
A 10-bit S-box generated by Feistel construction
from cellular automata⋆

Thomas Prévost1[0009−0000−2224−8574] and Bruno Martin1[0000−0002−0048−5197]

Université Côte d’Azur, CNRS, I3S, France
{thomas.prevost,bruno.martin}@univ-cotedazur.fr

Abstract. In this paper, we propose a new 10-bit S-box generated from
a Feistel construction. The subpermutations are generated by a 5-cell
cellular automaton based on a unique well-chosen rule and bijective
affine transformations. In particular, the cellular automaton rule is cho-
sen based on empirical tests of its ability to generate good pseudorandom
output on a ring cellular automaton. Similarly, Feistel’s network layout
is based on empirical data regarding the quality of the output S-box.
We perform cryptanalysis of the generated 10-bit S-box: we test the
properties of algebraic degree, algebraic complexity, nonlinearity, strict
avalanche criterion, bit independence criterion, linear approximation prob-
ability, differential approximation probability, differential uniformity and
boomerang uniformity of our S-box, and relate them to those of the AES
S-box. We find security properties comparable to or sometimes even bet-
ter than those of the standard AES S-box. We believe that our S-box
could be used to replace the 5-bit substitution of ciphers like ASCON.

Keywords: S-box · Block cipher · Cellular automata · Feistel permuta-
tion · Boolean functions.

Acknowledgements We would like to thank Jean-Charles Regin (http://
www.constraint-programming.com/people/regin/) for kindly lending us his
computing machines.

Introduction

Cryptography today plays a leading role in the development of telecommunica-
tions. Symmetric encryption is an important part of modern cryptography. It
must allow two parties who share a common secret key to exchange enciphered
data. The encrypted data should look like random bits from the perspective of
an external attacker who does not have the key.

There are two main families of symmetric ciphers: stream ciphers and block
ciphers. Stream ciphers encrypt data on the fly, bit by bit, while block ciphers
⋆ This work has been supported by a government grant managed by the Agence Na-

tionale de la Recherche under the Investissement d’avenir program, reference ANR-
17-EURE-004

http://www.constraint-programming.com/people/regin/
http://www.constraint-programming.com/people/regin/

2 T. Prévost et al.

treat data as a series of blocks of a specific size. It is the latter which is most
used today. AES (Advanced Encryption Standard) or Blowfish are the best known
block cipher algorithms.

Substitution boxes (abbreviated S-boxes) are the most important nonlinear
component of many block ciphers. They play the role of input bits mixer and are
essential for the security of the cipher. This is the part that must be designed
with the greatest attention, since it is on its weakness that most attacks focus.

The designer of substitution boxes must in particular ensure that his S-box
is resistant against linear [5], differential [4] or boomerang [44] attacks, which
are today the main threats to the security of S-boxes.

However, it is impossible to study all possible n-bit S-boxes, starting from
a certain n. Indeed, an S-box can be seen as a permutation on the discrete set
J0, 2n−1K. So there is a total of 2n! possible S-boxes. For 8-bit S-boxes like AES,
this represents approximately 8.58·10506 possible S-boxes. For 10-bit S-boxes like
the one we propose, there are 5.42 · 102639 possible permutations. It is therefore
absolutely unthinkable to study them all exhaustively.

Current constructions of S-boxes rely on algebraic approaches by using prop-
erties of finite fields, like AES. We propose here a combinatorial construction
with a S-box based on a Feistel construction of depth 11. This construction
consists of three layers of bijective affine transformation, and eight layers of per-
mutations by a uniform binary cellular automaton (CA) of dimension 1, with
a well-chosen local function considered as a Boolean function. This function is
used as a pseudo-random permutation.

First, we discuss the related work in this area. In section 2 we recall the
definitions of Boolean functions and uniform cellular automata. We give some
important properties, which will be useful in the rest of this paper. Next, we
recall Feistel constructions, and how they can be used to generate cryptographi-
cally secure random permutations in section 3 (in particular thanks to the Luby-
Rackoff theorem). In section 4, we explain how we generate a 10-bit S-box from
a Feistel construction based on uniform cellular automata permutations. Sub-
sequently, we carry out the cryptanalysis of the S-box thus obtained, according
to different criteria (section 5). Finally, we conclude on the possible use of this
type of construction, and suggestions to generate larger S-boxes.

1 Related work

There are many research papers that propose new methods for generating S-
boxes. Most focus on 8-bit S-boxes, although some offer smaller S-boxes.

The generation of 2n-bit S-boxes from n-bit subpermutations has already
been considered in the literature, either by Feistel or MISTY constructions [27,8].

Many other methods have also been considered. Burnett et al. proposed a
heuristic method to generate MARS-like S-boxes [14]. Methods based on ge-
netic programming were used to successively select the S-boxes with the best
cryptographic properties [39,38]. Many stochastic methods have been proposed

10-bit S-box generated by Feistel construction from CA 3

to generate S-boxes with the best possible properties [31]. Others have already
thought about using chaotic functions to generate S-boxes [15].

The AES S-box [12] nevertheless remains to this day the security reference
for 8-bit S-boxes. This S-box is a finite field polynomial construction (and the
security standard). Many other scientific papers also propose S-boxes based on
polynomial constructions [49,50].

Another property currently sought in the design of S-boxes is their energy
efficiency, that is to say that carrying out the permutations uses the minimum of
resources. This involves designing the S-box according to the internal functioning
of the processor’s logic gates. Such S-boxes have been proposed on 8 bits [20].

Other 8-bit S-boxes have been proposed to be easily adaptable to FPGA
(Field Programmable Gate Array) [29].

Other ciphers, on the contrary, rely on smaller S-boxes to further reduce
energy consumption [6,16]. However, such designs cannot be done without a
reduction in the cryptographic quality of the S-box, and therefore in the security
of the cipher [35].

To our knowledge no paper has been published on the generation of 10-bit
S-boxes.

As indicated in section 4.2, the construction of S-boxes from functions vali-
dating the NIST FIPS 140-2 test has already been explored by [51], but it was
not cellular automata that were then tested.

The search for Boolean functions with chaotic behavior was first studied by
Wolfram in 1983 [47]. He discovered that the cellular automaton rule 30 presents
the best chaotic evolution. However, the Siegenthaler bound tells that functions
with 3 variables are not suitable for cryptography [32].

The classification of Boolean functions has already been done according to
multiple criteria [1,26], we do not bring much new in this area except perhaps
their selection based on a random test.

The use of cellular automata for cryptography is not recent [11]. Gutowitz
proposed in 1993 the use of cellular automata for the block cipher [19]. Several
papers have already been proposed to construct S-boxes or hash-functions from
such automata [30,25]. However, to our knowledge, no one has yet designed an
S-box from a cellular automaton based Luby-Rackoff construction.

2 Definitions and notation

2.1 Uniform cellular automata

Cellular Automata (CA) form a model of discrete parallel computation, com-
posed of cells. Each cell is a finite state machine. At each time step, all the cells
of the cellular automaton update their state synchronously according the states
of their neighbors and their current state, following a local rule. The best known
cellular automaton is Conway’s Game of Life, which is two-dimensional.

We can define formally 1-dimensional cellular automata as triples (Q, δ,N)
where:

4 T. Prévost et al.

time t 1 0 1 1 0 1 f : local
rule 224

f(0, 0, 0) = 0

f(0, 0, 1) = 0

f(0, 1, 0) = 0

f(0, 1, 1) = 0

f(1, 0, 0) = 0

f(1, 0, 1) = 1

f(1, 1, 0) = 1

f(1, 1, 1) = 1

f(1, 0, 1) = 1 f(0, 1, 1) = 0

time t+ 1 1 1 0 1 1 0

Fig. 1. Example of a 1-dimensional uniform cellular automaton with the single 3-bit
local rule 224. To calculate the next value of a cell on the border, we consider the cell
on the other edge as neighboring this one.

– Q is a finite set of states, here the set of states is {0, 1}, the Boolean values.
– δ is the local transition function Qn −→ Q, called rule. n is the arity of the

rule. Here we use Boolean functions as local transition rules.
– N ⊆ Z is the finite neighborhood, card(N) = a being the size of the CA.

Here we are interested in 1-dimensional cellular automata. It is a finite ring
of cells, each containing a Boolean value. At each time step, each cell is updated
according to itself and its neighbors. It is possible to have several local rules
within the same cellular automaton, this CA then called non uniform.

A cellular automaton is said to be uniform if it applies the same local
transition rule for all its cells.

Here we consider uniform cellular automata, with an n-variable Boolean local
transition function (or rule) δ. At each time step, each cell is modified according
to the result of δ on itself and its n−1 neighbors. In the case of cells at the edge
of the automaton, we arbitrarily choose to count the cells on the other edge as
neighbors, thus forming a ring, as shown in Fig. 1.

By choosing a good local rule, it is possible to create a pseudo-random bit
generator, as shown in [18]. Generally speaking, certain local rules are capable
of producing a chaotic effect on the states taken by designated cells at succes-
sive time steps. The best known is the 3-bit rule 30, as shown by Wolfram in
1983 [47]. Most pseudo-random bit generators, however, use Linear-Feedback
Shit Registers (LFSRs) [43].

However, uniform automata can have short and therefore non-chaotic cycles
depending on the inputs. For example, a uniform automaton filled only with ones
will only be able to take successive ones or zeros as the value at the next time

10-bit S-box generated by Feistel construction from CA 5

step. It is therefore advisable to be careful with these particular inputs when
using a uniform cellular automaton for cryptographic applications.

