
Ciphertext-Ciphertext Matrix Multiplication:
Fast for Large Matrices

Jai Hyun Park

CryptoLab Inc., Lyon, France

Abstract. Matrix multiplication of two encrypted matrices (CC-MM)
is a key challenge for privacy-preserving machine learning applications.
As modern machine learning models focus on scalability, fast CC-MM
on large datasets is increasingly in demand.
In this work, we present a CC-MM algorithm for large matrices. The
algorithm consists of plaintext matrix multiplications (PP-MM) and ci-
phertext matrix transpose algorithms (C-MT). We propose a fast C-MT
algorithm, which is computationally inexpensive compared to PP-MM.
By leveraging high-performance BLAS libraries to optimize PP-MM, we
implement large-scale CC-MM with substantial performance improve-
ments. Furthermore, we propose lightweight algorithms, significantly re-
ducing the key size from 1 960 MB to 1.57 MB for CC-MM with com-
parable efficiency.
In a single-thread implementation, the C-MT algorithm takes 0.76 sec-
onds to transpose a 2 048 × 2 048 encrypted matrix. The CC-MM al-
gorithm requires 85.2 seconds to multiply two 4 096 × 4 096 encrypted
matrices. For large matrices, our algorithm outperforms the state-of-the-
art CC-MM method from Jiang-Kim-Lauter-Song [CCS’18] by a factor
of over 800.

1 Introduction

Ciphertext-ciphertext matrix multiplication (CC-MM) takes as input two bun-
dles of ciphertext(s) encrypting two input matrices and outputs ciphertext(s) en-
crypting the product matrix. CC-MM plays a central role in privacy-preserving
machine learning (PPML) when a server trains or performs inference on ma-
chine learning models using encrypted data from the client. For example, dur-
ing privacy-preserving training and inference of large language models (LLM)
in [PZM+24,HLC+22,ZLY+23], CC-MM takes an important role.

As mentioned in [BCH+24], homomorphic multiplication with large matrices
appears in various steps during PPML. The authors pointed out that the matrix
dimension often ranges up to 16 384 (in GPT-3.5) and 18432 (in PaLM 540B) for
privacy-preserving inference of LLMs. As we consider privacy-preserving train-
ing and inference of such LLMs, fast CC-MM for large-dimensional matrices is
necessary.

However, the existing CC-MM algorithms are much slower than plaintext-
plaintext matrix multiplication (PP-MM) or plaintext-ciphertext matrix mul-
tiplication (PC-MM). To take a notable example from [JKLS18], it takes 0.6

2 J. H. Park

seconds to multiply two square matrices of dimension 64. To multiply square
matrices of a larger dimension, 4 096, for instance, [JKLS18] would require more
than 19 hours, even with the Strassen algorithm [Str69]. We note that most of
the current CC-MM implementations are based on [JKLS18] or its variants.

As a reference point, for plaintext-ciphertext matrix multiplication (PC-MM),
a recent work [BCH+24] significantly accelerated it to take 17.1 seconds to mul-
tiply square matrices of dimension 4 096 in a single thread CPU. For plaintext-
plaintext matrix multiplication (PP-MM), by utilizing highly optimized linear
algebra libraries (BLAS libraries), it takes 1.5 seconds for square matrices of di-
mension 4 096. The inefficiency of CC-MM has been one of the main bottlenecks
for practical privacy-preserving training and inference of large neural networks,
including LLMs such as GPT [RNSS18], BERT [DCLT18] and LLaMA [TLI+23].

The difficulty of CC-MM stems from the complicated structure of cipher-
texts. State-of-the-art CC-MM algorithms rely on fully homomorphic encryption
(FHE) schemes based on the ring learning-with-error problem [SSTX09,LPR10]
(RLWE). RLWE-based FHE schemes [BGV14,Bra12,FV12,CKKS17] encrypt a
vector in a ciphertext, requiring “key switching” operations to arrange the vector.
Key switching operations during CC-MM introduce computational overhead and
disrupt the memory access pattern, significantly degrading the efficiency. Con-
sequently, CC-MM has been significantly slower than optimized PP-MM im-
plementations, such as those in BLAS libraries. This inefficiency becomes even
more severe for large matrices, highlighting the need for more efficient CC-MM
algorithms for large matrices.

1.1 Contributions

Our main result is a fast CC-MM algorithm for large matrices. The algorithm
focuses on matrices whose dimensions are at least the RLWE ring degree. The
concrete efficiency is supported by experiments. We also provide a variant of the
CC-MM algorithm with a small size of keys and comparable efficiency.

Our CC-MM algorithm consists of reducing CC-MM to four modular PP-MMs,
where PP-MMs have the same dimension as the given CC-MM. From the reduc-
tion, we take full advantage of the high efficiency of existing PP-MM libraries
(BLAS libraries). Our strategy is inspired by prior reductions from PC-MM to
PP-MM introduced in [BCH+24]. This prior work significantly improved the ef-
ficiency of PC-MM, but we note that the reduction from CC-MM to PP-MM
has remained an open question. While a pre-FHE scheme [GHV10] provides a
hint, it supports only a single CC-MM, making further multiplications difficult.
In this work, we present a reduction from CC-MM in FHE settings to PP-MM
and demonstrate its effectiveness in accelerating CC-MM.

As a main tool for our CC-MM algorithm, we propose a fast ciphertext matrix
transpose (C-MT) algorithm. We devise a new C-MT algorithm with a divide-
and-conquer approach. Our algorithm uses Õ(N2) bit operations. We note that
C-MT is independent of CC-MM and has broader applications. For example,
during PPML scenarios, one often needs to convert the client-wise encrypted

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 3

ciphertexts into feature-wise encrypted ciphertexts and vice versa. Our C-MT
algorithm enables this conversion efficiently.

In addition, we provide lightweight variants of CC-MM and C-MT algo-
rithms, which use fewer evaluation keys with comparable efficiency to the prior
algorithms. These lightweight algorithms address the large key size of our CC-MM
and C-MT algorithms. For instance, for the CC-MM algorithm, the lightweight
modification reduces the key size from 1 960 MB to 1.57 MB.

We implemented our algorithms in the HEaaN library [HEa22]. Our imple-
mentation takes 85.2 seconds to multiply two 4 096× 4 096 encrypted matrices
using CKKS ciphertext of degree 212 in a single thread. For ciphertext ma-
trix transpose, it takes 0.76 seconds for a square matrix of dimension 2 048.
For lightweight CC-MM, our implementation uses 1.57 MB of keys, and for
lightweight C-MT, it uses 0.246 MB, taking 672 seconds for square matrices of
dimension 8 192 and 4.92 seconds for a square matrix of dimension 4 096, re-
spectively. Although we focus on the CKKS scheme, we note that our algorithms
are also applicable to BGV and FV schemes.

1.2 Technical overview

We construct a reduction from CC-MM to PP-MM, which enables perform-
ing CC-MM by taking full advantage of highly optimized BLAS libraries such
as OpenBLAS [oBlv], LAPACK [ABB+99], and FLINT [tea24]. This strategy
improves the practical latency significantly. It is inspired by [BCH+24], which
reduces PC-MM to PP-MM, achieving a significant speed up for PC-MM.

In this overview, we first explain our new C-MT algorithm. Then, we intro-
duce the matrix form of encryptions, which represents RLWE-based ciphertexts
encrypting either the rows or the columns of a matrix. Using the representa-
tion and C-MT algorithm, we describe our reduction from CC-MM to PC-MM
and introduce our fast CC-MM algorithm. Finally, we explain the lightweight
variants of our algorithms to reduce the key size.

Ciphertext matrix transpose. Before constructing the reduction from CC-MM
to PP-MM, we introduce the main tool, ciphertext matrix transpose (C-MT). C-
MT takes as input ciphertexts encrypting a matrix row-by-row (resp. column-by-
column), and returns ciphertexts encrypting the same matrix column-by-column
(resp. row-by-row). In this work, we focus on large matrices where each ciphertext
encrypts only one row (or column). While we extensively utilize it for CC-MM,
we also note that C-MT is an interesting problem beyond its application as a
tool for CC-MM.

We start from the well-known observation on ring RQ = ZQ[X]/(XN + 1)
that

N ·mj =
∑

σ∈Gal(R/Z)

σ(X−j ·m)

4 J. H. Park

for each j = 0, 1, · · · , N−1, where m(X) =
∑N−1

i=0 miX
i is an element in RQ, and

Gal(R/Z) is the group of automorphisms of R induced by Galois automorphisms
in Q[X]/(XN + 1) that fixes Q.

