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Abstract. In this work we revisit the post-quantum security of KEM-based password-authenticated
key exchange (PAKE), specifically that of (O)CAKE. So far, these schemes evaded a security
proof considering quantum adversaries. We give a detailed analysis of why this is the case,
determining the missing proof techniques. To this end, we first provide a proof of security in
the post-quantum setting, up to a single gap. This proof already turns out to be technically
involved, requiring advanced techniques to reason in the QROM, including the compressed
oracle and the extractable QROM. To pave the way towards closing the gap, we then further
identify an efficient simulator for the ideal cipher. This provides certain programming abilities
as a necessary and sufficient condition to close the gap in the proof: we demonstrate that we
can close the gap using the simulator, and give a meta-reduction based on KEM-anonymity
that shows the impossibility of a non-programming reduction that covers a class of KEMs that
includes Kyber / ML-KEM.
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1 Introduction

Passwords are still one of the most common means of user authentication. The reason is that they are
easy to use on different devices, without the requirement for additional hardware. At the same time,
passwords are a common reason for security breaches: They generally have low entropy, making them
comparatively easy to guess, and as they have to be transmitted, they can potentially be intercepted.
A way to avoid issues caused by interception is password-authenticated key exchange (PAKE). In
a PAKE, the password is not transmitted but is used by communicating parties in a protocol to
derive a shared session key. PAKE can not only be used for authentication on the Internet. It is a
general tool for session authentication when only a low entropy secret is shared. This is why among
the most popular applications of PAKE there is not only authentication in WiFi networks, but
also authentication of contact-less connections to identity documents. For the latter use-case, the
(low-entropy) machine-readable section of the document is read and used as a password in a PAKE
(specifically PACE for ICAO passports).

This motivated major efforts put on the design of PAKE in recent years, including a competition
within IETF’s Crypto-Forum Research Group (CFRG) to select new PAKE. However, most of these
designs are inherently linked to group-based cryptography, as they exploit its rich algebraic structure.
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This renders them vulnerable to attacks by future quantum computers. While this is not as big of
an issue when just thinking about the authentication part, as PAKE are generally used in short-
lived authentication decisions, it still is an issue in two dimensions. First, as PAKE are used to
establish session keys, also the data later secured via these keys is susceptible to store-now-decrypt-
later attacks. Second, given their use in long-lived identity documents and the specification and
standardization time of such, even if we start transitioning now, we will have documents with old
schemes in the field for the next 15-20 years. Hence, it is necessary to start looking for alternatives
to classically secure PAKE now.

Indeed, there have been several works on the topic of post-quantum PAKE. In general, these can
be split into two categories: First, there are proposals that build PAKE directly from specific hardness
assumptions [DAL+17, SA23, DKBY24, TY19, SH19]. Second, there are generic proposals [BCP+23,
PZ23] that can construct PAKE from generic Key Encapsulation Mechanisms (KEMs) which fulfill
certain somewhat-standard properties ([Xag22, GMP22, MX23]). The former are mostly based on
specific hardness assumptions on lattices and some come with a security proof. Some even come
with a security proof that considers quantum adversaries[LLH24]. These proposals are usually quite
efficient, as they can exploit the available algebraic structure. The latter do not have access to this
structure, which can render them a bit less efficient. However, they have the advantage that they can
be instantiated with a wide range of KEM. Given the experience that quantum computers are able
to break virtually all traditional public key cryptography due their use of very few, closely related
hardness assumptions, this freedom of choosing an arbitrary KEM, independent of the underlying
hardness assumption, seems like a strong advantage in practice. For that reason, we study this latter
category in this work.

The main contender of this category are the recently proposed CAKE & OCAKE protocols
[BCP+23]. These are instances of the well-known Encrypted Key Exchange (EKE) blueprint that was
also used in PACE, SPEKE, and many more. It has been demonstrated, in the UC-model [BCP+23]
as well as in the game-based setting [PZ23, AHHR24], that CAKE & OCAKE are secure against
attacks using classical computers as long as the used KEM provides three properties: It has to achieve
indistinguishable keys under weak attacks (IND-CPA or IND-PCA); it has to guarantee anonymity
of ciphertexts (ANO-CPA or ANO-PCA), meaning one cannot infer the used public key when seeing
a ciphertext; and finally it has to guarantee that public keys are indistinguishable from random bit
strings. However, a proof of security against quantum attackers is so far still missing.

KEM-EKE and its security. (O)CAKE is essentially a version of EKE instantiated using a KEM.
We here consider OCAKE. CAKE only differs in minor aspects. The initiator I and the responder
R share a password pw. The initiator generates an ephemeral KEM key pair pk, sk. Then it uses the
password to compute an encrypted public key apk ← BC(KDF(pw), pk) using a block cipher BC and
sends apk to the responder. The responder recovers pk ← BC−1(KDF(pw), apk) using the password,
and creates an encapsulation with it (c, k) ← Encap(pk). It sends c, potentially accompanied by
a key-confirmation tag, back to I which can obtained the shared key k ← Decap(sk, c) using the
ephemeral secret key. This is potentially followed by another key confirmation message from I to R.

A key property of PAKE is that a passive attack must not admit offline password-guessing
attacks, and an active attack only allows to verify at most a single password guess. This is necessary
due to the commonly limited size of practically used password spaces. For OCAKE this means –
among others – that the second message must be computationally independent of the first. This is
where KEM anonymity is required. Consider the following attack: A malicious initiator A sends a
random apk to an honest R. In addition, A computes pki ← BC−1(KDF(pwi), apk) for all passwords
pwi in the password space. This is possible due to the limited size of the password space. When
receiving back the ciphertext c, the adversary simply checks under which pki the ciphertext c is
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valid and extracts the respective password this way. If the KEM provides no anonymity, this attack
is possible3.

Consequently, if we want to base security on a computationally anonymous KEM, a reduction
has to be able to use this very adversary to solve an anonymity challenge. In the formal definition
of anonymity we are given two public keys and a ciphertext that is an encapsulation under one
of the two. The task is to decide which of the two public keys was used to create the ciphertext.
In the classical proof, this is done by simulating the ideal cipher via lazy sampling and adaptively
programming. The latter is done in such a way that we are guaranteed that an apk whichA eventually
sends in an active attack decrypts to one of the challenge public keys for the anonymity game under
the correct password with high probability. Then we use the challenge ciphertext as the second
message. If A succeeds, we know that c was likely generated with the programmed public key. If A
fails, c was likely generated using the other public key.
The quantum proof gap. When moving to a setting in which quantum adversaries are con-
sidered, one has to give such adversaries quantum access to random oracles and ideal ciphers as
first observed in [BDF+11]. This makes a lot of proof steps involving random oracles that previously
were simple standard arguments significantly more involved. Examples are adaptive reprogramming,
online-extraction, or simple query-inspection. However, while challenging we have learned how to
deal with these for random oracles. When it comes to ideal ciphers the situation is different. So far
it is not known how to efficiently simulate an ideal cipher in a way that allows to make use of the
above techniques.

This combination of challenging proofs and entirely missing techniques is what many expect to
be the reason for OCAKE / CAKE not having a proof against quantum adversaries, yet. In this
work we set out to understand what can actually be done and what is it that we are exactly lacking.
Moreover, as researchers try to circumvent the ideal cipher model we are interested in what are
possible venues and what paths are hopeless.
Our contribution In this work, we determine the necessary & sufficient (missing) ingredient for a
reductionist proof to succeed, when considering quantum adversaries. Towards this end, we provide a
proof against quantum adversaries in the quantum-accessible random oracle and ideal cipher model
(QROM & QIC), assuming the existence of an efficient simulator for the ideal cipher that is capable of
a certain form of reprogramming. We give a precise definition of this simulator and also demonstrate
necessity of such a simulator when constructing an EKE PAKE from a KEM, basing security on
computational anonymity (in contrast to statistical anonymity). This is done via a meta-reduction
which shows that any reduction for anonymity that does not program the ideal cipher must be able
to break anonymity itself. We show that the meta-reduction holds for KEM following the Fujisaki-
Okamoto (FO) transform (or more precisely using the T-transform [HHK17]) which includes the new
NIST standard ML-KEM, also known as Kyber, and most other post-quantum KEM considered in
the NIST competition. Since OCAKE can only achieve post-quantum security when instantiated with
a post-quantum KEM, we believe this to be the most relevant case.
Feasibility of instantiating the simulation. There has been some progress on simulations for
random permutations that can support query-recording [Unr23], but to the best of our knowledge
there is currently none that can fulfill the programmability requirement we isolate. In fact, it may
prove impossible to achieve for an ideal cipher. While we phrase our results in most places with
respect to an ideal cipher for ease of exposition, they can be easily generalized to families of bijections
where each bijection is sampled from an independent distribution over the set of bijections.

Taking this generality into account, the programming requirement outlined in this paper imme-
diately removes some constructions that try to avoid the QIC from consideration. One such example
is a masking-based approach where the password (and potentially a session identifier) is hashed and
3 Indeed, this attack is a slight simplification of the actual attack which is more complex due to the way

anonymity is defined.
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used as an xor-mask for the public key apk = pk ⊕ H(pw, sid).4 Since many efficient instantiations
are ruled out by the requirement, the results of this paper indicate that it is worth investigating
more complex instantiations that may come with a higher cost. We hope that our result can enable
research into possible instantiations of the programming simulator we define, thereby leading the
way to generic post-quantum PAKE from KEM with security against quantum adversaries.
Organization. The organization of this paper is depicted in Fig. 1

1. Programmability (Section 3, Definition 8)

2a. Necessity of SIM (Section 5)

Metareduction shows impossibility of
non-programming reduction for generic and FO

transformed KEM

Lemma 2
Metareduction holds for FO
transformed schemes

Lemma 3
FO transformed schemes
resist ’related key’ attacks

2b. Sufficiency of SIM (Section 4)

OCAKE is secure under SIM
in the QROM

Theorem 1
Updated Proof for Protocol
OCAKE in QROM under SIM in
BPR model

Fig. 1. Organization of this paper. We introduce the programmability requirement by defining a simulator
in Section 3. We prove that programming is necessary using a meta-reduction technique in Section 5. To
this end, we show that the meta-reduction holds for key encapsulation mechanisms that follow the Fujisaki-
Okamoto (FO) transform. Finally, we show that the simulator is sufficient by giving an updated proof of the
security of the OCAKE protocol in the quantum random oracle model (QROM) and the Bellare-Pointcheval-
Rogaway (BPR) model in Section 4.

2 Preliminaries

In this section, we recall some notation and/or security notions for block ciphers, key encapsulation
mechanisms, and hash functions, as well as the CAKE/OCAKE protocol.
Notation. We denote deterministic output y of an algorithm A on input x by y := A(x). We denote
algorithms with access to an oracle O by AO. Unless stated otherwise, we assume all our algorithms
to be probabilistic and denote the computation by y ←$A(x).
Block Ciphers The proof of security of the OCAKE protocol is given in the ideal cipher model
[Bla06]. Analogous to the ROM for hash functions, the ideal cipher (IC) is an idealized description
of a block cipher.

Definition 1 (Block Cipher (BC)). A block cipher of block length n and key length k consists of
two algorithms BC : {0, 1}k ×{0, 1}n → {0, 1}n and BC−1 : {0, 1}k ×{0, 1}n → {0, 1}n such that for
every plaintext m ∈ {0, 1}n and key k ∈ {0, 1}k, decryption undoes encryption: BC−1(k,BC(k,m)) =
m.

Definition 2 (Ideal Cipher (IC)). An ideal cipher is a collection of random permutations indexed
by a key, to which all parties (including the adversary) are given oracle access. I.e., it is a pair of
4 To the curious reader: this masking cannot fulfill the programmability requirement due to malleability of

the masking. Since the mask is not dependent on the public key, the random oracle cannot predict the
adversary’s choice of apk or pk from a query while the adversary learns the whole bijection from a single
query.
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random functions E,D : K ×M →M, such that D(k,E(k,m)) = m and E(k,D(k,m)) = m for all
k,m in K ×M.

Key Encapsulation Mechanisms (KEM). We start with the functional definition of KEMs.
Afterwards we discuss their security.
Definition 3 (Key Encapsulation Mechanisms (KEMs)). A KEM is a triple of algorithms
KEM = (KGen,Encap,Decap), together with a public key space PK and secret key space SK.

– KGen→ (pk, sk): On empty input probabilistically return key pair (pk, sk), where pk also defines
a finite key space K and a ciphertext space C.

– Encap (pk) → (c,K): On input pk probabilistically return a pair (K, c) ∈ K × C. We call c the
encapsulation of the key K.

– Decap (sk, c)→ K: On input sk and ciphertext c deterministically return a key K ∈ K.

Definition 4 (δ−Correctness (average-case)). We say that KEM is average-case (1−δ)-correct
if Pr[Decap(sk, c) = K|(c,K) ←$ Encap(pk)] ≥ 1− δ, where the probability is taken over (pk, sk) ←
KGen() and the random coins of Encap.

Definition 5 (γ-spreadness). We say that PKE is γ-spread iff for all key pairs (pk, sk) ∈
supp(KGen) and all messages m ∈M it holds that

max
c∈C

Pr[PKE.Enc(pk,m) = c] ≤ 2−γ ,

where the probability is taken over the internal randomness of PKE.Enc.

Definition 6 (Security notions for KEM). Let KEM be a key encapsulation mechanism with
public-key space PK and key space K. We define the ANO-PCA game and the SROB-CPA game
as depicted in Fig. 2, each relative to challenge bit b, and the respective advantage function of an
adversary A against KEM as

AdvANO-PCA
KEM (A) := |Pr[ANO-PCA0(A)⇒ 0]− Pr[ANO-PCA1(A)⇒ 0]| and

AdvSROB-CPA
KEM (A) := |Pr[SROB-CPA0(A)⇒ 0]− Pr[SROB-CPA1(A)⇒ 0]|

Game ANO-PCAb(A)
01 (pk0, sk0)←$ KGen
02 (pk1, sk1)←$ KGen
03 (c, K)← Encap(pk0)
04 b′ ← A1-PCO(pk0, pk1, c)
05 return Jb = b′K

Game SROB-CPA
06 (pk0, sk0)←$ KGen
07 (pk1, sk1)←$ KGen
08 c← A(pk0, pk1)
09 k0 ← Decap(pk0, sk0, c)
10 k1 ← Decap(pk1, sk1, c)
11 return Jk0 ̸=⊥ ∧k1 ̸=⊥K

Fig. 2. The security games for anonymity (ANO-PCA) and strong robustness (SROB-CPA) for KEM. Oracle
1-PCO can be queried at most once.

