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Abstract

Privacy-preserving distributed computation enables a resource-limited client to securely delegate
computations on sensitive data to multiple servers by distributing shares of the data. In such systems,
verifiable secret sharing (VSS) is a fundamental component, ensuring secure data distribution and
directly impacting the overall performance. The most practical approach to construct VSS is through
polynomial commitment (PC), with two main research directions to improve the VSS efficiency. The
first focuses on improving the dealer time by designing PC that supports batch evaluation, i.e.,
generating multiple evaluation&proof pairs in one shot. The second aims to reduce the broadcast
cost by designing PC that supports batch opening, i.e., producing a compact proof for multiple
evaluations.

Recently, Zhang et al. (Usenix Security 2022) proposed a transparent PC that supports batch
evaluation and obtained a transparent VSS with optimal dealer time. However, their scheme does
not support batch opening, leading to high broadcast costs in VSS. To the best of our knowledge,
no transparent PC currently supports both batch evaluation and batch opening, thus limiting the
performance of existing VSS schemes.

In this paper, we propose a transparent fully batchable polynomial commitment (TFB-PC),
that simultaneously supports batch evaluation and batch opening. Leveraging TFB-PC, we present
a VSS scheme with optimal complexity: O(n logn) dealer time, O(n) participant time and O(n)
communication cost. Furthermore, we implement our VSS scheme and compare its performance
with Zhang et al.’s VSS (the naive approach). Results show that our scheme achieves 954-27, 595×
reduction in communication cost and a 1, 028-1, 155, 106× speed up in participant time for 211-221

parties.

Keywords: Verifiable secret sharing, polynomial commitment, privacy-preserving distributed com-
putation.
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1 Introduction

Privacy-preserving distributed computation allows a resource-limited client to delegate sensitive compu-
tations to multiple servers while ensuring data privacy. The core component for securely distributing the
data in such systems is verifiable secret sharing (VSS), which ensures the data is shared among a set of
servers with security, even if the client or servers act maliciously.

An (n, t)-VSS scheme consists of two phases: sharing and reconstruction. The sharing phase, which
is crucial for distributing data in privacy-preserving distributed computation, is further divided into two
rounds: dealing and complaint. In the dealing round, the dealer (client) D first splits a secret s into n
shares and distributes one share to each participant (server) Vi over a private channel. In the complaint
round, each participant checks the validity of their received share and, if it is invalid, broadcasts a
complaint against the dealer. If there are complaints, the dealer is either disqualified or broadcasts valid
shares to resolve them. In the reconstruction phase, participants can recover the secret s by pooling at
least t+ 1 valid shares.

One of the most practical ways to construct VSS is through a polynomial commitment (PC) [KZG10,
TCZ+20, ZXH+22], which we refer to as PC-based VSS hereafter. The polynomial commitment scheme
allows a prover to commit to a polynomial f and later reveal the evaluation y at a queried point x to the
verifier, along with a proof π that demonstrates y = f(x). Given a polynomial commitment scheme, it is
straightforward to develop an (n, t)-VSS scheme as below. In the dealing round of the sharing phase, to
share a secret s, the dealer D first picks a random t-degree polynomial f such that f(0) = s, then commits
to f using the PC and broadcasts the commitment c. Next, for each i ∈ {1, . . . , n}, D computes the
evaluation yi and the corresponding proof πi for yi = f(i), and sends (yi, πi) to Vi as the i-th share and
the corresponding verification information over a private channel. In the complaint round of the sharing
phase, each Vi checks the validity of yi using πi and c, and broadcasts a complaint if it is invalid. If there
are more than t complaining participants, then D is disqualified. Otherwise, D broadcasts {yi, πi}i∈I
where I is the set of all complaining participants. We refer to the case where there is no complaint as
the best case, and to the case where there are t complaints as the worst case. In this work, we focus on
the latter one. In the reconstruction phase, given at least t+ 1 valid pairs of (yi, πi), anyone can recover
s by reconstructing the polynomial f via Lagrange interpolation and computing s = f(0).

In the realm of PC-based VSS, two batching features for polynomial commitments are utilized to
improve the efficiency of the sharing phase. One is batch opening, which enables the generation of a
compact batch proof for multiple evaluations, thereby reducing broadcast overhead in the complaint
round, as illustrated in Fig.1. The other is batch evaluation, which allows for the the rapid computation
of several (yi, πi) pairs in one shot, thus decreasing the dealer time in the dealing round, as shown in
Fig.2.

A line of works [KZG10, TCZ+20, YLF+22, ZXH+22] demonstrated the impact of these features
on VSS efficiency. In particular, Kate et al.[KZG10] first introduced batch opening to their polynomial
commitment scheme, known as the KZG scheme, and obtained KZG-VSS scheme with O(n2) dealer time,
O(n log2 n) participant time and O(1) broadcast in the complaint round. Later, Tomescu et al. [TCZ+20]
proposed batch evaluation for KZG scheme, reducing the dealer time of KZG-VSS to O(n log n), but
sacrificed the participant time. Subsequently, Zhang et al. [ZXH+22] achieved batch evaluation for KZG
scheme by leveraging the Fast Fourier Transformation (FFT), obtaining the most efficient KZG-based
VSS scheme without any trade-off. However, all of these VSS schemes require a trusted setup. To avoid
this, Yurek et al. [YLF+22] present a VSS scheme based on transparent polynomial commitment. Con-
currently, Zhang et al. [ZXH+22] proposed a transparent polynomial commitment scheme with batch
evaluation, achieving O(n log n) prover time, which we refer to as ZXH+

trans scheme. Despite its computa-
tional efficiency, the ZXH+

trans scheme lacks support for batch opening, resulting in significant broadcast
overhead during the complaint round of the ZXH+

trans-VSS scheme.
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Figure 1: Batch opening to reduce broadcast cost
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Figure 2: Batch evaluation to reduce dealing time

To our knowledge, no transparent polynomial commitment exists that supports both batch evaluation
and batch opening, and the efficiency of existing VSS schemes remains unsatisfactory, particularly in
large-scale privacy-preserving distributed computations. In light of this, we ask the question:

Can we construct a transparent polynomial commitment scheme that simultaneously supports batch
evaluation and batch opening, while achieving a transparent VSS with optimal efficiency?

1.1 Our Contribution

In this paper, we propose a transparent, fully batchable polynomial commitment scheme and construct
an optimal VSS scheme to answer the above question. Our contributions can be summarized as follows:

A fully batchable polynomial commitment scheme. We formalize the definitions of two standard
features for polynomial commitments: batch evaluation and batch opening, and refer to polynomial
commitments that support both as fully batchable polynomial commitments (FB-PC). Then we give the
first construction of transparent FB-PC with O(n log n) prover time, O(n) verifier time and O(log2 n)
proof size. Our scheme improves on the ZXH+

trans scheme [ZXH+22] by reducing the proof size and the
verifier time by O(n) and O(log2 n) respectively, while maintaining the optimized efficiency of its prover
time. A detailed comparison is provided in Table 1.