For given N plaintexts {mi =
∑

j Mi,jX
j}0≤i<N in RQ that each stores one

row of an N ×N matrix M, the plaintexts {m′
j}0≤j<N that store the transpose

matrix Mt is:

m′
j =

N−1∑
i=0

Mi,jX
i =

N−1∑
i=0

N−1 ·
∑

σ∈Gal(R/Z)

σ(X−j ·mi)

 ·Xi

= N−1 ·
∑

σ∈Gal(R/Z)

σ

(
N−1∑
i=0

mi · σ−1(Xi)

)
σ(X−j)

for each j = 0, 1, · · ·N − 1. The goal of C-MT is to obtain {m′
j}0≤j<N from

{mi}0≤i<N in the encrypted state.
We proceed in three steps:

1. Computing {m̃σ =
∑

i mi · σ−1(Xi)}σ∈Gal(R/Z) from {mi}0≤i<N ,
2. Computing {m̄σ = σ(m̃σ)}σ∈Gal(R/Z) using automorphisms, and
3. Computing {m′

j =
∑

σ m̄σ · σ(X−j)}0≤j<N from {m̄σ}σ∈Gal(R/Z).

We compute the second step in the encrypted state using N key switching
operations, which costs Õ(N2) bit operations. For steps 1 and 3, we devise a
fast divide-and-conquer algorithm, reducing the cost to O(N2 logN). Putting it
together, the overall cost of our C-MT algorithm is Õ(N2). We refer to Section 3
for details.

Matrix form of encryptions. We start from the matrix form of RLWE-
based ciphertexts, which is also introduced in [BCH+24]. The N RLWE-based
ciphertexts (ai, bi)0≤i<N encrypts each row of a matrix M if and only if, over
RQ = ZQ[X]/(XN + 1):

∀i, ai · sk+ bi ≈
∑
j

Mi,jX
j ,

where sk is the shared secret key. As described in [BCH+24], we can rewrite the
above equation in matrix form:

A · Toep(sk) + B ≈ M, (1)

where each row of A (resp. B) corresponds to the a part (resp. b part) of each
ciphertext, and where Toep(sk) is the Toeplitz matrix of sk =

∑
i siX

i ∈ R:

Toep(sk) =

s0 s1 · · · sN−1

−sN−1 s0 · · · sN−2

.
.

−s1 −s2 · · · s0

 .

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 5

We note that each ciphertext encrypts a row of M. We call Eq. (1) as the matrix
form of row-wise encryptions.

In the same way, we define a matrix form of column-wise encryptions, (aj , bj)0≤j<N

encrypting each column of a matrix M, as follows.

Toep(s̃k) · A + B ≈ M,

where each column of A (resp. B) corresponds to the a part (resp. b part) of
each ciphertext, and s̃k is sk(X−1) in R.

Ciphertext-ciphertext matrix multiplication. We finally explain the re-
duction from CC-MM to PP-MMs. The basic idea is to multiply two RLWE-
based encryptions in matrix forms (Eq. (1)) while preserving the Toeplitz-related
structure using C-MT. Assume that we are given two bundles of ciphertexts that
encrypt each row of matrices M and M′, respectively. In matrix form, we are
given matrices A, B, A′ and B′ such that in modulo q:

A · Toep(sk) + B ≈ M and A′ · Toep(sk) + B′ ≈ M′

Using C-MT algorithm, we transpose the row-wise encryption (A,B) of M. In
matrix form, the C-MT algorithm outputs the column-wise encryption (A,B)
of M that satisfies

Toep(s̃k) · A + B ≈ M and A′ · Toep(sk) + B′ ≈ M′.

We multiply the above two matrix forms above to obtain

MM′ ≈ (Toep(s̃k) · A + B) · (A′ · Toep(sk) + B′)

= Toep(s̃k) · C0,0 · Toep(sk) + Toep(s̃k) · C0,1 + C1,0 · Toep(sk) + C1,1,

where C0,0 = AA′,C0,1 = AB′,C1,0 = BA′, and C1,1 = BB′. We note that
the Toeplitz matrices are preserved.

We consider (C0,0,O) as a column-wise encryption of Toep(s̃k) · C0,0, and
apply C-MT algorithm to it. Then, we obtain a row-wise encryption (D0,D1)
of Toep(s̃k) · C0,0. We rewrite it in matrix form:

Toep(s̃k) · C0,0 ≈ D0 · Toep(sk) + D1.

Similarly, we obtain (D2,D3) such that

Toep(s̃k) · C0,1 ≈ D2 · Toep(sk) + D3

by applying C-MT to (C0,1,O). Putting it together, we have

MM′ ≈ D0 · Toep(sk2) + (D1 + D2 + C1,0) · Toep(sk) + (D3 + C1,1).

After the row-wise relinearization, which is key switchings from sk2 to sk, we
finally obtain a matrix equation

A′′Toep(sk) + B′′ ≈ MM′.

6 J. H. Park

This is a matrix form of row-wise encryption of the product matrix MM′. This
completes CC-MM.

The above protocol reduces CC-MM to four PP-MMs and three C-MTs.
The cost of PP-MM is O(Nω) where ω is a constant set to 3 in most practical
implementations and is at least 2 in theory. Meanwhile, the cost of C-MT is
Õ(N2), and it is asymptotically negligible compared to PP-MMs.

Lightweight algorithms with small key sizes. There is a potential concern
about the large key size of our CC-MM and C-MT algorithms. The previous
C-MT algorithm requires N evaluation keys for each of the N homomorphic
automorphisms. It turns out to be evaluation keys of size Ω̃(N2), which might
be problematic as N is usually large.

To this end, we suggest a lightweight C-MT algorithm that uses only three
evaluation keys. The basic idea is to repeatedly update and use a single evalua-
tion key for all homomorphic automorphisms. We need one evaluation key for all
homomorphic automorphisms and two other keys to “update” the evaluation key.
This idea is motivated by the hierarchical key management system in [LLKN23].
While the update procedure requires additional computation, the asymptotic
complexity is the same as the original algorithm.

We also introduce a lightweight CC-MM algorithm. The algorithm follows
directly from the lightweight C-MT algorithm, requiring 4 evaluation keys, 3 of
which are for the C-MT algorithm and 1 for relinearization.

1.3 Related works

Comparison to [JKLS18]. The seminal work [JKLS18] presents a CC-MM
algorithm adopted by most of the current implementations of CC-MM, often
with modest modifications [HCJG24,MMJG24,ZL23,HHW+21,GQH+24]. How-
ever, it does not reduce CC-MM to PP-MM, and cannot adopt highly optimized
BLAS libraries. As a consequence, although [JKLS18] achieves an appropriate
bit complexity, its practical performance is several orders of magnitude slower
than PP-MM. While it performs reasonably well for small matrices, it becomes
impractical as the matrix size increases. On the other hand, we reduce CC-MM
to PP-MM, fully leveraging the high efficiency of BLAS libraries, resulting in a
significant speedup.

We note that [JKLS18] focuses on relatively small matrices, and our algo-
rithms are derived for large matrices. As recent machine learning models are
becoming larger, scalable CC-MM is desirable, particularly in PPML applica-
tions based on FHE. Our CC-MM algorithm is particularly beneficial for PPML
on large models.

Other approaches of CC-MM. Several other works on CC-MM algorithms
exist, including [ZLW23,CYW+24]. However, previous works do not reduce CC-
MM to PP-MM, resulting in significantly slower performance in practical imple-
mentations. In contrast, our CC-MM algorithm is compatible with conventional
FHE settings and fully benefits from the highly optimized BLAS libraries.

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 7

In [ZLW23], the authors introduce a CC-MM algorithm based on cyclotomic
fields of composite order, defined as the product of three pairwise coprime inte-
gers. However, the constraint on the choice of cyclotomic fields restricts the FHE
parameters, particularly the ciphertext space, and is generally incompatible with
conventional FHE parameters.

Another work, [CYW+24], proposes using bicyclic encoding for CC-MM be-
tween coprime-dimensional matrices. However, this algorithm has the drawback
of being restricted to specific matrix shapes and generates slots filled by unusable
data after CC-MM. Consequently, computationally expensive preprocessing or
postprocessing steps may be required to continue further computations.

BGN-type cryptosystem [GHV10] is a pre-FHE scheme that supports only
a single matrix-matrix multiplication. Its multiplication procedure is similar to
ours, except that we leverage Toeplitz matrices as we rely on the RLWE problem.
For iterative multiplications, GHV-type multiplication faces a fundamental chal-
lenge, as its ciphertext structure changes after each multiplication. We address
this issue using our new C-MT algorithm. With a well-designed use of C-MT,
we propose CC-MM algorithms with a consistent input and output format. Our
CC-MM algorithm can be used iteratively without being restricted to quadratic
functions, unlike [GHV10].

