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Abstract

Advanced Encryption Standard (AES) is one of the most widely used

and extensively studied encryption algorithms globally, which is renowned

for its efficiency and robust resistance to attacks. In this paper, three

quantum circuits are designed to implement the S-box, which is the sole

nonlinear component in AES. By incorporating a linear key schedule, we

achieve a quantum circuit for implementing AES with the minimum number

of qubits used. As a consequence, only 264/328/398 qubits are needed

to implement the quantum circuits for AES-128/192/256. Furthermore,

through quantum circuits of the S-box and key schedule, the overall size

of the quantum circuit required for Grover’s algorithm to attack AES is

significantly decreased. This enhancement improves both the security and

resource efficiency of AES in a quantum computing environment.

1 Introduction

In recent years, the deep integration of quantum mechanics and information

science has driven the rapid advancement of quantum information [1, 2], posi-

tioning it as a frontier field in scientific research and technological innovation.
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Unlike traditional computers that rely on binary bit states, quantum comput-

ers leverage the principles of superposition and entanglement, allowing qubits

to process multiple states simultaneously and achieve unprecedented parallel

computing capabilities [3, 4, 5, 6]. The foundational concepts of quantum super-

position, entanglement, and measurement not only endow quantum computing

with distinct computational advantages, but also equip it with the power to sig-

nificantly accelerate the speed of solving specific problems, achieving exponential

or super-linear speedups in specific scenarios [2, 7, 8, 9, 10, 11].

The acceleration capabilities of quantum computing in solving specific prob-

lems have had a profound impact on classical cryptography. As a result, quan-

tum cryptography has emerged as a vital field for ensuring information security

[1, 12, 13]. Grounded in the fundamental principles of quantum mechanics,

quantum cryptography provides innovative solutions for secure communication.

For instance, Quantum Key Distribution (QKD) [14, 15, 16, 17]leverages the

inherent unclonability of quantum states to guarantee the absolute security of

key transmission [18, 19], while enabling real-time detection of eavesdropping.

This unique characteristic positions QKD as a pivotal technology for achieving

unconditionally secure communication in future information networks. Simulta-

neously, quantum computing poses substantial challenges to traditional crypto-

graphic systems. As advancements in quantum computing hardware accelerate,

the minimum resources required to execute quantum cryptanalysis algorithms

are becoming critical in determining the timeline for realizing quantum threats,

such as Shor’s algorithm [20, 21], Grover’s algorithm [22, 23], and Simon’s al-

gorithm [24, 25]. This urgency has prompted the cryptographic community to

accelerate efforts in developing technical solutions to counter quantum attacks,

with the goal of mitigating or preventing the potential risks posed by quantum

computing.

Grover’s algorithm [22] is a fundamental quantum computing algorithm for

unordered database searches, with its notable feature being a quadratic speedup.

In classical computing, finding a target item in an unordered list of size requires

an average of queries, whereas Grover’s algorithm reduces this to by leveraging

quantum superposition and interference. While this speedup is not exponential,

it provides significant efficiency gains for large-scale search problems. Grover’s

algorithm has a more immediate impact on symmetric encryption schemes than

on public-key cryptosystems [26, 27]. For instance, breaking a symmetric en-

cryption algorithm with a key length of bits in the classical context requires

attempts. However, Grover’s algorithm reduces this complexity to , increasing
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the vulnerability of symmetric encryption algorithms in a quantum computing

environment. To counter this threat, the cryptographic community has proposed

doubling the key length of symmetric encryption schemes to restore their security

[28, 29]. Additionally, researchers have examined the resource requirements of

Grover’s algorithm, including the number of qubits, quantum gates, and circuit

depth. These studies provide a quantitative framework for evaluating the actual

risks quantum computing poses to symmetric encryption. As quantum com-

puting technology progresses, the applications of Grover’s algorithm extend be-

yond encryption cracking to combinatorial optimization problems. Investigating

its implications for existing encryption standards and exploring new quantum-

resistant algorithm designs has become a critical research direction in the field

of quantum security.

AES [30] was developed to address the growing demand for more secure and

efficient encryption methods. With the rapid increase in computing power during

the late 20th century, the Data Encryption Standard (DES) [31] began to reveal

significant limitations, including inadequate key length and limited resistance

to attacks. In response, the National Institute of Standards and Technology

(NIST) [32] launched an open competition in 1997 to identify a replacement.

After rigorous evaluation, the Rijndael algorithm [33, 34], created by Belgian

cryptographers Joan Daemen and Vincent Rijmen, was chosen in 2001 as the

AES standard due to its high efficiency and robust resistance of attack. These

features significantly enhance data diffusion and resistance to brute-force at-

tacks. Its structural design, based on the Substitution-Permutation Network

(SPN), improves encryption efficiency while strengthening resistance to differen-

tial and linear cryptanalysis. In comparison to the Feistel structure used in DES,

AES achieves higher operational efficiency in both hardware and software imple-

mentations [34, 35, 36]. Serving as a cornerstone of modern information security,

AES finds broad application in applications including wireless communication,

network transmission, storage encryption, and the protection of government-

sensitive data. Its flexibility and resilience serve as a reliable basis for ensuring

information security in a wide range of sensitive scenarios.

Optimizing the quantum resources required by Grover’s algorithm to attack

the AES algorithm is of critical importance. On one hand, AES is one of the

most extensively studied symmetric cryptographic algorithms globally. On the

other hand, the quantum resources needed for Grover’s algorithm to break AES

served as a benchmark for evaluating the security strength of post-quantum

cryptographic algorithms in NIST’s 2016 post-quantum standardization call [37,
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38]. Developing optimized quantum circuits for AES is essential for assessing the

quantum resources required by Grover’s algorithm in such attacks. Among the

key factors influencing this process, implementing the AES S-box with minimal

resources is crucial to enhancing the efficiency of quantum circuit designs.