Definition 7 (Multi-user security notions for KEM). Let KEM be a key encapsulation mech-
anism with public-key space PK and key space K. For integers n and qC , we define the PKUn game,
the IND-CPAn,qC

game and the ANO-PCAn,qC
game as in Figures Fig. 3 and 3, each relative to

challenge bit b, and the respective advantage function of an adversary A against KEM as

AdvIND-CPAn,qC

KEM (A) := |Pr[IND-CPA0
n,qC

(A)⇒ 0]− Pr[IND-CPA1
n,qC

(A)⇒ 0]| and

AdvANO-PCAn,qC

KEM (A) := |Pr[ANO-PCA0
n,qC

(A)⇒ 0]− Pr[ANO-PCA1
n,qC

(A)⇒ 0]|
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Game IND-CPAb
n,qC

12 for i ∈ [n]
13 (pki, ski)←$ KGen
14 p⃗k.append(pki)
15 b′ ← AChall(p⃗k)
16 return b′

Challb
qC

(j)
17 (c, K0)←$ Encap(pkj)
18 K1

unif←−−−$K
19 return (c, Kb)

Game ANO-PCAb
n,qC

(A)
20 for j ∈ [n]
21 (pk0,j , sk0,j)←$ KGen
22 (pk1,j , sk1,j)←$ KGen
23 p⃗k0.append(pk0,j)
24 p⃗k1.append(pk1,j)
25 b′ ← AO(p⃗k0, p⃗k1)
26 return b′

Challb
qC

(j)
27 (c0, K0)←$ Encap(pk0,j)
28 (c1, K1)←$ Encap(pk1,j)
29 L∗

j ← L∗
j ∪ {cb}

30 return (cb, Kb)

1-PCO(j, c, K)
once per j
31 if c /∈ L∗

j

32 K′ ← Decap(sk0,j , c)
33 return JK = K′K
34 else return ⊥

Fig. 3. The Multi-user games for anonymity (ANO-PCAn,qC ) and indistinguishability (IND-CPAn,qC ) for
KEM, for n users. By O we denote A’s oracles O = {1-PCO, Challb

qC
}. Challenge oracle Chall can be queried

at most qC many times per user, and 1-PCO once per public key.

Extractable Compressed Random Oracle. Here we introduce an extension of Zhandry’s Com-
pressed Random Oracle [Zha19] called extractable Compressed Random Oracle [DFMS22] (eCO).
Roughly speaking using eCO represents a quantum-accessible Random Oracle with an additional
mechanism that allows to check if there was a query that satisfies some function f . This gives us a
form of observable QROM. Lets discuss it in more details.
In [DFMS22] eCO was developed. eCO has two interfaces: one that mimics the behavior of a random
oracle (eCO.RO) and another that allows extraction of information (eCO.E). The eCO.ROf interface
defined relative to a function f takes a classical value t as input and simulates a quantum mea-
surement that "collapses" the oracle database, allowing it to yield a specific outcome x. After the
measurement, the database is in a state where all the values for eCO.RO collapse to the values y that
satisfy the equation f(x, y) = t. Also no earlier entries x′ will have any possibilities y′ left that also
satisfy the equation f(x′, y′) = t. When the function f used is clear from context we write eCO.E
instead of eCO.Ef . To clarify, consider the classical analogue where the Random Oracle is simulated
via lazy-sampling. Then for an extraction query we go through the database and output the first
pair (x, y) such that x is the smallest value for which f(x, y) = t.
Previously, in [DFMS22, HM24] the eCO was used to simulate Decapsulation queries during the
runtime of the adversary. In our case we will need it to check if the adversary was able to check if
adversarially generated tags are valid.
Now lets give a more formal treatment of the eCO. We will closely follow the description from [DFMS22,
HM24]. The description represents an inefficient version of the eCO which can be made efficient using
sparse encoding (c.f., [DFMS22]). The simulator eCO for a random function O: {0, 1}m → {0, 1}n is
a stateful oracle with a state stored in a quantum register D = D0m . . . D1m , where for each input
value x ∈ {0, 1}m, register Dx has n+ 1 qubits used to store superpositions of n-bit output strings
y, encoded as 0y, and an additional symbol ⊥, encoded as 10n. We adopt the convention that an
operator expecting n input qubits acts on the last n qubits when applied to one of the registers Dx.
The compressed oracle has the following three components.

1. The initial state of the oracle, |ϕ⟩ = |⊥⟩2
m

2. A quantum query with query input register X and output register Y is answered using the oracle
unitary OXY D defined by

OXY D |X⟩X = |X⟩X ⊗
(
FDx

CNOT⊗n
Dx:Y FDx

)
,
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where F |⊥⟩ = |ϕ0⟩ , F |ϕ0⟩ = |⊥⟩ and F |ψ⟩ = |ψ⟩ for all |ψ⟩ such that ⟨ψ|⊥⟩ = ⟨ψ|ϕ0⟩ = 0, with
|ϕ0⟩ = |+⟩⊗n being the uniform superposition.

3. A recovery algorithm that recovers a standard QRO O: apply F⊗2m to D and measure it to
obtain the function table of O.

The formal description of the extraction interface is the following. Given a random oracle O :
{0, 1}m → {0, 1}n, let f : {0, 1}m × {0, 1}n → {0, 1}ℓ be a function. We define a family of measure-
ments (Mt)t∈{0,1}ℓ . The measurement Mt has measurement projectors {Σt,x}x∈{0,1}m∪{∅} defined
as follows. For x ∈ {0, 1}m, the projector selects the case where Dx is the first (in lexicographical
order) register that contains y such that f(x, y) = t, i.e.

Σt,x =
⊗
x′<x

Π̄t,x′

D′
x
⊗Πt,x

Dx
, with Πt,x =

∑
y∈{0,1}n:
f(x,y)=t

|y⟩⟨y|

and Π̄ = 1−Π. The remaining projector corresponds to the case where no register contains such a
y, i.e.

Σt,∅ =
⊗

x′∈{0,1}m

Π̄t,x′

D′
x

eCO is initialized with the initial state of the compressed oracle. eCO.RO is quantum-accessible, eCO.E
is a classical oracle interface that, on input t, applies Mt to eCO’s internal state. The following
properties of eCO are required for the main lemma that will be used in our proof. We define a
relationship R based on function f and a target value t as all input output pairs that satisfy function
f(x, y) = t.

Rf,t(x, y) :⇔ f(x, y) = t.

Next, lets define
ΓR := max

x
|{y | R(x, y)}|.

ΓR outputs the maximum number values y that satisfy a relationship R for some input x. And finally
we define

Γ (f) = max
t
ΓRf,t

.

Γ (f) outputs the maximum number of outputs y that satisfy some relationship Rf,t (maximizing
over target values t) for some input x. The Γ (f) value determines whether we are able to use
extractions without disturbing the random oracle too much. This is stated in the following lemma.

Lemma 1 (Part of theorem 3.4 in [DFMS22], formulated in [HM24]). The extractable RO
simulator eCO described above, with interfaces eCO.RO and eCO.E, satisfies the following properties.

1. If eCO.E is unused, eCO is perfectly indistinguishable from a random oracle.
2. Any two subsequent independent queries to eCO.RO commute. In particular, two subsequent clas-

sical eCO.RO-queries with the same input x give identical responses.
3. Any two subsequent independent queries to eCO.E commute. In particular, two subsequent eCO.E

queries with the same input t give identical responses.
4. Any two subsequent independent queries to eCO.E and eCO.RO 8

√
2Γ (f)/2n-almost-commute.

In our application we will not give the adversary the extraction interface. We still restrict the
adversary only to the RO queries. On the other hand the reduction is able to perform extraction
queries to check if the oracle has been queried on the inputs that are interesting for us.
Transformation T [HHK17] T transforms an OW-CPA secure public-key encryption scheme into
an OW-PCA secure one.
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To a public-key encryption scheme PKE = (PKE.KGen, PKE.Enc, PKE.Dec) with message space
M and randomness space R, and random oracle G:M → R, we associate PKE1 = T[PKE, G ].
The algorithms of PKE1 = (PKE.KGen, PKE.Enc1, PKE.Dec1) are defined in Fig. 4. Note that Enc1
deterministically computers the ciphertext as c := PKE.Enc(pk,m; G(m)).

PKE.Enc1(pk, m)
35 c := PKE.Enc(pk, m; G(m))
36 return c

PKE.Dec1(sk, c)
37 m′ := PKE.Dec(sk, c).
38 if m′ = ⊥ or PKE.Enc(pk, m′; G(m′)) ̸= c
39 return ⊥
40 else return m′

Fig. 4. The algorithms of the T-Transform.

2.1 Protocols CAKE and OCAKE

In our analysis of which proof techniques are required for post-quantum PAKE, we focus on two
related protocols: CAKE and OCAKE, as shown in Fig. 5. In both protocols, two parties in possession
of a shared password pw want to establish a shared session key. First, the initiator I will generate a
KEM key pair, encrypt the public key pk with a symmetric cipher, and send the encrypted public key
apk to the responder R. Upon receiving apk, R uses the password to recover pk, which it then used
to compute an encapsulation c and a pre-key K. In the OCAKE protocol, R sends the encapsulation
c to I, together with a responder tag tag that can be used by I to confirm the key. In the CAKE
protocol, instead of sending c and the tag, R sends an encryption of c, again using a symmetric
cipher. In both cases, R derives its session key SK ′ from pre-key K and the session transcript. Upon
receiving (the encryption of) c, I (decrypts and) decapsulates the ciphertext to obtain a pre-key K ′,
which can then again be used to derive the session key. In OCAKE, I only derives the session key if
key confirmation succeeds, i.e., if the received tag equals the one I derives from its own state.

Assuming that both parties used the same password and that KEM worked correctly, R and I
end up with the same session key. Both protocols require an additional round of key confirmation
in order to achieve explicit authentication. However, as CAKE is implicitly authenticating for both
parties, it requires confirmation for both parties, while OCAKE is explicitly rejecting on the initiator
side (the Responder or server is explicitly authenticated.)

We made a minor conceptual modification to the previous descriptions of the OCAKE protocol:
we derive tag and SK in the same call to H. This variant constitutes a minor optimization and
simplifies the analysis.

The first security proofs for these two protocols were given in [BCP+23] in the UC framework and
only considered attackers without quantum capabilities. As a first step towards capturing security
even against attackers with quantum capabilities, [PZ23] and [AHH+23] gave proofs in the BPR
model for CAKE and OCAKE, respectively. The analysis in this work is based on these security
proofs.

3 Programming Simulator SIM for (O)CAKE

We now define a simulation that is (computationally) indistinguishable from an ideal cipher, but
answers queries by embedding values from a challenge set. This simulation models a block cipher
that can be queried on quantum states.
We later prove that this simulator is sufficient to prove security against quantum adversaries of
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Initiator I (Client) Protocol OCAKE Responder R (Server)
Password pw Password pw

Public Key
kpw ← KDF(pw) kpw ← KDF(pw)
(pk, sk)←$ KGen
apk ← BC(kpw, pk) apk

−−−−−−−−−→
pk′ ← BC−1(kpw, apk)

Session Pre-Key
K′ ← Decap(sk, c) c←−−−−−−−−−− (c, K)←$ Encap(pk′)

Key Derivation
tag

←−−−−−−−−
tag, SK ← H(K, pw, apk, pk′, c)

tag′, SK′ ← H(K′, pw, apk, pk, c) output SK
if tag′ = tag

output SK′

Initiator I (Client) Protocol CAKE Responder R (Server)
Password pw Password pw

Public Key
(pk, sk)←$ KGen
e1 ← BC1(pw, pk) e1−−−−−−−−→ pk′ ← BC−1

1 (pw, e1)
Session Pre-Key

(c, K)←$ Encap(pk′)
c′ ← BC−1

2 (pw, e2) e2←−−−−−−−−−−− e2 ← BC2(pw, c)
K′ ← Decap(sk, c′)

Key Derivation
SK′ ← H(pk, c′, K′, pw) SK ← H(pk′, c, K, pw)
output SK′ output SK

Fig. 5. (top) The OCAKE protocol, using a key encapsulation mechanism KEM = (KGen, Encap, Decap),
key derivation function KDF, hash function H and a block cipher BC = (BC, BC−1). This variant enables
an optimization where tag and SK are computed using the same call to H. (bottom) The CAKE protocol,
using a key encapsulation mechanism KEM = (KGen, Encap, Decap), hash function H and a block cipher
BC = (BC, BC−1). In both cases, existing proofs model the block cipher as an ideal cipher.
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OCAKE in the BPR model in Section 4 by giving such a proof. Lastly, we use a meta-reduction
technique( [FLR+10, FF13, BV98]) in section 5 to study how programmability as presented by SIM
is necessary for any security proof of OCAKE.
The programming simulator. We now introduce the simulator that describes the minimal nec-
essary requirements to prove security of OCAKE. Given the current uncertainty in achieving pro-
grammability with quantum queries, this definition aims to maximize flexibility in its instantiation
while clearly outlining the requirements.
Consider an adversary A, a message space M, and a key space KSIM. From this we define a family
of bijections Ek : M → M indexed on a key k ∈ KSIM where each bijection independently follows
distribution B. We denote the inverse of Ek as Dk. We also use E(k,m) to denote Ek(m).
In the case where B is the uniform distribution over all permutations, this definition is equivalent to
that of an ideal cipher.

Definition 8 ((δSIM, εSIM)−Programming Simulator SIM (single-session)). Let adversary A,
message space M, key space KSIM and E be as above.We now define simulator SIM: (ESIM,DSIM)
relative to a challenge set X ⊂ M of non-repeating, independently and uniformly random elements
of the message space M. We say that SIM is a (δSIM, εSIM)−programming simulator whenever we
have for any adversary A that interacts with the oracles and eventually outputs some value apk and
a session ID that:

1. SIM is indistinguishable from family E up to some failure probability εSIM, i.e., the success prob-
ability of any distinguishing adversary D that wins if it outputs 0 when interacting with E,D and
1 when interacting with SIM (X ) is bounded by εSIM:

|Pr[DE,D ⇒ 0]− Pr[DSIM(X ) ⇒ 0]| ≤ εSIM.

2. SIM ensures that apk’s decryption is in the challenge set X with probability 1− δSIM:

Pr[(apk, sid)← ASIM(X ) : DSIM(K[sid], apk) ∈ X ] = 1− δ.

where K[sid] is the key associated with session sid.

Generalization to multiple sessions We define the multi-session variant of SIM analogously
to the single-session version, except the adversary now outputs ns pairs (apki, sidi). Since in a
reduction, it could be that the attacker selects any of these values to attack, it is necessary that all
n decryptions are in the challenge set: ∀(apki, sidi) output by A, we require that Dk(sidi)(apki) ∈ X
with probability 1− δSIM.