An optimal VSS scheme. We present a generic construction of VSS utilizing FB-PC, and yield an
optimal VSS scheme by integrating our transparent FB-PC. Our VSS scheme has O(n log n) prover
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time, O(n) participant time and O(n) communication cost. Compared to existing VSS schemes, our
instantiation stands out with comprehensive advantages. Details are provided in Table 2.

Implementation and evaluation. We implement our VSS scheme and evaluate its performance
against the ZXH+

trans-VSS [ZXH+22] in the same setting. Results show that, our VSS scheme has a
comparable dealer time with ZXH+

trans-VSS, while reducing its communication cost by 954-27, 595×, and
improving the participant time by 1, 028-1, 155, 106× for 211 to 221 parties.

Table 1: Polynomial commitment with batching features: comparison with prior works.

Scheme Trans.
Batch evaluation Batch opening

Prover time Verifier time proof size Prover time Verifier time proof size

KZG [KZG10] × O(n2) O(1) O(1) O(n log2 n) O(n log2 n) O(1)

AMT [TCZ+20] × O(n log n) O(log n) O(log n) O(n log2 n) O(n log2 n) O(1)

ZXH+
KZG [ZXH+22] × O(n log n) O(1) O(1) O(n log2 n) O(n log2 n) O(1)

hbACSS [YLF+22] X O(n2) O(n) O(log n) O(n2) O(n2) O(n log n)

ZXH+
trans [ZXH+22] X O(n log n) O(log2 n) O(log2 n) O(n log n) O(n log2 n) O(n log2 n)

Our PC X O(n log n) O(log2 n) O(log2 n) O(n log n) O(n) O(log2 n)

We assume deg(f) = Θ(n). Trans. means without a trusted setup.

Table 2: Worst-case asymptotic complexity of VSS schemes.

Scheme Trans.
Dealer time Participant time Communication

Dealing Complaint Total Dealing Complaint Total Priv. proof Brd. proof Brd. share Total
Feldman-VSS [Fel87] X O(n log n) O(n log n) O(n log n) O(n) O(n2) O(n2) O(n) O(1) O(n) O(n)

KZG-VSS [KZG10] × O(n2) O(n2) O(n2) O(1) O(n log2 n) O(n log2 n) O(1) O(1) O(n) O(n)

AMT-VSS [TCZ+20] × O(n log n) O(n log2 n) O(n log2 n) O(log n) O(n log2 n) O(n log2 n) O(log n) O(log n) O(n) O(n)

ZXH+
KZG-VSS [ZXH+22] × O(n log n) O(n log2 n) O(n log2 n) O(1) O(n log2 n) O(n log2 n) O(1) O(1) O(n) O(n)

hbACSS-VSS [YLF+22] X O(n2) O(n2) O(n2) O(n) O(n2) O(n2) O(log n) O(n log n) O(n) O(n log n)

ZXH+
trans-VSS [ZXH+22] X O(n log n) O(n log n) O(n log n) O(log2 n) O(n log2 n) O(n log2 n) O(log2 n) O(n log2 n) O(n) O(n log2 n)

Our VSS X O(n log n) O(n log n) O(n log n) O(log2 n) O(n) O(n) O(log2 n) O(log2 n) O(n) O(n)

Assume t = Θ(n). Trans. means without a trusted setup. Dealing denotes the dealing round and Complaint denotes the complaint round. Priv. proof represents the
private proof each participant receives via a private channel. Brd. share and Brd. proof denotes the broadcast shares and proofs in the complaint round, respectively.

1.2 Technique Overview

Revisiting the ZXH+
trans-VSS. The ZXH+

trans-VSS represents the current state-of-the-art PC-based
VSS scheme, which stands out for eliminating the need for a trusted setup and achieving optimal dealer
time. Given these advantages, we adopt it as the foundation for our work.

Since ZXH+
trans-VSS scheme is built on the ZXH+

trans scheme, we revisit it at first. different form
other works, Zhang et al. [ZXH+22] utilize the Fast Fourier transform (FFT) circuit [Wei69] to compute
evaluations, moving away from traditional algebraic methods. Specifically, the prover runs the circuit C
taking the coefficients of polynomial f as input and the evaluations f(ω0), ..., f(ωn−1) as output, where
ω is the n-th root of unity. The C is structured as a layered arithmetic circuit with depth d over a finite
field F. Each gate in the i-th layer takes the outputs of two gates in the (i + 1)-th layer, with layer 0
as the output layer and layer d as the input layer. They define a function Vi : {0, 1}si → F that takes a

binary string ~b ∈ {0, 1}si as input and returns the output of gate b in layer i, where b is the gate label and
si = dlogSie, here Si is the number of gates in the i-th layer. Thus, they denote the entire output (the
evaluations) of circuit C as V0(~x) and the input (the polynomial coefficients) as Vd(~x) for ~x ∈ {0, 1}logn.

When committing to the polynomial f , the prover utilizes the multivariate polynomial commitment
to create a commitment for Ṽd(~x), the multilinear extension of Vd(~x). After the verifier queries the
evaluation f(ωi), the prover sends the i-th output outi of circuit to the verifier and claims that it equals
f(ωi). For proving the correctness of outi, the prover must convince the verifier of the statement:
outi =

∑
~x∈{0,1}log n β̃(~i, ~x)Ṽ0(~x), where β(~i, ~x) is the identity function to select the i-th output of the

circuit.

Efficient batch opening for ZXH+
trans. When proving |I| evaluations to a verifier, the prover needs

to convince the verifier about the validity of |I| statements:

{outi =
∑

~x∈{0,1}log n

β̃(~i, ~x)Ṽ0(~x)}i∈I .
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This approach would result in a proof size that scales linearly with |I|. An intriguing question is whether
the proof size can be reduced to match that of a single statement.
Batch proving protocol for multi-output circuit. Before answering the above question, a more general
problem arises. Suppose there is a circuit C with n distinct outputs, the verifier is concerned with
receiving and verifying a subset of |I| outputs. Can the prover generate a compact batching proof for
these |I| outputs? A straightforward method of independently applying the protocol for each of the |I|
outputs would result in a proof size of at least O(|I| · d log |C|).
The batch selective function. Inspired by the selective identity function, we explore the possibility of
designing a batch selection function that aggregates multiple outputs into a single statement.

The first attempt is summing up all the identity functions β̃(~i, ~x) for i ∈ I to construct the batch
selection function

∑
i∈I β̃(~i, ~x). Consequently, the batch statement can be expressed as:∑

i∈I
outi =

∑
~x∈{0,1}log n

∑
i∈I

β̃(~i, ~x)Ṽ0(~x).

However, this method is insecure, because the prover is only bound to
∑
i∈I outi rather than to each

individual output {outi}i∈I .
To get around this problem, we adjust the batch selective function by using the random linear

combination, leading to the following batch statement:∑
i∈I

rkouti =
∑

~x∈{0,1}log n

∑
i∈I

rkβ̃(~i, ~x)Ṽ0(~x),

where k is the position of i in set I.
The Schwartz-Zippel Lemma guarantees that if the batching statement is valid, then the |I| statements

for every i ∈ I are valid. Consequently, the prover just needs to convince the validity of the batching
statement to verifier with the proof size of O(d log |C|+ log2 n), independent of |I|.

