12.

Game12(A):
LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lhash ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lsampled ← ∅
Lpt ← ∅
Lbs,LH3

← ∅
bad11 ← false
bad12 ← false
win-SUF-t← 0
()

$← AO(1λ)
return win-SUF-t

Client-Win-SUF-t (C, j,M, t):

if ∃(C1, j1), (C2, j2) s.t. (C1, j1) ̸= (C2, j2) and πj1
C1

.stexe =

πj2
C2

.stexe = bindDone

and πj1
C1

.sid = πj2
C2

.sid then return 1

if ∃(T1, i1), (T2, i2) s.t. (T1, i1) ̸= (T2, i2) and πi1
T1

.stexe =

πi2
T2

.stexe = bindDone

and πi1
T1

.sid = πi2
T2

.sid then return 1

(T, i)← clientBindPartner(C, j)
if (T, i,M, t) /∈ LauthT then

if πj
C .compromised = false then

if πi
T .pinCorr = false then
return 1 ∧ bad12 ̸= true

return 0

Fig. 71. Game 12 and function Client-Win-SUF-t modifications.

Validate-C (C, j,M, t):

if πj
C =⊥ or πj

C .stexe ̸= bindDone or πj
C .isValid = false then

return ⊥
(T, i)← clientBindPartner(C, j)

status← validate-C(πj
C ,M, t)

if (T, i,M, t) /∈ LauthT then
if πi

T .compromised = false then

if πj
C .pinCorr = false then
if status = accepted then

bad12 ← true
win-SUF-t← Client-Win-SUF-t(C, j,M, t)

return rejected
if status = accepted then

win-SUF-t← Client-Win-SUF-t(C, j,M, t)
return status

Auth-T (T, i,M):

if πi
T =⊥ or πi

T .stexe ̸= ValidateCmd or πi
T .isValid = false

then
return ⊥

(M, t)
$← auth-T(πi

T ,M)
LauthT ← LauthT ∪ {(T, i,M, t)}
return (M, t)

Fig. 72. Modified Auth-T and Validate-C oracles - Game 12.

99

Reduction to the SUF-CMA security of MAC As was the case in Game 11, we bound
the probability of A winning against Game 12 by reducing to the SUF-CMA security of the
underlying MAC.

We consider an adversary B12 against the SUF-CMA game that simulates Game 12 and fix
a value nCS for the maximum amount of client sessions that finish Bind with a token session.
Then, B12 guesses at random in which client session bad12 will happen first. We refer to that
session as πj

C,target.

If A ever queries Compromise on πj
C,target, then the simulation aborts, since it is now

impossible to cause bad12 on the target session πj
C,target (recall that if π

j
C .compromised = true,

then A can never win via a valid forgery against πj
C).

Whenever A queries the Auth-T oracle with a message M such that πi
T is the partner of

the target session πj
C,target, B12 calls the OAuth oracle to obtain a challenge tag t for M , and

returns (M, t) to A.
Whenever A queries the Validate-C oracle with message M and tag t such that πj

C is
the target session πj

C,target, B12 immediately returns M and t to its challenger and ends the

simulation. If πj
C is not the target session, B12 continues simulating Game 12 until either A

queries Validate-C for session πj
C,target or bad12 happens.

It is not hard to see then, that if bad12 ever happens in the target session πj
C,target, B12

always wins the SUF-CMA game by returning the (M, t) given to πj
C,target by A in a Validate-C

query.

B12(A,OAuth,OVer):

LauthC,LauthT ← ∅,Lvalid ← ∅,Lcorrupt ← ∅
LsCDH,LH2

← ∅
LTokenSetup ← ∅
Lpk ← ∅
Lpin ← ∅,LsetupKeys ← ∅
Lct ← ∅
Lhash ← ∅
Lsampled ← ∅
Lpt ← ∅
bad11 ← false
bad12 ← false

guess
$← {0, ..., nCS − 1}

LCS ← ∅, (Mchal, tchal)← (⊥,⊥)
win-SUF-t← 0
()

$← AO(1λ)
return (Mchal, tchal)

Execute (T, i, C, j):

pinU ← Lvalid[stT .user]

if stT =⊥ or πi
T ̸=⊥ or πj

C ̸=⊥ or pinU =⊥ then
return ⊥

πi
T ← stT

trans,mC ,mT ←⊥
Lct[πj

C , πi
T]← (⊥,⊥,⊥)

while πj
C .stexe ̸= bindDone do

mT
$← Bind-T(πi

T ,mC)

mC
$← Bind-C(πj

C , U,mT)
trans← trans || mT || mC

LCS ← LCS ∪ {πj
C}

for all i′ ̸= i and πi′
T ̸=⊥ do

πi′
T .isValid← false

return trans

Fig. 73. Adversary B12’s simulation of game 12.