Definition 9 ((n, δSIM, εSIM)−Programming Simulator SIM (multi-session)). Let adversary
A, message space M, key space KSIM and E be as above.We now define simulator SIM: (ESIM,DSIM)
relative to a challenge set X ⊂ M of non-repeating, independently and uniformly random elements
of the message space M. We say that SIM is a (δSIM, εSIM)−programming simulator whenever we
have for any adversary A that interacts with the oracles and eventually outputs some values apki

and a session IDs sidi, i ∈ {0, 1, . . . , n− 1} that:

1. SIM is indistinguishable from family E up to some failure probability εSIM, i.e., the success prob-
ability of any distinguishing adversary D that wins if it outputs 0 when interacting with E,D and
1 when interacting with SIM (X ) is bounded by εSIM:

|Pr[DE,D ⇒ 0]− Pr[DSIM(X ) ⇒ 0]| ≤ εSIM.
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2. SIM ensures that the decryption of all apki is in the challenge set X with probability 1− δSIM:

Pr[( ⃗apk, s⃗id)← ASIM(X ) :

∀(sidi, apki) ∈ (s⃗id, ⃗apk) : DSIM(K[sidi], apki) ∈ X ] = (1− δSIM).

where K[sid] is the key associated with session sid.

4 Security of (O)CAKE in the QROM

To prove security against quantum attackers, it is necessary to consider the quantum random oracle
model as well as a quantum-accessible model for the symmetric cipher. We show that the simulation
described in section 3 is sufficient to prove security of PAKE in the BPR model, using a generic KEM,
by providing an updated security statement for OCAKE (Section 4.1). We also provide a high-level
intuition for how to update the proof for CAKE (Section 4.2).

4.1 Security of OCAKE under SIM

Security of the OCAKE protocol has been shown in the universal composability framework [BCP+23]
as well as in the BPR model [AHH+23]. Both results use the ROM and the ICM. (Appendix B gives
a more thorough analysis of the role of the ideal cipher in the proof and its relation to attacks.)
Building on the proof given in [AHH+23], we give a security proof for the OCAKE protocol in the
BPR model, using the QROM and assuming the existence of a simulator SIM that effectively replaces
the IC.

To lift the classical proof to the quantum setting, all public functions – that is, those that can
be computed by the attacker – need to be modeled to allow quantum queries [BDF+11]. Therefore,
any proof argument that considers hash functions, key derivation functions or block ciphers needs
adapting to quantum queries. In this setting, we now give our new security theorem.

Theorem 1 (Tight security of OCAKE in the QROM from multi-user security of KEM
and SIM). Let KEM be a key encapsulation mechanism that is (1 − δKEM

corr )-correct, let KDF, and
H be modeled as quantum random oracles with domains Kpw and T × SK, BC be a quantumly-
accessible block cipher that we model according to SIM, and let A be a BPR adversary against
OCAKE[KEM, KDF, H,BC], issuing at most na many Send queries (active attacks), np many Execute
queries (passive attacks), and qRO many queries to its respective random oracles. Let ns := na + np

be the total number of sessions. Then there exist a multi-user-IND-CPA adversary BIND and a multi-
user-ANO-PCA adversary BANO against KEM such that

AdvBPR
OCAKE(A) ≤ na

|D|
+ n2

a · ηKGen + |D|2

|Kpw|
+ 80e2q3

H + 2
|T |

+ na · δKEM
corr +

+ 4 · na · (ns + qH)
√

2/|T |+ 2 · ( 1
(1− δSIM) ·AdvANO-PCA

KEM + εSIM)

+ 2 · ns · (na + 1) ·AdvIND-CPA
KEM + 2 · qH

|K|

and the running time of BIND, BANO, and BPKU is about that of A.

To obtain this bound, we update the classical BPR proof for OCAKE [AHH+23] to capturing
quantum attackers. We give an overview over the classical proof’s game-hops in Table Fig. 6, indicate
which game-hops we need to update, the new proof techniques we use to do so, and the resulting
loss.



12 Hövelmanns, Hülsing, Kudinov, Ritsch

To summarize our updates, firstly, we lift all game-hops that use random oracle properties (games
G5, G13) to the QROM. Secondly, for a concise presentation of how to apply our simulator properties,
we fold all game-hops that use ideal cipher properties (games G3,G4,G6,G10) into a single game
(G10). The resulting upgraded proof is fully adapted to capturing quantum attackers.

We describe each game-hop in this section and give the intuition that underlies them. For the
sake of completeness, we provide detailed reductions (including pseudocode) in Appendix A.2. For
the reader’s convenience, we also recall the details of the BPR security model in Appendix A.1.

Game Description Update? Loss
G0 Original BPR game
G1 Abort on KGen Collision. Not necessary n2

a · ηKGen

G2 Abort on KDF Collision. Not necessary |D|2

|Kpw|
G3 IC lazy sampling w/ abort This work (SIM) -
G4 Prevent IC collisions This work (SIM) -
G5 Abort on Tag Collision. This work (CO) 80e2q3

H +2
|T |

G7 Do not decrypt honest c. Not necessary na · δKEM
corr

G6 Sample IC using KGen This work (SIM) -
G8 Abort on tag under correct pw. This work (eCO) Pr[ corrPW ]
G9 Make eCO extractions online. This work (eCO) na · (ns + qH)

√
2/|T |

G10 Randomize public key. This work (SIM) 1
(1−δSIM) ·AdvANO-PCA

KEM + εSIM

G11 Randomize pre-key. Not necessary ns · (na + 1) ·AdvIND-CPA
KEM

G12 Move eCO extractions to end. This work (eCO) na · (ns + qH)
√

2/|T |
G13 Randomize Tag, Session Key. This work (CO) qH

|K|
G15 Randomize Passwords. Not necessary 0

Fig. 6. Game-hops in the classical BPR proof for OCAKE. The game-hops that needed updating use new
techniques: compressed oracles (CO), extractable compressed oracles (eCO), and the simulator defined in
this work (SIM).

We will use the notational convention Advi := |Pr[Gi(A)⇒ 1]|.

Game G0: Original BPR game. The BPR oracles are exactly as in the existing BPR proof (see
App. A.1). H, KDF,KDF’ and IC are quantum-accessible.

Game G1: Handling collisions of KEM key pairs. (Unchanged) The game aborts whenever there
are at least two sessions that sampled the same ephemeral KEM key pair (pk, sk). Let ηKGen be the
collision probability of KGen. Since games G0 and G1 are identical unless a collision occurs, we have

|Adv0 −Adv1| = Pr[KDFColl] ≤ n2
a · ηKGen.

Game G2: Abort on KDF Collision. The game aborts whenever two passwords lead to a collision
in the key derivation function that maps passwords to block cipher keys. This bound only depends
on the choice of KDF and dictionary D, not on any adversarial input. The resulting bound thus is
statistical. Concretely, if KDF is a uniformly random function f : D → Kpw, the probability that two
inputs pw, pw′ are mapped to the same output kpw can be upper-bounded by the birthday collision
bound: Adv2 ≤ Pr[ KDFColl ] ≤ |D|2

|Kpw| .
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Games G3 and G4 : we fold them into game G10.

Game G5: Abort on Tag Collision. One of the informal security goals of PAKE proofs is to rule out
attacks where an adversary can test more than one password in a single online attack. One example
of such an attack is the exploitation of a tag collision: assume there exist two passwords pw, pw′ s.t.
the responder tag tag computed from them for a given transcript is the same. Then the attacker
could win the game by submitting tag without having uniquely identified the right password.
Therefore, G5 aborts whenever the attacker has found such a collision in H. To argue about the
distance between G5 and G4, we use the compressed oracle technique [CFHL21].
Let A be the adversary in the PAKE game. We define an adversary B in the collision-finding game
that runs A and is successful if it outputs x, x′ s.t. H(x) = H(x′) at the end of the game.
B simulates A’s PAKE and random oracle queries. First, B replaces the random oracle with a
compressed random oracle. The compressed random oracle allows B to record A’s queries in a
database.
Then, at the end of the game, B measures the database for collisions. Let R be the relation that
describes a collision in the tag: for distinct x, x′ and arbitrary sk, sk′ we have that H(x)||sk =
H(x′)||sk′. Then we have R ⊆ X l × (T × SK)l for l = 2.

CL := {D|∃x ̸= x′ : D(x) = D(x′) ̸=⊥}

Then, by Corollary 4.2 [CFHL21, Corollary 4.2], we have that for success probability in the original
game p and success probability in the game using the compressed random oracle p′, we have that
√
p ≤
√
p′ +

√
2

|T | .
We now argue about the success probability p′, closely following the reasoning in section 2.3 of
[CFHL21], (Finding a Collision (with Parallel Queries)). Let SZ≤(s−1) be a database of size at most
s− 1. We set k = 1 as we do not model parallel queries, so we have using the transition probability
of a database that does not contain a collision to one that does√

p′ ≤
q∑

s=1
JSZ≤(s−1)\CL→ CLK ≤

q∑
s=1

2e
√

10 qH

|T |
≤ 2qe

√
10 qH

|T |

where e is Euler’s number. Therefore we conclude p′ ≤ 40q3e2

|T | . From √p ≤
√
p′ +

√
2

|T | we then see
by squaring that

p ≤ p′ + 2
|T |

+

√
2p′

|T |
≤ 40e2(q3 +

√
2q3/2) + 2

|T |
≤ 80e2q3 + 2

|T |

Finally, this allows us to bound the distance:

Adv5 ≤ p ≤
80e2q3

H + 2
|T |

.

Game G6 is also folded into game G10.

Game G7: Correctness. (Unchanged) In game G7, whenever there is a flow 2 query where the
message was honestly generated by a matching session, we do not decapsulate to obtain the pre-
key. Instead, if the message was generated by a matching session, we use the pre-key that was
encapsulated by that instance. Adversarially generated messages as well as ones that are forwarded
from a non-matching session are decapsulated as before. As in the classical proof, the distance to
the previous game can be bounded by Adv7 ≤ na · δKEM

corr .
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Game G8: Abort on dishonest tags using correct pw. We now abort whenever the adversary actively
interacts with a session, meaning the session is not executed between two honest parties, and sub-
mits a tag that was generated using the correct password. This models the case that the attacker
successfully guessed the password and used it to attack an honest part, which can happen both for

1. initiators, in which case the attacker sent a responder tag tag that uses the correct password,
and for

2. responders, in which case the attacker sent an apk that uses the correct password.

Here we focus on case 1, since the other case is handled by simulation SIM (see 3). We need
to adapt previous classical reasoning about this change to capture that oracle H now is quantum-
accessible – previous reasoning exploited that game and reductions can observe the issued queries
to H, thus being able to immediately notice that tag was generated with the correct password. As a
quantum counterpart to this approach, we use the extractable QROM formalism [DFMS22].

This models quantum-accessible random oracles like H as an extractable compressed random
oracle eCO that has two interfaces, random oracle interface eCO.RO and an extraction interface eCO.Ef

that is defined relative to a function f : X×Y = T , where X and Y are the random oracle’s domain
and co-domain, respectively, and T is some other set. For our purposes, we identify X with the
domain of H, so X := K×D×PK2×C, and Y := T := T ×SK, the tag and session key space. Since
we want to isolate the first part of the output, we choose the function f defined by the projection
onto the tag space f(input, y = (tag,K)) = tag. Extraction interface eCO.Ef takes as input a classical
value t ∈ T . It does a quantum analogue to going through the random oracle queries and returning
an x such that f(x, H(x)) = t: it performs suitable measurements that collapse the oracle database,
just enough so that the classical procedure would yield one particular outcome x for all parts of the
superposition. For our choice of f , eCO.Ef (tag) simply returns a random oracle pre-image of tag||sk
for any sk.

Equipped with this extraction interface, the game waits until the attacker has finished and
then calls eCO.Ef on all ’dishonest’ tries, i.e., all tags tag that were received by an honest initiator
whose password was not corrupted, without tag having been computed during a preceding honest
execution of the respective responder. The game aborts if there exists a dishonest tag such that
eCO.Ef (tag) returns a pre-image (K, pw, apk, pk′, c) such that (K, apk, pk′, c) matches the values
which the initiator computed during the session to which the tag belongs. Since we already ruled
out random oracle collisions, this in particular means that pw is the correct password. We denote
this event by corrPW . We note that the extraction queries themselves do not change A’s view since
they are performed only after A finished [DFMS22, Th. 4.3, item 1].
We can now conclude that

Adv8 ≤ Pr[ corrPW ]G8 .

Like in previous (classical) proofs, the change of probability for corrPW can be traced through the
subsequent games G8-G15, by building anonymity and indistinguishability reductions that define
their output based on corrPW .

Game G9: Notice correct pw guess already during game. In this game, we move the identification
of corrPW into the game: instead of performing the extraction queries determining corrPW after
running the attacker, we perform them already during the session runs. We perform them whenever
the attacker sends a tag tag to an honest initiator whose password was not corrupted, without tag
having been computed during a preceding honest execution of the respective responder. This change
is in preparation for the following two game hops, where the reductions use corrPW to detect certain
edge-cases of adversarial input that need to be addressed during the game.

To argue that this introduces little change, we use [DFMS22, Th. 4.3]: by properties 2.b and 2.c
of Th. 4.3, any two subsequent queries to eCO.RO and eCO.Ef 8

√
2Γ (f)/|K| · |T |-almost-commute,
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where

Γ (f) = max
t

max
x
|{y | f(x, y) = t}|, (1)

which for our choice f(x, (tag,K)) = tag equals |K|. This means that we can commute the extraction
queries into the game to right after when the respective Send query was received. We need to
commute at most na · (ns + qHH) many times until the extractions are at the right place, thus
Adv9 ≤ na · (ns + qH)

√
2/|T | and also |Pr

[
corrPW G8

]
−Pr

[
corrPW G9

]
| ≤ na · (ns + qH)

√
2/|T | .

Game G10: Randomize public-key pk. In this game, we randomize the public key used to create the
responder ciphertext. First we recall the setting: in order to unlink the first (apk) and second (c, tag)
protocol message, we argue that the ciphertext c does not leak which ciphertext was used to create
it. More formally, we replace the public key used to derive c with a fresh uniformly random one, and
reduce the distance in the games induced by this change to the ANO-PCA security of KEM.
We give a reduction that simulates the PAKE game for an adversary A that distinguishes BPR game
G10 from G8 and uses A to solve its ANO-PCA challenge. Consider the different query patterns
that the reduction has to address. First we note that sessions that are passively attacked (queries
to Execute) or those where the initiator is honest can always be simulated without the use of
programming in the ideal cipher: honest parties simply use the challenge public keys in place of their
honest keys.
The more involved case is the one where the responder is honest, but the initiator is not: this setting
involves an adversarially chosen encrypted public key apk that is decrypted by the honest responder
into a public key. In order to move to game G10, where ciphertexts c are independent of the real
public keys (or more accurately, the real password), the reduction reprograms decrypted public keys
to challenge public keys in the ANO-PCA game.
We now show this proof step using only reprogramming according to the capabilities of SIM described
above.

In a first step, the reduction answers all queries to E and D using the respective oracles of SIM.
This change to SIM is not perfectly indistinguishable, therefore we have Adv10,1 ≤ εSIM where εSIM
by definition of SIM.