2.2 Boolean functions

A Boolean function is a function that takes n Boolean values as input and
returns a single Boolean value as output, n being the number of variables in the
function. The local transition functions of cellular automata can be viewed as
Boolean functions.

Truth table According to Wolfram’s numbering, Boolean functions are charac-
terized by their truth table, which lists the outputs corresponding to the inputs,
unique in the set of functions with a given number of variables.

Example 1. In the set of 3-bit functions, rule 30 is expressed 00011110 in binary.
Starting with the least significant bit, this means that f(0, 0, 0) = 0, f(0, 0, 1) =
1, f(0, 1, 0) = 1 etc.

There are 22
n

n-variable Boolean functions. A convenient way to represent
them is given by the Algebraic Normal Form, that we present in the next sub-
section.

Algebraic Normal Form

Definition 1. Any n-variable Boolean function f can be expressed by a unique
binary polynomial, called Algebraic Normal Form (ANF):

f(x) =
⊕

u∈Fn
2
au(

∏n
i=1 x

ui
i), au ∈ F2, ui i-th projection of u, xi being the i-th

bit of input x.

Example 2. The ANF of rule 30 is x1 ⊕ x2 ⊕ x3 ⊕ x2 · x3.

Example 3. The ANF of the 3-variable function χ : F3
2 −→ F2 used by Keccak [3]

is χ(x1, x2, x3) = x1 ⊕ x2 · x3 ⊕ x3. Its rule number is 210.

Definition 2. The algebraic degree of a function f counts the number of variable
in the largest monomial xu1

1 ...xun
n of its ANF.

Example 4. The largest monomial of rule 30 is x2.x3, its degree is 2, as well as
rule 210.

A function f is said to be nonlinear if and only if its degree is at least 2.

Hamming weight

Definition 3. The Hamming weight of a Boolean function f , written wh(f), is
the number of x ∈ Fn

2 such that f(x) = 1.

Definition 4. A n-variable Boolean function f is balanced if and only if wh(f) =
2n−1 (it returns as many ones as zeroes).

6 T. Prévost et al.

Correlation-immunity

Definition 5. An n-variable Boolean function f is k-correlation immune, 1 ≤
k ≤ n, if and only if for any binary random input x = x1, ..., xn, f(x) is statis-
tically independent from any subset of size k of x.

The Walsh-Hadamard transform [9] is an essential tool for analyzing the
statistical properties of a Boolean function. The Walsh-Hadamard transform of
a Boolean function f is defined by:

f̂(ω) =

2n−1∑
x=0

(−1)f(x)⊕x·ω (1)

where x · ω =
∑n−1

i=0 xi · ωi denotes the dot product of the two binary vectors.

Theorem 1. A n-variable Boolean function f is k-order correlation immune,
1 ≤ k ≤ n if and only if for every ω ∈ Fn

2 such that 1 ≤ wh(ω) ≤ k, f̂(ω) = 0.

Xiao and Massey proved theorem 1 in [48]. A Boolean function that is both
balanced and correlation immune at order k is said to be resilient at order k.

Strict avalanche criterion

Definition 6. A n-variable Boolean function f satisfies the Strict Avalanche
Criterion (SAC) if and only if ∀i ∈ J1, nK, flipping the i-th bit of the input x
results in the output f(x) being changed for exactly half of the inputs x.

The strict avalanche criterion is particularly interesting in the cryptographic
context since it makes it difficult to infer input from output. It makes the Boolean
function “chaotic”.

3 Feistel constructions

The Feistel construction [17] is a method for constructing secure pseudo-random
bijective permutations from pseudo-random functions. The Feistel network, from
a certain depth, guarantees the computational indistinguishability of its pseudo-
random permutation from a random permutation.

Definition 7. A function f : Fn
2 −→ Fn

2 is said to be pseudo-random (PRF) if
its output is computationally difficult to distinguish from a random output.

Definition 8. A pseudo-random function f : Fn
2 −→ Fn

2 is called pseudo-
random permutation (PRP) if and only if it is bijective.

As shown in Fig. 2, the Feistel construction creates a block permutation
function of size n. It is made up of a stack of layers, each composed of PRP fi
of input and output size n

2 . We call depth the number of sub-permutations fi.

10-bit S-box generated by Feistel construction from CA 7

Initial block

L0 R0

f1

⊕

L1 R1

f2

⊕

L2 R2

Final block

Fig. 2. Example of Feistel construction of depth 2. f1 and f2 are pseudo-random per-
mutations

Luby and Rackoff proved in [28] that the output of the LR function is com-
putationally indistinguishable from a random output as long as the depth of
the network is at least 4, even for an adversary who knows the input (Known-
Plaintext-Attack, KPA).

As shown by [37], a Feistel construction with a depth of at least 7 returns
an output that is computationally indistinguishable from a random output for
an adversary able to choose the input value (Chosen-Plaintext-Attack, CPA),
that is to say, there is no probabilistic algorithm that is capable of making the
distinction in polynomial time.

4 Our 10-bit S-box from a Cellular Automata based
Feistel construction

4.1 Architecture of the Feistel construction

The permutation function generated by the Feistel construction allows to con-
struct an S-box. We pass the 210 = 1024 possible inputs to the function, the
output of which gives us the S-box. The latter must validate several security
requirements, explained in section 5. Another important property to respect is
bijectivity, which makes it possible to invert the S-box and therefore to proceed
with decryption. In short, it is necessary that for the S-box S : F10

2 −→ F10
2 :

8 T. Prévost et al.

∀x, y ∈ F10
2 , S(x) = S(y) =⇒ x = y (2)

In our network, we use a 5-cell cellular automaton as a pseudo-random per-
mutation fi, its output is evaluated after a single time step on the input. The
automaton has only one local transition function with 5 variables, which we will
detail in section 4.2.

However, as explained in section 2.1, a uniform cellular automaton will fail
to return chaotic output for some particular inputs that are regular. If we used
only this type of cellular automata for intermediate permutation functions fi,
some inputs would still return a predictable result, for example S(0) or S(1023)
which would return 0 or 1023 (0b1111111111).

Fortunately, [34] tells us that it is possible to replace certain pseudo-random
permutations by pair-wise independent permutations, i.e. permutations whose
output is “almost” uniformly distributed for any two given inputs. An affine
function fa,b(x) = a · x+ b satisfies these requirements. So that the permutation
is bijective, we chose a and b prime.

The Luby-Rackoff construction we chose to generate our 10 bits S-box con-
sists of the following eleven layers:

1. A first layer uses the affine function f5,3(x) = 5.x+ 3 mod 210.
2. Next comes 4 layers using the 5-bit-cellular automaton which will be defined

in section 4.2 as pseudo-random permutation.
3. The next layer uses the affine function f7,11(x) = 7.x+ 11 mod 210.
4. Next we have 3 layers of cellular automaton.
5. We have another affine layer, f13,17(x) = 13.x+ 17 mod 210.
6. Finally a last layer reuses the 5-bit-cellular automaton.

All affine functions are expressed modulo 210 = 1024. Fig. 3 schematizes our LR
construction.

4.2 Construction of the local pseudo-random permutation with a
cellular automaton

Construction of the cellular automaton We are looking for a cellular au-
tomaton which takes as input the value to be permuted, and which returns the
result of the permutation. For this, we build a cellular automaton in a ring of 5
cells. To perform the permutation, we assign to the cells of the ring the value to
be permuted, then we return the value of the cellular automaton after a single
time step. We chose this construction because there are no 4-variable Boolean
functions which have the right cryptographic properties and which allow us to
create a bijective cellular automaton.

Basic properties of local transition rule There are a total of 22
5

= 232 =
4.294.967.296 5-bit local transition Boolean functions. The papers [47,32,18] for-
tunately give us some ideas for selecting the Boolean functions most likely to
introduce “chaos” into the output of the cellular automaton.

10-bit S-box generated by Feistel construction from CA 9

Initial block

L0 R0

Affine f(x) = 5x+ 3

⊕

L1 R1

CA

⊕

4 times

[...]

L5 R5

Affine f(x) = 7x+ 11

⊕

L6 R6

CA

⊕

3 times

[...]

L9 R9

Affine f(x) = 13x+ 17

⊕

L10 R10

CA

⊕

L11 R11

Final block

Fig. 3. Selected Feistel construction, with eleven layers. The “CA” functions correspond
to the output the 5-cell cellular automaton after one time step. Affine functions are
expressed modulo 210 = 1024.

10 T. Prévost et al.

Let us start by keeping only balanced Boolean functions, as explained by
definition 4. There are then

(
32
16

)
= 601.080.390 functions left.

We then eliminate the functions which are not first-order correlation immune,
as explained in definition 5, to keep only 807.980 rules.

We also eliminate linear functions, to keep 807.928 functions. We are satisfied
with the nonlinearity property here: [40] proves that there cannot exist bent
functions (maximally non-linear) with an odd number of variables. As we will
show later, it was unnecessary for our functions to belong to the “almost-bent”
class [7].

Finally we eliminate all functions that do not respect the Strict Avalanche
Criterion (SAC), explained in definition 6, to keep 7.080 local rules.

Selection over NIST FIPS 140-2 randomness test We were inspired by [51]
which gives us an original method to search for the most “chaotic” local rules.
We try to create a pseudo-random generator from a uniform cellular automaton,
as explained by [18], then we only keep the rules which allow us to create “good”
pseudo-random bit generators.