1.3 Related Work

Polynomial commitment. Kate, Zaverucha, and Goldberg [KZG10] introduced the concept of poly-
nomial commitment and provided two constructions that the commitment and proof have constant size.
They also proposed batch opening for proving n evaluations to a verifier such that the prover only needs
to compute a batch proof that is smaller than the size of n proofs. Later, Boneh et al. [BDFG20] gener-
alized batch opening from the same polynomial to different polynomials, where a single group element
can be a batching proof for multiple polynomials each evaluated at a different arbitrary subset of points.

Recent works [TCZ+20, YLF+22, ZXH+22] have focused on improving the prover’s efficiency for
computing multiple proofs to multiple verifiers. Tomescu et al. [TCZ+20] showed how to compute
n evaluation proofs in O(n log n) time compared to O(n2) in KZG scheme [KZG10], but introduced
a logarithmic overhead on the verification time and proof size. To address this problem, Zhang et
al. [ZXH+22] implement batch evaluation for KZG scheme [ZXH+22] using FFT on group elements,
achieving the same prover time without increasing the proof size and verification time. They also
constructed a transparent polynomial commitment scheme where the prover can produce n proofs in
O(n log n) time. It removed the trusted setup using GKR protocol and Virgo [ZXZS20] and only incurred
cheap symmetric-key operations such as hashing and field arithmetic instead of the costly modular
exponentiation.

Verifiable secret sharing. Chor et al [CGMA85] first introduced VSS. Feldman [Fel87] constructed
the first efficient VSS scheme, known as Feldman-VSS, with computational hiding and information-
theoretic binding. Later, Pedersen introduced its counterpart with information-theoretic hiding and
computational binding. However, both schemes require O(n) broadcast during the dealing round. To
address the problem, Kate et al. [KZG10] constructed an eVSS scheme that reduces the broadcast cost
and the verification time to O(1) using the constant-sized polynomial commitment. Unfortunately, they
increased the dealing time to O(n2) due to computing O(n) shares and proofs in the dealing round. They
also used the polynomial commitment with batch opening to reduce the broadcast of the complaint round.

Tomescu et al. [TCZ+20] proposed AMT-VSS from the polynomial commitment with batch evalu-
ation to reduce the dealing time of eVSS from O(n2) to O(n log n). However, the communication and
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verification time for each participant also increases to O(log n). To deal with this, Zhang et al. [ZXH+22]
constructed ZXH+

KZG-VSS based on their ZXH+
KZG polynomial commitment scheme, with the broadcast

proof size and verification time for each participant being O(1). The above two VSS schemes also support
batch opening in the complaint round. Their dealer time is O(n log2 n), participant time is O(n log2 n)
and the communication is O(n) in the sharing phase. However, all the bove VSS scheme require a trusted
setup, to remove it, Yurek et al. [YLF+22] gives a VSS scheme from transparent polynomial commitment.
To reduce the prover time, Zhang et al. [ZXH+22] constructed a transparent ZXH+

trans-VSS scheme from
their ZXH+

trans polynomial commitment scheme that the overall dealer time is O(n log n). But their
broadcast overhead and the verification time for each participant are O(n log2 n).

2 System Architecture
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① Distribute shares ＆ proofs

Server 𝑉ଶ
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Server 𝑉
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Client Client ⑤ Distributed 
computation 

on shares

Final result

⑥ Verify the result

Distribution stage Computation stage

Figure 3: Architecture of privacy-preserving distributed computation

In this section, we introduce the system and security model, focusing primarily on the distribution
of data.

2.1 System Model

Fig. 3 presents the system model, which comprises a client and multiple servers.
Client : The client owns the secret data and wants to perform computations on it, but has limited

computational resources. It distributes the data shares to each server and attaches a proof to ensure the
share is correct.

Servers: There are n servers V1, · · · ,Vn in system model, every server Vi needs to receive the correct
share and perform the distributed computation.

As depicted in Fig. 3, the privacy-preserving distributed computation consists of two stages: the
distribution and computation. In the distribution stage, the client sends secret shares and proofs to the
servers. Each server verifies the validity of its share; if correct, it accepts the share; otherwise, it rejects
it and broadcasts a complaint to accuse the client. Then, the client broadcast the correct shares and
proofs for all complaining servers. In the computation stage, servers perform the computation on the
shares collaboratively, and send the results to the client.

2.2 Security Model

The client may act maliciously to distribute incorrect shares, and the servers may also act maliciously
to return incorrect computation results and attempt to obtain as much sensitive information as possible
about the entire secret data.

It’s required that if the malicious client generate incorrect shares, then with a high probability the
servers would reject and cannot output the correct computation result. Otherwise, the servers should
return correct computation results. Additionally, the servers can not learn extra sensitive information
about the secret data except the share and public information.
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3 Preliminaries

Notations. The security parameter is denoted by λ, and PPT stands for Probabilistic Polynomial Time.
The negl : N → R denotes the negligible function, where for each positive polynomial p(·), there exists
negl(k) < 1

p(k) for sufficiently large integer k. For set S, let |S| denote the size of set S. Let [n] denote

the set {0, 1, · · · , n− 1}. y r←− S denotes picking y uniformly at random from the set S and |π| denotes
the length of π.

3.1 Verifiable Secret Sharing

An (n, t)-VSS scheme among n participants Vi, · · · ,Vn with a dealer D consists of two phases: a sharing
phase and a reconstruction phase.

• Sharing phase: The sharing phase consists of two rounds. Dealing round: the dealer splits a secret
s into n shares and distributes share si and the verification information πi to participant Vi for
all i ∈ [n] over a private channel. Complaint round: each participant Vi checks the validity of its
share si using the verification information πi and broadcasts a complaint if it is invalid. The dealer
takes some mechanisms to resolve complaints.

• Reconstruction phase: If any set of t + 1 or more participants Vi publish their accepted shares
along with the corresponding verification information (i, si, πi), all t + 1 or more participants Vi
verify each of the broadcast shares (i, si, πi). If more than t shares are valid, the secret s can be
recovered using any t+ 1 valid pairs (i, si).

An (n, t)-VSS scheme has two properties:

• Correctness. If the dealer is honest, then the honest participants output the secret s at the end of
the reconstruction phase.

• Secrecy. The adversary who can corrupt fewer than t+1 participants has no additional information
about the secret s.

3.2 Polynomial Commitment

Definition 3.1 (Polynomial Commitment). A polynomial commitment for univariate polynomial
f ∈ Fd[X] and z ∈ F consists of the following algorithms:

• pp← Setup(1λ, d): on input the security parameter λ and a bound d on the degree of the polyno-
mial, outputs the public parameter pp (which implicitly defines the message space F , randomness
space R, and commitment space C). We assume that all other algorithms input pp which we omit.

• c ← Commit(f): on input a polynomial f(x) =
∑d
i=0 cix

i, outputs the commitment c that the
prover commits to f .

• {0, 1} ← VerifyPoly(c, f, d): on input the commitment c and the opened polynomial f verifies that
if c is the commitment to f . If so, outputs 1, otherwise outputs 0.