The challenge set X used to initiate SIM is equal to the first set of public keys {pk0,0, pk0,1, . . .
pk0,na

} provided by the anonymity challenger. This is the set that indicates the ‘real’ public keys,
while the set {pk1,0, pk1,1, . . . pk1,na

} indicates the independent keys used after the reduction. Now,
whenever the adversary submits a value apk for a session associated with password pw and key
k ← KDF(pw), apk decrypts to a challenge public key whenever SIM programs successfully For
naactively attacked sessions, we have by definition of SIM that

Pr[( ⃗apk, s⃗id)← ASIM(X ) : DSIM(k, apki) ∈ X∀(sidi, apki) ∈ (s⃗id, ⃗apki)] = 1− δSIM.

The reduction, on input apk, therefore decrypts apk to some challenge public key pk0,j ∈ X and
queries its challenger for a fresh anonymity challenge c related to that public key, and uses that in its
response. That way, the adversary receives a ciphertext matching either pk0 or pk1 in each session,
exactly as in the two games.

Finally, we note that since the reduction simulates all of A’s oracles, so there is an edge case to
consider: the case where A corrupts a party after it has queried the Send0 and Send1, but before it
queries Send2 for matching sessions while forwarding messages. In this case, the oracle Send2 uses a
challenge public key pk0 that the attacker now knows due to the corruption. However, the reduction
does not have the secret key associated with the public key, and it cannot decapsulate the ciphertext



16 Hövelmanns, Hülsing, Kudinov, Ritsch

and recompute the tag. Therefore, when the oracle decides whether or not to reject an adversarially
generated (c, tag), the reduction has use the extraction interface of the extractable random oracle
eCO to determine the pre-key that was used by the adversary. Then, the reduction can query its
plaintext-checking oracle to decide if the message should be rejected or not. Since we switched to
the extractable oracle in a previous game, this does not incur any additional loss here.

Finally, the reduction outputs 0 whenever A wins, and 1 else. Therefore, the reduction wins
whenever A wins and SIM successfully programmed for all its queries and we have Adv10,2 ≤

1
(1−δSIM) ·AdvANO-PCA

KEM . We then arrive at the bounds

Adv10 ≤ Adv10,1 + Adv10,2 ≤
1

(1− δSIM) ·AdvANO-PCA
KEM + εSIM.

|Pr
[

corrPW G9

]
− Pr

[
corrPW G10

]
| ≤ 1

(1−δSIM) ·AdvANO-PCA
KEM + εSIM.

Game G11: Randomize pre-key K. (Unchanged) For all queries to the Send or Execute oracles where
flag trivGuess is not raised before the query, we now randomize the pre-key K that is used to derive
the final session key and the responder tag. For more details, see the pseudo-code in Figure 17. This
change makes the pre-key independent of the ciphertext and the password for all fresh sessions. As
previously, the change in success probability can be bounded using the indistinguishability advantage
of KEM: Adv11 ≤ ns · (na + 1) ·AdvIND-CPA

KEM .

Game G12: Move dishonest tag identification back to end of game. In this game, we switch back to
offline extraction, i.e., we only perform the extraction queries determining if a tag was valid after
running the attacker. This is done in preparation for the next step that relies on measuring the
compressed database at the end of the game. With the same reasoning as for game G9, we find

Adv12 ≤ na · (ns + qH)
√

2/|T |

and
|Pr

[
corrPW G11

]
− Pr

[
corrPW G12

]
| ≤ na · (ns + qH)

√
2/|T | .

Game G13: Randomize Tag & Session Key. In the penultimate step of the proof, we randomize
the responder tag tag and the session key SK, i.e., we simply sample random values from T and
SK, and return them as tag and session key. Recall, that in Game G12 the tag and session key are
computed as (tag, SK)← H(K$; pw, apk, pk′, c) where K$ is a fresh uniformly random sample from
K that is not used anywhere else in the protocol. Hence, the values in both games follow the same
marginal distribution. However, in Game G12 they are consistent with the random oracle, while in
Game G13 they are not.

Intuitively, an adversary can only notice this inconsistency in Game G13 if it ever learned the
value of H at position x∗ = (K$; pw, apk, pk′, c). Given that we simulate H using the compressed
oracle technique, this means that the difference between this and the last game can be bounded by
the probability that the final database D of the compressed oracle in Game G13 contains a value
for x∗ when measured in the end, i.e.,

Adv13 ≤ Pr[D(x∗) ̸= ⊥].

It remains to quantify Pr[D(x∗) ̸= ⊥]. For this, note that in Game G13, K$ is not used anywhere in
the protocol anymore and therefore the whole view of the adversary is independent of K$. For that
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reason, we can delay the sampling of K$ until after we measured the database D. The database D
has qH entries. The probability that one of them is of the form (K$; pw, apk, pk′, c) for any value of
K$ is therefore upper bounded by 1/|K| and therefore

Adv13 ≤ Pr[D(x∗) ̸= ⊥] ≤ qH

|K|
.

Game G14: Randomize Session Key is folded into the previous game.

Game G15: Randomize Passwords. It remains to upper-bound corrPW . In this game, the attacker’s
view is completely independent of the chosen passwords, up to corrupted ones. This means that we
can replace all non-corrupted passwords with fresh ones at the end, after running the attacker, and
defining event corrPW with respect to the resampled ones. We note that there exists exactly one
pre-image (K, pw, apk, pk′, c) per tag that could trigger corrPW , and that the simulation SIM does
not raise this flag as it did in the previous proof.

We can now bound the probability of corrPW in game G8, using the number of send queries
and the password distribution. Assuming a uniform distribution on a password dictionary of size
|D|, and upper-bounding A’s number of send queries by na,

Pr[ corrPW G15
] ≤ na

|D|

And therefore Pr[ corrPW G8
] ≤

∑15
i=8 Pr[ corrPW Gi

].
Since the passwords and session keys are completely random from the adversary’s view, we have

that |Pr[G15(A)⇒ 1]| = 1
2 . We can finally sum up the terms and state the bound:

AdvBPR
OCAKE(A) ≤

15∑
i=0
|Pr[Gi(A)⇒ 1]|

≤ na

|D|
+ n2

a · ηKGen + |D|2

|Kpw|
+ 80e2q3

H + 2
|T |

+ na · δKEM
corr +

+ 4 · na · (ns + qH)
√

2/|T |+ 2 · ( 1
(1− δSIM) ·AdvANO-PCA

KEM + εSIM)

+ 2 · ns · (na + 1) ·AdvIND-CPA
KEM + 2 · qH

|K|

4.2 Security of CAKE under SIM

Security of the CAKE protocol has been shown in the ROM and ICM in the universal composability
framework [BCP+23] and in the BPR model [PZ23]. In the proof of [PZ23], there are four game
hops that make use of programmability.5 Additionally, in game G7 it is argued that reductions make
arguments conditioned on values that were queried to the encryption oracles E1 and E2. Therefore,
replacing the cipher with the simulator does not immediately result in a complete security proof.
We therefore leave it as an open problem to construct such a proof
However, table 7 gives an overview of the game hops and sketches which games could potentially be
instantiated with SIM.
5 Appendix B gives a more thorough analysis of the necessary changes and the role of the ideal cipher in

the proof.
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Game Description Update? Loss
G−1 Original BPR game
G0 Collision Events. No change. S2(ηpk + ηct) + (q2

1+S2)
|E1| + (q2

2+S2)
|E2| +

q2
1

|PK| + q2
2

|C| + q2
H +S2

|SK|
G1 Freshness. No change. 0
G2 Sample D1 using KGen. Use SIM. -
G3 Randomize Session keys (passive). No change. Adv(S,1)-OW-PCA

KEM (B2)
G4 Randomize ciphertexts (passive). No change. Adv(S,1)-ANO

KEM (B3)
G5 Randomize protocol messages (pas-

sive).
No change. 0

G6 Do not decapsulate honest. No change. S · δ
G7 Extract password. May require extraction. open
G8 Randomize pre-key. Use SIM. (1− δSIM) · OW-rPCA + εSIM.
G9 Randomize pre-key. Use SIM. (1− δSIM) · OW-PCA + εSIM.
G10 Randomize public keys. Use SIM. (1− δSIM) · ANO-PCA + εSIM.
G11 Randomize protocol messages (ac-

tive).
No change. 0

G12 Randomize passwords No change. S

|D|

Fig. 7. Overview of proof steps in the proof of CAKE. Proof steps highlighted in grey require changes to
consider quantum adversaries. These updated arguments are left as an open problem, but games G2, G8-G10
can likely be instantiated using SIM.

5 Necessity of SIM for OCAKE

We now study under which conditions any proof of security of the (O)CAKE protocol in the BPR
model necessitates the use of programming. To that end, we first show that anonymity of the under-
lying KEM is a necessary property by describing an attack on the CAKE and OCAKE protocols that
leverages non-anonymity. Secondly, we show using the meta-reduction technique how a successful
reduction from the security of OCAKE to anonymity must program the ideal cipher oracle.
Anonymity is Necessary. In PAKE proofs, it is important to rule out dictionary attacks that would
allow an attacker to use offline computations to determine the password used in some transcripts.
This is why there is often a step that un-links the protocol messages from each other and the
password. An example is the case of anonymity for OCAKE: the first message is an encryption of
an ephemeral public key under the password. If an adversary were able to extract that public key
from the second message, this would lead to a dictionary attack on the first message. To formalize
this intuition, we show how to translate an attack on anonymity of KEM into an attack against the
security of OCAKE. Let B be an algorithm in the anonymity game against KEM with advantage
AdvANO-PCA

KEM (B). Recall that by definition, whenever B receives some ciphertext c, B can determine
which of two public keys pk0, pk1 was used to create that ciphertext with advantage

AdvANO-PCA
KEM (B) = |Pr[ANO-PCA0(B)⇒ 0]− Pr[ANO-PCA1(B)⇒ 0]|

i.e., B outputs 0 whenever it guesses pk0 was used, and 1 else.
We use the convention that if B is run with two public keys s.t. neither or both are associated with
the challenge ciphertext, B outputs a random bit. We argue that B can be used to launch an attack
on the protocol.
We describe the adversary A against the security of OCAKE. To launch the attack, A first obtains
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some transcript apk, c, tag. A then chooses two passwords pw, pw′ from the dictionary6 and queries
D(pw, apk) and D(pw′, apk) to receive candidate public keys pk, pk′.
Next, A runs B on challenge values c, pk, pk′ to receive a bit b. If B’s output is 0, A selects pw as its
guess pw∗, and pw′ else.
Finally, A finishes the attack by running the sender side of the protocol using pw∗ and sending the
output to the receiver. The probability of A using the correct password is therefore increased by the
anonymity advantage of B in all cases where one of the two passwords was the correct one for that
session. This event represents a successful break of the protocol as the adversary using the correct
password derives a shared key with a receiver or sender without them aborting. This attack can
be improved by running the test on all pairs of passwords in the dictionary, ensuring that the real
public key was queried, and taking a majority vote. This is shown in the algorithm in figure 8.
If B can distinguish a public key used to create c from a random public key with advantage at least
ε, then there is one public key that is chosen (|D| − 1)(1 + ε)/2 times in the comparisons, while all
others are chosen only (|D| − 1)/2 times in expectation. For noticeable ε this results in a noticeable
advantage for A.
Any successful anonymity reduction must program. We now use a meta-reduction technique
to investigate how any successful reduction between the security of OCAKE and the anonymity of
KEM must program the implementation of the block cipher (or its modeling). More precisely, we
argue that there can be no reduction from the anonymity property of KEM to distinguishing the
game with random public keys from the previous game unless the reduction programs the block
cipher in some form.
We show that any successful reduction of ANO-PCA security to PAKE-security that does not imple-
ment a programming simulator can be used by a meta-reduction to solve anonymity challenges for a
certain class of KEM that we call Valid-resistant Anonymous KEM. Intuitively, this class of KEM
achieves anonymity even when the adversary has access to a validity oracle that given a public key
pk and a ciphertext c decides if c is a valid ciphertext under pk (rejecting if c or pk are part of the
anonymity challenge). Moreover, we show that KEM obtained via the full FO transform (including
de-randomization in what is commonly referred to as the T-transform [HHK17]) are Valid-resistant
Anonymous KEM. In consequence, we show that

1. there cannot exist a generic reduction that reduces anonymity to PAKE security of OCAKE
without programming,

2. there cannot exist a reduction that reduces anonymity to PAKE security of OCAKE without
programming for any KEM obtained via the FO-transform, including Kyber / ML-KEM.

We now formalize these results, starting with the definition of the class of KEMs. In this definition,
we relate the advantage of two adversaries against ANO-PCA (c.f., Fig. 2) where one gets access to
the additional validation oracle mentioned above. This oracle is described in Fig. 9. In the definition
of this oracle, we assume an unbounded challenger that can brute-force secret keys to find a valid
secret key for a given public key. We denote this brute-force algorithm as compute_secret_key. We
will later show that for KEM obtained via the FO-transform, one can efficiently simulate this oracle
via the random oracle used in the transform to de-randomize the initial scheme.

Definition 10 (Valid-resistant Anonymous KEM). Let KEM be a key encapsulation mecha-
nism with public-key space PK and key space K. KEM is Valid-resistant anonymous if the ANO-PCA-
advantage of an adversary B with access to an additional oracle Valid as in Fig. 9 is close to that
of a regular anonymity adversary A in the ANO-PCA game.
6 Note that since we are arguing necessity, it would be sufficient to look at the simplest case with one session

and only two elements in the dictionary.
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Algorithm Attack
41 P, P ′ ← P2// Choose parties to attack
42 apk ←$ PKe1 ←$ PK // Select the honest pk implicitly
43 (c∗, tag∗)← Send1(P ′, apk∗)e2 ← Send1(P ′, e1)
44
45 for pw in D // Obtain candidate public keys
46 pk[pw]← BC−1(pw, apk)
47 for pw ∈ D // Compute pairwise guess
48 count_wins[pw] = 0
49 for all c← D2(pw, e2):
50 for (pw, pw′) ∈ D2

51 winner← B(c, pk[pw], pk[pw′])
52 if winner == 0
53 count_wins[pw]+ = 1
54 else //winner = 1
55 count_wins[pw′]+ = 1
56
57 pw∗ ←⊥ // Compute best guess
58 max_count← 0
59 for pw ∈ D
60 if count_wins[pw] >= max_count
61 max_count = count_wins[pw]
62 pw∗ ← pw
63
64 (pk∗, sk∗)← KGen // Attack using candidate password
65 apk∗ ← BC(pw∗, pk∗)e1 ←$ PK
66 (c∗, tag∗)← Send1(P ′, apk∗)e2 ← Send1(P ′, e1)
67 c∗ ← D2(pw∗, e2)
68 K∗ ← Decap(sk∗, c∗)
69 SK ← KDF(. . . , K∗)
70 SK∗ ← Test(P ′)
71 if SK == SK∗ return 0
72 else return 1

Fig. 8. Attack Algorithm for adversary A using anonymity adversary B to attack security of OCAKE and
CAKE. The attack uses a single transcript to compute the most likely password, then actively attacks a
session with that password. Lines 7 to 21 are used to find the best possible guess out of all passwords using
an anonymity adversary that works on pairs of public keys.
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Oracle Valid (c,pk)
01 sk ← pk.compute_secret_key //unbounded algorithm
02 k ← Decap∗(sk, c)
03 if k ̸=⊥ return True
04 else return False

Fig. 9. Validity oracle Valid outputs True if and only if c decrypts successfully under some secret key
associated with public key pk. Decap∗ is an algorithm that runs decapsulation, but indicates decryption
failures even for implicitly rejecting schemes. This can be instantiated in various ways, e.g. using a re-
encryption check.