We start by creating a ring cellular automata, as explained in section 2.1, of
size 1024 bits. Indeed, [41] informs us that the ring must have > 1000 cells to
produce a secure pseudo-random generator. Having a size equal to a power of 2
simply speeds up the calculations.

For the seed value, we fill the ring with 1024 truly random bits, downloaded
from the website https://www.random.org/. In order to have a reproducible
experience, you can find the seed at the following address: https://github.
com/thomasarmel/cellular_automata_prng (although the seed value should
not influence the results). You will also find that the pseudo random generator
by 1024 cells cellular automaton.

Next, we test each of the 7.080 local rules as follows: at each time step, we
update all cells in the ring with the rule under test. We then extract the 512th
bit from the ring. We repeat the operation for as many bits as we wish to extract.

For each of the 7.080 rules, we evaluate the pseudo-random bit generator with
the NIST FIPS 140-2 test [42]. The generator must pass all tests (“Monobit”,
“Poker”, “Runs”, “Long run” and “Continuous run”) out of 100.000 bits generated,
which is equivalent to passing each test 39 times. This threshold of 100.000 bits
is arbitrary, but more than sufficient to eliminate any statistical bias.

There then remain 53 rules which allow the ring cellular automaton to vali-
date the NIST FIPS 140-2 pseudo-random generation test.

Cellular automaton bijectivity Finally, we must ensure that the 5-bit ring
cellular automaton of the Luby-Rackoff construction is bijective. To do this, we
eliminate all the local rules which do not allow us to create a bijective cellular
automaton.

Finally, only one rule remains, whose truth table numbering is 1.438.886.595
(in decimal), or x0 · x3 + x1 · x3 + x2 · x3 + x3 · x4 + x1 + x2 + x3 + 1 in its ANF
form.

https://www.random.org/
https://github.com/thomasarmel/cellular_automata_prng
https://github.com/thomasarmel/cellular_automata_prng

10-bit S-box generated by Feistel construction from CA 11

The generated S-box can be found in Appendix A. The source code to gen-
erate the S-box can be found at the following address: https://github.com/
thomasarmel/luby_rackoff_sbox_finder.

5 Cryptanalysis

Here we propose the cryptanalysis of the specific S-box that we generated from
the construction described above. In order to have a more systemic analysis of
the security of S-boxes generated from Feistel networks, the reader can refer
to [8].

5.1 S-box analysis criteria

[45] gives us the main properties expected on an S-box. The latter being the
only non-linear component of a block cipher algorithm, it must be able to resist
linear [5] and differential [4] cryptanalysis. We will also discuss resistance to the
boomerang attack [44].

An S-box must also be bijective, but this was already addressed in section 4.
To quantify the security of our S-box, we will compare it to the AES S-

box [12], which is the industry standard for security today. The latter has
a dimension of 8 bits, but we have not found any 10-bit S-box that is used
in practice. When necessary, we will therefore adapt our metrics to compare
them to an S-box of a different size. We will also compare certain metrics to
other S-boxes presented in the literature. We particularly used the SageMath
language to calculate certain metrics, the latter offering a library dedicated
to the cryptographic properties of S-boxes (https://doc.sagemath.org/html/
en/reference/cryptography/sage/crypto/sbox.html). Sage notably allowed
us to calculate algebraic complexity, nonlinearity, linear and differential approx-
imation probabilities, differential uniformity and boomerang uniformity.

5.2 Algebraic degree

It is possible to represent an S-box by its component functions. For an S-
box of size n, S : Fn

2 −→ Fn
2 , then it is possible to write S(x1, x2, ..., xn) =

(y1, y2, ..., yn).
The component functions are then the n Boolean functions fi : Fn

2 −→ F2,
such that fi(x1, x2, ..., xn) = yi, for i ∈ J1, nK.

As explained by definition 1, any Boolean function can be expressed in its
ANF form. A possible attack against an S-box consists of trying to approximate
its value by component functions of low degree, this is a low order approximation
attack [33]. A high minimum algebraic degree, as explained in definition 9, makes
it possible to protect against this type of attack.

Definition 9. The minimal algebraic degree of an S-box is the minimal degree
of its component functions. The maximal algebraic degree is the maximal degree
of the component functions.

https://github.com/thomasarmel/luby_rackoff_sbox_finder
https://github.com/thomasarmel/luby_rackoff_sbox_finder
https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sbox.html
https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sbox.html

12 T. Prévost et al.

Our S-box has a minimum algebraic degree of 8 and a maximum degree of
9. In comparison, the minimum and maximum degree of the AES S-box is 7
(having a larger S-box gives us an advantage).

5.3 Algebraic complexity

The algebraic complexity of an S-box defines its ability to resist interpolation
attacks [23].

Definition 10. The algebraic complexity AC of a n-bit S-box S is the number
of monomials in the univariate polynomial representation of S such that

S(x) = a0 + a1.x+ ...+ a2n−1.x
2n−1

The algebraic complexity of our S-box is 1023, which is the maximum possi-
ble. The algebraic complexity of the AES S-box is 255, which is also the highest
possible value.

5.4 Nonlinearity

Strong nonlinearity [10] allows the S-box to resist linear cryptanalysis. It is
defined as the minimum nonlinearity of each of the component functions.

Definition 11. For a n-variable Boolean function fi, the nonlinearity Nfi is
given by the equation

Nfi = 2n−1 − 1

2
max
ω∈Fn

2

|f̂i(ω)| (3)

with f̂i the Walsh-Hadamard transform of fi, as defined in 2.2.

The nonlinearity of our S-box is 434. It is difficult to compare with the
nonlinearity of the AES S-box (112), because the two S-boxes do not have the
same size. If we divide the constructed S-box nonlinearity by 210−8 = 4, we
obtain a nonlinearity of 108.5, which is a little less than AES but better than
many S-boxes presented in the literature. For both AES S-box and ours however,
it is not possible to express the value of one of the output bits as a function of a
linear combination of the input bits with a probability ≥ 60% (56.25% for AES
S-box and 57.62% for our S-box). We used the following GitHub repository to
obtain these values: https://github.com/PoustouFlan/SUnbox.

5.5 Strict avalanche criterion (SAC)

The notion of Strict avalanche criterion (SAC) for the design of S-boxes was
first introduced in 1985 by [46]. To satisfy the SAC, half of the output bits must
be modified when a single input bit is modified. For an S-box, the bits of the
SAC dependency matrix must be close to the ideal value of 0.5.

https://github.com/PoustouFlan/SUnbox

10-bit S-box generated by Feistel construction from CA 13

Table 1. SAC dependency matrix of the constructed S-box. Each row represents the
modified input bit, and each column the impact on the output bit. For example, flipping
the first input bit will change the first output bit 51% of the time.

0.51 0.44 0.48 0.48 0.48 0.45 0.47 0.48 0.48 0.50
0.54 0.52 0.50 0.51 0.53 0.53 0.48 0.48 0.53 0.50
0.52 0.48 0.54 0.48 0.53 0.52 0.48 0.50 0.54 0.49
0.51 0.54 0.50 0.50 0.50 0.53 0.46 0.51 0.50 0.51
0.51 0.52 0.51 0.46 0.48 0.52 0.52 0.54 0.54 0.54
0.46 0.48 0.48 0.50 0.52 0.51 0.48 0.48 0.50 0.47
0.51 0.49 0.49 0.54 0.50 0.49 0.50 0.52 0.51 0.57
0.46 0.50 0.47 0.50 0.51 0.48 0.48 0.50 0.54 0.50
0.49 0.50 0.48 0.50 0.47 0.49 0.55 0.48 0.48 0.52
0.48 0.49 0.50 0.47 0.50 0.52 0.52 0.55 0.53 0.49

Table 1 gives the SAC dependency matrix of the proposed S-box. We used
the following GitHub repository to calculate these values: https://github.com/
abrari/block-cipher-testing/.

Table 2 compares the average value as well as the extreme values of our
dependency table to those of the AES S-box.

Table 2. SAC dependency matrix comparison between AES and proposed S-box

Average Minimum Maximum
AES 0.50 0.45 0.56

Proposed 0.50 0.44 0.57

Our average value is good, and the extreme values are almost as good as
those of the AES S-box.

5.6 Bit Independence Criterion (BIC) parameter

The concept of Bit Independence Criterion (BIC) was first introduced by [46].

Definition 12. We say that a n-bit S-box S satisfies the BIC if ∀i, j, k ∈ J1, nK,
with i ̸= j, inverting the kth bit of the input changes the ith and the jth output
bits independently.

The metric we use for S-boxes is called the Bit Independence Criterion Pa-
rameter, which measures how far an S-box is from validating the BIC. This
distance is between 0 and 1, the closer to 0 being the better.

To calculate this parameter, we need to know the BIC parameter between two
output bits i and j. The latter is defined as the maximum correlation coefficient
between output bits i and j after inversion of input bit k, for all k.

The BIC parameter of an S-box is the maximum value of the BIC parameter
of output bits i and j, for all combinations of i and j such that i ̸= j.

https://github.com/abrari/block-cipher-testing/
https://github.com/abrari/block-cipher-testing/

14 T. Prévost et al.

The BIC parameter of our S-box is 0.124. For comparison, the one of the
AES S-box is 0.134. Our BIC parameter is therefore better than the one of
the AES S-box, and also better than other S-boxes proposed in the scientific
literature. For example, the S-box of the block cipher PRESENT [6] has a BIC
parameter of 1.

