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Abstract. In verifiable secret sharing (VSS), a dealer shares a secret input among several parties,
ensuring each share is verifiable. Motivated by its applications in the blockchain space, we focus on a
VSS where parties holding shares are not allowed to reconstruct the dealer’s secret (even partially) on
their own terms, which we address as privacy-targeted collusion if attempted.
In this context, our work investigates mechanisms deterring such collusion in VSS among rational and
malicious parties. For this problem, we make both algorithmic and combinatorial contributions:
1. We provide two collusion-deterrent mechanisms to discourage parties from colluding and recovering

the dealer’s secret. Notably, when it is desired to achieve fairness—where non-colluding parties are
not at a loss—while allowing for the best achievable malicious fault tolerance, we define “trackable
access structures” (TAS) and design a deterrence mechanism tailored for VSS on these structures.

2. We estimate the size of the optimal TAS, construct them from Steiner systems, provide highly
robust TAS using partial Steiner systems, and present efficient secret sharing schemes for the latter
close-to-optimal TAS for various parameter regimes.

3. We demonstrate that trackability in access structures is connected to combinatorial objects like
(partial) Steiner systems, uniform subsets with restricted intersections, and appropriate binary
codes. The robustness of access structures is equivalent to the minimum vertex cover of hyper-
graphs.

We believe these connections between cryptography, game theory, and discrete mathematics will be of
broader interest.

⋆ Tiantian Gong and Hai H. Nguyen completed most of this work at Purdue University.
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1 Introduction

Consider a threshold multi-device cryptocurrency wallet [2,42]. A user shares her transaction sign-
ing key among many servers using a secret sharing scheme, and a threshold number of servers are
expected to endorse transactions on the user’s behalf using aggregatable partial signatures. How-
ever, nothing stops these servers from performing unauthorized transactions on the user’s behalf by
generating unauthorized partial signatures or simply reconstructing her signing key. This is not an
isolated risk; in most secret-sharing applications, colluding actors may surreptitiously recover crypto-
graphic secrets before they are allowed to. This concern of collusion to break privacy is commonplace
in secret-sharing applications such as secure multi-party computations (MPC) [8,16,25,47,57], time-
release encryption [48], distributed key generation [24, 37], distributed randomness beacons [1] and
electronic voting [52]: universally, all bets are off when more than a threshold number of servers get
compromised.

Considering the potentially catastrophic loss, this work disincentivizes collusion by relying on
rational behavior—the threat of snitching will keep bad (yet sensible) actors in line. Here, rationality
means taking actions that maximize one’s utility. Previously, traceable secret sharing [12,27] traced
colluder(s) only when given access to a pirate reconstruction program created by colluding parties.
Dziembowski et al. [22] allowed a colluder to generate fraud proofs against a target party when
they collude via MPC (assuming the hardness of computing many hashes quickly with MPC).
Rational parties are then discouraged from such collusion. However, as in the above applications,
colluding parties need not necessarily construct a reconstruction box for a detector to query or run
MPC. Instead, they may collude over alternative (even unforeseen) channels, e.g., outsourced cloud
computing based on homomorphic encryption.

As such, our work investigates mechanisms to disincentivize collusion in verifiable secret sharing
(VSS) [19] in a significantly harsher setting. We make no assumptions on how parties collude; unlike
the aforementioned works, there is no pirate reconstruction program or MPC transcripts. We only
rely on some parties being rational; others are malicious and can behave arbitrarily—even engaging
in self-harm. Note that we only deter successful collusion where some party learns some non-trivial
secret information (described in Section 4.1).

Gong et al. [26] recently studied collusion deterrence in multiserver private information retrieval
with a singleton access structure.5 Their mechanism created a race among colluding parties to report
and prove some non-trivial secret information; then nobody wanted others to learn about the secret.
Incorporating their mechanism into secret sharing encounters two challenges. First, their mechanism
fails even when one party is missing during reconstruction, for example, due to a benign failure. To
address this, we measure and increase the robustness of access structures—the smallest number of
absences that stall reconstruction.6

Finally, more worryingly, when used in general access structures, a colluding group can frame
innocents. Consider the k-out-of-n threshold access structure: k parties can collude and frame any
other party as a colluder because the parties are interchangeable, and the mechanism cannot tell
the colluder set. We then define trackable access structures (TAS) and design a collusion deterrence
mechanism W1 (described on page 8) for TAS.

5 All queried parties need to provide inputs to reconstruct the client’s queried index.
6 In robust secret sharing [10,18], robustness is the ability to tolerate wrong shares in reconstruction. In VSS, shares

are already verifiable, so the threat of wrong shares is mitigated. In our context, robustness then only concerns
absentees in reconstruction.
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Table 1: Evaluation of our two mechanisms. For fixed n, k, the function f (n,k)(ω) is monotonically
increasing in ω; summarized in Table 2.

Mechanisms Malicious fault bounds Fairness
hazard

Applicable access
structures RobustnessFairness Effectiveness

(W0,P) k − 2 k − 2 n− k Any n− k + 1

(W1,P) k − 1 k − 1− ω 0 ω-trackable f (n,k)(ω)

1.1 Contributions

In summary, first, we design a collusion deterrence mechanism for VSS on arbitrary access structures.
Second, we identify more structured homogeneous access structures – TAS – and create a deterrence
mechanism with stronger guarantees for VSS over a TAS. We investigate the structural properties
of TAS constructions by connecting them to various combinatorial objects.
Collusion deterrence mechanisms. Consider n parties where a strict subset of them are ma-
licious, and the rest are rational. For 2 ⩽ k ⩽ n, we consider (monotone) k-homogeneous access
structures A ⊆ 2[n] where [n] = {1, 2, . . . , n}: All minimal sets in it have size k. An access structure
A is ω-trackable when any size-ω subset is contained in at most one minimal set. For example, an
(n, k, ω)-design, as defined in Section 6.1, is ω-trackable; every size-ω subset appears in a unique
minimal set in this design.