We now state our main theorem:

Theorem 2. Let KEM be a Valid-resistant anonymous, strongly robust and δKEM−correct KEM.
Then there exists an efficient algorithm M called the meta-reduction that can use any reduction
R reducing ANO-PCA to BPR security of OCAKE without implementing a programming simulator
SIM to break ANO-PCA of KEM.

Theorem 2 essentially proves that any such reduction R has to be able to break anonymity itself.
We construct the meta-reduction M that simulates a PAKE adversary A towards R as presented
in pseudocode in Fig. 10. In our description we denote by CANO-PCA an anonymity challenger. We
proceed in two steps. We first present M with respect to a CANO-PCA that provides an additional
Valid oracle. Afterwards, we prove that for schemes that make use of the full FO-transform Valid
can be simulated by M itself, turning M into a standard ANO-PCA adversary.
Proof outline. The correctness of the meta-reduction is shown in two parts: First we show that
to the reduction, the meta-reduction behaves as an optimal anonymity adversary. For this we show
how to implement the attack from above using the Valid oracle. Second, we show that the meta-
reduction does not trivialize the challenge for the reduction by showing that the necessary oracles
can be simulated when the KEM is obtained via the FO-transform, including the T-transform. From
that it follows that there can be no general, non-programming reduction, not even a reduction that
only applies to FO-transformed schemes.
The meta-reduction’s adversary A is optimal. By definition, a PAKE adversary wins its game
whenever it distinguishes a session key from random. We show the meta-reduction M’s attack
algorithm instantiated using the Valid oracle behaves as a successful PAKE adversary leveraging
non-anonymity of the scheme. We summarize the stages of the attack. The attacker:

1. generates an authenticated public key apk,
2. queries the reduction’s send oracle to receive (c, tag),
3. determines the most likely public key,
4. derives the password associated with that public key, and
5. attacks a session using that password.

To determine the most likely public key, the meta-reduction makes use of the Valid oracle, querying
on the ciphertext c received from the reduction and each of the candidate public keys pkpwi

associated
with the different passwords.
First, we rule out a special case. Recall that the oracle Valid has a restriction: it rejects queries on
challenge public keys. However, since R is non-programming according to the definition given by
SIM, the public key associated with the password of the session cannot be equal to the challenge key
in the anonymity question. Therefore, the success probability of the meta-reduction is not affected
by this restriction.
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Meta-reduction MR

01 R .init()
02 P, P ′ ← P2 // Choose parties to attack
03 apk ←$ PK // Select the honest pk implicitly
04 (c∗, tag∗)← R.Send1(P ′, apk∗)
05
06 for pw ∈ D: if Valid(c, BC−1(pw, apk)) set pw∗ ← pw // Compute guess
07
08 (pk∗, sk∗)← KGen // Attack using candidate password
09 apk∗ ← BC(pw∗, pk∗)
10 (c∗, tag∗)← R.Send1(P ′, apk∗)
11 K∗ ← Decap(sk∗, c∗)
12 SK ← KDF(. . . , K∗)
13 SK∗ ← R.Test(P ′)
14 if SK == SK∗ return 0 to R, else return 1
15 output bR ← R // Output reduction’s bit

Fig. 10. Left: Algorithm RA consisting of reduction R leveraging PAKE adversary AP AKE to solve CANO’s
challenges. Right: Algorithm MR consisting of meta-reduction M leveraging reduction R to solve CANO’s
challenges. Bottom: Pseudocode for the meta-reduction algorithm using reduction R to break challenges.

To restate: we eliminate from the analysis the case where the decryption of apk under the correct
password matches the challenge public key pk0, since it implies that R is programming.

Valid oracle solves anonymity if KEM is SROB and correct Secondly, we show that the Valid
oracle solves anonymity whenever KEM is strongly robust (SROB) and correct. 7

Giving a single example of a scheme s.t. the meta-reduction holds shows that that there can be no
generic non-programming reduction. Additionally, we argue that the class of schemes for which the
meta-reduction holds includes many that are of practical relevance in post-quantum applications. A
particularly relevant example is Kyber, recently standardized as ML-KEM, which is both anonymous
and strongly robust ([GMP22],[MX23]).
To show that the Valid oracle solves anonymity, we argue that the Valid oracle outputs True if
and only if it is queried on a matching ciphertext-public key pair.

7 The alternative is the case where anonymity holds even against information-theoretic attackers, and the
ciphertext distribution is identical across key pairs.
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Oracle Valid(c, pk)
01 k ← Decap∗(sk[pk], c)
02 if k ̸=⊥ return True
03 else return False

Attack A(pk0, pk1, c)
04 if Valid(pk0, c) return 0
05 else if Valid(pk1, c) return 1
06 else return ⊥

Game SROB-CPA
07 (pk0, sk0)←$ KGen
08 (pk1, sk1)←$ KGen
09 c←$A(., .)(pk0, pk1)
10 k0 ← Decap(pk0, sk0, c)
11 k1 ← Decap(pk1, sk1, c)
12 return Jk0 ̸=⊥ ∧k1 ̸=⊥K

Game G0=ANO-PCA (AValid)
13 (pk0, sk0)←$ KGen
14 (pk1, sk1)←$ KGen
15 (c, K)← Encap(pkb)
16 b′ ← AValid,1-PCO(pk0, pk1, c)
17 return Jb = b′K

Game G1//Correctness
18 (pk0, sk0)←$ KGen
19 (pk1, sk1)←$ KGen
20 (c, K)← Encap(pkb)
21 if Decap(skb, c) ̸= K abort
22 b′ ← AValid,1-PCO(pk0, pk1, c)
23 return Jb = b′K

Game G2//Strong Robustness
24 (pk0, sk0)←$ KGen
25 (pk1, sk1)←$ KGen
26 (c, K)← Encap(pkb)
27 if Decap(skb, c) ̸= K abort
28 if Decap(sk1−b, c) = K abort
29 b′ ← AValid, 1-PCO(pk0, pk1, c)
30 return Jb = b′K

Game G3
31 (pk0, sk0)←$ KGen
32 (pk1, sk1)←$ KGen
33 (c, K)← Encap(pkb)
34 if Valid(pkb, c) ̸= True abort
35 if Valid(pk1−b, c) ̸= False abort
36 b′ ← AValid,1-PCO(pk0, pk1, c)
37 return Jb = b′K

Fig. 11. Game hops in the proof of optimality of an attacker utilizing the Valid oracle to attack anonymity.
Game G0 matches the anonymity game, while the final game G3 matches the attack algorithm.

Lemma 2 (Valid oracle solves anonymity if KEM is SROB and correct). For KEM that is
strongly robust and δKEM−correct, an attacker with access to a Valid oracle (Fig. 9) can win the
anonymity game. More formally, we show that AdvANO-PCA

KEM (AValid) = 1−AdvSROB
KEM (B)− δKEM.

Proof (Lemma 2). We prove Lemma 2 using a game-hopping proof in four games. Starting from
the ANO-PCA game, with the additional oracle, we modify the game by first ruling out correctness
errors. For KEM that is δKEM

corr−correct, we bound the distance to the previous game as |Pr[G1 ⇒
1] − Pr[G0 ⇒ 1]| ≤ δKEM

corr . Secondly we reduce the distance between games G1 and G2 to the
strong robustness property of KEM: |Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ AdvKEM

SROB. Finally, we switch the
decapsulation computations to calls to the Valid oracle. Since the computations in the game then
match the attack, we see that the attacker in game G3 always wins: Pr[G3 ⇒ 1] = 1. Figure 11
shows pseudocode for all game hops in the proof.

Pr[G0] = Pr[G3]︸ ︷︷ ︸
1

− (Pr[G3]− Pr[G2])︸ ︷︷ ︸
0

− (Pr[G2]− Pr[G1])︸ ︷︷ ︸
AdvSROB

KEM (B)

− (Pr[G1]− Pr[G0])︸ ︷︷ ︸
δ

AdvANO-PCA
KEM (AValid) = 1−AdvSROB

KEM (B)− δ

Anonymity is preserved under Validity oracle. To show that the validity oracle does not solve
the challenge for the reduction, we investigate when ANO-PCA security is preserved under addition
of the validity oracle. We formalize this property as validity resistance. Finally, we show that for
certain schemes any successful adversary that makes use of the validity oracle can be converted into
a general anonymity adversary. Finally, we give a reduction in the quantum random oracle model
for the case of FO transformed schemes.

Lemma 3 (FO-transformed schemes are Valid-resistant Anonymous.). Let KEM be con-
structed using the T-transform [HHK17] from a PKE that is γ−spread and δPKE

corr−correct.
Then access to an oracle Valid (Fig. 9) does not significantly improve the advantage of an adversary
in the ANO-PCA game.
Concretely, for an ANO-PCA adversary AValid that additionally has access to the validity oracle
Valid, making qV many queries to Valid , qP many queries to the plaintext checking oracle 1-PCO
and qG queries to random oracle G (the one used to derive randomness), we can construct an



24 Hövelmanns, Hülsing, Kudinov, Ritsch

Fig. 12. Algorithms of FO transformed KEM according to [HHK17].

Reduction B (pk0, pk1, c)
38 b′ ← AValidB (pk0, pk1, c)
39 return b′

Simulated oracle GB(m)
01 r ← G(m) //consistent simulation on challenge
02 if PKE.Enc(pk, m, r) = c∗ return r
03 else return eCO.RO(m)
Simulated oracle ValidB(pk, c)
04 m← eCO.Ec=PKE.Enc(pk,m)(c, pk) //online extraction
05 if m ̸=⊥ return True
06 else return False

Fig. 13. The simulated oracles of Adversary B reducing security under the additional validity oracle to
ANO-PCA security.

ANO-PCA adversary B without access to Valid s.t.

AdvKEM
ANO-PCA(AValid) ≤ AdvKEM

ANO-PCA(B) + qV · δPKE
corr + qV · 2−γ + 12qV (qV + qP + qG)2− γ

2 .

Proof (Lemma 3). We show that ANO-PCA security implies security under the addition of the
Valid oracle, using a reduction in the QROM. Adversary B runs AValid and simulates its oracles by
forwarding the challenge public keys and the queries to the challenge and plaintext-checking oracles
to its ANO-PCA challenger. When AValid outputs a bit, B forwards it to the ANO-PCA challenger
and wins whenever AValid does.
Adversary B simulates the validity oracle ValidB and random oracle GB as shown in Fig. 13. First
we note that there are two cases where the simulated oracle behaves differently from the way is
defined for an unbounded adversary:

– Case 1: ValidB returns False while Valid does not. This case occurs whenever the adversary has
found m s.t. c = PKE.Enc(pk,m, G(m)) without querying G on m. Using Lemma 1 of [HHM22]
and noticing that the simulated Valid oracle implements a decapsulation oracle with reject
internally, we can bound the probability of this event as qV · 2−γ when PKE is γ−spread.

– Case 2: ValidB returns True while Valid does not. This case corresponds to a correctness error
of the KEM: AValid has found a ciphertext s.t. Decap(sk, c) ̸= K for (c,K) ←$ Encap(pk). We
can bound the probability of this event qV · δPKE

corr.
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Secondly, the simulated oracle extracts messages from the random oracle that match the ciphertext.
To argue about this we again make use of the extractable QROM formalism [DFMS22] as well
Lemma 1 of [HHM22].
The simulated ValidB oracle uses the extraction interface eCO.Ef defined relative to a function
f : X × Y = T , where X and Y are the random oracle’s domain and co-domain, respectively,
and T is some other set. Here, we use the encryption function PKE.Enc (pk,m,r) as our function
f , i.e., we extract messages m s.t. for queried public key pk and ciphertext c, we have that c =
PKE.Enc(pk,m, G(m)).
If the adversary has previously made a query that fulfills this predicate, the extraction returns
this message m and the ValidB oracle returns true. In the case that no such query was made, the
extraction returns ⊥ and the ValidB oracle returns false.
Finally, we see using the technique from [HHM22] that the disturbance the online extraction incurs
can be bounded as 8

√
2Γ (f)/|R| with

Γ (f) = max
t

max
x
|{y | R(x, y) = t}| = 2−γ · |R| (2)

since eCO.RO and eCO.Ef almost-commute, and PKE is γ−spread.
We swap the eCO.RO call that produces m with all calls to eCO.E that happen after the adversary
submits c, including the calls inside the validity oracle and the plaintext-checking oracle. Therefore,
we can bound the distance between the games:

AdvANO-PCA
KEM (AValid) ≤ AdvKEM

ANO-PCA(B) + qV · δPKE
corr + qV · 2−γ + 12qV (qV + qP + qG) · 2− γ

2 .
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A (O)CAKE security and BPR model

In this section, we include the security model, as well as a complete proof, restating previous work
in sections that are indicated by a frame.

A.1 Classical BPR proof for OCAKE

In this section, we restate the model and preliminaries given in [AHH+23]. Our security analysis
is based on the BPR model for authenticated key exchange [BPR00]: security of a protocol Π is
modeled through a security experiment in which the attacker interacts with oracles that represent
honest parties (Execute and Send) as well as oracles that represent leakage of secret material (Reveal
and Corrupt), and wins if it can distinguish an established session key from random. The involved
oracles are described in more detail in Fig. 14. To exclude trivial attacks from consideration, [BPR00]

Query Return Value Description

Execute(P, i, P ′, j) (apk, c, tag1, tag2) Passive attack: Return transcript of an honest protocol execution
between parties P and P ′, using the ith/jth session of P /P ′.

Send(P, i, msg, flow) msg′ Active attack: Send message msg to the oracle representing honest
party P , causing it to proceed depending on its state. Flow indicator
enumerates the messages in a run of the protocol and improves
readability of the oracle.

Reveal(P, i) SK[P, i]/⊥ Session key leakage: Return session key SK of (P, i) iff (P, i) termi-
nated, else ⊥; marks this instance and its matching instance "un-
fresh".

Corrupt(P, PWD′) PWD[P, :] Password leakage or overwrite: Either return dictionary of pass-
words PWD[P, :] held by party P , or allow adversary to overwrite
password dictionary with PWD’[P, :].

Testb(P, i) SK[P, i]/SK$ Session key challenge: Attack ith session of party P . Only for fresh,
accepting instances. Returns either real or random session key de-
pending on challenge bit b.

KDF(pw) kpw Random oracle, input password pw ∈ PWD, output Ideal Cipher
key kpw.

H(msg) tag Random oracle, input message msg, output tag ∈ T .

KDF′(msg) SK Random oracle, input message msg, output session key SK ∈ SK.