We thank the author of the GitHub repository https://github.com/abrari/
block-cipher-testing/ for the code which allowed us to calculate the BIC of
our S-box.

5.7 Linear Approximation Probability (LAP)

The Linear Approximation Probability (LAP) gives us an indication of how re-
sistant our S-box is to linear cryptanalysis [5]. It is calculated, for a n-bit S-box
S, by the maximum correlation between x.α and S(x).β, ∀α, β ∈ J0, 2n − 1K
(except when α = β = 0).

The paper [21] gives us the following equation for calculating LAP:

LAP = max
α,β∈J0,2nK,α+β ̸=0

∣∣∣∣card{x ∈ Fn
2 |α · x = β · S(x)}

2n
− 1

2

∣∣∣∣ (4)

The LAP can be calculated from the Linear Approximation Table, as ex-
plained by [13]. To do this, we take the maximum correlation value from the
table, except at the coordinate 0, 0 (for which the correlation is logically 1), we
then obtain the “correlation potential” ϵ. We then calculate LAP using:

LAP = (2 · ϵ)2 (5)

The Linear Approximation Probability of our S-box is 9.28%, which is com-
parable or even better than other S-boxes proposed in the scientific literature [2].
However, the LAP is a little bit worse than that of the AES S-box, which is
6.25%.

5.8 Differential Approximation Probability

The Differential Approximation Probability is determined by the XOR distri-
bution between the input and output of an S-box. The lowest possible value
guarantees the security of the S-box against differential cryptanalysis [4].

The DAP is given by the maximum value of the differential probability table.
Let us denote by ∆x ∈ Fn

2 an input of the S-box, and by ∆y ∈ Fm
2 an output,

with m the output size in bits of the S-box. For each ∆x, ∆y of a n-bit S-box
differential probability table, the probability is calculated by:

DP (∆x → ∆y) =
card{x ∈ Fn

2 |S(x)⊕ S(x⊕∆x) = ∆y}
2n

(6)

And so

DAP = max
∆x,∆y

DP (∆x → ∆y) (7)

https://github.com/abrari/block-cipher-testing/
https://github.com/abrari/block-cipher-testing/

10-bit S-box generated by Feistel construction from CA 15

The DAP of our S-box is 1.37%, which is better than the AES S-box, which
has a DAP of 1.56%. This DAP is also better than many S-boxes presented in
the literature [22].

5.9 Differential Uniformity

The Differential Uniformity of an S-box defines its proximity to perfect non-
linearity [36]. For an n-bit S-box S, its Differential Uniformity δS is defined by
the equation

δS = max
a,b∈Fn

2 ,a ̸=0
δ(a, b) = max

a,b∈Fn
2 ,a ̸=0

card{x ∈ Fn
2 |S(x⊕ a)⊕ S(x) = b} (8)

The Differential Uniformity of our 10-bit S-box is 14. Let us divide this value
by 210

28 = 4 in order to compare with 8-bit S-box, we obtain 3.5. This is a better
value than other S-boxes presented in the scientific literature [51,24], and even
better than the Differential Uniformity of the AES S-box which is 4.

5.10 Boomerang Uniformity

The Boomerang Uniformity BU defines the resistance of an S-box to the boomerang
attack [44], which is an improvement of differential cryptanalysis. A small BU
value provides better resistance to the boomerang attack.

To calculate the BU of an n-bit S-box, we start by calculating the Boomerang
Connectivity Table (BCT), an n×n matrix whose entry in the ∆i ∈ Fn

2 row and
in the ∆o ∈ Fn

2 column is given by:

BCT (∆i, ∆o) = card{x ∈ Fn
2 |S−1(S(x)⊕∆o)⊕S−1(S(x⊕∆i)⊕∆o) = ∆i} (9)

The Boomerang Uniformity BU is given by the maximum entry of the Boomerang
Connectivity Table, ignoring the first row and first column.

Our 10-bit S-box has a BU of 24. Let’s divide this value by 4 to compare it
with 8-bit S-boxes. We then find a value of 6, which is better than to the values
found in the literature [35,51], and equal to the BU of the AES S-box, which is
also 6.

Discussion

This method of constructing 10-bit S-box showed security results comparable to
the AES standard, now widely used in the industry. However, we believe that it
is still possible to improve the quality of our S-box by modifying parameters of
the Feistel network. In particular, the quality of the S-box can be improved by
increasing the network depth. Changing the parameters of the affine functions
would result in different S-boxes, but we expect the security parameters to be
roughly equivalent.

16 T. Prévost et al.

It can also be considered to build even larger S-boxes, provided that the num-
ber of variables n is even and n

2 is odd. For example we could consider building
S-boxes with 14 or even 18 variables. However, this would require selecting “good”
Boolean functions with 7 or 9 variables, which represents a significant computa-
tional challenge. Indeed, the number of possible n-bit Boolean functions is 22

n

.
So, for example, there exist 1.34 · 10154 9-bit Boolean functions.

Our 10-bit S-box could for example be used in an ASCON-type sponge net-
work [16]. This cipher performs permutations on 320-bit blocks, and for this pur-
pose uses a 5-bit S-box on 64 sub-blocks. We believe that the quality and there-
fore the security of the permutation would be improved, but the algorithmic com-
plexity would be increased. We give an example of a possible ASCON implemen-
tation with our S-box (in Rust) on the following URL: https://github.com/
thomasarmel/sponges/blob/sbox_10/ascon/src/lib.rs#L100. On our 13th

Gen Intel Core i7-13700H 5 GHz CPU, the modified round() function is how-
ever 10 to 15 times slower than the original one using ASCON’s original S-box,
but has superior cryptographic quality. It would also be more complex to propose
a constant-time implementation of the modified cipher.

Conclusion

In this paper, we propose a new 10-bit S-box from a Feistel construction based
on uniform cellular automata permutations, and carried out the cryptanalysis. In
particular, we evaluated its robustness against linear, differential or boomerang
attacks. We shown that our S-box has comparable, or even better security than
other S-boxes presented in the scientific literature. In particular, the security
evaluations were comparable, and sometimes even better, than those of the AES
S-box, which is today the widely used standard.

To our knowledge, no method for constructing 10-bit S-boxes has ever been
proposed in the scientific literature. Our method can be extended for the con-
struction of n-bit S-box, given that n is even and n

2 is odd.

Data availability

All the data needed to replicate our results is freely available in open source,
from the links mentioned in this paper.

Statements and Declarations

No funds, grants, or other support was received for conducting this study. The
authors have no competing interests to declare that are relevant to the content of
this article. The authors have no financial or proprietary interests in any material
discussed in this article.

Appendix A Generated 10-bit S-box

https://github.com/thomasarmel/sponges/blob/sbox_10/ascon/src/lib.rs#L100
https://github.com/thomasarmel/sponges/blob/sbox_10/ascon/src/lib.rs#L100