In Table 1, We compare the two mechanisms along the following metrics.

te-Effective: The mechanism induces the non-collusion outcome when there are ⩽ te malicious
parties.

tf -Fair: Non-colluding parties are not at a loss in this mechanism with ⩽ tf malicious parties.
φ-Fairness hazard: With (k−1) malicious parties, the maximum meaningful number to consider,

the mechanism mislabels ⩽ φ non-colluders as colluders.
tr-Robust: The protocol-initiated reconstruction can be stalled only by ⩾ tr absentees. That is,

reconstruction goes through with < tr absentees.

Note that tr ⩽ (n − k + 1) because any minimal set has size ⩾ k. Naturally, it is only meaningful
to consider te, tf < k; otherwise, the situation is hopeless since k malicious parties can reconstruct
the secret at will. For these metrics, increasing te, tf , tr and decreasing φ is desirable.

Our first mechanism. For an arbitrary k-homogeneous access structure, we provide a mechanism
(W0,P) on page 6. Here, W0 is the winner selection rule, and P is the payment rule. The mechanism
(W0,P) is a public algorithm specified by the two rules, and any party can observe and interact
with it. It is (k− 2)-effective, (k− 2)-fair, has (n− k)-fairness hazard, and has optimal (n− k+1)-
robustness.

The mechanism is similar to the one in [26]. It encourages colluders to call attention to collusion
by proving their knowledge of the secret. It discourages collusion by inducing a race among rational
colluders to be the first to submit proofs, resulting in parties who are not faster than others unwilling
to collude.

Our second mechanism. For ω-trackable access structures (1 ⩽ ω < k), we propose (W1,P) on page
8. It is (k−1)-fair, (k−1−ω)-effective and has optimal 0 fairness hazard. Its robustness is f (n,k)(ω),
an appropriate increasing function defined in Table 2, indicating a trade-off between effectiveness
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and robustness when setting ω. In Section 5.1, we prove that trackability is necessary to achieve
zero fairness hazard: zero fairness hazard is impossible to achieve in untrackable access structures.

Informally, in W1, while parties from multiple minimal sets may report, the mechanism penalizes
the last free rider (i.e., a party who does not make up a complete minimal set along with any other
reporters) or the last reporter if there are no free riders. Otherwise, it locates a unique minimal set
in the TAS and penalizes the remaining parties in it.

TAS and VSS. Given parameters n, k, ω, our objective is to construct efficient secret-sharing
schemes on (n, k, ω)-TAS with high robustness. We systematically examine secret sharing on TAS,
uncovering several connections with combinatorics: We establish links between TAS and well-known
concepts in combinatorial design, coding theory, extremal graph theory, and additive combinatorics.

Specifically, TAS is equivalent to the partial Steiner system, binary constant weight code with
high distance, and uniform subsets with restricted intersections. Additionally, there is a natural
equivalence between the robustness of an access structure and the minimum vertex cover in hy-
pergraphs, with its dual notion being the independence number. Leveraging these connections, we
employ techniques and results from these fields to derive the following results:

1) A tight upper bound on the size of any TAS (Theorem 3).
2) Constructions of TAS with optimal size (Theorem 5 and 6) and near-optimal size (Theorem 8).
3) Constructions of TAS with (asymptotically) optimal robustness (Corollary 3).

We present an efficient construction of secret sharing for (n, k, 2)-TAS with (asymptotically)
optimal robustness—the ratio between the number of parties to corrupt and the number of parties
tends to one. In (n, k, 2)-TAS, the number of minimal authourized sets is O(n2) (see Theorem 3).
Naively applying generic constructions [9, 31] results in an information ratio of O(n2), while the
information ratio of our construction is O(n), demonstrating a factor of n improvement. For ω ⩾ 3,
we apply the generic constructions for any access structures, resulting in an information ratio of
roughly O((n/k)ω). More efficient constructions remain open and are left for future work. Finally,
the verifiable version of the secret sharing scheme can be constructed by applying generic transfor-
mations [5].

Lower bound. The family of TAS is a subclass of k-homogeneous access structures. Recently, Beimel [6]
proves a lower bound of Ω(n2−1/(k−1)/k) for some explicit k-homogeneous access structures—a sim-
ple variant of the ones considered by Csirmaz [21]. Interestingly, these structures are also (k − 2)-
trackable. As a result, the lower bound extends to TAS.

An example. Fig. 1a presents a Steiner system S(n=7, k = 3, ω = 2). Construct an ω = 2-
trackable access structure A whose minimal sets are the hyperedges in the Steiner system; there
are

(
n
ω

)
·
(
k
ω

)−1
= 7 such sets. This system has a minimum vertex cover of size tr = 3. Our (W1,P)

mechanism is (k−1) = 2-fair, (k−1−ω) = 0-effective, has 0 fairness hazard and tr = 3-robustness.
Likewise, consider the Steiner system S(13, 4, 2), the projective plane of order 3, is 2-trackable.

In a projective plane, the vertices of any hyperedge form a minimum vertex cover; so, here tr = 4.
Our (W1,P) mechanism is 3-fair, 1-effective, has 0 fairness hazard, and 4-robustness.

2 Technical overview

2.1 Collusion-deterrent mechanisms

Starting point. In privacy-targeted collusion in secret sharing, colluding parties can reconstruct
the secret using external unobserved communication channels. Our goal is to design a mechanism
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7
(a) Consider a 2-trackble access structure for 7 parties with
minimal sets {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {3, 4, 6},
{3, 5, 7}, {2, 4, 7} where any 2 parties pinpoint one minimal
set. Suppose 1, 3, 4, 5, 6, 7 (marked in pink) colluded.

1 543 76
(b) Suppose parties 1, 3, 4, 5, and 6 have submitted re-
ports. If party 7 reports, 7 is considered the last reporter,
and there will be no free riders by then. If 7 is rational,
it does not report due to the penalty on the last reporter
(induced by rule 1.B) in W1. The same reasoning applies
to party 6 given that 7 will not report.

1 54 3
(c) Given that 6 and 7 will not report, party 3 is considered
a free rider (and unfortunately, the last one). If party 3 is
rational, it does not report due to the penalty on the last
free rider (induced by rule 1.A) in W1.