The width of quantum circuits (i.e., the number of qubits) that can be effi-

ciently implemented in existing quantum computers is limited, highlighting the

importance to optimize the number of qubits required for implementing AES

quantum circuits. In 2016, Grassl et al. [39] designed an AES S-box quantum

circuit with a width of 40, using a zig-zag approach. They constructed an AES-

128 quantum circuit with a final circuit width of 984. In 2018, Almazrooie et

al. [40] optimized the key expansion strategy, further reducing the width of the

AES-128 quantum circuit to 976. In 2020, Langenberg et al. [41] proposed an

AES S-box quantum circuit with a width of 32, incorporating a zig-zag structure

in the key expansion, which leading to a reduction in the AES-128 circuit width

to 864. In the same year, Zou et al. [42] designed an AES S-box circuit with

a width of 22 and combined it with an improved zig-zag method with a width

of 23, leading to an AES-128 quantum circuit implementation with a width of

512. In 2022, Wang et al. [43] presented a straight-line iterative method for key

expansion, reducing the AES-128 circuit width to 400. Later that year, Li et al.

[44] further minimized the width of quantum circuits for AES-128, bringing it

down to 270 by constructing AES S-box circuits with a width of 22 and applying

a streamlining optimization strategy.

Although the circuits width and gate depth required to implement AES quan-

tum circuits have been significantly reduced, further optimization is still possible.

In this paper, we optimize the S-box quantum circuits for AES by minimizing

the circuit width while substantially reducing quantum gates usage. As a result,

we design quantum circuits for AES-128, AES-192 and AES-256 with minimal

widths of 264, 328 and 392, respectively.

2 Preliminary

In this section, we provide an overview of the AES block cipher, composite field

arithmetic, Grover’s algorithm, and basic quantum gates.

2.1 The AES block cipher

The AES uses a 128-bit block size, with key lengths of 128, 192, and 256 bits,

referred to as AES-128, AES-192, and AES-256, respectively. The number of
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encryption rounds NR for the algorithm is 10, 12, and 14 for each key length. At

the beginning of encryption, the plaintextM is obtained through one AddRound-

Key transformation, and then after NR rounds of round function, the ciphertext

C is obtained. Each round function operation consists of 4 subroutines, like

SubBytes, ShiftRows, MixColumns and AddRoundKey. The final round func-

tion differs in that it contains only 3 operations, like SubBytes, ShiftRows and

AddRoundKey.

2.1.1 The S-box

SubBytes is the sole nonlinear operation in AES, and the S-box used for this

operation is implemented using a 8 × 8 lookup table, providing resistance to

linear and differential attacks during encryption.

SubBytes operation, which is denoted as S(a), takes a byte a ∈ F (28) as

input, where a = (a7 a6 a5 a4 a3 a2 a1 a0) can be represented by the polynomial

(a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0) with coefficients {0, 1}.
We first compute the multiplicative inverse of a, denoted as a−1, then apply an

affine transformation involving matrix multiplication and modulo addition with

a constant vector. The algebraic form of S(a) is expressed as

S(a) = Aa−1 ⊕ c, (1)

where the matric A and vector c are defined as

A =



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1


, c =



1

1

0

0

0

1

1

0


.

2.1.2 The key expansion process

AES-128, AES-192, and AES-256 have different key expansion processes due to

their varying initial key lengths. Considering 32 bits as a word, the initial key

K0 can be divided into NK words for AES-128, AES-192 and AES-256 , where

NK equals 4, 6 and 8. For example, the initial key K0 = W3W2W1W0 of AES-

128, after NR round key expansion process, produces (NR + 1) subkeys. The
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subkey for the i-th round is denoted as Ki, where 0 ≤ i ≤ NR. The key expan-

sion process for AES-128 and AES-192 is shown in Algorithm 1, while the key

expansion process for AES-256 is shown in Algorithm 2. In these algorithms,

RotWord represents a circular left shift of a word by 8 bits, functioning similarly

to ShiftRows, and Rcon[j] = (RC[j], 00, 00, 00) is denoted that XOR the cur-

rent state with the round constant, where 0 ≤ j < 8. The bytes in Rcon[j] are

represented in hexadecimal, and RC[j] is the element with value xj−1 of F (28).

Algorithm 1: The key expansion process for AES-128 and AES-192

For t from NK to 4 ∗ (NR + 1)

If t == 0 mod 4, then

Wt =Wt−4 ⊕ SubBytes(RotWord(Wt−1))⊕Rcon[t/4];

Otherwise, Wt =Wt−4 ⊕Wt−1.

Algorithm 2: The key expansion process for AES-256

For t from NK to 4 ∗ (NR + 1)

If t == 0 mod 8, then

Wt =Wt−8 ⊕ SubBytes(RotWord(Wt−1))⊕Rcon[t/8];

If t == 4 mod 8, then

Wt =Wt−8 ⊕ SubBytes(RotWord(Wt−1));

Otherwise, Wt =Wt−8 ⊕Wt−1.

The subkey for the i-th round of AES-128, AES-192, and AES-256 are all

denoted as Ki = W4i+3W4i+2W4i+1W4i, where 0 ≤ i ≤ NR. Each subkey is 128

bits in length.

2.2 Composite field arithmetic

In combinatorial domain operations, elements in higher-order domains can be

expressed as linear combinations of elements in lower-order domains, where oper-

ations in lower-order domains are simpler and less costly. Therefore, solving the

multiplicative inverse of any element a in a finite domain can be transformed into

an element in a combinatorial domain using a mapping matrix. After obtaining

the multiplicative inverse of the corresponding element in the combinatorial do-

main, the multiplicative inverse of a can be derived using the mapping matrix,
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resulting in a−1.

Wolkerstorfer et al. [45] proposed an implementation of the AES’s S-box

using the composite fields F ((24)2) and F (24), i.e.

