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Abstract: Presenting a protocol that builds a cryptographic solution which shifts security 

responsibility from the cipher designer to the cipher user.  The Polar Lattice is a pattern-devoid 

cryptographic cipher. It is based on a geometric construct -- a polar lattice, on which the letters 

of a plaintext alphabet A, are presented as two points each letter, so that to transmit a letter the 

transmitter transmits a randomized pathway, a trail, (ciphertext) that begins at the first point of 

the transmitted letter and ends at the second point of the transmitted letter; the transmitted 

pathway is a set of steps on the lattice. Once a letter is transmitted the next bits on the ciphertext 

mark the beginning of the pathway that points to the next letter. The size and the geometric 

construction of the polar lattice are randomized and kept secret. The randomized pathways may 

be long or short, the attacker does not know how to parcel the ciphertext to individual trails 

pointing to distinct letters in the plaintext alphabet A. The polar lattice may be implemented 

algebraically, or geometrically; the lattice may be a physical nano-construct. The polar lattice is 

very power efficient, very fast. It claims all the attributes associated with pattern devoid 

cryptography: it allows for only brute force cryptanalysis, which in turn can be defeated through 

increased ciphertext size, unlimited key size and structure complexity.  
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1.0  Introduction 

The Polar Lattice cryptography is a case that belongs to the pattern-devoid class and in it to 

the per-letter randomized pointer class. Pattern devoid cryptography is where randomness is used 

in more than selection of a fixed size key. Most if not all of its operation is randomized, washing 

away any pattern to be homed in by a cryptanalyst.  

This. cipher innovates the notion of the key, and exploits geometry to pack entropy to build 

unlimited cryptanalytic barriers. The key is a geometric structure: a polar lattice. Each letter of 

the plaintext alphabet is represented as a two points on that lattice: starting point and finish point. 

A transmitter sends a recipient a given letter by sending over a randomized path, a trail, on the 

polar lattice such that when applied from the starting point of the letter, it ends up at the finish 

point of that letter. There is an infinity of possible pathways leading from the starting point of a 

letter to its finish point, hence there are infinite number of trails (ciphertext) that all point to the 

same letter. The transmitter may choose a short trail or a long trail -- randomly or arbitrarily. 

Any given letter of the plaintext alphabet may be represented by more than one pair of starting 

point and finish point, so the transmitter can not only choose a different trail each time, but can 

also switch to a different pair for the same letter. To send a message the transmitter sends one 

letter trail after the other, thereby indicating a series of letters being sent to the recipient. The 

attacker has no way to parcel out the series of the trail to specific letters. The attacker does not 

know how the polar lattice is structured, and does not know where on the polar lattice lie the 

starting points and the finish points of the letters of the plaintext alphabet. The combined entropy 

of the structural information of the arbitrary and secret size polar lattice, the locations of the 

starting points and finish points on the lattice for the letters of the alphabet, and the number of 
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such pairs amounts to an open-ended entropy that can match any given ciphertext stream to a 

sufficient number of plausible messages that had a likelihood to be the plaintext that was 

encrypted into the given ciphertext. This high-entropy generated residual equivocation elevates 

polar lattice cryptography to a tool that can deliver mathematical secrecy in line with other bona 

fide pattern-devoid ciphers.  

We first describe the elements: the polar lattice, the key, the encryption and decryption 

process. Then we describe the way the cipher is being used in practice, followed by an analysis 

of this new capability.  

1.1 Pattern Devoid Cryptography 

This cipher is properly classified as a pattern-devoid cryptography.  This class is well 

discussed and presented in the reference items [1-84]. The Polar Lattice projects security through 

lavish use of randomness as opposed to the more common way of mathematical complexity.  

 

1.2 AI Assisted Innovation 

This cipher was developed with the help of AI assisted innovation  [85]. through 

InnovationSP. The development was initiated by a directive to pivot from the customary effort to 

build a larger mathematical and computational barrier before a would be cryptanalysis, and opt 

instead to means to ensure terminal equivocation over the list of plausible plaintext  per the case 

in point.  Further instructions called for a key that keeps its size secret, and one where not 

necessarily the entire key is used to encrypt every message. This led to end-to-start continuation 

of key material. Two efforts were applied in parallel: (i) building a rich geometric structure, and 

(ii) allowing for many ways to point to the same plaintext letter.  These two efforts in parallel 

pointed to an attempt to merger, which led to the polar lattice, with end-to-start walk through, 

with a rich structural geometry and with the idea of pointing to a plaintext letter via specified 
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trail that leads from a first point on the lattice to an end point of the lattice.  Since a given trail 

can connect any point on the lattice to some other point on the lattice, the option to associate the 

lattice with more and more markings of the same letter is very advantageous.  The polar lattice 

cipher is a pattern-devoid cipher of the highest order. 

  

2.0 Elements 

2.1 The Polar Lattice 

The polar lattice is a structure comprising r concentric rings, from the smallest ring 1 to the 

largest ring r, all rings regard point o as their center. The polar lattice is marked with q rays -- 

straight lines emanating from point o, where each ray is recognized as a straight line leading 

from some ring g to the most outward ring r, and is not recognized between the center point and 

ring g.  

The polar lattice includes at least ray-1 which is the ray that is horizontal and stretches right 

way, and is considered the ray of direction α=0. Each ray j is marked at a direction αj where 

j=1,2,...q and  

0 ≤ αj ≤ 360  

The polar lattice includes at least ring 1 which intersects with ray - 1 to define the first point 

of the first ring, p(1,1).  

The q rays and r rings are meeting each other over h points.  

This construction is designated as a polar lattice, or a polar lattice space (PLS)  

Each of the h points defined on the polar lattice may be identified as p(i,j) where i 

represents the ring, i=1,2,3...r and j represents the count of points on the ring. j= 1,2,....qi, where 
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qi represents the number of points on ring i. The points are counted from the ray -1, counter-

clockwise.  

neighbors  

Two polar lattice (PL) points are considered ring neighbors, if between them on their shared 

ring, there is no other point.  

Two polar lattice (PL) points are considered ray neighbors, if they share the same direction, 

α, and are situated on consecutive rings.  

steps  

We now define four steps over the polar lattice. A step is movement from one lattice point 

to a neighboring lattice point. Each point may have two ring neighbors and two ray neighbors. 

Hence a step may be defined via four indicators, we call them: right, left, close, far )(R,L,C,F). R 

represents moving to the right to a ring neighbor, and L represents moving to the left to a ring 

neighbor. C represents moving to the next smaller concentric ring on the same ray and far 

represnts moving to the next larger ring on the same ray.  

For area of the lattice above the horizontal line the  Right, R step is clockwise, and the Left, 

L, step is counterclockwise.  These designation flip on the lower part of the lattice, below the 

horizontal line where R means counter counterclockwise and L means clockwise. Without 

knowing where the starting point lays it is impossible to know which direction the R and L 

indicators point to.   