2 Preliminary

Vectors are denoted in bold and lower-case letters, and matrices are indicated
with bold and upper-case letters. Vectors are column vectors unless explicitly
stated. [n] denotes the set {0, 1, · · · , n − 1} for each positive integer n. For a
power-of-two integer N and Q ≥ 2, the ring R is Z[X]/(XN + 1) and the ring
RQ is R/QR. Through the paper, N refers to the ring degree of underlying ring
R or RQ. We denote a(X) ∈ R as a, omitting the symbol X unless necessary.

The Toeplitz matrix Toep(m) is

Toep(m) =

m0 m1 · · · mN−1

−mN−1 m0 · · · mN−2

...
...

. . .
...

−m1 −m2 · · · m0

for each ring element m =

∑
i miX

i.

2.1 Ring operations and Toeplitz matrix

Let c(X) =
∑N−1

k=0 ckX
k be the product of two ring elements a(X) =

∑N−1
i=0 aiX

i

and b(X) =
∑N−1

j=0 biX
i in R. Concretely,

ck =

N−1∑
i=0

 k∑
j=0

aibk−j −
N−1∑

j=k+1

aibk−j+N

 , (2)

8 J. H. Park

for each k ∈ [N], as XN = −1 in R. Using this equation, by checking each entry,
we can verify that the relation c(X) = a(X) · b(X) in R is equivalent to the
following matrix equation:[

a0 a1 · · · aN−1

]
Toep(b) =

[
c0 c1 · · · cN−1

]
,

where Toep(b) is as defined above. Moreover, by stacking the matrix equation
vertically, we can verify that the relation {ci(X) = ai(X)·b(X)}i∈[n] is equivalent
to

a0
t

a1
t

...
an−1

t

 Toep(b) =

c0
t

c1
t

...
cn−1

t

 , (3)

where the vector ai (ci resp.) consists of the coefficients of ai(X) (ci(X) resp.)
for each i ∈ [n]. Each relation ai(X) · b(X) = ci(X) is related to each i th row
of Eq. (3).

There is another direction to bridge the ring multiplication with the Toeplitz
matrix. From using Eq. (2), we check each entry to verify that the relation
c(X) = a(X) · b(X) in ring R is equivalent to

Toep(ã)

b0
b1
...

bN−1

 =

c0
c1
...

cN−1

 ,

where ã(X) ∈ R is a(X2N−1) = a0 −
∑N−1

i=1 aN−iX
i. By stacking the above

equation horizontally, we can observe that the relation {cj(X) = a(X) · bj(X)}j
is equivalent to

Toep(ã)
[
b0 b1 · · · bn−1

]
=
[
c0 c1 · · · cn−1

]
, (4)

where the vector bj (cj resp.) consists of the coefficients of bj(X) (cj(X) resp.)
for each j ∈ [n]. We note that each relation a(X) · bj(X) = cj(X) is related to
each j th column of Eq. (4).

All the above discussions can be generalized to RQ with the same arguments
in modulo Q.

2.2 Ring automorphisms and trace

The ring R is the extension ring of Z. We introduce Galois group Gal(R/Z),
which is a group of automorphisms of R induced by Galois automorphisms in
Q[X]/(XN + 1) that fixes Q. In particular,

σ(r1 + r2) = σ(r1) + σ(r2), σ(r1r2) = σ(r1)σ(r2), σ(n) = n

for all σ ∈ Gal(R/Z), r1, r2 ∈ R, and n ∈ Z.

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 9

For the ring R = Z[X]/(XN + 1), it is known that

Gal(R/Z) =
{
σt : X 7→ X2t+1 | t ∈ [N]

}
,

and is generated by two generators, X 7→ X5 and X 7→ X−1.
The trace of a ring element r ∈ R is

Tr(r) =
∑

σ∈Gal(R/Z)

σ(r).

When we represent the ring elements r as a polynomial
∑

i riX
i, then it is known

that
Tr(r) = N · r0.

Following the above discussion in modulo Q, all the above discussion can be
extended to RQ.

2.3 Homomorphic encryption and the CKKS scheme

Among various existing HE schemes [CKKS17,BGV14,Bra12,FV12,CGGI17,DM15],
we mainly focus on the CKKS scheme. CKKS [CKKS17] HE scheme supports
arithmetic over real numbers. It relies on the ring-learning-with error (RLWE)
problem [SSTX09,LPR10] over the ring R = Z[X]/(XN + 1). Our algorithm
is applicable to other existing RLWE-based schemes, such as BGV [BGV14]
and FV [Bra12,FV12] schemes. The RLWE-based HE schemes have structures
similar to those of the CKKS scheme except for the encoding structure.

Encodings, decoding, encryption, and decryption. Conventionally, CKKS
uses slot-encodings. The slot-encoding and slot-decodings are maps between
the message space CN/2 and the plaintext space RQ. To decode a plaintext
m(X) ∈ R, we first embed m(X) into C[X]/(XN + 1), and the decoded mes-
sage is { 1

∆m(ζj)}j∈[N/2], where ∆ is a scale factor and ζj = e2iπ5
j/2N for each

j ∈ [N/2]. The encoding is the inverse of the decoding. The slot-encoding sup-
ports slot-wise operations with SIMD property. For most of the homomorphic
computations, slot-encoding is desirable.

Another encoding type is coefficient-encoding. The coefficient-encoding and
coefficient-decoding are maps between RN and the plaintext space RQ. The
coefficient-encoding of a real vector {m0, · · · ,mN−1} with a scale factor ∆ is a
ring element

⌊
∆
(∑N−1

i=0 miX
i
)⌉

. In general, the coefficient encodings are not
preferable for homomorphic computation since they are incompatible with ring
multiplication. Nevertheless, coefficient-encoding is used for several FHE algo-
rithms, such as ring packing [BCK+23,MS18,CDKS21], bootstrapping [CHK+18],
and PC-MM [BCH+24]. Our CC-MM algorithm also operate in the coefficient-
encoding.

A CKKS ciphertext of an encoded message m ∈ RQ encrypted by a secret
key sk ∈ R is a pair of ring elements (a, b) ∈ R2

Q such that a · sk+ b = m+ e in

10 J. H. Park

RQ where e is a small error from the RQ. To decrypt a CKKS ciphertext (a, b),
we decode the ring element ask+ b, where sk is the secret key.

The secret key sk is usually a sparse ternary ring element in R. Its coeffi-
cients are from {−1, 0, 1}, and there are only hwt non-zero elements among N
coefficients.

Homomorphic operations. The CKKS scheme supports the following homo-
morphic operations. The operations below are compatible with both coefficient-
encoding and slot-encoding.

– Add. For given ciphertexts ct0, ct1 ∈ R2
Q encrypting m0,m1 ∈ RQ repec-

tively, it returns a ciphertext ctAdd that encrypts m0 +m1.
– Rescale. For a given ciphertext ct ∈ R2

Q1
encrypting m ∈ RQ1

, it returns
ct′ ∈ R2

Q0
encrypting ⌊Q0m/Q1⌉.

By selecting Q1/Q0 ≈ ∆, the Rescale procedure can manage scaled errors
and scale factors after PtMult and Mult.

– PtMult. For a given ciphertext ct ∈ R2
Q encrypting m and a plaintext µ ∈

RQ, it returns a ciphertext ctPtMult that encrypts µm.
Note that the error inside ct is also multiplied by µ, which can be managed
by a Rescale procedure after. Also, the scale factor of ctPtMult is the product
of the scale factors of m and µ, which also can be managed by the Rescale
procedure.

– KeySwitch. For a given ciphertext ct ∈ R2
Q encrypted by a secret key sk, it

returns a ciphertext ct′ ∈ R2
Q encrypted by sk′.

The KeySwitch procedure requires a switching key from sk to sk′, which
belongs to R2

PQ where P is an auxiliary modulus for key switching.
The auxiliary modulus and gadget decomposition are used for managing the
error during KeySwitch. The rank of gadget decomposition is called dnum,
and we refer to [HK20] for the details.

– Mult. For given ciphertexts ct0, ct1 ∈ R2
Q encrypting m0,m1 ∈ RQ repec-

tively, it returns a ciphertext ctMult that encrypts m0m1.
It requires a relinearization key, a switching key from sk2 to sk. Like PtMult,
the error and scale factor becomes larger, which can be managed by the
Rescale procedure afterward.
In the case of slot-encodings, it provides slot-wise multiplication over com-
plex numbers.

– Auto. For a given ciphertext ct ∈ R2
Q encrypting m ∈ RQ and an automor-

phism σ ∈ Gal(R/Z), it returns a ciphertext ctσ which encrypts σ(m).
When σ(X) = X2j+1 is an automorphism in σ ∈ Gal(R/Z), we denote ctσ,
the output of homomorphic automorphism on a ciphertext ct, as

Auto(ct; 2j + 1).

The homomorphic automorphism requires an automorphism key, a switching
key from σ(sk) to sk.

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 11

For slot-encoding ciphertexts, the CKKS algorithm provides more native op-
erations by using the homomorphic structure of the slot-encodings.