1 4 5
(d) Given that party 3 will not report, party 5 is consid-
ered the last reporter. If 5 reports, it is penalized as the
last reporter. Otherwise, 5 is penalized as the remaining
colluder of the group {1, 4, 5} (due to rule 2) in W1. This
in turn discourages 5 from colluding with 1, 4.

Fig. 1: An example illustrating that the slowest parties in minimal sets are disincentivized from
collusion under (W1,P). Colluding parties are colored in pink.

that indirectly deters privacy-targeted collusion, assuming a blend of rational and malicious parties.
Recall that we consider homogeneous access structures with size-k minimal sets. We eventually aim
to tolerate up to (k − 1) malicious parties—which is optimal when allowing for adaptive malicious
corruptions—with the remaining parties being rational.

First, consider the following simple mechanism:

Winner selection rule (W0): The first party to prove non-trivial knowledge of the secretis selected
as the winner ; All other parties are marked as colluders.
Payment rule (P): Reward the (selected) winner and penalize the (marked) colluders with ap-
propriate amounts.

We define the proof of knowledge and parameterize payment amounts explicitly in Section 4
and 5. With proper proof verification and payment parameterization, (W0,P) discourages collusion
when there are at least two rational parties in each access group in A. The simple scheme (W0,P)
tolerates (k − 2) malicious parties as we make use of the race between the two remaining rational
parties. Informally, the rationale is that first, rational colluders are incentivized to submit a proof
to escape the penalty. Second, since at most one rational colluding party can become the winner,
at least one rational party without a network advantage in submitting reports is restrained from
collusion.

However, when one more malicious party is present, collusion can take place since the only
remaining rational party in the access group may collude, report, become the winner, and avoid
penalty. In this case of (k − 1) malicious parties, (W0,P) becomes ineffective, and (n − k) non-
colluding parties bear penalties.
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Consequently, we desire to reduce the fairness hazard, preferably to 0, where non-colluding
parties are never at a loss when faced with up to (k − 1) malicious parties. An immediate attempt
is to select a general number of winners, say ω < k winners. However, this does not boost the
mechanism’s fault tolerance because it still only treats the collusion reports as the signal of collusion
existence, not its participants. Besides, it reduces the malicious fault tolerance to (k − 1− ω).

Tolerate (k− 1) malicious parties. Intuitively, the ability to locate remaining colluders given a
strict subset of colluding parties can potentially help improve malicious fault tolerance for achieving
fairness. To this end, we are interested in one trait of a k-homogeneous access structure: given any
set of ω (1 ⩽ ω < k) parties, is there either a unique minimal set in the access structure that
contains them or none? We address this trait as ω-trackability: any ω parties belong to at most one
minimal group. Given an (n, k, ω)-TAS, a naïve extension to the previous mechanism is as follows
with the same payment rule P:

Winner selection rule (W̃1): The first ω parties to prove non-trivial knowledge of the secret are
selected as winners. If there is a unique minimal access group containing the winners, mark the
remaining parties therein as colluders.

Now the ω parties not only signal the existence but also potential participants of collusion. When
exactly one minimal set colludes, the extended mechanism achieves effective collusion deterrence
against (k − 1 − ω) malicious parties and achieves fairness against (k − 1) malicious parties. The
latter bound is because (k − ω) malicious parties suffice to trigger collusion in their access group
and (ω− 1) remaining malicious parties can help with falsely incriminating non-colluding parties in
the worst case.

However, when more minimal sets collude in close time proximity (measured according to net-
work delays), the above scheme loses its charm. This is because the first ω parties revealing collusion
are now potentially from distinct groups and a third party (i.e., a public algorithm or an entity im-
plementing the mechanism) cannot tell. Non-colluding parties can be falsely located, and fairness
can no longer be guaranteed. Worse still, non-colluding parties can be the only ones marked as
colluders, rendering the mechanism ineffective in deterring collusion. For example, consider four
2-trackable minimal groups {1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}. Suppose 1, 3, 4, 5, 6 collude, and
1, 3 report first. W̃1 identifies 2 as colluder. This is neither effective nor fair even when no party is
malicious.

Hence, trackability alone does not guarantee fairness and effectiveness. We need to update the
winner selection rule so that a sufficient number of colluding parties report to help spot colluders
without noises that inculpate non-colluding parties. In this way, collusion among parties from more
than one access group does not neutralize the mechanism’s effectiveness or jeopardize fairness. The
updated rule W1 aims to encourage ω colluding parties in any one of the colluding groups to submit
reports and others to stay silent to avoid noisy signals.

7



Winner selection rule (W1):

1. When there are more than ω but less than k reporters, jump to rule B. When there are ⩾ k
reporters, go to rule A.
A. For a party that does not make up a complete access group along with any other (k − 1)

reporters, mark it as free rider. The last free rider is marked as colluder and all other
reporters are marked as winners.

B. Otherwise, mark the last reporter as colluder and others as winners.
2. When there are ω reporters, and there exists a unique minimal group containing them, mark

the ω reporters as winners and the remaining parties in that group as colluders.

In other cases, dismiss the reports.

We demonstrate that parties are disincentivized from colluding under W1 in Section 5 and give
a visual proof in Fig. 1. Intuitively, this is because it filters out noises in reports: under W1, when a
minimal group already exposes itself with ω reporters, rational colluding parties from other minimal
groups are disincentivized to report as they risk being the last free rider or the last reporter; the
slowest parties in the access group with the fastest ω parties are then discouraged from collusion,
and so on.

2.2 TAS and VSS

Let A⋆ denote the minimal sets of an (n, k, ω)-trackable access structure A. As before, we also
address A⋆ as the minimal access structure.
Equivalence between TAS and partial Steiner system. A partial Steiner system is a com-
binatorial structure generalizing the Steiner system. In a Steiner system, the main idea is to find
subsets (blocks) of a given ground set such that every subset of a certain size (called the “block
size”) is covered by exactly one block. In a partial Steiner system, this requirement is relaxed such
that every subset of the given size is covered by at most one block. This allows for more flexibility
in the construction of the system and can lead to partial solutions when full Steiner systems are
not feasible or available. More formally, an Sp(n, k, ω) partial Steiner system is defined by a subset
K ⊆

([n]
k

)
such that for any subset T ∈

(
[n]
ω

)
, there is at most one subset K ∈ K satisfying T ⊆ K.

