
A Democratic Distributed Post-Quantum
Certificateless Encryption Scheme⋆

Thomas Prévost1[0009−0000−2224−8574], Bruno Martin1[0000−0002−0048−5197], and
Olivier Alibart2[0000−0003−4404−4067]

1 Université Côte d’Azur, CNRS, I3S, France
{thomas.prevost,bruno.martin}@univ-cotedazur.fr

2 Université Côte d’Azur, CNRS, InPhyNi, France
olivier.alibart@univ-cotedazur.fr

Abstract. We propose a post-quantum certificateless encryption scheme
based on a web of trust instead of a centralized Key Generation Center.
Our scheme allows nodes to communicate securely. It is the nodes already
present in the network that vote on the acceptance of new nodes, and
agree on the shared key. The threshold required for the acceptance of a
new node is configurable. Our protocol thus allows to completely operate
without the Key Generation Center (or Key Distribution Center).
Our scheme is based on Quasi-Cyclic Moderate Density Parity Check
Code McEliece, which is resistant to quantum computer attacks. The
voting system uses Shamir secret sharing, coupled with the Kabatianskii-
Krouk-Smeets signature scheme, both are also resistant to quantum com-
puter attacks.
We provide a security analysis of our protocol, as well as a formal veri-
fication and a proof of concept code.

Keywords: Certificateless encryption · QC-MDPC McEliece · Post-
quantum encryption · Web of trust · Distributed Identity Management ·
KKS.

1 Introduction

Certificateless encryption is designed as an extension of Identity-based encryp-
tion. In this scheme, invented by Shamir in 1984 [40], the public key is directly
derived from an identifier that uniquely designates a user (IP address, email
address, domain name, etc.). Thus, anyone is able to verify a public key from
publicly accessible information, without resorting to a trusted authority. How-
ever, anyone is then able to generate a key pair for a given identity.

The certificateless encryption scheme [2] attempts to solve this problem by
submitting the generation of a key pair by a new participant to the approval of
a trusted third party, the Key Generation Center (KGC), also called the Key
⋆ This work has been supported by a government grant managed by the Agence Na-

tionale de la Recherche under the Investissement d’avenir program, reference ANR-
17-EURE-004

2 T. Prévost et al.

Distribution Center (KDC). All nodes in the network are thus able to ensure
that a public key has been generated with the approval of the KGC, which then
acts as a trusted intermediary. The KGC cannot, however, know the generated
private key.

In the classical certificateless encryption scheme, when a new node wants to
join the network, and therefore generates a key pair based on its identity, it will
ask the Key Generation Center for permission. The KGC will then broadcast
to all nodes already present in the network a random value, the partial private
key (psk). The KGC will also transmit the psk to the new node. This new node
will then generate a key pair from the partial private key and its identity. Thus,
all nodes in the network will be able to ensure that the generated public key
corresponds to both the identity of the new node and the partial private key
generated by the KGC.

Our contribution In this paper, we propose a new certificateless encryption
protocol in which the Key Generation Center is replaced by a direct agreement
of the nodes already present in the network. Thus, it is no longer necessary to
trust a single KGC, but a web of trust of existing nodes.

The threshold of votes required for a new node to be considered approved
will depend on the trust placed in the network, i.e. the estimated number of
potentially malicious nodes. In the Bitcoin network, six approvals are enough
for a transaction to be considered secure [29], while Condorcet showed that two-
thirds of the votes guarantee a decision that is very likely to be good [17].

Our protocol is based on the McEliece cryptosystem [33], which is currently
considered secure against quantum computer attacks. The certificateless encryp-
tion used in this paper is based on [31].

This paper is organized as follows: first, in section 2, we recall how McEliece’s
cryptosystem works, and in section 3, the particular case of Quasi-Cyclic Low
Density Parity Check codes (QC-LDPC) and Moderate Density Parity Check
codes (QC-MDPC). In section 4, we explain how to develop a digital signature
system from error-correcting codes, and especially how to achieve this without
performing a decoding operation with the scheme proposed by Kabatianskii,
Krouk and Smeets (KKS) [27]. In section 5, we show how the secret sharing
scheme developed by Shamir [39] works. Next, in section 6, we detail the op-
eration of our post-quantum distributed certificateless encryption protocol. We
also provide a proof-of-concept written in Rust in section 7. Afterwards, we an-
alyze the security properties of our protocol (including formal verification using
ProVerif) in section 8, as well as its performances, both in terms of computing
power required and number of messages sent (section 9). Finally, we conclude
with the prospects for using and improving our protocol.

Related work [10] proposes a similar certificateless encryption protocol, in
which the KGC is replaced by a vote of the nodes already present in the net-
work. This cryptosystem is based on threshold group signature. [30] also proposes
a certificateless encryption scheme without KGC, by distributing the private key

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 3

of the KGC which would exist in a classic certificateless encryption in shares,
between the existing nodes. [26] proposes something analogous but with ap-
proval by other nodes based on a PGP-like system. [35] proposes a more original
certificateless encryption solution to avoid the problem of malicious KGC, with
several KGCs having to work simultaneously to accept a new node. Another
solution proposed by [19] is to record the approval of new nodes by the KGC on
a blockchain, so that all nodes in the system can control this approval.

2 McEliece cryptosystem

2.1 Linear error correction code

Error correction codes were proposed by Richard Hamming in 1950 [25]. They
allow messages to be transmitted over a noisy channel, correcting at most t
errors per word of k symbols. Here we are only interested in binary codes, so the
symbols are defined on the alphabet {0, 1}. Error-correction codes differ from
checksums in that they not only detect the existence of a transmission error,
but also correct it to find the original word. Error correcting codes are used in
noisy communication channels, disks (which can be scratched), Random Access
Memories [37] or even in quantum error correction [11].

An (n, k, t)-error-correction code is a code of length n that can correct at
most t errors on words of length k. Most codes used in real-world applications
are linear.

Let C be a binary (n, k, t)-linear code. C is a subspace of Fn2 . Furthermore,
∀u, v ∈ C, u+ v ∈ C (linearity) and dim(C) = k.

Moreover, the subspace C is equipped with the Hamming distance h∗. Let
u, v ∈ C, the Hamming distance between u and v, denoted h∗(u, v), is defined as
the number of bits of u different from v. For example, if u = 0100 and v = 0010,
then h∗(u, v) = h∗(v, u) = 2, since the second and third bits of u and v differ.
Obviously, h∗(u, u) = 0. Let us denote by wh(x) the Hamming weight of word x,
which is h∗(0, x). Two different words of an (n, k, t)-linear error-correction code
C have a Hamming distance greater than t:

∀u, v ∈ C, u ̸= v ⇐⇒ h∗(u, v) > t (1)

Let Mk×n
{0,1} denote the set of binary matrices with k rows and n columns. A

(n, k, t)-linear error correction code C is defined by its generator matrix in the
canonical basis G ∈ Mk×n

{0,1}, such that ∀x ∈ Fk2 , x ·G ∈ C ⊂ Fn2 .
In order to detect and correct possible errors, we use a linear map η : Fn2 −→

Fn−k2 , such that ker(η) = C (meaning C = η−1(0Fn−k
2

)), with 0Fn−k
2

the null
binary vector of dimension n−k. The matrix of η in the canonical basis, denoted
H, is the parity-check matrix :

∀x ∈ Fn2 , HT · x = 0Fn−k
2

⇐⇒ x ∈ C (2)

With HT being the transpose of the matrix H.