• (y, πx) ← Eval(f, x): on input the polynomial f and an evaluation point x, outputs y = f(x) and
the corresponding proof πx.

• {0, 1} ← Verify(c, x, y, πx): on input the commitment c, the evaluation point x, the answer y and
the proof πx, the verifier checks the correctness of the evaluation. 1

A polynomial commitment scheme satisfies the following properties:

• Correctness. For any polynomial f ∈ Fd[X] and x ∈ F, the following probability is 1:

Pr

 VerifyPoly(c, f) = 1∧
Verify (c, x, y, πx) = 1

:
pp← Setup(1λ, d)
c← Commit (f)

(y, πx)← Eval (f, x)

 .
1For some schemes [GWC19, ZXZS20, BDFG21], algorithms Eval and Verify are derived from an interactive public-coin

protocol through Fiat-Shamir transformation.
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• Polynomial binding. A polynomial commitment scheme is polynomial binding if for all PPT
adversaries A, the following probability is negl(λ):

Pr

 VerifyPoly (c, f) = 1∧
VerifyPoly(c, f ′) = 1∧

f 6= f ′
:

pp← Setup(1λ, d)
(c, f, f ′)← A(pp)

 .
• Evaluation binding. For any polynomial f , evaluation point x ∈ F and y 6= y′, any PPT

adversaries A, the following probability is negl(λ):

Pr


pp← Setup(1λ, d),

(c, 〈x, y, πx〉, 〈x, y′, π′x〉)← A(pp) :
Verify (c, x, y, πx) = 1∧

Verify (c, x, y′, π′x) = 1 ∧ y 6= y′

 .
Definition 3.2 (Multivariate polynomial commitment). The polynomial commitment could be
extended for multivariate polynomials f ∈ F : F` → F. The algorithms and definitions are similar to
those of the univariate polynomial, and we use MVPC to denote the multivariate polynomial commitment
schemes.

3.3 Interactive Proofs for Layered Circuits

Sumcheck Protocol. The sumcheck protocol, introduced by Lund et al. [LFKN90], is an interactive
proof that plays a key role in probabilistic proofs and cryptography protocols. The sumcheck protocol is
designed to prove that a polynomial sums to the specified value over a defined domain. More specifically,
the prover wishes to convince the verifier of the statement H =

∑
b1,b2,...,b`∈{0,1}` f(b1, b2, ..., b`), where

f is a `-variate polynomial of degree d. The protocol involves ` rounds of interaction between the prover
and the verifier, employing a recursive structure. In this structure, statements about polynomials with
arity l are recursively reduced to statements about polynomials with smaller arity, until arity 0 is reached.
At the final stage of the protocol, the verifier queries an oracle for the polynomial f at a random point
(r1, · · · , r`), obtaining the evaluation f(r1, · · · , r`) to complete the protocol. The sumcheck protocol is
complete and has a soundness error ε = d`

|F| . The proof size and verification time of the protocol are both

O(d`), where d is the degree of f .

GKR Protocol. Goldwasser, Kalai, and Rothblum [GKR08] proposed an interactive proof for circuit
evaluation, which is known as the GKR protocol. In this protocol, the prover and verifier agree on
a log-space uniform arithmetic circuit C of fan-in 2 over a finite field F. The goal is for the prover
to convince the verifier of the value of the output gate(s) of C. Following the convention in prior
works [CMT12, Tha13, CFS17, XZZ+19, ZXZS20, ZXH+22], let C be a layered arithmetic circuit with
depth d, where each gate in the i-th layer takes the outputs of two gates in the (i+1)-th layer, with layer
0 representing the output layer and layer d representing the input layer. The values in layer i can be
written as the sumcheck equation of the values in layer i+ 1. Let Si denote the number of gates in the
i-th layer and si = dlogSie. We define a function Vi : {0, 1}si → F that takes a binary string ~b ∈ {0, 1}si
as input and returns the output of gate b in layer i, where b is called the gate label and ~b is its binary
representation. With this definition, V0 corresponds to the output of the circuit, and Vd corresponds to
the input layer. Additionally, we define two functions addi, multi : {0, 1}si−1+2si → {0, 1}, referred to as
wiring predicates in the literature. addi (multi) takes one gate label ~z ∈ {0, 1}si−1 in layer i− 1 and two
gate labels ~x, ~y ∈ {0, 1}si in layer i, and outputs 1 if and only if gate ~z is an addition (multiplication) gate
that takes the output of gates ~x, ~y as input. By taking their multilinear extensions, for any ~g(i) ∈ Fsi , Ṽi
can be written as:

Ṽi(~g
(i)) =

∑
~x,~y∈{0,1}si+1

ãddi+1(~g(i), ~x, ~y)
(
Ṽi+1(~x) + Ṽi+1(~y)

)
+ m̃ulti+1(~g(i), ~x, ~y)

(
Ṽi+1(~x)Ṽi+1(~y)

)
=

∑
~x,~y∈{0,1}si+1

fi(~g
(i), ~x, ~y). (1)
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The protocol begins when the prover sends the claimed output of the circuit to the verifier. From
the claimed output, the verifier computes the multilinear function Ṽ0 based on the claimed output,
then picks a random ~g(0) ∈ Fs0 and computes Ṽ0(~g(0)). The prover needs to convince the verifier that:
Ṽ0(~g(0)) =

∑
~x,~y∈{0,1}s1 f1(~g(0), ~x, ~y). To do so, the prover and verifier invoke a sumcheck protocol on

it. As described in 3.3, at the end of the sumcheck, the verifier needs an oracle access to f1(~g(0), ~u,~v),

where ~u,~v are randomly selected in Fs1 . To compute f1(~g(0), ~u,~v), the verifier computes ãdd1(~g(0), ~u,~v)

and m̃ult1(~g(0), ~u,~v) locally (since these functions are publicly known), asks the prover to send Ṽ1(~u)
and Ṽ1(~v) computes f1(~g(0), ~u,~v) to complete the sumcheck protocol. In this way, the prover and verifier
reduce a claim about the output at layer 0 to two claims about values at layer 1. They could invoke two
sumcheck protocols on Ṽ1(~u) and Ṽ1(~v) recursively to layers above, but the number of claims and the
sumcheck protocols would grow exponentially in d.

To reduce two claims Ṽ1(~u) and Ṽ1(~v) to one, the verifier defines a line ` : F → Fs1 as the unique
line such that `(0) = u, `(1) = v. The verifier sends `(x) to the prover, who responds with a degree si
univariate polynomial h(x) = Ṽ1(`(x)). The verifier checks that h(0) = Ṽ1(~u) and h(1) = Ṽ1(~u). Then,

the verifier randomly selects r ∈ F and computes a new claim h(r) = Ṽ1(`(r)) = Ṽ1( ~g(1)) on ~g(1) = `(r).
The verifier then sends r and ~g(1) to the prover. In this way, the two claims are reduced to one claim
Ṽ1(~g(1)). Combining this protocol with the sumcheck protocol on Equation 1, the prover and verifier can
recursively reduce a claim on layer i to a claim on layer i+ 1, eventually arriving at a claim for the input
layer Ṽd(~g

d). Notably, since the verifier knows the input of C, it can validate the last statement Ṽd(~g
d)

directly.