Observe that an Sp(n, k, ω) partial Steiner system is an (n, k, ω)-TAS, and vice-versa.
TAS as a special case of uniform subsets with restricted intersections. Fix a set L ⊆
{0, 1, 2, . . . }. A family of k-uniform subsets S ⊆

([n]
k

)
is L-intersecting if all distinct subsets E,F ∈ S

satisfy |E ∩F | ∈ L. Observe that a (n, k, ω)-TAS is a k-uniform subsets with L = {1, 2, . . . , ω− 1}.

Remark 1. In secret sharing context, recent works starting from [38] use (sparse) matching vectors
and conditional disclosure of secret protocols to construct more efficient secret sharing for general
access structures (see [7, page 5]).

Upper bound of the size of any (n, k, ω)-TAS. From a coding theory perspective, a subset of [n]
can be mapped to a bit string in {0, 1}n, with each bit indicating the membership of each element. A
minimal access structure A⋆ is a set of weight-k bit strings with (ω−1) pair-wise intersection. Thus,
the set of bit strings in A⋆ form a (non-linear) code of distance at least 2k− 2(ω− 1). Applying the
well-known Johnson bound [32] for binary constant weight code yields the desired bound

(
n
ω

)
·
(
k
ω

)−1
.

The optimal ones can attain the bound if and only if a Steiner system S(n, k, ω) exists.
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Parameters. n, k, ω satisfying n > 2k2. Let p be a prime between n/k and 2n/k.
Evaluation places. Let P1, P2, . . . , Pk be k distinct evaluation places in Fp.
Access Structure. Let the set of n parties contains the set {(Pi, Q) : i ∈ [k], Q ∈ Fp}. The access structure is
defined as

A⋆(n, k, ω) =
{
{(Pi, f(Pi)) : i ∈ [k]} : f ∈ Fp[x], deg(f) < ω

}

Fig. 2: TAS construction with near-optimal size using Reed-Solomon codes.

Parameters. n, k, ω satisfying k = Θ(n). Let F/Fq be an algebraic function field.
Evaluation places. Let D = P1 + P2 +· · ·+ Pk be the sum of k distinct places of F/Fq of degree one.
Access structure. Let G be a divisor with disjoint support from D and L(G) be the Rieman-Roch space associated
with G. Let the set of n parties contain the set {(Pi, Q) : i ∈ [k], Q ∈ Fq}. The access structure is defined as

A⋆(n, k, ω) =
{
{(Pi, f(Pi)) : i ∈ [k]} : f ∈ L(G)

}

Fig. 3: TAS construction with near-optimal size using algebraic geometry codes.

Optimal TAS. It follows from the upper bound that constructing optimal TAS reduces to con-
structing binary constant-weight codes, particularly Steiner systems for some parameter regime. We
focus on specific parameters because in general, constructing the maximum size of constant weight
codes and Steiner systems is a notoriously challenging problem. Constructing optimal binary con-
stant weight codes and (n, k, ω)-Steiner systems for large values of n, k, ω is a long-standing open
problem in coding theory and combinatorial design. We then construct TAS with the largest size
for some parameter regimes based on existing constructions of Steiner systems and binary constant
weight codes in Section 6.3.
Near-optimal TAS. Optimal TAS is theoretically intriguing. However, as mentioned above, their
constructions pose significant challenges, particularly for large parameters. In practical applications,
such as the mechanism under consideration in this work, efficient constructions and high robustness
are paramount. Moreover, as previously observed, access structures with efficient constructions and
concise descriptions are more likely to facilitate efficient secret-sharing constructions. We therefore
turn to investigate near-optimal sized TAS with efficient constructions and high robustness.

The first construction, depicted in Fig. 2, relies on Reed-Solomon codes. This construction is
a common technique in the literature of uniform subsets with restricted intersections (refer to
Theorem 4.11 in [3]). It is effective when k is of order

√
n. We demonstrate that the ratio between

the robustness and the number of parties n, called the fractional robustness, of this access structure
is 1/k. To address the cases where k is larger, we naturally extend this construction to Fig. 3,
based on algebraic geometry codes, albeit with a slight trade-off in other parameters. Notably, both
constructions are efficient.

Remark 2. There are randomized constructions for near-optimal partial Steiner Sytems and thus for
TAS from combinatorial design [49]. We leave constructing efficient secret sharing for these access
structures as an open problem.

High robustness. Recall that the robustness of an access structure is the minimum number of
parties to corrupt to make reconstruction impossible. Observe that it is equivalent to the minimum

9



Table 2: Robustness for different values of k and ω, where ω < k. A question mark symbol “?”
indicates that the respective setting is an open problem.

ω = 1 ω = 2 ω = 3 ω = 3k/4 ω = k − 1

k = n 1 1 1 1 1
k = n/3 ? ? ? ? ?

k = nc, c < 1/8 n1−c ? ? n− k4n1/2 n− k4n
2
nc

k = (log n)d n/k ? ? n− k4n1/2 n− k4n
2
k

k = 4 n/4 n− n0.973 n(1− o(1))
k = 3 n/3 n− n

(logn)1.01

k = 2 n/2

cover of the hypergraph representing the access structure—Each party is a vertex, and each minimal
set is a hyperedge. By the monotone property, the robustness equals the minimum cover of the
hypergraph representing the minimal access structure.

It is well-known that the dual of the minimum cover problem is the maximum independence set
problem. The sum of the minimum cover and the maximum independence set in a hypergraph equals
the total number of vertices. Thus, a high robustness access structure is equivalent to a hypergraph
with a small independence number—the size of the smallest independent set.