– Rotate. For a given ciphertext ct ∈ R2
Q encrypting the complex vector

{m0, · · · ,mN/2−1} and a integer n, it returns a ciphertext encrypting ct′ ∈
R2

Q which encrypts {mr,mr+1 · · · ,mN/2−1,m0, · · · ,mr−1}.
It requires an automorphism key for X 7→ X5r .

– Conj. For a given integer n and a ciphertext ct ∈ R2
Q encrypting a complex

vector {m0, · · · ,mN/2−1}, it returns a ciphertext encrypting ct′ ∈ R2
Q which

encrypts the conjugate vector {m0, · · · ,mN/2−1}.
It requires an automorphism key for X 7→ X−1.

We remark that the operations related to KeySwitch (i.e., Mult, Auto, Rotate,
Conj) require O(N logN) operations in ZQ.

Modulus and bootstrapping. We remark that PtMult and Mult require
Rescale to manage the scale factor and error, and the Rescale procedure con-
sumes the modulus of the ciphertext space. Once the modulus becomes too low,
we should refresh the modulus by using bootstrapping procedure in order to use
CKKS as a fully FHE scheme.

However, bootstrapping is much heavier than the other homomorphic opera-
tions. In practical applications, the number of bootstrapping significantly affects
the timing. Consequently, it is desirable to devise homomorphic algorithms that
consume less moduli (i.e., have smaller multiplicative depth).

The current CKKS bootstrapping algorithms generally follow either of two
approaches: S2C-first bootstrapping and C2S-first bootstrapping. For most ap-
plications, S2C-first bootstrapping is faster. We remark that during S2C-first
bootstrapping, the ciphertexts use coefficient-encoding at the lowest modulus.
We note that our algorithms operate in coefficient-encoding, allowing us to use
the smallest parameters during FHE computation while leveraging the fast S2C-
first bootstrapping.

Most practical CKKS implementation adopts RNS (residual number system)
CKKS [BEHZ16,CHK+19]. For the sake of simplicity, in the RNS system, we
consider modulus level, which indicates the remaining number of times we can
rescale it. For example, the fresh ciphertext would have a modulus level of 12,
and each multiplication consumes one modulus level. Once the level becomes too
low, we perform bootstrapping to recover the modulus level back to 12.

3 Ciphertext Matrix Transpose

We propose a fast ciphertext matrix transposition (C-MT) algorithm. Our al-
gorithm converts N ciphertexts that encrypt each row of a given matrix to N
ciphertexts that encrypt each column. To be precise, for a given N ×N matrix
M, our C-MT algorithm takes as inputs N ciphertexts (ai, bi)i∈[N] such that

ai · sk+ bi ≈
∑
j

Mi,jX
j

12 J. H. Park

for all i ∈ [N], and returns N ciphertexts (a′j , b
′
j)j∈[N] such that

a′j · sk+ b′j ≈
∑
i

Mi,jX
i

for all j ∈ [N], where sk is the secret key. While our algorithm focuses on N×N
matrices, it can be extended to larger matrices by transposing each N × N
submatrix blocks individually.

Before delving into details, we introduce an interesting application of C-MT.
Consider FHE scenarios with multiple parties, such as multi-party HE [MTPBH21]
and proxy re-encryption [GSB+23]. Each client party encrypts its data with mul-
tiple features in a ciphertext, sends ciphertext(s) to the computing server, and
the server computes tasks over the aggregated ciphertexts. During the compu-
tation, the server often needs to convert the client-wise encrypted ciphertexts
into feature-wise encrypted ciphertexts and vice versa. This problem is the same
problem with C-MT, and we can directly apply the C-MT algorithm to these
scenarios. Figure 1 illustrates how to use C-MT algorithms for the multi-party
settings.

Fig. 1. Visualization of a C-MT application. Another C-MT can convert the feature-
wise encryptions to client-wise encryptions before sending the results back to each
client.

In this section, we propose a C-MT algorithm with Õ(N2) operations in Zq.
We note that a transpose requires at least Ω(N2) operations to read and write the
data. Also, we point out that our algorithm does not consume any multicative
level. Furthermore, we transpose the data in coefficient-encoding ciphertexts,
enabling us to perform it at the lowest modulus with the fastest bootstrapping
algorithms.

The proposed transpose algorithm can be generalized for other formats, such
as MLWE [LS15,BGV14] and shared-a RLWE [PW08,BCH+24,GKPV10,BLP+13],
to transpose encrypted data in those formats for matrices of various dimensions.
However, while the tranpose for RLWE format is useful for CC-MM as we will

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 13

describe in Section 4, transposes for other formats might not be directly useful
for efficient CC-MM.

3.1 High-level description

We first describe the motivation of our algorithm with clear ring elements. Our
algorithm starts from the observation that the trace of a ring element m(X) =∑

i miX
i ∈ RQ is the constant term m0 of ring elements. Formally,

N ·m0 = Tr(m(X)) =

N−1∑
t=0

m(X2t+1).

Similarly, for each j ∈ [N], once we take the trace of X−j ·m(X), we obtain mj :

N ·mj = Tr(X−j ·m(X)) =

N−1∑
t=0

X−j(2t+1) ·m(X2t+1).

To utilize it for C-MT, assume that we are given N ring elements, m0, · · · ,mN−1

in RQ such that
mi(X) =

∑
j

mi,jX
j ∈ RQ.

In C-MT, we aim to obtain m′
j such that

m′
j(X) =

∑
i

mi,jX
i ∈ RQ

for each j ∈ [N]. The previous observation implies that

N ·m′
j(X) =

∑
i

Tr(X−j ·mi) ·Xi =
∑
i

∑
t

X−j(2t+1)+i ·mi(X
2t+1)

=
∑
t

(∑
i

Xi ·mi(X
2t+1)

)
X−j(2t+1) ∀j ∈ [N].

Importantly, the term
∑

i X
i ·mi(X

2t+1) is independent from j for all t ∈ [N].
Based on the above discussion, in a nutshell, our proposed C-MT algorithm

is as follows:

1. Compute {m̃t =
∑

i mi(X) ·Xi·(2t+1)−1}t∈[N] from {mi}i∈[N],
2. Compute {m̄t = m̃t(X

2t+1)}t∈[N] from {m̃t}t∈[N], and
3. Compute {m′

j =
∑

t m̄t(X) ·X−j(2t+1)}j∈[N] from {m̄t}t∈[N].

We can homomorphically compute all the above steps in the encrypted state
by using key switching and arithemetic operations of FHE schemes. The homo-
morphic algorithm contains only N key switchings (step 2), which is desirable.
However, it requires N2 ring additions during the first and third steps, which
uses O(N3) operations in ZQ.

14 J. H. Park

To this end, we devise Tweak algorithm that can compute the first and
third step, using Õ(N2) operations instead of Ω(N3). The observation is that in
the above steps, all ring additions involved are structured and have the form∑

i

mi ·X2ij ∀j ∈ [N].

Our Tweak algorithm (Algorithm 1) efficiently computes the structured addi-
tions with such a form.

In Section 3.2, we explain the Tweak algorithm, and in Section 3.3, we
describe our full C-MT algorithm.

3.2 Tweak algorithm

Our Tweak algorithm takes as an inputs n ciphertexts, {cti}i∈[n], and returns
n ciphertexts: {∑

i

X2ij N
n · cti

}
j∈[n]

.

Tweak algorithm computes the above n2 ring additions over RQ (which usually
requires Ω(n2N) additions over ZQ) with Õ(nN) additions in ZQ. While we uti-
lize it for C-MT in this paper, Tweak algorithm might have many applications
related to homomorphic computations with structured circuits. Algorithm 1 de-
scribes the algorithm.

Algorithm 1 Tweak
Require: A power-of-two integer n, and n ciphertexts ct.
Ensure: Ciphertexts ct′ such that ct′j =

∑
i X

2ij N
n cti for each j ∈ [n]

1: if n = 1 then
2: return ct
3: end if
4: ct′0 = ct0
5: for ℓ← 0 to logn− 1 do
6: aux← Tweak

(
2ℓ, {ct(2j+1)n/2ℓ+1}j∈[2ℓ]

)
7: for j ← 0 to 2ℓ − 1 do
8: ct′j+2ℓ ← ctj −X

N
2ℓ

jauxj

9: ct′j ← ctj +X
N
2ℓ

jauxj
10: end for
11: end for
12: return {ct′j}j∈[n]

We prove the correctness of Tweak algorithm in Theorem 1.

Theorem 1. Algorithm 1 is correct.

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 15

Proof. We prove the correctness by using induction on n. When n = 1, the
correctness is trivial. Then, for each n > 1, suppose that the algorithm is correct
for all integer n0 less than n.

