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Abstract. Fault attacks pose a significant threat to cryptographic im-
plementations, motivating the development of countermeasures, primar-
ily based on a combination of redundancy and masking techniques. Re-
dundancy, in these countermeasures, is often implemented via duplica-
tion or linear codes. However, their inherent structure remains suscepti-
ble to strategic fault injections bypassing error checks. To address this,
the CAPA countermeasure from CRYPTO 2018 leveraged information-
theoretic MAC tags for protection against fault and combined attacks.
However, a recent attack has shown that CAPA can only protect against
either side-channel analysis or fault attacks, but not both simultaneously,
and with significant hardware costs. Its successor, M&M, improves effi-
ciency but lacks protection against ineffective faults.
In this paper, we propose StaMAC, a framework aimed at securely in-
corporating MAC tags against both side-channel and fault adversaries
in a non-combined scenario. We extend the security notions outlined in
StaTI from TCHES 2024, and propose the notion of MAC-stability, en-
suring fault propagation in masked and MACed circuits, necessitating
only a single error check at the end of the computation. Additionally,
we show that the stability notion from StaTI is arbitrarily composable
(whereas it was previously thought to be only serially composable), mak-
ing it the first arbitrary composable fault security notion which does not
require intermediate error checks or correction. Then, we establish the
improved protection of masking combined with MAC tags compared to
linear encoding techniques by showing bounds on the advantage con-
sidering several fault adversaries: a gate/register faulting adversary, an
arbitrary register faulting adversary, and a random register faulting ad-
versary. Then, we show how to transform any probing secure circuit to
protect against fault attacks using the proposed MAC-stable gadgets im-
plementing field operations. Finally, we demonstrate StaMAC on an AES
implementation, evaluating its security and hardware costs compared to
the countermeasures using MAC tags.

1 Introduction

Cryptographic algorithms are designed to resist cryptanalytic attacks, however,
their vulnerability to physical attacks exploiting the physical characteristics of
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their implementations remains. These attacks can be categorized into two main
types: (i) passive observation of the device’s behavior, involving power consump-
tion [KJJ99], timing [Koc96], and electromagnetic emanations [GMO01]; and
(ii) the intentional introduction of errors in computation through physical ma-
nipulation, such as clock/voltage glitching [AK97], exposure to electromagnetic
waves [DDRT12], and laser injections [Hab65].

The first type is called Side-Channel Analysis (SCA), a passive attack tech-
nique that exploits the observable leakage stemming from the physical charac-
teristics of the implementations. To counter SCA, masking [CJRR99, ISW03,
RBN+15] is widely employed as a countermeasure. Masking, based on secret-
sharing, splits the secret input into a number of shares such that the side-channel
information leakage from all-but-one share remains independent of the secret in-
put. Domain-Oriented Masking (DOM), as proposed by Groß et al. [GMK16],
is such a technique where each share of the secret input is linked to a distinct
share domain. DOM is widely recognized for its low implementation costs and
glitch resistance.

Unlike the passive observation involved in SCA, the second type of physi-
cal attack, Fault Attacks (FA), actively disturb the computations using physical
fault injection mechanisms. Since the landmark work of Boneh et al. [BDL97],
introducing fault attacks on RSA, a plethora of techniques have emerged that
exploit injected faults in cryptographic implementations. In response, diverse
countermeasures have been developed with redundancy emerging as a prevalent
strategy to mitigate such attacks. Redundancy, in its temporal, spatial, or infor-
mational forms, is employed as a countermeasure to detect injected faults within
circuits. Such countermeasures act by either suppressing or infecting the output
when a fault is detected, rendering it unusable for exploitation by adversaries.
Redundancy takes various forms, including duplication, concurrent error detec-
tion, or error correction mechanisms like majority voting. Duplication is effective
against faults, but its security is compromised when identical faults are injected.
Even with error detection codes, an adversary knowing the underlying code can
strategically inject faults to bypass the detection.

Another prevalent approach involves the combination of redundancy with
masking techniques. These countermeasures gained popularity for their ef-
fectiveness in protecting against SCA in addition to protection against fault
attacks as an attacker will always abuse the weakest link of the implementation.
Examples of such countermeasures include, among others, ParTI [SMG16],
Impeccable Circuits I, II, III [AMR+20,SRM20,RSM21], Transform-and-Encode
(TaE) [SJR+19], DOMREP I, II [GPK+21, PBGS24], and Private Circuits
II [IPSW06]. All these countermeasures utilize redundancy through duplication
or error detection codes, albeit with various levels of granularity in their error
detection/correction and potentially providing protection against ineffective
faults (e.g., Statistical Ineffective Fault Attacks (SIFA) [DEK+18, DEG+18]).
Daemen et al. [DDE+20] adopt a distinct approach utilizing reversible oper-
ations to ensure fault propagation, where a single error check is employed at
the end of the circuit. Similarly, the StaTI work [DOT24] proposed a notion
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called “stability” that ensures fault propagation allowing the implementation of
a single error check at the end of the circuit. Even though the employed tech-
niques prevent ineffective faults, all these countermeasures remain susceptible to
strategic fault injections overcoming error detection due to their deterministic
nature. Following a different approach, CAPA [RMB+18] and M&M [MAN+19]
utilize information-theoretic MAC tags as a form of redundancy, where the
MAC tags are randomized mappings, preventing strategic faults bypassing error
detection. CAPA adapts a multiparty computation protocol to protect against
fault attacks and their combination with SCA. Leveraging the strong formal se-
curity guarantees inherent to multiparty computation, CAPA’s implementation
on hardware devices is prohibitively costly. Moreover, a recently introduced
attack [TNN24a] breaks its claimed security, limiting CAPA’s effectiveness to
protection against either SCA or fault attacks, and not their combination, while
still necessitating a substantial hardware area overhead. Relaxing the security
model of CAPA, M&M extends any probing secure masking scheme with MAC
tags, albeit without claimed protection against ineffective faults as evidenced
by a recent zero-value attack from TCHES 2024 [HMA+24]. As a result, the
current schemes using MAC tags have limitations: CAPA, while secure against
fault attacks, is prohibitively expensive, and M&M does not protect against
specific SIFA-like attacks.

Contributions. As all the countermeasures utilizing MAC tags are either not
secure against specific SIFA-like attacks, or have significant hardware costs, we
propose a framework to securely utilize such information-theoretic MAC tags
with comparable hardware costs.

We propose the notion of “MAC-stability” which is the natural extension of
the security notions proposed by the StaTI work [DOT24]. The notion enables
secure computation of masked and MACed data, where only a single error check
is required at the end of computation alleviating the need for a complex abort
mechanism on hardware. Moreover, we show that the original stability notion
from StaTI, previously regarded as only serially composable, and the MAC-
stability notion are in fact arbitrarily composable. This makes them the first
arbitrarily composable security notions which provide fault protection, including
ineffective fault attacks, without intermediate abort signals or error correction.
This arbitrary composability enables the arbitrary decomposition of complex
circuits into simpler components, thereby overcoming challenges of ensuring sta-
bility in the complex circuits such as AES S-box.

We prove that masking combined with MAC tags provides an improved pro-
tection against fault attacks compared to linear encoding techniques such as du-
plication as we provide bounds on the advantage considering three different fault
adversaries: the gate/register faulting adversary, which is the typical threshold
fault model used in several works [IPSW06,AMR+20,SRM20,RSM21,DOT24];
the arbitrary register faulting adversary which injects an arbitrary number of
bitflips in a single register stage; and the random register faulting adversary
from [DN23] which injects arbitrary faults in a single register stage with a lim-
ited probability for the faults to apply.
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We provide a generic transformation to create arbitrary composable coun-
termeasures secure against side-channel attacks (probing secure) (x)or fault at-
tacks from probing secure solutions. This transformation is demonstrated using
the well-known DOM method [GMK16] considering the SNI-secure variant from
Faust et al. [FGP+18] using our novel non-masked MAC-secure gadgets of the
field addition, multiplication, and of linear functions.

The above gadgets are then used to implement a masked and MACed full AES
design on hardware using a serialized architecture and a multiplication chain-
based S-box. Its implementation cost including area, latency, and randomness
usage is then compared to the countermeasures using MAC tags, as well as its
security.

2 Preliminaries

In this section, we introduce the probing and fault adversary models with their
corresponding security models. We then introduce Boolean masking, domain-
oriented masking, and information-theoretic MAC tags as countermeasures to
address probing and fault adversaries. Lastly, we introduce StaTI [DOT24], a
countermeasure framework introducing two key notions: stability and fault non-
completeness, aimed at protecting against Statistical Ineffective Fault Attacks
(SIFA) [DEK+18,DEG+18].

2.1 Adversary and Security Models

We consider an adversary with probing and faulting capabilities within a sce-
nario where these capabilities are not combined. We adhere to the digital cir-
cuit model (i.e., attack surface) outlined in [ISW03], represented as a Directed
Acyclic Graph (DAG). In this model, the vertices represent Boolean logic and
memory gates, and the edges represent the wires carrying elements in F2n . These
circuits also incorporate randomization, with certain vertices producing output
bits distributed uniformly and independently. Additionally, in this paper, we
work with gadgets that correctly execute a function F : Fk1

q → Fk2
q . By compos-

ing gadgets, we construct more complex circuits, benefiting from their individual
security attributes. The composition of gadgets forms a DAG whose vertices are
the gadgets and whose edges are the connections between the gadgets. The in-
coming and outgoing edges correspond to the input and output of the respective
gadgets.