Note: this same flip can be used also for indicating movement between rings. We use here 

close and far, C and F which is the same interpretation anywhere on the lattice.  But one could 

use Up and Down, U and D, which also flip their interpretation when applying to a point on the 

lower half of the lattice as opposed to the higher half.  

Trips (pathway, trails)  
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A pathway, trail or a trip on the PL is a sequence of steps leading from point x to point y on 

the PL. The way the PL is constructed it is clear that there is a pathway (trip) between any two 

arbitrary points, x, y on a polar lattice.  

Extended Steps  

Points on the outer ring have no 'far' neighbor. Also points at the lowest part of a ray don't 

have a close neighbor. We may remedy this deficiency as follows:  

A point on the outer ring will interpret a step 'far' as a step to the closest point on its ray, 

when closeness is measured towards the center of the concentric rings. Such that a point on the 

last ring r which is defined over a ray that is drawn from ring g to rind r, will view the point on 

ring g but on the same ray as the point that replaced the point to move to when the step "far" F is 

indicated. This "circling" dynamics resembles modular arithmetic.  

A point on ring g on a ray that is not drawn from ring g > 1 to ring 1, when it encounters the 

instructions to move a step closer, C, is interpreting it as moving on the same ray to ring r.  

It is clear that a sequence close-far CF and the sequence far-close FC will be a two steps trip 

that would end up at the same point both for a regular point and for the special cases above.  

The above definition creates extended steps, and accordingly all points on the polar 

elements have exactly four neighbors, and every point on the lattice has another point to go to 

when either one of the four steps is being encountered.  

We regard the four steps R, L, C, F as the steps alphabet.  

The Universal Nature of Trips  

Every point on the polar lattice can be matched with any trip instructions in the form of 

some sequence of steps right, left, close, far RLCF, such that when following these instructions 

the traveler will change its location from that starting point to the corresponding end point. Say 
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then a trip associates any polar lattice point with an end point on the polar lattice. And that is 

regardless of the size or complexity of the polar lattice.  

We can also claim that any two arbitrary points on the polar lattice have an infinite number 

of trips leading from one to the other. This is called the trip infinity premise.  

Let trip T lead from point x to point y on a given polar lattice. T is expressed as a string 

comprising the letters of the steps alphabet. Let Tr be the reverse sequence of T, then we can 

write:  

x → T = y  

y → Tr = x  

The reverse trail is constructed from the pre-reverse trail by reversing the order of the steps: the 

last step on the pre-reverse is the first step on the reverse trail, and each step is replaced by its 

neutralizing match.  So for T = CCRF, the reverse will be    T(reverse) = CLFF. 

nomenclature  

A point on the PLS can be identified as p(i,j) where i is the ring count, and j is the count of 

rays crossing that ring. i = 1,2,...r and j=1,2,....qi. Modular arithmetic can be used, so p(k,l ) is 

interpreted as i = k MOD r, and j = l MOD qi, where '0' is interpreted as r or qj.  

The points on a ring are counted counterclockwise wise and. αj > αi for all j > i.  

expressing the polar lattice  

The polar lattice space can be expressed as a set of point p(i,j,α): ring count, points of ring 

count, and direction. It is important to keep trac of α in order to identify which point one moves 

to when the trail indicates C or F steps. Otherwise one cannot identify the neighbors on the same 

ray.  

 



 8 

2.2 The Key 

The Polar Lattice cryptography key is comprised of two components: the polar lattice, 

serving as the 'space' where the letters of the plaintext alphabet are identified with at least one 

pair of two marked points each. The locations of these marked points is the other component. 

This way the key that packs a large measure of entropy.  

The polar lattice itself is in the open per its principles of construction namely a series of 

concentric ring matched with a bunch of rays emanating from the center of the rings with each 

ray recognized from a certain ring outwards to the outer ring. So much is not secret. However, 

the number of rings is secret. Also the number of rays that cross each ring and the direction, 0 ≤ 

α ≤ 360 for each ray is also a secret.  

Both ring count and ray count is given with modular arithmetic so that the reported numbers 

themselves don't betray size. A polar lattice with 10 rings can point to ring 9 by specifying 1009. 

Ray 12 on a given ring with 340 rays can be pointed to as ray 352. Unlike modular arithmetic, in 

the ray count and ring count there is no zero, rather r, and qj.  

We consider a plaintext alphabet A comprising n letters a1, a2, ..... an. We assign each letter 

two points on the polar lattice, a starting point and a finish point. There are at least n pairs of 

points (signals), n starting points, pis and n finish point pif . for i=1,2,...n.  

The pair of the starting point and the finish point per letters are its markers on the lattice. 

Their location is secret. Any letter of A can be associated with more than one pair of starting and 

finishing point. But no two letters will have both the same starting point and the same finish 

point.  

3.0 Operation 

The operation of the PL cipher is comprised of encryption, transmission and decryption. A 

plaintext message M comprised as a series of letters from alphabet A is processed through the PL 
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key to generate a corresponding ciphertext, C. C is transmitted by the transmitter who encrypted 

the message over insecure channels to the intended recipient. The intended recipient decrypts C 

to M using the shared key.  

We further discuss the setup operation to prepare the PL cipher (PLC) for normal operation. 

3.1 Encryption 

Encryption happens letter by letter over the plaintext alphabet A. To encrypt letter Ai one 

will draw a trail on the PL space (PLS), starting from a corresponding starting point pis for ai and 

ending with the matching finish point pif . The trail, T, is comprising a sequence of right, left, 

close, far (RLCF) steps indicators. The full step language which has four options R, L, C, F can 

be written with as 2 bits indicators, for example: R=00, L=11, C=01, F=10. Say then that a PL 

trip is specified with an even bit count bit string.  

Having defined trail T leading from pis to pif , the transmitter (the encryptor) is then 

applying T to all other letters in A. Namely, for each letter in A other than ai . If the trail T 

encounters the finish point of any letter in A other than ai, then this trail is declared as faulty, and 

the transmitter is marking another trail leading from the starting point ais to the finish point aif . 

The new trial, T' ≠ T then undergoes the same test as above vis a vis all other letters in A. If the 

trail hits the finish point of any of the non-i letters, then the trail is declared faulty and another 

trail is being marked. So it goes T to T' to T", to T"' and on until a trail T* is found which does 

not lead to the finish point of any other letter except letter i (ai).  

There are infinite possible trails leading from ais to aif to choose from.  

T* is transmitted to the recipient as a secret transmission of letter ai. 

3.1.1. Trail Drawing 
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The power of the PL cipher is hinged on the fact that there are infinite trails leading from 

any point to any point on the PL space (PLS). One could make the trail as long as desired, as 

convoluted as desired.  