We claim that ct′j =
∑

i∈[2ℓ+1] X
2ij N

2ℓ+1 ·cti n

2ℓ+1
for each j ∈ [2ℓ+1], after ℓ-th

loop of line 6–11. Before starting the loop, the claim trivially holds with ℓ = −1.
Suppose the claim holds after (ℓ− 1)-th iteration. By the induction hypothesis,

ct′j =
∑
i∈[2ℓ]

X2ij N

2ℓ · cti n

2ℓ
−X

N

2ℓ
j

∑
i∈[2ℓ]

X2ij N

2ℓ · ct(2i+1)n/2ℓ+1

=
∑
i∈[2ℓ]

X2(2i)j N

2ℓ+1 · ct2i n

2ℓ+1
−
∑
i∈[2ℓ]

X2(2i+1)j N

2ℓ+1 · ct(2i+1)n/2ℓ+1

=
∑

i∈[2ℓ+1]

X2ij N

2ℓ+1 · cti n

2ℓ+1

for each j ∈ [2ℓ]. Also, since XN = −1 in RQ,

ct′j+2ℓ =
∑
i∈[2ℓ]

X2ij N

2ℓ · cti n

2ℓ
−X

N

2ℓ
j

∑
i∈[2ℓ]

X2ij N

2ℓ · ct(2i+1)n/2ℓ+1

=
∑
i∈[2ℓ]

X2(2i)j N

2ℓ+1 · ct2i n

2ℓ+1
−
∑
i∈[2ℓ]

X2(2i+1)j N

2ℓ+1 · ct(2i+1)n/2ℓ+1

=
∑

i∈[2ℓ+1]

(−1)iX2ij N

2ℓ+1 · cti n

2ℓ+1
=

∑
i∈[2ℓ+1]

X2i(j+2ℓ) N

2ℓ+1 · cti n

2ℓ+1
.

To put it all together, after ℓ-th loop, ct′j =
∑

i∈[2ℓ+1] X
2ij N

2ℓ+1 · cti n

2ℓ+1
for

each j ∈ [2ℓ+1], and the claim holds for all ℓ’s. In particular, after the last loop
iteration, ℓ becomes log n− 1, and

ct′j =
∑
i∈[n]

X2ij N
n · cti

for each j ∈ [n]. This equation means that Algorithm 1 is correct for n. By
mathematical induction, Algorithm 1 is correct for all power-of-two integers
n ≥ 1. ⊓⊔

We now show that the Tweak algorithm can be done with Õ(nN) operations
in Theorem 2.

Theorem 2. Algorithm 1 uses Õ(nN) operations in ZQ.

Proof. Let the cost of Tweak algorithm on n ciphertexts be T (n). Each ℓ-th
loop of line 6–11 can be done with T (2ℓ) + 2 · 2ℓN operations. Therefore,

T (n) = T (n/2) + T (n/4) + · · ·+ T (1) + 4nN = 2T (n/2) + 2nN,

which implies that T (n) = O(Nn log n) = Õ(nN) ⊓⊔

16 J. H. Park

3.3 C-MT algorithm

We propose a C-MT algorithm with Õ(N2) operations in ZQ, by putting Tweak
algorithm into our approach in Section 3.1.

We describe our full algorithm in Algorithm 2. In a nutshell, we tweak given
input ciphertexts ct to obtain aux and tweak it again to obtain the transposed
ciphertexts ct′.

Algorithm 2 Transpose
Require: N ciphertexts ct such that cti encrypts mi = {mi,0, · · · ,mi,N−1} in its

coefficient for each i ∈ [N].
Ensure: N ciphertexts ct′ such that ct′j encrypts m′

j = {m0,j , · · · ,mN−1,j} for each
j ∈ [n].

1: aux← Tweak
(
N, {Xi · cti}i∈[N]

)
2: for j ← 0 to N − 1 do
3: aux′j ← (N−1 mod Q) · aux((2j+1)−1 mod 2N−1)/2

4: aux′j ← Auto(aux′j ; 2j + 1)
5: end for
6: ct′′ ← Tweak (N, aux′)
7: for j ← 1 to N do
8: ct′j mod N ← −XN−j · ct′′(N−j) mod N

9: end for
10: return ct′

Algorithm 2 does not consume multiplicative level during computation. We
note that we multiply the constant N−1 mod Q before key switchings. Our algo-
rithm is related to the trace over RQ, which creates a scaling of the plaintext by
a factor of N . Pre-multiplying by N−1 mod q allows us to avoid this scaling. We
remark that for FHE schemes (especially when using RNS HE schemes), it is a
convention to choose N as a power-of-two integer and Q as a product of primes
that are congruent to 1 modulo 2N . This trick is also introduced in [CDKS21].

We now prove the correctness of Transpose algorithm in Theorem 3.

Theorem 3. Algorithm 2 is correct.

Proof. From the correctness of Algorithm 1, after line 1,

auxt =
∑
i

X2it · (Xi · cti) =
∑
i

Xi(2t+1) · cti

for each t ∈ [N]. After rearrangement and key switching (line 2–5),

N · aux′t = Auto

(∑
i

Xi(2t+1)−1

· cti ; 2t+ 1

)
=
∑
i

Xi · cti(X2t+1)

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 17

for each t ∈ [N]. Again by Theorem 1, after Tweak algorithm in line 6, ct′′
satisfies i ∈ [N] :

N · ct′′j = N ·
∑
t

(X2jt · aux′t) =
∑
t

∑
i

X2jt ·Xi · cti(X2t+1).

Finally, for each j ∈ [N],

N · ct′(N−j) mod N = −Xj ·
∑
t

∑
i

X2jt ·Xi · cti(X2t+1)

= −
∑
t,i

Xj(2t+1) ·Xi · cti(X2t+1) = −
∑
i

Xi · Tr(Xj · cti)

= −
∑
i

Xi · Tr(Enc({−mi,N−j , · · · ,mi,N−j−1}))

= N · Enc(
∑
i

mi,N−j ·Xi)

Therefore, Algorithm 2 is correct. ⊓⊔

We finally show that our C-MT algorithm (Algorithm 2) costs Õ(N2) oper-
ations.

Theorem 4. Algorithm 2 uses Õ(N2) operations in ZQ.

Proof. Algorithm 2 consists of two Tweak and N key switching. The cost of
each Tweak is Õ(N2) by Theorem 2, and the cost of each key switching is Õ(N).
Consequently, the overall cost of Algorithm 2 is Õ(N2).

Asymptotically, our C-MT algorithm is almost optimal. We stress that as we
manipulate N2 messages, the lower bound of the cost of C-MT is Ω(N2). In
addition, our algorithm does not consume moduli.

4 Ciphertext-Ciphertext Matrix Multiplication

In this section, we propose a new algorithm for homomorphic matrix multiplica-
tion. Our algorithm focuses on large matrices whose dimension is larger or equal
to the RLWE ring dimension N . For ease of discussion, we focus on the square
matrices of size N ×N . Extending our algorithm to larger matrices is easy.

One of the difficulties of CC-MM involves homomorphic computation with a
mathematical structure. Even though there exist several works including [JKLS18],
which are asymptotically optimal, the overhead from homomorphic computa-
tion, e.g., inefficient memory access, makes it hardly practical for large matrices.
While PP-MM is a well-studied problem and there exist PP-MM libraries with
low-level optimizations, CC-MM needs to be more scalable.

To this end, we reduce CC-MM to PP-MM. This reduction enables us to
utilize highly optimized linear algebra libraries for ciphertext matrix multipli-
cations, significantly improving the timing. This reduction-based approach is
inspired by [BCH+24] and also references [LZ22], both of which construct and
utilize reductions from PC-MM to PP-MM.

18 J. H. Park

4.1 Matrix form of RLWE ciphertexts

We introduce the matrix form from [BCH+24] and use it to construct the re-
duction from CC-MM to PP-MM. To manipulate matrices whose dimension is
equal to N , we use N RLWE ciphertexts. For example, we can encrypt each
row of an N ×N matrix M in N ciphertexts ct such that cti = (ai, bi) where
bi = ai · sk + mi in RQ. In particular, mi = ⌊∆(

∑
j Mi,jX

j) + e(X)⌉, which
is a coefficients-encoding of the i-th row of M. We represent this as a matrix
equation using the Toeplitz matrices using Eq. (3) as follows.

A · Toep(sk) + B ≈ M (5)

We remark that each row of A, B, and M correspond to ai, bi and mi for each i.
We stress that we can view N RLWE ciphertexts using Eq. (3), and conversely,
we can view Eq. (3) as N RLWE ciphertexts by extracting each row of A and
B. We refer to Section 2.1 for more details.

It is also possible to encrypt each column of M . Using Eq. (4), the following
equation corresponds to the column-wise encryptions (A,B) of M.