We now go over the capabilities of the probing and faulting adversaries.
For the adversary capable of probing, we consider the standard glitch-extended
probing model. For faulting capabilities, we consider three different fault adver-
saries following the work of [TNN24b] that investigates the adversary models
assumed in fault attacks and countermeasures, compared to the capabilities of
the physical fault injection mechanisms.

According to Toprakhisar et al. [TNN24b], the physical fault injection mech-
anisms can be categorized into two groups. The first group involves injection
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mechanisms with high precision, targeting small areas like a few gates on ASIC,
such as laser fault injection. These injection mechanisms can target specific gates
with specific fault types. To address such injection mechanisms, we consider a
gate/register faulting adversary capable of precisely targeting a number of chosen
gates/registers with specific fault types. The second group involves mechanisms
with low precision but affecting larger areas, such as clock/voltage glitching and
EM-fault injection. These injection mechanisms can affect more adjacent gates
than the ones originally targeted, albeit with limited control over the fault types.
To target such mechanisms, we consider an arbitrary additive register adversary
capable of impacting a larger area with data-independent faults, resulting in
additive faults. Additionally, we consider a random register faulting adversary
addressing certain capabilities of both groups of injection mechanisms. This ad-
versary is capable of injecting an arbitrary number of faults of their choosing
with each having a certain probability of being successfully injected. While the
random register faulting adversary addresses the precise faulting capabilities of
the first group of injection mechanisms depending on the success of the fault
injection, they also address the larger impact area of the second group of injec-
tion mechanisms. In Table 1, we compare the capabilities of the fault injections
adversary models we use in this work.

Table 1. Comparison of the different fault injection adversaries in this work. Accuracy
is a value between zero and one indicating the probability that the fault injected by
the adversary matches the intended target fault.

Accuracy # Faults Fault Type Logic

k-Gate/Register Faulting One k Any Any
Additive Register Faulting One Unlimited Additive Registers
Random Register Faulting κ Unlimited Any Registers

Wire Probing. We consider the d-probing model, as introduced by Ishai et
al. [ISW03]. In this model, the adversary is limited to observing a maximum
of d predetermined wires within the Boolean circuit. To account for the phys-
ical effect of glitches on a hardware circuit, we extend the probing model to
the glitch-extended robust probing model introduced by Faust et al. [FGP+18].
This model allows an adversary to obtain all the registered inputs leading to
the probed gate/wire. In this work, we focus on a first-order (glitch-extended)
probing adversary, where the adversary probes a single gate/wire.

Gate/Register Faulting. To capture the first type of faulting capabilities, we
adopt the same approach as in StaTI [DOT24], where an adversary can ma-
nipulate the outputs of a total of k gates or registers within the circuit. This
k-gate/register faulting adversary can manipulate the outputs in three ways:
setting the output to zero (reset faults), setting it to one (set faults), or flip-
ping the output value (bitflip faults). In this work, our focus lies specifically
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on first-order gate/register-faulting security, where the adversary is capable of
replacing only one gate or register throughout the entire computation process,
and the injected fault is non-persistent (the next execution of the circuit the
fault disappears). As each wire corresponds to either the output of a register or
a gate, we consider wire faults as faults injected to corresponding registers or
gates. This excludes the scenarios where an adversary cuts the connections of
wires and targets specific sets of wires.

Arbitrary Additive Register Faulting. To capture the second type of faulting
capabilities, we consider an adversary limited to targeting the state registers,
which can only inject additive faults following a chosen distribution with the
limitation that this distribution cannot depend on the state values of the circuit.
In symbols, consider the registered state x, the adversary is allowed to inject any
additive fault x → x+∆ for ∆ drawn from a distribution which is independent
of x. A realistic example of such a faulting scenario includes an adversary bit
flipping the entire state for any fixed value ∆ or uniform randomly flipping each
bit (drawing a uniform random ∆). Similar to gate/register faulting, we consider
first-order arbitrary additive register faulting adversaries, where the adversary
is capable of faulting a single (state) register layer.

Compared to the gate/register faulting adversary, which can inject a limited
number of faults of any type, the additive register faulting adversary can inject
an unlimited number of faults (limited to a single time frame), but is limited to
additive faults only.

Random Register Faulting. The third faulting capability is based on the random
fault model by Dhooghe and Nikova [DN23] where we constrain the fault model
to work only on a single register layer. In this fault model, the adversary can
inject a fault in every bit in the state registers by applying a chosen function
g : F2 → F2 where the adversary can choose a different function for each bit.
Each injected fault, however, only has a limited probability κ to be injected and
only one fault can be injected per state bit. More formally, the injected fault is
a random function F applied to the bit x for which

F (x) =

{
g(x) with probability κ ,

x with probability 1− κ .

This model includes the realistic fault scenario of an adversary setting or
resetting any partial set of bits of the elements in the registered state x (making
the distribution ∆ independent of the sharing of the secret x).

Compared to the previous adversaries, the random register faulting adversary
can inject an unlimited number of faults (constrained to a single time frame),
and of any fault type, but is limited in the accuracy of each fault as each fault
only has a limited probability to be applied.

Security Model. For the security model, we consider two models: correctness and
privacy.
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Concerning the correctness model, the adversary A (either a probing or fault-
ing adversary) interacts with a challenger C by providing it a secret value x. The
challenger encodes this secret value in a circuit C which is then returned to the
adversary. The adversary can then interact with the circuit. For ease of this pa-
per, we only consider that the adversary makes a single query to C (i.e., it only
probes/faults the circuit once). In addition, the adversary can not interact with
the encoding (masking, encoding) and decoding (error checking, unmasking)
phases of C. The circuit C then returns after the interaction with the adversary
any probed values and the state of its output being either ‘correct’, ‘incorrect’,
or ‘abort’, however, the circuit does not return the actual output. The adversary
wins the correctness game if C returns ‘incorrect’ meaning that the circuit gave
an incorrect output. The advantage of A is then calculated as

Advcor(A) = Pr[CA[x] = ‘incorrect’] ,

where CA[x] denotes the output of the circuit encoded with the secret x after
interaction of the adversary A. We call the advantage of a circuit C, the maximal
advantage over any possible adversary. It is clear that a probing adversary can
not have a non-trivial advantage in the correctness game since it can not influence
the state of the circuit.

The second model is the privacy model for which we use a left-right model
where an adversary A interacts with a challenger C. The adversary can choose
two secret values x0, x1, and the challenger chooses one of the two and encodes
it in a circuit C (so either C[x0] or C[x1]) which is then given to the adversary.
Depending on the above adversaries, it can then interact with C by probing or
faulting it. This interaction is the same as in the correctness model, meaning
that the interaction only returns probed values and the state of the output.
After the interaction, the adversary then decides which secret value (x0 or x1)
the challenger chose. The adversary wins this game when it can correctly guess
the secret value chosen. The advantage is calculated as

Advpriv(A) = |Pr[AC[x0] = x0]− Pr[AC[x1] = x0]| ,

where AC[x] denotes the output of the adversary A after it interacted with the
circuit C[x].

Finally, in case we call a circuit probing-secure, we mean that a probing
adversary has a zero advantage when interacting with the circuit. Moreover, a
circuit which is Strong Non-Interferent (SNI) [BBD+16] is also secure in the
above models.

2.2 Boolean Masking and Domain-Oriented Masking

In order to thwart probing adversaries, we use Boolean masking which splits each
variable x ∈ F2n in the circuit into sx shares x̄ = (x0, x1, ..., xsx−1) such that x =∑sx−1

i=0 xi over F2n . The core idea of splitting the secret variables is to perform
computations independently of the processed data. The literature contains many
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secure Boolean masking schemes [ISW03,NRR06,RBN+15,GMK16] which are
identified by how they perform the nonlinear operations.

In this work, we use Domain-Oriented Masking (DOM) to demonstrate our
countermeasure, a generic masking scheme chosen for its low implementation
costs and glitch resistance. In DOM, each share of a secret variable is associated
with a unique share domain. To provide dth−order protection, DOM uses d+ 1
domains (i.e., d+1 shares) ensuring the independence of shares across different
domains. The independence of domains is straightforward for linear functions as
the combination of the shares happens within a domain. Conversely, non-linear
operations necessitate dedicated measures due to the combination of different
share domains. In DOM, the integration of cross-domain terms into a domain is
handled by refreshing (i.e., adding a fresh random value to the terms composed
of cross-domain terms). To prevent glitches from propagating from one domain
to another, refreshed variables are stored in registers.

However, in this work, we are interested in arbitrary composability and the
original DOM multiplier is not arbitrary composable. Instead, we also register
the output of the multiplier making the multiplier Strong Non-interferent (SNI)
(which will be defined further on in Section 5.2). The proof that the DOM
multiplier with the output registered is SNI is given by Faust et al. [FGP+18,
Section 5.2].

In Figure 1, we illustrate the first-order secure DOM multiplier that has two
domains where x = (x0, x1) and y = (y0, y1) are the multiplication inputs, along
with a fresh random value r, and z = (z0, z1) is the multiplication output.

x0 y0 r y1 x1

reg

reg

z0 z1

Fig. 1. Two-shared DOM multiplier where the output is registered.