F ((2
4)2) : x2 + x+ λ

F (24) : x4 + x+ 1
,

where

λ = x3 + x2 + x ∈ F (24). (2)

The mapping matrix M : F (28) → F ((24)2) and the inverse matrix M−1 :

F ((24)2) → F (28) are defined as

M =



1 0 0 0 1 1 1 0

0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 1 0 0 0

0 0 0 0 1 1 1 0

0 1 0 0 1 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 0 1 0 1


, M−1 =



1 0 0 0 1 0 0 0

0 0 0 0 1 1 0 1

0 1 0 0 1 1 0 1

0 1 0 0 1 1 1 0

0 1 0 1 1 1 0 1

0 0 1 0 1 1 0 0

0 1 1 1 1 0 0 1

0 0 1 0 1 1 0 1


.

The algebraic expression of Eq.1 can be rewritten as

S(x) = AM−1(Ma)−1 ⊕ c, (3)

where

AM−1 =



1 0 1 0 1 1 0 1

1 1 1 1 1 1 0 1

1 0 0 1 1 1 0 0

1 0 1 0 1 0 1 1

1 1 0 1 1 0 1 1

0 1 1 1 1 1 1 1

0 0 0 0 1 0 1 1

0 1 1 0 1 0 1 1


.

From Eq.3, it can be seen that S(a) still requires affine transformations, but

now the multiplicative inverse is computed for the element in F ((24)2), rather

than in F (28).

Any element in F ((24)2) can be expressed as p = p0 + p1x, where p0, p1 ∈
F (24). The multiplicative inverse of p can be found, and p−1 can be expressed

as

p−1 = (p17)−1(p0 + p1) + (p17)−1p1x, (4)
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where

p17 = p1
2 × λ+ (p0 + p1)p0. (5)

From Eq.4 and Eq.5, p−1 can be computed by (p17)−1(p0 + p1), (p
17)−1p1x,

p1
2 × λ, and (p0 + p1)p0.

2.3 Grover’s algorithm

Grover’s algorithm can be used to find a single target element y in an unstruc-

tured dataset of size N(n = log2N), and there exists a function f(x) : {0, 1}n →
{0, 1} that satisfies

f(x) =

{
1, x = y,

0, otherwise.

Assuming that the function f can be easily and efficiently implemented, there

exists Of to determine whether the element x is the target element. To solve the

above search problem, the classical exhaustive search algorithm requires O(2n)

times Of operations, whereas Grover’s algorithm requires only O(2n/2) time Of

operations.

Grover’s algorithm consists of the following steps.

1. Prepare the quantum state |0⟩⊗n, and perform Hadamard operations on

individual n qubits to get the state

|ψ⟩ = 1

2n/2

2n−1∑
x=0

|x⟩.

2. Construct Of : |x⟩
Of→ (−1)f(x)|x⟩ , such that when x is a solution to the

problem, f(x) = 1, otherwise f(x) = 0.

3.After performing R(R = ⌊π4 2
n/2⌋) times (2|ψ⟩⟨ψ| − I)Of operation can

obtain

[(2|ψ⟩⟨ψ| − I)Of ]
R|ψ⟩ ≈ |y⟩.

4. Measure the state to obtain the target y.

2.4 Basic quantum gates

Figure 1 illustrates some base quantum gates used in this paper, where the last

qubit of the CNOT gate (see Figure 1(b)) and the Toffoli gate (see Figure

1(c)) are the target qubits and the remaining are the control qubits
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（a） （b） （c）

Figure 1: Some base quantum gates used in this paper. (a) The NOT gate; (b)

The CNOT gate; (c) The Toffoli gate.

3 The quantum circuits of the S-box

The SubBytes operation is the sole nonlinear component of AES. Optimizing

its quantum resource requirements is essential for achieving cost-efficient AES

quantum circuit implementation. This section leverages the algebraic structure

of the S-box (Section 2.1.1) and composite field arithmetic (Section 2.1.2) to de-

sign efficient quantum circuits, and compares the results with existing literature.

3.1 Quantum circuit implementations of M and AM−1

A common approach for implementing quantum circuits for matrix multiplica-

tion is Permutation-Lower-Upper (PLU) decomposition. This method typically

results in a higher number of quantum gates, particularly for CNOT gates. Xi-

ang et al. [46] propose a heuristic algorithm for optimizing matrix implementa-

tion based on matrix decomposition theory, which offers advantages in reducing

the number of CNOT gates required.

In this paper, we apply the algorithm from [46] to implement the quan-

tum circuits for matrix multiplication of UM : |a⟩ → |Ma⟩ and UAM−1 : |a⟩ →
|(AM−1)a⟩, as shown in Figure 2 and Figure 3, where a = (a7 a6 a5 a4 a3 a2 a1 a0).

The UM can be implemented with 8 qubits and 10 CNOT gates, while UAM−1

can be implemented with 8 qubits and 15 CNOT gates.

3.2 Quantum circuit implementations of the multiplicative in-

version in F (24)

Li et al. [44] observed that solving the multiplicative inverse of an element in

F (24) can be represented as a 4× 4 S-box. Let b be any element in F (24), with

its corresponding multiplicative inverse b−1 shown in Table 1.
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 𝑎7  

 𝑎6  

 𝑎4  

 𝑎5  

 𝑎3  

 𝑎2  

 𝑎1  

 𝑎0   (𝑀𝑎)7  

 (𝑀𝑎)6  

 (𝑀𝑎)4  

 (𝑀𝑎)5  

 (𝑀𝑎)3  

 (𝑀𝑎)2  

 (𝑀𝑎)1  

 (𝑀𝑎)0  

Figure 2: The quantum circuit for UM : |a⟩ → |Ma⟩.

 𝑎7  

 𝑎6  

 𝑎4  

 𝑎5  

 𝑎3  

 𝑎2  

 𝑎1  

 𝑎0   (𝑀𝑎)7  

 (𝑀𝑎)6  

 (𝑀𝑎)4  

 (𝑀𝑎)5  

 (𝑀𝑎)3  

 (𝑀𝑎)2  

 (𝑀𝑎)1  

 (𝑀𝑎)0  

Figure 3: The quantum circuit for UAM−1 : |a⟩ → |(AM−1)a⟩.