Theorem 3.1. Let C : Fm → Fn be a depth-d layered arithmetic circuit. There exists an interactive
proof protocol for the function computed by C with soundness O(d log |C|/|F|). The total communication
is O(d log |C|) and the running time of the prover is O(|C|). When C has regular wiring pattern 2, the
running time of the verifier is O(m+ n+ d log |C|).

Multilinear extension. Let V : {0, 1}` → F be a function. The multilinear extension of V is the
unique polynomial Ṽ : F` → F s.t. Ṽ (x1, x2, . . . , x`) = V (x1, x2, . . . , x`) for all x1, x2, . . . , x` ∈ {0, 1}. Ṽ
can be expressed as:

Ṽ (x1, x2, . . . , x`) =
∑

~b∈{0,1}`

∏̀
i=1

((1− xi)(1− bi) + xibi) · V (~b),

where bi is the i-th bit of ~b.

Identity function. Letβ : {0, 1}` × {0, 1}` → {0, 1} be the identity function such that β(~x, ~y) = 1 if
~x = ~y, and β(~x, ~y) = 0 otherwise. Suppose β̃ is the multilinear extension of β. Then β̃ can be expressed
as:

β̃(~x, ~y) =
∏̀
i=1

((1− xi)(1− yi) + xiyi) .

Schwartz-Zippel Lemma. Let F be a finite field, and let g : Fm → F be a nonzero m-variate polynomial
of total degree at most d. Then on any finite set S ⊂ F,

Prx→Sm [g(x) = 0] ≤ d/|S|.

Here, x ← Sm denotes an x drawn uniformly at random from the product set Sm, and |S| denotes the
size of S. In other words, if x is chosen uniformly at random from Sm, then the probability that g(x) = 0
is at most d/|S|. In particular, any two distinct polynomials of total degree at most d can agree on at
most a d/|S| fraction of points in Sm.

4 Fully Batchable Transparent Polynomial Commitment Scheme

In this section, we first provide the formal definition of the fully batchable polynomial commitment
(FB-PC), then present a batch proving protocol for multi-output circuits, followed by a transparent
construction of FB-PC based on this protocol, and prove its security.

2“Regular” circuits is defined in [CMT12].
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4.1 Definition of FB-PC

We formalize the definitions of two standard features for polynomial commitments as follows:

Definition 4.1 (Batch Opening). A polynomial commitment scheme supporting batch opening addi-
tionally provides efficient algorithms (BatchOpen,BatchVerify) which are defined as follows:

• ({yi}i∈I , πI) ← BatchOpen (f, I): on input the polynomial f and the point set I, outputs the
evaluation yi for every point i in set I and the batch proof πI . For efficiency, it is required that
|πI | < |I| · |πi|.

• {0, 1} ← BatchVerify (c, I, {yi}i∈I , πI): on input the commitment c, point set I, evaluation set
{yi}i∈I and the batch proof πI , verifies the correctness of {yi}i∈I .

A polynomial commitment scheme with batch opening satisfies the following property:

• Batch opening binding. For all PPT adversaries A, the following probability is negl(λ)3:

Pr


pp← Setup

(
1λ, n

)
,

(c, 〈I, yI , πI〉, 〈J, y′J , π′J〉)← A(pp) :
BatchVerify (c, I, yI , πI) = 1∧
BatchVerify (c, J, y′J , π

′
J) = 1∧

∃z ∈ I ∩ J s. t. yz 6= y′z

 .

Definition 4.2 (Batch Evaluation). A polynomial commitment scheme with batch evaluation addi-
tionally provides efficient algorithm BatchEval, which is defined as follows:

• {yi, πi}i∈I ← BatchEval (f, I): on input the polynomial f and the point set I, outputs the evaluation
and the proof pairs (yi, πi) for every i ∈ I 4. For efficiency, the condition p(λ, d, I) < |I|q(λ, d) must
be satisfied, where p(λ, d, I) represents the running time of algorithm BatchEval (f, I), and q(λ, d)
is the running time of Eval(f, i).

A polynomial commitment scheme is referred as fully batchable polynomial commitment scheme if it
supports batch opening and batch evaluation simultaneously.

4.2 Construction of Transparent FB-PC

Batch Proving Protocol for Multi-Output Circuits. We propose a batch proving protocol for
multi-output circuits, where the verifier receives multiple outputs out of the entire output of a circuit
C. Suppose the input of circuit C has size m, and the output has size n. The prover holds the input
[in] and computes the output [C(in)]. The verifier queries the i-th output of C and receives [out]i, which
is claimed to be equal to [C(in)]i. The i-th output [C(in)]i is equivalently written as V0(~i), where V0(~x)
denotes the entire output of C for ~x ∈ {0, 1}logn and ~i is the binary representation of gate i, so V0(~i)
corresponds to the i-th value in the output layer. Therefore, proving the correctness of [out]i is equivalent
to proving the following statement:

[out]i =
∑

~x∈{0,1}log n

β̃(~i, ~x)Ṽ0(~x),

where β̃(~i, ~x) is the identity function to select the i-th output of the circuit.
For multiple outputs {[out]i}i∈I , where I ⊂ [n] is the set of the output indeces, the prover wishes to

convince the verifier of the validity of multiple statements:

{[out]i =
∑

~x∈{0,1}log n

β̃(~i, ~x)Ṽ0(~x)}i∈I .

3In our definition, the BatchOpen algorithm outputs the evaluations directly rather than the interpolation polynomial
of the opening points and evaluations as in Kate’s definition [KZG10]. This adjustment makes our definition more general,
suiting not only KZG polynomial scheme but also others that are not homomorphic.

4The Eval algorithm can be used to verify each pair.
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A naive approach is that the prover and verifier independently prove each statement |I| times, resulting
in O(|I||C|) prover time, and O(|I|d log |C|) for both proof size and verification time, assuming the size
of the circuit is |C| and the depth is d.

To reduce the proof size, we propose a batch selective function
∑
i∈I r

kβ̃(~i, ~x) that aggregates multiple
outputs into a batch statement:∑

i∈I
rk[out]i =

∑
~x∈{0,1}log n

∑
i∈I

rkβ̃(~i, ~x)Ṽ0(~x),

where k is the position of i in set I. Therefore, proving {[outi]}i∈I are correct is equivalent to proving the

above batch statement. Initially, P sends {[out]i}i∈I to V, who responds by sending a random r
r←− F to P

and computes {rk}k∈[|I|] to get the batch statement. They then run the sumcheck protocol, which reduces

the claim about
∑
i∈I r

k[out]i to the claim about Ṽ0(~g(0)), where ~g(0) is the random challenges produced

in the sumcheck protocol. Next, to prove the correctness of Ṽ0(~g(0)), they run the GKR protocol [GKR08]
to further reduce the claim about Ṽ0(~g(0)) to the claim about Ṽd(~g

(d)) in the input layer, where ~g(d) are
the random challenges produced during the GKR protocol. Unlike the final round of the GKR protocol,
the input to the circuit is not known to the verifier here, and thus the verifier cannot check Ṽd(~g

(d))
locally. Thus, the verifier and the prover invoke the multivariate polynomial commitment [ZXZS20] to
validate that Ṽd(~g

(d)) is an evaluation of Vd(~x) at ~g(0) ∈ Flogn.