The first premise of the PLS is that from every point on that space, there is a path to any 

other point on that space. proof. let point x be defined by ring i and by a ray of direction (angle). 

αx, let y be an arbitrary point on ring j with a ray of direction αy. Let i ≥ j. One could traverse 

from point x to point y first by moving either to the right or the left until one reaches a point 

defined by ring i and direction αy. From that point one drops down the rings using "C" steps until 

one arrives at point y.  

To traverse from point y to point x one simply takes the opposite trail, namely using the 

steps last to first and reversing each step: C → F, F → C, R → L, L→ R. By going on the same 

trail backwards one returns from point y to point x.  

We thereby have proven that any two points on the PLS have a connecting trail that can be 

traversed both ways. Therefore one can pick a random point z on the PLS. Let trail Tz lead from 

point x to point z. Such trail surely exists. Let trail Ty lead from point z to point y. Therefore the 

sequence of these trails one after the other, written as TyTz will qualify as T leading from point x 

to point y. However instead of trailing from point z to point y, one could move from point z to 

point w, and then from point w to point y. The combined trails. TyTwT'z, where T'y is the trail 

from point w to point y, also qualifies as the desired trail T leading from x to y.  

One could add as many in between points like z and w and thereby prove the premise that 

there are infinite number of trails between two arbitrary points on the PLS.  

Furthermore beyond the minimum length trail the traveler from any point to any other may 

use a trail as long as desired.  
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It is because there are infinite trails that it is readily possible to find a trail leading between 

two points such that the same trail if started from another letter will not lead to the finish point 

for that letter.  

We further elaborate on the base trail between two points on the PL 

Shortest Trail 

Given a starting point p(i',j'), where i = i' MOD r. and j = j' MOD qi, where r is the number 

of rings in the PL and qi is the number of points on ring i, and given a finish point p(k',l'), where 

k = k' MOD r. and l =;' MOD qk, it is straight forward to draw the shortest trail. from the starting 

point to the finishing point, p(k, l ).  

One will identify the angle associated with the ray that defines the starting point as, and the 

angle that is associated with the ray that defines the finish point, αf.  

One will then move along the starting ring from αs to αf. This will amount to a series of 

right steps or to a series of left steps. It is possible to move from αs to αf in either direction. Let d 

be the point on ring i where the ray is at direction αf. A series of right steps or a series of left 

steps on ring i takes the trip maker from the starting point to d. Once on d, the trip maker moves 

along that ray though the consecutive rings from ring i to ring k. This is done via a series of 

"close" (C) steps for the case of i > k, or through a series of "far" F steps in the case where i < k. 

If i=k no steps.  

So traveling on the PLS one moves from the starting point to a finish point in the basic way. 

The trip looks like one of the following options:  

RRRR....RCC.....C  

RRRR....RFF.......F  

LLLL....LCC.....C  
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LLLL....LFF.....F  

Alternatively one could move from the closest point to the ring of the furthest point and 

then move right or left along the ring until hitting the point. If the closest point is the finishing 

point then the reverse trail is used to move from the starting point to the finish point. 

 3.1.2 Conflict Management 

Trail Ti leading from the starting point for letter ai of alphabet A to its finish point, 

arbitrarily drawn, as one of the infinite number of options, may also lead from the starting point 

to the finish point of another letter j ¹i.   This will create a conflict. Moreover,  trail Ti  may be 

comprised of a Tj plus some residual trail Tr:   Ti = Tj || Tr.  In that case when the recipient tries 

the trail on all the letters he finds that a sub section of Ti will qualify as Tj.  If the mode of 

transmission is such that the recipient does not know that Ti in totality is the trail, and not any 

subsection thereto then the recipient might misinterpret Ti as Tj, and may further interpret the 

subsequence ciphertext stream.    

The transmitter, as she draws an arbitrary Ti step by step will simultaneously apply the built 

up Ti to all letters j in A.  That means will draw the trail from the starting point of all the letters 

in alphabet A.  If  Ti or subsection thereto qualify as a Tj trail, then the arbitrary drawing will be 

changed.  The recent step that created the conflict will be erased, and an alternative step will be 

used to build Ti.   Such redrawing of a trail can happen several times to ensure that the resultant 

Ti does not create a confusion for the recipient. 

The parties may even agree to regard cases of conflict a 'decoy' bits and ignore them, while 

leaving the attacker to remain confused about them.  

In the event that the trail per letter is submitted with known number of steps then the 

conflict option should be checked only for the full length of the trail, not a subsection thereto. 

3.1.3 Trail Size Management 
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Communicating parties may hide their communication intensity and frequency by using a 

constant ciphertext stream from one to another. If a transmitter has nothing to say to a particular 

recipient she may send him a wriggly trail that fits to no letter.   

If a transmitter assesses a message to be extremely sensitive she may send its letters with 

extremely long trails.  If the message is of low sensitivity she may use short trails.  Furthermore, 

the letters of A may be marked on the PLS one time with short distances between the starting 

points and finish points,  or may be marked with medium or long distances between the starting 

points and the finish points. In the former case the transmitter may send messages with short 

trails which are not available for the other set of point markings because the distance between 

them on the PLS is large. 

 

3.2 Transmission 

Let M be a message comprised of t letters from the plaintext alphabet A, comprising n 

letters a1, a2, ..... an. M is a sequence of m letters from A, designated as bi being the letter i in M, 

where this letter is a letter from alphabet A. M then can be written as:  

M =b1, b2, ..... bm  

Encrypting the letters in M with the PL cipher PLC, one yields m consecutive strings 

comprised of the four letter steps alphabet for the PL, namely right, left, close, far R, L, C, F. 

This alphabet can be mapped to a four 2 bit letters 00, 11,10,01, so that these strings are even 

counted bit strings. We recall that each string represents a trail that leads from the starting 

marker to the finish marker of the indicated letter. We therefore write:  

bi - PLK → Ti  

where PLK is the polar lattice key ( the structure of the lattice and the locations of all the 

markers), and Ti is the trail corresponding to letter bi.  
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To transmit M the transmitter transmit the Ti trails in a series. M = T1, T2, .... Tm  

The m trails will have to be transmitted such that the recipient will be able to parcel out the 

combined string T1-T2-..Tm to the individual letters, as well realize that a new message is sent 

over and then to distinguish between it and the next message.  

We describe three ways for handling these tasks (i) internal alphabet, (ii) cipher signaling, 

(iii) double-bitting.  

3.2.1 Internal Alphabet 

The step alphabet is comprised of two counter reverse pairs: {R,L} and {C,F}. taking step R 

followed by step L brings the traveler of the PLS to the same spot. Same in reverse step: L 

followed by R. Also for a step close, C followed by far, F and vice versa.  