Input and Output Elements

b 0 1 2 3 4 5 6 7 8 9 A B C D E F

b−1 0 1 9 E D B 7 6 F 2 C 5 A 4 3 8

Table 1: The input elements and corresponding inverse output elements in F (24)

In this paper, we use the automated tool DORCIS [47] to realize the quan-

tum circuit of the 4× 4 lookup table, which solves the multiplicative inverse of

elements in F (24). The resulting quantum circuit is denoted as F (24)inv : |b⟩ →
|b−1⟩, where b = (b3 b2 b1 b0) is the input element and b−1 = (b−1

3 b−1
2 b−1

1 b−1
0 )

is the output element, as shown in Figure 4.

The 3− controlled NOT gate appearing in Figure 4 can be implemented as

|a⟩|b⟩|c⟩|d⟩|0⟩ → |a⟩|b⟩|c⟩|d ⊕ abc⟩|0⟩ (shown in Figure 5(a)) with an auxiliary

qubit, or as |a⟩|b⟩|c⟩|d⟩|g⟩ → |a⟩|b⟩|c⟩|d⊕ abc⟩|g⟩ (shown in Figure 5(b)) without

any auxiliary qubits.

Based on Figures 4 and 5, quantum circuits for F (24)inv0 : |b⟩|0⟩ → |b−1⟩|0⟩
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 𝑏0  

 𝑏3
−1   𝑏3  

 𝑏2   𝑏2
−1  

 𝑏1
−1  

 𝑏0
−1  

Figure 4: The quantum circuit for F (24)inv : |b⟩ → |b−1⟩.
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(a) (b)

Figure 5: Two types of decomposition of 3−controlled NOT gate. (a) Decompo-

sition of a 3− controlled NOT gate with an auxiliary qubit; (b) Decomposition

of a 3− controlled NOT gate without any auxiliary qubit.

and F (24)inv1 : |b⟩|g⟩ → |b−1⟩|g⟩ can be constructed. The quantum resource

estimates for implementing the multiplicative inverse in F (24) are summarized

in Table 2.

#qubits #Toffoli #CNOT #NOT Toffoli depth

F (24)inv0 5 7 7 0 7

F (24)inv1 5 8 7 0 8

Table 2: Quantum resource estimates for implementing the multiplicative inver-

sion in F (24). #qubits means the number of qubits. #Toffoli, #CNOT , and

#NOT mean the number of Toffoli gate, CNOT gate and NOT gate

3.3 Quantum circuit implementation of q2 × λ

q can be written as q = q3y
3+q2y

2+q1y+q0, where qi(i ∈ 0, 1, 2, 3) is an element

in F (24) and λ = x+ x2 + x3 ∈ F (24) is defines in Eq.2. Through a calculation,

q2 × λ is expressed as

q2 × λ = (q1 + q0)y
3 + (q3 + q1 + q0)y

2 + q0y + (q2 + q1). (6)

Based on Eq.2 and Eq.6, we can derive a quantum circuit for Uq2×λ : |q⟩ →
|q2×λ⟩ in Figure 6. The Uq2×λ can be implemented with 4 qubits and 3 CNOT

gates.
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 𝑞2  

 𝑞1  

 𝑞0  

 𝑞3  

 𝑞3 + 𝑞1 + 𝑞0  

 𝑞0  

 𝑞2 + 𝑞1  

 𝑞1 + 𝑞0  

Figure 6: The quantum circuit for Uq2×λ : |q⟩ → |q2 × λ⟩.

3.4 Quantum circuit implementations of multiplication in F (24)

In F (24), any element of a and b can written as

a = a3y
3 + a2y

2 + a1y + a0

b = b3y
3 + b2y

2 + b1y + b0
.

a · b is expressed as

a · b = (ab)3y
3 + (ab)2y

2 + (ab)1y + (ab)0, (7)

where (ab)i (i ∈ 0, 1, 2, 3) is the i-th term of a · b and
(ab)3 = (a3+ a2+ a1+ a0)(b3+ b2+ b1+ b0)+ (a2+ a0)(b2+ b0)+ (a1+ a0)(b1+

b0) + a2b2 + a0b0,

(ab)2 = (a2 + a0)(b2 + b0) + a3b3 + a2b2 + a1b1 + a0b0,

(ab)1 = (a3+a2)(b3+b2)+(a1+a0)(b1+b0)+(a1+a0)(b1+b0)+a2b2+a1b1+a0b0,

(ab)3 = (a3 + a2)(b3 + b2) + (a3 + a1)(b3 + b1) + a3b3 + a1b1 + a0b0.

Based on Eq.7, we present a quantum circuit for Mul0 : |a⟩|b⟩|0⟩ → |a⟩|b⟩|a ·
b⟩ of multiplication in F (24) in Figure 7. Mul0 can be implemented with 12

qubits, 9 Toffoli gates and 29 CNOT gates. The Toffoli depth of Mul0 is 4.

 𝑏3  

 𝑏2  

 𝑏1  

 𝑏0  

 𝑎3  

 𝑎2  

 𝑎1  

 𝑎0  

 0  

 0  

 0  

 0  

 𝑏3  

 𝑏2  

 𝑏1  

 𝑏0  

 𝑎3  

 𝑎2  

 𝑎1  

 𝑎0  

 (𝑎𝑏)3  

 (𝑎𝑏)2  

 (𝑎𝑏)1  

 (𝑎𝑏)0  

Figure 7: The quantum circuit for Mul0 : |a⟩|b⟩|0⟩ → |a⟩|b⟩|a · b⟩.
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The inverse operation in F ((24)2) requires adding another number to the

multiplication result in F (24). For this purpose, in this paper, we refer to the

method of [44], which is realized Mul1 : |a⟩|b⟩|h⟩ → |a⟩|b⟩|h+ a · b⟩ without any
auxiliary qubits in Figure 8, where Mul0 denotes the quantum circuit shown in

Figure 7. Mul1 can be implemented with 12 qubits, 9 Toffoli gates and 33

CNOT gates. The Toffoli depth of Mul1 is 4.