Our construction of highly robust TAS is based on the construction of partial Steiner systems
with small independence numbers, which are well-studied in combinatorial design and extremal
graph theory. Fix k and ω, using the randomized construction of partial Steiner systems [49], we
show that there exists a randomized construction of (n, k, ω)-TAS such that the fractional robustness
tends to 1 as n tends to infinity. Recently, in the context of randomness extractors, Chattopadhyay
and Goodman [14] have presented a deterministic construction based on binary BCH codes and
recent results in additive combinatorics. It is also worth mentioning that in an earlier work of [14],
Chattopadhyay, Goodman, Goyal, and Li [15] constructed a deterministic construction for a special
Sp(n, 3, 2) using the connections with the well-known cap set problems. Table 2 summarizes the
best-known lower bound for the optimal robustness value of (n, k, ω)-TAS.
Construct VSS. A straightforward method for constructing trackable secret sharing with generic
approaches [9, 31] would entail each party’s share size being proportionate to the minimal access
structure’s size, which is approximately

(
n
ω

)
for (n, k, ω)-trackable access structures with the largest

size. This means that the information ratio can be huge for access structures of large sizes. A natural
objective is to construct secret-sharing schemes more efficiently.

The Fano plane access structure—the S(n, 3, 2) Steiner triple system in Fig. 1a admits an ideal
secret-sharing scheme [43,44]. More generally, Martí-Farré and Padró [43] provided a complete char-
acterization of the ideal access structures with an intersection number equal to one, i.e., structures
in which at most one participant is in the intersection of any two different minimal authorized sub-
sets. Notice that [43] characterizes which (n, k, 2)-TAS admit an ideal secret sharing. Therefore, an
(n, k, 2)-TAS is ideal if and only if each of its connected components is a complete bipartite graph,
a star, the Fano plane access structure, or some specific small graphs.7 Here, an access structure is a
star if a party is contained in every authorized set. Using this characterization [43] and decomposi-
tion techniques [9,56], we construct secret sharing on (n, k, 2)-TAS: (i) Decompose the (n, k, ω)-TAS

7 Connected components of an (n, k, ω)-TAS are the connected components of the hypergraph corresponding to it.
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into n stars, one for each party, and construct an ideal secret sharing for each star. (ii) Applying the
well-known decomposition techniques [9,56] yields a linear secret sharing with information ratio n.

Instantiating the above construction for the TAS with high robustness yields a secret sharing
for (n, k, 2)-TAS with asymptotically optimal robustness. We finally apply the generic compiler [4]
that transforms any secret sharing to the verifiable one to obtain the verifiable secret sharing.

Overall, TAS is a mathematically interesting object, and interesting connections can be discov-
ered in future work.

3 Definitions and model

This section introduces the core definitions. We add additional preliminaries including commitments
(with committing function Comm(·)) and zero-knowledge succinct non-interactive arguments of
knowledge (zkSNARKs) in Appendix A.

3.1 Secret sharing related definitions

TAS. We consider monotone access structures: if a set is in an access structure, then its supersets
are also in the access structure. We also consider k-homogeneous access structures where their
minimal sets are of size k (2 ⩽ k ⩽ n).

Definition 1 (Access structure). Given a set [n] = {1, . . . , n} of n parties, an access structure
A on [n] is a collection of subsets of [n], A ⊆ 2[n].

We address a set in A as an access group or an authorized set. We now define two key traits of the
access structure of our interest, robustness and trackability.

Definition 2 (Robustness). The robustness of an access structure A, denoted as r(A), is the
minimum number of parties that need to be corrupted to make reconstruction impossible.

Definition 3 (ω-trackability). An access structure is ω-trackable if given any ω parties, there
exists either none or a unique minimal set containing them.

We later provide equivalent definitions in Section 6. For a k-homogeneous access structure defined
on party set [n] and with ω-trackability, we denote it as (n, k, ω)-TAS. In our context, a meaningful
ω satisfies ω ⩽ k − 1.
Ideal functionality for non-interactive VSS FNI-VSS. The NI-VSS ideal functionality inter-
acts with the dealer, an ideal adversary or the simulator S, and n parties. The functionality is
parameterized by an access structure A on party set [n] and with the minimum size of its minimal
sets being k and t (t ⩽ k − 1). S can corrupt a set of t parties. S can also corrupt the dealer. Note
that the access structure can be but does not have to be k-homogeneous or trackable.

Definition 4 (Non-interactive VSS, adapted from [17,34]). A protocol ΠNI-VSS is a secure
NI-VSS if it securely achieves the NI-VSS ideal functionality defined in Fig. 4 assuming a public-key
infrastructure.
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F t,A
VSS

The simulator S specifies a set C ⊂ [n] of t maliciously corrupted parties. S controls C by determining their inputs
to and observing their received messages from F t,A

VSS. The simulator S controls the dealer in the same way if S
corrupts it.
Dealing. (1) Upon receiving (sid,Deal, s⋆) from the dealer, and it is not corrupted by S:
(i) Compute shares {si}i∈[n]. Obtain the receipt of committing s⋆ and {si}i∈[n] from FCommit, denoted as cmt.
(2) Upon receiving (sid,Deal, s⋆) from S, and the dealer is corrupted by S:

(i) Wait for {si}i∈[n] and cmt from S. If the shares violate A, ignore the message.a

After step (i):

(ii) For i ∈ [n]\C, send si to i. If the dealer is not corrupted, also send {sj}j∈C to S.
(iii) Store tab(i) = (s⋆, si) for all i ∈ [n].

Verification. Upon receiving (Verify, i, cmt) from a party i, check if all shares are consistent via FCommit. If
confirmed, send (Verify, i, valid) to all parties; otherwise, send (Verify, i, invalid) to all parties and abort.
Reconstruction. Upon receiving (Reconstruct) from any party, send (Reconstruct) to S. If S responds with
(Reconstruct), send (Reconstruct) to all parties and collect responses s̃i ∈ {si, Silent} from each i ∈ [n]\C and
s̃j ∈ {sj ,⊥,Silent} from j ∈ C. For all i ∈ [n], if tab(i) = (s⋆, s̃i), add i to set I. Wait until I ∈ A, send s⋆ to all.

a The shares do not comply with access structure A if any set of shares corresponding to an access group in A does not
allow the reconstruction of a unique secret, e.g., the degree of the polynomial is ⩾ t in a (t, n)-threshold secret sharing.