Advantage measure The advantage of B12 against the SUF-CMA security of MAC is upper
bounded by:

AdvSUF-CMA
MAC (B12) ≥

Pr12[bad12]

nCS
(76)

100

Validate-C (C, j,M, t):

if πj
C =⊥ or πj

C .stexe ̸= bindDone or πj
C .isValid = false then

return ⊥
(T, i)← clientBindPartner(C, j)

if πj
C = LCS[guess− 1] then
(Mchal, tchal)← (M, t)
return

else
status← validate-C(πj

C ,M, t)
if (T, i,M, t) /∈ LauthT then

if πi
T .compromised = false then

if πj
C .pinCorr = false then
if status = accepted then

bad12 ← true
(Mchal, tchal)← (M, t)
return

return rejected
if status = accepted then

win-SUF-t← Client-Win-SUF-t(C, j,M, t)
return status

Auth-T (T, i,M):

if πi
T =⊥ or πi

T .stexe ̸= bindDone or πi
T .isValid = false then

return ⊥
πj
C,target ← LCS[guess− 1]

if πj
C,target ̸=⊥ ∧ (T, i) = clientBindPartner(C, j) then

(M, t)← OAuth(M)
else

(M, t)
$← auth-T(πi

T ,M)
LauthT ← LauthT ∪ {(T, i,M, t)}
return (M, t)

Compromise (C, j):

if πj
C =⊥ or πj

C .stexe ̸= bindDone then
return ⊥

if πj
C = LCS[guess− 1] then
abort

πj
C .compromised = True

return πj
C .bs

Fig. 74. Modified Auth-T, Validate-C and Compromise oracles simulated by B12.

nCS AdvSUF-CMA
MAC (B12) ≥ Pr12[bad12] (77)

Since games 11 and 12 are identical until bad12 happens, by the difference lemma, we
have:

Pr12[bad12] ≥ | Pr11 − Pr12 | (78)

Thus, we have:

nCS AdvSUF-CMA
MAC (B12) ≥ | Pr11 − Pr12 | (79)

Since each client session can finish Bind only in Execute queries, we know that nCS ≤ qE.
Therefore:

qE AdvSUF-CMA
MAC (B12) ≥ | Pr11 − Pr12 | (80)

Final Analysis

Note that, at this point, A cannot win against Game 12, since it must be able to win via one
of the four conditions in Token-Win-SUF-t or one of the three conditions in Client-Win-SUF-t.

Win via Token-Win-SUF-t Condition 1 of Token-Win-SUF-t (d = 0) is always false, since
Token-Win-SUF-t is only called after a validation from the Validate-T oracle is successful,
which is dependant on the user decision bit d.

Conditions 2 and 3 of Token-Win-SUF-t will also never be true. Indeed, since collisions
between both client and token sid values have been ruled out in Game 9, it can never be the
case that two different client or token sessions have the same sid. Thus, these conditions are
always false.

101

Condition 4 of Token-Win-SUF-t is also always false. Recall that, for A to win, it must give
a pair (M, t) to the Validate-T oracle for a token session πi

T and (M, t) must pass validation.
Additionally, πi

T must not have had its pin corrupted, and either not have a partner or have
a unique partner that was not compromised. In the latter case, (M, t) must also not have
been output by that partner.

Indeed, if the target πi
T which is validating (M, t) from A has a (unique) partner πj

C ,
then A hasn’t actively attacked πi

T during the Bind session, and therefore has no information
whatsoever about the pinToken, since the experiment no longer transmits the encrypted
pinToken in passive Bind sessions.

If A actively attacked πi
T by performing a Bind session itself, in order to attempt to

obtain the pinToken, the experiment always rejects, provided the pin was not corrupted. If it
was corrupted, then A can never win against any session of that token. This eliminates the
attack where A simply guesses the pin.
A can also never get any information whatsoever about the pin without corrupting the

user U to which it belongs, since no pin is ever sampled before A either corrupts the user or
atempts to guess the pin for the first time by querying Send-Bind-T, and all ciphertexts cp
and cph transmitted by a client to a token have constant values.

Finally, A can never win by correctly forging a tag t, since the token session always rejects
any valid forgery attempt from A.

Win via Client-Win-SUF-t Conditions 1 and 2 are identical to conditions 2 and 3 from
Token-Win-SUF-t, so they are always false.

Condition 3, similarly to condition 4 of Token-Win-SUF-t, is also false, since A can never
learn anything about the pinToken used to authenticate messages to any client session without
corrupting a pin or compromising the session itself, and can never win by actually submitting
a valid forged tag t because the client session always rejects such an attempt.

Advantage measure Given that A can no longer win against Game 12, we have:

Pr12 = 0 (81)

Note that the running times of all adversaries are close to that of A.
This completes the proof.

102

	Introduction
	Background
	(m)PACA Protocol Syntax
	Authentication Properties
	(m)PACA Authentication Model
	Authentication Security of CTAP 2.1
	Authentication Security of FIDO2
	CTAP 2.1+ for Stronger Authentication

	Privacy Properties
	(m)PACA Privacy Model
	Privacy of CTAP 2.1 and CTAP 2.1+
	CTAP 2.1++ for Stronger Privacy
	Composed Privacy of FIDO2 and of WebAuthn and CTAP 2.1++

	Practical considerations
	Conclusion
	Description of WebAuthn
	Descriptions of CTAP 2.1, CTAP 2.1+, CTAP 2.1++
	Preliminary Definitions
	Security Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4
	Proof of Theorem 5

	CTAP 2.1 Security for PIN/UV Auth Protocol 1
	Proof Shortcomings in Nina et al. cremers
	PlA Models and WebAuthn Analysis
	PlA Protocol Syntax
	PlA Authentication Model and WebAuthn Authentication
	PlA Privacy Model and WebAuthn Privacy

	Composed Authentication Model
	Authentication Security of FIDO2
	Formal CTAP Privacy Attacks
	IND-1$PA-LHPC Proof for CBC
	CTAP 2.1+ Authentication Proof