E(k, m) c Ideal cipher encryption on input (key, message).

D(k, c) m Ideal cipher decryption on input (key, ciphertext).

Fig. 14. Overview of the PAKE adversary’s oracles provided by the security game. Top part (above double
midrule): oracles present in the BPR model. Bottom part: Random oracles and ideal cipher oracles to which
the attacker additionally has access to when attacking the OCAKE protocol.

define a freshness condition (Definition 12 below) that permits revealing a key on one side, and then
testing the other (partnered) side, where partnered is defined as follows:

Definition 11 (Partnering). Two instances (P, i), (P ′, j) are partnered iff both instances have
accepted (i.e. reached an accept instruction) with the same transcript and session key.



On the provable post-quantum security of (O)CAKE 29

Intuitively, ‘unfreshness’ expresses that the adversary may have learned the to-be-tested session’s key
SK in a trivial way, i.e., by having interacted with the oracles revealing secret information in a way
such that SK becomes trivially derivable regardless of the protocol’s nature. Concretely, the cases
we cover in our freshness definition below are a), simply requesting the key from the Reveal oracle,
and b), learning a password pw via Corrupt and then actively interfering with the test session, e.g.,
using pw to manipulate the peer into using a session key of the adversary’s choosing.

Definition 12 (Freshness with Forward Secrecy). Suppose that the adversary made exactly
one Test query, and it was to party P and instance i. We say session i of party P is unfresh if at
any time, there was a Reveal query to instance (P, i) above or the instance (P ′, j) that it is partnered
with. We also say the session is unfresh if both the following conditions hold:

– Before the Test query, there was a Corrupt query on the test session’s holder P or its partnered
peer P ′.

– One of the messages sent to P concerning the test session was manipulated by the adversary,
i.e., there was a Send(P, i) query.

The session of (P, i) is only considered fresh if neither of these conditions are met.

Experiment ExpBPR
Π (A)

07 b
unif←−−−$ {0, 1}

08 b′ ← AOb

(P)
09 return Jb = b′K

Fig. 15. The BPR security game for active adversaries. Ob = indicates the collection of oracles {Execute,
KDF, H, KDF’, E, D, Send, Reveal, Corrupt,Testb}. Here, P is the party set.

Definition 13 (Key indistinguishability of PAKE). Let Π be a PAKE protocol. We say that
an adversary A, run in experiment ExpBPR

Π , wins if it correctly guesses the bit according to which the
test query was defined and if the Test query was issued for a party (P, i) that has terminated and is
fresh (see Definition 12). We define the advantage of A against a PAKE protocol Π as

AdvBPR
Π (A) := |Pr[ExpBPR

Π (A)⇒ 1]− 1/2| .

Our modification of OCAKE uses key confirmation tags in both directions. While only the responder
tag actually is needed for our security proof, we additionally include an initiator tag – following
the ’add client-to-server authentication’ (AddCSA) paradigm [BPR00] – to achieve explicit mutual
authentication.

Definition 14 (Explicit Mutual Authentication). A protocol achieves explicit mutual authen-
tication if parties accept if and only if there exists a partnered party that accepts with the same
output.

A.2 Updated BPR proof for OCAKE

In this section, we fully flesh out our updated BPR security proof. Since we update the classical
BPR proof, we work along the structure of that proof. For the reader’s convenience, we thus re-
peat Fig. 6 from the main body that summarizes the classical proof’s game-hops, which game-hops
need updating, new proof techniques we use to do so, and the resulting loss.
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Game Description Update? Loss
G0 Original BPR game
G1 Abort on KGen Collision. Not necessary n2

a · ηKGen

G2 Abort on KDF Collision. Not necessary |D|2

|Kpw|
G3 IC lazy sampling w/ abort This work (SIM) -
G4 Prevent IC collisions This work (SIM) -
G5 Abort on Tag Collision. This work (CO) 80e2q3

H +2
|T |

G7 Do not decrypt honest c. Not necessary na · δKEM
corr

G6 Sample IC using KGen This work (SIM) -
G8 Abort on tag under correct pw. This work (eCO) Pr[ corrPW ]
G9 Make eCO extractions online. This work (eCO) na · (ns + qH)

√
2/|T |

G10 Randomize public key. This work (SIM) 1
(1−δSIM) ·AdvANO-PCA

KEM + εSIM

G11 Randomize pre-key. Not necessary ns · (na + 1) ·AdvIND-CPA
KEM

G12 Move eCO extractions to end. This work (eCO) na · (ns + qH)
√

2/|T |
G13 Randomize Tag, Session Key. This work (CO) qH

|K|
G15 Randomize Passwords. Not necessary 0

In the following game hops, we will use the notational convention

Advi := |Pr[Gi(A)⇒ 1]| .

We indicate game-hops that need no update (and thus are copy-pasted) by ’restated’.

Game G0: Original BPR game. PAKE Oracles are exactly as in existing proof (but included in the
appendix for reference), however H, KDF,KDF’ and IC are quantumly accessible.

Game G1: Collision Handling KEM key generation. As previously, we have that Adv1 ≤ n2
a · ηKGen.

BEGIN RESTATED

In this game, we abort whenever there are at least two sessions where the same ephemeral key pair
(pk, sk) is sampled by the KEM key generation. Let ηKGenbe the collision probability of KGen. Since
games G0 and G1 are identical unless a collision occurs, we have that:

|Adv0 −Adv1| = Pr[KDFColl] ≤ n2
a · ηKGen

END RESTATED

Game G2: Abort on KDF Collision. In this game, we abort whenever the key derivation function
that maps passwords to block cipher keys outputs a collision on the password space.Since this bound
is only dependent on the choice of KDF and dictionary D, without any adversarial input, we do not
have to model KDF as a random oracle and the bound is statistical. More precisely, if KDF is a
function f : D → Kpw selected uniformly at random, the probability of it mapping any two inputs
pw, pw′ to the same output kpw can be upper-bounded using a simple birthday collision bound:
Adv2 ≤ Pr[ KDFColl ] ≤ |D|2

|Kpw| . labelgame:appendix.IC1

Games G3 and G4 are folded into game G10. labelgame:appendix.IC2
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Game G5: Abort on Tag Collision. One of the informal security goals of PAKE proofs is to rule out
attacks where an adversary can test more than one password in a single online attack. One example
of such an attack is the exploitation of a collision: if there should exist two passwords pw, pw′ s.t.
the responder tag tag computed from them for a given transcript is the same. Then the attacker
could win the game by submitting tag without having uniquely identified the right password.
Therefore, in game G5, we abort whenever the attacker has found such a collision in H. To argue
about the distance between G5 and G4, we use the compressed oracle technique [CFHL21].
Let A be the adversary in the PAKE game. We define an adversary B in the collision-finding game
that runs A and is successful if it outputs x, x′ s.t. H(x) = H(x′) at the end of the game.
B simulates A’s PAKE and random oracle queries. First, B replaces the random oracle with a
compressed random oracle. The compressed random oracle allows B to record A’s queries in a
database.
Then, at the end of the game, B measures the database for collisions. Let R be the relation that
describes a collision in the tag: for distinct x, x′ and arbitrary sk, sk′ we have that H(x)||sk =
H(x′)||sk′. Then we have R ⊆ X l × (T × SK)l for l = 2.

CL := {D|∃x ̸= x′ : D(x) = D(x′) ̸=⊥}

Then, by Corollary 4.2 [CFHL21, Corollary 4.2], we have that for success probability in the original
game p and success probability in the game using the compressed random oracle p′, we have that
√
p ≤
√
p′ +

√
2

|T | .
We now argue about the success probability p′, closely following the reasoning in section 2.3 of
[CFHL21], (Finding a Collision (with Parallel Queries)). Let SZ≤(s−1) be a database of size at most
s− 1. We set k = 1 as we do not model parallel queries, so we have using the transition probability
of a database that does not contain a collision to one that does

√
p′ ≤

q∑
s=1

JSZ≤(s−1)\CL→ CLK ≤
q∑

s=1
2e

√
10 qH

|T |
≤ 2qe

√
10 qH

|T |

where e is Euler’s number. Therefore we conclude p′ ≤ 40q3e2

|T | . From √p ≤
√
p′ +

√
2

|T | we then see
by squaring that

p ≤ p′ + 2
|T |

+

√
2p′

|T |
≤ 40e2(q3 +

√
2q3/2) + 2

|T |
≤ 80e2q3 + 2

|T |

Finally, this allows us to bound the distance:

Adv5 ≤ p ≤
80e2q3

H + 2
|T |

.

labelgame:appendix.IC3

Game G6 is also folded into game G10.

Game G7: Correctness. As previously, Adv7 ≤ na · δKEM
corr .

BEGIN RESTATED

In game G7, whenever there is a flow 2 query where the message was honestly generated by a
matching session, we do not decapsulate to obtain the pre-key. Instead, if the message was generated
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Send2
G6 (P, i, msg) Send2

G7 (P, i, msg)
01 c, tag1 ← msg
02 K′ ← Decap(sk, c) if forward : K′ ← responder’s key K
03 else: K′ ← Decap(sk, c)
04 if tag1 = H(pw, apk, pk, c, K′, ”r”):
05 tag2 ← H(pw, apk, pk, c, K′, ”i”)
06 SK ← KDF′(tag1, K′)
07 K[(P,i)]← SK
08 return tag2
09 else: return ⊥

Fig. 16. In game G7, whenever forward occurs (i.e., c is a matching responder’s honest ciphertext) we use
the responder’s pre-key K instead of decapsulating c.

by a matching session, we use the pre-key generated by that instance. Adversarially generated
messages as well as ones that are forwarded from a non-matching session are decapsulated as before.
This step is done in preparation for the reductions in the following two game hops. Games G6 and G7
are indistinguishable unless a correctness error occurred in game G6 and therefore |Pr[corrPWG6 ]−
Pr[corrPWG7 ]| = |Adv6 −Adv7| = na · δKEM

corr .

END RESTATED

Game G8: Abort on tag under correct pw. We now abort whenever the adversary actively interacts
with a session, meaning the session is not the execution of two honest parties and submits a tag
that was generated using the correct password. This models the case that the attacker successfully
guessed the password and used it to attack an honest part, which can happen both for

1. initiators, in which case the attacker sent a responder tag tag that uses the correct password,
and for

2. responders, in which case the attacker sent an apk that uses the correct password.

Here we focus on case 1, since the other case is handled by simulation SIM (see 3). We need
to adapt previous classical reasoning about this change to capture that oracle H now is quantum-
accessible – previous reasoning exploited that game and reductions can observe the issued queries
to H, thus being able to immediately notice that tag was generated with the correct password. As a
quantum counterpart to this approach, we use the extractable QROM formalism [DFMS22].

This models quantum-accessible random oracles like H as an extractable compressed random
oracle eCO that has two interfaces, random oracle interface eCO.RO and an extraction interface eCO.Ef

that is defined relative to a function f : X×Y = T , where X and Y are the random oracle’s domain
and co-domain, respectively, and T is some other set. For our purposes, we identify X with the
domain of H, so X := K×D×PK2×C, and Y := T := T ×SK, the tag and session key space. Since
we want to isolate the first part of the output, we choose the function f defined by the projection
onto the tag space f(input, y = (tag,K)) = tag. Extraction interface eCO.Ef takes as input a classical
value t ∈ T . It does a quantum analogue to going through the random oracle queries and returning
an x such that f(x, H(x)) = t: it performs suitable measurements that collapse the oracle database,
just enough so that the classical procedure would yield one particular outcome x for all parts of the
superposition. For our choice of f , eCO.Ef (tag) simply returns a random oracle pre-image of tag||sk
for any sk.

Equipped with this extraction interface, the game waits until the attacker has finished and
then calls eCO.Ef on all ’dishonest’ tries, i.e., all tags tag that were received by an honest initiator
whose password was not corrupted, without tag having been computed during a preceding honest
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execution of the respective responder. The game aborts if there exists a dishonest tag such that
eCO.Ef (tag) returns a pre-image (K, pw, apk, pk′, c) such that (K, apk, pk′, c) matches the values
which the initiator computed during the session to which the tag belongs. Since we already ruled
out random oracle collisions, this in particular means that pw is the correct password. We denote
this event by corrPW . We note that the extraction queries themselves do not change A’s view since
they are performed only after A finished [DFMS22, Th. 4.3, item 1].
We can now conclude that

Adv8 ≤ Pr[ corrPW ]G8 .

Like in previous (classical) proofs, the change of probability for corrPW can be traced through the
subsequent games G8-G14, by building anonymity and indistinguishability reductions that define
their output based on corrPW .

Game G9: Make eCO extractions online. In this game, we switch to online extraction of the oracle
used to derive the tag and session key. Instead of performing the extraction queries determining
corrPW after running the attacker, we perform them already during the session runs. Whenever

the attacker sends a tag tag to an honest initiator whose password was not corrupted, without
tag having been computed during a preceding honest execution of the respective responder. This
change is in preparation for the following two game hops, where the reductions need to detect certain
edge-cases of adversarial input during the game.

To argue that this introduces little change, we use [DFMS22, Th. 4.3]: by properties 2.b and 2.c
of Th. 4.3, any two subsequent queries to eCO.RO and eCO.Ef 8

√
2Γ (f)/|K| · |T |-almost-commute,

where

Γ (f) = max
t

max
x
|{y | f(x, y) = t}|, (3)

which for our choice f(x, (tag,K)) = tag equals |K|. This means that we can commute the extraction
queries into the game to right after when the respective Send query was received. We need to
commute at most na · (ns + qHH) many times until the extractions are at the right place, thus
Adv9 ≤ na · (ns + qH)

√
2/|T | and also |Pr

[
corrPW G8

]
−Pr

[
corrPW G9

]
| ≤ na · (ns + qH)

√
2/|T | .

Game G10: Randomize public-key pk. In this game, we randomize the public key used to create the
responder ciphertext. First we recall the setting: in order to unlink the first (apk) and second (c, tag)
protocol message, we argue that the ciphertext c does not leak which ciphertext was used to create
it. More formally, we replace the public key used to derive c with a fresh uniformly random one, and
reduce the distance in the games induced by this change to the ANO-PCA security of KEM.
We give a reduction that simulates the PAKE game for an adversary A that distinguishes BPR game
G10 from G8 and uses A to solve its ANO-PCA challenge. Consider the different query patterns
that the reduction has to address. First we note that sessions that are passively attacked (queries
to Execute) or those where the initiator is honest can always be simulated without the use of
programming in the ideal cipher: honest parties simply use the challenge public keys in place of their
honest keys.
The more involved case is the one where the responder is honest, but the initiator is not: this setting
involves an adversarially chosen encrypted public key apk that is decrypted by the honest responder
into a public key. In order to move to game G10, where ciphertexts c are independent of the real
public keys (or more accurately, the real password), the reduction reprograms decrypted public keys
to challenge public keys in the ANO-PCA game.
We now show this proof step using only reprogramming according to the capabilities of SIM described
above.
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In a first step, the reduction answers all queries to E and D using the respective oracles of SIM.
This change to SIM is not perfectly indistinguishable, therefore we have Adv10,1 ≤ εSIM where εSIM
by definition of SIM.

