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Abstract
Oblivious permutation (OP) enables two parties, a sender with a

private data vector x and a receiver with a private permutation 𝜋 ,

to securely obtain the shares of 𝜋 (x). OP has been used to construct

many important MPC primitives and applications such as secret

shuffle, oblivious sorting, private set operations, secure database

analysis, and privacy-preserving machine learning. Due to its high

complexity, OP has become a performance bottleneck in several

practical applications, and many efforts have been devoted to en-

hancing its concrete efficiency. Chase et al. (Asiacrypt’20) proposed

an offline-online OP paradigm leveraging a pre-computable re-

source termed Share Translation. While this paradigm significantly
reduces online costs, the substantial offline cost of generating Share
Translation remains an area for further investigation.

In this work, we redefine the pre-computable resource as a
cryptographic primitive known as Correlated Oblivious Permu-
tation (COP) and conduct in-depth analyses and optimizations of
the two COP generation solutions: network-based solution and
matrix-based solution. The optimizations for the network-based so-
lution halve the communication/computation cost of constructing
a switch (the basic unit of the permutation network) and reduce
the number of switches in the permutation network. The optimiza-
tions for the matrix-based solution halve the communication cost
of small-size COP generation and reduce the cost of large-size COP
generation with in-outside permutation decomposition.

We implement our two COP generation protocols and conduct
comprehensive evaluations. Taking commonly used 128-bit input
data as an example, our network-based and matrix-based solutions
are up to 1.7× and 1.6× faster than baseline protocols, respectively.
We further facilitate the state-of-the-art (SOTA) PSU protocols
with our optimized COP, achieving over 25% reduction in com-
munication cost and 35% decrease in execution time. This shows
that our COP optimizations bring significant improvements for
real-world MPC primitives.
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1 Introduction
Oblivious permutation (OP), also referred to as “permute + share”,

enables two parties, a sender with an input vector x and a receiver

with a permutation 𝜋 , to jointly compute the shares of 𝜋 (x) without
revealing anything else to either party. OP is a fundamental crypto-

graphic primitive in secure multi-party computation (MPC) and has

numerous applications [1, 3, 19, 20, 24, 28, 30, 42]. Specifically, OP

serves as the main building block in oblivious sorting [1], federated

database analysis [33, 37, 42], privacy-preserving machine learning

[30, 31], and differential privacy with shuffle model on MPC [3].

An important application of OP is to build two-party [13] and

multi-party [18, 19] secret shuffle. Consider a scenario in which

multiple parties jointly hold a shared data array generated through

certain MPC functionalities. Directly revealing this array would

expose its relationship to the original inputs. Secret shuffle can per-

mute this array using a random permutation unknown to everyone.

The typical method to implement secret shuffle is for each party to

sample a random permutation and then sequentially invoke OPs to

permute the shared data array under these permutations [18, 19].

Since no party can know all permutations, the relationship between

the secret data array and the original inputs is obscured, thereby

meeting the security requirements. The efficiency of OP directly

influences the overall performance of secret shuffle as OP is the

sole involved building block.

Another application of OP is to construct private set union (PSU)

protocols [20, 24, 28], which enables two parties, each holding a

private set of elements, to compute the union of their sets without

revealing anything else. Garimella et al. [20] and Jia et al. [24] pro-

posed PSU protocols based on OP. In their intermediate step, the

receiver obtains a bit vector indicating whether the elements of the

sender’s set are in the receiver’s set. However, since the receiver

knows which element corresponds to which bit in the bit vector, di-

rectly revealing the bit vector immediately discloses the intersection

to the receiver. OP is used to disrupt such correlation information

to prevent this leakage. However, OP is the performance bottleneck

in these PSU protocols. As shown in Table 1 and Table 2 of [20],

when the set sizes reach 2
20
, OP accounts for nearly 30% of the PSU

execution time in the LAN setting. As OP incurs substantial com-

munication costs, its impact is even more pronounced in the WAN

setting, taking nearly 60% of the PSU execution time. According to

our experiment, OP takes over the 80% communication cost in the

PSU protocol proposed by Jia et al. [24].

Over the last decade, there have been several solutions proposed

to realize OP, including network-based [20, 34], AHE-based [13, 26],
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matrix-based [13], and wPRF-based [36] solutions. Nevertheless,

OP is still expensive for real-world applications.

One way to address the efficiency challenges in MPC is to em-

ploy an offline-online paradigm. In this paradigm, two parties can

generate data-independent correlated randomness in the offline

phase. Subsequently, consuming this correlated randomness can

dramatically reduce the online communication and computation

costs of most existing protocols. A prime example of this approach

is using Beaver triples for multiplication [6, 16]. Chase et al. [13]

and Peceny et al. [36] extended this paradigm to (matrix-based and

wPRF-based) OP. Specifically, the resource for OP is the vectors with

the correlation that c = 𝜋 (a) − b, where the sender S holds (a, b)
and the receiver R holds (c, 𝜋). We denote the vectors as Correlated

OP (COP) and defer the details to §2.4. We note that network-based

solutions [20, 34] can also be adapted to this paradigm without

increasing the communication/computing cost (detailed in §3.2).

Although the online permutation process using COP is highly

efficient, one still needs to generate COP in the offline phase. Im-

proving COP generation remains essential. Moreover, optimizing

COP generation ultimately improves the efficiency of OP even

without an offline-online paradigm. It raises the following question.

Is there room for improvement in COP generation?

1.1 Related work
Before answering this question, we first briefly survey the existing

OP solutions.

Network-based solutions. The network-based OP solution is first

introduced in [34], where the parties securely evaluate a permuta-

tion network with any generic MPC protocol, e.g., garbled circuit

[45], to obtain the permuted shared vectors. A permutation network

contains a set of interconnected switches, where each switch takes

two secret-shared values as input and outputs them either in their

original order or in swapped order according to one programming

bit. The SOTA protocol [20] requires 2𝑙 bits communication and

one correlated oblivious transfer (COT) to implement one switch

with 𝑙 bit inputs. As will be analyzed in §5, the network-based solu-

tion is especially efficient on input with a smaller bit length while

performing poorly on input with a larger bit length. To the best of

our knowledge, previous works utilized this solution to generate

binary shares (defined over F𝑙
2
). We point out that it can also be

employed to generate shares defined over any ring, such as F
2
𝑙 and

F𝑝 , by detailing our optimizations in §3 using ring operations.

Matrix-based solutions. The core of the scheme of Chase et

al. [13] for small-size COP generation is to let the sender construct

a pseudorandom 𝑛×𝑛 matrix such that the receiver learns all values

except the 𝜋 (𝑖)-th value in the 𝑖-th row for 1 ≤ 𝑖 ≤ 𝑛, which is ful-

filled with puncturable pseudorandom function (PPRF). Therefore,

we refer to the solution as the matrix-based COP. They also show

how to decompose a large-size permutation into multiple small-size

permutations and subsequently compile multiple small-size COPs

into a large-size COP. On data with a smaller or larger bit length,

the matrix-based solution behaves opposite to that of the network-

based solution. As discussed in [13], the matrix-based solution can

also generate shares defined over any ring.

AHE and wPRF-based solutions. The solutions based on reran-

domizable additively homomorphic encryption (AHE) [13, 26] and

weak pseudorandom function (wPRF) [36] achieve linear complex-

ity in the input size and the bit length of each element. We refer

to Appendix A for details. AHE-based solutions typically produce

secret shares of 𝜋 (a) defined in the corresponding AHE ciphertext

space (e.g., F𝑝 ), while the wPRF-based solutions produce secret

shares of 𝜋 (a) defined in F𝑙
2
. In practice, the most commonly used

share types in secure database analysis and machine learning are

arithmetic shares on F
2
𝑙 . Conversions between different share types

typically require additional costs [16].

Among these solutions, network-based and matrix-based so-

lutions are flexible to support any sharing type defined over a

ring and have become the most commonly used methods in prac-

tice. Network-based solutions are extensively used in applications

with relatively small-bit inputs, such as PSU [20, 24] and private

database analysis [37, 42]. In contrast, matrix-based solutions are

more commonly utilized in scenarios with large-bit inputs, such as

privacy-preserving machine learning [30]. Also, as we will detail in

§3 and §4, there is significant potential for further optimizing both

approaches. However, AHE-based and wPRF-based protocols are

almost optimized and require post-processing to support diverse

input domains. Therefore, we focus on optimizations for network-

based and matrix-based solutions. We also provide performance

comparisons with the SOTAwPRF-based protocol for completeness.

1.2 Our Contributions
In this paper, we address the aforementioned question in the semi-

honest setting
1
. We optimize both network-based and matrix-based

OP protocols. According to our experiment on 128-bit input data, de-

pending on the input size and network environments, our network-

based protocol can reduce communication costs by 50% and achieve

a 1.32×−1.71× faster execution time compared to its baseline, while

our matrix-based protocol is 1.2 × −1.6× faster than its baseline.

We also present a selection strategy for choosing the optimal proto-

col under various scenarios through theoretical and experimental

analysis. The key contributions of this paper are as follows.

• We propose an optimized network-based COP generation proto-

col that reduces the communication/computation costs by nearly

half compared to prior work. The main idea is that when using

the random oblivious transfer (ROT) to implement a switch in

the permutation network, the sum of the receiver’s two possible

output pairs for that switch remains constant regardless of his

choice bit. When the receiver obtains one of two outputs of that

switch, knowing the sum of the output pairs is enough for the

receiver to compute the other output. The communication cost is

thus reduced by a factor of 2. We also argue that our switch proto-

col is communication-optimal if the switch is implemented with

the ROT. We further adopt the Waksman network [41], which

requires fewer switches compared to the Beneš network [7] used

in prior work.

• We propose an optimized matrix-based COP generation proto-

col. For small-size COP, we halve the communication cost by

adopting the optimized half-tree single-point correlated obliv-

ious transfer (COT) and remove the communication cost for

1
There have been efforts to develop malicious secure OP protocols [18, 40, 43]. See §6

for details. Optimizing OP protocols in the malicious setting is more challenging, and

we leave this as an open problem.
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constructing the last row of matrices based on the special prop-

erty of permutations. Consequently, the number of COT and the

communication cost for transferring OT payloads are reduced by

factors of
1

𝑛 and
𝑛−1
2𝑛 , respectively. For large-size COP, we find

that decomposing the permutation from the middle layer to the

outer layers (i.e., in-outside decomposition) incurs smaller costs

compared to decomposing from the outer layers to the middle

layer (i.e., out-inside decomposition).

• We implement both our optimized protocols and the baseline

protocols. We intend to make our implementation open-source.

Comprehensive comparisons and analyses are conducted based

on experimental results regarding various input sizes and net-

work environments. Based on these results, we present a strategy

for selecting the optimal COP protocol. Additionally, we apply

the strategy-recommended (network-based) COP protocol on the

SOTA shuffle-based PSU protocols, which are the most represen-

tative applications of OP. This results in new shuffle-based PSU

protocols under the offline-online paradigmwith an improved OP

building block, maintaining extremely fast online performance.

2 Background and Preliminary
2.1 Notation
We denote the computational security parameter as 𝜅 and the sta-

tistical security parameter as 𝜆. Let [𝑎, 𝑏] := {𝑎, . . . , 𝑏} and [𝑏] be a
shorthand for [1, 𝑏]. We use ⊥ to represent null, 𝑐 to denote 1 + 𝑐
for 𝑐 ∈ F2, negl(·) to denote a negligible function, and 𝑦 ← Y to

denote random sampling of𝑦 from the domainY. We denote𝑋
𝑐≡ 𝑌

if two distributions 𝑋,𝑌 are computationally indistinguishable.

We use bold lowercase letters (e.g., v) for vectors and bold upper-
case letters (e.g.,M) for matrices. We denote v𝑖 or v[𝑖] as the 𝑖-th el-

ement of v, and v𝑖:𝑗 as {v𝑖 , . . . , v𝑗 } for 1 ≤ 𝑖 ≤ 𝑗 ≤ |v|. Given a two-

dimensional matrixM, we denoteM𝑖 as its 𝑖-th row vector, andM𝑖, 𝑗

as the 𝑗-th element of its 𝑖-th row vector. v ⊗ u is the shorthand for

the element-wise operation ⊗ of two vectors (v1 ⊗ u1, . . . , v𝑛 ⊗ u𝑛),
and v ⊗ 𝑐 is the shorthand for (v1 ⊗ 𝑐, . . . , v𝑛 ⊗ 𝑐). 𝐼 (𝑛, 𝑖) denotes a
length-𝑛 vector whose 𝑖-th entry is 1 and others are 0.

A size-𝑛 permutation 𝜋 : [𝑛] → [𝑛] is a bijective function,

and we denote 𝜋 (𝑖) as its 𝑖-th element. Applying a permutation 𝜋

to a vector v results in 𝜋 (v) = (v𝜋 (1) , . . . , v𝜋 (𝑛) ), which we also

write as 𝜋 · v. The inverse of a permutation 𝜋 is denoted by 𝜋−1,
satisfying 𝜋−1 (𝜋 (𝑖)) = 𝑖 for 𝑖 ∈ [𝑛]. We denote the set of all size-𝑛

permutations as P𝑛 .

2.2 Security Model
This paper focuses on the semi-honest two-party computational

security model [29]. We consider a static probabilistic polynomial-

time (PPT) semi-honest adversary, who can corrupt either the

sender S or the receiver R at the beginning of the protocol. The

adversary may attempt to learn information from the transcript of

the protocol while following the prescribed protocol faithfully. Let

P be a protocol for computing a probabilistic polynomial-time func-

tionality F : ({0, 1}∗)2 → ({0, 1}∗)2, and let F𝑖 (𝑥0, 𝑥1) denotes the
𝑖-th element of F (𝑥0, 𝑥1). The view of party 𝑃𝑖 during an execution

of P on (𝑥0, 𝑥1) is viewP𝑖 (𝑥0, 𝑥1), including 𝑃𝑖 ’s input 𝑥𝑖 and all

Initialize: Upon receiving (init,Δ) from a sender S where global

key Δ ∈ F2𝜅 , and (init) from a receiver R, store Δ and ignore all

subsequent (init) commands.