Fig. 4: Ideal NI-VSS functionality F t,A
VSS, parameterized by t and access structure A. F t,A

VSS calls an
ideal commitment functionality FCommit such as [13].

3.2 Game theory definitions

Game representation. In game theory, a normal-form game can be characterized by parties and
their action space and utility functions. In our setting, let Nm ⊆ [n] be the set of malicious parties
where |Nm| ⩽ k − 1, Nr = [n]−Nm be the set of rational parties (|Nr| ⩾ (n− k + 1)), ×i∈NrAi be
the rational parties’ joint action space with Ai being party i’s individual action space, and {ui}i∈Nr

be their utility functions. We can then represent the game as a tuple (Nr,×i∈NrAi, {ui}i∈Nr). Con-
sidering that parties’ interactions are sequential in our proposed mechanisms, we additionally need
to capture parties’ knowledge of past actions and beliefs of others’ future actions when describing
the game. In our design, the mechanisms are public knowledge, and parties act openly. This means
that parties have complete information about the game structure and perfect information about
historical moves.
Solution concepts. A strategy si of party i is a probability distribution D over action space Ai,
with all mass concentrated at one action for a pure strategy. We denote i’s strategy space as Di. We
denote malicious parties’ joint strategy space as DM (which is unknown). The utility function of
i can then be described more explicitly as a function mapping all parties’ strategies to real-valued
utilities, ui : (×j∈NrDj) × DM 7→ R. A strategy profile then records the strategies of all rational
parties. Strategy profiles yielding certain desired properties are called equilibria or solution concepts.
For example, in a Nash equilibrium (NE), no party can increase its utility by unilaterally deviating
from the equilibrium strategy.

The solution concept we adopt is Subgame Perfect Equilibrium (SPE [53]), where the equilibrium
strategy profile specifies the NE strategies for each party for every subgame. Here, a subgame at a
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step (where any party needs to make a move) is the continuation of the complete game from this
step. SPE is a refinement of NE as NE is susceptible to empty (non-credible) threats.

Definition 5 (SPE [53]). A Nash equilibrium (NE) is a strategy profile s where no party increases
utility by unilaterally deviating from s. A subgame perfect equilibrium (SPE) is a strategy profile s
that forms an NE for any subgame.

Fairness hazard. Given an equilibrium strategy profile s∗, we now formally define “fairness”.
Denote the honest non-colluding strategy played by party i as shi , the strategy profile of all other
rational parties in equilibrium as s∗−i, and the arbitrary strategy profile of malicious parties as sM .

Definition 6 (Fairness). For all i ∈ Nr,∀si ∈ Di,∀sM ∈ DM , ui(shi , s
∗
−i, sM ) ⩾ ui(si, s

∗
−i, sM ).

This means that regardless of malicious parties’ actions, the honest non-colluding strategy is the
dominant strategy for rational parties in equilibrium. A collusion deterrence mechanism is fair if
it ensures fairness for every non-colluding rational party in equilibrium. If a mechanism does not
ensure fairness given (k−1) malicious parties, we capture the risk of falsely implicating non-colluding
parties with the fairness hazard notion.

Definition 7 (Fairness hazard). Given (k − 1) malicious parties, fairness hazard counts the
number of parties among (n− k + 1) rational parties whose utilities can be strictly increased by not
playing the honest strategy.

3.3 Model

System. A dealer shares private input s⋆ among a group of n parties with a secure VSS on
access structure A. The share-holding parties do not have private inputs and are only allowed to
reconstruct after certain conditions are satisfied. This is controlled by an external function, and
we focus on ensuring secrecy before the conditions are met. These parties can hold arbitrary prior
knowledge about the secret input and can communicate over any unobserved channels. We aim to
discourage parties from learning non-trivial information about the secret s⋆ for a privacy protection
window ∆⋆. We discuss setting ∆⋆ in Section 4.3.
Assumptions. We assume up to (k−1) of the n parties are malicious, and the malicious adversary
corrupts parties adaptively. The remaining parties are rational. We assume rational parties are
initially incentivized to participate in the VSS application. We also assume that they have quasi-
linear utilities and that there are no unknown and unbounded externalities from unmodeled third
parties. When they collude, we assume they know which of their inputs are being used in the
reconstruction.

4 The first collusion-deterrence mechanism

We first look at mechanism (W0,P) in a single run of ΠNI-VSS. Recall that a mechanism is simply
a public algorithm consisting of a winner selection rule and a payment rule. We start with an
honest host that implements the mechanism and has access to private authenticated channels. We
later employ a secure distributed system (without private channels) as the host in Section 4.2. We
then extend the analysis to repeated runs of VSS in Section 4.3. We discuss the second mechanism
providing the optimal fairness in Section 5.
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4.1 Single-shot collusion deterrence with an honest host

Order of events. Since we allow colluding parties to use any collusion protocol, their action space
can then be abstracted as follows: collude (C), not collude (C̄), report their knowledge (R), and not
report (R̄). Consider the following secret-shared secret reconstruction game G with a host:

– (Stage 1) Rational parties decide whether to collude to learn about a secret (C) or not (C̄).
– (Stage 2) Rational parties decide whether to submit a report to the host about the learned

information (R) or not (R̄).

Our goal is to make C̄ the equilibrium strategy for rational parties. We first assume an honest host
Hh.
The collusion-deterrent NI-VSS protocol. As a first attempt, consider the following intuitive
protocol: (1) The dealer shares the secret among the n parties with ΠNI-VSS and sends the secret to
the honest host Hh. (2) Hh then accepts reports of non-trivial knowledge about the secret through
private authenticated channels. (3) When there exist correct reports, Hh executes the mechanism.
The first party that submits a correct report is picked as the winner and rewarded an amount λr.
Others are all marked as colluders and penalized an amount λp.

There are three immediate issues about framing in the above simple protocol.