The challenge set X used to initiate SIM is equal to the first set of public keys {pk0,0, pk0,1, . . .
pk0,na} provided by the anonymity challenger. This is the set that indicates the ‘real’ public keys,
while the set {pk1,0, pk1,1, . . . pk1,na} indicates the independent keys used after the reduction. Now,
whenever the adversary submits a value apk for a session associated with password pw and key
k ← KDF(pw), apk decrypts to a challenge public key whenever SIM programs successfully For
naactively attacked sessions, we have by definition of SIM that

Pr[( ⃗apk, s⃗id)← ASIM(X ) : DSIM(k, apki) ∈ X∀(sidi, apki) ∈ (s⃗id, ⃗apki)] = 1− δSIM.

The reduction, on input apk, therefore decrypts apk to some challenge public key pk0,j ∈ X and
queries its challenger for a fresh anonymity challenge c related to that public key, and uses that in its
response. That way, the adversary receives a ciphertext matching either pk0 or pk1 in each session,
exactly as in the two games.

Finally, we note that since the reduction simulates all of A’s oracles, so there is an edge case to
consider: the case where A corrupts a party after it has queried the Send0 and Send1, but before it
queries Send2 for matching sessions while forwarding messages. In this case, the oracle Send2 uses a
challenge public key pk0 that the attacker now knows due to the corruption. However, the reduction
does not have the secret key associated with the public key, and it cannot decapsulate the ciphertext
and recompute the tag. Therefore, when the oracle decides whether or not to reject an adversarially
generated (c, tag), the reduction has use the extraction interface of the extractable random oracle
eCO to determine the pre-key that was used by the adversary. Then, the reduction can query its
plaintext-checking oracle to decide if the message should be rejected or not. Since we switched to
the extractable oracle in a previous game, this does not incur any additional loss here.

Finally, the reduction outputs 0 whenever A wins, and 1 else. Therefore, the reduction wins
whenever A wins and SIM successfully programmed for all its queries and we have Adv10,2 ≤

1
(1−δSIM) ·AdvANO-PCA

KEM . We then arrive at the bounds

Adv10 ≤ Adv10,1 + Adv10,2 ≤
1

(1− δSIM) ·AdvANO-PCA
KEM + εSIM.

|Pr
[

corrPW G9

]
− Pr

[
corrPW G10

]
| ≤ 1

(1−δSIM) ·AdvANO-PCA
KEM + εSIM.

Game G11: Randomize pre-key K. As previously, Adv11 ≤ ns · (na + 1) ·AdvIND-CPA
KEM .

BEGIN RESTATED

For all queries to the Send or Execute oracles where flag trivGuess is not raised before the query,
we now randomize the pre-key K that is used to derive the final session key and the responder tag.
For more details, see the pseudo-code in Figure 17. This change makes the pre-key independent of
the ciphertext and the password for all fresh sessions. We now argue that an adversary noticing this
change can be used to attack the indistinguishability property of the KEM. We define adversary BIND

0
against the IND-CPAn,qC

experiment (defined in Fig. 3) as follows (for the sake of formality, we give
the pseudo-code of BIND

0 in Fig. 18):
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Send1
G10 (P, i, msg) Send1

G11 (P, i, msg)
01 apk ← msg
02 kpw ← KDF(pw)
03 pk′ ← D(kpw, apk)
04 if PK[(kpw, apk)] ̸=⊥:
05 pk′

$ ← PK[(kpw, apk)]
06 else:
07 (pk′

$, sk$)←$ KGen
08 PK[(kpw, apk)]← pk′

$
09 (c, K)←$ Encap(pk′

$)
10 K$

unif←−−−$K
11 tag1 ← H(pw, apk, pk′, c, K, ”r”) tag1 ← H(pw, apk, pk′, c, K$, ”r”)
12 return c, tag1

Fig. 17. In game G11, the pre-key set after querying Send or Execute is sampled independently of the
password and the previous messages. Due to the change in game G7, this also randomizes the initiator side
and we also write K′

$ ← K$.

Adversary BIND
0

01 input p⃗k
02 pkIndex = 0
03 b

unif←−−−$ {0, 1}
04 b′ ← AOb

(p⃗k)
05 b′

IND := [b = b′]
06 output b′

IND

Send1(P, i, msg)
07 kpw ← KDF(pw)
08 if ∃ record PK[(kpw, apk)]: //handle replays
09 pk′

$ ← PK[(kpw, apk)]
10 else:
11 pk′

$ ← p⃗k[pkIndex]
12 pkIndex += 1
13 PK[(kpw, apk)]← pk′

$
14 find j s.t. pk′

$ = p⃗kj

15 (c, K)← Chall(j)
16 tag1 ← H(pw, apk, pk′, c, K, ”r”)
17 return c, tag1

Fig. 18. IND-CPAn,qC adversary BIND
0 , used to reason about the hop from game G10 to G11. The set of

oracles is O = {KDF, KDF’, E, D, Execute, Send, Reveal, Corrupt}.
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BIND
0 receives a vector of challenge public keys p⃗k, of dimension n = ns and can query its challenge

oracle Chall, provided by its IND-CPAn,qC
challenger, at most qC = na + 1 many times. BIND

0
samples a challenge bit b′, runs A and answers A’s queries to the Oracles H, E, KDF, Reveal,
Send0,Send2, and Testb′ according to the oracles in G10.
On Send1 queries, BIND

0 issues a Chall(j) query to its own challenger receive (c∗,K∗), where j is
the index of the public key which it uses to answer the query. If trivGuess has been raised, BIND

0
generates a key pair and continues the protocol honestly without inserting any challenges in this
session. If the same apk is submitted multiple times for sessions using the same password, the game
is kept consistent by re-using the respective public key. When A outputs a guess b, BIND

0 checks if
b = b′. In the case that b = b′, it returns 1 as its own output bit, otherwise, it returns 0.

BIND
0 perfectly simulates G10 when run in the IND-CPAns,na+1- game with challenge bit 0, G11 when

run with challenge bit 1, and returns 1 if the adversary wins. Therefore, the difference between A’s
winning probabilities in games G10 and G11 is upper bounded by the respective IND-CPAns,na+1
advantage of BIND

0 against KEM:

|Adv10 −Adv11| ≤ ns · (na + 1) ·AdvIND-CPA
KEM (BIND

0 )

To keep track of the change in the probability of Pr[corrPW], we can adapt the reduction BIND
0

exactly like in the game-hop before by redefining the output bit to be 1 iff corrPW occurred and
|Pr[corrPWG10 ] − Pr[corrPWG11 ]| ≤ ns · (na + 1) ·AdvIND-CPA

KEM (BIND
1 ). At this point, pre-key K (for

sessions between non-corrupted parties) is independent of the password and the protocol messages.

END RESTATED

Game G12: Move eCO extractions to end of game. In this game, we switch back to offline extraction,
i.e., we only perform the extraction queries determining if a tag was valid after running the attacker.
This is done in preparation for the next step that relies on measuring the compressed database at
the end of the game. With the same reasoning as for game G9, we find

Adv12 ≤ na · (ns + qH)
√

2/|T |

and
|Pr

[
corrPW G11

]
− Pr

[
corrPW G12

]
| ≤ na · (ns + qH)

√
2/|T | .

Game G13: Randomize Tag & Session Key. In the penultimate step of the proof, we randomize
the responder tag tag and the session key SK, i.e., we simply sample random values from T and
SK, and return them as tag and session key. Recall, that in Game G12 the tag and session key are
computed as (tag, SK)← H(K$; pw, apk, pk′, c) where K$ is a fresh uniformly random sample from
K that is not used anywhere else in the protocol. Hence, the values in both games follow the same
marginal distribution. However, in Game G12 they are consistent with the random oracle, while in
Game G13 they are not.

Intuitively, an adversary can only notice this inconsistency in Game G13 if it ever learned the
value of H at position x∗ = (K$; pw, apk, pk′, c). Given that we simulate H using the compressed
oracle technique, this means that the difference between this and the last game can be bounded by
the probability that the final database D of the compressed oracle in Game G13 contains a value
for x∗ when measured in the end, i.e.,

Adv13 ≤ Pr[D(x∗) ̸= ⊥].
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It remains to quantify Pr[D(x∗) ̸= ⊥]. For this, note that in Game G13, K$ is not used anywhere in
the protocol anymore and therefore the whole view of the adversary is independent of K$. For that
reason, we can delay the sampling of K$ until after we measured the database D. The database D
has qH entries. The probability that one of them is of the form (K$; pw, apk, pk′, c) for any value of
K$ is therefore upper bounded by 1/|K| and therefore

Adv13 ≤ Pr[D(x∗) ̸= ⊥] ≤ qH

|K|
.

Game G14: Randomize Passwords. It remains to upper-bound corrPW . In this game, the attacker’s
view is completely independent of the chosen passwords, up to corrupted ones. This means that we
can replace all non-corrupted passwords with fresh ones at the end, after running the attacker, and
defining event corrPW with respect to the resampled ones. We note that there exists exactly one
pre-image (K, pw, apk, pk′, c) per tag that could trigger corrPW , and that the simulation SIM does
not raise this flag as it did in the previous proof.

We can now bound the probability of corrPW in game G8, using the number of send queries
and the password distribution. Assuming a uniform distribution on a password dictionary of size
|D|, and upper-bounding A’s number of send queries by na,

Pr[ corrPW G14
] ≤ na

|D|

And therefore Pr[ corrPW G8
] ≤

∑14
i=8 Pr[ corrPW Gi

].
Since the passwords and session keys are completely random from the adversary’s view, we have

that |Pr[G14(A)⇒ 1]| = 1
2 . We can finally sum up the terms and state the bound:

AdvBPR
OCAKE(A) ≤

14∑
i=0
|Pr[Gi(A)⇒ 1]|

≤ na

|D|
+ n2

a · ηKGen + |D|2

|Kpw|
+ 80e2q3

H + 2
|T |

+ na · δKEM
corr +

+ 4 · na · (ns + qH)
√

2/|T |+ 2 · ( 1
(1− δSIM) ·AdvANO-PCA

KEM + εSIM)

+ 2 · ns · (na + 1) ·AdvIND-CPA
KEM + 2 · qH

|K|

B Notes on (O)CAKE security and the ideal cipher model

To give intuition for the needed properties of SIM, this section recollects the various generic attacks
on PAKE protocols, how these attacks inflict conditions on OCAKE’s building blocks, and the proof
techniques used to capture these conditions when idealizing the block cipher as an ideal cipher.

Generic attacks on (O)CAKE and their relation to the ideal cipher

We now recollect generic attacks on PAKE protocols, how they relate to OCAKE’s building blocks,
and the usage of the ideal cipher in security proofs.
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Initialisation

01 for (P, P ′) ∈ P × P
02 pw ←$ PW()
03 PWD[{P, P ′}] ← pw

Execute(P, i, P ′, j)

04 apk ← Send0(P, i,⊥)
05 c, tag ← Send1(P ′, j, apk)
06 Send2(P, i, (c, tag))
07 MANIP[{P,:}]← false
08 return (apk, c, tag2, tag1)

Corrupt(P, PWD’)

09 PWDP ← PWD[{P, :}]
10 CRPT[{P,:}]← true
11 PWD[{P, :}] ← PWD’[{P, :}]
12 return PWDP

Reveal(P, i)

13 RVL[(P, i)]← true
14 return SK[(P, i)]

Testb(P, i)

15 SK0 ← K[(P, i)]
16 SK1

unif←−−−$ SK
17 if (CRPT[{P,P’}] and MANIP[(P, i)])
18 or if (RVL[(P, i)] or RVL[(P ′, j)])
19 or if (K[(P, i)] =⊥): return ⊥
20 else: return SKb

Send0(P, i, msg)

21 MANIP[(P, i)]← true
22 kpw ← KDF(pw)
23 (pk, sk)←$ KGen
24 apk ← E(kpw, pk)
25 return apk

Send1(P, i, msg)

26 MANIP[(P, i)]← true
27 apk

parse←−−−msg
28 kpw ← KDF(pw)
29 pk′ ← D(kpw, apk)
30 (c, K)←$ Encap(pk′)
31 tag, SK ← H(K, pw, apk, pk′, c)
32 SK[(P, i)]← SK
33 return (c, tag)

Send2(P, i, msg)

34 MANIP[(P, i)]← true
35 c, tag1

parse←−−− msg
36 K′ ← Decap(sk, c)
37 tag′, SK′ ← H(K′; pw, apk, pk, c)
38 if tag′ = tag
39 SK[(P, i)]← SK

Fig. 19. The oracles in the security game for OCAKE. PWD is the dictionary of the parties’ passwords and
CRPT, MANIP and RVL indicate the corruption status of a session. Password generation in the initialization
phase (Initialization) is modeled using the long-lived key generator P W .

Initialisation

01 for (P, P ′) ∈ P × P
02 pw ←$ PW()
03 PWD[{P, P ′}] ← pw
04 P K ← ∅

Send0(P, i, msg)

05 MANIP[(P, i)]← true
06 kpw ← KDF(pw)
07 (pk, sk)←$ KGen
08 if pk ∈ P K abort
09 P K = P K ∪ {pk}
10 apk ← E(kpw, pk)
11 return apk

Fig. 20. The game change for game G1 Abort on KGen Collision.
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Initialisation

01 for (P, P ′) ∈ P × P
02 pw ←$ PW()
03 PWD[{P, P ′}] ← pw
04 P K ← ∅
05 Lpw ← ∅
Send1(P, i, msg)

06 MANIP[(P, i)]← true
07 apk

parse←−−−msg
08 kpw ← KDF(pw)
09 pk′ ← D(kpw, apk)
10 (c, K)←$ Encap(pk′)
11 tag, SK ← H(K, pw, apk, pk′, c)
12 SK[(P, i)]← SK
13 return (c, tag)

Send0(P, i, msg)

14 MANIP[(P, i)]← true
15 kpw ← KDF(pw)
16 if kpw ∈ Lpw abort
17 Lpw = Lpw ∪ {kpw}
18 (pk, sk)←$ KGen
19 if pk ∈ P K abort
20 P K = P K ∪ {pk}
21 apk ← E(kpw, pk)
22 return apk

Fig. 21. The game change for game G2 Abort on KDF Collision.