 𝑎, 𝑏  

 ℎ3  

 ℎ2  

 ℎ1  

 ℎ0  

 ℎ3 + (𝑎𝑏)3  

 ℎ2 + (𝑎𝑏)2  

 ℎ1 + (𝑎𝑏)1  

 ℎ0 + (𝑎𝑏)0  

8
 𝑎, 𝑏  

𝑀𝑢𝑙0 

Figure 8: The quantum circuit for Mul1 : |a⟩|b⟩|h⟩ → |a⟩|b⟩|h+ a · b⟩.

Referring to [44], we present the quantum circuit for Mul2 : |a⟩|b⟩|0⟩ →
|a · b⟩|b⟩|0⟩, as shown in Figure 9, where F (24)inv1 denotes the quantum circuit

shown in sect.3.2, F (24)inv1
†
is the inverse process of F (24)inv1, and Mul†1 is the

inverse process of Mul1. Mul2 can be implemented with 12 qubits, 33 Toffoli

gates and 72 CNOT gates. The Toffoli depth of Mul2 is 23.

 𝑎  
4

 𝑏  
4

 0  
4

𝑀𝑢𝑙0 𝐹 24 𝑖𝑛𝑣1 𝐹 24 𝑖𝑛𝑣0 

 𝑎 ∙ 𝑏  

 0  

𝑀𝑢𝑙0
†  𝑏  

𝑎 ∙ 𝑏 

Figure 9: The quantum circuit for Mul2 : |a⟩|b⟩|0⟩ → |a · b⟩|b⟩|0⟩.

3.5 The quantum circuit of S-box

Based on Eq.3, the S-box can be computed by realizing the quantum circuits

of M , (Ma)−1, AM−1 and adding a vector c in order. The quantum circuits

of M and AM−1 have been presented in sect.3.1. The addion of the vector c

can be implemented with only 4 NOT gates. This section presents three distinct

quantum circuits for implementing the S-box, depending on varying target qubit

states.
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3.5.1 The quantum circuit for c1

When the target qubit is |0⟩, the quantum circuit for c1 : |a⟩|0⟩ → |a⟩|S(a)⟩ is
provided. The first construction is the quantum circuit for (Ma)−1 that imple-

ments the multiplicative inverse, and the quantum circuit for c1 is introduced

Subsequently.

Any element in F ((24)2) can be denoted as p = p0 + p1x, where p0, p1 ∈
F (24). The multiplicative inverse of p in F ((24)2), denoted as p−1, can be

determined through a four-part process involving (p17)−1(p0 + p1), (p
17)−1p1x,

p1
2×λ, and (p0+p1)p0. Therefore, by combining the quantum circuits of Uq2×λ

(see Figure 6) , Mul0 (as in Figure 7) and Mul1 (see Figure 8) , and F (24)inv0

(see sect.3.2), the quantum circuit Uinv0 : |p⟩|0⟩|0⟩ → |p⟩|p−1⟩|0⟩ for computing

the multiplicative inversion in F ((24)2) can be constructed as shown in Figure

10, where U(p−1)17
† is the inverse process of U(p−1)17 . At this point, there are 8

auxiliary qubits remaining in the state |0⟩, allowing the direct use of F (24)inv0

to construct Uinv0, eliminating the need to use F (24)inv1.

 𝑝0  
4

 𝑝1  
4

 0  

 0  

 0  

4

4

4

𝑈𝑝1
2×𝜆 

𝑀𝑢𝑙1 

𝐹 24 𝑖𝑛𝑣0 

𝑀𝑢𝑙0 

𝑀𝑢𝑙0 

 𝑝0  

 𝑝1  

 0  

 𝑛0  

 𝑛1  
𝑈𝑝17  

𝑈 𝑝−1 17
† 

Figure 10: The quantum circuit for Uinv0 : |p⟩|0⟩|0⟩ → |p⟩|p−1⟩|0⟩.

By combining the quantum circuit of UM (see Figure 2) , Uinv0 (see Figure

10) , and UAM−1 (see Figure 3), the quantum circuit for c1 : |a⟩|0⟩ → |a⟩|S(a)⟩
can be constructed as shown in Figure 11 with a wide of 20, where UM

† is the

inverse process of UM . The quantum resources required for implementing c1 is

summarized in Table 3.

 𝑎  
8

8

 0  
4

𝑈𝑀 

𝑈𝑖𝑛𝑣0 

𝑈𝑀
† 

𝑈𝐴𝑀−1  

 𝑎  

 0  

 𝑆(𝑎)   0  

Figure 11: The quantum circuit for c1 : |a⟩|0⟩ → |a⟩|S(a)⟩.
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Schemes #qubits #Toffoli #CNOT #NOT Toffoli depth

Ours 20 43 196 4 23

22 48 236 4 36

[44] 23 48 238 4 34

24 46 240 4 32

22 52 326 4 41

[42] 23 48 230 4 39

24 46 332 4 37

[41] 32 55 314 4 40

[39] 40 512 357 4 144

Table 3: The quantum resources required for implementing c1

3.5.2 The quantum circuit for c2

When the target qubit is |b⟩ instead of |0⟩, the given quantum circuit is denoted

as c2 : |a⟩|b⟩ → |a⟩|b⊕S(a)⟩. Since the target bit is not always |0⟩, the quantum
circuit Uinv0 for computing the multiplicative inverse (as shown in Figure 10) is

not suitable for constructing the quantum circuit .

Thus, by combining the quantum circuits of Uq2×λ (see Figure 6), Mul1

(see Figure 8), and F (24)inv1 (see in sect.3.2), the quantum circuit Uinv1 :

|p⟩|h⟩|0⟩ → |p⟩|h + p−1⟩|0⟩ for computing the multiplicative inverse in F ((24)2)

can be constructed as shown in Figure 12, where F (24)inv1
†
is the inverse process

of F (24)inv1. At this point, there are no remaining auxiliary qubits remaining in

the |0⟩ state, so the quantum circuit F (24)inv1 is used directly instead of using

F (24)inv0.