Toep(s̃k) · A + B ≈ M. (6)

Each column of A, B, and M involves to the a, b, and m parts of each ciphertexts.
Here, s̃k = sk(X−1). We refer to Section 2.1 for more details.

In this paper, we set the row-wise encryptions as a default format. For N×N
matrices A and B, if we say ct = (A,B) encrypts an N×N matrix M, it means
that they encrypt each row of M and A · Toep(sk) + B = M holds. When we
perform key switching or rescale the ciphertexts (A,B), we compute over each
row. Once we used column-wise encryptions, we clarified it with an underbar.
For example, ct = (A,B) encrypts M implies that it encrypts each column of
M and Toep(s̃k) · A + B = M holds.

C-MT in matrix form. We can represent Algorithm 3 with the matrix form
(Eq. (5) and (6)). Algorithm 2 converts ciphertexts that encrypt each row in
their coefficient to ciphertexts that encrypt each column in their coefficient. In
the matrix form, the algorithm is a conversion between (A,B) and (A,B) such
that

A · Toep(sk) + B ≈ Toep(s̃k) · A + B.

4.2 CC-MM algorithm

We propose a new CC-MM algorithm. Our algorithm takes two row-wise encryp-
tions of matrices as inputs and outputs a row-wise encryption of the product
matrix.

Assume that we are given matrices M and M′ of size N × N , and their
row-wise encryptions ct = (A,B) and ct′ = (A′,B′). We can represent it in a
matrix form as follows.

M ≈ A · Toep(sk) + B

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 19

and
M′ ≈ A′ · Toep(sk) + B′.

Then, by using C-MT, we transpose the row-wise encryption (A,B) to obtain
the column-wise encryption (A,B) of M:

M ≈ Toep(s̃k) · A + B.

Then, we multiply (A,B) and (A′,B′) in matrix forms:

MM′ = (Toep(s̃k) · A + B) · (A′ · Toep(sk) + B′)

= Toep(s̃k) · AA′ · Toep(sk) + Toep(s̃k) · AB′ + BA′ · Toep(sk) + BB′.

We transpose two column-wise encryptions (AA′,0) of
(
Toep(s̃k) · AA′

)
and

(AB′,0) of
(
Toep(s̃k) · AB′

)
, respectively. It outputs two row-wise encryptions

(Â, B̂) of
(
Toep(s̃k) · AA′

)
and (Ǎ, B̌) of

(
Toep(s̃k) · AB′

)
. To be more pre-

cise, in matrix form,

Toep(s̃k) · AA′ ≈ Â · Toep(sk) + B̂,

and
Toep(s̃k) · AB′ ≈ Ǎ · Toep(sk) + B̌.

Putting it all together results in:

MM′ ≈ Â · Toep(sk) · Toep(sk) + (B̂ + Ǎ + BA′) · Toep(sk) + (B̌ + BB′)

= Â · Toep(sk2) + (B̂ + Ǎ + BA′) · Toep(sk) + (B̌ + BB′).

As the last step, we relinearize and rescale each row of (Â, B̂+Ǎ+BA′, ˇB + BB
′
).

This step outputs the row-wise encryptions of MM′. This completes the CC-MM
procedure.

To sum up, from the row-wise encryptions of M and M′, we obtained the
row-wise encryptions of the product matrix MM′. Algorithm 3 describes our
algorithm in full detail.

The correctness of Algorithm 3 is directly derived from the above discussion
and Theorem 3. While Algorithm 3 focuses on N ×N matrices, we can use it for
larger matrices by using a block approach [JKLS18]: splitting the large matrices
into submatrices of size N ×N and multiplying two matrices of submatrices. To
reduce costs, we can use the Strassen algorithm [Str69] for the block approach.

Cost analysis. Our algorithm consists of three transpositions (line 1, 3, and 4), N
key switching (line 5), N rescaling (line 6), and a PP-MM (line 2). The PP-MM
part is the heaviest, while we can use highly optimized linear algebra libraries
to implement it. The components other than PP-MM can be done with Õ(N2)
operations.

20 J. H. Park

Algorithm 3 CC-MM
Require: N ciphertexts ctU = (AU ,BU) encrypting an N × N matrix U;

AUToep(sk) + BU = U.
Require: N ciphertexts ctV = (AV ,BV) encrypting an N × N matrix V;

AV Toep(sk) + BV = V.
Ensure: N ciphertexts ctW = (AW ,BW) encrypting an N × N matrix W;

AW Toep(sk) + BW = W, where W=UV is the N ×N product matrix.

1: (AU ,BU)← Transpose(ctU)

2:
[
M00 M01

M10 M11

]
←

[
AU

BU

] [
AV BV

]
3: (Ǎ, B̌)← Transpose((M01,0))
4: (Â, B̂)← Transpose((M00,0))
5: (Â, B̂)← KSs2→s((Â,0)) + (B̂,0)
6: (AW ,BW)← Rescale

(
(Â, B̂) + (Ǎ, B̌) + (M10,M11)

)
7: return (AW ,BW)

The large PP-MM uses O(Nω) operations, where ω is a constant. In most
practical implementations, ω is 3. However, we can use highly optimized open
libraries for PP-MM, and they significantly reduce the practical timing. For
example, in our implementation on CPU with N = 212, an N × N square ma-
trix multiplication with OpenBLAS [oBlv] library takes 1.47 seconds, which was
faster than the schoolbook implementation by a factor more than 30. It partly
implies that our algorithm would be practically faster than any other CC-MM
algorithms without reduction to PP-MM. The importance of reduction to PP-
MM has also been stressed in [BCH+24], but they focused on the PC-MM rather
than CC-MM.

Any improvement in the implementation of PP-MM will directly benefit our
algorithm. While this paper implemented our algorithm on a CPU, it can be
easily adapted to any hardware architecture unless it does not support efficient
matrix operations.

Overall, the cost of our CC-MM algorithm is four PP-MMs (which is O(N3)
with BLAS libraries) with Õ(N2) operations for others. For CC-MM between
d × d matrices where d > N , we use block approach, and the cost would be
Õ ((d/N)ω1Nω0). Here, ω0 is the constant for PP-MM, in which typically ω0 = 3
if we use BLAS libraries, and ω1 is a constant for block approach, in which
ω1 = log2 7 if we use Strassen algorithm [Str69].

Moduli consumption and fusing CC-MM with bootstrapping. If we use the fastest
matrix transposition algorithm (Algorithm 2), Algorithm 3 requires O(N) switch-
ing keys. However, each key is small, as we can use the switching keys with almost
the smallest parameters. Our CC-MM algorithm consumes only one level during
multiplication, and the switching keys are sufficient to support key switching at
level 1.

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 21

Our matrix multiplication algorithms are done in coefficient-encodings. The
ciphertexts are coefficient-encoded at the lowest moduli when using FHE with
the current fastest bootstrapping methods (S2C-first bootstrapping). Conse-
quently, we can perform our CC-MM algorithm in the lowest modulus while
utilizing the fast S2C-first bootstrapping algorithms, as in the case of the state-
of-the-art PC-MM in [BCH+24].

4.3 Encoding structure: row or column

Algorithm 3 takes two row-wise encryptions of matrices as inputs and outputs
a row-wise encryption of the product. However, it is easy to generalize it to
column-wise encrypted inputs and outputs (or even to column-wise inputs and
row-wise outputs, and vice versa). In general, the consistent structure of input
and output encryptions (e.g., both row-wise encryption or both column-wise
encryption) is advantageous for easier implementation in general applications.
We note that our algorithms are flexible in choosing the encoding structure of
inputs and outputs as we have an efficient C-MT algorithm.

One interesting scenario is that when we have column-wise encryption of
U and row-wise encryption of V. Then, we can complete CC-MM with two
C-MTs rather than three, skipping the first C-MT (line 1 in Algorithm 3). More
importantly, this gives flexibility on the shapes of U and V; Algorithm 3 with
omitting line 1 works well with N × n matrix U and n × N matrix V for
1 ≤ n ≤ N .

5 Lightweight Algorithms with Small Key Size

One of the possible concerns about Algorithms 2 and 3 is the key size. Without
optimization, Algorithms 2 and 3 require N switching keys for all automor-
phisms.

Many switching keys might be acceptable for large devices, as all keys can
have small parameters. Since Algorithm 2 does not consume any modulus, we
can assume that all input ciphertexts are in the low modulus (e.g., less than
64-bits primes), with the low ring degree (e.g., N = 212). For example, we
can transpose at the bottom modulus and recover the moduli using HalfBTS
as in PC-MM [BCH+24]. Thus, each key for C-MT and CC-MM is smaller
than other keys for homomorphic computation, and N switching keys might be
affordable. However, even with the small parameters, N switching keys might
not be affordable for small devices.