4 T. Prévost et al.

Definition 1. For any word with error z = x+ e ∈ Fn2 , with x ∈ C and e error
vector, we call syndrome of x the element

S = HT · z = HT · x+HT · e = 0Fn−k
2

+HT · e = HT · e (3)

Since all the words of C are spaced by a Hamming distance greater or equal
than 2t+ 1, then we can correct at most t errors on the word x by determining
the word x′ having the lowest possible Hamming distance from x such that HT ·
x′ = 0Fn−k

2
. There are several algorithms for this, with a complexity depending

on the code used [3,32]. Most of these algorithms gain in efficiency by being
probabilistic, that is to say they decode a message with at most t errors with a
very high probability.

2.2 McEliece public key encryption

McEliece had the idea in 1978 to use (n, k, t)-error correction codes to develop
a public key cryptosystem [33]. This cryptosystem works as follows:

KeyGen

– The generator matrix G, described above, is the public key.
– The parity check matrix H is the private key

Enc To encode a message m ∈ Fk2 , the participant generates a random error vec-
tor e ∈ Fn2 such that wh(e) = t. The one participant then generates a ciphertext
c ∈ Fn2 with the operation:

c = x ·G+ e (4)

Dec We can find the message m from the ciphertext c, by decoding the errors
using the parity-check matrix H that remained secret.

Currently, McEliece’s cryptosystem is considered secure against quantum
computer attacks [13]. Its main problem, however, remains the gigantic size of
the keys, generally several tens of KB.

3 QC-LDPC and QC-MDPC

3.1 Circulant matrix

Definition 2. Let M ∈ Mp×p
F2

be a binary square matrix. We say that M is a
circulant matrix if

M =

m0 m1 . . . mp−1

mp−1 m0 . . . mp−2

...
...

. . .
...

m1 m2 . . . m0

 (5)

with m0,m1, . . . ,mp−1 ∈ F2.

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 5

A circulant matrix M can therefore be represented by its first row vector
m = (m0,m1, . . . ,mp−1) ∈ Fp2. m is the characteristic vector of M . This allows
to significantly reduce the size of the information that needs to be sent over the
network (actually a quadratic reduction).

The row weight ω of M is the Hamming weight of m: ω = wh(m).
Let M,N ∈ Mp×p

F2
be circulant matrices:

1. M +N is circulant.
2. M ·N is circulant.
3. MT is circulant (recall that MT is the transpose of matrix M).

As explained by [18], the algebra of binary circular matrices can be reduced
to the algebra of binary polynomials in the ring Rp = F2[X]/(Xp − 1). The
matrix above would then be represented by the polynomial P = m0 +m1 ·X +
· · ·+mp−1 ·Xp−1 ∈ Rp. Since the polynomial Xp−1 is itself reducible, then the
ring Rp does not have the characteristics of a field, in particular not all non-zero
polynomials in Rp are necessarily invertible: not all binary circulant matrices are
invertible. Addition and multiplication are commutative. Reducing the space of
matrices Mp×p

F2
to the ring of polynomials Rp allows to speed up computations

enormously.
We developed a software library to perform computations on these binary

polynomials, available at https://github.com/thomasarmel/binary_polynomial_
mod_algebra.

3.2 Construction of QC-LDPC and QC-MDPC codes

Quasi-Cyclic codes (QC)

Definition 3. An error correction code C is said to be Quasi-Cyclic (QC) if its
parity-check matrix H is a concatenation of matrices H = [Hi,j], with each Hi,j

being a circulant matrix.

In general, we construct a Quasi-Cyclic code by defining its parity-check
matrix H of the form H = [H0| . . . |Hl], with H0, . . . ,Hl circulant matrices.

The row weight ω of the parity matrix H is then defined as the sum of the
row weights of the matrices H0, . . . ,Hl.

Low-Density Parity Check codes (LDPC)

Definition 4. An (n, k, t)-error correction code is Low-Density Parity Check
(LDPC) when its parity-check matrix is sparse, i.e. its row weight ω is low. In
other words, the matrix row weight ω = O(1) is negligible compared to n, usually
ω < 10.

These codes were proposed by Gallager in [22], along with an efficient prob-
abilistic decryption algorithm.

https://github.com/thomasarmel/binary_polynomial_mod_algebra
https://github.com/thomasarmel/binary_polynomial_mod_algebra

6 T. Prévost et al.

Moderate-Density Parity Check codes (MDPC) The McEliece encryp-
tion variant based on Moderate-Density Parity Check matrices (MDPC) was
proposed by [34] in order to avoid known plaintext attacks as well as key recov-
ery attacks.

This involves increasing the row weight ω of the parity-check matrix H.

Definition 5. An (n, k, t)-error correction code is Moderate-Density Parity Check
(MDPC) when the row weight ω of its parity-check matrix is moderate, i.e.
ω = O(

√
n · log(n)).

To ensure 128-bit security, [34] proposes the following security parameters: a
code length n of 19714 bits, a dimension k of 9857 bits (n = 2k), a row weight
ω of 142 bits, and an error count t of 134 bits.

Gallager’s decoding algorithm can also work on MDPC codes.

4 Kabatianskii-Krouk-Smeets signature scheme (KKS)

4.1 The problem with classical correcting codes signature schemes

McEliece’s cryptosystem, while it allows asymmetric encryption operations to be
performed simply, is not particularly suited to digital signatures. Most signature
algorithms based on McEliece [16] consider the message to be signed we as a
codeword with errors: the signature operation then consists of exhibiting the
decrypted word x. The verifier, which possesses the generator matrix G, is then
able to verify that the signer possesses the correct parity check matrix H, if
we = x ·G+ e, with wh(e) ≤ t.

The problem with this method is that the Hamming distance h∗ between two
distinct codewords u, v can be much greater than the error correction capacity
of the code:

∀u, v ∈ C, u ̸= v, h∗(u, v) ≫ t (6)

The signer is then unable to find the valid codeword w ∈ C that is the closest
to we, and therefore to exhibit the decoded word x. This is called the complete
decoding problem.

We are in this case: the density of the parity matrix H being too high, the
distance between two valid codewords is too large. We must then find another
solution to sign the messages.

4.2 A signature scheme without decoding

Kabatianskii, Krouk and Smeets proposed in 1997 a digital signature scheme [27]
based on error-correcting codes, without involving the decoding step. Subse-
quently, only the binary version will be considered, i.e. over F2.

The originally proposed version works as follows: the signer begins by choos-
ing the security parameters n, n′, r, k, t1 and t2 ∈ N according to the desired
security level, with t1 ≤ t2, r < n and n′ < n.

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 7

The signer chooses a random parity check matrixH = [Ir|D] ∈ Mr×n
F2

, as well
as a generator matrix G ∈ Mk×n′

F2
(G is not the generator matrix corresponding

to H).
G is the generator matrix of a (n′, k) linear code U . We assume that for any

non-zero word u ∈ U , then with very high probability t1 ≤ wh(u) ≤ t2.
The signer also chooses a random subset J ⊂ {1, . . . , n}, |J | = n′, and

computes F = HJ ·GT ∈ Mr×k
F2

, with HJ the matrix formed by the columns of
index j ∈ J of H.

Public key The public key is made from the pair (H,F).
Private key The private key is made from the pair (J,G).
Signature The signer generates the matrix G∗ ∈ Mk×n

F2
whose columns at

positions j ∈ J are the successive columns of G, and the other columns
contain 0. The signature of the message m ∈ Fk2 is (m,m ·G∗).

Verification Let (m, z) being the received signature, the receiver verifies that
t1 ≤ wh(z) ≤ t2 and F ·mT = H · zT .

Our protocol uses a modified version of the KKS scheme. We use the “KKS-3
#2” version proposed in [12]. The security parameters proposed in the paper
are as follows: n = 2000, n′ = 1000, r = 1100, k = 160. We set t1 = 470 and
t2 = 530.