Extend: Upon receiving (extend, 𝑛) from S and (extend, u) from
R where u ∈ {0, 1}𝑛 :
(1) If S is honest, sample v← F𝑛

2
𝜅 ; Otherwise, receive v ∈ F𝑛

2
𝜅

from the adversary.

(2) IfR is honest, Computew = v⊕u·Δ ∈ F𝑛
2
𝜅 ; Otherwise, receive

w ∈ F𝑛
2
𝜅 from the adversary and recompute v = w ⊕ u · Δ.

(3) Send v to S and w to R.

Figure 1: Functionality for Correlated OT FCOT.

messages received during the protocol. The output of both parties

during an execution of P on 𝑥0, 𝑥1 is denoted by outP (𝑥0, 𝑥1).

Definition 1 (Simulation-based security). A protocol P se-
curely computes F if there exist PPT simulators Sim𝑖 where 𝑖 ∈ {0, 1},
for every (𝑥0, 𝑥1) ∈ ({0, 1}∗)2 such that:

{Sim𝑖 (𝑥𝑖 , F𝑖 (𝑥0, 𝑥1)), F (𝑥0, 𝑥1)}
𝑐≡ {viewP𝑖 (𝑥0, 𝑥1), out

P (𝑥0, 𝑥1)}

As stated in the above definition, the simulation-based proof for

a specific protocol is to construct a simulation for each party such

that this simulator can generate messages indistinguishable from

those produced during the execution of the real protocol.

2.3 Oblivious Transfer
Oblivious transfer (OT) [14, 32, 35] is a core building block in various

MPC protocols. In a basic 1-out-of-2 OT𝑙 , the sender inputs two
𝑙-bit strings (𝑠0, 𝑠1), and the receiver inputs a bit 𝑐 ∈ {0, 1} and
receives 𝑠𝑐 . In practical applications, OT is commonly implemented

using Random OT (ROT), which returns two random strings (𝑟0, 𝑟1)
to the sender and 𝑟𝑐 to the receiver. The sender should further send

(𝑟0 ⊕ 𝑠0, 𝑟1 ⊕ 𝑠1) to the receiver to recover the true OT payload,

and this process is called OT correction. As a special OT flavor,

correlated OT (COT) allows the sender to input Δ and receive two

correlated random strings 𝑟0, 𝑟1 where 𝑟1 = 𝑟0 ⊕ Δ. With COT, ROT

can be computed with correlation robust hash function (CRHF) [23].

We also denote COT𝑛
𝑙
as 𝑛 parallel COTs on 𝑙-bit strings. A variant

of COT𝑛
𝑙
, where the Hamming weight of the choice-bit vector is

1, has been well studied as the single-point COT [10]. It can be

efficiently implemented using the Goldreich-Goldwasser-Micali

(GGM) tree [21] and COTlog𝑛𝜅 with 𝑂 (𝜅 log𝑛)-bit communication

cost. We present the functionality of COT in Figure 1. If u = 𝐼 (𝑛, 𝛼)
where 𝛼 ∈ [𝑛], we obtain the functionality of single-point COT

FspCOT.
To improve the efficiency, the IKNP-style OT extension [23, 27]

is proposed to generate a large number of OTs based on a few

base OTs. But it still takes the communication cost of 𝑂 (𝑛𝜅) bits
for COT𝑛𝜅 . Recently, it has been superseded by the silent OT line

of work based on primal-LPN assumption [39, 44] or dual-LPN

assumption [9, 15, 38]. Compared to IKNP-style OT extension, silent

OT can generate many OTs with few communication costs, but

requires a relatively high computational cost. Thus, the optimal OT

implementation may vary in different network and computational

environments. For completeness, we will separate the cost of OT
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Parameters: The target length 𝑛 and the ring D of COP. R has

the size-𝑛 permutation 𝜙 .

Functionality: Upon receiving 𝜋 from R, uniformly samples

three vectors a, b, c ∈ D𝑛
such that c = 𝜙 (a) − b. Send a, b to S

and c to R.

Figure 2: Functionality for generating correlated oblivious
permutation Fcop.

S : (a, b), x R : (c, 𝜙), 𝜋

o = x − a
o
⇌
𝜌

𝜌 = 𝜋 (𝜙−1)

Output y = 𝜌 (b) Output z = 𝜌 (c) + 𝜋 (o)

Figure 3: Protocol to obtain z = 𝜋 (x) − y based on the random
COP c = 𝜙 (a) −bwith the same size. For the second case when
𝜋 = 𝜙 , 𝜌 is (1, . . . , 𝑛) and does not need to be sent, and the
outputs are y = b and z = c + 𝜋 (o).

in the subsequent theoretical complexity analysis and evaluate our

protocols with both implementations.

2.4 Online-offline Oblivious Permutation
The ideal functionality for generating COP is shown in Figure 2. In

an offline-online paradigm [36], a deterministic OP that computes

the share of 𝜋 (x) taking the input 𝜋 from the receiver and x from

the sender can be realized with a small online cost using the offline-

generated COP, and there are two usage cases of COP.

(1) The permutation 𝜙 of the COP is a random permutation

sampled by R and is different from the input permutation

𝜋 , the online permutation protocol is described in Figure 3.

It requires 𝑛(𝑙 + log𝑛) bits of communication, where 𝑛 is

the input size and 𝑙 is the bit length of each input element.

(2) The permutation of the COP is the same as the permutation

𝜋 , then the online permutation phase only requires the

communication cost of 𝑛𝑙 bits.

2.5 Network-based Oblivious Permutation
The permutation network is an arrangement of switches and wires

allowing 𝑛 inputs to be simultaneously connected to 𝑛 outputs via

edge-disjoint paths. For any one-to-one permutation 𝜋 of 𝑛 inputs

and 𝑛 outputs, there exists a set of edge-disjoint paths connecting

the 𝑖-th input to the 𝜋 (𝑖)-th output for all 𝑖 ∈ [𝑛]. Here, we focus
on binary permutation networks constructed from binary switches,

each of which can be in one of two states: direct/crossed connection.

Since there are 𝑛! possible permutations with 𝑛 inputs and 𝑛 out-

puts, it follows that at least

⌈
log

2
(𝑛!)

⌉
≈ 𝑛 log

2
𝑛 − 1.443𝑛 switches

are required to realize such permutation 𝜋 . The first permutation

network was designed by Beneš [7]. The network is recursively pro-

grammed, where a size-2 network requires one switch, and a size-𝑛

(𝑛 ≥ 4, 𝑛 = 2
𝑟
) network can be built with two smaller networks

that support arbitrary size-
𝑛
2
permutations, along with additional 𝑛

switches. As a result, Beneš network can program any size-𝑛 permu-

tation using a total of 𝑛 log
2
𝑛 − 𝑛

2
switches. Beneš network is thus

asymptotically optimal in terms of the switch count. Chang and

1 1 0 1 0

0

0

0

0 1 0 1

1

0

0 0 0

1 1 0

1
2

3
4

5
6

7
8

4
8

6
5

1
2

3
7

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4: An example of size-8 in-place Beneš network where
𝜋 = (4, 8, 6, 5, 1, 2, 3, 7). It has 5 layers. Each box is a switch,
where two dotted lines connect the input and output depend-
ing on the programmed bit (0/1). The gray switches can be
omitted in the Waksman network.

Melhem [12] later generalized Beneš network for any size 𝑛, which

has been used to construct efficient network-based COP protocols

supporting arbitrary permutation sizes [20].

A permutation network is an in-place network if each switch

rearranges each pair of input data within the same two locations. To

facilitate the description of the permutation decomposition in the

following matrix-based approach, we describe the in-place version

of Beneš network [13] for consistency
2
. An example of size-8 in-

place Beneš permutation network is shown in Figure 4.

Now, we briefly review the prior network-based OP protocol [34].

Given a size-𝑛 vector x from the sender S and a permutation 𝜋 ∈
P𝑛 from the receiver R, the shares of 𝜋 (x) is obtained through

the Beneš network in the following steps [34]. First, S chooses

random masks for all𝑚 wires in the Beneš network. We denote

these masks as a vector m, where {m𝑖 }𝑖∈[𝑛] are masks for input

wires, and {m𝑖 }𝑖∈[𝑚−𝑛+1,𝑚] are masks for output wires. Second,

the parties perform an 1-out-of-2 OT for each switch 𝑔 with input

wires 𝑖0, 𝑖1 and output wires 𝑗0, 𝑗1, where S’s input for the OT is(
(m𝑗0 −m𝑖0 | |m𝑗1 −m𝑖1), (m𝑗0 −m𝑖1 | |m𝑗1 −m𝑖0)

)
and R’s input

bit is the corresponding programming bit for this switch. R sets the

masks of wires as the corresponding OT results. Next, S sends the

masked input {𝑥𝑖 −m𝑖 }𝑖∈[𝑛] to R, and R sets them as the masks

of his input wires. Finally, S outputs the masks of output wires

{m𝑖 }𝑖∈[𝑚−𝑛+1,𝑚] . R identifies the path from the output wire to the

corresponding input wire, and his output is obtained by adding all

corresponding masks together. Therefore, a switch needs 1 ROT

and a further 4𝑙 bit of communication for OT payload correction.

Instead of first choosing random masks for a switch’s output

wire(s) and using those to determine the OT payloads, Garimella et

al. [20] suggested that the sender can use one of the two ROT results

to dictate the first OT payload, and further use that to compute the

values of two output wires. In this way, a switch is implemented

with 1 COT, 2𝑙 bits communication, and 3 invocations of CRHF

whose output length is 2𝑙 bits (used to extend the COT result into

ROT result).

2.6 Matrix-based Oblivious Permutation
The matrix-based OP solution involves using puncturable pseudo-

random functions (PPRF) to generate a permutation matrix.

2
The in-place and the original versions have the same number of switches, and their

structures are similar.
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Definition 2 (Puncturable Pseudorandom Function (PPRF)).

A PPRF [10] with key space K, punctured key space K𝑃 , size 𝑛, and
range Y, has the following syntax:
• PPRF.Gen(1𝜆): On input 1𝜆 , output a random key 𝑘pprf ∈ K.
• PPRF.Punc(𝑘pprf , 𝛼): On input a key 𝑘pprf ∈ K and a punctured

point 𝛼 ∈ [𝑛], output a punctured key 𝑘pprf{𝛼} ∈ K𝑃 .
• PPRF.Eval(𝛼, 𝑘pprf{𝛼}, 𝑥): On input a punctured key 𝑘pprf{𝛼} ∈

K𝑃 and a point 𝑥 ∈ [𝑛], output the result PPRF(𝑘pprf , 𝑥) ∈ Y if
𝑥 ≠ 𝛼 ; otherwise output ⊥.
A PPRF is secure if for any PPT adversary Adv and any point

𝛼 ∈ [𝑛] chosen by Adv, it holds that given 𝑘pprf ← PPRF.Gen(1𝜆),
𝑘pprf{𝛼} ← PPRF(𝑘pprf , 𝛼):�������

Pr

[
Adv(1𝜆, 𝛼, 𝑘pprf{𝛼}, PPRF(𝑘pprf , 𝛼)) = 1

]
− Pr

[
Adv(1𝜆, 𝛼, 𝑘pprf{𝛼}, 𝑦∗𝛼 ← Y) = 1

]
������� ≤ negl(𝜆)

PPRF can be built from any length-doubling PRG, using the GGM

tree [21] and COT⌈log𝑛⌉𝜅 with 2𝜅 ⌈log𝑛⌉ bits communication.

Chase et al. [13] proposed the matrix-based OP using PPRF. For

a size-𝑛 permutation, two parties invoke 𝑛 instances of PPRF where

R inputs 𝜋 (𝑖) for the 𝑖-th execution. As a result, S and R obtain

𝑛 × 𝑛 matrices V and W respectively, where V𝑖, 𝑗 = W𝑖, 𝑗 for all

𝑖 ∈ [𝑛], 𝑗 ≠ 𝜋 (𝑖) and W𝑖,𝜋 (𝑖 ) =⊥. Finally, S outputs two vectors

a, bwhere a𝑖 =
∑

𝑗∈[𝑛] V𝑗,𝑖 , b𝑖 =
∑

𝑗∈[𝑛] V𝑖, 𝑗 andR outputs a vector

c where c𝑖 =
∑

𝑗≠𝑖 W𝑗,𝜋 (𝑖 ) −
∑

𝑗≠𝜋 (𝑖 )W𝑖, 𝑗 such that c = 𝜋 (a) − b.
Figure 5 illustrates a toy example with 𝑛 = 4.

⊥
⊥

⊥
⊥

𝐕𝟏
𝐕𝟐
𝐕𝟑
𝐕𝟒

𝐚𝟑 = ∑"∈[%]𝐕",(

𝐛𝟏 = ∑*∈[%]𝐕+,, 𝐖𝟏

𝐖𝟐

𝐖𝟑

𝐖𝟒

𝐜𝟏 = ∑-.+𝐖-,( − ∑*.(𝐖+,,

𝒄𝟏 = 𝐚" − 𝐛#

Figure 5: A toy example of a matrix-based OP with 𝜋 =

(3, 4, 1, 2). Two matrices, V and W, are obtained by S and R,
respectively.S holds the values colored blue, and the receiver
R holds the values colored red.

However, since the computation complexity is𝑂 (𝑛2), suchmatrix-

based OP protocol is computation-expensive for large 𝑛. To adapt it

for large-size permutations, instead of directly generating a COP for

the entire permutation 𝜋 , Chase et al. [13] proposed that two parties

first decompose the permutation into small sub-permutations, run

COPs for each sub-permutation, and then combine them back to a

large COP for the original permutation 𝜋 .