10-bit S-box generated by Feistel construction from CA 17

Table 3. Generated S-box input/output table

input output input output input output input output input output input output input output input output
0x000 0x090 0x080 0x05a 0x100 0x2d8 0x180 0x13a 0x200 0x238 0x280 0x2b7 0x300 0x05e 0x380 0x2d6
0x001 0x15c 0x081 0x123 0x101 0x354 0x181 0x27c 0x201 0x137 0x281 0x36a 0x301 0x12a 0x381 0x244
0x002 0x1c0 0x082 0x38d 0x102 0x2fa 0x182 0x0bf 0x202 0x005 0x282 0x176 0x302 0x04a 0x382 0x159
0x003 0x292 0x083 0x14d 0x103 0x36b 0x183 0x1da 0x203 0x147 0x283 0x1eb 0x303 0x15a 0x383 0x043
0x004 0x101 0x084 0x2c2 0x104 0x0c6 0x184 0x1bd 0x204 0x0a4 0x284 0x036 0x304 0x1e7 0x384 0x162
0x005 0x309 0x085 0x089 0x105 0x2c7 0x185 0x02c 0x205 0x3cc 0x285 0x010 0x305 0x18f 0x385 0x36c
0x006 0x228 0x086 0x39d 0x106 0x3b9 0x186 0x306 0x206 0x384 0x286 0x34d 0x306 0x293 0x386 0x1e6
0x007 0x36f 0x087 0x1bc 0x107 0x10a 0x187 0x0a2 0x207 0x3c1 0x287 0x1b1 0x307 0x180 0x387 0x231
0x008 0x20f 0x088 0x157 0x108 0x35d 0x188 0x32f 0x208 0x071 0x288 0x340 0x308 0x0b9 0x388 0x193
0x009 0x28e 0x089 0x096 0x109 0x042 0x189 0x166 0x209 0x023 0x289 0x205 0x309 0x070 0x389 0x330
0x00a 0x2fc 0x08a 0x1ae 0x10a 0x240 0x18a 0x132 0x20a 0x303 0x28a 0x24f 0x30a 0x094 0x38a 0x329
0x00b 0x379 0x08b 0x268 0x10b 0x1b9 0x18b 0x160 0x20b 0x118 0x28b 0x0ad 0x30b 0x188 0x38b 0x242
0x00c 0x214 0x08c 0x064 0x10c 0x2da 0x18c 0x203 0x20c 0x366 0x28c 0x01f 0x30c 0x251 0x38c 0x1cf
0x00d 0x085 0x08d 0x059 0x10d 0x0d6 0x18d 0x307 0x20d 0x208 0x28d 0x2e2 0x30d 0x167 0x38d 0x241
0x00e 0x2be 0x08e 0x0d9 0x10e 0x0bc 0x18e 0x2bd 0x20e 0x215 0x28e 0x3e8 0x30e 0x37f 0x38e 0x336
0x00f 0x269 0x08f 0x3dc 0x10f 0x06e 0x18f 0x05f 0x20f 0x177 0x28f 0x108 0x30f 0x3c9 0x38f 0x2e0
0x010 0x392 0x090 0x28b 0x110 0x192 0x190 0x0f0 0x210 0x172 0x290 0x16f 0x310 0x09e 0x390 0x11b
0x011 0x358 0x091 0x2ac 0x111 0x356 0x191 0x158 0x211 0x38e 0x291 0x2d7 0x311 0x00e 0x391 0x0fa
0x012 0x361 0x092 0x15f 0x112 0x237 0x192 0x0d4 0x212 0x01a 0x292 0x298 0x312 0x0e0 0x392 0x110
0x013 0x2c9 0x093 0x088 0x113 0x0f6 0x193 0x22d 0x213 0x07c 0x293 0x3dd 0x313 0x2e6 0x393 0x178
0x014 0x23b 0x094 0x33f 0x114 0x020 0x194 0x168 0x214 0x372 0x294 0x1a9 0x314 0x009 0x394 0x16c
0x015 0x2ec 0x095 0x17a 0x115 0x069 0x195 0x052 0x215 0x2fd 0x295 0x1ba 0x315 0x02f 0x395 0x1ec
0x016 0x1b8 0x096 0x38b 0x116 0x0d7 0x196 0x264 0x216 0x0aa 0x296 0x1b5 0x316 0x38c 0x396 0x3b6
0x017 0x055 0x097 0x08d 0x117 0x24a 0x197 0x266 0x217 0x1c4 0x297 0x376 0x317 0x011 0x397 0x245
0x018 0x091 0x098 0x259 0x118 0x225 0x198 0x142 0x218 0x3a6 0x298 0x114 0x318 0x33e 0x398 0x260
0x019 0x1a8 0x099 0x363 0x119 0x322 0x199 0x236 0x219 0x1f5 0x299 0x345 0x319 0x170 0x399 0x2e1
0x01a 0x08a 0x09a 0x153 0x11a 0x07f 0x19a 0x3a2 0x21a 0x181 0x29a 0x049 0x31a 0x015 0x39a 0x1ab
0x01b 0x282 0x09b 0x2db 0x11b 0x220 0x19b 0x35a 0x21b 0x1b0 0x29b 0x0e8 0x31b 0x342 0x39b 0x2aa
0x01c 0x34f 0x09c 0x367 0x11c 0x0ed 0x19c 0x03c 0x21c 0x035 0x29c 0x311 0x31c 0x030 0x39c 0x0a5
0x01d 0x36e 0x09d 0x077 0x11d 0x216 0x19d 0x28a 0x21d 0x35c 0x29d 0x3bf 0x31d 0x09c 0x39d 0x1d0
0x01e 0x32e 0x09e 0x078 0x11e 0x16e 0x19e 0x328 0x21e 0x186 0x29e 0x00c 0x31e 0x000 0x39e 0x006
0x01f 0x0af 0x09f 0x315 0x11f 0x2e5 0x19f 0x1bf 0x21f 0x247 0x29f 0x0c1 0x31f 0x2bb 0x39f 0x06b
0x020 0x212 0x0a0 0x060 0x120 0x1fc 0x1a0 0x3a9 0x220 0x0b1 0x2a0 0x0a1 0x320 0x0c4 0x3a0 0x390
0x021 0x37c 0x0a1 0x3b8 0x121 0x380 0x1a1 0x299 0x221 0x140 0x2a1 0x278 0x321 0x202 0x3a1 0x152
0x022 0x0f8 0x0a2 0x3f5 0x122 0x22f 0x1a2 0x200 0x222 0x2a2 0x2a2 0x02e 0x322 0x2a6 0x3a2 0x0cf
0x023 0x113 0x0a3 0x3af 0x123 0x32d 0x1a3 0x3eb 0x223 0x3e7 0x2a3 0x368 0x323 0x2ad 0x3a3 0x001
0x024 0x2b0 0x0a4 0x194 0x124 0x145 0x1a4 0x254 0x224 0x3f4 0x2a4 0x040 0x324 0x3cd 0x3a4 0x300
0x025 0x1d9 0x0a5 0x15b 0x125 0x0e1 0x1a5 0x294 0x225 0x211 0x2a5 0x1c1 0x325 0x3e9 0x3a5 0x1c9
0x026 0x362 0x0a6 0x044 0x126 0x0de 0x1a6 0x3b3 0x226 0x3d2 0x2a6 0x3e0 0x326 0x14e 0x3a6 0x120
0x027 0x2cb 0x0a7 0x3aa 0x127 0x03b 0x1a7 0x16d 0x227 0x320 0x2a7 0x37e 0x327 0x3c2 0x3a7 0x232
0x028 0x099 0x0a8 0x301 0x128 0x06d 0x1a8 0x2c3 0x228 0x025 0x2a8 0x1a2 0x328 0x364 0x3a8 0x131
0x029 0x1e8 0x0a9 0x11e 0x129 0x04d 0x1a9 0x127 0x229 0x27a 0x2a9 0x2c5 0x329 0x179 0x3a9 0x183
0x02a 0x29b 0x0aa 0x056 0x12a 0x067 0x1aa 0x1e5 0x22a 0x270 0x2aa 0x17e 0x32a 0x00b 0x3aa 0x0ff
0x02b 0x26f 0x0ab 0x2bc 0x12b 0x1ee 0x1ab 0x1d4 0x22b 0x08b 0x2ab 0x148 0x32b 0x2a0 0x3ab 0x21b
0x02c 0x11c 0x0ac 0x11f 0x12c 0x1e3 0x1ac 0x31d 0x22c 0x1f9 0x2ac 0x20a 0x32c 0x319 0x3ac 0x0f2
0x02d 0x075 0x0ad 0x271 0x12d 0x0ef 0x1ad 0x10f 0x22d 0x331 0x2ad 0x33b 0x32d 0x00d 0x3ad 0x1f2
0x02e 0x26c 0x0ae 0x333 0x12e 0x0b7 0x1ae 0x2f7 0x22e 0x0ec 0x2ae 0x0f7 0x32e 0x11d 0x3ae 0x03a
0x02f 0x1bb 0x0af 0x230 0x12f 0x285 0x1af 0x1db 0x22f 0x3fb 0x2af 0x0fd 0x32f 0x3b4 0x3af 0x2f5