The “KKS-3 #2” construction differs from the original version in the following
ways:

– The generator matrix G ∈ Mk×n′

F2
is given by G = [Ik|B], B ∈ Mk×n′−k

F2

random
– The signer generates a secret non-singular matrix A ∈ Mk×k

F2
, and F =

HJ · (A ·G)T .

To speed up the computations, we use circulant matrices to generate the
matrices D ∈ Mr×n−r

F2
, B ∈ Mk×n′−k

F2
, and A ∈ Mk×k

F2
, as suggested in [12].

4.3 Known vulnerabilities

Limit on the number of signatures The problem with KKS signatures is
that with each signature, the signer reveals a piece of the subset J , as shown
in [12]. Once the attacker knows all the elements of the subset J , he can find
A and G by solving the linear system F = HJ · (A · G)T . To maintain 128-bit
security, it is only possible to sign 5 times at most with “KKS-3 #2”. After this
time, the signer will have to regenerate the private key, as well as F . However,
he can keep the same parity-check matrix H.

It is to be feared that an adversary who tries to forge a signature is equipped
with a powerful enough quantum computer. He could then use Grover’s algo-
rithm [23] to try to find the subset J more quickly.

Grover’s algorithm allows a quadratic reduction of the search complexity on a
quantum computer. If we consider that 128 bits of security are sufficient against

8 T. Prévost et al.

a classical attacker, 160 bits of security are enough against an attacker equipped
with a quantum computer [20].

[12] gives us the formula to compute lγ , the maximum number of signatures
before the attacker is able to find the private key with less than 280 computations.
So we will recompute the formula for 160-bit security, against an adversary
equipped with a quantum computer.

Let’s start by computing the λ security parameter:

λ =
160− ν log2(n

′)− log2(k)

n− n′
(7)

With ν = 3 (n′ν is the complexity of solving a system of equations with n′

unknowns).
Then we define γ, the smallest positive real such that h2(γ) = λ, with

h2(x) = −x log2(x)− (1− x) log2(1− x) (8)

Finally we compute as in [12] the value

lγ =

⌊
log2(

γ
1−γ) + log2(

n
n′ − 1)

log2(1− t2
n′)

⌋
(9)

We then obtain lγ = 5, meaning the signer has to renew his key at most
every 5 signatures to guarantee 160-bit security.

Attack on insecure security settings [36] also proposes an interesting attack
on different proposals for KKS. The attack allows to reconstruct the public key
without even knowing a single message / signature pair, when the parameters
are vulnerable.

The attack can be avoided if the following two conditions are respected:

– n′ must be large enough,
– r

n ≫ 2 · kn′

5 Shamir’s Secret Sharing Scheme (SSSS)

Shamir’s Secret Sharing Scheme (SSSS) [39] is a cryptographic primitive allow-
ing to share a secret S between n participants, such that at least k participants
must pool their shares to reconstruct the secret S.

To this end, the dealer, i.e. the one who knows the secret S initially, gener-
ates a prime number p such that p > S. Then the dealer generates a random
polynomial P of degree k − 1 as

P (X) = a0X
k−1 + a1X

k−2 + · · ·+ ak−2X + S (10)

with a0, . . . , ak−2 ∈ [[0, p− 1]].
Thus, P (0) = S.

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 9

The dealer will then distribute the secret shares to the n participants by com-
municating to them respectively P (1), P (2), . . . , P (n). k among n participants
will then be able to reconstruct the polynomial P and so recover the secret
S = P (0) by Lagrangian interpolation [43], by pooling their shares.

Shamir’s Secret Sharing has been proven Information Theoretic Secure [15],
therefore resistant to quantum computer attacks.

6 Protocol description

Our post-quantum KGC-free certificateless encryption protocol uses QC-MDPC
error-correcting codes. It is based on the certificateless encryption protocol pro-
posed by [31]. In our protocol, we assume that each node has a unique identifier
(id) linked to the network communication mode, therefore impossible to coun-
terfeit and verifiable by other nodes. This identifier can be for example an IP
address, an email address or a physical address. To simplify our representation,
we will use in this paper incremental numbers for our unique identifiers, starting
from 1 for the initial node.

6.1 Choosing the election threshold

As explained in introduction, it is necessary to define in advance the threshold
T of votes that will be necessary for a new node to be accepted into the network,
depending on the criticality of this network. Depending upon the context, T will
denote either a proportion or a value, eg. T = 1

3 or T = 1
3 · n.

6.2 Choosing the security parameters

On our protocol based on QC-MDPC McEliece, it is necessary to define the
security parameters, which will influence the length of the keys, as well as the
computation time. These parameters are:

– the block length of the public key p
– the row weight determinant of the parity-check matrix ω′

– the errors count t
– the dimension of the signature generator matrix sigk
– the length of the signature code sign
– the dimension of the signature parity-check matrix sigr
– the cardinality of the signature subset n′

For the encryption part, we propose the following parameters: p = 8009,
ω′ = 100 and t = 50. We will detail in section 8 the security analysis of our
protocol based on these parameters.

Note that p must be prime in order to avoid non-prime quasi-cyclicity at-
tacks [21].

For the signature, we keep the parameters suggested in [12]: sigk = 160,
sign = 2000, sigr = 1100 and sig′n = 1000.

10 T. Prévost et al.

6.3 Encryption primitive

Definition 6. The encryption scheme Π, with message space Fp2, for security
parameters p, ω′, t ∈ N, node id i ∈ N and acceptance vector si ∈ Fp2 (defined
below) consists of the algorithms (KeyGen, Enc, Dec):

KeyGen(n, ω′, t, i, si) Node i defines the weights ωh1
=

⌊
3

√
ω′

2

⌋
, ωh2

=⌊
3

√
ω′

2

⌋
and ωh3 =

⌊
ω′

2

⌋
.

Node i generates the binary circulant matrix Hi,1 ∈ Mp×p
F2

of row weight ωh1

from h(i), with h being a hash function, following an algorithm defined below.
It then generates the random secret binary circulant matrices Hi,2 ∈ Mp×p

F2

and Hi,3 ∈ Mp×p
F2

, of respective row weights ωh2 and ωh3 , where Hi,2 must be
invertible.

Node i finally generates the acceptance circulant matrix Si in Mp×p
F2

from
the vector si, as defined in section 3.1.

Node i then generates the private key sk = Hi (parity-check matrix) and the
public key pk = Gi (generator) as follows:

Hi = [Hi,3|Hi,2 ·Hi,1 · Si] ∈ Mp×2p
F2

(11)

Gi = [IMp×p
F2

|(S−1
i ·H−1

i,1 ·H−1
i,2 ·Hi,3)

T] ∈ Mp×2p
F2

(12)

with IMp×p
F2

the binary identity matrix of size p× p

Enc(Gi, m) Node i generates an error vector e ∈ Fp2, such that wh(e) = t.
Then generates the ciphertext c ∈ F2p

2 by

c = m ·Gi + e (13)

Dec(Hi, c) Node i uses a decryption algorithm θ (bitflip, backflip...) to recover
the message m from the ciphertext c, using the parity-check matrix Hi.

Proposition 1. The McEliece cryptosystem Π = (KeyGen, Enc, Dec) as de-
fined above with the specified parameters p, ω′ and t achieves post-quantum
safety.

Proposition 1 will be proven in Section 8.

6.4 Network initialization

Our protocol initializes with an initial node, let’s call it node 1 (we will see
later why we cannot initialize this identifier to 0, in the case where we use an
incremental counter to uniquely identify our nodes).