2.3 Information-theoretic MAC Tags

In order to thwart faulting adversaries, we use information-theoretic Message
Authentication Code (MAC) tags, which are associated pieces of information
used to verify data integrity. The incorporation of MAC tags into fault attack
countermeasures was initially achieved by CAPA [RMB+18]. CAPA achieves
security against fault and combined attacks by leveraging the principles of the
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MPC protocol SPDZ [DPSZ12]. However, a recently proposed attack CAPA-
BARA [TNN24a] exploits the deviation of the CAPA design from SPDZ, ef-
fectively breaking CAPA. As a result, its protection is limited to either SCA
or fault attacks, but it no longer provides security against combined attacks.
Moreover, CAPABARA can be reduced to a fault attack requiring the injection
of two faults: one during the preprocessing stage, as in CAPABARA, a second
fault to probe the unmasked byte value by setting the variable to a specific value
and observing whether the circuit aborts.

Building upon CAPA’s methodology, M&M [MAN+19] extends any SCA-
secure masking scheme by incorporating MAC tags to ensure data integrity,
albeit under a more relaxed adversary model. In M&M, each secret variable is
first associated with a MAC tag, after which both are shared, where also the
MAC key α is shared. M&M makes use of a side-channel secure multiplier and
transforms it to a side-channel and fault-secure one. Specifically, denoting ⊙ as
the side-channel secure multiplication gadget, the following is the multiplication
gadget of M&M, given that x and y are the multiplication inputs, τx and τy are
the corresponding MAC tags, and α is the MAC key (with all inputs shared)

z 7→ x⊙ y, τz 7→ α−1 ⊙ τx ⊙ τy .

M&M employs a single error check at the end, however, it fails to detect
ineffective faults, which is also not claimed in their security assumptions. A re-
cently proposed zero-value attack and the countermeasure against it [HMA+24]
underscores the necessity for additional measures beyond a straightforward com-
bination of masking and MAC tags. The idea of this SIFA-like attack is that when
the input of the S-box is zero, an injected fault within the inversion circuit is
masked by the final multiplications involving the input in the M&M V2 imple-
mentation using tower field decomposition. This attack essentially exploits the
structure of tower field decomposition, where the input of the inversion itself
is multiplied by an intermediate value, which if faulty, the zero input cancels
the injected fault. We note that M&M V1 using the multiplication chain is also
vulnerable to a similar attack as one can perform a zero-value attack on the final
step of the multiplication chain involving the inversion input.

In response to the proposed zero-value attack on M&M, Hirata et
al. [HMA+24] extend M&M by introducing “λ-detection” placing intermediate
cross-checks at criticial points inside the AES S-box V2. These cross-checks
ensure the faults can be detected even when they are multipled by the zero
input, which would otherwise mask the effect of the fault.

In this paper, similar to the CAPA and M&M countermeasures, a MAC tag
is generated for each registered variable in the state x ∈ F2n by computing
τx = α · x, where α is the MAC key, and · is the field multiplication in F2n .
Considering the calculation on MAC tag pairs (x, τx), the MAC key α (or its
inverse α−1) is considered as a global variable which means that the circuit only
stores it once where the same value is used throughout the computation (and
distinct for each encryption). These MAC tag pairs allow for the verification of
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any errors present on values by checking whether

α−1τx + x = 0 .

More specifically, in this work, we consider performing this error check only at
the end of the circuit (called the decoding phase) where the entire state is error
checked. If one of the MAC tag pairs does not pass the error check, the circuit
does not return an output1. Otherwise, if all error checks pass, the circuit returns
the first value of each MAC tag pair, meaning it returns x from the pair (x, τx).

From the definition of the security models in Section 2.1, recall that the
adversary can not fault the above decoding phase as assumed in every counter-
measure. This is done to avoid trivial attacks such as faulting the output after
the final error check.

2.4 StaTI: Protecting against Fault Attacks Using Stable Threshold
Implementations

StaTI [DOT24] is a fault countermeasure framework that is based on threshold
implementations [NRR06] and linear encoding techniques. It requires circuits to
be correct, non-complete, uniform, stable, and fault non-complete to be secure
against a single gate/register-faulting adversary. Correctness, non-completeness,
and uniformity are notions stemming from threshold implementations. Correct-
ness ensures that the sum of the output shares produces the correct output. A
shared function is non-complete if each of its coordinate functions operates on
data independent of the secret input, and it is uniform if it outputs a uniform
sharing given the input sharing is uniform. These notions are detailed further
in [NRR06]. In this section, we only focus on stability and fault non-completeness
since these will be further explored.

Stability, as introduced in [DOT24], is a composable notion that aims to
thwart SIFA [DEK+18, DEG+18] by ensuring the faults present in the input
of a register-to-register function propagate to its corresponding output. Stabil-
ity is initially defined for encoded functions using an arbitrary linear encoding,
specifically employing systematic codes where the input data is embedded in the
encoded output. An encoded function F̃ , encoding F , takes an input codeword
(x, x′), where x′ = P (x) is the parity data corresponding to x, computed by
the function P (·). F̃ then computes the output codeword (y = F (x), y′). In this
context, an incorrect (i.e., faulty) codeword is defined as an element (x, x′) that
does not belong to the underlying code, indicating that x′ does not match the
corresponding parity data of x (i.e., x′ ̸= P (x)).

Definition 1 (Stability). Given an encoded register-to-register function and
a code, the gadget implementing the encoded function is said to be stable if any
incorrect input codeword is mapped to an incorrect output codeword.

1 This can be done by raising a flag or outputting a special value.
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In particular, the above definition holds for any invertible correct encoding
since each correct output codeword is mapped from a correct input codeword.

StaTI leverages the composability of the stability notion to ensure that the
injected faults propagate to the output of the whole circuit without getting inef-
fective, particularly in scenarios where the stable gadgets are serially composed.

Theorem 1. [DOT24, Theorem 1] The serial composition of stable gadgets is
stable.

In addition to ensuring the propagation of faults originating from the inputs,
StaTI also limits the impact of injected faults on the output through the im-
plementation of fault non-completeness. This ensures that the propagation of
a fault remains independent of secret values, particularly the faults injected to
gates between two register layers.

Definition 2 (Fault non-completeness). A circuit is called fault non-
complete when, per register stage, each gate of the circuit drives only a
non-complete set of output shares given that these shares can not influence the
correctness of the output codeword.

3 Stability of Arbitrarily Composed Circuits

In the work of StaTI [DOT24], the stability of the serial composition of stable
gadgets was proven. This serial composition property is useful to make stable
gadgets for example by decomposing the Keccak S-box into several Toffoli gates.
However, for many complex components like the AES S-box, achieving stability
with only serial composition can be challenging. Therefore, building upon this
groundwork, this section now shifts the focus to the stability of circuits arbitrarily
composed of stable gadgets. This allows us to arbitrarily decompose the complex
circuits, and work on simpler gadgets (e.g., multiplication) to achieve stability.
We extend Theorem 1, and prove the stability of the circuits arbitrarily composed
of stable gadgets with an arbitrary number of inputs and outputs in Theorem 2.

Theorem 2. The arbitrary composition of stable gadgets with an arbitrary num-
ber of inputs and outputs is stable.

Before proving the theorem, we introduce the notion of an incorrect codeword
encoding multiple data elements.

Definition 3 (Incorrect codeword). For a given set of data x =
(x0, x1, ..., xk1), and the corresponding parity data x′ = P (x) = (x′

0, ..., x
′
k2
), the

codeword (x, x′) is said to be an incorrect codeword if x′ ̸= P (x).

Given the definition of incorrect codeword encoding multiple data, we can
prove Theorem 2 as following.
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Proof. We begin by proving stability for a circuit composed of two stable gadgets.
The proof for the arbitrary number of gadgets recursively follows this.

Let G1 and G2 be stable gadgets with an arbitrary number of inputs and
outputs, and G3 be an arbitrary composition of G1 and G2 as depicted in Fig-
ure 2, where x1 and x2 are the input codewords encoding some input data. Due
to G3 being a DAG, we assume that G1 exclusively derives its inputs from the
initial inputs of G3, while G2 can derive its inputs from both the initial inputs
of G3 and the outputs of G1. Then, the outputs of G3 consist of the outputs of
G2 and a subset of the outputs of G1.

x1

x2

y1

y2

G3

G1

G2

Fig. 2. An arbitrarily composed circuit model.

Let G3 receive an incorrect input codeword. In this scenario, there are three
cases over the connection of the initial inputs of G3: (1) only G1 receives a faulty
input due to x1 being an incorrect codeword (2) only G2 receives a faulty input
due to x2 being an incorrect codeword, and (3) and both G1 and G2 receive a
faulty input due to both x1 and x2, or only x1 being incorrect codewords. We
investigate the error propagation for these three cases:

(1) As G1 is stable, its output codeword is also incorrect. This incorrect output
codeword is then connected to either (a) the input of G2, and/or (b) the
output of G3. Consequently, the output of G3 is also an incorrect codeword
due to (a) (G2 propagating the incorrect codeword to the output of G3)
and/or (b).