18 T. Prévost et al.

input output input output input output input output input output input output input output input output
0x030 0x3ec 0x0b0 0x291 0x130 0x2a3 0x1b0 0x30b 0x230 0x218 0x2b0 0x196 0x330 0x2b2 0x3b0 0x187
0x031 0x027 0x0b1 0x12d 0x131 0x1b7 0x1b1 0x13f 0x231 0x1d5 0x2b1 0x05d 0x331 0x24b 0x3b1 0x27e
0x032 0x393 0x0b2 0x045 0x132 0x084 0x1b2 0x314 0x232 0x033 0x2b2 0x3c6 0x332 0x3e1 0x3b2 0x3da
0x033 0x2e8 0x0b3 0x355 0x133 0x2c0 0x1b3 0x04c 0x233 0x29a 0x2b3 0x01e 0x333 0x3ef 0x3b3 0x079
0x034 0x3e4 0x0b4 0x374 0x134 0x391 0x1b4 0x23f 0x234 0x3c7 0x2b4 0x219 0x334 0x22e 0x3b4 0x360
0x035 0x24e 0x0b5 0x038 0x135 0x274 0x1b5 0x243 0x235 0x04f 0x2b5 0x34c 0x335 0x25f 0x3b5 0x0be
0x036 0x29e 0x0b6 0x092 0x136 0x258 0x1b6 0x204 0x236 0x1a0 0x2b6 0x20e 0x336 0x115 0x3b6 0x144
0x037 0x353 0x0b7 0x03f 0x137 0x3b1 0x1b7 0x37a 0x237 0x0ae 0x2b7 0x34a 0x337 0x3a8 0x3b7 0x3d4
0x038 0x175 0x0b8 0x3a7 0x138 0x318 0x1b8 0x004 0x238 0x265 0x2b8 0x057 0x338 0x126 0x3b8 0x33a
0x039 0x34e 0x0b9 0x0b6 0x139 0x30a 0x1b9 0x23d 0x239 0x3bc 0x2b9 0x0ca 0x339 0x2ed 0x3b9 0x2a4
0x03a 0x19a 0x0ba 0x262 0x13a 0x223 0x1ba 0x396 0x23a 0x111 0x2ba 0x19f 0x33a 0x3fd 0x3ba 0x3c5
0x03b 0x03e 0x0bb 0x0d1 0x13b 0x002 0x1bb 0x102 0x23b 0x185 0x2bb 0x0b3 0x33b 0x15e 0x3bb 0x2ce
0x03c 0x0d3 0x0bc 0x058 0x13c 0x357 0x1bc 0x3df 0x23c 0x3be 0x2bc 0x222 0x33c 0x25d 0x3bc 0x05b
0x03d 0x326 0x0bd 0x382 0x13d 0x0d2 0x1bd 0x1cd 0x23d 0x3d6 0x2bd 0x0cb 0x33d 0x1b3 0x3bd 0x0ba
0x03e 0x2b6 0x0be 0x1fa 0x13e 0x1cb 0x1be 0x276 0x23e 0x026 0x2be 0x13c 0x33e 0x365 0x3be 0x399
0x03f 0x226 0x0bf 0x0dc 0x13f 0x1dc 0x1bf 0x256 0x23f 0x0c9 0x2bf 0x3a0 0x33f 0x0e4 0x3bf 0x39b
0x040 0x351 0x0c0 0x323 0x140 0x16b 0x1c0 0x08c 0x240 0x2a5 0x2c0 0x095 0x340 0x191 0x3c0 0x051
0x041 0x2d4 0x0c1 0x0a8 0x141 0x1d2 0x1c1 0x06a 0x241 0x38a 0x2c1 0x339 0x341 0x3ca 0x3c1 0x0d8
0x042 0x3d8 0x0c2 0x154 0x142 0x2d5 0x1c2 0x21d 0x242 0x20b 0x2c2 0x17b 0x342 0x003 0x3c2 0x313
0x043 0x35f 0x0c3 0x0c2 0x143 0x281 0x1c3 0x150 0x243 0x112 0x2c3 0x272 0x343 0x25a 0x3c3 0x09d
0x044 0x161 0x0c4 0x195 0x144 0x2f3 0x1c4 0x346 0x244 0x098 0x2c4 0x1be 0x344 0x1b4 0x3c4 0x310
0x045 0x1f3 0x0c5 0x1ed 0x145 0x1fb 0x1c5 0x255 0x245 0x007 0x2c5 0x10c 0x345 0x14f 0x3c5 0x32c
0x046 0x3cf 0x0c6 0x00f 0x146 0x3d5 0x1c6 0x207 0x246 0x18a 0x2c6 0x3ba 0x346 0x04b 0x3c6 0x121
0x047 0x02d 0x0c7 0x31c 0x147 0x0ac 0x1c7 0x3e6 0x247 0x23a 0x2c7 0x2d1 0x347 0x2a9 0x3c7 0x283
0x048 0x3f8 0x0c8 0x3ae 0x148 0x1d6 0x1c8 0x26d 0x248 0x0df 0x2c8 0x08f 0x348 0x296 0x3c8 0x275
0x049 0x117 0x0c9 0x252 0x149 0x3ee 0x1c9 0x041 0x249 0x29d 0x2c9 0x182 0x349 0x1aa 0x3c9 0x0eb
0x04a 0x1a4 0x0ca 0x3e2 0x14a 0x0ea 0x1ca 0x3d0 0x24a 0x029 0x2ca 0x217 0x34a 0x14b 0x3ca 0x24c
0x04b 0x385 0x0cb 0x15d 0x14b 0x2fe 0x1cb 0x3d3 0x24b 0x065 0x2cb 0x1af 0x34b 0x2e3 0x3cb 0x128
0x04c 0x1d3 0x0cc 0x2f4 0x14c 0x066 0x1cc 0x1ff 0x24c 0x133 0x2cc 0x107 0x34c 0x1c8 0x3cc 0x312
0x04d 0x3b2 0x0cd 0x290 0x14d 0x13e 0x1cd 0x072 0x24d 0x338 0x2cd 0x2ae 0x34d 0x1e9 0x3cd 0x347
0x04e 0x20d 0x0ce 0x138 0x14e 0x21c 0x1ce 0x1c5 0x24e 0x1b6 0x2ce 0x0f3 0x34e 0x3f0 0x3ce 0x087
0x04f 0x0b2 0x0cf 0x27b 0x14f 0x1c2 0x1cf 0x395 0x24f 0x019 0x2cf 0x31b 0x34f 0x164 0x3cf 0x1f7
0x050 0x0c5 0x0d0 0x32a 0x150 0x1df 0x1d0 0x33d 0x250 0x17f 0x2d0 0x1ef 0x350 0x08e 0x3d0 0x227
0x051 0x3cb 0x0d1 0x2e4 0x151 0x081 0x1d1 0x3e5 0x251 0x1c7 0x2d1 0x1a6 0x351 0x26b 0x3d1 0x2f6
0x052 0x3e3 0x0d2 0x2c8 0x152 0x174 0x1d2 0x3fc 0x252 0x12e 0x2d2 0x086 0x352 0x2c4 0x3d2 0x173
0x053 0x29f 0x0d3 0x3bd 0x153 0x350 0x1d3 0x304 0x253 0x171 0x2d3 0x0f5 0x353 0x2b3 0x3d3 0x2d2
0x054 0x2e7 0x0d4 0x0b4 0x154 0x25c 0x1d4 0x097 0x254 0x151 0x2d4 0x1cc 0x354 0x2f8 0x3d4 0x2de
0x055 0x0a6 0x0d5 0x06f 0x155 0x235 0x1d5 0x109 0x255 0x106 0x2d5 0x2bf 0x355 0x3bb 0x3d5 0x39a
0x056 0x273 0x0d6 0x3a3 0x156 0x07a 0x1d6 0x155 0x256 0x341 0x2d6 0x022 0x356 0x1a7 0x3d6 0x3b0
0x057 0x29c 0x0d7 0x253 0x157 0x2ea 0x1d7 0x046 0x257 0x21a 0x2d7 0x18b 0x357 0x3de 0x3d7 0x327
0x058 0x163 0x0d8 0x0bd 0x158 0x13d 0x1d8 0x0dd 0x258 0x048 0x2d8 0x3f1 0x358 0x3a4 0x3d8 0x119
0x059 0x210 0x0d9 0x1c3 0x159 0x09b 0x1d9 0x289 0x259 0x381 0x2d9 0x0fc 0x359 0x080 0x3d9 0x23c
0x05a 0x01d 0x0da 0x12b 0x15a 0x30c 0x1da 0x14c 0x25a 0x286 0x2da 0x3a5 0x35a 0x3db 0x3da 0x0e9
0x05b 0x083 0x0db 0x16a 0x15b 0x2cf 0x1db 0x0cd 0x25b 0x28f 0x2db 0x2cc 0x35b 0x250 0x3db 0x373
0x05c 0x19e 0x0dc 0x349 0x15c 0x2c6 0x1dc 0x1ac 0x25c 0x0a7 0x2dc 0x13b 0x35c 0x141 0x3dc 0x063
0x05d 0x197 0x0dd 0x14a 0x15d 0x00a 0x1dd 0x1ce 0x25d 0x10b 0x2dd 0x104 0x35d 0x37b 0x3dd 0x26a
0x05e 0x279 0x0de 0x3f6 0x15e 0x0fb 0x1de 0x261 0x25e 0x39f 0x2de 0x0f1 0x35e 0x1c6 0x3de 0x1f6
0x05f 0x332 0x0df 0x17c 0x15f 0x047 0x1df 0x224 0x25f 0x317 0x2df 0x3f7 0x35f 0x1e2 0x3df 0x325