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 11

Definition of public parameters From the parameters p, ω′ and t defined
above, node 1 starts by generating a random prime number q of 4p bits. This is
the prime number that will be used to generate the Shamir shares.

Node 1 then defines the weight of the acceptance vector s1, ωs, as ωs =⌊√
ω′

2

⌋
. It also defines the weights ωh1

, ωh2
and ωh3

as in section 6.3.

Finally, node 1 generates the binomial modulo bmod =
(
q
ωs

)
.

Node 1 publishes the generated parameters q, ωs, ωh1
, ωh2

, ωh3
and bmod.

Keys generation Node 1 then generates a random invertible binary circulant
acceptance matrix S1 of size p×p and row weight ωs (as a reminder, we define the
row weight of a circulant matrix as the weight of any of its rows). It is interesting
to note that here, node 1 generates its own acceptance matrix, since it is the
only node present on the network. The acceptance matrix actually corresponds
to the partial private key (psk) in a classic certificateless encryption protocol.
Node 1 publishes the first row s1 of the circulant matrix S1.

Node 1 then generates the matrices H1,2 and H1,3 of size p × p, with row
weights ωh2

, ωh3
respectively. These two matrix H1,2 and H1,3 are kept secret.

H1,2 must be invertible.
To generate the matrix H1,1 of size p×p and row weight ωh1

, node 1 proceeds
as follows. First, it computes the hash of its identifier h = hash(id) = hash(1).
In our experiment, we used the hash function SHA3_512 [6], but other secure
hash functions are also suitable. From h, node 1 generates the binary vector h1,1
of weight ωh1

and length p. To do this, it keeps the positions of the first ωh1

bits which were set to 1 of h, the other bits of h1,1 are set to 0. For example, if
h = 10111101, p = 5 and ωh1

= 2, then h1,1 = 10100. From the binary vector
h1,1, node 1 generates the invertible circulant matrix H1,1. Obviously, each node
in the network will then be able to regenerate the matrix H1,1 from the identifier
of node 1.

Node 1 then generates the private key H1 (parity-check matrix) and the
public key G1 (generator) as follows:

H1 = [H1,3|H1,2 ·H1,1 · S1] (14)
The row weight ω of the parity-check matrix H1 is ω = O(ω′).

G1 = [IMp×p
F2

|(S−1
1 ·H−1

1,1 ·H−1
1,2 ·H1,3)

T] (15)

IMp×p
F2

is the binary identity matrix of size p × p. Note that since the left
part of the generator matrix is the identity matrix, then this scheme does not
guarantee the indistinguishability property (IND-CPA) on the text encrypted
with the generator matrix. Indeed, the first p bits of the encrypted message
contain the original message, with on average t

2 errors. Since t
2 ≪ p, then the

attacker is able to distinguish two distinct plaintexts from the ciphertexts. It
will therefore be necessary to apply another hash function on the plaintext thus
transmitted, for cryptographic use.

Node 1 finally publishes its public key G1, and keeps its private keyH1 secret.

12 T. Prévost et al.

Generation of witness vectors Node 1 generates the witness circulant binary
matrix of public key R1 as follows:

R1 = H−1
1,2 ·H1,3 (16)

Node 1 publishes the first row r1 of R1.
Each node will then be able to verify that the public key G1 presented by

node 1 is authentic, by comparing it with G1,verif:

G1,verif = G1 = [IMp×p
F2

|(S−1
1 ·H−1

1,1 ·R1)
T] (17)

If G1,verif ̸= G1, then the public key supposedly presented by node 1 is
counterfeit.

Signing keys generation Node 1 generates a pair of signing keys KKS, as
shown in section 4. We then have pk1,sign = (H1,sign, F1,sign) and sk1,sign =

(J1,sign, G1,sign, A1,sign).
F1,sign,G1,sign andA1,sign are randomly generated circulant matrices, J1,sign

is a random subset of {1, . . . , signn}. Recall thatH1,sign = [Isignr
|D1] ∈ Msignr×signn

F2
,

with D1 ∈ Msignr×signn−signr

F2
circulant. In order to reduce the amount of mes-

sages sent, the matrixD1 is generated from the first signr rows and signn−signr
columns of R1.G∗

1,sign ∈ Msignk×signn

F2
is generated from the columns ofG1,sign,

as explained in 4.
Node 1 then publishes the matrix F1,sign, as everyone can reconstructH1,sign

from R1.

Group key generation Node 1 finally generates a random group key k. This
group key will not be of use to it for the moment, since node 1 is alone in the
network.

6.5 Accepting a new node

In a classical certificateless encryption protocol, the acceptance of a new node is
decided unilaterally by the Key Generation Center (KGC). Here we describe an
alternative based on a distributed approach.

Suppose that a new node, with the identifier x, wishes to join the network,
already made up of n nodes. Let us assume that the acceptance threshold of a
new node is T votes among the n existing nodes.

New node initialization Node x will start by generating the two secret cir-
culant matrices Hx,2, Hx,3 ∈ Mp×p

F2
, of row weights ωh2 and ωh3 respectively, as

well as the matrix Hx,1 ∈ Mp×p
F2

from its unique hash h = hash(id) = hash(x),
as described above. Hx,1 and Hx,2 are invertible.

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 13

Acceptance signature request The joining node x will then make admission
requests until it obtains T acceptances.

When a node i accepts that node x joins the network, it responds with its
acceptance signature signi(x) = hx,sign · G∗

i,sign, with hx,sign the hash of id x

of length sigk, and G∗
i,sign ∈ Msigk×sign

F2
the matrix containing the successive

columns of Gi,sign in the positions defined by the secret subset J , and 0 in the
other columns.

Thus, each node is able to verify the validity of signi(x) from the witness vec-
tors ri and signing public key pki,sign previously broadcast by node i. The nodes
regenerate the circulant witness matrices Ri from ri and the parity-check matrix
Hi,sign from Ri. Then each node is able to verify that t1 ≤ wh(signi(x)) ≤ t2

and Fi,sign · hT
x,sign = Hi,sign · signi(x)T .

Acceptance vector generation Node x will now generate the acceptance
vector sx from the T signatures signi(x). To do this, it interprets the received
vector signi(x) as a binary encoded integer.

Node x determines the polynomial Q such that for every signi(x), Q(i) =
signi(x), by Lagrangian interpolation. It then computes the vector a = Q(0).
We then understand why it is impossible to start the unique identifiers at 0, as
indicated in section 6.4.

Node x computes y = a mod
(
p
ws

)
. This is the yth way to choose ws elements

among p. Node x therefore initializes the binary vector sx by choosing the yth
way to set ws elements among p to 1, the others to 0.

For example, if p = 5 and ws = 3, then for:

– y = 0 : sx = 11100
– y = 1 : sx = 11010
– y = 2 : sx = 11001
– y = 3 : sx = 10110
– . . .

Node x then broadcasts its vector sx as well as the T signatures signi(x).
Thus each node is able to verify that the acceptance vector sx has been generated
from T (valid) signatures. Node x then only has to generate an acceptance matrix
Sx as a circulant matrix of the vector sx.

Key generation From the vector sx, node x generates the acceptance invertible
circulant matrix Sx. From the invertible circulant matrices Sx, Hx,1, Hx,2 and
Hx,3, node x then generates the generator matrix
Gx = [IMp×p

F2
|((Sx ·Hx,1 ·Hx,2)

−1 ·Hx,3)
T] (public key) as well as the parity-check

matrix Hx = [Hx,3|Hx,2 ·Hx,1 · Sx] (private key).
Node x also generates signing keys pkx,sign, skx,sign, as in section 6.4.