(2) As G2 is stable, its output codeword is also incorrect. This incorrect output
codeword is then directly connected to the output of G3.

(3) Since both G1 and G2 are stable, their output codewords will also be incor-
rect. Consequently, the output codeword of G3 also becomes incorrect.

In all three cases, G3 outputs an incorrect codeword, making it stable.

4 Stability Over MAC Tags

In this section, we extend the stability notion to MAC-stability over gadgets
implementing functions encoded using MAC tags. For such a gadget, the in-
put/output is composed of the secret data x ∈ F2n and its associated tag
τx = αx ∈ F2n , where α ∈ F2n is the MAC key, and the multiplication is defined
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over the field F2n . Before we describe MAC-stability, we extend the definition of
incorrect codewords (Definition 3) using MAC tags.

Definition 4 (Incorrect codeword in MAC encodings). For a given set
of data x = (x0, x1, ..., xk), (x, τx) = (x0, ..., xk, τx0

, ..., τxk
) is the corresponding

systematic codeword where τxi
= αxi, and α is global to all xis. Then, (x, τx) is

said to be an incorrect codeword if at least one element in (x, τx) is faulty (i.e.,
for at least one i, τxi ̸= αxi).

Then, we describe MAC-stability by extending the definition of stability (Def-
inition 1):

Definition 5 (MAC-stability). Consider a gadget G implementing an en-
coded register-to-register function using information-theoretic MAC tags, G is
said to be MAC-stable if it maps any incorrect input codeword to an incorrect
output codeword.

The stability of the arbitrary composition of MAC-stable gadgets follows
Theorem 2 as the proof does not rely on any specific encoding.

Having established the feasibility of constructing MAC-stable circuits from
MAC-stable gadgets, we shift our focus to the process of devising MAC-stable
gadgets themselves. As stated in [DOT24], the straightforward encodings of the
XOR and AND gates do not exhibit stability due to their non-injective na-
ture. In other words, one can fault the inputs of the XOR and AND gates
such that the output is still a correct codeword, resulting in undetected (in-
effective) faults. Similarly, in F2n , the straightforward implementations of the
field addition and multiplication operations (i.e., (x, τx) + (y, τy) = (x+ y, τx +
τy) and (x, τx)(y, τy) = (xy, α−1τxτy)) also do not exhibit (MAC-)stability due
to their non-injective nature. In this section, we demonstrate how we can adapt
the implementation of the addition and multiplication operations in F2n , and
a linear operation in Fn

2 such that they are MAC-stable. Note that each of
these MAC-stable gadgets is made fault non-complete (Definition 2) by parti-
tioning/duplicating its combinatorial gates such that no gate is used to compute
more than one output variable.

In the description of the algorithms, the tag of x is denoted by τx = αx
(and equivalently, α−1τx = x), where α is the MAC key and global to the whole
circuit.

4.1 A MAC-Stable Addition Gadget

In this section, we describe the MAC-stable gadget Gadd that implements the
addition in F2n which is detailed in Algorithm 1. & denotes the bitwise AND
operation.
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Algorithm 1: Gadd : A MAC-stable addition gadget

Input: x, τx, y, τy
Global Variable: α−1

Output: z, τz
z = x+ y + (τxα

−1 + x)&(τyα
−1 + y)

τz = τx + τy
return z, τz

Gadd is correct when the input codeword is correct (i.e., (α−1τx + x) = 0
and (α−1τy + y) = 0) since it returns z = x + y and τz = τx + τy = αz. In the
following, we prove that the proposed addition gadget, Gadd, is MAC-stable.

Theorem 3. The gadget Gadd as defined in Algorithm 1 is MAC-stable.

Proof. In order to prove the MAC-stability of Gadd, we show that any in-
correct input codeword is mapped to an incorrect output codeword. Let
∆α−1 , ∆x, ∆τx , ∆y, ∆τy be the additive fault values present in α−1, x, τx, y, τy,
respectively. In that case, the input codeword is incorrect if at least one of the
following inequalities holds

Ex = (α−1 +∆α−1)(τx +∆τx) + (x+∆x) ̸= 0

Ey = (α−1 +∆α−1)(τy +∆τy ) + (y +∆y) ̸= 0.

Then, given the input codeword is incorrect, we show that the output code-
word is also incorrect.

To check whether the output codeword is correct, we check whether (α−1 +
∆α−1)τz′ + z′, with the (faulted) outputs of Gadd (z′, τ ′z), equals to zero. We can
write this out as follows.

(α−1 +∆α−1)τz′ + z′ = (α−1 +∆α−1)(τx +∆τx) + x+∆x

+ (α−1 +∆α−1)(τy +∆τy ) + y +∆y + Ex&Ey

= Ex + Ey + Ex&Ey (1)

Considering the truth table of Ex+Ey +(Ex&Ey), it is zero only when both
Ex = 0 and Ey = 0 which implies that the input codeword is correct.

This implies that Gadd maps any incorrect input codeword to an incorrect
output codeword and is thus MAC-stable.

In addition to the above proof, we also verified the MAC-stability of the
above gadget over F24 using software by going over all incorrect codewords for
the input2.

2 Exhaustive verification in F28 requires significant time and resources.
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4.2 A MAC-Stable Multiplication Gadget

In this section, we describe the MAC-stable multiplication gadget Gmult that
implements multiplication in F2n which is detailed in Algorithm 2. The equality
operation == denotes the equality check operation which evaluates to 1 ∈ F2n

if both of the operands are identical, and 0 ∈ F2n otherwise. The operation ̸=
does the opposite of the equality operation and evaluates to 0 ∈ F2n only if both
operands are the same and to 1 ∈ F2n otherwise.

Algorithm 2: Gmult : A MAC-stable multiplication gadget

Input: x, τx, y, τy
Global Variable: α−1

Output: z, τz
if (α−1τy + y) ̸= 0 then

z = 1
τz = 0

else if y == 0 then
z = xy +

(
(α−1τx + x) ̸= 0

)
τz = α−1τxτy

else
z = xy
τz = α−1τxτy

end
return z, τz

Gmult is correct when the input codeword is correct (i.e., (α−1τx + x) and
(α−1τy + y) are both zero) since it returns z = xy and τz = α−1τxτy = αz.
In the following, we prove that the proposed multiplication gadget, Gmult, is
MAC-stable.

Theorem 4. The gadget Gmult as defined in Algorithm 2 is MAC-stable.

Proof. Similar to the MAC-stable addition gadget, to prove the MAC-stability
of Gmult, we show that any incorrect input codeword is mapped to an incorrect
output codeword. Let∆α−1 , ∆x, ∆τx , ∆y, ∆τy be the additive fault values present
in α−1, x, τx, y, τy, respectively. In that case, the input codeword is incorrect if
at least one of the following inequalities holds

Ex = (α−1 +∆α−1)(τx +∆τx) + (x+∆x) ̸= 0,

Ey = (α−1 +∆α−1)(τy +∆τy ) + (y +∆y) ̸= 0.

Given the input codeword is incorrect, we show that the output codeword is
also incorrect. We check whether (α−1+∆α−1)τz′+z′, with the (faulted) outputs
of Gmult (z

′, τ ′z), equals to zero.
First, we assume Ey ̸= 0 holds. Plugging this in the error check on the output,

we find

(α−1 +∆α−1)τz′ + z′ = (α−1 +∆α−1)0 + 1 = 1 ̸= 0
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which implies that the output codeword is incorrect. Now, we assume Ey = 0
and Ex ̸= 0 holds. Then, the algorithm reduces to

z = (x+∆x)(y +∆y) + ((y +∆y) == 0)

τz = (α−1 +∆α−1)(τx +∆τx)(τy +∆τy ) .

Then, when checking for errors ((α−1 + ∆α−1)τz′ + z′ == 0), we obtain the
following:

(α−1 +∆α−1)2(τx +∆τx)(τy +∆τy ) + (x+∆x)(y +∆y) + ((y +∆y) == 0)

= ExEy + Ex(y +∆y) + Ey(x+∆x) + ((y +∆y) == 0) .

When (y +∆y) = 0 (and Ey = 0, Ex ̸= 0), we find

(α−1 +∆α−1)τz′ + z′ = ExEy + Ey(x+∆x) + 1 = 1 ̸= 0 .

When (y +∆y) ̸= 0, the algorithm reduces to

z = (x+∆x)(y +∆y)

τz = (α−1 +∆α−1)(τx +∆τx)(τy +∆τy ) .

Then, we find

(α−1 +∆α−1)τz′ + z′ = ExEy + Ex(y +∆y) + Ey(x+∆x) = Ex(y +∆y) ̸= 0

since both Ex ̸= 0 and (y +∆y) ̸= 0.
This implies that Gmult maps any incorrect input codeword to an incorrect

output codeword, and is thus MAC-stable.

Similar to the addition gadget, we also verified the MAC-stability of the
multiplication gadget over F24 using software.

4.3 A MAC-Stable Linear Gadget

In this section, we describe the MAC-stable gadget GL that implements an in-
vertible linear function L in Fn

2 which is detailed in Algorithm 3. We base the
method on the gadget used in the M&M work [MAN+19]. Namely, the multipli-
cation by α over F2n can be represented as a (invertible) matrix multiplication
by Mα over Fn

2 .