10-bit S-box generated by Feistel construction from CA 19

input output input output input output input output input output input output input output input output
0x060 0x2d0 0x0e0 0x0a9 0x160 0x297 0x1e0 0x184 0x260 0x246 0x2e0 0x139 0x360 0x22c 0x3e0 0x008
0x061 0x389 0x0e1 0x031 0x161 0x1f8 0x1e1 0x19b 0x261 0x308 0x2e1 0x124 0x361 0x134 0x3e1 0x23e
0x062 0x3b7 0x0e2 0x18e 0x162 0x0da 0x1e2 0x12f 0x262 0x34b 0x2e2 0x190 0x362 0x1f1 0x3e2 0x25e
0x063 0x388 0x0e3 0x2fb 0x163 0x3c4 0x1e3 0x305 0x263 0x135 0x2e3 0x2f2 0x363 0x343 0x3e3 0x287
0x064 0x2dd 0x0e4 0x3c3 0x164 0x3f3 0x1e4 0x2ff 0x264 0x02b 0x2e4 0x07e 0x364 0x054 0x3e4 0x1de
0x065 0x18d 0x0e5 0x021 0x165 0x2a7 0x1e5 0x05c 0x265 0x288 0x2e5 0x103 0x365 0x1e1 0x3e5 0x2e9
0x066 0x053 0x0e6 0x037 0x166 0x229 0x1e6 0x017 0x266 0x01c 0x2e6 0x0f4 0x366 0x093 0x3e6 0x337
0x067 0x37d 0x0e7 0x07b 0x167 0x3ab 0x1e7 0x24d 0x267 0x039 0x2e7 0x394 0x367 0x344 0x3e7 0x016
0x068 0x352 0x0e8 0x302 0x168 0x1a5 0x1e8 0x3ad 0x268 0x0b0 0x2e8 0x2d3 0x368 0x3c8 0x3e8 0x35e
0x069 0x146 0x0e9 0x28c 0x169 0x2b4 0x1e9 0x334 0x269 0x12c 0x2e9 0x1ea 0x369 0x3d1 0x3e9 0x03d
0x06a 0x1b2 0x0ea 0x377 0x16a 0x295 0x1ea 0x22b 0x26a 0x061 0x2ea 0x0cc 0x36a 0x2b1 0x3ea 0x369
0x06b 0x3d9 0x0eb 0x0e5 0x16b 0x31e 0x1eb 0x2ee 0x26b 0x156 0x2eb 0x1d8 0x36b 0x2b9 0x3eb 0x1ad
0x06c 0x249 0x0ec 0x076 0x16c 0x26e 0x1ec 0x0f9 0x26c 0x2b8 0x2ec 0x136 0x36c 0x0e2 0x3ec 0x0fe
0x06d 0x0db 0x0ed 0x3fe 0x16d 0x02a 0x1ed 0x1f4 0x26d 0x30f 0x2ed 0x284 0x36d 0x1dd 0x3ed 0x3ce
0x06e 0x2f0 0x0ee 0x2ca 0x16e 0x130 0x1ee 0x2df 0x26e 0x014 0x2ee 0x27d 0x36e 0x387 0x3ee 0x024
0x06f 0x3fa 0x0ef 0x2dc 0x16f 0x3ea 0x1ef 0x2ab 0x26f 0x2d9 0x2ef 0x3ac 0x36f 0x31a 0x3ef 0x0c3
0x070 0x125 0x0f0 0x201 0x170 0x21f 0x1f0 0x0c7 0x270 0x2c1 0x2f0 0x0d5 0x370 0x0c8 0x3f0 0x33c
0x071 0x1e0 0x0f1 0x257 0x171 0x2ef 0x1f1 0x239 0x271 0x1f0 0x2f1 0x062 0x371 0x1a1 0x3f1 0x165
0x072 0x06c 0x0f2 0x143 0x172 0x280 0x1f2 0x209 0x272 0x3c0 0x2f2 0x0bb 0x372 0x2a8 0x3f2 0x206
0x073 0x3f9 0x0f3 0x370 0x173 0x0e6 0x1f3 0x248 0x273 0x0d0 0x2f3 0x01b 0x373 0x198 0x3f3 0x0a0
0x074 0x073 0x0f4 0x10d 0x174 0x050 0x1f4 0x19c 0x274 0x267 0x2f4 0x018 0x374 0x0ee 0x3f4 0x04e
0x075 0x1d1 0x0f5 0x0b8 0x175 0x0c0 0x1f5 0x105 0x275 0x0e7 0x2f5 0x335 0x375 0x234 0x3f5 0x074
0x076 0x122 0x0f6 0x221 0x176 0x386 0x1f6 0x371 0x276 0x30d 0x2f6 0x27f 0x376 0x1d7 0x3f6 0x39c
0x077 0x263 0x0f7 0x3ff 0x177 0x169 0x1f7 0x0e3 0x277 0x3a1 0x2f7 0x25b 0x377 0x2eb 0x3f7 0x32b
0x078 0x116 0x0f8 0x032 0x178 0x2cd 0x1f8 0x20c 0x278 0x2a1 0x2f8 0x034 0x378 0x2af 0x3f8 0x277
0x079 0x082 0x0f9 0x233 0x179 0x0a3 0x1f9 0x1fd 0x279 0x2f1 0x2f9 0x1e4 0x379 0x398 0x3f9 0x1a3
0x07a 0x2b5 0x0fa 0x3d7 0x17a 0x149 0x1fa 0x1fe 0x27a 0x316 0x2fa 0x18c 0x37a 0x378 0x3fa 0x11a
0x07b 0x028 0x0fb 0x0ab 0x17b 0x324 0x1fb 0x36d 0x27b 0x199 0x2fb 0x3f2 0x37b 0x375 0x3fb 0x31f
0x07c 0x129 0x0fc 0x213 0x17c 0x19d 0x1fc 0x012 0x27c 0x397 0x2fc 0x2f9 0x37c 0x35b 0x3fc 0x068
0x07d 0x0b5 0x0fd 0x10e 0x17d 0x21e 0x1fd 0x013 0x27d 0x3b5 0x2fd 0x07d 0x37d 0x09a 0x3fd 0x3ed
0x07e 0x348 0x0fe 0x22a 0x17e 0x09f 0x1fe 0x38f 0x27e 0x0ce 0x2fe 0x359 0x37e 0x1ca 0x3fe 0x39e
0x07f 0x30e 0x0ff 0x17d 0x17f 0x383 0x1ff 0x100 0x27f 0x2ba 0x2ff 0x189 0x37f 0x28d 0x3ff 0x321

20 T. Prévost et al.

References

1. Alekseev, E.K., Karelina, E.K.: Classification of correlation-immune and minimal
correlation-immune Boolean functions of 4 and 5 variables. Discrete Mathematics
and Applications (2015). https://doi.org/10.1515/dma-2015-0019

2. Arshad, B., Siddiqui, N., Hussain, Z., Ehatisham-Ul-Haq, M.: A novel scheme
for designing secure substitution boxes (S-boxes) based on Möbius group and fi-
nite field. Wireless Personal Communications (2022). https://doi.org/10.1007/
s11277-022-09524-1

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak reference (2011).
https://doi.org/10.1007/978-3-642-38348-9_19

4. Biham, E., Shamir, A.: Differential cryptanalysis of the data encryption stan-
dard. Springer Science & Business Media (2012). https://doi.org/10.1007/
978-1-4613-9314-6

5. Biryukov, A., De Canniere, C.: Linear cryptanalysis for block ciphers. En-
cyclopedia of cryptography and security (2011). https://doi.org/10.1007/
978-1-4419-5906-5_589

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Rob-
shaw, M.J., Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block ci-
pher. In: Cryptographic Hardware and Embedded Systems-CHES: 9th Interna-
tional Workshop, Vienna, Austria. Springer (2007). https://doi.org/10.1007/
978-3-540-74735-2_31

7. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Transactions on Information Theory (2006). https:
//doi.org/10.1109/TIT.2005.864481

8. Canteaut, A., Duval, S., Leurent, G.: Construction of lightweight S-boxes using
Feistel and MISTY structures. In: International conference on selected areas in
cryptography. Springer (2015)

9. Carlet, C., Mesnager, S.: On the supports of the Walsh transforms of Boolean
functions. BFCA’05: Boolean Functions: Cryptography and Applications (2005)

10. Carlet, C., Ding, C.: Nonlinearities of S-boxes. Finite fields and their applications
(2007). https://doi.org/10.1016/j.ffa.2005.07.003

11. Daemen, J., Govaerts, R., Vandewalle, J.: A framework for the design of one-
way hash functions including cryptanalysis of Damgård’s one-way function based
on a cellular automaton. In: Advances in Cryptology—ASIACRYPT’91: Interna-
tional Conference on the Theory and Application of Cryptology Fujiyosida, Japan.
Springer (1993). https://doi.org/10.1007/3-540-57332-1_7

12. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: International Conference
on Smart Card Research and Advanced Applications. Springer (1998). https://
doi.org/10.1007/10721064_26

13. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. Cryptology (2005). https://doi.org/10.1515/JMC.2007.011

14. Dawson, E., Millan, W.: Efficient methods for generating mars-like S-boxes. In:
Fast Software Encryption (2000). https://doi.org/10.1007/3-540-44706-7_21

15. Dimitrov, M.M.: On the design of chaos-based S-boxes. IEEE Access (2020). https:
//doi.org/10.1109/ACCESS.2020.3004526

16. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2: Lightweight
authenticated encryption and hashing. Journal of Cryptology (2021). https://
doi.org/10.1007/s00145-021-09398-9

17. Feistel, H.: Cryptography and computer privacy. Scientific american (1973)

https://doi.org/10.1515/dma-2015-0019
https://doi.org/10.1515/dma-2015-0019
https://doi.org/10.1007/s11277-022-09524-1
https://doi.org/10.1007/s11277-022-09524-1
https://doi.org/10.1007/s11277-022-09524-1
https://doi.org/10.1007/s11277-022-09524-1
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4419-5906-5_589
https://doi.org/10.1007/978-1-4419-5906-5_589
https://doi.org/10.1007/978-1-4419-5906-5_589
https://doi.org/10.1007/978-1-4419-5906-5_589
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1109/TIT.2005.864481
https://doi.org/10.1109/TIT.2005.864481
https://doi.org/10.1109/TIT.2005.864481
https://doi.org/10.1109/TIT.2005.864481
https://doi.org/10.1016/j.ffa.2005.07.003
https://doi.org/10.1016/j.ffa.2005.07.003
https://doi.org/10.1007/3-540-57332-1_7
https://doi.org/10.1007/3-540-57332-1_7
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/10721064_26
https://doi.org/10.1515/JMC.2007.011
https://doi.org/10.1515/JMC.2007.011
https://doi.org/10.1007/3-540-44706-7_21
https://doi.org/10.1007/3-540-44706-7_21
https://doi.org/10.1109/ACCESS.2020.3004526
https://doi.org/10.1109/ACCESS.2020.3004526
https://doi.org/10.1109/ACCESS.2020.3004526
https://doi.org/10.1109/ACCESS.2020.3004526
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9

10-bit S-box generated by Feistel construction from CA 21

18. Formenti, E., Imai, K., Martin, B., Yunès, J.B.: Advances on random sequence
generation by uniform cellular automata. Computing with new resources: essays
dedicated to Jozef Gruska on the occasion of his 80th birthday (2014). https:
//doi.org/10.1007/978-3-319-13350-8_5

19. Gutowitz, H.: Cryptography with dynamical systems. In: Cellular Au-
tomata and Cooperative Systems. Springer (1993). https://doi.org/10.1007/
978-94-011-1691-6_21

20. Haider, T., Azam, N.A., Hayat, U.: Substitution box generator with enhanced
cryptographic properties and minimal computation time. Expert Systems with
Applications (2024). https://doi.org/10.1016/j.eswa.2023.122779