14 T. Prévost et al.

New group key generation When a new node x joins the network, it is
necessary to regenerate a group key, in order to ensure backward secrecy. Our
protocol uses a Key Derivation Function (KDF) [1] for this purpose. For exam-
ple, we propose to use PBKDF2_SHA256 [28], but any secure key derivation
function would be suitable.

After joining the network of n former nodes and generating its keys, the new
node x generates a random seed, and sends it to all nodes, encrypted with their
respective public keys.

Each former node i then computes the new group key k′ by:

k′ = KDF (k, seed) (18)

with k being the old group key.
Each old node i then sends back the new group key k′ to the new node x,

encrypted with its newly generated public key Gx.
The new node x should then receive the new group key k′ encrypted n times.

If ever some keys differ, node x chooses the majority value for k′. We could
imagine that the new node x alerts that some former nodes are trying to forge
the group key, but that is beyond the scope of this paper.

Similarly, when a node leaves the network, it is also necessary to generate a
new group key, to ensure forward secrecy. To do this, the node with the lowest
identifier generates a random seed, which it sends to all other nodes in the
network, encrypting it with their respective keys. The new group key k′ is then
generated in the same way.

6.6 Signing keys renewal

As indicated in section 4.3, nodes must regularly renew their signature keys KKS.
It is necessary to renew the subset Ji,sign, and the matrices Gi,sign, Ai,sign and
Fi,sign. The parity-check matrix may not necessarily have to be renewed. When
all nodes are online, node i can broadcast its new public key pk′

i,sign to all other
nodes in the network, with the signature of the new key with the old key pki,sign.

The problem arises during an asynchronous key renewal, that is to say that
node i which renews its public key cannot temporarily communicate with another
node j. Node j can wait for node i to come back online to ask it again for its new
public key signed with the old one. However, if node j wants to quickly verify a
signature presented to it, it can also ask one of the neighbor nodes for the new
key signed with the old one.

7 Proof of concept

We provide a proof of concept of our protocol in Rust, available at https:
//github.com/thomasarmel/democratic_pq_cle.Be careful though, our im-
plementation is not constant-time, so it could be vulnerable to side-channel
attacks.

https://github.com/thomasarmel/democratic_pq_cle
https://github.com/thomasarmel/democratic_pq_cle

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 15

8 Security analysis

8.1 Formal verification of the protocol

We wrote a formal verification of our protocol with ProVerif. The verification
is available at https://github.com/thomasarmel/democratic_pq_cle/blob/
master/formal_verif/democratic_pq_cle.pv.

ProVerif [8,9] is a protocol verification software, which takes as input an
abstract description of the protocol and primitives. It then translates the protocol
into logical constraints, and tries to find a counterexample to demonstrate the
existence of an attack. The verification is proven “sound”, which means that there
can be no attack on the protocol that is not detected by ProVerif.

ProVerif works with primitives modeled as “perfect”. For example, the asser-
tions in Figure 1 represent a perfect symmetric encryption primitive: the only
way to find any information about the original message is to know the key.

type key.
fun senc(bitstring, key): bitstring.
reduc forall m: bitstring, k: key; sdec(senc(m, k), k) = m.

Fig. 1. Representation of a perfect symmetric encryption primitive in ProVerif.

Then, the user describes the protocol iteratively for each node. The nodes
exchange messages on channels, which the attacker can read and modify. If
ProVerif finds an attack on the protocol, then it can describe precisely how the
attacker intercepts and modifies the messages to achieve the attack.

ProVerif therefore did not find any possible attack on our protocol.

8.2 Arrival of a malicious node without approval

A malicious node that wants to join the network could be tempted to create fake
acceptance signatures from other nodes.

However, as we saw in section 4.3, our signature scheme guarantees 160-bit
security, or the equivalent of 80-bit security against an attacker with a quantum
computer, when nodes renew their keys at most every 5 signatures.

Furthermore, [27] shows that it is as difficult to forge a malicious signature
as it is to decode an arbitrary code, outside the conditions mentioned by [36].

8.3 Backward and forward secrecy

As explained in [31], renewing the group key each time a node enters the network
ensures backward secrecy. Indeed, the new node will not be able to decrypt
the communications it would have listened to before entering the network. In

https://github.com/thomasarmel/democratic_pq_cle/blob/master/formal_verif/democratic_pq_cle.pv
https://github.com/thomasarmel/democratic_pq_cle/blob/master/formal_verif/democratic_pq_cle.pv

16 T. Prévost et al.

addition, renewing the group key when a node leaves the network ensures forward
secrecy, since it will not be able to decrypt the information exchanged after its
departure.

The new group key k′ is generated with a key derivation function, from the
old group key k and a seed that is known only to the members of the network.
Thus, a node that has just left the network cannot know the new key k′ because
it does not know the new seed. Moreover, a node that has just joined the network
will know the new key k′ generated from its own seed but will not know the old
key k, since it is supposedly very difficult to reverse a key derivation function,
i.e. to find k = KDF−1(k′, seed).

8.4 Security of our QC-MDPC parameters

Key distinguishing attack Let C be an (n, p, t)-QC-MDPC code, with ω
row weight of the parity-check matrix. An attacker is said to succeed in the key
distinguishing attack if he can exhibit a valid codeword of weight ω of C⊥, with
C⊥ the dual code of C. Succeeding in this attack is equivalent to distinguishing
a public key from a random matrix.

In order to determine the complexity of this type of attack, it is necessary
to find the work factor of Information Set Decoding for our parameters n, p, t,
denoted WFISD(n, p, t). This is the cost to find a valid codeword of weight t
in our code of length n and dimension p. This cost is equivalent to decoding t
errors in our code. Our calculations of WFISD(n, p, t) assume a random binary
code. We will see later that the complexity is lower for binary quasi-cyclic codes.

[5] gives us the complexity of the Information Set Decoding algorithm for
a random binary code. To compute WFISD, it is necessary to compute the
parameters ψ, l, ε1, ε2 ∈ N in order to minimize

T (ψ, l, ε1, ε2) · P(ψ, l)−1 =WFISD (19)

with the following constraints:

– l ∈ [[0,min{n− p, n− p− t− ψ}]]
– ψ ∈ [[0,min{t, p+ l}]]
– ε1 ∈ [[0,min{p+ l − ψ}]]
– ε2 ∈ [[0,min{p+ l − ψ1}]]
– 0 < R2(ψ, l, ε1, ε2) < R1(ψ, l, ε1, ε2) < l, R1 and R2 are defined below.

We have

P(ψ, l)−1 =

(
n
t

)(
p+l
ψ

)
·
(
n−p−l
t−ψ

) (20)

number of iterations and

T (ψ, l, ε1, ε2) = max{T1, T2, T3} (21)

time per iteration.

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 17

The time complexity of the three “merge-join” steps is given by

Ti(ψ, l, ε1, ε2) = max{Ci, Si} ∀i ∈ {1, 2, 3} (22)

And the space complexity by

S(ψ, l, ε1, ε2) = max{S1, S2, S3} (23)

with

Si(ψ, l, ε1, ε2) =

(
p+l
ψi

)
2ri

∀i ∈ {1, 2} (24)

and

S3(ψ, l, ε1, ε2) =

(p+l
2
ψ2

2

)
(25)

ψ1 and ψ2 are given by

ψ1 =
⌊ψ
2

⌋
+ ε1 (26)

and

ψ2 =
⌊ψ1

2

⌋
+ ε2 (27)

And we have r0 = l,

R1 =

(
ψ
ψ
2

)
·
(
p+ l − ψ

ε1

)
(28)

r1 = ⌊log2(r1)⌋ (29)

R2 =

(
ψ1
ψ1

2

)
·
(
p+ l − ψ1

ε2

)
(30)

r2 = ⌊log2(R2)⌋ (31)

and r3 = 0.
Finally, the expected value E(Ci) of the constant factor Ci is given by

E(Ci) = S2
i · 2ri−ri−1 ∀i ∈ {1, 2, 3} (32)

Using the Mathematica notebook provided by [5], we computed the following
values for p = ⌊0.5 · n⌋:

– l = ⌊1.722 · 10−2 · n⌋
– ψ = ⌊3.11681 · 10−3 · n⌋
– ε1 = ⌊2.32741 · 10−4 · n⌋

18 T. Prévost et al.

– ε2 = ⌊1.3983 · 10−6 · n⌋

And so we minimized WFISD ≈ 2218.4.
For an (n, p, t)-QC-MDPC code, [34] gives us the complexity WFDIST of

the key distinguishing attack:

WFDIST =
WFISD
n− p

(33)

Here n− p = p (recall that n = 2p). Finally we have WFDIST ≈ 2205.4.