3 Improving Network-based COP
We consider two optimization techniques for network-based COP.

The first optimization comes from the observation that existing

network-based COP does not make full use of correlations gener-

ated in ROT. In the initial network-based COP construction [34],

S generates random masks for all wires in the permutation net-

work. Then, for each switch, S and R perform one 1-out-of-2 OT

to obliviously transfer two mask correlations. Garimella et al. [20]

Switch
𝑥!
𝑥"

𝑦!
𝑦"

𝑢!
𝑢"

𝑣!
𝑣"

𝑢! + 𝑣! = 𝑥# 				+ 𝑦$

𝑐 ∈ 0,1
𝑢" + 𝑣" = 𝑥"%# + 𝑦"%#

Figure 6: The input (in left) and output (in right) of a switch
for secret-shared values. S holds the values colored blue, and
R holds the values colored red.

proposed that S generates random masks according to one of its
ROT outputs to reduce the communication cost of a switch by half.

This raises the possibility of further halving the communication

cost by leveraging two ROT outputs. We show that this is feasible.

The second optimization is to use an improved permutation net-

work with fewer switches. Since each switch requires one (R)OT

invocation in network-based COP, reducing the number of switches

in the permutation network structure leads to a reduction in the

total number of OT invocations, thereby decreasing the overall com-

putation/communication costs. We choose the Waksman network

[5], reducing at most
𝑛
2
− 1 switches compared with Beneš network

[12] in the best case. The details are shown in Appendix B.

3.1 Halving the Cost of Implementing Switches
Let us review the basic idea of network-based COP solutions by

taking the protocol implementing the switch (shown in Figure 6)

as the fundamental building block [20, 34]. The pipeline of switch

protocol optimizations (including ours) is illustrated in Figure 7.

In the switch protocol, S holds (𝑥0, 𝑥1) and R holds (𝑦0, 𝑦1)
where (𝑥0 + 𝑦0, 𝑥1 + 𝑦1) is the plaintext pair. Given a choice bit 𝑐

owned by R, the target is to let S and R respectively obtain (𝑢0, 𝑢1)
and (𝑣0, 𝑣1), such that

• If 𝑐 = 0, then 𝑢0 + 𝑣0 = 𝑥0 +𝑦0 and 𝑢1 + 𝑣1 = 𝑥1 +𝑦1 (output
shares are not switched);

• If 𝑐 = 1, then 𝑢0 + 𝑣0 = 𝑥1 +𝑦1 and 𝑢1 + 𝑣1 = 𝑥0 +𝑦0 (output
shares are switched).

Mohassel and Sadeghian [34] implemented such a switch proto-

col using a single 1-out-of-2 OT. To achieve this, S first generates

random (𝑢0, 𝑢1). Two parties then invoke 1-out-of-2 OT, where

S takes ((𝑥0 − 𝑢0)∥(𝑥1 − 𝑢1), (𝑥1 − 𝑢0)∥(𝑥0 − 𝑢1)) as inputs and R
takes the choice bit 𝑐 as input. R finally sets

(𝑣0, 𝑣1) =
{
((𝑥0 − 𝑢0) + 𝑦0, (𝑥1 − 𝑢1) + 𝑦1) if 𝑐 = 0

((𝑥1 − 𝑢0) + 𝑦1, (𝑥0 − 𝑢1) + 𝑦0) if 𝑐 = 1

It is easy to verify (𝑢0, 𝑢1) and (𝑣0, 𝑣1) satisfy the desired correla-
tion. In implementation, the above process is realized with 1 ROT

2𝑙

and 4𝑙 bits communication for OT correction, as shown on the left

side of Figure 7. One can leverage this protocol for every switch in

the permutation network to obtain network-based COP.

Garimella et al. [20] identified redundancy in using ROT to in-

stantiate the above switch protocol. ROT generates randomness

(𝑟0, 𝑟1) for S, which are then used as one-time keys to encrypt

(𝑥0 − 𝑢0)∥(𝑥1 − 𝑢1) and (𝑥1 − 𝑢0)∥(𝑥0 − 𝑢1). Given that 𝑟0 is ran-

domly generated via ROT, it is not necessary to use 𝑟0 to further

encrypt uniformly random (𝑥0 − 𝑢0)∥(𝑥1 − 𝑢1). Instead, S can di-

rectly assign (𝑥0 − 𝑢0)∥(𝑥1 − 𝑢1) = 𝑟0. Applying this optimization

saves half the communication cost of a switch.
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Figure 7: Comparison of the construction for a switch in three network-based methods: MS13 [34], GMR21 [20] and our Pcop−net,
from left to right. For MS13 and GMR21, ((𝑟0, 𝑟1), 𝑟𝑐 ) is the output of ROT2𝑙 where the choice bit of R is 𝑐 and the bit length of
input is 𝑙 ; while for our Pcop−net, they are output of ROT𝑙 . The calculations of S and R are marked in blue and red, respectively.

Parameters: The size of input 𝑛. The field of input D. A CRHF 𝐻 : {0, 1}𝜅 → D.
Input: R holds a permutation 𝜋 ∈ P𝑛 .
Protocol:
(1) [Programming] R programs a Waksman network 𝜔 with the size-𝑛 permutation 𝜋 , where the number of switches in 𝜔 is𝑊 (𝑛).
(2) Let 𝑝 be a public function that maps each switch 𝑔 to a distinct index 𝑝 (𝑔) ∈ [𝑊 (𝑛)], R obtains a length-𝑊 (𝑛) vector c such that the

sign for each switch gate 𝑔 is placed into c𝑝 (𝑔) .
(3) [OT] Two parties initialize FCOT with sender sampled Δ. Then they invoke FCOT where S acts as sender and R acts as the receiver

with input c. As the result, S receives length-𝑊 (𝑛) vector r and R receives two length-𝑊 (𝑛) vectors r0, r1.
(4) [Network construction] Two parties construct own network. Let u and v be the values of wires held by S and R respectively. For

each input wires in the first layer 𝑖 , S samples u𝑖 ← D, R sets v𝑖 = 0.

(5) In topological order of wires: let 𝑔 be a switch with input wires 𝑖0, 𝑖1 and output wires 𝑗0, 𝑗1.

(a) S computes 𝑠𝑏 ← 𝐻 (r𝑏
𝑝 (𝑔) ) for 𝑏 ∈ {0, 1}, and sets u𝑗0 = u𝑖0 − 𝑠0, u𝑗1 = u𝑖0 − 𝑠1.

(b) S computes and sends 𝑑 = u𝑖0 + u𝑖1 − u𝑗0 − u𝑗1 to R.
(c) R computes 𝑠 ← 𝐻 (r𝑝 (𝑔) ). If c𝑝 (𝑔) = 0, R sets v𝑗0 = 𝑠 + v𝑖0, v𝑗1 = 𝑑 − 𝑠 + v𝑖1; Otherwise, R sets v𝑗0 = 𝑑 − 𝑠 + v𝑖1, v𝑗1 = 𝑠 + v𝑖0.

Output: S outputs length-𝑛 vectors a, b, where a𝑖 is the value of the 𝑖-th input wire of the first layer and b𝑖 is the value of 𝑖-th output

wire of the last layer. R outputs length-𝑛 vectors c where c𝑖 is the value of 𝑖-th output wire of the last layer.

Figure 8: COP generation protocol based on Waksman network Pcop−net.

(𝑥0 − 𝑢0 | |𝑥1 − 𝑢1︸              ︷︷              ︸
𝑟0

), (𝑥1 − 𝑢0 | |𝑥0 − 𝑢1)

We further observe that there is another correlation between

(𝑥0 − 𝑢0)∥(𝑥1 − 𝑢1) and (𝑥1 − 𝑢0)∥(𝑥0 − 𝑢1), that is,

(𝑥0 − 𝑢0) + (𝑥1 − 𝑢1) = (𝑥1 − 𝑢0) + (𝑥0 − 𝑢1)

We can leverage this correlation to further halve the commu-

nication cost by determining (𝑢0, 𝑢1) on both (𝑟0, 𝑟1) instead of

solely on 𝑟0. Specifically, S computes 𝑢0 = 𝑥0 − 𝑟0, 𝑢1 = 𝑥0 − 𝑟1.
Subsequently, S only need to send 𝑑 = 𝑥0 + 𝑥1 − 𝑢0 − 𝑢1 to R.

(

𝑠𝑢𝑚=𝑑︷              ︸︸              ︷
𝑥0 − 𝑢0︸  ︷︷  ︸

𝑟0

| |𝑥1 − 𝑢1), (

𝑠𝑢𝑚=𝑑︷              ︸︸              ︷
𝑥1 − 𝑢0 | | 𝑥0 − 𝑢1︸  ︷︷  ︸

𝑟1

)

R finally sets (𝑣0, 𝑣1) =
{
(𝑟𝑐 + 𝑦0, 𝑑 − 𝑟𝑐 + 𝑦1) if 𝑐 = 0

(𝑑 − 𝑟𝑐 + 𝑦1, 𝑟𝑐 + 𝑦0) if 𝑐 = 1

.

It is easy to verify that (𝑢0, 𝑢1) and (𝑣0, 𝑣1) satisfy the desired

correlation.S only needs to send𝑑 = 𝑥0+𝑥1−𝑢0−𝑢1, which further
halves the communication cost compared to sending the encrypted

(𝑥1−𝑢0)∥(𝑥0−𝑢1) as in [20]. The randomness of the outputs (𝑢0, 𝑢1)

and (𝑣0, 𝑣1) for two parties is guaranteed by the randomness of

(𝑟0, 𝑟1). The message 𝑑 sent by S can be inferred from the result

that R should get, thereby demonstrating the security.

Now, we informally analyze the lower bound of the commu-

nication cost for implementing a switch based on a ROT result.

First, the receiver knows nothing about (𝑥0, 𝑥1) before the switch
protocol. After the switch is somewhat done with a ROT result,

the receiver can obtain

∑
𝑥𝑖 −

∑
𝑢𝑖 by computing

∑
𝑣𝑖 −

∑
𝑦𝑖 . This

implies that the receiver learns 𝑙-bit information of the sender’s

input (𝑥0, 𝑥1) and output (𝑢0, 𝑢1). Second, the input (𝑥0, 𝑥1) of the
sender can be any two 𝑙-bit random values, and the ROT result

is random and independent with (𝑥0, 𝑥1), so
∑
𝑥𝑖 −

∑
𝑢𝑖 can be

any 𝑙-bit value no matter how the sender generates random values

(𝑢0, 𝑢1). Therefore, if security is not compromised, the message

transmitted during the switch protocol must be no less than 𝑙-bit

from the perspective of information theory. Therefore, we argue

that the lower bound of the communication cost for implementing

a switch for 𝑙-bit input based on an ROT result is 𝑙 bits, and our

protocol is communication-optimal.

3.2 Our network-based protocol
Our optimized network-based COP is formally described in Fig-

ure 8. The protocol follows the above idea but uses slightly differ-

ent notations. Note that in the permutation network, all switches
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are organized into layers, with the output of switches in each

layer serving as the input to switches in the next layer. There-

fore, we use vectors u and v to denote wire values held by S
and R, respectively, and subscript indexes to identify wire val-

ues for a particular switch 𝑔. In this way, the input (and output) of

a switch (u𝑖0, u𝑖1), (v𝑖0, v𝑖1) (and (u𝑗0, u𝑗1), (v𝑗0, v𝑗1)) correspond
to (𝑥0, 𝑥1), (𝑦0, 𝑦1) (and (𝑢0, 𝑢1), (𝑣0, 𝑣1)) as described in §3.1. We

also leverage CRHF 𝐻 to extend (𝑟0, 𝑟1) generated by COT to the

ROT result with the same length 𝑙 as the switch input.

If the offline-online paradigm is not adopted and direct computa-

tion of the share of 𝜋 (x) is required, only the following operations

need to be added at the end of the protocol in Figure 8: (1) S com-

putes and sends x − a to R, and outputs b; (2) R computes and

outputs 𝜋 (x − a) + c. Note that these operations are identical to
those of the online phase in the offline-online paradigm when the

permutation of offline generated COP is 𝜋 . Therefore, the cost of

permuting x remains unchanged regardless of whether the offline-

online paradigm is used.

4 Improving Matrix-based COP
We consider two optimizations for matrix-based COP. The first

optimization is for small-size permutations with lower communica-

tion costs, while the second focuses on more efficient permutation

decomposition for generating COP in large-size permutations.

4.1 Improving Small-size Permutation
Chase’s protocol [13] relies on PPRF constructed using the standard

GGM tree. Recently, Guo et al. proposed a new primitive named

pseudorandom correlated GGM (pcGGM) tree [22]. By plugging the

pcGGM tree into PPRF, the computation/communication costs are

reduced by nearly one-quarter and one-half, respectively. A naive

way to optimize small-size permutation is thus directly adopting

the more efficient pcGGM tree-based PPRF, achieving 𝑛𝜅 (log𝑛 + 1)
(rather than 2𝑛𝜅 log𝑛) bits of communication.

Our further optimization exploits the property that the permuta-

tion 𝜋 = (𝜋 (1), . . . , 𝜋 (𝑛)) must traverse the entire set [𝑛]. This im-

plies that 𝜋 (𝑛) can be uniquely determined from {𝜋 (1), . . . , 𝜋 (𝑛−1)}.
In the matrixW, this property indicates that the punctured index

of the 𝑛-th row is the index that has not appeared in the preceding

𝑛 − 1 rows. It seems possible to utilize the values of the first 𝑛 − 1
rows in V andW to determine the entries in their 𝑛-th row.

However, directly using PPRF to generate each row in the matrix

is not feasible for the above optimization. If all values in punctured

points are pseudorandom and unknown to R, for the 𝑖-th column

with 𝜋 (𝑛) ≠ 𝑖 , S knows the values of the first 𝑛 − 1 columns

{V𝑗,𝑖 |1 ≤ 𝑗 < 𝑛}whileR only learns𝑛−2 values of them exceptV𝑘,𝑖
where 𝜋 (𝑘) = 𝑖 (1 ≤ 𝑘 < 𝑛). Without interaction and S knowing

the index 𝑘 , two parties cannot obtain the same pseudorandom

value for V𝑛,𝑖 andW𝑛,𝑖 .