21. Hussain, I., Shah, T., Mahmood, H., Gondal, M.A.: Construction of S8 Liu J S-
boxes and their applications. Computers & Mathematics with Applications (2012).
https://doi.org/10.1016/j.camwa.2012.05.017

22. Hussain, S., Jamal, S.S., Shah, T., Hussain, I.: A power associative loop structure
for the construction of non-linear components of block cipher. IEEE Access (2020).
https://doi.org/10.1109/ACCESS.2020.3005087

23. Jakobsen, T., Knudsen, L.R.: Attacks on block ciphers of low algebraic degree.
Journal of Cryptology (2001). https://doi.org/10.1007/s00145-001-0003-x

24. Jeon, Y., Baek, S., Kim, H., Kim, G., Kim, J.: Differential uniformity and linear-
ity of S-boxes by multiplicative complexity. Cryptography and Communications
(2022). https://doi.org/10.1007/s12095-021-00547-2

25. John, A., Jose, J.: Hash function design based on hybrid five-neighborhood cellular
automata and sponge functions. Complex Systems (2023). https://doi.org/10.
25088/ComplexSystems.32.2.171

26. Langevin, P., Leander, G.: Counting all bent functions in dimension eight
99270589265934370305785861242880. Designs, Codes and Cryptography (2011).
https://doi.org/10.1007/s10623-010-9455-z

27. Li, Y., Wang, M.: Constructing S-boxes for lightweight cryptography with Feistel
structure. In: International Workshop on Cryptographic Hardware and Embedded
Systems. Springer (2014)

28. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing (1988). https://doi.org/10.
1007/3-540-39799-X_34

29. Malal, A., Tezcan, C.: FPGA-friendly compact and efficient AES-like 8× 8 S-box.
Microprocessors and Microsystems (2024). https://doi.org/10.1016/j.micpro.
2024.105007

30. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based S-
boxes. Cryptography and Communications (2019). https://doi.org/10.1007/
s12095-018-0311-8

31. Marochok, S., Zajac, P.: Algorithm for generating S-boxes with prescribed differ-
ential properties. Algorithms (2023). https://doi.org/10.3390/a16030157

32. Martin, B.: A Walsh exploration of elementary CA rules. Journal of Cellular Au-
tomata (2008)

33. Millan, W.: Low order approximation of cipher functions. In: International Con-
ference on Cryptography: Policy and Algorithms. Springer (1995). https://doi.
org/10.1007/BFb0032354

34. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited. In: Proceedings of the twenty-ninth annual ACM sym-
posium on Theory of computing (1997). https://doi.org/10.1007/PL00003817

https://doi.org/10.1007/978-3-319-13350-8_5
https://doi.org/10.1007/978-3-319-13350-8_5
https://doi.org/10.1007/978-3-319-13350-8_5
https://doi.org/10.1007/978-3-319-13350-8_5
https://doi.org/10.1007/978-94-011-1691-6_21
https://doi.org/10.1007/978-94-011-1691-6_21
https://doi.org/10.1007/978-94-011-1691-6_21
https://doi.org/10.1007/978-94-011-1691-6_21
https://doi.org/10.1016/j.eswa.2023.122779
https://doi.org/10.1016/j.eswa.2023.122779
https://doi.org/10.1016/j.camwa.2012.05.017
https://doi.org/10.1016/j.camwa.2012.05.017
https://doi.org/10.1109/ACCESS.2020.3005087
https://doi.org/10.1109/ACCESS.2020.3005087
https://doi.org/10.1007/s00145-001-0003-x
https://doi.org/10.1007/s00145-001-0003-x
https://doi.org/10.1007/s12095-021-00547-2
https://doi.org/10.1007/s12095-021-00547-2
https://doi.org/10.25088/ComplexSystems.32.2.171
https://doi.org/10.25088/ComplexSystems.32.2.171
https://doi.org/10.25088/ComplexSystems.32.2.171
https://doi.org/10.25088/ComplexSystems.32.2.171
https://doi.org/10.1007/s10623-010-9455-z
https://doi.org/10.1007/s10623-010-9455-z
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1016/j.micpro.2024.105007
https://doi.org/10.1016/j.micpro.2024.105007
https://doi.org/10.1016/j.micpro.2024.105007
https://doi.org/10.1016/j.micpro.2024.105007
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.3390/a16030157
https://doi.org/10.3390/a16030157
https://doi.org/10.1007/BFb0032354
https://doi.org/10.1007/BFb0032354
https://doi.org/10.1007/BFb0032354
https://doi.org/10.1007/BFb0032354
https://doi.org/10.1007/PL00003817
https://doi.org/10.1007/PL00003817

22 T. Prévost et al.

35. Naseer, M., Tariq, S., Riaz, N., Ahmed, N., Hussain, M.: S-box security analysis
of NIST lightweight cryptography candidates: A critical empirical study. arXiv
preprint arXiv:2404.06094 (2024). https://doi.org/10.48550/arXiv.2404.0609

36. Nyberg, K., Knudsen, L.R.: Provable security against differential cryptanalysis. In:
Annual international cryptology conference. Springer (1992). https://doi.org/
10.1007/3-540-48071-4_41

37. Patarin, J.: Luby-Rackoff: 7 rounds are enough for 2n(1 − ε) security. In: Ad-
vances in Cryptology-CRYPTO: 23rd Annual International Cryptology Confer-
ence, Santa Barbara, California, USA. Springer (2003). https://doi.org/10.
1007/978-3-540-45146-4_30

38. Picek, S., Mariot, L., Leporati, A., Jakobovic, D.: Evolving S-boxes based on cel-
lular automata with genetic programming. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion (2017). https://doi.org/10.
1145/3067695.3076084

39. Picek, S., Mariot, L., Yang, B., Jakobovic, D., Mentens, N.: Design of S-boxes
defined with cellular automata rules. In: Proceedings of the computing frontiers
conference (2017). https://doi.org/10.1145/3075564.3079069

40. Poinsot, L.: Boolean bent functions in impossible cases: odd and plane dimensions.
International Journal of Computer Science and Network Security (2006)

41. Preneel, B.: Analysis and design of cryptographic hash functions. Ph.D. thesis,
Citeseer (1993)

42. Pub, F.: Security requirements for cryptographic modules. FIPS PUB (1994).
https://doi.org/10.6028/NIST.FIPS.140-2

43. Tuncer, T., Avaroğlu, E.: Random number generation with LFSR based stream ci-
pher algorithms. In: 2017 40th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO). IEEE (2017)

44. Wagner, D.: The boomerang attack. In: International Workshop on Fast Software
Encryption. Springer (1999). https://doi.org/10.1007/3-540-48519-8_12

45. Waheed, A., Subhan, F., Suud, M.M., Alam, M., Ahmad, S.: An analytical review
of current S-box design methodologies, performance evaluation criteria, and ma-
jor challenges. Multimedia Tools and Applications (2023). https://doi.org/10.
1007/s11042-023-14910-3

46. Webster, A.F., Tavares, S.E.: On the design of S-Boxes. In: Conference on the
theory and application of cryptographic techniques. Springer (1985). https://
doi.org/10.1007/3-540-39799-X_41

47. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of modern physics
(1983). https://doi.org/10.1103/RevModPhys.55.601

48. Xiao, G.Z., Massey, J.L.: A spectral characterization of correlation-immune com-
bining functions. IEEE Transactions on information theory (1988). https://doi.
org/10.1109/18.6037

49. Zahid, A.H., Arshad, M.J.: An innovative design of substitution-boxes using cubic
polynomial mapping. Symmetry (2019). https://doi.org/10.3390/sym11030437

50. Zahid, A.H., Rashid, H., Shaban, M.M.U., Ahmad, S., Ahmed, E., Amjad, M.T.,
Baig, M.A.T., Arshad, M.J., Tariq, M.N., Tariq, M.W.: Dynamic S-box design
using a novel square polynomial transformation and permutation. IEEE Access
(2021). https://doi.org/10.1109/ACCESS.2021.3086717

51. Zhang, L., Ma, C., Zhao, Y., Zhao, W.: A novel dynamic S-box generation scheme
based on quantum random walks controlled by a hyper-chaotic map. Mathematics
(2023). https://doi.org/10.3390/math12010084

https://doi.org/10.48550/arXiv.2404.0609
https://doi.org/10.48550/arXiv.2404.0609
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/978-3-540-45146-4_30
https://doi.org/10.1007/978-3-540-45146-4_30
https://doi.org/10.1007/978-3-540-45146-4_30
https://doi.org/10.1007/978-3-540-45146-4_30
https://doi.org/10.1145/3067695.3076084
https://doi.org/10.1145/3067695.3076084
https://doi.org/10.1145/3067695.3076084
https://doi.org/10.1145/3067695.3076084
https://doi.org/10.1145/3075564.3079069
https://doi.org/10.1145/3075564.3079069
https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/s11042-023-14910-3
https://doi.org/10.1007/s11042-023-14910-3
https://doi.org/10.1007/s11042-023-14910-3
https://doi.org/10.1007/s11042-023-14910-3
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037
https://doi.org/10.3390/sym11030437
https://doi.org/10.3390/sym11030437
https://doi.org/10.1109/ACCESS.2021.3086717
https://doi.org/10.1109/ACCESS.2021.3086717
https://doi.org/10.3390/math12010084
https://doi.org/10.3390/math12010084

	A 10-bit S-box generated by Feistel construction from cellular automata