Key recovery attack Let C be an (n, p, t)-QC-MDPC code, with ω row weight
of the parity-check matrix. An attacker is said to succeed in the key recovery
attack if he can exhibit p valid codewords of weight ω of C⊥, with C⊥ the dual
code of C. Succeeding in this attack is equivalent to recompute an equivalent
private key from the public key.

For an (n, p, t)-QC-MDPC code, [34] gives us the complexity WFRECO of
the key recovery attack:

WFRECO =
WFISD
n− p

(34)

So we have WFRECO ≈ 2205.4.

Direct decoding attack Let C be an (n, p, t)-QC-MDPC code, an attacker
succeeds in the decoding attack if he succeeds in decoding t errors, that is to say
he finds the original message without the private key.

For an (n, p, t)-QC-MDPC code, [34] gives us the complexity WFDEC of the
decoding attack:

WFDEC =
WFISD√

p
(35)

So WFDEC ≈ 2211.9.

Remarks In any case, our protocol provides more than 160 bits of security,
which means that an attacker with a quantum computer would have to perform
more than 280 operations to succeed in one of these attacks.

In order to reproduce our results, you can recompute the values ψ, l, ε1, ε2
from the Mathematica notebook provided by [5], and you can find the de-
tails of the work factors computations at https://github.com/thomasarmel/
democratic_pq_cle/blob/master/security_assessments/workfactors.py.

https://github.com/thomasarmel/democratic_pq_cle/blob/master/security_assessments/workfactors.py
https://github.com/thomasarmel/democratic_pq_cle/blob/master/security_assessments/workfactors.py

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 19

8.5 GJS attack

In 2016, Guo, Qian and Johansson proposed an attack [24] based on the obser-
vation of the node at the time of decryption (“decryption oracle”). This attack
is called the GJS attack. Thus, it would be possible to reconstruct the private
key by sending thousands of specific messages to the node, and simply observ-
ing when it succeeds or fails to decrypt them (as a reminder, decryption is a
probabilistic algorithm, as indicated in section 2.1).

In order to avoid this attack, it is necessary that the Decoding Failure Rate
(DFR), i.e. the rate of valid messages that are not decrypted, be negligible. As
indicated by [4], the lifetime ξ of the key is determined by the DFR:

ξ = DFR−1 (36)

This means that the keys will need to be renewed every ξ messages. The
attacker will therefore only see one decoding error on average per key pair.

[38] gives us the formula to compute the DFR of a key pair, given the param-
eters n code length, p code dimension, ω row weight of the parity-check matrix
and t error count. Using the decoding algorithm specified in their paper, we have:

DFR(t) =
∑
S

PS(t) · DFR(S, t) (37)

With DFR(S, t) the probability of a decoding failure with t errors and a
syndrome (defined in Definition 1) of weight S, and PS(t) the probabilistic dis-
tribution of the syndrome weight.

The computation of DFR(S, t), as proposed in the paper, is implemented at
https://github.com/vvasseur/qcmdpc_markov.

The distribution PS(t) is given by the binomial distribution:

Pr[S = l] =

(
p

l

)
· (ρ)l · (1− ρ)p−l (38)

With

ρ =

t∑
l=1, l odd

(
ω
l

)
·
(
n−ω
t−l

)(
n
t

) (39)

Finally, given our parameters, we find DFR = 1.80 · 10−41 ≈ 2−135. This
means that an attacker who wanted to recover a node’s private key from the
GJS attack would have to send more than 2135 messages to the node, and
the node would attempt to decrypt each of the messages it received. The code
used for these calculations can be found at https://github.com/thomasarmel/
democratic_pq_cle/blob/master/security_assessments/dfr.py.

https://github.com/vvasseur/qcmdpc_markov
https://github.com/thomasarmel/democratic_pq_cle/blob/master/security_assessments/dfr.py
https://github.com/thomasarmel/democratic_pq_cle/blob/master/security_assessments/dfr.py

20 T. Prévost et al.

9 Protocol performance

In this part, we will analyze the performance of our protocol. First, we will
experiment with the computing power required on each node. Then we will
analyze the number of messages sent over the entire course of our protocol.

9.1 Required computing power on nodes

We tested the performance of our proof of concept from section 7, on our
machine equipped with a 13th Gen Intel Core i7-13700H. For this we com-
piled the program O3 optimization flag, and the specific CPU instructions (-C
target-cpu=native). Here is the time taken by different steps of the protocol:

Matrices and keys generation 1.49 s
Encryption 99.28 ms
Decryption 312.11 ms
Node acceptance signature 901.62 µs
Node acceptance verification 924.2 µs

While the performance of our protocol is acceptable on a personal computer,
it may nevertheless pose a problem on an embedded target.

9.2 Transmitted messages count

In this section, we analyze the number of messages transmitted during each of
the key steps of the protocol. For this we will note n the number of nodes present
in the network, and T the acceptance threshold as defined in section 6.1.

Acceptance of a new node by the former ones When a new node x wants
to enter the network, it asks at least T nodes for their acceptance, which then
respond with a signature. The new node x then generates its acceptance vector
sx, which it broadcasts to the entire network, with all the signatures, so that all
nodes can verify the validity of the vector sx. The number of messages sent is
then O(n), and total data size is O(n · T).

Generating the public encryption key When a new node x generates its
encryption key pair, it must broadcast its witness vector rx to the entire network.
The number of messages sent is then O(n).

Signing key renewal KKS signature keys can only be used a maximum of a
small number of times. They must therefore be renewed regularly. To do this,
node i that wants to renew its keys signs its new public signature key pk′

i,sign
with the old key, and broadcasts the new signed key to the entire network. The
number of messages sent is then O(n). This operation is likely to occur very
often if new nodes are continuously joining the network.

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 21

Regenerating the group key on new node arrival When a new node x
joins the network, it is necessary to regenerate the group key to ensure backward
secrecy. To do this, the new node generates a seed, broadcasts it to the entire
network (encrypted with the public keys of the network nodes), and several nodes
send it the new group key, encrypted with the public key of the new node x. The
number of messages sent is then O(n).

Regenerating the group key when a node leaves It is also necessary
to regenerate the group key when a node leaves the network. To do this, the
node with the smallest id regenerates a seed that it sends to the entire network
(encrypted with the nodes’ public keys). It is possible that some nodes wrongly
think they have the smallest id, and therefore try to generate a seed. This case
must nevertheless be extremely rare, since nodes regularly broadcast messages to
the entire network, so it is very unlikely that a node is unaware of the existence
of another. The number of messages sent is therefore O(n).

10 Further improvements

The main problem of our protocol is the large number of messages to send. In
particular when renewing KKS keys which happens quite often. Nodes could
then generate several signing keys in advance, to limit the number of messages
to send, as suggested in [12].