– First, parties can submit many guesses of non-trivial information about the secret even if col-
lusion does not happen, treating the mechanism as an oracle for answering queries about the
secret.

– Second, if the secret is not a random string, the parties may already have some non-trivial private
knowledge about it (e.g., because they know the dealer), making framing others possible.

– Third, the dealer can collude with a share-holding party to frame others.

Dealing with false alarms. To resolve the first issue, we penalize the sender of each wrong report
the amount λp. Further, to discourage random guesses, we introduce the non-triviality parameter
γ ∈ [0, 1), which we provide details in Appendix B. Roughly, if the information specified by the
reporter can be guessed correctly in one shot with probability ⩾ γ, then we consider the information
gain to be trivial and label the report as wrong.

Let V > 0 be the upper bound of the worth of secrets that the system sets out to protect. We
then let λp satisfy the following

γ(V + λr) < (1− γ)λp (1)
where the left-hand side is what the party expects to receive from a correctly guessed report, and
the right-hand side is what the party loses in expectation.

For the second issue, we ask the dealer to generate q random string(s) (q ⩾ 1) and generate
shares for the n parties for both the actual secret and the random string. The shares are permuted
uniformly at random and then sent to the recipients. We then discourage the informed fake reports
by asking a reporter to specify the corresponding inputs used in learning the non-trivial information
and ensure that they expect a reduced utility by submitting fake reports:

(
1

q + 1
+

q

q + 1
γ)λr <

q

q + 1
(1− γ)λp ⇒ (1 + qγ)λr < q(1− γ)λp (2)

Here, 1
q+1 is the probability of picking the share corresponding to user’s actual secret (which the

informed party has non-trivial prior knowledge of), and q
q+1γ is the probability of picking one of

the other shares and guessing some nontrivial information about a random secret correctly. In these
cases, the informed party earns a reward λr. Otherwise, the party expects the penalty λp. Note that
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Preprocessing
0○ A dealer holds a secret x(0) with worth ⩽ V , and obtains q ⩾ 0 unbiased random secrets x(1), . . . , x(q). The
dealer permutes the secrets at random. Note that V is a system parameter.
Dealing
1○ The dealer secret-shares the (q + 1) permuted secrets x̃(0), . . . , x̃(q) among the n parties via ΠNI-VSS.a

Mechanism setup
2○ The dealer pays the host Hh service fees nλs and sends the permuted secrets and the parameterization of the
mechanism (W0,P) to Hh, including the secret protection time window ∆⋆, triviality parameter γ, collusion penalty
amount λp and the winner bonus amount λr. The service fees (nλs) will eventually be distributed to each of the n
parties that are not marked as colluders during the ∆⋆ time window.
3○ If the service fee amount is compatible with λr (Eq. (3)), and other parameters satisfy Eq. (1), (2) and Proposi-
tion 1, Hh accepts reports about non-trivial knowledge about any secret from all parties until ∆⋆ time has passed.
Otherwise, Hh aborts.
Mechanism implementation
4○ Let there be m reporters (m ⩾ 1). Hh records the m senders and committed reports in a public FIFO queue,

⟨(p1,Comm(g1), f1, x̃
(i1)
p1 ), . . . , (pm,Comm(gm), fm, x̃(im)

pm )⟩

Here, x̃(ij)
pj (j ∈ [m], pj ∈ [n], ij ∈ {0, . . . , q}) is the share that the j-th reporter pj received for secret x̃(ij), and

Comm(gj) is the commitment of the the non-trivial information gain gj , which is the function fj evaluated at secret
x̃(ij).
5○ Parties privately reveal their reports to Hh. For each de-committed report, Hh checks if the function is γ-non-
trivial (described in Appendix B) and the correctness of the reported value. If verification passes, Hh considers i
for winner selection.
6○ Hh executes W0: Pick the first party with the correct report as the winner and mark all other parties as
colluders.
Hh executes P: The winner receives reward λr. Each colluder is fined with penalty λp. Each reporter submitting
an incorrect report is penalized λp.

a Because of the q random strings, we let the sample space of the secret satisfy ≫ q + 1.

Fig. 5: ΠH
NI-VSS: Single-shot collusion-deterrent NI-VSS with an honest host Hh. ∆⋆ is set by the

dealer according to the needs of the application.

the random secrets are only to discourage false accusations from informed share-holding parties
without participating in collusion. They are not used to hide the true secret when collusion actually
takes place.

For the last problem, sampling random secrets and permuting shares are not sufficient anymore.
One way is to charge a proper service fee λs from the dealer so that she expects to pay more than
what she expects to earn from fake reports:

(n− 1)λs > λr (3)

If the dealer may be malicious and acts irrationally, an alternative is to employ MPC in the sharing
phase so that the dealer does not learn the shares or the permutation similar to [27]. We provide
details in Appendix C.

After adding the above components to tackle false alarms, we summarize the single-shot collusion-
deterrent NI-VSS protocol in Fig. 5. Our remaining task is to determine the parameters.
Parameterize q and payment amounts for the non-collusion outcome. If the secret is a
random string, e.g., a secret key, we can let q = 0. Otherwise, we can let q = 1. What remains is
deciding the payment amounts λr and λp such that we achieve the non-collusion outcome.

15



Under the winner selection rule W0, there is at most one winner. When there are up to (k− 2)
malicious parties, there are at least 2 rational parties in any access group in the access structure.
Then for rational colluding parties in any access group, at least one of them becomes the winner
with probability ⩽ 1/2. Then we only need to ensure that the relatively “slower” party (who always
exists) is disincentivized from collusion.

Now we are ready to state the equilibria of the game G.

Proposition 1. Consider the secret reconstruction game G with an honest host in protocol ΠH
NI-VSS

and a secret of worth at most V . Given (k−2) malicious parties, the SPE under mechanism (W0,P)
is each rational party playing C̄ in Stage 1 (i.e., the non-collusion outcome) if λp > 0 and 1

2(λp +
λs − λr) > V . (W0,P) is fair in the same setting. Its fairness hazard is (n− k).