Algorithm 3: GL : A MAC-stable linear gadget

Input: x, τx
Global Variable: Mα,M

−1
α

Output: z, τz
z = Lx
τz = (MαLM

−1
α )τx

return z, τz
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GL is correct when the input codeword is correct (i.e., (α−1τx + x) is zero)
since it returns z = Lx and τz = (MαLM

−1
α )τx = α(Lα−1τx) = αLx. Note that

MαLM
−1
α can be precomputed for efficiency reasons. In the following, we prove

that the proposed linear gadget, GL, is MAC-stable.

Theorem 5. The gadget GL as defined in Algorithm 3 is MAC-stable.

Proof. Given that L and Mα are invertible, the operation in Algorithm 3 is also
invertible and thus MAC-stable.

5 MAC-Stability in the Masked Domain

As stated in Section 2.1, we assume an adversary with probing capabilities (x)or
faulting capabilities. Therefore, we now shift our focus to the MAC-stability in
masked domains, and show how to secure circuits against probing, gate/register-
faulting, arbitrary additive register faulting, and random register faulting adver-
saries in a non-combined setting.

5.1 Security of Masked MAC Pairs

In this section, we quantify the security (two-share) masked MAC pairs can offer
and provide proofs for the security of the computation of MAC-stable gadgets
against the adversaries described in Section 2.1.

Similar to StaTI [DOT24], we first share the input of the cipher and then
encode these shares. Thus, a secret variable x ∈ F2n is first shared as (x0, x1)
such that x0 + x1 = x, and then encoded to (x0, x1), (τx0 , τx1), α

−1 such that
x0 = α−1τx0

and x1 = α−1τx1
. Note that, we do not share the MAC key α used

to compute the MAC tags of the shares, nevertheless, akin to M&M, we require
distinct MAC keys for each encryption to avoid linear encoding characteristics.

For the first lemma, we provide the advantage of a gate/register faulting
adversary3 against masked MAC tag pairs.

Lemma 1. The maximal advantage of a gate/register faulting adversary A
against k MAC tag pairs over F2n in the correctness and privacy model is 2−kn .

Proof. Consider k masked MAC tag pairs (x0[i], x1[i]), (τx0[i], τx1[i]) of the vari-
ables x[i] ∈ F2n for i ∈ {0, ..., k−1} and the inverse of the MAC key α−1. Finally,
recall that the gate/register faulting adversary A can inject any fault (bitflip,
set-to-zero, etc.) but can only fault one variable out of the MAC tag pairs or
the MAC key. We provide the advantage of A in the correctness and the privacy
game.

Correctness: For the correctness game, the goal of the adversary is to fault
the state such that, after decoding, the output is incorrect and the circuit did
not abort. It is clear that faulting the MAC tags τx0[i], τx1[i] or the inverse MAC

3 Since we only consider faulting the encoding and not the computation, this adversary
reduces to a single register faulting adversary.
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key α−1 does not change the output correctness. That is, the circuit can still
abort from the injected fault but, when an output is given, it is never incorrect
since the output, x = x0+x1, contained no fault. Thus, consider a fault on xj [i]
for j ∈ {0, 1} and i ∈ {0, ..., k − 1}. We model this fault as an additive fault
xj [i] +∆. If ∆ = 0, then clearly the output stays correct. In case ∆ ̸= 0, then
the error check on xj [i] calculates

α−1τxj [i] + xj [i] +∆ = ∆ ̸= 0 .

Similarly, when only a single fault in a MAC tag τxj [i] is placed, the circuit would
also always abort. Thus, the error is always detected and the advantage of the
adversary in the correctness game is Advcor(A) = 0 .

Privacy: In the privacy game, the adversary picks two secret values and
attempts to determine which of the two was embedded in the circuit by observing
the probability of the circuit aborting after faulting it. We considerA picking two
secret values to distinguish (denoted by x0 and x1). We calculate the probability
of the circuit aborting when a fault is injected during the computation on either
x0 or x1. As mentioned in the proof of the correctness model, faulting xj [i] or
the tags τxj

[i] such that their value changes always results in an abort. However,
setting these shares to a fixed value results in an abort only if the fault led
to an additive change in the value, and it will always abort when the value
is changed. Thus, from the abort status, the adversary only learns the value
of the faulted register which is a single share or tag, and is uniform randomly
distributed revealing no information about the secrets. This leaves faulting α−1

which provides the following equations for error checks

(α−1 +∆)τx0[i] + x0[i] == 0, (α−1 +∆)τx1[i] + x1[i] == 0 ,

which always detect an error unless τx0[i] = τx1[i] = 0 for i ∈ {0, ..., k− 1} which
means x0[i] = x1[i] = 0 since α−1 ̸= 0. More specifically, an error can only pass
when each x[i] = 0. As a result, the maximal advantage of this adversary is
Advpriv(A) = 2−kn . Namely, the above equality holds due to the probability of
the error check passing when the secret is zero (when all x[i] = 0) being 2−kn

since it requires that all x0[i] = x1[i], and since the circuit with x ̸= 0 always
aborts.

The above lemma shows that masked MAC tags provide sufficient security
against a single gate/register faulting adversary by achieving security equiva-
lent to the state size of the cryptographic primitive that is implemented. For
example, since the AES has a 128-bit state size, a masked MACed AES imple-
mentation provides 128-bit security against a register/gate faulting adversary
(without including a masked MAC for the key).

We now do the same for an arbitrary additive register faulting adversary.

Lemma 2. The maximal advantage of an arbitrary additive register faulting
adversary A against k MAC tag pairs over F2n in the correctness and privacy
model is 1

2n−1 .
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Proof. Recall that the arbitrary additive register faulting adversary A can inject
any additive fault to the entire state (all shares, tags, and MAC key). We provide
the advantage of A in the correctness and the privacy game.

Correctness: In the correctness model, faulting xj [i], τxj [i], and α−1 by
additive faults ∆xj [i], ∆τxj [i]

, ∆α−1 provides the following error check

(α−1 +∆α−1)(τxj [i] +∆τxj [i]
) + xj [i] +∆xj [i] == 0.

When ∆α−1 ̸= 0, the adversary has to guess for each i, j the following equality

∆α−1 =
∆τxj [i]

α−1 +∆xj [i]

τxj [i] +∆τxj [i]

,

which can only be done by guessing α−1 with probability 1
2n−1 (since α ̸= 0)

or by guessing each pair (xj [i], τxj [i]) for a total probability 2−kn. When the
adversary does not fault α−1, the adversary can still guess the value of α−1 and
fault one pair (xj [i], τxj [i]) with probability 1

2n−1 which provides the advantage

Advcor(A) = 1
2n−1 . It is important to note that the above bound does not depend

on the parameter k or, as a side-note, on the number of shares.
Privacy: Similar to the proof of the gate/register faulting adversary in the

privacy model, we consider A picking the two secret values to distinguish as
x0 and x1. When additively faulting x0, x1, τx0

, and τx1
the error is detected

when the adversary guesses α−1 incorrectly. However, whether or not the circuit
aborts is independent of the secret value given to the circuit. Thus, in order to
break the privacy of the circuit, the adversary has to fault the inverse MAC key
α−1 which leads to the same advantage as in Lemma 1, Advpriv(A) = 1

2kn .

Finally, the advantage is given for the third adversary, the random register
fault adversary. Note that calculating the advantage for this adversary is more
complex, thus, we discuss several attack vectors but do not conclude on the
attack vector with the highest advantage.

Lemma 3. The advantage of a κ- random register faulting adversary A against
k MAC tag pairs over F2n in the correctness and privacy model is equal or higher
than κ2/2 .

Proof. Recall that the random register faulting adversary A with parameter κ
can inject any fault (modeled as the application of a function g : F2n → F2n)
to each separate bit of the state (all shares, tags, and MAC key), however, each
fault only has a κ probability of being applied. We provide the advantage of A
in the correctness and the privacy game.

Correctness: In the correctness model, we consider an adversary which in-
jects a bitflip in both xj [i] and τxj [i] while guessing α. This fault has a κ2 prob-

ability for both bitflips to occur and a 1
2n−1 probability that α maps the first

bitflip to the other. The attack is improved when κ is small by guessing α (for
example guessing α = 1) and repeating the attack over multiple (say ℓ) shared
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pairs (xj [i], τxj [i]), for which we have ℓ = 2k since there are k secret values and
2 shares. This provides the advantage

Advcor(A) = max
ℓ∈{1,...,2k}

ℓκ2(κ2 + (1− κ)2)ℓ−1

2n − 1
,

since one faulted shared pair (out of the ℓ pairs) needs to be faulted such that the
fault is again a correct codeword (ℓκ2 after correctly guessing α) and the other
pairs are either faulted to a correct codeword or not faulted at all (probability
(κ2 + (1− κ)2)ℓ−1 after guessing α). For ease, we assume κ ≈ 1 which provides

the maximal advantage as κ2

2n−1 .
Privacy: In the privacy model, we consider the attack mentioned

in [DN23] from the “mask-then-duplicate” case which provides the advantage
Advpriv(A) = κ2/2 . This attack simply sets all Boolean masked shares to a
specific value to uncover the secret (using faults as probes). When κ is small,
this attack can be repeated over the kn 2-shared bits of the state (x0, x1) (when
all x0[i] = 0 versus all x1[i] = 2n − 1) for a maximal advantage

Adv(A) = max
ℓ∈{1,...,kn}

|(1− κ)ℓ − 1

2
(1 + (1 + κ2)ℓ)| .