Theorem 4.1. Protocol 1 is an argument system for the statements {[out]i}i∈I = {[C(in)]i}i∈I such that
[out] = [C(in)] with soundness error O(max{|I|/|F|, d log |C|/|F|}). The prover time is O(|C|+m logm),
the verifier time and the proof size are both O(d log |C|+ log2m).

Proof. Completeness. The completeness is straightforward. By the definition of Ṽ0 (~x) and β̃(~i, ~x), if
[out]i = Ṽ0(~i) for every i ∈ I, then it follows that Ṽ0(~i) =

∑
~x∈{0,1}log n β̃(~i, ~x)Ṽ0(~x). Therefore, the ran-

dom linear combination of {[out]i}i∈I is equal to the random linear combination of {
∑
~x∈{0,1}log n β̃(~i, ~x)Ṽ0(~x)}i∈I .

Soundness. If {[out]i}i∈I 6= {[C(in)]i}i∈I , let Ṽ ′0(~g(0)) denote the correct value corresponding
to C in step 5. If Ṽ0(~g(0)) 6= Ṽ ′0(~g(0)), then V outputs 1 in Step 7 with the probability at most
O(d log |C|/|F|) by the soundness error of the GKR protocol. If Ṽ0(~g(0)) = Ṽ ′0(~g(0)), the verifier passes
Step 5 with the probability of max{O(log n/|F|), O(|I|/|F|)} by the union bound for the soundness error
of the sumcheck protocol and the Schwartz-Zippel Lemma. Thus, the total probability is bounded by
max{O(|I|/|F|), O(d log |C|/|F|)} by the union bound.

Efficiency. The proof size and the verification time in Step 5 are O(log n) while the proof size and
the verification time in Step 6 are O(d log |C|). If Protocol 1 employs Virgo [ZXZS20] as the transparent
MVPC scheme, the proof size and the verification time are O(log2m) in Step 7. Thus, the overall
verification time and proof size are O(d log |C| + log2m). The prover runs in O(n log n) in step 3 to
compute n evaluations by using the FFT algorithm and sends |I| evaluations to verifier. The prover runs
in O(n) time in Step 5 and O(|C|) time to invoke the GKR protocol on C in Step 6 by Theorem 1. The
prover time is O(m logm) for the MVPC scheme Virgo [ZXZS20] in step 7. Therefore, the total prover
time is O(|C|+m logm) asymptotically.

Protocol 1 can be converted into a non-interactive protocol that is secure in the random oracle model
by using the Fiat-Shamir transformation [FS86, BR93]. It is known that if a public-coin interactive
proof for a language satisfies a property called round-by-round soundness, then the non-interactive proof
is sound in the random oracle model [CCH+19, BCS16]. Canetti et al. [CCH+19] showed that the
GKR protocol and any other interactive proofs based on the sumcheck protocol satisfy round-by-round
soundness, and hence applying the Fiat-Shamir transformation to Protocol 1 yields a non-interactive
protocol that is secure in the random oracle model.

A Transparent FB-PC. We present a transparent fully batchable polynomial commitment scheme,
referred to as TFB-PC, which achieves O(n log n) prover time, O(n) verifier time and O(log2 n) proof
size for n evaluations. Compared to the ZXH+

trans scheme [ZXH+22], both the prover time and verifier
time are optimal, and the proof size is reduced by a factor of O(n).

We achieve this by introducing the batch opening technique for ZXH+
trans scheme. The core com-

ponents are two algorithms BatchOpen and BatchVerify, as detailed in Scheme 1. These algorithms are
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Protocol 1. Batch proving protocol for multi-output circuits.
Let λ be the security parameter. Let C : Fm → Fn be a d-depth layered arithmetic circuit. The
input of circuit C is [in] with size m, and the output is [out] with size n. For any I ⊂ [n], the prover
P needs to convince the verifier V that {[out]i}i∈I = {[C(in)]i}i∈I , where [·]i denotes the i-th value
in set [·]. Without loss of generality, assume m and n are both powers of 2, padding them if not.

1. Set pp← MVPC.Setup(1λ).

2. P computes the multilinear extension for the input of C as Ṽd(~x), where x ∈ Flogm. Then it
invokes MVPC.Commit(Ṽd(~x), pp) to generate comṼd

and sends comṼd
to V.

3. P sends {[out]i}i∈I to V.

4. V randomly picks r
r←− F and sends it to P.

5. For I ⊂ [n] and every i ∈ I, P and V run a sumcheck protocol on∑
i∈I

rk[out]i =
∑

~x∈{0,1}log n

∑
i∈I

rkβ̃(~i, ~x)Ṽ0(~x),

where~i is the binary string of i, and k is the position of i in set I. At the end of the protocol, V
computes

∑
i∈I r

kβ̃(~i,~g(0)) locally and receives Ṽ0(~g(0)) sent by P to check the last statement

of the sumcheck protocol, where ~g(0) is the random challenges generated in the sumcheck
protocol.

6. To prove the correctness of Ṽ0(~g(0)), P invokes the GKR protocol on the circuit C to generate
the proof untill to the last round of the GKR protocol.

7. In the last round of the GKR protocol, P and V have the claim about Ṽd(~g
(d)). P invokes

MVPC.Open to compute the evaluation of Ṽd(~x) at point ~g(d) and the corresponding proof.
V invokes MVPC.Verify to verify according comṼd

. If it is equal to Ṽd(~g
(d)) , V outputs 1,

otherwise, outputs 0.
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Scheme 1. Batch opening for ZXH+
trans scheme.

• pp← Setup(1λ, d): invokes ppMVPC ← MVPC.Setup(1λ) and outputs pp = ppMVPC.

• c ← Commit(f): on input a polynomial f(x) =
∑d
i=0 aix

i ∈ Fd[X], the algorithm computes

the multilinear extension of {ai}di=0 as Ṽ0, runs comṼd
← MVPC.Commit(Ṽ0,MVPC.pp) and

outputs c = comṼd
.

• BatchOpen(f, I): on input polynomial f(x) and the point set I,

1. computes Ṽ0(~i) for every i ∈ I.

2. computes r = H(c, I, {Ṽ0(~i)}i∈I).
3. computes the non-interactive proof for sumcheck protocol on∑

i∈I
rkṼ0(~i) =

∑
~x∈{0,1}log n

∑
i∈I

rkβ̃(~i, ~x)Ṽ0(~x)

and attaches the non-interactive sumcheck proof in the batch proof πI . The last part of
the sumcheck proof is Ṽ0(~g(0)) for the common random vector of ~g(0).

4. computes the non-interactive GKR proof on the circuit C for Ṽ0(~g(0)) and attaches it in
the batch proof πI . The last part of the GKR proof is the claim about Ṽd(~g

(d)).