Accordingly given a bit string S representing a PLS trail one could split it at any location to 

yield two concatenated even count strings: S = S1 || S2, and then interject between S1 and S2 a 

neutral string N of even count of bits, where N is comprised of any number of counter reverse 

pairs. Examples:  

N = RL  

N = RLLRRLCF  

N = FCFCRLLRCFCFCFCFCFRL  

The trail:  

Sn = S1 || N || S2  

will connect the same starting point and finish points that are connected by string S.  

One can therefore separate the letter string Ti for i=1,2,...m with proper N strings.  
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In fact one can develop a signal alphabet comprised of any desired number of signal (signal 

letters) in order to communicate to the recipient a wealth of information about the bit stream that 

comes its way, or send a completely unrelated message.  

For example, N series will be agreed upon to indicate: start of encryption flow, start of a 

message, break down between letters, end of a message, end of the encryption session. Once 

could use N strings to add and a hash of the ciphertext. One will have to make sure that none of 

the agreed upon N alphabets appear naturally in the trail string (no need to).  

Using these internal markers it is possible to send dummy strings, decoys that connect no 

starting point with no finish point for no letter in A. These dummy strings are confusing to the 

hackers. 

3.2.2. cipher signaling 

When trail T1 is processed by the recipient it points to letter b1 in M as the first letter of 

message M. This will serve as an indication to the recipient that the next bits start string T2. 

When T2 is fully processed by the recipient, it is interpreted as letter b2 in M. The next two bits in 

the ciphertext stream indicate the first step-letter of T3, and so on. This implies that the Ti strings: 

i=1,2,...m can be delivered one right after the other with no indication as to where a new letter 

starts and where it ends. The intended recipient will not be confused but the attacker will not 

know where one trail starts and the other trail ends.  

 

 

3.2.3 double bitting 

One could identify bit 0 as 01 and bit 1 as 10, thereby leaving the combinations 00 and 11 to 

serve as indicators on the combined string to identify the individual letter strings, Ti. The cost is 

doubling the number of communicated bits.  
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3.3 Decryption 

The intended recipient upon receiving trail T* is applying it to the starting points of all the 

letters in A, as marked on the polar lattice space (PLS). The way T* is constructed it will lead 

from the starting point letter i: pis to the finish point of the same letter: pif :  

pis -- T* → = pif  

T* being applied to all other letters will not lead to their finish point. This situation will 

indicate to the recipient that the trail T* sent over to him by the transmitter is pointing to letter ai 

which was thereby sent to the recipient.  

The process repeats itself letter by letter until the transmitter sends the entire secret message 

M to the recipient. 

3.4 Key Preparation 

before the PL can operate it must have a ready key. In most ciphers a key is a randomized 

bit string which can be generated from any proper randomness generating source. The PL key by 

contrast requires two preparatory operations: (i) key construction, (ii) letter marking. 

3.4.1 Key Construction 

The extended steps alphabet creates a situation that any trail, T, defined as a series of the 

step alphabet letters, will move a traveler from any point x on the PLS to some point y thereto, 

while the counter-reverse trail Tr will move a traveler from point y to point x. This universality 

of travel will take place on any PLS regardless of shape and size.  

To construct a PLS one will first select the number of rings in the lattice, r. The larger the 

value of r, the larger the lattice -- the larger the key. Next the PLS constructor will estimate the 

desired number of points on the lattice, q.  
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Construction starts by marking the center point of the PLS, point o on some surface (two 

dimensional). Next the constructor is drawing line L1 which is a horizontal line drawn to the 

right side of o. At some point x on L1 the constructor will draw ring 1 around the origin point, o, 

with a radius equal to the distance from o to x. Point x will be p(i,j,α) = p(1,1,0) -- point at the 

intersection of ring-1 with ray -1 which is positioned at angle α=0.  

Using a random number generator the constructor will select how many points to mark on 

ring 1, q1. Next the constructor will select directions for the desired q1 rays emanating from the 

center point o, this selection will also be randomized under the condition that αi > αj for every 

i>j. we recall that the points on a ring are counted counterclockwise.  

When done there are q1 rays that beam out from ring 1. These beams are not marked, not 

recognized in the area between center point o and ring 1. They beam outward towards and 

through beams 2 to r.  

Next the constructor selects a point x' beyond point x on ray L1, (|x'-o| > |x-o| ) and draws 

the second ring around point o with a radius defined by the distance between point o and point x'. 

This second ring intersects the rays beaming from ring 1 so now the total number of points 

defined on the lattice is q1 points on the first ring and q1 points on the second ring.  

The q1 beam mark q1 points on ring 2, which in turn mark q1 arc sections on ring 2. For 

every arc section between two marked points on ring 2, the constructor will use a random 

number generator to select t+1 subsections through marking t points on the arc section. Each of 

these t points guides the construction of a ray pointing at the origin of the lattice at one end, and 

pointing outwardly each with its angle α. Points on a ring are counted counter clock wise, each 

higher count point on any arc section will be associated with a direction α larger than the 

direction α' of the previous point on the ring. By so marking random number of subsections on 

each section the constructor marked q2 points on ring 2. If the random marking count qr > q2, 

then the extra points are eliminated randomly. For the case qr < q2, the missing points are added 
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randomly. Thereby the count of qi is maintained through the guidance of randomness, and 

pattern-less.  

This procedure continues until ring r is drawn. Having defined ring i with its qi points, the 

constructor is marking a further point on L1, xj where j=i+1, draws a ring centered around o with 

a radius of the distance between point o and point xj. Ring j is marked with qi points through the 

qi rays that beam out of ring i towards ring j. Ring j is therefore defined with qi sections. Each of 

these qi sections will be divided to subsections the number of which is randomly selected, and 

the total number of these subsections will be the number of the points qj beaming out from ring j 

to the next ring, ring (j+1).  

This sequence continues until the outer ring of the lattice, r. We can say then:  

q = Σ qi. from i=1 to i=r  

' 

3.4.2 Letter Markings 

It is important to randomly mark the starting points and the finish points for all the letters of 

the plaintext alphabet.  

Each point will be defined through random number generator generating two random 

positive integers, R and R' identified as point p(i,j) on ring i and ray j, where i = R MOD r and j 

= R' MOD qi.  

If two letters of A happen to share the same starting point and the same finish point then one 

or both letters are re-randomized as above.  

Note that once the a pair of markers per plaintext alphabet letter is determined, one can 

switch the designation start-finish at will. And also note that each point in A can be associated 

with an arbitrary number of start-finish pair points.  
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4.0 Implementation 

The PL cryptography can be implemented in software or in hardware. The polar lattice 

space can be built through integrated circuitry which will mark the trails. This hardware 

implementation is ultra fast and because of today's high concentration of integrated chips will 

allow for a very large key to be used in very small area.  