Our solution is to create twomatrices V andW such that only the

pairs of values at punctured positions (𝑖, 𝜋 (𝑖)) exhibit a correlation
W𝑖,𝜋 (𝑖 ) = V𝑖,𝜋 (𝑖 ) ⊕ Δ, where S knows Δ and R knows punctured

indexes 𝜋 (𝑖). All other pairs of values are the same in V and W.

This allows two parties to compute the same values for columns

𝑖 ≠ 𝜋 (𝑛), which is just enough for the permutation. Subsequently,

two parties can calculate the values of the last row and then break

that correlation using CRHF to make the column-sum or row-sum

pseudorandom, thus meeting the security requirements.

Specifically, two parties now obtain two matrices that satisfy

W𝑖 = V𝑖 ⊕𝐼 (𝑛, 𝜋 (𝑖)) ·Δ for 𝑖 ∈ [𝑛−1]. LetW𝑛 and V𝑛 be the column-

wise sum of W1:𝑛−1 and V1:𝑛−1, i.e., W𝑛,𝑖 =
⊕

𝑗∈[𝑛−1]W𝑗,𝑖 and

V𝑛,𝑖 = Δ ⊕ (
⊕

𝑗∈[𝑛−1] V𝑗,𝑖 ). If 𝑖 ≠ 𝜋 (𝑛), let 𝜋 (𝑘) = 𝑖 , then

V𝑛,𝑖 = Δ⊕(
⊕

𝑗∈[𝑛−1] V𝑗,𝑖 ) = Δ⊕V𝜋 (𝑘 ),𝑖⊕(
⊕

𝑗∈[𝑛−1], 𝑗≠𝑘 W𝑗,𝑖 ) =⊕
𝑗∈[𝑛−1]W𝑗,𝑖 = W𝑛,𝑖 . If 𝑖 = 𝜋 (𝑛), then obviously V𝑛,𝑖 = Δ⊕W𝑛,𝑖 .

Therefore, the constraint of the 𝑛-th row W𝑛 = V𝑛 ⊕ 𝐼 (𝑛, 𝜋 (𝑛)) · Δ
holds. Finally, 𝑛2 computations of CRHF 𝐻 on the values of the

matrices are performed to break the correlations and ensure that

the result vectors a′, b′, c′ are pseudorandom. {W𝑖,𝜋 (𝑖 ) }𝑖∈[𝑛] are
independent due to the security of FspCOT, and {𝐻 (V𝑖,𝜋 (𝑖 ) )}𝑖∈[𝑛]
are pseudorandom to R given V𝑖,𝜋 (𝑖 ) = W𝑖,𝜋 (𝑖 ) ⊕ Δ without know-

ing Δ according to the correlation robustness. Therefore, although

the obtained values W𝑛,V𝑛 depend on the first 𝑛 − 1 rows and are

not random, the obtained a′, b′ are still pseudorandom to R.
Two parties can adopt the half-tree-optimized single-point COT

to obtain these two matrices, which requires COTlog𝑛𝜅 and the com-

munication cost of 𝜅 log𝑛 bits for a size-𝑛 spCOT. The total number

of COTs and the communication cost for transferring OT payloads

is reduced to (𝑛 − 1) log𝑛 (instead of 𝑛 log𝑛) and (𝑛 − 1)𝜅 log𝑛
(instead of 2𝑛𝜅 log𝑛) bits, respectively. The detailed protocol is for-

mally described in Figure 9. Note that the mask operation in step

(7) of Figure 9 is essential to achieve simulation-based security. For

a large-size COP generated with permutation decomposition, the

same mask operation should be performed on the compiled output

vectors. Theorem 1 formally shows the security of our optimization

for small-size permutation. The proof is shown in Appendix C.

Theorem 1. The protocol in Figure 9 securely realizes the func-
tionality in Figure 2 in the FspCOT-hybrid world.

4.2 Improving Permutation Decomposition
The other crucial technique in matrix-based COP is to avoid 𝑂 (𝑛2)
complexity by first decomposing a large-size permutation into mul-

tiple small-size sub-permutations, followed by compiling the COPs

corresponding to those sub-permutations into the required large-

size COP [13]. This section reviews the permutation decomposition

method, along with our optimization.

Out-inside Permutation Decomposition. There are two steps to
decompose a size-𝑛 permutation [13]. The first step is to program

the Beneš (or Waksman) network with 2 log𝑛 − 1 layers. Given

the upper bound of the size of the decomposed small permutation

is 𝑇 where 𝑇 is a power of 2, the second step is to split the adja-

cent layers of the permutation network from the outer layers to the
middle layer, ensuring that the number of layers in each subnet-

work is log𝑇 except for the middle subnetwork. It will result in

𝑑 = 2⌈ log𝑛
log𝑇
⌉ − 1 subnetworks {𝜔1, . . . , 𝜔𝑑 }. Each 𝜔𝑖 corresponds

to a size-𝑛 permutation 𝜋𝑖 (𝑖 ∈ [𝑑]) and 𝜋 = 𝜋𝑑 · . . . , ·𝜋1. We re-

fer to this decomposition strategy as out-inside decomposition. The
left part of Figure 10 provides a toy example of the out-inside de-

composition for a 5-layer network. The network is divided into

2⌈ log 8
log 4
⌉ − 1 = 3 subnetworks, where 𝜔1 or 𝜔3 is the subnetwork

consisting of the switches in the left or right (log𝑇 = 2) layers, and
𝜔2 is a network with the switches in the middle layer.
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Parameters: The length of COP 𝑛 > 2. The field of input D. A CRHF 𝐻 : {0, 1}𝜅 → D.
Input: R holds a permutation 𝜋 ∈ P𝑛 .
Protocol:
(1) [spCOT] S samples Δ ∈ F2𝜅 and sends (init,Δ) to FspCOT. R sends (init) to FspCOT.
(2) For 𝑖 ∈ [𝑛 − 1]: S sends (extend, 𝑛) and R sends (extend, 𝐼 (𝑛, 𝜋 (𝑖))) to FspCOT, as the result, S receives length-𝑛 vector V𝑖 and R

receives length-𝑛 vector W𝑖 .

(3) [S local computation] S fill the last row of matrix V. For 𝑖 ∈ [𝑛]: V𝑛,𝑖 = Δ ⊕ (
⊕

𝑗∈[𝑛−1] V𝑗,𝑖 ).
(4) S computes two length-𝑛 vectors a′, b′. For 𝑖 ∈ [𝑛]: a′

𝑖
=
∑

𝑗∈[𝑛] 𝐻 (V𝑗,𝑖 ), b′𝑖 =
∑

𝑗∈[𝑛] 𝐻 (V𝑖, 𝑗 ).
(5) [R local computation] R fill the last row of matrixW. For 𝑖 ∈ [𝑛]: W𝑛,𝑖 =

⊕
𝑗∈[𝑛−1] ]W𝑗,𝑖 .

(6) R computes a length-𝑛 vector c′. For 𝑖 ∈ [𝑛]: c′
𝑖
=
∑

𝑗≠𝑖 𝐻 (W𝑗,𝜋 (𝑖 ) ) −
∑

𝑗≠𝜋 (𝑖 ) 𝐻 (W𝑖, 𝑗 ).
(7) [Mask] S samples two length-𝑛 vectors x, y and sends them to R. S computes two vectors a = a′ + x, b = b′ + y and R computes

c = c′ + 𝜋 (x) − y.
Output: S outputs a, b. R outputs c.

Figure 9: Optimized matrix-based COP generation protocol Pcop−mat.

Depending on whether the switches are interconnected by wires,

each subnetwork can be further divided into multiple smaller sub-

networks, with the number of input wires for each small subnet-

work not exceeding 𝑇 . For example, the left subnetwork 𝜔1 on the

left subfigure of Figure 10 can be further divided into two disjoint

subnetworks (marked in yellow and blue). Each small subnetwork

corresponds to a sub-permutation. The same division can be done

on the right part of Figure 10. Following these steps, the large permu-

tation can be decomposed into the sub-permutations corresponding

to these small subnetworks.

After generating COP for each sub-permutation, the next step is

to compile those COPs into the required COP for the original size-𝑛

permutation.

(1) For 𝑖 ∈ [𝑑],S andR combine the COPs of sub-permutations

in𝜔𝑖 to obtain size-𝑛 COP. Let c𝑖 = 𝜋𝑖 (a𝑖 ) −b𝑖 be the result.
(2) S sends {𝛼𝑖 = a𝑖+1 − b𝑖 }𝑖∈[𝑑−1] to R.
(3) R initializes 𝛽1 = c1 and computes 𝛽𝑖+1 = 𝜋𝑖+1 (𝛽𝑖 − 𝛼𝑖 ) +

c𝑖+1 for 𝑖 ∈ [𝑑 − 1].
(4) S and R perform the mask operation on a1, b𝑑 and 𝛽𝑑 as

shown in Figure 9 and output the result vectors.

The correctness of 𝛽𝑑 = 𝜋 (a1) − b𝑑 , where 𝜋 = 𝜋𝑑 · . . . · 𝜋1, can be

proven by induction that if 𝛽𝑖 = (𝜋𝑖 · . . . · 𝜋1) (a1) − b𝑖 holds, then

𝛽𝑖+1 = 𝜋𝑖+1 (𝛽𝑖 − 𝛼𝑖 ) + c𝑖+1

= 𝜋𝑖+1 ((𝜋𝑖 · . . . · 𝜋1) (a1) − b𝑖 − a𝑖+1 + b𝑖 ) + c𝑖+1

= (𝜋𝑖+1 · . . . · 𝜋1) (a1) − 𝜋𝑖+1 (a𝑖+1) + c𝑖+1

= (𝜋𝑖+1 · . . . · 𝜋1) (a1) − b𝑖+1 .

In-outside Permutation Decomposition. The out-inside permu-

tation decomposition correctly decomposes a size-𝑛 permutation

into
𝑛𝑑
𝑇

disjoint size-𝑇 sub-permutations when log𝑛 is an inte-

ger multiple of log𝑇 , i.e., log𝑛 mod log𝑇 = 0. However, when

𝑠 = (log𝑛 mod log𝑇 ) > 0, the middle subnetwork 𝜔 𝑑+1
2

contains

fewer than 2 log𝑇 − 1 layers. Figure 10 demonstrates a toy example

where 𝑠 = log 8 mod log 4 = 1. In this case, 𝜋 𝑑+1
2

can be divided into

multiple sub-permutations with size 𝑆 = 2
𝑠 < 𝑇 . Since computing

𝑛
𝑆
size-𝑆 COPs requires 𝑛 log 𝑆 OTs and 𝑛𝜅 log 𝑆 bits of communica-

tion, compared to 𝑛 log𝑇 OTs and 𝑛𝜅 log𝑇 bits of communication

1
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7
8

1
2
3
4
5
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8
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8
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2
3
4
5
6
7
8

2 log 𝑇 − 1log 𝑇log 𝑇

𝜔! 𝜔" 𝜔# 𝜔! 𝜔" 𝜔#

Figure 10: Examples of permutation decomposition given
n=8 and T=4. The out-inside method (left) splits into 4 size-4
permutations (in different colors) and 4 size-2 permutations
(in black). Our in-outside method (right) splits into 2 size-4
permutations and 8 size-2 permutations.

for computing
𝑛
𝑇
size-𝑇 COPs, generating these smaller COPs be-

comes more efficient.

This observation motivates us to decompose a permutation into

as many smaller sub-permutations as possible while keeping the

number of decomposed subnetworks 𝑑 unchanged. When log𝑛 is

not an integer multiple of log𝑇 , if we adopt the in-outside decom-
position strategy, where the permutation network is split from the

middle layer to the outer layers, it results in 2 subnetworks with

sizes less than log𝑇 in the outermost layers, instead of just 1 sub-

network in the middle layer. Therefore, the total cost to construct

COP with Pcop−mat is reduced.

Specifically, let 𝑛 = 2
𝑟
, the upper bound of the size of a decom-

posed small permutation be𝑇 = 2
𝑡
, 𝑠 = 𝑟 − 𝑡 ⌈ 𝑟𝑡 ⌉ + 𝑡 , 𝑆 = 2

𝑠
, and 𝜋𝑖:𝑗

denote the permutation corresponding to the subnetwork consist-

ing of layers 𝑖 to 𝑗 of the in-place permutation network. Recall the

structure of the in-place Beneš network, a switch in the 𝑖-th or the

(2𝑟 −𝑖)-th layers (𝑖 ≤ log𝑛) will swap two values that are 2𝑟−𝑖 apart.
A permutation represented by 𝛼 layers in Beneš network can be

decomposed into 2
𝑟−𝛼

size-2
𝛼
sub-permutations. Specifically, the

permutation 𝜋𝑟− 𝑗 :𝑟−𝑖 or 𝜋𝑟+𝑖:𝑟+𝑗 with 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 can be decom-

posed into 2
𝑟−( 𝑗−𝑖+1)

sub-permutations. The 𝑥-th permutation acts

on the data with indexes {𝑓𝑔𝑖𝑑 (𝑥, 𝑖) ·2𝑗 +𝑝 ·2𝑖 + 𝑓𝑖𝑛𝑑 (𝑥, 𝑖)}0≤𝑝<2𝑗−𝑖+1
where 𝑓𝑔𝑖𝑑 (𝑥, 𝑖) = (𝑥−1)/2𝑖 , 𝑓𝑖𝑛𝑑 (𝑥, 𝑖) = 𝑥− 𝑓𝑔𝑖𝑑 (𝑥, 𝑖) ·2𝑖 represents
which group 𝑥 will be assigned to when it is grouped by the distance
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Table 1: Theoretical complexity comparison. The input size
is 𝑛 and the bit length is 𝑙 . 𝐵(𝑛) and𝑊 (𝑛) are the number of
switches in the Beneš network and the Waksman network,
respectively, for the input size 𝑛. 𝑇 is the size of small-size
COP in the matrix-based protocols. 𝑢 = ⌈𝑙/𝜅⌉, 𝑑 = 2⌈ log𝑛

log𝑇
⌉ − 1.