In this section, we introduce “lightweight” algorithms with small key sizes
for C-MT and CC-MM. With a slight modification, they are based on Algo-
rithms 2 and 3.

5.1 Lightweight C-MT algorithm

In Algorithm 2, we use N switching keys for N homomorphic automorphisms,
applied sequentially (line 2–5 in Algorithm 2). To reduce the key size, our

22 J. H. Park

lightweight algorithm uses a single switching key, which is updated before each
use. This is possible because in RLWE-based FHE schemes, a switching key is a
tuple of ciphertexts, and we can update it by using another switching key. This
observation was also introduced in [LLKN23] to reduce the communication cost
during key setup. Building on this idea, we further reduce both the communica-
tion cost and the on-chip memory requirements for switching keys in C-MT and
CC-MM algorithms.

For ease of discussion, assume the gadget rank of switching keys is 1. The fun-
damental observation is that the switching key is an encryption of P ·sk(X2t+1)
for each t ∈ [N], where P is a constant auxiliary modulus for key switchings.
Following the conventional encoding structure of CKKS, the set of all switching
keys is

{Enc(P · sk(X5i))}i∈[N/2] ∪ {Enc(P · sk(X−5i))}i∈[N/2].

Consequently, we can generate another switching key from a given switching key
by performing automorphism to the given switching key. If we have two master
rotation keys (Enc(PP ′ ·sk(X5)) and Enc(PP ′ ·sk(X−1)) and an initial switching
key Enc(P · sk(X)), we can generate all switching keys. Here, P ′ is an auxiliary
modulus for generating the key.

In Algorithm 2, we sequentially use the switching keys in the loop 2–5. Using
the above technique, we can use a single switching key by repeatedly updating it.
The switching key is initially set to Enc(P · sk(X)). For the first N/2 iterations,
we use the key and update it using the master rotation key Enc(PP ′ · sk(X5)).
Precisely, for each i th loop, the switching key will be updated to Enc(P ·sk(X5i)).
After N/2 iterations, we update the switching key using the master conjugation
key Enc(PP ′ · sk(X−1)) and continue the last N/2 iterations. In particular, for
each (i+N/2) th loop, the switching key will be updated to Enc(P · sk(X−5i)).

With the above strategy, we can exploit only three switching keys. This
significantly reduces the key size. The computational cost would increase since
N additional key switchings have been introduced. However, we stress that the
asymptotic complexity is still Õ(N2). In the case with a gadget rank dnum larger
than 1, we have the same result by repeating the above procedures for dnum
times.

5.2 Lightweight CC-MM algorithm

The C-MT algorithm with a small key size directly implies a CC-MM algorithm
with a small key size. We note that in Algorithm 3, we used C-MT in a black-box
manner, and we can adopt lightweight C-MT to achieve a small key size.

With this modification, our lightweight CC-MM algorithm requires four switch-
ing keys: one for relinearization, one for automorphisms, and two for updating
the automorphism key. This modification might increase the cost of C-MT by
a small constant factor, but it is still minor compared to the cost of PP-MM
(line 2 in Algorithm 3).

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 23

6 Experiments

We implement our algorithms with HEaaN CKKS library [HEa22]. For the ma-
trix multiplication, we use FLINT library [tea24] to implement modular matrix
multiplications. All experiments are measured on an Intel Xeon Gold 6242 CPU
running at 2.80GHz, using a single thread. The HEaaN library takes advantage
of the AVX512 instruments.

For the accuracy, we measured the relative error bit. Precisely, if the ideal
output matrix is W and the experimental result is W ′, we measured

− log2

(
max

i
∥Wi −W ′

i∥∞ / max
i

∥Wi∥∞
)
,

where each Mi indicates the i-th row of matrix M .
For the key size, we calculated it as:

N · dnum · log2 PQ,

where N is the RLWE ring degree, PQ is the modulus that the key switching
occurs, and dnum is the rank of the gadget decomposition of the key.

Here, we assumed the a parts of the keys are from an output of an extendable
output-format function (XOF) on public seeds. Then, we may send or store the
keys without the a part. Note that we exclude the cost of sending seed, as it is
relatively minor, and we can use a counter to use one seed for multiple keys. This
technique has been introduced in the literature, such as [CDKS21,BCK+23].

6.1 C-MT algorithm

We present the experimental results of C-MT algorithms with our proof-of-
concept implementations. We transpose N ciphertexts that each encrypt a ran-
dom vector from [−1, 1]N in its coefficients.

Parameter log2 N log2 Q log∆ log2(QP) dnum hwt
Fst11 11 26 24 52 1 256
Lt12 12 28 27 (64, 104) (1, 2) 256
Table 1. Parameters for C-MT experiments.

Parameter selection We conducted experiments on two parameter sets. The
parameters are presented in Table 1. All parameters are ≈ 128-bit secure based
on [APS15].

In Table 1, N is the ring degree of RLWE ciphertexts, and QP is the modulus
at which key switchings occur. Q is the ciphertext modulus, and dnum is the rank
of the gadget decomposition of key switchings. ∆ is the scaling factor, and hwt
is the hamming weight of secret keys.

For QP and dnum of Lt12 parameter, the first entries are used for homomor-
phic automorphisms, and the second entries are used for updating the key.

24 J. H. Park

Experimental results. We report the timing and the accuracy of the C-MT
algorithms in Table 2. The first two rows present the results of Algorithm 2, and
the third row shows the results of the lightweight C-MT algorithm (Section 5.1).
We take the average of latency and accuracy among 100 experiments.

Parameter d Latency (s) Accuracy (bit) Key size (MB)
Fst11 2 048 0.764 10.7 27.3

Lt12 4 096 3.04 16.3 134
Lt12* 4 096 4.92 14.2 0.246

Table 2. Experimental results of C-MT algorithms on d× d matrices.

The result on the parameter Fst11 takes less than a second to transpose a
large matrix of size 2 048 × 2 048. As it uses relatively small FHE parameters,
the key size is reasonable (less than 30 MB) without the lightweight algorithm.
The first two rows experimentally show that the C-MT algorithm has Õ(N2)
complexity, as Lt12 is slower than Fst11 by a factor 4. The last two rows
show the impact of the lightweight algorithm. The lightweight algorithm mildly
degrades performance while allowing a more than 540 times smaller key size,
from 134 MB to 0.25 MB.

6.2 CC-MM algorithm

We describe the experimental results of the ciphertext matrix multiplication
algorithm with our proof-of-concept implementations. We multiplied two vectors
of ciphertexts of length N that each vector encrypts the rows of a random N×N
matrix in [−1, 1]N×N .

Parameter selection. We conducted experiments on two parameter sets. The
parameters are presented in Table 3. All parameters are ≈ 128-bit secure based
on [APS15].

Parameter log2 N log2 Q log∆ log2(QP) dnum hwt
Fst12 12 (64, 36) 28 104 2 256
Lt13 13 (66, 38) 28 (117, 178) (2, 3) 256
Table 3. Parameters for CC-MM experiments.

In Table 3, as in Table 1, N is the ring degree of RLWE ciphertexts, and dnum
is the rank of the gadget decomposition of key switchings. ∆ is the scaling factor,
and hwt is the hamming weight of secret keys. Q is the ciphertext modulus.
Note that the CC-MM algorithm contains rescale procedures, and the input

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 25

and output ciphertext moduli are different. In Table 3, the first entry of logQ
indicates the modulus of input ciphertexts, and the second entry is that of output
ciphertexts. QP is the modulus at which key switchings occur. For QP and
dnum of Lt13 parameter, the first and second entries are used for homomorphic
automorphisms and updating the key, respectively.

Experimental results. We report the measured timing and the accuracy in
Table 4 and 5 with the key size. In Table 4, we present the total latency, accuracy,
and the key size of the CC-MM algorithm. The first two rows present the results
of Algorithm 3, and the third reports the results of the lightweight CC-MM
algorithm (Section 5.2). We take the average of latency and accuracy among 10
experiments.

Parameter d Latency (s) Accuracy (bit) Key size (MB)
Fst12 4 096 85.2 18.7 436

Lt13 8 192 596 18.5 1 960
Lt13* 8 192 672 18.5 1.57

Table 4. Experimental results of CC-MM algorithms for multiplying two encrypted
d× d matrices.

The result for Fst12 parameter shows that multiplying two encrypted 4 096×
4 096 matrices takes less than 1.5 minutes. The results for Lt13 parameter
demonstrate the impact of the lightweight algorithm. The lightweight algorithm
reduces the key size by a factor of over 1 200, from 1.96 GB to 1.57 MB. Notably,
the performance degradation in the lightweight CC-MM algorithm is less signif-
icant than in C-MT, as the cost of C-MT during CC-MM is relatively minor
compared to that of PP-MM.