 𝑝0  
4

 𝑝1  
4

 0  
4

4

4

𝑈𝑝1
2×𝜆 

𝑀𝑢𝑙1 

𝐹 24 𝑖𝑛𝑣1 𝑀𝑢𝑙1 

𝑀𝑢𝑙1 

𝐹 24 𝑖𝑛𝑣1
†
 

 𝑝0  

 𝑝1  

 0  

 ℎ0 + 𝑛0  

 ℎ1 + 𝑛1  

 ℎ0  

 ℎ1  
𝑈𝑝17  

𝑈𝑝17
† 

Figure 12: The quantum circuit for Uinv1 : |p⟩|h⟩|0⟩ → |p⟩|h+ p−1⟩|0⟩.

By combining the quantum circuits of UM (see Figure 2) , Uinv1 (see Figure

12) , and UAM−1 (see Figure 3), the quantum circuit for c2 : |a⟩|b⟩ → |a⟩|b⊕S(a)⟩
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can be constructed as shown in Figure 13 with a wide of 20, where UM
† is the

inverse process of UM and UAM−1
† is the inverse process of UAM−1 .

 𝑎  
8

8

 0  
4

𝑈𝑀 

𝑈𝑖𝑛𝑣1 

𝑈𝑀
† 

𝑈𝐴𝑀−1  

 𝑎  

 0  

 𝑏 ⊕ 𝑆(𝑎)   𝑏  𝑈𝐴𝑀−1
† 

Figure 13: The quantum circuit for c2 : |a⟩|b⟩ → |a⟩|b⊕ S(a)⟩.

When an auxiliary qubit in the |0⟩ state is added, the replacement in the

quantum circuit shown in Figure 12 can be made, resulting in the construction

of a quantum circuit for the S-box with a width of 21. The quantum resources

required for implementing c2 are shown in Table 4.

Schemes #qubits #Toffoli #CNOT #NOT Toffoli depth

Ours
20 52 226 4 32

21 50 226 4 30

22 48 272 4 36

[44] 23 48 274 4 34

24 46 276 4 32

[43] 32 55 322 4 40

23 68 352 4 60

[42] 24 64 356 4 58

25 63 358 4 56

Table 4: The quantum resources required for implementing c2

3.5.3 The quantum circuit for c3

In order to reduce the number of qubits used in the quantum circuit of the S-

box, this section proposes a quantum circuit implementation for c3 : |a⟩|0⟩ →
|S(a)⟩|0⟩. By combining the quantum circuits of Uq2×λ (see Figure 6),Mul1 (see

Figure 8) and Mul2 (see Figure 9), and F (24)inv0 (see in sect.3.2), the quantum

circuit Uinv2 : |p⟩|0⟩ → |p−1⟩|0⟩ for computing the multiplicative inverse in

F ((24)2) can be constructed as shown in Figure 14. At this point, there are 4

auxiliary qubits remaining in the |0⟩ state, allowing the direct use of F (24)inv0

instead of F (24)inv1 to construct Uinv2 in F ((24)2).
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 𝑝0  
4

 𝑝1  
4

 0  
4

𝑈𝑝1
2×𝜆 

𝑀𝑢𝑙1 

𝐹 24 𝑖𝑛𝑣1  0  

 𝑛0  

 𝑛1  

 𝑝17 −1  𝑝17 −1 

 𝑝17 −1 𝑝0 + 𝑝1  

 𝑝17 −1 

 𝑝17 −1𝑝1 

𝑈𝑝17  

𝑈 𝑝−1 17
† 

 0  
4

 0  

𝑀𝑢𝑙2 𝑝17 

𝑀𝑢𝑙2 

Figure 14: The quantum circuit for Uinv2 : |p⟩|0⟩ → |p−1⟩|0⟩.

By combining the quantum circuits of UM (see Figure 2) , Uinv2 (see Figure

14) , and UAM−1 (see Figure 3), the quantum circuit for c3 : |a⟩|0⟩ → |S(a)⟩|0⟩
can be constructed as shown in Figure 15 with a wide of 16. The quantum

resources required to implement c3 is summarized in Table 5.

 𝑎  
8

8

𝑈𝑀 
𝑈𝑖𝑛𝑣2 

𝑈𝐴𝑀−1   𝑆(𝑎)  

 0   0  

Figure 15: The quantum circuit for c3 : |a⟩|0⟩ → |S(a)⟩|0⟩.

Schemes #qubits #Toffoli #CNOT #NOT Toffoli depth

Ours 16 92 268 4 62

22 96 426 4 71

[44] 23 96 426 4 67

24 92 426 4 58

Table 5: The quantum resources required for implementing c3

4 The quantum circuit for AES

The other three linear transformation structures of AES, ShiftRows, MixColumns

and AddRoundKey, can all be implemented with CNOT gates only. The quan-

tum resources required for these three linear transformations are detailed below.

1. AddRoundKey: Each AddRoundKey operation involves XORing a 128-

bit subkey with the current state. This can be implemented in parallel using 128

CNOT gates.

2. ShiftRows: The ShiftRows operation only rearranges the output order of

16 bytes in the current state. It does not require any quantum operations for

implementation.
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3. MixColumns: The MixColumns operation processes 32 bits in the current

state at a time and can be implemented using a 32×32 matrix. Xiang et al. [46]

provides a quantum circuit for MixColumns operation with 92 CNOT gates. As

MixColumns can be applied to all 4 columns of the state simultaneously, and

the total requirement for CNOT gates is 92× 4 = 368.

For the key expansion process, we implement the key expansion process of

AES with Jaques et al.’s method [48], but we use our S-box circuit for c2 (see

Figure 13). The quantum circuit as shown in Figure 16 represents the full struc-

ture of the key expansion process, denoted as KE : |k⟩i−1 → |k⟩i. The SubBytes
with arrow in Figure 16 represents the operation where the state at the tail of the

arrow undergoes the SubBytes operation, followed by XORing with the state

pointed to by the arrow, and the result is assigned to the state pointed to by the

arrow. The RotWord shown in Figure 16 is the RotWord operation, which can

be realized by rearranging the order of qubits without any quantum operations,

while the Rcon[j] operation can be implemented using a single NOT gate. The

key expansion process for AES-128, AES-192, and AES-256 can respectively uti-

lize portions of the full key expansion structures shown in Figures 16(a), (b),

and (c).