The computation/communication costs are the total cost of
both parties, excluding the cost of COT.

Protocols No. of COT No. of AES Other comm. cost

wPRF-based [36] 4𝑛𝑢𝜅 15𝑛𝑢𝜅 20𝑛𝑢𝜅

Network-based [20] 𝐵(𝑛) 6𝐵(𝑛)𝑢 2𝐵(𝑛)𝑙
Matrix-based [13] 𝑑𝑛 log𝑇 (2𝑢 + 4)𝑑𝑛𝑇 (𝑑 + 1)𝑛𝑙 + 2𝑛𝜅𝑑 log𝑇

Pcop−net 𝑊 (𝑛) 3𝑊 (𝑛)𝑢 𝑊 (𝑛)𝑙

Pcop−mat 𝑛𝑇−1
𝑇
(2 log𝑛 − log𝑇 ) (2𝑢 + 2)𝑑𝑛𝑇

(𝑑 + 1)𝑛𝑙+
𝑛𝜅 (2 log𝑛 − log𝑇 )

of 2
𝑖
, as well as its index within that group. And the permutation

of the middle 2𝑖 − 1 layers 𝜋𝑟−(𝑖−1) :𝑟+(𝑖−1) is the combination of

2
𝑟−𝑖

size-2
𝑖
permutations, where the 𝑥-th permutation acts on the

values with indexes {(𝑥 − 1) · 2𝑖 + 𝑝}𝑝∈[2𝑖 ] .
Our in-outside decomposition first decompose the size-𝑛 per-

mutation 𝜋 into 𝑑 permutations 𝜋2𝑟−𝑠 :2𝑟−1 · · · · · 𝜋𝑟−(𝑡−1) :𝑟+(𝑡−1) ·
. . . 𝜋1:𝑠 . Then, two permutations 𝜋1:𝑠 , 𝜋2𝑟−𝑠 :2𝑟−1 can be decomposed

into size-𝑆 sub-permutations and the others can be decomposed

into size-𝑇 sub-permutations. Compared to the out-inside decompo-

sition strategy in [13], the in-outside decomposition strategy yields

a lower cost when 𝑠 < 𝑡 .

5 Theoretical and Experimental Analysis
5.1 Theoretical Comparison
We analyze the complexity of our protocols and compare them with

existing methods. The result is shown in Table 1. We list the number

of COTs separately since the cost of generating COT in or not in

a silent way is different. We measure the computation cost with

the number of AES invocations since AES is the base operation of

CRHF and PRG. Theoretically, the cost of Pcop−net is smaller than

Pcop−mat for small input bit length 𝑙 , and it is reversed for large 𝑙 .

Network-based COP. Our baseline is the protocol in [20], which

requires 𝐵(𝑛) COT, where 𝐵(2) = 1, 𝐵(3) = 3 and 𝐵(𝑛) = 𝐵(⌈𝑛
2
⌉) +

𝐵(⌊𝑛
2
⌋) + 2⌊𝑛

2
⌋. As reviewed in §2.5, a switch needs 3 invocations

of CRHF whose output bit length is 2𝑙 and the transmitted message

with 2𝑙 bits, which results in 6𝐵(𝑛)𝑢 invocations of AES and 2𝐵(𝑛)𝑙
bits communication in total, where𝑢 = ⌈ 𝑙𝜅 ⌉. Pcop−net only requires
3 invocations of CRHF whose output bit length is 𝑙 and 𝑙 bit message

for a switch, thus halving the cost compared to [20]. The number of

switches in theWaksman network for a size-𝑛 permutation is𝑊 (𝑛),
where𝑊 (2) = 1,𝑊 (3) = 3 and𝑊 (𝑛) =𝑊 (⌈𝑛

2
⌉) +𝑊 (⌊𝑛

2
⌋) + 𝑛 − 1

for 𝑛 ≥ 4. Therefore, the switches in the Waksman network are

strictly fewer than the Beneš network when 𝑛 ≥ 4.

Matrix-based COP. The protocol in [13] decomposes the size-𝑛

permutation into
𝑛𝑑
𝑇

size-𝑇 permutation, and each COP for size-𝑇

permutation needs 𝑇 log𝑇 invocations of OT, 4𝑇 2
invocations of

AES, and 2𝑇 log𝑇𝜅 bits communication to generate PPRF. With the

AES to extend the bit length, a COP requires (2𝑢 + 4)𝑇 2
AES. Com-

bining the communication cost of (𝑑 + 1)𝑛𝑙 bits in the permutation

composition process, the number of OT is 𝑑𝑛 log𝑇 , the number of

AES invocation is (2𝑢 + 4)𝑑𝑛𝑇 , and the total communication cost is

(𝑑 + 1)𝑛𝑙 + 2𝑑𝑛𝜅 log𝑇 bits.

The reduction of AES compared to [13] comes from the adoption

of half-tree GGM construction. Let 𝑡 = log𝑇 , 𝑠 = log𝑛− 𝑡 ⌈ log𝑛𝑡 ⌉ + 𝑡 ,
𝑆 = 2

𝑠
, our smooth permutation decomposition results in 2 𝑠-layers

networks and (𝑑 − 2) 𝑡-layers networks, requiring 2𝑛𝑠 𝑆−1
𝑆

and

(𝑑 − 2)𝑛𝑡 𝑇−1
𝑇

OT, respectively. Therefore, the number of OT and

the communication cost in constructing spCOT with half-tree are

𝑛𝑇−1
𝑇
(2 log𝑛 − log𝑇 ) and 𝑛𝜅 (2 log𝑛 − log𝑇 ) bits.

5.2 Implementation and Configuration
We set the computational security parameter 𝜅 = 128 and the statis-

tical security parameter 𝜆 = 40. As mentioned in §2.3, we evaluated

our protocols with two OT implementations: OT extension [4] and

silent OT [44].

Implementation details. We fully implement our optimizations

using Java programming language, and our code is open source

as a submodule in mpc4j
3
. Note that the implementation of the

network-based baseline protocol in [20] is publicly available
4
. How-

ever, their implementation represents inputs as uint64_t, thus only
supporting input bit length 𝑙 ≤ 64. We re-implement it to support

arbitrary input bit length 𝑙 . Recently, the implementation of the

wPRF-based protocol [36] (based on C++) has been open-sourced
5
.

After a thorough analysis of its implementation, we found that it

primarily focuses on computational performance estimation that

supports single-machine evaluations. To facilitate fair and com-

prehensive comparisons, we implement all protocols and focus on

end-to-end performance estimation with communication support

using Netty6.
We remark that our implementation of the wPRF-based protocol

is slower compared to the original C++ version. On our platform,

the C++ version requires approximately 5.6s and 256MB commu-

nication cost for generating a 128-bit length COP with size 2
20
.

The performance gap comes from the following aspects. First, Java

performs less efficiently than C++ in atom operations, such as XOR

operations on byte arrays and AES
7
. Second, although we use Java

Virtual Machine (JVM) that supports auto-vectorized (SIMD) op-

timizations, there remains an efficiency gap when compared to

native C++ invoking SIMD directly. Third, our evaluation involves

two machines, whereas the C++ version runs on a single machine,

rendering the communication overhead almost negligible in their

implementation. Fourth, the original C++ version is heavily op-

timized. While our implementation incorporates some of these

optimizations, we have sacrificed some performance for improved

code readability. Finally, the communication cost differs from the

values reported in Table 2, due to differences in the underlying

silent OT protocols. Specifically, we use Ferret OT [44] whereas

their implementation uses EcCode [38]
8
.

3
https://github.com/alibaba-edu/mpc4j. Our code can be found in the package “osn”.

4
https://github.com/osu-crypto/PSI-analytics

5
https://github.com/Visa-Research/secure-join

6
https://netty.io/

7
On our platform, C++ takes 84ms and 52ms for 2

25
AES and XOR on 16-byte arrays

respectively, while Java takes 609ms and 429ms.

8
We benchmark the OT generation on one of our machines. When a total of 2

25
OTs

are generated, the EcCode takes 3.5KB on average to generate 2
20

OT, while Ferret

OT takes 157KB to get the same amount of OTs. However, we chose Ferret OT instead

of EcCode because Ferret OT is faster. Specifically, the EcCode implemented with

https://github.com/alibaba-edu/mpc4j
https://github.com/osu-crypto/PSI-analytics
https://github.com/Visa-Research/secure-join
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Table 2: Performance for fixed input bit length 𝑙 = 128 bits and different input size 𝑛. 𝑇 is the size of small-size COP in the
matrix-based protocols. Since the wPRF-based protocol strongly relies on silent OT, we only report the result with silent OT.
The best protocol within a setting is marked in green.

Protocol

Data size 𝑛 Time (s) in LAN setting Time (s) in WAN setting Communication cost (MB)

2
12

2
16

2
20

2
24

2
12

2
16

2
20

2
24

2
12

2
16

2
20

2
24

OT extension [4]

Matrix-based [13]

𝑇 = 16 0.1 2.3 54.9 1738 2.4 13.2 208.6 4137 4.3 96.7 1984 38747

𝑇 = 64 0.2 2.8 78.4 2291 2.0 12.7 218.4 4438 3.8 100.9 2253 36058

𝑇 = 256 0.4 5.5 124.9 3309 1.8 15.1 254.6 5640 4.9 79.9 2119 33906

Network-based [20] 0.05 0.5 10.1 265.8 1.3 6.2 87.3 1718 2.3 48.8 981.5 18925

Pcop−mat

𝑇 = 16 0.1 1.7 38.2 1329 2.1 9.1 135.3 2618 2.7 59.7 1220 23775

𝑇 = 64 0.3 2.0 54.0 1447 1.9 9.3 145.8 2846 2.5 56.6 1173 23272

𝑇 = 256 0.3 4.1 93.2 2673 1.8 11.1 179.0 4049 2.2 52.9 1112 22288

Pcop−net 0.05 0.34 6.0 180.3 1.2 4.7 57.1 1125 1.4 31.4 637.5 12348

silent OT [44]

wPRF-based [36] 1.0 5.16 93.4 1516 1.9 12.2 201 3190 1.7 19.4 311 4976

Matrix-based [13]

𝑇 = 16 0.9 2.5 59.1 1765 2.2 10.0 174.1 3781 3.6 67.9 1386 27040

𝑇 = 64 0.9 3.7 97.2 1853 1.8 10.0 185.6 4095 3.2 70.0 1555 24883

𝑇 = 256 1.1 6.0 172.2 3082 1.9 12.8 223.0 5293 4.0 55.3 1454 23264

Network-based [20] 0.8 1.2 13.0 316.4 1.7 4.6 70.4 1398 2.1 33.2 659.8 12721

Pcop−mat

𝑇 = 16 0.7 2.0 41.9 1086 1.9 7.4 108.1 2377 2.2 36.7 743.1 14463

𝑇 = 64 0.8 2.7 56.1 1338 1.8 7.0 117.6 2586.9 2.0 33.5 689 13420

𝑇 = 256 0.8 4.8 93.8 2554 1.7 8.9 154.1 3747 1.9 30.0 636.4 12477

Pcop−net 0.7 1.0 9.8 236.0 1.3 3.0 39.0 817.7 1.3 16.4 324.2 6277

Although there are differences in performance, we argue that

the performance trends with changes in input data and network

bandwidth are consistent, and similar conclusions can be drawn.

Evaluation environment and setup. All protocols are evaluated
on two physical machines with Intel

®
Core

TM
i9-9900K 3.60GHz

CPU and 128GB RAM. The number of available threads for each

party is 15. The network settings include actual LAN (where two

machines are connected directly by 2.5Gbps network cards and the

ping command shows that the RTT latency is 0.4ms), and WAN

(100Mbps bandwidth with 80ms RTT latency limited by tc com-

mand). We use GraalVM 22.0.2 as our JVM to run our experiments.

Since the difference among COP for various rings of the same

bit length lies in the local computation on plaintext (e.g., XOR for

F𝑙
2
and ADD for F

2
𝑙 ) and those computations are very fast, we only

evaluate the protocols for data defined in F𝑙
2
as a representative

case. We first evaluate our protocols and baseline protocols with OT

extension [4] or with silent OT [44] for the fixed input bit length

𝑙 = 128 (which is the most commonly used setting in the related

works [36]) and different input sizes 𝑛, the result is shown in Table

2. Then, we evaluate our protocol under various bandwidths and

input bit lengths, and the result is shown in Figure 11.

5.3 Performance Evaluation of COP
5.3.1 Network-based COP. As analyzed in §5.1, in addition to COT,

the communication/computation cost of Pcop−net are half of that
of the baseline. Therefore, the ratio of communication cost between

C++ takes 46ms on average to generate 2
20

OT, while the EcCode and the Ferret

OT implemented with Java take 936ms and 246ms, respectively. Therefore, for a fair

comparison, we use the fastest one in our implementation, the Ferret OT, as the

underlying silent OT protocol for all protocols.

Pcop−net and the baseline [20] is approximately 1/2 when using

silent OT, or 2/3 when using OT extension. The network-based

COP stands out with the minimal requirement for COT among all

methods, making its performance less susceptible to the perfor-

mance variations of the underlying OT, which can be observed by

comparing the execution time shown in Table 2. On the other hand,

compared to other methods, it has the highest coefficient associated

with input bit length 𝑙 in terms of communication complexity, which

is nearly 𝑛 log𝑛. It significantly associates its performance with

the network environment, leading to a substantial performance

difference under the LAN and WAN settings.

5.3.2 Matrix-based COP. Our protocol outperforms the baseline,

with notable superiority in cases where either (1) the input bit

length 𝑙 is small, or (2) log𝑛 is not a multiple of log𝑇 .

Table 3: Communication cost (MB) of matrix-based COP us-
ing silent OT for fixed 𝑛 = 2

16.