In software the PL space can be kept in a database format where each point is identified 

through 3 data points: ring count (i), ray count (j), ray direction (α), where i=1,2,...r. j=1,2,...qi, 0 

≤ α ≤ 360. The PLK (The PL key) can be expressed graphically and hence be communicated by 

depicting it on a screen of a communication device, letting another device to read that screen. 

The screen will depict the PLS and the starting points and finish points for all the letters in the 

plaintext alphabet.  

5.0 Equivocation 

Given any size ciphertext expressed a an even count bit string c, it can readily be interpreted 

as a series written in the 4 letters step alphabet. R,L, C, F. Given a sufficiently small arbitrary 

message M comprising m letters, one could randomly build a PLS, and then mark on it the 

starting points and finish points of the alphabet A so as to interpret the ciphertext c as the letters 

of M.  

This is easy to do if one allows the number of starting points and finish points per letters to 

be the number of times that letters appears in M.  

Another means for interpreting c as M is the use of decoy letters. Decoy letters, like regular 

A letters have each a starting point and a finish point, only that when the recipient reconstructs M 

from the ciphertext c, they ignore every decoy letter.  
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Brute force plaintext to ciphertext matching may be very productive given that a large 

variety of lattices may be tested together with a large number of possible letter markers 

placement.  

A PLK can grow while in use. More rings added, more rays added, more places to put 

starting points and finish points.  

Since the PLS size and geometry are randomized, the starting point and finish points 

placement is randomized, the selection of trail is highly randomized, then the cipher operation is 

pattern-devoid and cannot be compromised with advanced math and faster computers.  

See more in section 8. Security 

 

6.0 Extensions and Variations 

Extensions and variation options are identified as: (i) Up and Down replacing Close and 

Far, (ii) randomizing ray span, (iii) higher dimensions lattice, (iv) patterned lattice 

6.1 Up and Down Variations 

Instead of the marking Closer and Far, C & F as specified, one could use Up an Down. The 

advantage is that without knowing the position from where to go up or down, the traveler does 

not know where to go, close or far. Up over the higher half of the lattice, above the horizontal 

line is 'Far' an Down is 'Close'. On the lower half of the lattice, below the horizontal line, the Up 

is interpreted as Close and the Down as 'Far'. 

 

6.2 Patterned Lattice 
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Instead of randomly selected to how many sub sections to divide an arc section when 

constructing the polar lattice space, one could use a formula, saying for example, any arc section 

on ring i will be divided to i-3 sections. Such formulaic, pattern-packed construction of the polar 

lattice will deny it the advantage of randomness but will benefit it with the option to readily build 

a very large lattice. 

6.3 Randomized Key Extension 
 
As described each of the rays starts at a certain ring, g and extends from that point to the outer 

ring r. This can be replaced with a polar lattice where each ray starts at a random ring rs and is 

drawn from there outwardly away from the origin, to a random ring re where it ends. 

 

6.4 Higher Dimension Lattice 
Let PL1 be a polar lattice comprising r rings and q rays. 

Let PL2 be a copy of PL1. 

Let us put PL2 below PL1, and connect all the h1 points on PL1 each with its matching point on 

PL2. 

 

One could then extend the step alphabet to allow a traveler to move from point to point on either 

lattice and also move from one lattice to the other. We will replace the Right Left steps with 

clockwise, W and counterclockwise, A (anti clockwise) step option. We end up with a 6 letters 

steps alphabet: W, A, C, F, U, D, where U is UP and D is down. Up on the upper lattice will be 

interpreted as going to the lowest lattice in this case PL2 on the matching point. And similarly 

down on the lower lattice is interpreted as moving to the highest lattice, in this case PL2 on the 

matching point. We with extension, a traveler can move around on either lattice and at will move 

to the other lattice. Accordingly the starting point and the finish point of any letter can be placed 

on different lattices. There will be infinite number of trails that will lead from the starting point 

to the finish point. One will need a 3 bit letter designation to handle the 6 letters steps alphabet. 

This will leave two combinations of three bits for all sorts signaling and indications. 
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Let us now add into the lower lattice, PL2 h more rings that are marked between ring 1 and ring 

r; and also v rays are added between the q rays. PL2 will then become a PL with r' = r + h rings 

and q' = q + v rays. This will add f2 points to PL2 which will have q2 = q1 + f2 points. These extra 

f2 points respond to a step Up or step down, by staying put because there is only one lattice now 

with this point. 

 

Let PL3 be a copy of PL2, and be placed below PL2. Similarly all points on these two lattices will 

be connected with a line on which one can traverse up and down between PL2 and PL3. Now 

trails can be readily marked on the complex of three lattice PL1, PL2, PL3, moving inside each or 

moving from one lattice to the other. 

 

We now repeat the process we used for PL2 versus PL1: add into the lower lattice, PL3 h' more 

rings that are marked between ring 1 and ring r'; and also v' rays are added between the q' rays. 

PL3 will then become a PL with r" = r' + h' rings and q" = q' + v' rays. This will add f3 points to 

PL3 which will have q3 = q3 + f3 points. These extra f3 points respond to a step down by going to 

the matching point on PL1. Points on PL1 will respond to a step Up by going to the matching 

point on PL3. 

 

The process may repeat arbitrary times, creating a three dimensional complex of polar lattices. 

 

6.5 Hardware PLS 
The PLS may be built on a hardware surface where the rings and the rays mark conductive lanes 

and the rest of the surface is an insulator.  This will allow a surface abreast electronics to identify 

a PLS point as the point where the ring current and ray current connect, and thereby the steps of 

the steps alphabet will be accounted for by shifting either the ray or the ring of the point.  This 

embodiment allows for encryption and decryption to proceed with integrated circuitry speed. 
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7.0. Operational Summary 

Presenting a method to encrypt and decrypt information using a key that is comprised of 

pairs of plaintext letters markers and a secret geometric structure, polar lattice, PL, onto which 

these pairs of markers are written; there are arbitrary numbers of pairs of letters markers, and  the 

size and the complexity of the PL is open ended so that no claim for brute force cryptanalysis 

escapes the possibility that the key is comprising a larger PL and more letters markers; 

The method is comprising: 

(1) a plaintext alphabet, A 

(ii) a polar lattice structure, PLS, 

(iii) pairs of markers for the letters in A; 

alphabet A is comprising n letters a1, a2, ..... an; 

The PLS is constructed as r concentric rings R1, R2, ... Rr. where point o is their shared 

center and where the diameter of ring i is smaller than the diameter of ring (i+1) for i=1,2,...(r-1). 

There are l rays, lines, L1, L2, .... Ll emanating from o and crossing all the rings, each ray j is 

drawn at direction αj, where αj < αj+1 for j=1,2,...(l -1) and where α 1 = 0, and where L1 is 

horizontal, drawn to the right of point o; each line Lj is recognized from a ring gj < r to ring r, it 

is not recognized, not drawn, from ring 1 to ring gj. 