Again, for ease, we consider κ ≈ 1 such that the maximal advantage is κ2/2.

Lemma 2 shows why MAC tags offer improved security over code-based en-
codings such as duplication, which offer no security (advantage one) against an
arbitrary additive register faulting adversary. Namely, an arbitrary additive ad-
versary can always additively inject correct codewords into the state to change
its correctness. Additionally, compared to the results in Lemma 3, linear en-
codings also perform worse than MAC tags in the correctness model against a
random register faulting adversary, as the advantage for linear encodings does
not depend on the field size (e.g., in duplication, one changes the correctness
via two bitflips regardless of the field size). This is reflected in Table 2, where
MAC-tag based countermeasures demonstrate an improved security in the cor-
rectness model over duplication/linear codes/error correction. This exponential
improvement in correctness security with increasing field size makes MAC-tag
based countermeasures particularly worthy of further investigation.

Finally, we note that the advantage in the correctness model of Lemmas 2
and 3 can be improved by using multiple MAC keys; with ℓ MAC keys, we get
an advantage 1

(2n−1)ℓ
. However, in this work, we focus on using one MAC key

for efficiency reasons.
While Lemmas 1-3 provide security bounds for the encoding itself, we now

move to the security of circuits computing on masked MAC-encoded data. We
show that the computation does not degrade the security, as shown in the lem-
mas, provided that each register stage is fault non-complete and MAC-stable,
and that the computation is glitch-extended probing secure.
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Table 2. Correctness and privacy security against a gate/register faulting adversary
A1, an arbitrary additive register faulting adversary A2, and a random fault adversary
A3 for different encoding schemes (following a mask-then-encode technique) for k pairs
of n-bit values. Triplication performs error correction. For the linear code countermea-
sure, we consider a code with minimal distance t > 1. For the random fault model, for
simplicity, we consider κ close to one.

A1 A2 A3

Correctness

Masking + Duplication 0 1 κ2

Masking + Triplication 0 1 1− (1− κ2)nk

Masking + Linear Code 0 1 κt

Masking + MAC tag 0 1
2n−1

κ2

2n−1

Privacy

Masking + Duplication 0 0 κ2/2
Masking + Triplication 0 0 κ2/2
Masking + Linear Code 0 0 κ2/2

Masking + MAC tag 2−kn 2−kn κ2/2

Theorem 6. A glitch-extended probing secure masked gadget G where each
register stage is fault non-complete and MAC-stable is as secure against the
gate/register faulting, the arbitrary additive register faulting, and the random
register faulting adversaries as the encoding of its state.

Proof. Denote the gate/register faulting adversary by A1, the arbitrary additive
register faulting adversary by A2, and the random register faulting adversary by
A3.

Consider that A1, A2, A3 fault a register layer in G. We distinguish three
cases. (i) The fault did not change the state. Then, G provides the expected out-
put since the state remains unchanged. (ii) The fault modified the state into a
correct encoding of another secret. As G is correct, it outputs a correct encoding
of the new secret value. (iii) The fault resulted in an incorrect state encoding.
Since G is MAC-stable, the output of G is again an incorrect encoding which,
after an error check, results in an abort. Consequently, G’s output state (cor-
rect, incorrect, or abort) does not change from the state of the faulted register.
This ensures that the advantage of A1, A2, or A3 is equivalent to faulting the
intermediate register. These advantages were accounted for in the lemmas in
Section 5.1.

In case A1 faults the combinatorial logic of G, due to the fault non-
completeness, this fault affects only a single share or tag of the next register.
This is equivalent to A1 faulting the next register in the correctness model.
Since G is glitch-extended probing secure, any additive fault on the next register
layer is independent of the secrets of G. Furthermore, due to the MAC-stability
of each stage of G, the fault will be propagated to the output of G causing an
abort that is independent of any secret value. As a result, A1’s advantage is
again equivalent to faulting the intermediate register as described in the lemmas
in Section 5.1.
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The above theorem shows that in order to secure against the adversaries from
Section 2.1, it is sufficient to have a gadget which is glitch-extended probing
secure, fault non-complete, and MAC-stable. In the next section, we investigate
how to create such gadgets.

5.2 Transforming Probing Secure Circuits

What makes MAC-stability with masking easy to implement is that there is a
simple transformation of any glitch-extended probing secure circuit to a MAC-
stable one. Since MAC-stability is an arbitrary composable notion as shown in
Theorem 2, we show the transformation of an arbitrary composable probing
secure gadget for which we make use of the SNI security notion by Barthe et
al. [BBD+16]. We thus quickly introduce the notion of simulatability and SNI.

Definition 6 (Simulatability [CS20]). Let P = {p1, ..., pℓ} be a set of ℓ
probes of a gadget C and CP the tuple of values of the probes for an execu-
tion of C. Let I = {(i1, j1), ..., (ik, jk)} ⊂ {0, ..., d−1}×{0, ...,m−1} be a set of
input wires of C. A simulator is a randomized function S : Fk

q → Fℓ
q. The set of

probes P can be simulated with the set of input wires I if there exists a simulator
S such that for any inputs x∗,∗, the distributions CP (x∗,∗) and S(xi1,j1 , ..., xik,jk)
are equal, where the probability is over the random coins in C and S.

The above definition defines security in terms of a simulation game. This
framework is extended to SNI security where we define which information is
given to the simulator.

Definition 7 (d-Strong Non-Interferent (d-SNI) [BBD+16]). A gadget G
is d-SNI if any set of d1 (glitch-extended) probes on its intermediate variables and
every set of d2 (glitch-extended) probes on its output shares such that d1+d2 ≤ d,
the totality of the probes can be simulated by only d1 shares of each input.

More specifically, we focus on 1-SNI which we compactly denote as SNI.
Moving on to the MAC-stable transformation, the transformation works by

replacing each Fk
2n → Fℓ

2n function (register-to-register) in the original gadget
with a MAC-stable counterpart. A key requirement of this transformation is
that it operates without introducing any additional inputs beyond those of the
original function, except for the MAC tags of the inputs and the MAC key α.
This is achieved by separately replacing the computation of each n-bit output
word.

Theorem 7. Given a glitch-extended SNI secure gadget G, when replacing each
F2n output function with its MAC-stable variant, the new gadget Gstable is SNI
and MAC-stable.

Proof. We first show that Gstable is MAC-stable. From Theorem 2, we know
that the arbitrary composition of MAC-stable circuits is again MAC-stable, thus
Gstable is MAC-stable.
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Next, we show that Gstable is again SNI secure. Take any glitch-extended
probe in Gstable, it reads the inputs from one register-to-register coordinate
function. From the construction of Gstable, that coordinate function is the MAC-
stable transformation of a coordinate function of G which is SNI. However,
the MAC-stable transformation does not use any more inputs than the original
register-to-register function together with the MAC tags of those inputs (which
provide no extra information). Thus, there exists a simulator that adheres to
the SNI properties (i.e., which provides the specific input shares depending on
the probe locations following Definition 7) which simulates the probed variable.
Since the probe in Gstable observes no additional information except for the MAC
key α which can be safely given to the simulator, the simulator can also simulate
the probed variable in Gstable showing that the gadget is again SNI.

We note that the above proof would be similar for Probe-Isolating Non-
Interference (PINI) by Cassiers and Standaert [CS20], and thus the MAC-stable
transformation would also keep PINI security untouched.

In addition, the above proof also works for d-SNI secure gadgets, meaning
that there is a transformation that provides countermeasures that are arbitrary
composable secure against adversaries which either place d probes (x)or which
fault the circuit following the faulting adversaries from Section 2.1.

It is also clear that the above transformation is easily made fault non-
complete by using different combinatorial gates for each output share or tag
and by copying constant values.

Recall that the above transformed MAC-stable, non-complete, and SNI (thus
glitch-extended probing secure) circuit is secure against a gate/register faulting,
arbitrary additive register faulting, or random register faulting adversary as
shown in Theorem 6. In the following section, we apply the transformation to
the well-known Domain-Oriented Masking (DOM) method.

5.3 MAC-Stable Domain-Oriented Masking

In this section, we provide a MAC-stable SNI-secure multiplier. The multiplier
is based on the DOM multiplier, however, we note that (as mentioned in Theo-
rem 7) any masked multiplier can be transformed to be MAC-stable. The output
of the DOM multiplier is considered to be registered such that the gadget be-
comes SNI secure as shown by Faust et al. [FGP+18]. While it is possible to
make a MAC-stable DOM multiplier by replacing each addition and multipli-
cation in the algorithm by the MAC stable variant from Sections 4.1 and 4.2,
we choose to further improve the efficiency by still incorporating more efficient
non-MAC-stable components while keeping the overall multiplier MAC-stable.