Bit length 2
7

2
9

2
11

2
13

2
15

Baseline [13]

𝑇 = 16 67.9 93.1 193.7 596.4 2207

𝑇 = 256 55.3 67.9 118.2 319.6 1124

Pcop−mat
𝑇 = 16 36.7 61.9 162.6 565.2 2175

𝑇 = 256 30.0 42.6 92.9 294.3 1099

Theoretically, When 𝑙 = 𝜅 = 128, the additional communication

cost besides OT of Pcop−mat is approximately
log𝑇+1
2 log𝑇+1× of that

of the baseline matrix-based protocol. Our result shown in Table

2 demonstrates it. For example, the ratio of communication cost

between Pcop−mat and the baseline is 0.54 when 𝑛 = 2
24

and 𝑇 =
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256. Notably, this gain diminishes as 𝑙 grows, as evidenced in Table

3, e.g., the ratio becomes 0.98 when 𝑛 = 2
16
, 𝑙 = 2

15
and 𝑇 = 256.

Our in-outside decomposition reduces unnecessary computa-

tion/communication costs by splitting the permutation network

from the middle to both sides and splitting both-side sub-networks

into minimal permutations. When 𝑙 is small, the performance gain

of communication cost is apparent. To illustrate this, we configure

Pcop−mat with two decomposition methods and list the ratio of

communication costs when 𝑙 = 128 in Table 4. On the other hand,

when 𝑙 is large, the communication cost is dominated by 𝑑𝑛𝑙 . As

shown in Table 3, when 𝑙 ≥ 2
13
, the communication cost of our pro-

tocols and baseline are close. Nonetheless, the save of computation

by in-outside decomposition leads to faster execution, especially

for large 𝑇 in the LAN setting.

Table 4: The ratio of communication cost of Pcop−mat using
in-outside decomposition vs. using out-inside decomposition,
where 𝑙 = 128 bits and the size of small-size COP 𝑇 = 256.

Input size (n) 2
12

2
14

2
16

2
18

2
20

2
22

Ratio with silent OT 0.77 0.86 1 0.72 0.81 0.91

Ratio without silent OT 0.67 0.84 1 0.70 0.80 0.90

Among Pcop−mat with various 𝑇 , it is obvious that the larger 𝑇

is, the smaller the communication cost is and the larger the compu-

tation cost is. However, the specific execution time is affected by

the network bandwidth, data size 𝑛, and the bit length 𝑙 . When 𝑙

is small (e.g., 𝑙 = 128 or 𝑙 = 256), the difference of communication

cost for protocols with various 𝑇 is not significant, so Pcop−mat
with smaller 𝑇 is faster as long as the bandwidth is not extremely

low as shown in Table 2 and Figure 11 due to small computation

cost. When 𝑙 is large, the computation cost dominates the execu-

tion time in the LAN setting, such that Pcop−mat with smaller 𝑇

also performs better, as shown in Figure 11. However, determining

which configuration is more efficient becomes ambiguous in the

WAN setting since the relative influence of computation cost and

communication latency on execution time becomes intricate to

discern. But based on theoretical analysis and experimental results,

we can conclude that the performance of Pcop−mat with larger 𝑇

gradually becomes the best as the bandwidth decreases.

5.3.3 Comparison among Various Protocols. When the input bit

length 𝑙 is small, less than 2𝜅 = 256 more precisely, Pcop−net always
outperforms Pcop−mat in our evaluation and theoretical compari-

son. For example, Pcop−mat with𝑇 = 16 requires nearly 2× as much

OT, 2× as much communication, and 4× as much computation com-

pared to Pcop−net when 𝑙 = 128, leading to longer execution time

regardless of the network setting and the underlying OT protocol.

Note that the communication/OT complexity of Pcop−net are ap-
proximately linearly with 𝑛 log𝑛, while those of the wPRF-based

protocol are linearly with 𝑛. As the 𝑛 increases, the communica-

tion cost of Pcop−net gradually exceeds that of the wPRF-based

protocol as shown in Table 2, and their execution time gradually

approaches. Although it is foreseeable that when 𝑛 becomes suf-

ficiently large, the execution of the wPRF-based protocol will be

faster than Pcop−net, we can still conclude that Pcop−net is the opti-
mal choice for input with small bit length when n is not excessively

large.

Table 5: Execution time (s) of protocols using silent OT for
fixed input size 𝑛 = 2

16 in the LAN setting.

Bit length (l) 2
13

2
14

2
15

2
16

2
17

2
18

2
19

Pcop−mat, T=16 9.9 18.2 42.9 117.4 377.8 494.4 761.4

Pcop−net 7.8 14.0 33.2 72.6 226.6 729.5 1136
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Figure 11: Execution time of protocols using silent OT under
various bandwidths and unlimited latency. The left is the
result on data with small bit length 𝑙 = 2

8, while the right is
the result on data with small bit length 𝑙 = 2

18.

When the input bit length 𝑙 is large, the ratio of communication

cost between Pcop−mat and Pcop−net is nearly 2

log𝑇
, and the ratio

of computation cost is nearly
4𝑇

3 log𝑇
. Therefore, the superiority of

Pcop−net and Pcop−net is closely related to network bandwidth,

and Pcop−mat performs best in the WAN setting. Theoretically, in

the LAN setting and with sufficiently large 𝑙 , the relative speed

between Pcop−mat and Pcop−net – which one is faster – should

remain nearly constant as 𝑙 increases, since the ratio of communi-

cation/computation cost does not vary significantly with different

𝑙 . However, our experimental results deviate from this theory, as

illustrated in Table 5. Even when 𝑙 is large enough compared to

𝜅 = 128, Pcop−mat progressively becomes faster than Pcop−net as
𝑙 increases. The issue stems from the inefficient use of bandwidth

caused by the frequent IO operations and the thread scheduling of

RPC (realized with Netty in our code).

We now roughly get the suggestions for selecting the optimal

protocol for different cases as follows.

(1) When 𝑙 is small (≤ 2𝜅), Pcop−net is always the best.
(2) Otherwise, as the bandwidth decreases, the optimal protocol

changes from Pcop−mat with smaller 𝑇 to that with larger 𝑇 .

5.4 Efficiency Improvement in Applications
We implemented the SOTA shuffle-based PSU protocols to demon-

strate the improvements our optimized network-based protocols

bring to PSU protocols, serving as an example application of COP
9
.

The baseline protocols include ZCL23-PK [46], ZCL23-PK-NO (which

corresponds to the version of ZCL23-PK that does not perform point

compression)
10
, and two shuffle-based protocols GMR21 [20] and

JSZ22-R [24], whose shuffling is instanced with the network-based

[20] protocol. We remark that recently, Jia et al. [25] proposed a new

9
We select the most representative COP applications to show the efficiency improve-

ments. Similar efficiency gains in other downstream applications can also be achieved.

10
We do not use ZCL23-SK as a baseline since it requires heavy-cost multiplication

triples. For example, it takes 1210s to generate the triples in the LAN setting when

𝑛 = 2
20

as reported in [46].
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Table 6: Communication cost (in MB) and running time (in seconds) of PSU protocols with OT extension [4] for fixed input bit
length 𝑙 = 64 bits and different input size 𝑛. Communication cost of S/R indicates the outgoing communication from S/R to
the other party. The best protocol within a setting is marked in green.

n Protocol

Communication cost (MB) Running time (s)

R S
total

LAN (2.5Gbps) WAN (100Mbps)

offline online offline online

Thread number = 1 Thread number = 15 Thread number = 1 Thread number = 15

offline online total offline online total offline online total offline online total

2
16

ZCL23-PKC 0 6.49 0 4.62 11.11 1.47 16.05 17.52 1.48 4.59 6.07 1.66 17.63 19.29 1.64 8.02 9.66

ZCL23-PKC-NO 0 11.82 0 8.62 20.44 1.5 12.86 14.36 1.44 3.12 4.56 1.64 16.72 18.36 1.64 7.24 8.88

GMR21 0.01 33.28 0.01 25.2 58.52 0.15 5.23 5.38 0.04 2.59 2.63 1.28 15.15 16.43 1.06 12.56 13.62

GMR21-OO 19.82

13.48

19.82

5.4

58.52 1.38 3.33 4.71 1.25 1.3 2.55 8.03 8.27 16.30 7.9 5.69 13.59

GMR21-OO* 9.22 18.42 46.52 0.84 3.41 4.25 0.48 0.98 1.46 8.76 7.5 16.26 8.15 3.23 11.38

JSZ22-R 0.01 25.45 0.01 21.99 47.46 0.15 1.53 1.68 0.04 1.04 1.08 0.83 8.24 9.07 0.7 10.4 11.1

JSZ22-R-OO 19.81 19.81 47.46 1.39 0.42 1.81 0.76 0.35 1.11 7.43 2.55 9.98 6.82 2.44 9.26

JSZ22-R-OO* 9.21

5.65

18.41

2.19

35.46 0.73 0.41 1.14 0.5 0.2 0.7 8.14 1.81 9.95 7.62 1.55 9.17

2
18

ZCL23-PKC 0 26.13 0 18.5 44.63 1.45 56.34 57.79 1.51 15.71 17.22 1.71 61.14 62.85 1.6 26.83 28.43

ZCL23-PKC-NO 0 47.59 0 34.5 82.09 1.47 50.37 51.84 1.44 10.02 11.46 1.68 57.99 59.67 1.64 17.23 18.87

GMR21 0.01 142.11 0.01 110.7 252.8 0.13 20.37 20.5 0.02 7.84 7.86 1.19 44.17 45.36 1.05 32.77 33.82

GMR21-OO 88.82

53.31

88.82

21.9

252.8 5.65 14.61 20.26 3.91 4.19 8.10 22.38 24.16 46.54 21.11 12.99 34.1

GMR21-OO* 41.62 83.22 200.0 2.98 14.79 17.77 2.01 3.68 5.69 19.32 22.77 42.09 17.29 11.93 29.22

JSZ22-R 0.01 111.7 0.01 98.3 210.0 0.15 7.08 7.23 0.01 4.15 4.16 0.85 25.56 26.41 0.7 24.16 24.86

JSZ22-R-OO 88.81 88.81 210.0 5.46 1.71 7.17 3.17 0.96 4.13 21.31 6.53 27.84 19.78 5.55 25.33

JSZ22-R-OO* 41.61

22.9

83.21

9.5

157.2 2.9 1.79 4.69 1.96 0.98 2.94 16.95 6.47 23.42 15.95 5.24 21.19

2
20

ZCL23-PKC 0 104.7 0 74.0 178.7 1.44 222.4 223.9 1.49 62.04 63.53 1.67 239.2 240.9 1.65 74.64 76.29

ZCL23-PKC-NO 0.0 190.8 0.0 138.0 328.8 1.46 206.4 207.8 1.48 40.63 42.11 1.67 229.8 231.4 1.63 60.82 62.45

GMR21 0.01 603.9 0.01 482.4 1086 0.29 88.52 88.81 0.03 38.98 39.01 1.24 173.3 174.5 1.05 128.6 129.6

GMR21-OO 393.6

210.3

393.6

88.8

1086 29.25 63.31 92.56 19.78 17.53 37.31 88.71 84.21 172.9 84.34 42.32 126.7

GMR21-OO* 185.6 371.2 855.9 13.29 63.59 76.88 8.76 16.88 25.64 55.7 83.86 139.6 54.69 42.74 97.43

JSZ22-R 0.01 485.2 0.01 431.6 916.8 0.21 34.31 34.52 0.05 22.64 22.69 0.9 102.8 103.7 0.71 97.07 97.78

JSZ22-R-OO 393.6 393.6 916.8 29.42 8.59 38.01 19.29 4.14 23.43 87.65 21.95 109.6 82.19 18.47 100.7

JSZ22-R-OO* 185.6

91.6

371.2

38.0

686.4 14.0 8.41 22.41 8.68 3.68 12.36 54.71 21.02 75.73 53.68 17.1 70.78

2
22

ZCL23-PKC 0 419.7 0 296.0 715.7 1.44 951.7 953.1 1.47 260.6 262.1 1.62 973.6 975.2 1.65 299.2 300.9

ZCL23-PKC-NO 0 764.5 0 552.0 1316 1.48 859.3 860.8 1.46 172.3 173.8 1.67 923.9 925.6 1.64 239.1 240.7

GMR21 0.01 2564 0.01 2088 4652 0.18 448.9 449.1 0.02 198.2 198.2 1.29 760.0 761.3 1.04 553.5 554.5

GMR21-OO 1728

836.2

1728

360.0

4652 186.8 287.6 474.4 110.4 86.31 196.7 409.2 344.1 753.3 380.8 164.86 545.7

GMR21-OO* 819.2 1638 3654 97.06 288.6 385.6 50.42 84.8 135.2 240.5 345.7 586.2 237.6 163.1 400.7

JSZ22-R 0.01 2099 0.01 1892 3991 0.18 207.83 208.0 0.03 124.6 124.6 0.86 490.2 491.1 0.7 432.2 432.9

JSZ22-R-OO 1728 1728 3991 182.6 45.53 228.1 107.9 19.32 127.3 409.7 86.61 496.3 378.0 65.06 443.0

JSZ22-R-OO* 819.2

371.2

1638

164.0

2993 95.55 45.77 141.3 48.63 21.04 69.67 240.01 85.74 325.8 237.4 65.09 302.5

PSU protocol that eliminates unnecessary during-execution leakage,
that is, ensuring S has the information after execution rather than

during execution. Their construction achieves enhanced security

with AHE with additional costs. Here, we focus on efficient PSU

constructions under the standard PSU functionality.

We employ COP to transform two shuffle-based PSU protocols

into the offline-online PSU. The offline phase generates COP and

performs necessary operations before the actual protocol execu-

tion, e.g., key distribution. The online phase executes subsequent

protocols. The result protocols are denoted as GMR21-OO, GMR21-

OO*, JSZ22-R-OO and JSZ22-R-OO*, where the COP generation in

GMR21-OO and JSZ22-R-OO still use the network-based protocol

[20] and that in GMR21-OO* and JSZ22-R-OO* use our Pcop−net.