The r rings and the l lines intersect q times, each intersection is designated as a point on the 

PLS;  the pair of markers for the letters of A are identified by their point, address, on the PLS. 

A given point x on the PLS has at most four neighbors: 
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(a) a 'far' neighbor which is the point that shares a line with x but is located on the next 

larger ring; 

(b) a 'close' neighbor which is the point that shares a line with x but is located on the next 

smaller ring; 

(c) a 'right' neighbor which is the point that shares a ring with x but is the next point to x 

moving in the right direction; the right neighbor is found in the clockwise direction for the upper 

half of the PLS, 0  £ α £  180,  and is found in the counterclockwise direction for the lower part 

of the PLS, 180  < α £  360; 

(d) a 'left' neighbor which is the point that shares a ring with x but is the next point to x 

moving in the left direction; the left neighbor is found in the counterclockwise direction for the 

upper half of the PLS, 0  £ α £  180,  and is found in the clockwise direction for the lower part of 

the PLS, 180  < α £  360. 

 

A traveler on the PLS who is located at point x will reach the far neighbor through a step on 

the shared ray further from o; this step is designated as F; travelers move from one point to its 

neighbor, they don't 'jump'. 

A traveler on the PLS who is located at point x will reach the close neighbor through a step 

on the shared ray closer to o; this step is designated as C. 

A traveler on the PLS who is located at point x will reach the right neighbor through a step 

on the shared ring taken in the right direction; this step is designated as R. 
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A traveler on the PLS who is located at point x will reach the left neighbor through a step 

on the shared ring taken in the left direction; this step is designated as L. 

The four steps F, C, R, L constitute the steps alphabet As; a trail, pathway, on the PLS is a 

sequence of the As letters; a trail, T, leads a traveler from point x on the PLS to point y on the 

PLS. 

Steps R and L are considered a 'neutralizing pair'; steps F and C are also considered a 

neutralizing pair; a neutralizing pair returns the traveler to the point before the trail marked by 

the neutralizing pair. 

Trail Tr is the reverse trail for T comprising the T steps in the reverse order wherein each 

step is replaced by the other step in its neutralizing pair; trail T leads a traveler on the PLS from 

point x to point y; Tr leads a traveler from point y to point x. 

A traveler on a point x which is on the outer ring r and on ray Lj when encountered a step F 

will move to ring gj on the same ray; that is it will move to another location on the PLS, and the 

trail will appear disconnected. 

A traveler on a point x which is on ray Lj and on ring gj, when encountered a step C will 

move to ring r on the same ray; that is it will move to another location on the PLS, and the trail 

will appear disconnected. 

 

Each letter ai ∈ A has at least one pair of points:  a starting point, psi on the PLS, and a  

finish point pf i on the PLS, where i=1,2,...n; each pair of points is used as follows: 

letter encryption: 
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(e.i) to transmit a letter ai ∈ A, one will draw an arbitrary trail Ti from a certain pair of 

points psi to pfi; 

(e.ii) the transmitter will then check if applying trail Ti to the starting point of any other 

letter, aj in A where i ≠ j, will lead to the finish point for aj somewhere along the trail; 

(e.iii) if this conflict happens for any aj then the transmitter will draw another arbitrary trail 

from psi to pf i, return to (e.i).  Arbitrary redrawing may be algorithmically guided or randomly 

done. 

(e.iv) when a trail T*i is drawn that does not lead from the starting point of any letter j, aj, to 

the  finish point of that letter j, aj, then T*i is transmitted to the intended recipient, as a non-

confusing  indication that the transmitter sends letter ai.. 

Letter decryption is being carried out by a recipient who shares the polar lattice key, PLK 

with the transmitter; the PLK comprising the PLS and the placement of the pairs of points for all 

the letters in the plaintext alphabet A. 

(d.i) the intended recipient, sharing the key, PLK, with the transmitter, will draw T*i from 

the starting point of all the letters ak ∈ A, for k=1,2,...n and identify letter ai as the only letter in 

A for which trail T*i leads a traveler from one pair of its starting point psi to pf i, and thereby 

conclude that the transmitter transmits letter ai. 

Message encryption: any message M written in alphabet A will be transmitted letter by 

letter according to (e.i) to (e.iv); and the recipient will interpret the series of trails as the letters of 

M by order; the sequence of trails corresponding to M is the ciphertext C for M.  The trails may 

be packaged in one of many procedural options.  
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Further in this method,  the PLS is constructed as follows: 

the center point o is marked on an arbitrary spot on a given surface; 

a rightward horizontal line is drawn from o,  designated as L1; 

an arbitrary number of points, r,  p(1,1), p(2,1), ...p(r,1)  are marked on L1; 

from each of the r points a circle centered around point o is drawn; ring-1, ring-2,... ring-r 

for i=1,2,...r by order do: 

mark the k points on ring-i created with the rays drawn from ring-1 to ring-(i-1), previous 

points. 

On the arc section between every two successive previous points mark an arbitrary number 

of new points on ring-i;  such that the sum of the previous points and the new points on ring i 

will be an arbitrary number qi:  p(i,1), p(i,2),....p(i,qi). 

Through each of the new points on ring i  a ray is being drawn from point o, the ray is not 

marked from point o to ring-i, and is marked from  ring-i and projected away from center point o, 

for each of the new points on ring i and the previous points  for ring i. measure the angle 

α(i,j) between point p(i,j), (point j on ring i), and point o. 

The set of tuples  i-j-α(i,j) represents the information that defines the PLS, each tuple states 

that the j point on ring i when connected with the origin o through a straight line, the straight line 

measures an angle α(i,j). 
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The PLS drawn on the given surface retains its structure and service for the polar lattice 

cipher under stretching, curving and other topological deformation of the surface. 

Further in this method each letter ai is associated with an arbitrary number of pairs of 

starting points and finish points, and the transmitter will chose an arbitrary pair each time ai is to 

be transmitted. 

Further in this method, a second plaintext alphabet A', comprising n' letters a'1, a'2, ... a'n' is 

also marked on the PLS; and is used to transmit messages written in the A'. 

A first recipient is aware of plaintext alphabet A, and knows the starting points and finish 

points of the letters in the second alphabet A',  but does not have the knowledge of the second 

alphabet A', that is the first recipient does not know which letter in A' a given pair of starting 

point and finish point represents,  and therefore unable to read any message written in the second 

alphabet A'; the first recipient will disregard letters written in A'. 