We depict the first-order masked MAC-stable multiplication gadget in Fig-
ure 3. The multiplication inputs are split into two shares such that x = x0 + x1

and y = y0+y1, where each share is associated with a tag τxi/yi
with α the MAC

key which is global to the whole circuit. r is a fresh random value associated with
τr as its MAC tag. The cross products x0y0 and x1y1 (and the corresponding
tags) are calculated using the MAC-stable multipliers from Algorithm 2, and
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the cross products x0y1 and x1y0 (and the corresponding tags) are calculated
using (unstable) field multiplication in F8

2. The cross products x0y1 and x1y0 are
then added with the MAC tagged randomness (r, τr) using (unstable) field ad-
dition in F8

2. These partially refreshed cross products are then stored in registers
to stop glitches after which the cross products xiy0 and xiy1 are added using
a MAC-stable addition from Algorithm 1. Since it follows the DOM multiplier
procedure, it is clear that the MAC-stable transformation remains correct. In ad-
dition, since we only replaced some multipliers and adders by their MAC-stable
variants, the SNI-security follows from Theorem 7.

Fig. 3. Masked MAC-stable multiplication gadget. Gadd and Gmult are the stable ad-
dition and multiplication gadgets (Algorithm 1 and Algorithm 2, respectively). The
gadget ∗ consists of three (unstable) field multiplications in F8

2, and the gadget + con-
sists of two (unstable) field additions in F8

2.

We prove that the above masked multiplication is MAC-stable.

Theorem 8. The masked multiplier depicted in Figure 3 is MAC-stable from
register layer to register layer.

Proof. We first show that any incorrect input codeword generates an incorrect
state codeword (the state of the middle register layer of the multiplier). We
distinguish two cases of the incorrect input.
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– At least one of the values (x0, τx0
), (x1, τx1

), (y0, τy0
), (y1, τy1

) is an incorrect
codeword which may also result from a fault in α−1. Due to the stable
multiplication between (x0, τx0) and (y0, τy0) or the one between (x1, τx1)
and (y1, τy1), an incorrect input codeword is mapped to an incorrect state
codeword in the middle register layer.

– Only (r, τr) is an incorrect codeword. Then, due to the addition giving an
incorrect output codeword when only one of the two input codewords is
incorrect, the middle register layer has an incorrect state codeword.

The above two cases include all cases of incorrect input codewords (the case
where both (r, τr) and the encoded input x, y contained errors is still handled by
the first case). This shows that the first phase of the multiplier is MAC-stable.
The second phase where the values in the middle register layer are mapped to
the output is also MAC stable since it consists only of two MAC stable additions.
As a result, the masked multiplier is MAC stable.

Finally, we note that it is also possible to use the transformed
HPC1 [CGLS21], HPC2 [CGLS21], or HPC3 [KM22] PINI-secure gadgets
(similarly, all SNI-secured gadgets as well) instead of the DOM multiplier.

6 Implementing a Masked MAC-Stable AES

In this section, we describe how to construct more complex circuits using gadgets
within the StaMAC framework. Specifically, we detail the hardware implemen-
tation of AES based on the MAC-stable domain-oriented masking, as detailed
in Section 5.3. We first elaborate on its side-channel and fault security, par-
ticularly compared to M&M, for which we detail the countermeasure and the
attack against it. Additionally, we discuss the fault securities of CAPA and the
λ-detection M&M countermeasure [HMA+24], which is proposed against the
attack targeting M&M. Finally, we present the hardware cost of our implemen-
tation in comparison to these countermeasures, as well as StaTI.

6.1 MAC-Stable AES S-box

The AES S-box consists of an inversion in F28 where zero is mapped to zero,
followed by an affine transformation. We first evaluate the inversion. This oper-
ation is equivalent to x 7→ x254 in F28 for which we use the multiplication chain
described in [GPS14] and depicted in Figure 4.

x254 = x4 ·
((

(x5)5
)5)2

The affine transformation A(x) = L(x) + c following the inversion is per-
formed over F2. This affine transformation is implemented using the MAC-stable
gadget described in Algorithm 3. We note that the constant addition is performed
by adding the constant to the first share of the state together with its MAC tag
which was precomputed during the encoding phase of the AES cipher.

25



a4 ab2

a5a5 a5

x125x25x5

x-1x

C
yc

le
 1

C
yc

le
 2

C
yc

le
 3

C
yc

le
 4

C
yc

le
 5

C
yc

le
 6

C
yc

le
 8

x4

C
yc

le
 7

C
yc

le
 9

Fig. 4. Pipelined multiplication chain for F28 inversion.

The computation of the multiplication chain relies on three distinct gadgets.
Below, we outline these gadgets that work over the shared data encoded using
MAC tags.

Gadget 1: x 7→ x4. The first gadget is a linear gadget that computes the fourth
power of its input. It can be calculated without register layers, as shown in
Algorithm 3:

(x0, x1) 7→ (x4
0, x

4
1), (τx0

, τx1
) 7→ (α−3 · τ4x0

, α−3 · τ4x1
) .

Since the above operation is applied share-wise and is invertible, it is glitch-
extended probing secure and MAC-stable. While this operation is not SNI secure,
it is Non-Interferent (NI) which can securely sequentially compose with an SNI
gadget. The output of this gadget is typically refreshed.

4

4

Fig. 5. MAC-stable gadget implementing x 7→ x4.

Gadget 2: x 7→ x5. The second gadget computes a MAC-stable DOM multi-
plication of the refreshed output and initial input of Gadget 1 as depicted in
Figure 6a. This gadget requires two register stages and it is SNI because the
transformation x 7→ x4 is linear, followed by the computation of the SNI secure
DOM multiplier.

The calculation of the multiplication chain is optimized by combining the
second register stage of the DOM multiplier with the computation and storage of
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Fig. 6. MAC-stable gadget implementing x 7→ x5 using the MAC-stable multiplication
from Figure 3 on the input x and on the refreshed and registered x4.

the refreshed output of Gadget 1, precomputed for use in the subsequent Gadget
2, as shown in Figure 6b. This approach is especially beneficial for cycles 2, 3,
and 4, 5, where the inputs x and x4 are needed for the subsequent gadgets.

Gadget 3: (x, y) 7→ x · y2. The third gadget used in cycles 8 and 9 in Figure 4,
computes a MAC-stable DOM multiplication of the first input x, and the square
of the second input y over two register layers. The second input is squared using
a similar approach described in Gadget 1 (i.e., x 7→ x2, τx 7→ α−1τ2x), and is
followed by a MAC-stable DOM multiplication.

6.2 MAC-Stable AES Architecture

We describe our AES architecture, utilizing a single MAC key α, which is sim-
ilar to the architecture used in the M&M countermeasure (Galois field inver-
sion version 1). The precomputation involves the calculation of α−1, α−3, and
the MαLM

−1
α matrix. Overall, the implementation is represented by the byte-

serialized architecture which includes the key-schedule as described by Groß et
al. [GMK17]. Similar to M&M and CAPA, the control logic of our design is not
protected against injected faults.

Regarding randomness4, each of the four MAC-stable DOM multiplications,
which are subroutines in Gadget 2 and 3, in the AES S-box require one byte of
fresh randomness. Moreover, the gadgets used in cycles 2-5 (Figure 6b) require
one byte of randomness to refresh after a to-the-power four operation. Similarly,
the Gadget 2 used in cycles 2, 3 requires the refreshed output of the Gadget
1 which uses one byte of randomness. The refreshing is done in an additive
manner where the tags are refreshed with the tag of the random value (x 7→
x + r), (τx 7→ τx + (αr)). We reduce the fresh randomness cost approximately
a factor of three compared to M&M’s version 1 implementation, as we do not
share the α key. Consequently, no randomness is required for the multiplications
involving α. More specifically, we need only (4 + 3) · 8 = 56 bits of randomness
for an S-box.

4 For randomness generation, we use an unrolled Keccak implementation.
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Regarding latency, the inversion, as depicted in Figure 4, has a latency of
9 clock cycles, matching that of the M&M pipeline. However, minor differences
exist between the pipelines. Namely, StaMAC avoids overhead since the affine
transformation of the inverse does not require a shared multiplication, as α is
not shared. The overall latency of one round is 16 + C cycles, where C is the
S-box latency. That is achieved by performing the MixColumns, ShiftRows, and
AddRoundKey operations in parallel with the S-box. During the first 16 cycles,
the state bytes are fed into the S-box’s pipeline. The MixColumns operation
runs in parallel every 4 cycles, while retrieving the S-box output requires C
cycles. Meanwhile, the S-box can be used for the key schedule and ShiftRows is
performed at the end.

6.3 Side-Channel Security

In this section, we discuss the SCA security of the MAC-stable AES implemen-
tation. For that purpose, we use PROLEAD, a probing-based leakage detection
tool, introduced by Müller and Moradi [MM22]. This software is aligned with
the adversarial models described in Section 2.1, making it a reliable tool for
assessing our design. The evaluation was performed on a system equipped with
Intel® Xeon® Gold 6244 Processor with 8 cores allowing 16 parallel threads
and with 256 Gb of RAM available.

The evaluation employs G-test of independence and compares the encryption
of two sets of plaintext inputs (typically, fixed versus randomly chosen) masked
using specified number of shares. The software requires the design netlist, gener-
ated as described in Section 6.5, along with a cell library and a configuration file.
The configuration file specifies the experiment settings, such as the number of
simulations, the probing model extension (glitches only or transitions included),
the order of the test, and related settings. We conducted 200 million experiments
to assess the first-order security of our MAC-Stable AES S-box implementation
under a glitch-extended probing model. The results reporting no leakage demon-
strated its security against first-order attacks.