5. invokes (Ṽd(~g
(d)), πMVPC) ← MVPC.Open(Ṽd, ~g

(d),MVPC.pp) to generate the proof for
the last part of the GKR proof and attaches πMVPC in the batch proof πI .

6. outputs the evaluations {V0(~i)}i∈I and final proof πI .

• BatchVerify(c, I, {V0(~i)}i∈I , πI): on input the points I, evaluations {V0(~i)}i∈I and the batch
proof πI , parse the proof π as three parts (the sumcheck proof, the GKR proof and the MVPC
proof ) and checks:

1. the sumcheck proof with random challenges ~g(0) provided by P.

2. the GKR proof with random challenges ~g(d) provided by P.

3. the MVPC proof using MVPC.Verify(comṼd
, ~g(d), Ṽd(~g

(d)), πMVPC).

4. the generation process of all random challenges using the hash function H.

If all the above checks pass, outputs 1; else, outputs 0.

derived by instantiating the circuit C in non-interactive Protocol 1 with the FFT circuit [Wei69]. The
circuit takes the coefficients of the polynomial f and the n-th root of unity ω as input, and outputs
evaluations f(ω0), ..., f(ωn−1).

Table 3: The ratio of batch opening for polynomial commitments.

Scheme
Batch Ratio

P time V time proof size

KZG [KZG10] O(log2 n/n) O(log2 n) O(1/n)

AMT [TCZ+20] O(log2 n) O(log n) O(1/n log n)

ZXH+
KZG [ZXH+22] O(log n) O(log2 n) O(1/n)

hbACSS [YLF+22] O(1) O(1) O(1)
ZXH+

trans [ZXH+22] O(1) O(1) O(1)

Our scheme O(1) O(1/ log2 n) O(1/n)

Batch ratio includes the ratio of the P time, V time, and proof
size for batch opening versus naive opening. The ratio of less
than 1 indicates an improvement in efficiency compared to the
counterpart naive opening.
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Table 3 compares our batch opening with prior schemes. The batch ratio includes the ratio of
prover time, verifier time, and proof size for batch opening versus standard opening, i.e., the time
taken by BatchOpen and BatchVerify compared to running n separate Eval and Verify operations. A
smaller ratio indicates a more efficient batch opening, with values less than 1 indicating improvements
over the naive approach. Compared to other works, our batch opening achieves a more significant
efficiency improvement. The ratio of our P time, V time and proof size is O(1), O(1/ log2 n) and O(1/n)
respectively, demonstrating that we reduce the verifier time and proof size of ZXH+

trans by O(log2 n)
and O(n) respectively without sacrificing the prover time. Following ZXH+

trans, we assume the degree of
polynomial is t = Θ(n).

Since ZXH+
trans scheme already offers a favorable prover time of O(n log n). Building upon this, batch

opening in Scheme 1 reduces the verifier time to O(n) and the proof size to O(log2 n) while maintaining
the prover time at O(n log n). Therefore, our transparent FB-PC, supporting batch evaluation and batch
opening, achieves O(n log n) prover time, O(n) verifier time and O(n log2 n) proof size.

Theorem 4.2. If the non-interactive Protocol 1 for P and V is sound, then Scheme 1 is a polynomial
commitment scheme supporting batch opening.

Proof. Suppose there exists an adversary A that breaks the batch opening binding with non-negligible
probability ε, we show how to use A to build an adversary B that breaks the security of non-interactive
Protocol 1.

SupposeA outputs (c, 〈I, yI , πI〉 , 〈I ′, y′I′ , π′I′〉) such that ∃i ∈ I∩I ′∧yi 6= y′i and BatchVerify(c, I, yI , πI)∧
BatchVerify(c, I ′, y′I , π

′
I) = 1. Since ∃i ∈ I ∩ I ′ ∧ yi 6= y′i, there must be at least one incorrect evaluation

y ∈ {yi, y′i} that claims to equal f(i).
B chooses a tuple from (c, I, yI , πI) and (c, I ′, y′I , π

′
I), then designates it as (c, J, yJ , π). The probability

that the incorrect evaluation y is in yJ is greater than 1/2. B compute the random value r = H(c, J, yJ)
and set the statement as

∑
j∈J r

kyj =
∑
x∈{0,1}logn

∑
j∈J r

kβ̃(~j, ~x)Ṽ0(~x), where k is the position of j in
set J . Then B outputs π as the proof of the statement. The probability that B breaks the security of
non-interactive Protocol 1 is greater than ε/2, which contradicts the security of Protocol 1.

5 Fully Optimal VSS

We first introduce a generic VSS construction based on FB-PC. Then, by integrating our transparent
FB-PC scheme, we achieve a fully optimal VSS scheme with O(n log n) dealer time, O(n) participant
time, and O(n) communication cost.

Generic VSS Construction from FB-PC. In contrast to the generic VSS construction described by
Zhang et al. [ZXH+22], we replace the single evaluation algorithm Eval in the dealing round with the
batch evaluation algorithm BatchEval. Similarly, in the complaint round, we replace Eval and VerifyEval
with the batch opening algorithms BatchOpen and BatchVerify, respectively. Details are provided in
Scheme 1. As for the security, previous work has shown that if the underlying polynomial commitment
scheme is secure, the VSS scheme is secure [KZG10, TCZ+20, ZXH+22].

A Transparent Fully Optimal VSS Scheme. We instantiate FB-PC in our generic VSS construction
with TFB-PC, obtaining a transparent VSS scheme, referred to as TFB-PC-VSS, which achieves optimal
time complexities. The dealer time is O(n log n) and participant time is O(n), both of which are optimal,
since simply computing n shares would incur O(n log n) time using the FFT algorithm and reading n
shares would incur O(n) time. Our broadcast proof in the complaint round is O(log2 n) and the overall
communication is O(n), which is also optimal since there are O(n) shares to be broadcast in the complaint
round. Our scheme reduces the participant time and communication cost of ZXH+

trans-VSS by O(log2 n)
(see table 2).

6 Implementation and Evaluation

We present the details of our implementation and report experimental results. Additionally, we compare
our approach with the ZXH+

trans schemes [ZXH+22] and discuss their performance.
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Scheme 2. An (n, t)-VSS scheme from our FB-PC.

Sharing phase

Dealing round:

1. P picks f ∈R F[X] of degree t such that s = f(0), computes si = f(ui) for all i ∈ [n].

2. P runs c← Commit(f, pp) and broadcasts c to all verifiers.

3. P runs {yi, πi}i∈[n] ← BatchEval (f, [n]) and sends (yi, πi) to Vi for all i ∈ [n] over an authen-
ticated, private channel.

Complaint round:

1. For all i ∈ [n], Vi invokes b ← VerifyEval(c, ui, yi, πi). If b = 0, Vi broadcasts a complaint to
accuse the dealer.

2. If the size of the set S of complaining players is larger than t, the dealer is disqualified.
Otherwise, the dealer invokes ({yi}i∈S , πS)← BatchOpen(f, S) and reveals the correct shares
with proofs by broadcasting ({yi}i∈S , πS).