It would also be possible to reduce the number of messages to send when
requesting acceptances, when the acceptance threshold T is defined as a fraction
of the total number of nodes (e.g. T = 1

3). For this, the new node x would
make the acceptance request only to a predefined set of nodes, for example
the nodes with an even id. Node x is accepted only if all nodes in the subset
accept its entry into the network. This way, the new node x could not “choose”
the nodes that would validate its entry into the network. If we then consider
that the number of malicious nodes is bounded by the threshold T as defined
in section 6.1, then the maximum probability that a new node is accepted is
Tm, with m the size of the chosen subset. For example, if the network contains
n = 200 nodes, and the proportion of malicious nodes is bounded by T = 1

3 ,
then if the network asks the new node x to obtain the acceptance signatures of
all nodes having an id multiple of 10, i.e. the subset of signing nodes has a size
m ≈ 20, then the maximum probability that the new node x is wrongly accepted
is Tm = (13)

20 ≈ 2.87 · 10−10.
It might be interesting to modify our protocol, following [14], in order to

propose a constant-time implementation.
We could hierarchize the acceptance power of the different nodes. For exam-

ple, a new node x could only be accepted if T nodes have authorized its entry
into the network, including a super node. For this, hierarchical secret sharing
would be used [7,42].

22 T. Prévost et al.

11 Discussion

Our protocol allows to manage a secure network from a web of trust. Indeed,
it is no longer necessary to have any trusted authority, since the acceptance of
new nodes in the network is managed by the vote of the nodes already present.

This type of protocol can only work in a small network and cannot scale
since:

– the nodes must have an informed opinion on the arrival of a new peer
– the number of messages sent at each step increases with the number of nodes

already present in the network

However, our protocol can be interesting in the case of small networks, where
it is impossible to trust a particular node (for example if the nodes are present in
different countries, in a tense geopolitical context). We believe that this protocol
could be used to extend Quantum Key Distribution networks [41], which suffer
from a maximum geographical distance.

12 Conclusion

In this paper, we proposed a distributed post-quantum certificateless encryption
protocol, based on the McEliece cryptosystem. Unlike [31], our network does not
impose the election of a trusted Key Generation Center, since it is directly the
nodes of the network that vote for the integration of a new node. The encryption
is based on quasi-cyclic codes with Moderate Density Parity Check Matrix (QC-
MDPC). The acceptance of new nodes uses the signature scheme of Kabatianskii,
Krouk and Smeets (KKS), as well as the Shamir’s Secret Sharing Scheme (SSSS).

We further provide a proof of concept of our protocol, as well as its formal
verification and security analysis. The computing power required for our protocol
is acceptable on a personal computer or server, but may be problematic for
embedded use.

The main flaw of our protocol, however, remains the large amount of messages
sent, due to the lack of a centralized KGC. It would therefore be difficult to scale
it to several thousand of nodes.

Data availability

All the data needed to replicate our results is freely available in open source,
from the links mentioned in this paper.

Statements and Declarations

No funds, grants, or other support was received for conducting this study. The
authors have no competing interests to declare that are relevant to the content of
this article. The authors have no financial or proprietary interests in any material
discussed in this article.

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 23

References

1. Adams, C., Kramer, G., Mister, S., Zuccherato, R.: On the security of key deriva-
tion functions. In: International Conference on Information Security. Springer
(2004). https://doi.org/10.1007/978-3-540-30144-8_12

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Inter-
national conference on the theory and application of cryptology and information
security. Springer (2003). https://doi.org/10.1007/978-3-540-40061-5_29

3. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank par-
ity check codes: New decoding algorithms and applications to cryptography.
IEEE Transactions on Information Theory (2019). https://doi.org/10.1109/
TIT.2019.2933535

4. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: Ledapkc: Low-
density parity-check code-based public-key cryptosystem. Specification revision 1
(2017)

5. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear
codes in 2 n/20: How 1+1=0 improves information set decoding. In: Advances
in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings 31. Springer (2012). https://doi.org/10.1007/
978-3-642-29011-4_31

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) (2009)

7. Birkhoff, G.D.: General mean value and remainder theorems with applications to
mechanical differentiation and quadrature. Transactions of the American Mathe-
matical Society (1906). https://doi.org/10.2307/1986339

8. Blanchet, B.: Automatic verification of security protocols in the symbolic model:
The verifier proverif. In: Int. School on Foundations of Security Analysis and De-
sign, pp. 54–87. Springer (2012). https://doi.org/10.1007/978-3-319-10082-1_
3

9. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.00: automatic cryp-
tographic protocol verifier, user manual and tutorial. Version from pp. 05–16 (2018)

10. Burra, M.S., Maity, S.: A distributed and decentralized certificateless framework
for reliable shared data auditing for FOG-CPS networks. IEEE Access (2023).
https://doi.org/10.1109/ACCESS.2023.3271605

11. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Physi-
cal Review A (1996). https://doi.org/10.1103/PhysRevA.54.1098

12. Cayrel, P.L., Otmani, A., Vergnaud, D.: On Kabatianskii-Krouk-Smeets signatures.
In: Arithmetic of Finite Fields: First International Workshop, WAIFI 2007, Madrid,
Spain, June 21-22, 2007. Proceedings 1. Springer (2007). https://doi.org/10.
1007/978-3-540-73074-3_18

13. Chaw, L.F.: Analysis for McEliece and Niederreiter Encryptions: An Alternative
to Public Key Encryption. Ph.D. thesis, UTAR (2018)

14. Chou, T.: QcBits: constant-time small-key code-based cryptography. In: Interna-
tional Conference on Cryptographic Hardware and Embedded Systems. Springer
(2016). https://doi.org/10.1007/978-3-662-53140-2_14

15. Corniaux, C.L., Ghodosi, H.: An entropy-based demonstration of the security
of Shamir’s secret sharing scheme. In: 2014 Int. Conf. on Information Science,
Electronics and Electrical Engineering. IEEE (2014). https://doi.org/10.1109/
InfoSEEE.2014.6948065

https://doi.org/10.1007/978-3-540-30144-8_12
https://doi.org/10.1007/978-3-540-30144-8_12
https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1109/TIT.2019.2933535
https://doi.org/10.1109/TIT.2019.2933535
https://doi.org/10.1109/TIT.2019.2933535
https://doi.org/10.1109/TIT.2019.2933535
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.2307/1986339
https://doi.org/10.2307/1986339
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1109/ACCESS.2023.3271605
https://doi.org/10.1109/ACCESS.2023.3271605
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1007/978-3-540-73074-3_18
https://doi.org/10.1007/978-3-540-73074-3_18
https://doi.org/10.1007/978-3-540-73074-3_18
https://doi.org/10.1007/978-3-540-73074-3_18
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1109/InfoSEEE.2014.6948065
https://doi.org/10.1109/InfoSEEE.2014.6948065
https://doi.org/10.1109/InfoSEEE.2014.6948065
https://doi.org/10.1109/InfoSEEE.2014.6948065

24 T. Prévost et al.

16. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digi-
tal signature scheme. In: Advances in Cryptology—ASIACRYPT 2001: 7th Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security Gold Coast, Australia, December 9–13, 2001 Proceedings 7. Springer
(2001). https://doi.org/10.1007/3-540-45682-1_10

17. De Condorcet, N., et al.: Essai sur l’application de l’analyse à la probabilité des
décisions rendues à la pluralité des voix. Imprimerie royale (1785)

18. Fabšič, T., Grošek, O., Nemoga, K., Zajac, P.: On generating invertible circulant
binary matrices with a prescribed number of ones. Cryptography and Communi-
cations (2018). https://doi.org/10.1007/s12095-017-0239-4