To complete the evaluation, we supplement PROLEAD tests with TVLA
(Test Vector Leakage Assessment) [CDG+13]. This technique allows to detect a
possible side-channel leakage without implementing actual attacks. We perform
the assessment for StaMAC S-box by supplying it with fixed versus random
inputs and running it for 18 clock cycles, which corresponds to two complete
pipeline cycles. The S-box is placed on a Xilinx Spartan-6 FPGA located on a
SAKURA-G evaluation board [SAK], whereas masks generation and precompu-
tation logic are located on a separate control FPGA. The devices are supplied
with a stable 6.144 MHz clock and an oscilloscope samples power consumption
traces at a rate of 500MS/sec. The result of the first-order test is depicted in
Figure 7.
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(a) Top: First-order t-test result, 100 million traces.
Bottom: Sample trace.

(b) Maximum absolute t-test value change.

Fig. 7. StaMAC S-box TVLA result, first-order security, 100 million traces, 2 runs in
a row.

6.4 Fault Security

In this section, we discuss the fault security of the MAC-stable AES implemen-
tation.

To assess the MAC-stability of the proposed MAC-stable AES S-box imple-
mentation, we verified the stability of the simpler gadgets (e.g., addition and
multiplication) used in the implementation via a simple software tool. This tool
checks each incorrect faulty codeword and verifies that the output codeword is
also incorrect. Then, the MAC-stability of the entire AES S-box follows Theo-
rem 2. Following that, Theorem 6 proves the security of a glitch-extended probing
secure masked gadget, which is fault non-complete and MAC-stable, against the
gate/register faulting, the arbitrary additive register faulting, and the random
register faulting adversaries. Therefore, the fault security of the entire AES S-box
against these adversaries is established by its MAC-stability.

In addition to the stability verification, we performed an attack simulation
on the C implementation of the MAC-stable AES S-box. We cover the arbitrary
additive register faulting and the random register fault adversaries (targeting the
register layer only) in the assessment of the MAC-stability of our design. Thus,
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we only verify the gate/register adversary in this fault simulation. Faults were
modeled as XOR additions applied to variables in F8

2. The simulation involved
extending the C implementation to inject faults by XORing a fault variable
(ranging from 0 to 255) to selected critical variables (e.g., inputs of the DOM
multiplications) aligning with the gate/register faulting adversary. The results
verified that all injected faults were propagated to the S-box output yielding an
incorrect output codeword regardless of the S-box input, showing the resistance
of StaMAC against SIFA-like attacks.

Although translating clock glitching to the theoretical fault models is not
trivial, we note that the zero-value attack proposed against M&M (aligning
with the adversaries we consider) is not feasible in our architecture implemented
using the StaMAC framework. This is due to the MAC-stability of the gad-
gets that compose the S-box. As a result, any fault appearing in an input of
the multiplication involving the S-box input is propagated to the output (the
advantages of the adversaries were discussed earlier). Additionally, the counter-
measure, λ-detection M&M, proposed against this attack is specifically designed
against clock glitching and does not provide security against a gate/register-
faulting adversary. For instance, with a high precision fault injection setup, it
is possible for the ineffectiveness of a fault injected to the inversion in F2

2 (in
tower field construction) to depend on the other multiplication input in Stage
4, which would indicate that the S-box input is zero. As a result, only StaMAC
and CAPA remain secure against first-order gate/register faulting adversaries
(SIFA-like attacks).

Regarding CAPABARA, the attack does not apply to StaMAC as combined
attacks are not accounted for in its security model. We note that the combined
attack CAPABARA can also be performed by injecting two faults: one fault
in the preprocessing stage as in CAPA, then using a second fault to probe the
unmasked variable (setting the variable to a certain value and checking if the cir-
cuit aborts). Therefore, this attack renders CAPA comparable to StaMAC with
its security limited to only fault attacks with high hardware cost as discussed in
Section 6.5.

6.5 Hardware Benchmarks

In this section, we evaluate the hardware benchmarks of our MAC-stable AES
implementation compared with the AES implementations protected with CAPA,
M&M, and λ-detection M&M countermeasures. We use the Synopsys Design
Compiler (version S-2021.06-SP3) together with the open source NANGATE
45nm library. The hierarchy is preserved during evaluation by enabling the set -
dont touch constraint and the compile option exact map is used to avoid opti-
mizations. We note that the precomputation costs are considered for the cost
comparison of the full AES designs, whereas the generation of fresh masks is not
included.

Table 3 compares the AES implementations protected with the listed coun-
termeasures in terms of their latency, fresh randomness and area costs, and
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overhead relative to SCA-only AES implementations.5 We additionally include
StaTI in the comparison, focusing primarily on the overhead factor, as only a
Keccak [BDPA13] implementation is available. We note that, since the StaMAC
AES S-box implementation employs multiplication chain inversion, our design is
more comparable to the CAPA and M&M V1 countermeasures, as they utilize
similar pipelines. The remaining AES S-box implementations utilize the tower-
field decomposition approach [Can05].

For the SCA-only designs, we refer to the work of De Cnudde et al. [CRB+16]
for comparison with M&M V2 and λ-detection AES S-box implementations.
CAPA, M&M V1, and StaMAC designs are compared to the SCA-only multipli-
cation chain that we implemented ourselves. The linear layers of SCA-only AES
implementation are based on a serialized architecture from the work of Groß
et al. [GMK16]. Keccak-f[1600] StaTI implementations are compared to their
respective 2-share and 4-share SCA-only implementations, which we designed
based on the works [SM21] and [BDN+13].

Table 3. Hardware cost comparison of various designs.

Block Design Latency Fresh Rand. Area Overhead

(cycles) (bits/cycle) (kGE) (factor)

AES

CAPA1∗ 226 96 122.4& 10.94

M&M V12∗ 266 160 35.1& 3.14

M&M V22∗ 236 116 23.7& 3.12

λ-detection
244 564 44.0 3.49

M&M3∗∗

This work∗ 266 56 42.9& 3.83

Keccak-f StaTI4∗
72 0 285.4 2.25

24 0 267.8 2
∗ first-order security, ∗∗ second-order security,

& with precomputation cost, 1 [RMB+18], 2 [MAN+19] , 3 [HMA+24], 4 [DOT24]

Table 3 shows that M&M (both versions) and λ-detection M&M offer lower
area costs compared to StaMAC, while StaMAC achieves lower randomness cost.
However, as discussed in Section 6.4, M&M does not protect against ineffective
faults, and although λ-detection M&M protects against ineffective faults caused
by clock glitches, it does not protect against a single gate/register-faulting ad-
versary. Moreover, StaMAC achieves significantly lower area costs compared to
CAPA.

Comparing the hardware costs of StaMAC and StaTI is challenging since
StaTI only has a Keccak implementation available. Even in terms of overhead, we
do not achieve a fair overhead, as the structure of the Keccak S-box is inherently

5 We thank the authors of [RMB+18], [MAN+19] and [DOT24] for providing code of
their designs for further comparison.
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stable for 4-share (or nearly stable for 2-share), the overhead is comparable to
simple duplication.

7 Conclusions and Future Work

In this paper, we presented a framework to create masked and MACed gad-
gets which are arbitrary composable secure against a probing adversary (x)or
a faulting adversary. The framework includes proofs of arbitrary composability,
security proofs including advantage bounds of extensive fault adversaries, the
provision of stable gadgets of MACed data, and a generic transformation of SNI
or PINI secure gadgets to MAC-stable ones which is worked out on a domain-
oriented masked multiplier. Finally, we provide a hardware implementation of
our framework applied to AES where we provide efficiency numbers compared
to the previous work utilizing MAC tags. StaMAC achieves competitive security
and efficiency relative to M&M, λ-detection M&M, and CAPA.

While our work tackled the theoretical aspects of physical security using MAC
tags, there are practical improvements which are left as future work. The MAC-
stable AES implementation is heavier in area versus the (insecure) solutions from
the M&M countermeasure. While efficiency and area optimization was not the
goal of the work, we do believe the efficiency of the masked and MACed S-box
can be made much lighter since the current area overhead originates from the
heavier MAC-stable addition (Alg. 1) and multiplication (Alg. 2). Finding lighter
MAC-stable gadgets results in a plug-and-play reduction to a more efficient AES
implementation.

This work only tackles the injection of faults at one time-frame and a non-
combined setting of probes and faults. To tackle faults in multiple time-frames, a
stronger notion than stability, or intermediate is needed as one fault can be used
to make a function non-stable and the second fault can be used for the injection
of a SIFA-like attack. Similarly, it is unclear how to model two or more faults
at two different time frames such that the output’s correctness is guaranteed
without any intermediate error-checks and abort signals. From that same view,
it is unclear how to model the security of an adversary using both a probe and
a fault when these are injected at two different time-frames when no additional
error checks/correction are used. For example, a probe can be used before a fault
to read α and improve the success probability of the fault, which would require
α to be shared, conversely, a fault can be used to remove randomness in the
computation leaving the operations vulnerable to a probe, which would require
intermediate error checks to mitigate. These challenges are left as future work
to expand the work.
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