A second recipient is aware of plaintext alphabet A', and knows the starting points and 

finish points of the letters in the first alphabet A,  but does not have the knowledge of the first 

alphabet A,  that is the second recipient does not know which letter in A a given pair of starting 

point and finish point represents, and therefore unable to read any message written in the first 

alphabet A; the second recipient will disregard letters written in A; 

A third recipient is aware of both plaintext A and the second plaintext A', and knows the 

starting points and finish points of all the n+n' letters of both A and A';  the third recipient will 

read messages written in either alphabet. 

Further in this method, t alphabets A1, A2, ....At are marked on the PLS,  and  all recipients 

are aware of the starting points and finish points of all letters of the t alphabets, but each 
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recipient is aware of selected number of alphabets only, and can only decrypt messages written 

in the selected alphabets. 

Further in this method, a trail between a point x and a point y on the PLS is drawn as 

follows: 

(i) using a source of randomness to select among the four letters of the step alphabet, 

R,L,C,F, an arbitrary number of times, t, one creates a t steps trail from x to a point x', Txx'; 

(i) using a source of randomness to select among the four letters of the step alphabet, 

R,L,C,F, an arbitrary number of times, s, one creates an s steps trail from y to a point y', Tyy'; 

(iii) creating a trail from x' to y', Tx'y' as follows: 

  (iii.a) using either the right step or the left step iteratively one moves from x' to x" 

which is on the same ring as x' and on the same ray as y':  α(x") = α(y'); 

        (iii.b) if x" is on a larger ring then y', then moving from x" to y' by a series of 

close (C) steps; 

  (iii.c) if x" is on a smaller ring then y', then moving from x" to y' by a series of far 

(F) steps; 

  (iii,d) if x" and y' share a ring then x" = y'; 

(iv) Concatenating trail Txx' with Tx'y' then with the reverse of Tyy' (Tryy'): 

Txy = Txx' || Tx'y' ||  Tryy' 
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Further in this method, the step alphabet R, C, L, F is written  by matching each letter to one 

of four two bits combination,  C=00, F=11, R=01, L=10, and thereby any trail is written as an 

even numbered bit string, and every even numbered bit string can be interpreted as a trail on the 

PLS. 

Further in this method  the step alphabet letters close and far, C and F are replaced with Up 

and Down, U, and D,  where U is equivalent to F for the upper half of the PLS (0  £ α £  180) 

and where U is equivalent to C for the lower half of the PLS (180  < α £  360); and where D is 

equivalent to C for the upper half of the PLS (0  £ α £  180) and where D is equivalent to F for 

the lower half of the PLS (180  < α £  360). 

 

8.0 Security 

This cipher was designed with a primary aim to pack as much equivocation as possible, 

namely to build a key with many of degrees of freedom to ensure that given a ciphertext C and a 

sufficiently small arbitrary plaintext P, a key K could be constructed in order to match C with P: 

C = Enc(P, K), P =Dec(C, K). To the extent that this aim has been achieved this is the extent of 

the terminal equivocation beyond which no cryptanalytic effort will be productive. 

The way the Polar Lattice key is constructed, given any sequence of steps (a trail), and 

given any starting point s, there will be an end point e so that when one traverses on the lattice 

from s according to the steps identified in the trail, one would end up at point e. Therefore, given 

a ciphertext C comprising n steps c1, c2, .... cn, and given an arbitrary plaintext P comprising m 

letters p1, p2, .... pm, m < n, one could mark m sections on C: q1, q2, ... qm, each comprising a 

sequence ci, ci+1, .... cj,   for i=1,2,...n and for each section qk one would mark an arbitrary point s, 

then following qk one will mark a corresponding end point e. This pair of points (s,e) will be 
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written as associated with letter pk in P. In the event that at step d in qk the trail leads from a 

formerly established starting point to a formerly established end point, then steps 1 to (d-1) will 

be associated with pk, and steps d up to the end of qk will be part of the trail that points to pk+1.  

The more sections are assigned to letters, the greater the likelihood for a collision with a 

formerly assigned letter. Increasingly the value of d when a collision occurs is getting smaller 

and smaller, making the next pair of (s,e) closer to each other on the lattice, and they point to an 

ever smaller sequence of steps.  This devolvement will continue until collisions happen right 

away (lower value for d), and this key construction cannot continue. 

In practice it means that for some letter pt+1 for some t < k it will be impossible to build a 

key to decrypt C to P. The constructed key would only decrypt C to Pt = p1, p2, ... pt. 

We conclude then that any given ciphertext C comprising n letters can be decrypted to a cut 

Pt of an arbitrary plaintext P. Assuming that P is a plausible plaintext under the circumstances, 

then so must be Pt. 

By using large keys and long trails the value of t will approach m. t → m. 

Let a given ciphertext be sent over in a situation where there are h plausible message P1, P2, 

.. Ph messages. Absent the ciphertext C the adversary assigns a likelihood Li to plausible message 

Pi to be the one which the transmitter wishes to send to the recipient. Having awareness of C the 

adversary will re-evaluate these likelihoods to be L'1, L'2, ....L'h.  

Based on the size of the key needed to match C to a particular plausible message Pi, and on 

the assignments of letters therein, the cryptanalyst might change the likelihood, namely Li ≠ L'i. 

Eventually the entropy of the L' series, H(L'), might be smaller than the entropy of the L series 

H(L): 
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H(L') < H(L) 

However H(L') will remain greater than zero H(L') > 0; each and every plaintext message 

that was plausible before having knowledge of ciphertext C, will remain plausible, even if with a 

lower likelihood, after acquiring the knowledge of C. 

This powerful security is achieved because of the novel design of the key where the lattice 

geometry, the lattice size and the marking of plaintext letters onto the lattice -- are all thoroughly 

randomized, and together comprise the secret key. 

Indeed, the larger the key, the more markings for each letter of the plaintext alphabet, the 

more the real key will look like the keys used to fit the other plausible messages to the given 

ciphertext, and hence the greater the entropy of the plausible messages. Also, the longer the trails 

that lead from starting points of a letter to its end point, the larger the entropy of the plausible 

messages. 

By comparison, the one-time pad offers perfect mathematical security because every 

possible message of the size of the actual message is equally likely to be the right message. 

However, one time pad is an overkill. All that is needed to fend off cryptanalysis is to keep only 

the plausible messages (not all possible messages) associated with a probability greater than zero 

to be the transmitted message. The polar lattice cipher accomplishes just that, from whence it 

draws its robust security. 

The One-Time-Pad perfect secrecy solution was AI analyzed via the InnovationSP 

methodology (innovationSP.net) where it emerged as a boundary state over an "approach 

territory".  Innovation science recognizes situations where a target state is continuously 

approachable with increasing cost.   The polar lattice cipher provides such an approach territory.  

The parties using polar lattice can together decide of the size and complexity of the lattice.  The 
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larger and the more complex the lattice the closer one approaches the perfect security offered by 

OTP.  This expresses itself by how much the maximum entropy associated with OTP will be 

reduced by using a smaller key.    