19. Feng, X., Wang, L., Bai, X., Yang, P.: Distributed identity management mecha-
nism based on improved block-chain certificateless encryption algorithm. Physical
Communication (2024). https://doi.org/10.1016/j.phycom.2024.102341

20. Fluhrer, S.: Reassessing Grover’s algorithm. Cryptology ePrint Archive (2017)
21. Fouque, P.A., Leurent, G.: Cryptanalysis of a hash function based on quasi-cyclic

codes. In: Cryptographers’ Track at the RSA Conference. Springer (2008). https:
//doi.org/10.1007/978-3-540-79263-5_2

22. Gallager, R.: Low-density parity-check codes. IRE Transactions on information
theory (1962). https://doi.org/10.1109/TIT.1962.1057683

23. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing
(1996). https://doi.org/10.1145/237814.237866

24. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Advances in Cryptology–ASIACRYPT
2016: 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
I 22. Springer (2016). https://doi.org/10.1007/978-3-662-53887-6_29

25. Hamming, R.W.: Error detecting and error correcting codes. The Bell system tech-
nical journal (1950). https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

26. Hamouid, K., Adi, K.: Efficient certificateless web-of-trust model for public-key
authentication in MANET. Computer Communications (2015). https://doi.org/
10.1016/j.comcom.2015.02.009

27. Kabatianskii, G., Krouk, E., Smeets, B.: A digital signature scheme based on ran-
dom error-correcting codes. In: Crytography and Coding: 6th IMA International
Conference Cirencester, UK, December 17–19, 1997 Proceedings 6. Springer (1997).
https://doi.org/10.1007/BFb0024461

28. Kaliski, B.: RFC2898: PKCS# 5: Password-based cryptography specification ver-
sion 2.0 (2000). https://doi.org/10.17487/RFC2898

29. Kaushal, P.K., Bagga, A., Sobti, R.: Evolution of bitcoin and security risk in bit-
coin wallets. In: 2017 International Conference on Computer, Communications and
Electronics (Comptelix). IEEE (2017). https://doi.org/10.1109/COMPTELIX.
2017.8003959

30. Li, F., Shirase, M., Takagi, T.: Key management using certificateless public key
cryptography in ad hoc networks. In: Network and Parallel Computing: IFIP In-
ternational Conference, NPC 2008, Shanghai, China, October 18-20, 2008. Pro-
ceedings. Springer (2008). https://doi.org/10.1007/978-3-540-88140-7_11

31. Liu, J., Tong, X., Wang, Z., Zhang, M., Ma, J.: A centralized key management
scheme based on McEliece PKC for space network. IEEE Access (2020). https:
//doi.org/10.1109/ACCESS.2020.2976753

https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/s12095-017-0239-4
https://doi.org/10.1007/s12095-017-0239-4
https://doi.org/10.1016/j.phycom.2024.102341
https://doi.org/10.1016/j.phycom.2024.102341
https://doi.org/10.1007/978-3-540-79263-5_2
https://doi.org/10.1007/978-3-540-79263-5_2
https://doi.org/10.1007/978-3-540-79263-5_2
https://doi.org/10.1007/978-3-540-79263-5_2
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1016/j.comcom.2015.02.009
https://doi.org/10.1016/j.comcom.2015.02.009
https://doi.org/10.1016/j.comcom.2015.02.009
https://doi.org/10.1016/j.comcom.2015.02.009
https://doi.org/10.1007/BFb0024461
https://doi.org/10.1007/BFb0024461
https://doi.org/10.17487/RFC2898
https://doi.org/10.17487/RFC2898
https://doi.org/10.1109/COMPTELIX.2017.8003959
https://doi.org/10.1109/COMPTELIX.2017.8003959
https://doi.org/10.1109/COMPTELIX.2017.8003959
https://doi.org/10.1109/COMPTELIX.2017.8003959
https://doi.org/10.1007/978-3-540-88140-7_11
https://doi.org/10.1007/978-3-540-88140-7_11
https://doi.org/10.1109/ACCESS.2020.2976753
https://doi.org/10.1109/ACCESS.2020.2976753
https://doi.org/10.1109/ACCESS.2020.2976753
https://doi.org/10.1109/ACCESS.2020.2976753

A Democratic Distributed Post-Quantum Certificateless Encryption Scheme 25

32. Mansour, M.M.: A turbo-decoding message-passing algorithm for sparse parity-
check matrix codes. IEEE Transactions on Signal Processing (2006). https://
doi.org/10.1109/TSP.2006.880240

33. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory (1978)
34. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: New

McEliece variants from moderate density parity-check codes. In: 2013 IEEE in-
ternational symposium on information theory. IEEE (2013)

35. Nait-Hamoud, O., Kenaza, T., Challal, Y.: Certificateless public key systems aggre-
gation: An enabling technique for 5G multi-domain security management and del-
egation. Computer Networks (2021). https://doi.org/10.1016/j.comnet.2021.
108443

36. Otmani, A., Tillich, J.P.: An efficient attack on all concrete KKS proposals.
In: Post-Quantum Cryptography: 4th International Workshop, PQCrypto 2011,
Taipei, Taiwan, November 29–December 2, 2011. Proceedings 4. Springer (2011).
https://doi.org/10.1007/978-3-642-25405-5_7

37. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale
field study. ACM SIGMETRICS Performance Evaluation Review (2009). https:
//doi.org/10.1145/2492101.1555372

38. Sendrier, N., Vasseur, V.: On the decoding failure rate of QC-MDPC bit-
flipping decoders. In: Post-Quantum Cryptography: 10th International Conference,
PQCrypto 2019, Chongqing, China, May 8–10, 2019 Revised Selected Papers 10.
Springer (2019). https://doi.org/10.1007/978-3-030-25510-7_22

39. Shamir, A.: How to share a secret. Communications of the ACM (1979). https:
//doi.org/10.1145/359168.359176

40. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in
Cryptology: Proceedings of CRYPTO 84. Springer (1985). https://doi.org/10.
1007/3-540-39568-7_5

41. Singh, H., Gupta, D.L., Singh, A.K.: Quantum key distribution protocols: a review.
Journal of Computer Engineering (2014)

42. Tassa, T.: Hierarchical threshold secret sharing. In: Theory of Cryptography Con-
ference. Springer (2004). https://doi.org/10.1007/978-3-540-24638-1_26

43. Waring, E.: Vii. problems concerning interpolations. Philosophical transactions of
the royal society of London (1779). https://doi.org/10.1098/rstl.1779.0008

https://doi.org/10.1109/TSP.2006.880240
https://doi.org/10.1109/TSP.2006.880240
https://doi.org/10.1109/TSP.2006.880240
https://doi.org/10.1109/TSP.2006.880240
https://doi.org/10.1016/j.comnet.2021.108443
https://doi.org/10.1016/j.comnet.2021.108443
https://doi.org/10.1016/j.comnet.2021.108443
https://doi.org/10.1016/j.comnet.2021.108443
https://doi.org/10.1007/978-3-642-25405-5_7
https://doi.org/10.1007/978-3-642-25405-5_7
https://doi.org/10.1145/2492101.1555372
https://doi.org/10.1145/2492101.1555372
https://doi.org/10.1145/2492101.1555372
https://doi.org/10.1145/2492101.1555372
https://doi.org/10.1007/978-3-030-25510-7_22
https://doi.org/10.1007/978-3-030-25510-7_22
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1098/rstl.1779.0008
https://doi.org/10.1098/rstl.1779.0008

	A Democratic Distributed Post-Quantum Certificateless Encryption Scheme