The initial key of AES undergoes NR rounds of the key expansion process,

resulting in (NR+1) round keys. Based on Algorithms 1 and 2, each round of key

expansion process only operates on 128 bits. Therefore, only the relevant subset

of the full structure of the key expansion process is needed for each round, with

other operations being neglected. Let KE l
j represents the operation from |kj⟩i−1

to |kl⟩i−1 in KE : |k⟩i−1 → |k⟩i, while ignoring other parts, where 0 ≤ j ≤ l. The

quantum resources required to implement the key expansion process for AES is

shown in Table 6.

NR #qubits #Toffoli #CNOT #NOT Toffoli depth

AES-128 10
132 2080 10000 190 1280

133 2000 10000 190 1200

AES-192 12
196 2288 11064 209 1408

197 2200 11064 209 1320

AES-256 14
260 2704 13000 229 1664

261 2600 13000 229 1560

Table 6: The quantum resources required to implement the key expansion pro-

cesses for AES
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(a)
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Figure 16: Three fully structures of the key expansion process. (a) A full struc-

ture of the key expansion process that can be used for AES-128. (b) A full

structure of the key expansion process that can be used for AES-192. (c) A full

structure of the key expansion process that can be used for AES-256.

The encryption process of the AES is presented in Figure 17, where SubBytes,

ShiftRows and MixColumn are the operations of SubBytes, ShifrRows and

MixColumns, and KE l
j represents the operation from |kj⟩i−1 to |kl⟩i−1 in KE :

|k⟩i−1 → |k⟩i, while ignoring other parts. In Figures 17(a), (b) and (c), |K0⟩,
|K2⟩0|K1⟩0|K0⟩0, and |K1⟩0|K0⟩0 denote the 128-bit, 192-bit, and 256-bit ini-

tial keys for AES-128, AES-192, and AES-256, respectively. |M⟩, |M1⟩|M0⟩ and
|M⟩ denote the plaintexts, while |C⟩, |C1⟩|C0⟩ and |C⟩ denote the ciphertexts.

Since the primary goal of this paper is to reduce the number of qubits required

for implement the quantum circuit for AES, the SubBytes operation during
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Figure 17: The encryption process of AES. (a) The encryption process of AES-

128. (b) The encryption process of AES-192. (c) The encryption process of

AES-256.

encryption is implemented using c3 : |a⟩|0⟩ → |S(a)⟩|0⟩ . The quantum resources

required to implement the quantum circuit for AES-128, AES-192, and AESS-

256 are summarized in Table 7, 8, and 9.
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Schemes #qubits #Toffoli #CNOT #NOT Toffoli depth

Ours

264 16800 57840 830 11200

265 16720 57840 830 11120

268 16800 57840 830 9920

269 16720 57840 830 9920

[44]

270 16508 81652 1072 11008

328 15824 82928 1072 2184

380 16480 81592 1072 1344

400 15824 82928 1072 1108

[43]
400 19064 118980 4528 -

656 18040 101174 1976 -

[42] 512 19788 128517 4528 2016

[41] 864 16940 107960 1507 1880

[40] 976 150528 192832 1370 -

[39] 984 151552 166548 1456 12672

Table 7: The quantum resources required to implement the quantum circuits for

AES-128
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Schemes #qubits #Toffoli #CNOT #NOT Toffoli depth

Ours

328 19952 68472 977 13312

329 19864 68472 977 13224

332 19952 68472 977 11904

333 19864 68472 977 11904

[44]

334 19196 94180 1160 13144

392 18400 95696 1160 2616

444 19168 94168 1160 1596

464 18400 95696 1160 1340

[42] 640 22380 152378 5128 2022

[41] 896 19580 125580 1692 1640

[39] 1112 172032 189432 1608 11088

Table 8: The quantum resources required to implement the quantum circuits for

AES-192

Schemes #qubits #Toffoli #CNOT #NOT Toffoli depth

Ours

392 23312 79976 1125 15552

393 23208 79976 1125 15448

396 23312 79976 1125 13888

397 23208 79976 1125 13888

[44]

398 23228 114476 1367 15756

456 22264 116288 1367 3048

508 23208 114376 1367 1880

528 22264 116288 1367 1540

[42] 768 26774 177645 6103 2292

[41] 1232 23760 151011 1992 2160

[39] 1336 215040 233836 1943 14976

Table 9: The quantum resources required to implement the quantum circuits for

AES-256

As shown in Table 7, 8,and 9, the proposed quantum circuit of the S-box

significantly reduces the quantum resources needed to implement the quantum
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circuit for AES. This optimization not only enhances the execution efficiency of

the quantum circuit but also provides a feasible solution for implementing larger

scale quantum encryption algorithms under limited quantum resources.

For AES-128, when the width is 264 or 265, the Toffoli gate cannot be

replaced by the QAND gate (see in Figure 18) since there is no clean auxiliary

qubit available in the circuit at this point. However, when the width is 268 or

269, the Toffoli gate can be substitutes by the QAND gate. (The 4 clean

auxiliary qubits used to decompose the Toffoli gate into a QAND gate at

this stage originate from the key expansion process. Since each round of key

expansion involves only 4 SubBytes operations, whereas the encryption process

requires 16 per round, it is feasible to use the 4 auxiliary qubits from the key

expansion to implement the QAND gate.)

 𝑎  

 𝑏  

 0  

 0  

𝐻 

𝑇†  

𝑇 

𝑇 

𝑇†  

𝐻 𝑆 

 𝑎  

 𝑏  

 𝑎𝑏  

 0  

Figure 18: The QAND gate.