Initialisation

01 for (P, P ′) ∈ P × P
02 pw ←$ PW()
03 PWD[{P, P ′}] ← pw
04 P K ← ∅
05 Lpw ← ∅
06 C ← ∅
Send1(P, i, msg)

07 MANIP[(P, i)]← true
08 apk

parse←−−−msg
09 kpw ← KDF(pw)
10 pk′ ← D(kpw, apk)
11 (c, K)←$ Encap(pk′)
12 C ← C ∪ c
13 tag, SK ← H(K, pw, apk, pk′, c)
14 T AG← T AG ∪ tag
15 SK[(P, i)]← SK
16 return (c, tag)

Send2(P, i, msg)

17 MANIP[(P, i)]← true
18 c, tag1

parse←−−− msg
19 K′ ← Decap(sk, c)
20 if c ∈ C : K′ ← K
21 tag′, SK′ ← H(K′; pw, apk, pk, c)
22 if tag′ = tag
23 SK[(P, i)]← SK

Fig. 22. The game change for game G7 Do not decrypt honest c. Set the responder’s pre-key to the matching
initiator’s.
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Initialisation

01 for (P, P ′) ∈ P × P
02 pw ←$ PW()
03 PWD[{P, P ′}] ← pw
04 P K ← ∅
05 Lpw ← ∅
06 C ← ∅
07 T AG← ∅

Send2(P, i, msg)

08 MANIP[(P, i)]← true
09 c, tag1

parse←−−− msg
10 K′ ← K
11 tag′, SK′ ← H(K′, pw, apk, pk, c)
12 if tag′ = tag
13 if not tag ∈ T AG and not CRPT[{P,P’}] abort
14 SK[(P, i)]← SK

Fig. 23. The game change for game G8 Abort on correct password. Abort if we receive a tag that is correct
unless it is honest or the password was corrupted.

Send1(P, i, msg)

01 MANIP[(P, i)]← true
02 apk

parse←−−−msg
03 kpw ← KDF(pw)
04 pk′ ← D(kpw, apk)pk$ ← PK
05 (c, K)←$ Encap(pk′)(c, K)←$ Encap(pk′

$)
06 C ← C ∪ c
07 tag, SK ← H(K, pw, apk, pk′, c)
08 T AG← T AG ∪ tag
09 SK[(P, i)]← SK
10 return (c, tag)

Fig. 24. The game change for game G10 Anonymity.

Send1(P, i, msg)

01 MANIP[(P, i)]← true
02 apk

parse←−−−msg
03 kpw ← KDF(pw)
04 pk$ ← PK
05 (c, K)←$ Encap(pk′

$)
06 K$ ←$K
07 C ← C ∪ c
08 tag, SK ← H(K, pw, apk, pk′, c)tag, SK ← H(K$, pw, apk, pk′, c)
09 T AG← T AG ∪ tag
10 SK[(P, i)]← SK
11 return (c, tag)

Fig. 25. The game change for game G11 Indistinguishability.
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Send1(P, i, msg)

01 MANIP[(P, i)]← true
02 apk

parse←−−−msg
03 kpw ← KDF(pw)
04 pk$ ← PK
05 (c, K)←$ Encap(pk′

$)
06 C ← C ∪ c
07 K$ ←$K
08 tag, SK ← H(K$, pw, apk, pk′, c)
09 T AG← T AG ∪ tag
10 tag$ ←$ T ,SK$ ←$ SK
11 SK[(P, i)]← SK SK[(P, i)]← SK$
12 return (c, tag)return (c, tag$)

Fig. 26. The game change for game G13 Randomize Tag and Session key.

Dictionary attacks and anonymity The first type of attack on PAKE protocols, including
OCAKE, is a dictionary attack. In a dictionary attack, an attacker observes the protocol message
exchanged between honest parties and attempts to extract information about the password (i.e.,
the long-term secret) from the protocol messages. As the password is what authenticates the honest
parties, any successful dictionary attack which recovers the password results in a complete loss of
security. For OCAKE (and CAKE), it is thus crucial that the second protocol message does not re-
veal the public key pk that was sent in the first message: knowing pk would allow to test password
guesses, by encrypting pk under the different passwords and comparing the result against apk. For
OCAKE, the second protocol message is a KEM ciphertext, it is thus natural to require that KEM
satisfies anonymity, i.e., that KEM ciphertexts do not indicate to which public key they belong.
Accordingly, the known security proofs utilize a reduction to the anonymity of KEM. This reduction
has to distinguish ciphertexts belonging to proper public keys from ciphertexts belonging to random
keys, and tricks the attacker into solving this task by programming its challenge public keys into
suitable positions of the ideal cipher. This shows up, e.g., in game G9 of the OCAKE security proof
given in [AHH+23], and in games G8, G9 and G10 of the CAKE security proof given in [PZ23].

In section 5 we show an attack on the protocol based on a lack of anonymity.
Dictionary attacks and public-key uniformity Another dictionary attack vulnerability appears
for OCAKE (and CAKE) if the message apk does not decrypt to a valid public key under every
password, as attackers can then rule out the passwords for which decrypting apk would yield an
invalid public key. This can be captured by requiring that the KEM additionally satisfies public-key
uniformity, i.e., that the public output parts of KGen are indistinguishable from random elements
in the range of BC−1. Similar to the anonymity reduction, the uniformity reduction will trick the
attacker into solving the task at hand by programming its challenge public keys into suitable positions
of the ideal cipher.
Password guessing attacks and extraction Since the passwords are assumed to be low-entropy,
it is possible for attackers to guess the password and use their guess to attempt at a successful
interaction with (or ’online’ attack on) the honest party. Security proofs bound the probability of
this event based on the dictionary size and leakage from previous sessions. This requires, however,
that the involved security reductions can efficiently detect this event - the reductions are used to
randomize certain outputs, but only if no password guess occurs, since in that case the randomization
would be noticeable by the adversary. This means that we need a way to extract the password that
is associated to the adversary’s message.
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Collision attacks The security of PAKE protocols significantly decreases if attackers can use a
single interaction (or ’online’ attack) with an honest party to rule out several passwords from the
(already comparably small) list of passwords. Accordingly, the next attack vector we consider are
collision attacks, i.e., attacks that leverage the fact that an adversarially chosen protocol message
would work for several distinct passwords. The proofs therefore will argue at some point that the
attacker cannot come up with a message that could be used to rule out or confirm more than 1
password. (An equivalent requirement holds for UC PAKE). For OCAKE, an adversary could find
an apk value s.th. apk is a valid encryption for two distinct passwords and public keys chosen by
the adversary (pw, pk), (pw′, pk′), i.e., such that we have apk = BC(pw, pk) = BC(pw′, pk′), meaning
the adversary might be able to try both passwords at once. Modeling BC as an ideal cipher and
the derivation functions as random oracles, the proof of OCAKE accordingly eliminates/bounds the
probability of certain collision events, as seen in games G0 to G5 [AHH+23]. Looking ahead, we will
have to find equivalent counterparts to these arguments in the setting where the involved oracles are
quantum-accessible. We have shown that the last remaining piece to the security proof of OCAKE
considering quantum attackers is the reduction towards anonymity. In the classical proof, this step
makes use of the ideal cipher model. However, when proving security against quantum attackers, we
have to model the block cipher in a way that lets an attacker query it on arbitrary quantum states.
To the best of our knowledge, there is currently no way to argue simulation of a quantumly accessible
block cipher that allows for proof techniques such as reprogramming, lazy sampling of extraction in
an equivalent way. Indeed, it may prove impossible to achieve these properties. However, it was never
shown that using programmability is the only way to prove the statement. Hence, we are taking a
step back and try and figure out the exact requirements on a simulator for the ideal cipher (and if
we need one at all). To this end, we first provide more technical details and outline properties of the
ideal cipher that play an important role in the existing proofs of both OCAKE (B) and CAKE (B).
This analyses also allows us to determine some lower bounds on the parameters of SIM.

Role of the ideal cipher in the proof of OCAKE In this section, we recall the important role
played by the ideal cipher in the proof of OCAKE that was given in [AHH+23]. Intuitively, the
relevant proof steps have the following purpose: they unlink the first and second message in the
protocol to prevent dictionary attacks on the password. In the proof of OCAKE, this is reflected as a
reduction to the anonymity property of KEM, performed in game G9. We will now briefly describe
the role of the ideal cipher in that part of the proof.
In order to be successful, the anonymity reduction simulates the game to the attacker in a way that
suitably places its challenges: it needs to make sure that (1) the ciphertexts used by the (simulated)
responder are its challenge ciphertexts and (2) these ciphertexts are consistent with the protocol
execution. It is convenient to argue separately about the case where the attack is on the responder
or initiator side of the protocol. I.e., when the attacker is on the responder side, the reduction
simulates the initiator oracle, and vice versa.
When simulating the initiator oracle, the reduction uses a challenge public key provided by the
anonymity challenger and writes it into the ideal cipher simulation. This step is equivalent to querying
IC encryption on that public key.
Conversely, when simulating a responder oracle, the reduction uses a challenge ciphertext whenever
apk decrypts to one of its challenge public keys. An arising subtlety, however, is that the received
apk might not have originated from the initiator oracle, but rather be a value that the attacker
chose. This is problematic because the simulated responder needs to answer its query according to
the honest decryption of this apk. Therefore, if the reduction wants to answer the query with a
challenge ciphertext, the decryption must correspond to a challenge public key.
In the classical proof, the reduction simply answers all ideal cipher decryption queries (made by
either adversary or game) with challenge public keys, unless the requested apk originates from a
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previous query in the forwards direction, i.e., a query to IC for some pk under the correct password
of that session. This is shown schematically in Fig. 27. In consequence, D will return a challenge
public key, thus circumventing the issue of not being able to output a challenge ciphertext in every
session, unless the adversary made a forwards query with the correct password. In the proof of
OCAKE, the probability of an attacker making such a forwards query is bounded by the probability
of the attacker guessing the password of some session. There is one more subtlety to this step: in

Fig. 27. Schematic view of anonymity reductionR, used to decouple KEM ciphertexts from their originating
public keys. R receives challenge public keys and ciphertexts from ANO-PCA challenger C and interacts with
the PAKE adversary A to solve its challenges. R provides the PAKE BPR oracles and the ideal cipher
oracles.
When receiving a message apk from A whose decryption pk∗ equals a challenge public key pki, R responds
with an anonymity challenge c. A can make arbitrary quantum queries to IC at any time. (shown in red).

the case that public keys of KEM are not uniformly random elements of the message spaceM of the
cipher, reprogramming outputs changes the output distribution. To address this issue, the proof adds
a preliminary step that changes all decryption output samplings to be outputs of the key generation
KGen in proof step G6. This step reduces the distance of the change to the public key uniformity
PKU of KEM.
Take-away: exploited IC properties To summarize, the proof exploited the following properties
of the ideal cipher model: a reduction simulating IC can

– observe and keep a list of all queries issued by the attacker, thereby being able to extract the
information that a correct password guess occurred from the received apk; and

– embed challenges into the ideal cipher outputs when it suits its goals, circumventing potential
inconsistencies by using the query list to account for previous IC queries.

Role of the ideal cipher in the proof of CAKE We now also briefly describe the ways in
which the CAKE proof given in [PZ23] relies on similar properties of the two involved ideal ciphers
(E1,D1,E2,D2). There are four game-hops that require embedding challenge values into the ideal
ciphers’ decryption outputs:

– Game G2: Decryption queries to the first cipher D1 are sampled using KEM key generation (KEM
fuzziness/Public-key uniformity)

– Game G8: B4 embeds challenge ciphertexts c into queries to D2 (OW-rPCA security of KEM)
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Fig. 28. Proof techniques used in the existing OCAKE proof: (r) In order to insert its anonymity challenges
into the communication, the anonymity reduction sets all IC decryption outputs to challenge public keys.
(l) Identifying correct password guesses (raising flag corrPW ) requires checking if an (adversarially chosen)
apk resulted from an (adversarial) IC encryption query that used the correct password.

– Game G9: B5 embeds challenge public keys pk into queries to D1 (OW-PCA security of KEM)
– Game G10: B6 embeds challenge public keys pk into queries to D1 (ANO-PCA security of KEM)

Two of these cases are conceptually equivalent to steps in the security proof for OCAKE. (Game
G2 for CAKE conceptually resembles game G6 in the proof of OCAKE, and game G10 for CAKE
conceptually resembles OCAKE game G7). The other two games pose additional requirements: Game
G8 concerns the second ideal cipher that is used in the CAKE protocol, and does therefore not have
a direct equivalent. The change in game G9 of CAKE is conceptually equivalent to the change in
game G10 of OCAKE. Notably though, this step requires programmability, whereas the equivalent
step in OCAKE (G10 towards IND-CPA) does not due to its alternative proof structure. For OCAKE,
the proof uses the anonymity of KEM before one-wayness or indistinguishability.

This difference also results in a difference in the requirements on KEM: OCAKE relies on the
stronger notion of ANO-PCA security, while CAKE only requires weak anonymity. To summarize the
difference, strong anonymity also holds for adversaries that have access to the key contained in the
encapsulation. Since we aim to minimize the amount of programming done in the proof in this work,
we will continue the analysis for the case of the OCAKE protocol.

This analyses also allows us to determine some lower bounds on the parameters of SIM.
Lower bounds on SIM parameters Now that we have shown that the simulation above is both
necessary and sufficient to prove the security of OCAKE, we discuss its instantiation. When modeling
assuming purely classical adversaries, we see that lazy sampling and reprogramming according to
the ideal cipher model provides the necessary properties. As soon as we model quantum queries,
these properties are no longer obvious. In this work we defined the minimum necessary properties
as a first step to bridge the gap to a proof against quantum attackers. Since the new setting allows
both quantum and classical attacks, we can use classical reasoning to define some lower bounds on
the achievability of SIM.

We see that SIM is defined by two parameters, εSIM and δSIM. Informally, εSIM indicates the
distance between the simulation and an ideal cipher, which can also be interpreted as the probability
of distinguishing one from the other of an adversary interacting with one. An example would be the
case where the simulation reprograms an already queried position: an adversary making two queries
would detect this.

Parameter δSIM can be interpreted as the success probability of programming. This parameter
will depend both on the instantiation of SIM as well as the setting where SIM is used: the adversary
could output values that were the result of encryption queries. In those cases, the decrypted value
is adversarially chosen (unless SIM reprograms the output). in the case of PAKE, this only happens
whenever the attacker correctly guesses the password of a session, and we can upper-bound that
probability. However, the probability of such an event still gives a lower bound on δSIM and εSIM.
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Intuitively, either δSIM or εSIM or some combination of the two must be larger than the probability
of this event. In the case of OCAKE, the relation takes the form ε + δ ≥ Pr[ corrPW ] = na

|D| for na

actively attacked sessions and a password dictionary D.
Note that these lower bounds apply both in the classical and the quantum case.
Collisions in SIM and IC The final case to discuss is that of collisions: an ideal cipher IC : D×M→
M always contains points s.t. for two passwords (pw, pw′) ∈ D2 and two messages (m,m′) ∈M2, we
have that E(kpw,m) = E(pw′,m). An adversary that can find such collisions can more easily trigger
the bad case where the decryption is outside of the challenge set. Even without knowing which pw∗

is used to decrypt, an adversary outputting this apk doubles the probability of the decryption being
one of A’s chosen values. This increase also poses a lower bound on the simulation parameters. In
the case of OCAKE, the relation takes the form ε+ δ ≥ Pr[ corrPW ] + Pr[ collision ] for na actively
attacked sessions and a password dictionary D.
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