The polar lattice cipher offers its user an advantage not present with OTP -- unilateral 

randomness.  The transmitter, aware of an extra sensitive secret can unliterary decide to increase 

the projected security by marking letters with larger trails. The transmitter does not need to pre 

coordinate the larger trails with the recipient.  In fact, the transmitter can extend the trail to send 

over a single plaintext letter, to be as long as the transmitter desires. So it may take many 

minutes or longer to send one letter. In practice it means that while an adversary believes that 

extensive communication transpired between transmitter and recipient, in fact it is completely 

idle. And then suddenly communication flow increases, but the adversary cannot spot it. 

When a classic cryptographer uses, say RSA, or  AES, they are tied to the cryptanalytic 

barrier put forth by these algorithms.  If they are cracked, the transmitter is helpless.  By contrast 

the polar lattice user can increase the projected security by injecting more randomness into the 

transmission, if needed up to One-Time-Pad levels.  A big advantage. 

General notes on pattern-devoid cryptography security 

The polar lattice cipher being a pattern devoid cipher is immunized against the vulnerability 

shared by all mainstay cryptographic protocols which rely on mathematical complexity.  To rely 

on mathematical complexity is to rely on absence of innovation on the part of our adversary.  

Many cryptographers argue that while we have not yet proven that P ¹NP,  it is probably so, and 

therefore mathematical complexity offers solid security.  This argument is fallacious because 

even if the P ¹ NP is proven, it only states that there are some cases where it holds. It does not 

exclude the possibility,  indeed likelihood, that some keys  of a particular class offer a 



 34 

mathematical shortcut.  A smart mathematician will find these shortcuts while the cipher 

designer might not.  It is therefore so crucial to pivot to pattern devoid cryptography where 

superior mathematical talent and faster computing power on the part of our adversary will not 

undo our security. 
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9.0 Description of Drawings 
 

Fig 1: A Three Rings Polar Lattice 

This figure shows a 3 rings polar lattice. The center of the lattice, o, is shown here as Ring-0, 

R0 from where a horizontal line is drawan to the right, on which three points are drawn, and each 

of those points marks the position of a concentric ring. Point (1,1) marked ring-1, R1, point (2,1) 

marks ring R2 and point (3,1) marks ring R3. Ring-1 marks a full size arc 360 degrees. It is 

divided to two equal size arcs by point (1,2). All the points in this example divide the arc before 

them to two equal parts thereby creating a symmetric polar lattice. Such a lattice can be used as a 

cipher key, but generally the each arc is divided to sub arcs on a random basis. 

 

Fig-2 Four Rings Polar Lattice 

This figure shows how another ring is added to the three rings polar lattice shown in fig-1. Again 

each arc section is divided to exactly two subsection, so ring-1 has q1=2 points, ring-2 has q2=4 

points, ring 3 has q3=8 points, and ring 4 has q4=16 points. 

 

Fig-3. Topological Resilience of the Polar Lattice 

Fig-3 This figure shows the polar lattice, PL, in figure 2 following a topological surface strech 

and deformation. While the rings are no longer a perfect circles, the geometric relationships 

among the PL points are preserved. This allows the polar lattice to build another security wall 

when the surface is mapped to cartesian coordinates. 

 

Fig.-4: 10 Rings Polar Lattice 

This figure shows a 10 rings polar lattice where each section is divided to 0,1,2, or 3 subsection, 

and the division behaves randomly. 

 

Fig-5: Polar Lattice Key (4 letters alphabet) 

This figure shows a polar lattice with four plaintext alphabet letters marked on it. The plaintext 

alphabet is comprising 4 letters: X, Y, Z, and W. Each letter is associated with a starting poin on 

the lattice, identified by a circle on that point, and each letter is associated with a finish point on 

the lattice identified by a square on that point. The randomness of the polar lattice space and the 
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randomness of the placement of the 8 markers, creates in summary the randomness of the polar 

lattice key. 

 

Fig-6: Encrypting a four letters alphabet 

This figure shows a plaintext alphabet comprising 4 letters, X, Y, Z, and W. Each is associated 

with a starting point (circle) and a finish point (square). Each letter is associated with a train on 

the polar lattice space that leads from its starting point to its finish point. The trail is marked with 

the Right, Left, Close, Far markers (R,L,C, F), this is the steps alphabet where each letter is 

expressed in two bits. The trails are drawn on the figure and are written as a ciphertext: 

 

Letter X: FRLCRRRRRLCLLFLCC 

Letter Y: LFLFRFRFRRFRFRCRRFFLLCLLCCLLLLFLFFRRRRFFLF 

Letter Z: RCRFRRFRCRCRCRCRCRFRF 

Letter W: LFFRFRFLLLCLCLFLLFFRRFL 

 

Note that on the upper side of the lattice above the horizontal line right R is interpreted as 

clockwise while L is interpreted as counter clockwise, but in the lower part, below the horizontal 

line the interpretation flips, right is counterclockwise and left is clockwise. Only one with the 

possession of the lattice will know to interpret these markers right. Also note that this 

cryptanalytic burden can be increased by replacing the close and far directions to 'up' and 'down' 

which flip their meaning dependent on the location, whether it is on the upper half of the polar 

lattice or on the lower half thereto. 

To send a message that say "XXZX" the transmitter will send: 

FRLCRRRRRLCLLFLCCFRLCRRRRRLCLLFLCCRCRFRRFRCRCRCRCRCRFRFFRLC

RRRRRLCLLFLCC 

Note that the X trail is using the extended step alphabet. After two steps the traveler hits the 

outer ring, when he encounter 'far', F he jumps to the 2nd ring at its closest point. The traveler 

moves down to the 1st ring, where he encountered a 'close' step, which in fact send the traveler to 

the outer ring from where the traveler arrives at the finish point for letter X. 

 

Fig-7: many trails per letter 
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This figure shows three different trails, all of which transmit the same letter X. All the trails 

begin with the starting point of letter X and finish at the finish point of letter X. 

 

Fig-8. Layered Polar Lattices 

This figure shows on polar lattice in red, on top with a polar lattice below as a copy of the upper 

lattice with added two rings and added two rays. All the points of lower PL that have a matching 

point at the upper lattice are connected with lines. All the added points in the lower lattice are not 

connected 

 

Fig-9 Connected Layered Polar Lattices 

The two polar lattices of fig-8 are shown in perspective with some of the matching points shown 

as connected. It is visible that from any point on either PL it is possible to move through 

neighbors to any other point on either PL. 

 

Drawings 

 
Fig-1. A Three Ring Polar Lattice 
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Fig 2: Four Rings Polar Lattice 

 

 
 
 
 
 
Fig-3 
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Fig-4: 
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Fig.-6 

 
 
 
 
Fig.-7 
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Fig-8 
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