Since the permutation in the shuffle-based PSU protocols is ran-

domly sampled, the receiver can directly use the random permu-

tation of the offline-generated COP as the permutation randomly

sampled during the online phase, making the usage of COP corre-

spond to the second case as mentioned in §2.4. Meanwhile, since

the cost of network-based COP generation involves less commu-

nication than directly invoking oblivious permutation by a factor

of 𝑛𝑙 , the total cost of offline generating COP and performing on-

line permutation with it is the same as directly executing oblivious

permutation on input.

Note that except for operations such as parameter negotiation

that have minimal cost, most of the cost in the offline phase comes

from COP generation. According to the offline/online cost shown

in Table 6, the cost of oblivious permutation accounts for a rel-

atively large proportion of the shuffle-based PSU protocols, e.g.,
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oblivious permutation taking 67.7% − 74.3% and 83.5% − 86.8% of

the communication cost in the original GMR21 and JSZ22-R proto-

cols in our experiments. Therefore, with an offline-online paradigm,

shuffle-based protocols outperform the baseline in terms of both on-

line communication cost and online execution time. JSZ22-OO (or

JSZ22-OO*) [24] have the lowest online cost. Further, our network-

based COP generation protocol Pcop−net can greatly reduce the

cost of the offline phase of the shuffle-based PSU protocols, making

their total execution time lead in all settings except WAN with

multi-thread.

6 Extension and malicious security of COP
COPExtension. To generate a COP for data with a larger bit length,
we can first generate a COP for input with a smaller bit length and

subsequently map the elements of the output vectors into the larger

target domain. Two approaches have been proposed for domain

extension, namely the PCG-based protocol in [36] and the LWR-

based protocol in [30]. The PCG-based protocol in [36] is based on

function secret sharing (FSS) [11] and the LPN assumption [10].

The parties first generate a public bit matrix such that syndrome

decoding is hard. The extension step is done by using FSS to produce

a secret-shared sparse bit vector with the initial COP as input and

then multiplying the public bit matrix and those sparse bit vectors.

The LWR-based protocol in [30] is designed for applications with a

certain degree of error tolerance, which introduces one bit of error

to COP, such that c = 𝜋 (a) − b + 𝜖 , where 𝜖 ∈ {0, 1}𝑛 .
Our optimizations are generic and fundamental, enabling fast

COP generation with smaller bit lengths. Then, the result can be

extended to the required domain with a larger bit length using the

above-mentioned scheme, thereby accelerating the overall process.

Maliciously secure permutation. There have been many efforts

to construct malicious secure two-party permutation protocol [18,

40, 43]. The protocol in [40] is built on the matrix-based approach

[13], where themalicious security is guaranteed bymalicious secure

PPRF and checks on thematrix constructed bymultiple PPRF results.

The protocol in [43] adopts cut-and-choose to check each switch

in the network-based approach is correctly performed.

7 Conclusion
We propose optimizations for two types of solutions for generating

Correlated Oblivious Permutation (COP). We implement all the

protocols for fair comparison and conclude strategies for selecting

the optimal protocol under different input and network environ-

ments through theoretical analysis and experiment. Looking ahead,

we aim to explore efficient malicious secure COP construction and

domain extension approaches for COP.

Acknowledgment
Weiran Liu is the corresponding author of this paper. This work

is supported by the National Key Research and Development Pro-

gram of China (Grant No. 2022YFB3102500), and the Major Pro-

grams of the National Social Science Foundation of China (Grant

No. 22&ZD147). The authors used ChatGPT4 to revise the text in

§1, §2, and §4 to correct any typos and grammatical errors.

References
[1] Amit Agarwal, Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval

Ishai, Mahimna Kelkar, and Yiping Ma. 2024. Secure sorting and selection

via function secret sharing. In 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS 2024). 3023–3037.

[2] Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, and Peter Rindal.

2024. Improved alternating-moduli PRFs and post-quantum signatures. InAnnual
International Cryptology Conference (CRYPTO 2024). Springer, 274–308.

[3] Erik Anderson, Melissa Chase, F Betül Durak, Kim Laine, and Chenkai Weng.

2024. Precio: Private aggregate measurement via oblivious shuffling. In 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS 2024).
1819–1833.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In 2013 ACM SIGSAC Conference on Computer and Communications Security (CCS
2013). 535–548.

[5] Bruno Beauquier and Éric Darrot. 2002. On arbitrary size Waksman networks

and their vulnerability. Parallel Processing Letters 12, 03n04 (2002), 287–296.
[6] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.

In Advances in Cryptology (CRYPTO 1991). Springer, 420–432.
[7] Václad E Beneš. 1964. Optimal rearrangeable multistage connecting networks.

Bell System Technical Journal 43, 4 (1964), 1641–1656.
[8] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J Wu. 2018.

Exploring crypto dark matter: New simple PRF candidates and their applications.

In Theory of Cryptography Conference (TCC 2018). Springer, 699–729.
[9] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,

and Peter Scholl. 2022. Correlated pseudorandomness from expand-accumulate

codes. In Annual International Cryptology Conference (CRYPTO 2022). Springer,
603–633.

[10] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,

and Peter Scholl. 2019. Efficient two-round OT extension and silent non-

interactive secure computation. In 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS 2019). 291–308.

[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. InAnnual
international conference on the theory and applications of cryptographic techniques
(EUROCRYPT 2015). Springer, 337–367.

[12] Chihming Chang and RamiMelhem. 1997. Arbitrary size Benes networks. Parallel
Processing Letters 7, 03 (1997), 279–284.

[13] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-shared shuffle.

In 26th International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT 2020). Springer, 342–372.

[14] Tung Chou and Claudio Orlandi. 2015. The simplest protocol for oblivious

transfer. In 4th International Conference on Cryptology and Information Security
in Latin America (LATINCRYPT 2015). Springer, 40–58.

[15] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. 2021. Silver: silent

VOLE and oblivious transfer from hardness of decoding structured LDPC codes.

InAnnual International Cryptology Conference (CRYPTO 2021). Springer, 502–534.
[16] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation.. In 22th Annual
Network and Distributed System Security Symposium (NDSS 2015).

[17] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar, Vivek

Sharma, and Greg Zaverucha. 2021. MPC-friendly symmetric cryptography

from alternating moduli: candidates, protocols, and applications. In 41st Annual
International Cryptology Conference (CRYPTO 2021). Springer, 517–547.

[18] Saba Eskandarian and Dan Boneh. 2021. Clarion: Anonymous communication

from multiparty shuffling protocols. Cryptology ePrint Archive (2021).
[19] Jiacheng Gao, Yuan Zhang, and Sheng Zhong. 2024. Multiparty Shuffle: Linear

Online Phase is Almost for Free. Cryptology ePrint Archive (2024).
[20] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and

Jaspal Singh. 2021. Private set operations from oblivious switching. In IACR
International Conference on Public-Key Cryptography (PKC 2021). Springer, 591–
617.

[21] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to construct

random functions. J. ACM 33, 4 (1986), 792–807.

[22] Xiaojie Guo, Kang Yang, XiaoWang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and

Zheli Liu. 2023. Half-tree: Halving the cost of tree expansion in cot and dpf. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2024). Springer, 330–362.

[23] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious

transfers efficiently. In 23rd Annual International Cryptology Conference (CRYPTO
2023). Springer, 145–161.

[24] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. 2022.

Shuffle-based private set union: Faster and more secure. In 31st USENIX Security
Symposium (USENIX Security 2022). 2947–2964.

[25] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, and Dawu Gu. 2024. Scalable

private set union, with stronger security. In 33rd USENIX Security Symposium
(USENIX Security 2024).



Feng Han et al.

[26] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

{GAZELLE}: A low latency framework for secure neural network inference. In

27th USENIX security symposium (USENIX Security 2018). 1651–1669.
[27] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively secure OT

extension with optimal overhead. In 35th Annual Cryptology Conference (CRYPTO
2015). Springer, 724–741.

[28] Jiseung Kim, Hyung Tae Lee, and Yongha Son. 2024. Revisiting shuffle-based

private set unions with reduced communication. Cryptology ePrint Archive
(2024).

[29] Yehuda Lindell. 2017. How to simulate it–a tutorial on the simulation proof

technique. Tutorials on the Foundations of Cryptography: Dedicated to Oded
Goldreich (2017), 277–346.

[30] Yang Liu, Bingsheng Zhang, Yuxiang Ma, Zhuo Ma, and Zecheng Wu. 2023.

iPrivJoin: An ID-private data join framework for privacy-preserving machine

learning. IEEE Transactions on Information Forensics and Security (TIFS 2023) 18
(2023), 4300–4312.

[31] Qiyao Luo, Yilei Wang, Zhenghang Ren, Ke Yi, Kai Chen, and Xiao Wang. 2021.

Secure machine learning over relational data. arXiv preprint arXiv:2109.14806
(2021).

[32] Daniel Mansy and Peter Rindal. 2019. Endemic oblivious transfer. In 2019 ACM
SIGSAC Conference on Computer and Communications Security (CCS 2019). 309–
326.

[33] Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast database joins

and PSI for secret shared data. In 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS 2020). 1271–1287.

[34] Payman Mohassel and Saeed Sadeghian. 2013. How to hide circuits in MPC

an efficient framework for private function evaluation. In 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2013). Springer, 557–574.

[35] Moni Naor and Benny Pinkas. 2001. Efficient oblivious transfer protocols. In

12th Annual Symposium on Discrete Algorithms (SODA 2021), Vol. 1. 448–457.
[36] Stanislav Peceny, Srinivasan Raghuraman, Peter Rindal, and Harshal Shah. 2024.

Efficient permutation correlations and batched random access for two-party

computation. Cryptology ePrint Archive (2024).
[37] Xinyu Peng, Feng Han, Li Peng, Weiran Liu, Zheng Yan, Kai Kang, Xinyuan

Zhang, Guoxing Wei, Jianling Sun, and Jinfei Liu. 2024. MapComp: A secure

view-based collaborative analytics framework for join-group-aggregation. arXiv
preprint arXiv:2408.01246 (2024).

[38] Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. 2023. Expand-

convolute codes for pseudorandom correlation generators from LPN. In Annual
International Cryptology Conference (CRYPTO 2023). Springer, 602–632.

[39] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova.

2019. Distributed vector-OLE: Improved constructions and implementation. In

2019 ACM SIGSAC Conference on Computer and Communications Security (CCS
2019). 1055–1072.

[40] Xiangfu Song, Dong Yin, Jianli Bai, Changyu Dong, and Ee-Chien Chang. 2023.

Secret-shared shuffle with malicious security. Cryptology ePrint Archive (2023).
[41] Abraham Waksman. 1968. A permutation network. Journal of the ACM (JACM)

15, 1 (1968), 159–163.

[42] Yilei Wang and Ke Yi. 2021. Secure yannakakis: Join-aggregate queries over

private data. (2021), 1969–1981.

[43] Qiuhong Anna Wei. 2024. Malicious secure oblivious shuffling from Beneš

network. (2024).

[44] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret:

Fast extension for correlated OTwith small communication. In 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2020). 1607–1626.

[45] Andrew C Yao. 1982. Protocols for secure computations. In 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 160–164.

[46] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. 2023. Linear

private set union from multi-query reverse private membership test. In 32nd
USENIX Security Symposium (USENIX Security 2023). 337–354.

Appendix
A AHE-based and wPRF-based Protocols
In this section, we briefly review the construction of the AHE-based

and wPRF-based oblivious permutation protocols. Notably, these

protocols have the same communication/computation complexity

of 𝑂 (𝑛𝑙), where 𝑛 is the data size and 𝑙 is the bit length of each

element. We highlight a commonality between the two protocols

that the permutation process is done by the receiver solely on

“somewhat public” data.

AHE-based protocol. At the beginning of the protocol, two par-

ties agree on the rerandomizable additive homomorphic encryp-

tion algorithm, e.g., ElGamal encryption. W.L.O.G., We denote the

encryption and decryption algorithms as 𝐸 and 𝐷 , the result of

encryption and decryption of data 𝑥 ∈ D with the private key 𝑠𝑘 as

𝐸𝑠𝑘 (𝑥) and 𝐷𝑠𝑘 (𝑥), respectively.
(1) The sender generates the private key 𝑠𝑘 and the public

key 𝑝𝑘 . The sender uses that key to encrypt each element

of his vector a ∈ D𝑛
to obtain {𝐸𝑠𝑘 (a𝑖 )}𝑖∈[𝑛] . Then, the

sender sends the public key 𝑝𝑘 and the encrypted result

{𝐸𝑠𝑘 (a𝑖 )}𝑖∈[𝑛] to the receiver.

(2) The receiver permutes the received encrypted data and sam-

ples a random vector c ∈ D𝑛
to perform the element-wise

homomorphic addition, and obtains {𝐸𝑠𝑘 (a𝜋 (𝑖 ) − c𝑖 )}𝑖∈[𝑛] .
Then, the receiver sends {𝐸𝑠𝑘 (a𝜋 (𝑖 ) − c𝑖 )}𝑖∈[𝑛] to the re-

ceiver.

(3) The sender decrypts the received data with his private key

to obtain b𝑖 = 𝐷𝑠𝑘 (𝐸𝑠𝑘 (a𝜋 − c𝑖 )) = a𝜋 (𝑖 ) − c𝑖 for 𝑖 ∈ [𝑛].
(4) The sender outputs a, b. The receiver outputs c.
In the above protocol, the encrypted result {𝐸𝑠𝑘 (a𝑖 )}𝑖∈[𝑛] can

be seen as “public” data. Although the receiver does not know the

corresponding plaintext, he has the ability to permute them and

add masks to them.

Since the AHE-based solution is computationally inefficient, we

do not compare our protocols with it in our experiment.

wPRF-based protocol. Before we go into the details, we first

present the definition of a Weak Pseudorandom Function.