For comparison with [48], the Toffoli gates in AES-128 are decomposed

using the scheme proposed in [48], which requires 7 T gates and the T depth is

3. The resulting data are presented in Table 10, where DW (Toffoli) represents

the product of the Toffoli depth and width, and DW (T ) represents the product

of T depth and width.

Schemes #qubits Toffoli depth DW (Toffoli) T depth DW (T )

Ours

264 11200 2956800 33600 8870400

265 11120 2946800 33360 8840400

268 9920 2658560 28480 7632640

269 9920 2668480 28480 7661120

[48] 256 17140 4387840 29490 7549440

Table 10: Costs of the quantum circuits for AES-128
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5 Grover search attack on AES

In this section, using the propose quantum circuit of AES (see in sect.4), a

concrete resource estimation is conducted for mounting Grover search attack on

AES. Firstly, Grover Oracle is designed for AES. And then, based on the design

of Grover Oracle, resources required to perform Grover search attack on AES is

estimated.

5.1 Resource Estimation of Grover Oracle

According to reference [50], r = ⌈k/n⌉ instances of known plaintext-ciphertext

pairs are needed to find the unique decryption key, where n is the block size and

k is the key length of the block cipher. If k/n is an integer, r = ⌈k/n⌉ should be

replaced by r = k/n+ 1, and the probability of successful key search is e−2k−rn
.

Therefore, for AES-128, implementing the Grover search attack requires 2 known

plaintext-ciphertext pairs, at which point the probability of a successful key

search is e−2−128 ≈ 1. Figure 19(a) shows the construction of the Grover search

attack for 2 instances of known plaintext-ciphertext pairs considering AES-128,

where AES − 128† is the inverse process of the quantum circuit AES − 128.

Similarly, for AES-192 and AES-256, the Grover search attack requires 2 and

3 instances of known plaintext-ciphertext pairs, as shown in Figures 19(b) and

19(c), respectively.

The Grover search attack consists of comparing rn-bit outputs of the AES

instances with the given r ciphertexts. This operation can be implemented

using (2n · r) − controlled NOT gates. We neglect some NOT gates which

depend on the given ciphertexts and only consider the depth of the AES instances

ignoring the multi-−controlled NOT gates used in comparing the ciphertexts.

The quantum resources required to implement the Grover Oracle are shown in

Table 11.

5.2 Resource Estimation of Grover search attack on AES

Using the quantum estimates in Table 11, we provide the quantum resources

required to implement the Grover search attack on AES are shown in Table 12.

Compared to the quantum resource required for implementing Grover Oracle

(i.e., Of as discussed in sect.2.3), the resources required for other quantum oper-

ations for implementing (2|ψ⟩⟨ψ| − I)Of (as discussed in sect.2.3) are relatively

small. Therefore, when analyzing the overall resource requirements for Grover
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Figure 19: Grover Oracle for AES. (a) Grover Oracle for AES-128. (b) Grover

Oracle for AES-192. (c) Grover Oracle for AES-256.

search attack, it is reasonable to ignore the consumption of these quantum re-

sources.
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#qubits #Toffoli #CNOT #NOT Toffoli depth

AES-128

529 67200 231616 3320 22400

531 66880 231616 3320 22240

537 67200 231616 3320 19840

539 66880 231616 3320 19840

AES-192

657 79808 274272 3908 26624

659 79456 274272 3908 26448

665 79808 274272 3908 23808

667 79456 274272 3908 23808

AES-256

1177 139872 480880 6750 31104

1180 139248 480880 6750 30896

1189 139872 480880 6750 27776

1192 139248 480880 6750 27776

Table 11: The quantum resources required to implement the Grover Oracle

#qubits #Toffoli #CNOT #NOT Toffoli depth

AES-128

1.0050× 2136.69 1.0043× 2143.68 1.0010× 2145.47 1.0048× 2139.34 1.0008× 2142.1

1.0018× 2136.70 1.0065× 2143.67 1.0010× 2145.47 1.0048× 2139.34 1.0006× 2142

1.0061× 2136.71 1.0043× 2143.68 1.0010× 2145.47 1.0048× 2139.34 1.0043× 2141.92

1.0029× 2136.72 1.0065× 2143.67 1.0010× 2145.47 1.0048× 2139.34 1.0043× 2141.92

AES-192

1.0068× 2137 1.0034× 2143.93 1.0036× 2145.71 1.0015× 2139.58 1.0003× 2142.34

1.0029× 2137.01 1.0055× 2143.92 1.0036× 2145.71 1.0015× 2139.58 1.0006× 2142.33

1.0050× 2137.02 1.0034× 2143.93 1.0036× 2145.71 1.0015× 2139.58 1.0064× 2142.18

1.0011× 2137.03 1.0055× 2143.92 1.0036× 2145.71 1.0015× 2139.58 1.0064× 2142.18

AES-256

1.0006× 2137.85 1.0023× 2144.74 1.0037× 2146.52 1.0005× 2140.37 1.0033× 2142.57

1.0032× 2137.85 1.0051× 2144.73 1.0037× 2146.52 1.0005× 2140.37 1.0036× 2142.56

1.0038× 2137.86 1.0023× 2144.74 1.0037× 2146.52 1.0005× 2140.37 1.0011× 2142.41

1.0063× 2137.86 1.0051× 2144.73 1.0037× 2146.52 1.0005× 2140.37 1.0011× 2142.41

Table 12: The quantum resources required to implement the Grover search attack

on AES

6 Conclusion

This paper presents AES quantum circuits realized with fewer qubits. We first

designed three different types of quantum circuits for the S-box. Additionally,

we introduced a linear key expansion operation to ensure the complete func-

tionality of AES quantum circuit of AES while minimizing the use of qubits.
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Through these optimizations, we successfully designed quantum circuits for AES-

128/192/256 that require only 264/328/398 qubits, and comprehensively esti-

mated the consumption of other quantum resources based on these designs.

Furthermore, to validate the practical performance of the optimized quantum

circuits for AES, we implemented a Grover search attack on AES, demonstrating

the significant advantages of the optimized design in reducing quantum resource

usage.
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