3. Every participant invokes {0, 1} ← BatchVerify (c, S, {yi}i∈S , πS). If the batching proof does
not pass (or dealer did not broadcast), the dealer is disqualified. Otherwise, each Vi now has
the correct share f(ui).

Reconstruction phase

Given c and shares {i, yi, πi}i∈T such that |T | > t, the reconstructor:

1. runs bi ← VerifyEval(c, ui, yi, πi) if yi has not been broadcast in the complaint round, else set
bi = 1.

2. recovers f with {i, yi}i∈T by Lagrange interpolation and obtains s = f(0) if bi = 1 for all
i ∈ T ,

6.1 Implementation Details

Our schemes are implemented in C++ based on the open-source codebase of the ZXH+
trans scheme, avail-

able at https://github.com/real-world-cryprography. The implementation includes the following
key enhancements:

• Secure Fiat-Shamir Transformation. The Fiat-Shamir transformation is widely used in crypto-
graphic protocols to convert interactive proofs into non-interactive ones. Recent research highlights
that improper application of the Fiat-Shamir transformation can lead to adaptive attacks [HLPT20,
DMWG23]. The Fiat-Shamir transformation implemented by Zhang et al. [ZXH+22] is a weaker
version, as it neglects certain public information, such as the circuit description and claimed val-
ues, which exposes the protocol to potential adaptive attacks. To address this vulnerability, we
implement a more robust version of the Fiat-Shamir transformation in our scheme. However, this
enhancement comes at the cost of increased memory usage and slower computation.

• Hash Chaining. To optimize memory usage in the Fiat-Shamir transformation, we employ hash
chaining [Tha22]. Specifically, for the i-th round challenge ri, instead hashing all preceding public
messages, we compute it via hashing only the (i − 1)-th round message and challenge ri−1. This
technique reduces memory requirements by approximately 3%, as it allows us to store only the
latest round messages rather than the entire transcript.
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6.2 Experimental Setup

We run the experiments on an AMD ecs.c6a.16xlarge instance with an AMD EPYCTM ROME 7H12, 64
vCPU, and 128 GiB of RAM. In all experiments, we set the degree of the polynomial as t = n/2, and
the number of parties n ranges from 211 to 221.

While the stronger Fiat-Shamir transformation improves security, it increases computational cost
and memory usage, which limits the size of the instances that can be processed efficiently. On an AMD
ecs.ebmr6a.64xlarge instance with an AMD ROME 7H12 CPU (256vCPU and 2048 GiB RAM), we can
run instances only up to 215 with the strong Fiat-Shamir transformation. Therefore, to ensure broader
evaluation, we compare the performance of our work with Zhang et al. [ZXH+22] using their weaker Fiat-
Shamir implementation. This allows us to handle instances up to 221 on a more resource-constrained
setup, the AMD ecs.c6a.16xlarge instance.

6.3 Performance of TFB-PC

We compared TFB-PC with the ZXH+
trans scheme. Our experimental results, as depicted in Fig. 4,

clearly demonstrate the efficiency of our batch opening.
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Figure 4: Comparison of transparent polynomial commitments
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Figure 5: VSS comparison

TFB-PC significantly reduces the proof size for n evaluations compared to ZXH+
trans scheme. The

proof size of TFB-PC is 214.44KB for 211 evaluations and 440.77KB for 221 evaluations, which is 2, 168-
2, 305, 164× smaller than of ZXH+

trans scheme, where the proof sizes are 430MB and 885.57GB, respec-
tively. The data clearly shows that the proof size of TFB-PC is smaller by an entire order of magnitude.

The verification of TFB-PC is 2, 061-2, 571, 456× faster than ZXH+
trans scheme. For 211 evaluations,

our scheme takes just 2.42ms, while ZXH+
trans takes 5.13s. The disparity grows with larger batch sizes,

and for 221 evaluations, our scheme requires only 6.23ms, whereas ZXH+
trans takes a prohibitive 4.09
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hours. The prover time of ZXH+
trans is comparable to ours, but we benefit from eliminating the need to

compute the common random challenge, which further enhances its practical applicability.

6.4 Performance of TFB-PC-VSS

We evaluated TFB-PC-VSS against ZXH+
trans-VSS [ZXH+22], particularly focusing on scenarios involving

a complaint round where the dealer broadcasts O(n) shares in the worst case. In the best case, TFB-
PC-VSS performs comparably to ZXH+

trans-VSS since it has no complaints and does not require batch
opening.

TFB-PC-VSS demonstrates a reduction in communication cost by up to 954-27, 595× and participant
time by up to 1, 028-1, 155, 106× compared to ZXH+

trans-VSS, for 211-221 parties. As shown in Fig. 4, our
communication per participant is only 461.27KB for 211 evaluations and 32.86MB for 221 evaluations. In
contrast, ZXH+

trans-VSS requires a significantly larger communication cost of 429.87MB and 885.6GB for
the same evaluations, respectively. Furthermore, the verification time in our scheme is highly efficient,
taking only 4.91ms for 211 evaluations and 13.99ms for 221 evaluations. By comparison, ZXH+

trans-VSS
takes 5.05s and a prohibitive 4.49h for the same tasks. The dealer time of our scheme is similar to that
of ZXH+

trans-VSS in Fig. 5 because we have the same prover time complexity.
TFB-PC-VSS has a stable performance in the worst and best case compared to ZXH+

trans-VSS. In the
best case, the performance of TFB-PC-VSS and ZXH+

trans-VSS are the same, with communication per
participant is 214.83KB for 211 evaluations and 442.8KB for 221 evaluations, with participant times of
2.5ms and 7.7ms, respectively. In the worst case, where complaints occur, the broadcast proof of TFB-
PC-VSS grows modestly from 214.44KB for 211 parties to 440.77KB for 221 evaluations, while that of
ZXH+

trans-VSS rises sharply from 430MB to 885.57GB. Moreover, the verification time of TFB-PC-VSS
remains remarkably consistent, ranging from 2.45ms for 211 parties to 6.28ms for 221 parties, while that
of ZXH+

trans-VSS ranges from 5.05s for 211 parties to 4.49h for 221 parties. This stark contrast highlights
the efficiency and scalability of our approach, especially in large-scale applications.

7 Conclusion

In this paper, we propose a transparent VSS scheme with optimal dealer time, participant time, and
communication cost, suitable for large-scale privacy-preserving distributed computation. The core is the
first transparent fully batchable polynomial commitment scheme, TFB-PC, which supports both batch
opening and batch evaluation. Compared to the ZXH+

trans scheme [ZXH+22], TFB-PC reduces the proof
size by O(n) and verifier time by O(log2 n), without compromising the prover’s efficiency. Leveraging
FB-PC, we present a generic VSS construction and achieve an optimal VSS scheme, TFB-PC-VSS. We
implement TFB-PC-VSS and evaluate its performance against the ZXH+

trans-VSS [ZXH+22] in the same
setting. The experimental results show that, TFB-PC-VSS has a comparable dealer time with ZXH+

trans-
VSS, while reducing its communication cost by 954-27, 595×, and improving the participant time by
1, 028-1, 155, 106× for 211 to 221 parties.
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