In Table 5, we report the timing of each step in the CC-MM algorithm. In the
first column (Transpose), we present the latency of three transposes (line 1, 3,
and 4 of Algorithm 3), and in the second column, we present the latency of PP-
MM with FLINT library (line 2 of Algorithm 3). In the third and fourth columns
(Relin and Rescale, respectively), we report the latency of relinearization (line
5) and rescale (line 6), respectively.

Parameter Latency of each step (s) Total (s)Transpose PP-MM Relin Rescale
Fst12 25.5 57.1 1.36 1.22 85.2

Lt13 104 481 6.11 5.71 596
Lt13* 186 474 6.28 5.51 672

Table 5. Timing of each step of CC-MM algorithm.

26 J. H. Park

We stress that the PP-MM step was the heaviest step of our ciphertext matrix
multiplication. Improvements in the clear matrix multiplication implementation,
e.g., improvements in the linear algebra libraries or adopting GPU or a better
hardware architecture for modular matrix multiplication, will directly benefit
our algorithm.

In Table 6, we provide the timing of clear floating-point matrix multiplication,
PC-MM, and CC-MM. The floating-point matrix multiplication uses OpenBLAS
library [oBlv], and the numbers for PC-MM are borrowed from [BCH+24].

Matix PP-MM PC-MM CC-MM
dimension ([oBlv]) ([BCH+24]) (Ours)

4 096 1.47 17.1 85.2

8 192 11.4 64.6 596
Table 6. Timing of matrix multiplications in a single thread. All timings are given in
seconds.

We note that our reduction from CC-MM is to modular PP-MM rather than
floating-point PP-MM. There is a notable gap between floating-point PP-MM
and modular PP-MM timings. For example, for matrix dimension 4 096, modular
PP-MM takes around 14.3 seconds on our machine, while floating-point PP-MM
takes 1.47 seconds.

Table 6 demonstrates the efficiency of our CC-MM algorithm, which pro-
cesses large matrices in minutes. In contrast, based on estimates, existing works
would take tens of hours to process matrices of this size. The performance of
our approach significantly reduces the gap between CC-MM and PC-MM or
PP-MM, demonstrating its practicality in real-world applications.

Acknowledgements. We thank Dr. Alain Passelègue and Dr. Damien Stehlé
for their helpful comments. We also thank Professor Jung Hee Cheon and Dr.
Guillaume Hanrot for their support.

References

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[APS15] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of
learning with errors. J. Math. Cryptol., 2015. Software available at
https://github.com/malb/lattice-estimator, git commit# 5350825.

[BCH+24] Y. Bae, J. H. Cheon, G. Hanrot, J. H. Park, and D. Stehlé. Plaintext-
ciphertext matrix multiplication and FHE bootstrapping: Fast and fused.
In CRYPTO, 2024.

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 27

[BCK+23] Y. Bae, J. H. Cheon, J. Kim, J. H. Park, and D. Stehlé. HERMES: efficient
ring packing using MLWE ciphertexts and application to transciphering.
In CRYPTO, 2023.

[BEHZ16] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca.
A full rns variant of fv like somewhat homomorphic encryption schemes.
In SAC, pages 423–442. Springer, 2016.

[BGV14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. ACM Trans. Comput. Theory,
2014.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical
hardness of learning with errors. In STOC, 2013.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching
from classical gapSVP. In CRYPTO, 2012.

[CDKS21] H. Chen, W. Dai, M. Kim, and Y. Song. Homomorphic conversion between
(ring) LWE ciphertexts. In ACNS, 2021.

[CGGI17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE. In
ASIACRYPT, 2017.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. Bootstrapping for approximate homomorphic encryption. In
EUROCRYPT, pages 360–384. Springer, 2018.

[CHK+19] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full rns variant of approximate homomorphic encryption. In SAC,
pages 347–368. Springer, 2019.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for
arithmetic of approximate numbers. In ASIACRYPT, 2017.

[CYW+24] J. Chen, L. Yang, W. Wu, Y. Liu, and Y. Feng. Homomorphic ma-
trix operations under bicyclic encoding, 2024. Available at https://chen-
jingwei.github.io/download/hemm.pdf.

[DCLT18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding, 2018. Avail-
able at https://arxiv.org/abs/1810.04805.

[DM15] Léo Ducas and Daniele Micciancio. Fhew: bootstrapping homomorphic en-
cryption in less than a second. In EUROCRYPT, pages 617–640. Springer,
2015.

[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic en-
cryption. Available at http://eprint.iacr.org/2012/144, 2012.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-type
cryptosystem from lwe. In EUROCRYPT, 2010.

[GKPV10] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robust-
ness of the learning with errors assumption. In ICS, 2010.

[GQH+24] Y. Gao, G. Quan, S. Homsi, W. Wen, and L. Wang. Secure and efficient
general matrix multiplication on cloud using homomorphic encryption.
The Journal of Supercomputing, 2024.

[GSB+23] Mirko Günther, Lars Schütze, Kilian Becher, Thorsten Strufe, and Jeron-
imo Castrillon. Helium: A language and compiler for fully homomor-
phic encryption with support for proxy re-encryption. arXiv preprint
arXiv:2312.14250, 2023.

[HCJG24] S. Hong, Y. A. Choi, D. S. Joo, and G. Gürsoy. Privacy-preserving model
evaluation for logistic and linear regression using homomorphically en-
crypted genotype data. Journal of biomedical informatics, 2024.

28 J. H. Park

[HEa22] CryptoLab. HEaaN library, 2022. Available at
https://www.cryptolab.co.kr/en/products-en/heaan-he/.

[HHW+21] Z. Huang, C. Hong, C. Weng, W. Lu, and H. Qu. More efficient secure
matrix multiplication for unbalanced recommender systems. IEEE Trans-
actions on Dependable and Secure Computing, 2021.

[HK20] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate
homomorphic encryption. In Cryptographers’ Track at the RSA Confer-
ence, 2020.

[HLC+22] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang. Iron: Private
inference on transformers. Advances in Neural Information Processing
Systems, 2022.

[JKLS18] X. Jiang, M. Kim, K. Lauter, and Y. Song. Secure outsourced matrix
computation and application to neural networks. In CCS, 2018.

[LLKN23] J. W. Lee, E. Lee, Y. S. Kim, and J. S. No. Rotation key reduction
for client-server systems of deep neural network on fully homomorphic
encryption. In ASIACRYPT, 2023.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010.

[LS15] A. Langlois and D. Stehlé. Worst-case to average-case reductions for mod-
ule lattices. Des. Codes Cryptogr., 2015.

[LZ22] J. Liu and L. F. Zhang. Privacy-preserving and publicly verifiable matrix
multiplication. IEEE Transactions on Services Computing, 2022.

[MMJG24] X. Ma, C. Ma, Y. Jiang, and C. Ge. Improved privacy-preserving pca using
optimized homomorphic matrix multiplication. Computers & Security,
2024.

[MS18] D. Micciancio and J. Sorrell. Ring packing and amortized FHEW boot-
strapping. In ICALP, 2018.

[MTPBH21] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and
Jean-Pierre Hubaux. Multiparty homomorphic encryption from ring-
learning-with-errors. Proceedings on Privacy Enhancing Technologies,
2021(4):291–311, 2021.

[oBlv] OpenBLAS: An optimized BLAS library version 0.3.26. Available at
https://www.openblas.net/.

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their applications.
In STOC, 2008.

[PZM+24] Q. Pang, J. Zhu, H. Möllering, W. Zheng, and T. Schneider. Bolt: Privacy-
preserving, accurate and efficient inference for transformers. In 2024 IEEE
Symposium on Security and Privacy (SP), 2024.

[RNSS18] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving
language understanding by generative pre-training, 2018. Available at
https://openai.com/research/language-unsupervised.

[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key
encryption based on ideal lattices. In ASIACRYPT, 2009.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische math-
ematik, 13(4):354–356, 1969.

[tea24] The FLINT team. FLINT: Fast Library for Number Theory, 2024. Version
3.2.0-dev, https://flintlib.org – commit # c29a090.

[TLI+23] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Ro-
driguez, A. Joulin, E. Grave, and G. Lample. LLaMA: Open

Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices 29

and efficient foundation language models, 2023. Available at
https://arxiv.org/abs/2302.13971.

[ZL23] W. Zhu and X. Li. Secure mutual learning with low interactions for deep
model training. In International Conference on Mobility, Sensing and
Networking, 2023.

[ZLW23] X. Zheng, H. Li, and D. Wang. A new framework for
fast homomorphic matrix multiplication, 2023. Available at
https://eprint.iacr.org/2023/1649.

[ZLY+23] J. Zhang, J. Liu, X. Yang, Y. Wang, K. Chen, X. Hou, K. Ren, and
X. Yang. Secure transformer inference made non-interactive, 2023. Avail-
able at https://eprint.iacr.org/2024/136.