Definition 3 (Weak Pseudorandom Function). A function
𝐹𝑤𝑝 : K × D→ Y with key space K, domain X and output space Y
is said to be a Weak Pseudorandom Function (wPRF) if for 𝑘 ← K,
𝑥𝑖 ← D, 𝑦𝑖 ← Y, {(𝑥𝑖 , 𝐹𝑤𝑝 (𝑘, 𝑥𝑖 ))}𝑖∈[𝑞 ]

𝑐≡ {(𝑥𝑖 , 𝑦𝑖 )}𝑖∈[𝑞 ] holds.

The wPRF-based protocol relies on the shared oblivious weak

Pseudorandom function FswPRF, which takes data 𝑥 ∈ D from the

receiver and a private key 𝑘 ∈ K from the sender and returns

the share of 𝐹𝑤𝑝 (𝑘, 𝑥) to parties. Recently, the alternating moduli

paradigms [2, 8, 17] are proposed and they can be used to efficiently

construct various symmetric key primitives, including wPRF. The

common characteristic of those paradigms is that the inputs are

multiplied by two linear maps over different moduli F2 and F3.
Since the computation over the moduli F2 and F3 can be securely

evaluated with OT, the alternating moduli paradigms can be used to

efficiently construct the FswPRF. In our implementation, we adopt

the approach proposed in [2] to instantiate FswPRF.
The wPRF-based protocol proceeds as follows:
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(1) The receiver samples 𝑡 ← F2𝜅 and sends 𝑡 to the sender.

Two parties locally compute x = {𝐻 (𝑡, 𝑖)}𝑖∈[𝑛] .
(2) The sender samples 𝑘 ← K, and computes the vector a,

where a𝑖 = 𝐹𝑤𝑝 (𝑘, 𝑥𝑖 ).
(3) Two parties invoke FswPRF, where the receiver inputs the

private key 𝑘 and the sender inputs {x𝜋 (𝑖 ) }𝑖∈[𝑛] . As the
result, the sender learns the vector b and the receiver learns
the vector c, where b𝑖 ⊕ c𝑖 = 𝐹𝑤𝑝 (𝑘, 𝑥𝜋 (𝑖 ) ) holds for 𝑖 ∈ [𝑛].

(4) The sender outputs a, b. The receiver outputs c.
If we analogize wPRF to an encryption algorithm, in a sense, the

wPRF-based solution [36] can be considered as a “reverse” version

of the AHE-based solution. The reason is that the “public” data

here is the plaintext vector x = {𝐻 (𝑡, 𝑖)}𝑖∈[𝑛] (in contrast to the

encrypted vector {𝐸𝑠𝑘 (a𝑖 )}𝑖∈[𝑛] in AHE-based protocol), while the

output vectors b, c are the shares of the PRF result of this public

vector (in contrast to the decryption result of the public vector in

AHE-based protocol).

B Programming the Waksman Network
Since the basic idea of network-based COP is to invoke one OT

for each switch in the permutation network [20, 34], using an im-

proved permutation network with fewer switches results in fewer

OT invocations, thus improving the efficiency. Waksman network

[41] is an optimized network that removes one redundant switch

at each step of the recursive construction of Beneš networks when

𝑛 = 2
𝑟
. Consequently, the total number of switches is reduced to

𝑛 log
2
𝑛 − 𝑛 + 1 (for 𝑛 = 2

𝑟
), making it practically optimal.

It is desirable to use the Waksman network for permutations of

arbitrary size 𝑛. Beauquier et.al. [5] generalized Waksman network

to handle arbitrary size 𝑛 with𝑊 (𝑛) switches, where𝑊 (2) = 1,

𝑊 (3) = 3 and𝑊 (𝑛) =𝑊 (⌈𝑛
2
⌉)+𝑊 (⌊𝑛

2
⌋)+𝑛−1 for𝑛 ≥ 4. Therefore,

the Waksman network enables us to obtain permutation networks

with strictly fewer switches than the Beneš network when 𝑛 ≥ 4,

thereby reducing the costs of network-based COP. The construction

of the Waksman network is shown in Figure 12.

The principle for programming the switches is to ensure that for

𝑥 ∈ [𝑛
2
], two input wires with indexes 𝑥 and 𝑥 + ⌊𝑛

2
⌋ are permuted

with a switch to become the 𝑥-th inputs of two subnetworks, re-

spectively, while maintaining the constraint that input wires with

indexes 𝜋 (𝑥), 𝜋 (𝑥 + ⌊𝑛
2
⌋) are routed to two different subnetworks.

The key to reducing the switches is to deterministically route the

𝜋 (𝑛)-th input wire to the second subnetwork. This allows the
𝑛
2
-th

output wires of two subnetworks can be directly connected to the

𝑛
2
-th and the 𝑛-th output wires when 𝑛 is even. Compared to the

Beneš network, an example of which is shown in Figure 4, the

difference is that the switch at the bottom right corner of each

subnetwork whose size is even and greater than or equal to 4 is

removed.

Here we formally describe the algorithm. For simplicity, we fur-

ther define the correlated values for 𝑥 ∈ [𝑛]: we denote 𝑥⊲𝑛 as

𝑥 + 𝑛▽ if 𝑥 ≤ 𝑛▽ , and 𝑥 − 𝑛▽ otherwise, representing 𝑥 ’s neighbor

value under the domain size 𝑛. We denote 𝑥⊢𝑛 as𝑚𝑖𝑛(𝑥, 𝑥⊲𝑛 ). For
some 𝑛 ∈ N, we denote 𝑛△ as ⌈𝑛

2
⌉, 𝑛▽ as ⌊𝑛

2
⌋. Given a permuta-

tion network, we denote the input wires of the switches in the

first layer as the initial wires and the output wires of the switches

in the last layer as the result wires. Alg. 1 generates an in-place

Algorithm 1 Waksman network 𝜔 ← Ω(𝜋)
Input: A permutation 𝜋 ∈ P𝑛 .
Output: The programmed Waksman network 𝜔 .

1: if 𝑛 ≤ 3 then
2: Return a network 𝜔 by looking up the table.

3: end if
4: Initialize two size-𝑛 vectors of wires 𝐼 ,𝑂 .

5: Initialize f = {⊥}𝑛 , a stack 𝑇 = ∅, a set 𝑃 = [2𝑛▽]\{𝜋 (𝑛)}, and
𝜋0 = {⊥}𝑛

▽
, 𝜋1 = {⊥}𝑛

△
.

6: if 𝑛 is odd then
7: Set f[𝑛] = 1, 𝜋1 (𝜋−1 (𝑛)⊢𝑛 ) = 𝑛△ .

8: If 𝜋 (𝑛) ≠ 𝑛, push (𝜋 (𝑛), 1) into 𝑆 .
9: else
10: Push (𝜋 (𝑛), 1) into 𝑆 .
11: end if
12: while 𝑃 ≠ ∅ or 𝑇 ≠ ∅ do
13: if 𝑇 = ∅ then
14: Remove an element 𝑥 from 𝑃 , let 𝑐 = 0.

15: else
16: Pop (𝑥, 𝑐) from 𝑇 .

17: end if
18: Let 𝑦 = 𝜋−1 (𝑥), set f [𝑥] = 𝑐 , 𝜋𝑐 (𝑦⊢𝑛 ) = 𝑥⊢𝑛 .
19: If 𝑥⊲𝑛 ∈ 𝑃 , remove 𝑥⊲𝑛 from 𝑃 and push (𝑥⊲𝑛 , 𝑐) into 𝑇 .
20: If 𝜋 (𝑦⊲𝑛 ) ∈ 𝑃 , remove 𝜋 (𝑦⊲𝑛 ) from 𝑃 and push (𝜋 (𝑦⊲𝑛 ), 𝑐)

into 𝑇 .

21: end while
22: Recursion: Invoke 𝜔0 ← Ω(𝜋0), 𝜔1 ← Ω(𝜋1).
23: Let 𝐼 𝑖 ,𝑂𝑖

be the vectors of initial wires and result wires for 𝜔𝑖

respectively for 𝑖 ∈ {0, 1}.
24: for 𝑥 ∈ [𝑛▽] do
25: Add a switch with choice bit f [𝑥], input wires 𝐼𝑥 , 𝐼𝑥+𝑛▽ and

output wires 𝐼0𝑥 , 𝐼
1

𝑥 ;

26: Add a switch with choice bit f [𝜋 (𝑥)], input wires 𝑂0

𝑥 ,𝑂
1

𝑥

and output wires 𝑂𝑥 ,𝑂𝑥+𝑛▽ .

27: end for
28: if 𝑛 is even then
29: Directly link 𝑂0

𝑛▽ and 𝑂𝑛▽ , 𝑂1

𝑛▽ and 𝑂𝑛 .

30: else
31: Directly link 𝐼𝑛 and 𝐼1

𝑛△ , 𝑂
1

𝑛△ and 𝑂𝑛 .

32: end if
33: return 𝜔 with initial wires 𝐼 , result wires 𝑂 .

Waksman network in the recursive style using 𝑊 (𝑛) switches
for size-𝑛 input, where𝑊 (𝑛) satisfies𝑊 (2) = 1,𝑊 (3) = 3 and

𝑊 (𝑛) =𝑊 (𝑛△) +𝑊 (𝑛▽) + 𝑛 − 1 for 𝑛 > 3. Let a length-𝑛 vector f
and two permutations 𝜋0, 𝜋1, whose size are 𝑛

▽, 𝑛△ respectively, be

the intermediate variables of the above programming. f indicates
which sub-network should the input be switched to, and 𝜋0, 𝜋1 are

the target permutations of 𝜔0, 𝜔1. The 𝑥-th input will be switched

into the 𝑥⊢𝑛 -th input of 𝜔f [𝑥 ] and the 𝑥-th output is the 𝑥⊢𝑛 -th
output of 𝜔f [𝜋 (𝑥 ) ] .

If𝑛 is even, the algorithmfirst deterministically program f[𝜋 (𝑛)] =
1 representing switch 𝐼𝜋 (𝑛) to 𝜔1, and the switch for𝑂𝑛▽ and𝑂𝑛 is

removed finally. If 𝑛 is odd, besides from the 𝐼𝜋 (𝑛) is assigned to 𝜔1,

𝐼𝑛 is also directly link 𝑛△-th initial wire of 𝜔1. Given a wire 𝐼𝑖 has
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Figure 12: Construction of the Waksman network.
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Figure 13: Performance using silent OT [44] when the total amount of input data is fixed to 𝑛𝑙 = 2
31 (256MB data in total).

been assigned to a specific sub-network 𝜔𝑐 , its neighbor input wire

𝐼𝑖⊲𝑛 of the same switch would be assigned to 𝜔𝑐 . Meanwhile, let𝑂𝑦

be the the result wire that 𝐼𝑖 should finally link where 𝑦 = 𝜋−1 (𝑖),
its neighbor output wire 𝑂𝑦⊲𝑛 should be linked to a wire in 𝜔𝑐 ,

which means that 𝐼𝜋 (𝑦⊲𝑛 ) should be assigned to 𝜔𝑐 . Let 𝑃 store

all unassigned wires, and stack 𝑇 store wires that have just been

assigned. The algorithm first traverses the unassigned wires corre-

lated to the wires in 𝑇 until a closed loop is formed and repeats the

process with an unassigned wire until all wires are assigned.

C Proof of Theorem 1
Proof. We construct simulator Sim0 for S as follows.

(1) Sim0 invokes Fcopv and receives ã, ˜b.
(2) Sim0 samples Δ̃ and sends (init, Δ̃) to FspCOT.
(3) Sim0 random samples 𝑛 − 1 length-𝑛 vectors {Ṽ𝑖 }𝑖∈[𝑛−1]

where Ṽ𝑖
$← F𝑛

2
𝜅 . Sim0 invokes the simulator of FspCOT

with {Ṽ𝑖 }𝑖∈[𝑛−1] and append the output to the view.

(4) Sim0 computes two length-𝑛 vectors ã′, ˜b′ with the same

computation in step 3-4.

(5) Sim0 computes x̃ = ã + ã′, ỹ = ˜b + ˜b′.
The correctness of Sim0 directly follows the security of the un-

derlying protocol realizing FspCOT. We construct simulator Sim1

for R as follows.

(1) Sim1 sends (init) to FspCOT.

(2) Sim1 receives R’s input 𝜋 and random samples 𝑛−1 length-
𝑛 vectors {W̃𝑖 }𝑖∈[𝑛−1] where W̃𝑖

$← F𝑛
2
𝜅 . Sim1 invokes the

simulator of FspCOT with {(𝜋 (𝑖), W̃𝑖 )}𝑖∈[𝑛−1] and append

the output to the view.

(3) Sim1 computes length-𝑛 vector c̃′ with the same computa-

tion in step 5-6.

(4) Sim1 invokes Fcopv with input 𝜋 and receives c̃.

(5) Sim1 samples x̃
$← F𝑛

2
𝜅 and computes ỹ = c̃′ + 𝜋 (x̃) − c̃.

First, if the computed result of {𝐻 (V𝑖,𝜋 (𝑖 ) )}𝑖∈[𝑛] in step 4 is re-

placed by random sampled r← F𝑛
2
𝜅 , the result view of an execution

view1
is identical to viewP

1
due the correlation robustness property

of𝐻 . Since {𝐻 (V𝑖,𝜋 (𝑖 ) )}𝑖∈[𝑛] = {𝐻 (W𝑖,𝜋 (𝑖 ) ⊕Δ)}𝑖∈[𝑛] are pseudo-
random without knowing Δ. We next analyze {view1, outputP (⊥
, 𝜋)} and {Sim1 (𝜋, c̃), Fcopv (⊥, 𝜋)}. It is obvious that {𝜋,W, c′} and
{𝜋, W̃, ˜c′} are indistinguishable due to the security of the underly-

ing protocol of FspCOT. Also, considering the randomness of (x, y)
and (x̃, c̃), it is obvious that {x, y, c′, c, 𝜋} 𝑐≡ {x̃, ỹ, ˜c′, c̃, 𝜋} due to
their correlation. Therefore, Sim1 is indistinguishable from the real

one, and this completes the proof. □

D Additional experimental result
We further evaluate protocols with the fixed total amount 𝑛𝑙 of

input data, the result is shown in Figure 13.
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