Its proof utilizes backward induction. Intuitively, given (k − 2) malicious parties, any access group
has at least 2 rational parties. If collusion has happened, the rational parties are incentivized to
report collusion to escape the penalty λp: in any other strategy profile, one can improve its utility
by changing their actions to R (if not already). Reasoning backward, the slower parties who cannot
become the winner with a probability higher than 1

2 are disincentivized from collusion. Note that
we make black-box use of the NI-VSS protocol ΠNI-VSS so we only need to prove the non-collusion
outcome.

Proof. We first solve for the SPE of the sequential game under mechanism (W0,P) with backward
induction. We know that under W0, only a single winner is selected, and all others are marked as
colluders. Consider the worst case where an authorized set has (k−2) malicious parties. In Table 3,
we demonstrate the payoffs of the remaining two rational parties playing the game. If they do not
collude in the first stage, the game terminates, and they both receive the service fees. If they collude,
in the second stage, the NE is for both parties to report since λp > 0. This means at least one of the
two parties receives ⩽ V + 1

2(λr + λs) − 1
2λp < λs. Then in the first stage, the dominant strategy

for this party is to not collude.

Table 3: Payoffs of two parties playing G. p1 ∈ [0, 1] is the probability of the column party submitting
the report first.

C̄ C R̄ C R

C̄ (λs, λs) (λs, λs) (λs, λs)
C R̄ (λs, λs) (V + λs, V + λs) (V − λp, V + λr + λs)

C R (λs, λs) (V + λr + λs, V − λp)
(V + p1(λr + λs)− (1− p1)λp,
V + (1− p1)(λr + λs)− p1λp)

More generally, when there are (k−u) (u > 2) malicious parties in an authorized set, u rational
parties play the reconstruction game. At least one rational party becomes the winner with probability
⩽ 1/u, which is < 1/2. In the second stage, the NE is still playing R due to λp > 0. Then at least
one of the u rational parties receives negative utility. As such, this slowest party is not incentivized
to participate in collusion and plays C̄ in Stage 1.

In summary, when up to (k − 2) parties are malicious, at least one party does not collude in
equilibrium. As a result, no party learns the secret via collusion in equilibrium. The mechanism thus
achieves fairness in this setting.
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However, when there are (k − 1) malicious parties, they can appear in the same access group
due to adaptive corruption. The remaining rational party in the access group can improve its utility
by colluding and earning the privacy worth V and report to earn the reward λr. In this case, up to
(n−k) non-colluding parties are wrongly penalized. They can increase their utility by deviating from
the non-colluding strategy and colluding to earn the privacy worth V . Therefore, the mechanism
has fairness hazard of (n− k).

4.2 Distributed host and privacy-preserving report verification

Order of events. We now replace the honest host in ΠH
NI-VSS (Fig. 5) with a secure distributed

system and update details concerning report verification. The updated protocol ΠV,W
NI-VSS is sum-

marized in Fig. 6. Specifically, the report verifier is an algorithm run by parties in the distributed
system. We denote this public verifier as V. All messages to and from V are observed by all.

Dealing
1○ The dealer generate shares for the (q + 1) permuted secrets x̃(0), . . . , x̃(q) for the n parties via ΠNI-VSS. The
dealer sends cmt to V, including the commitments of the shares which we denote as

⟨Comm(x̃
(0)
1 ), . . . ,Comm(x̃(q)

n )⟩

The dealer then sends de-commit information to the corresponding servers.
Mechanism setup
2○ The dealer pays V service fees nλs and sends the parameterization of the mechanism (W,P) to V, including
the secret protection time window ∆⋆, triviality parameter γ, collusion penalty amount λp and the winner reward
amount λr.
3○ If the service fee amount is compatible with λr (Eq. (3)), and other parameters satisfy Eq. (1), (2) and Theorem 1,
V accepts reports about non-trivial knowledge about any secret from all parties until ∆⋆ time has passed. Otherwise,
V aborts.
Mechanism implementation
4○ Let there be m reporters (m ⩾ 1). V records the m senders and committed reports in a public FIFO queue,

⟨(p1,Comm(g1), f1, (x̃
(i1)
p1 , r̃(i1)p1 )), . . . , (pm,Comm(gm), fm, (x̃(im)

pm , r̃(im)
pm ))⟩

Here, (x̃(ij)
pj , r̃

(ij)
pj ) (j ∈ [m], pj ∈ N, ij ∈ {0, . . . , t}) is the de-commit information for the commitment of share x̃

(ij)
pj

with r̃
(i1)
p1 being the randomness used in committing x̃

(ij)
pj . The rest are the same as Fig. 5.

5○ If the de-commit information in a report is incorrect, V directly marks the sender as colluder. For each revealed
report (pj , gj , fj , (x̃

(ij)
pj , r̃

(ij)
pj )) with correctly de-committed share x̃

(ij)
pj , V waits for an evidence collection time

window of ∆. During the period, any (k− 1) parties in any authorized group with pj can submit a zero-knowledge
proof π that proves the following: Either the function fj is trivial (described in Appendix B), or fj(x̃

(j)) ̸= gj and
– Their inputs are correct with respect to the commitment of shares.
– Function fj is being evaluated at the reconstructed secret.

If no valid proof is provided in time, V considers pj as a candidate for winner selection. Otherwise, V marks pj as
colluder.
6○ V executes mechanism (W,P).

Fig. 6: ΠV,W
NI-VSS: Single-shot collusion deterrence with distributed verifier V. We omit the pre-

processing routines that are the same as ΠH
NI-VSS in Fig. 5. The winner selection rule W can be

substituted with W0 or W1.
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In step 5○, the potentially implicated parties prove their innocence with zkSNARKs. For k =
max{ω, 1} + 1, only one party needs to generate the proof, and Groth16 [29] or Plonk [23] can be
employed. Otherwise, collaborative zkSNARKs [46] can be utilized for proof generation. If there are
non-responding parties during the proof generation, one can resort to publicly auditable MPC for
generating the proof. The silent parties are marked as colluders.

We can now remove the trusted host and re-state the result.

Theorem 1. Consider the secret reconstruction game G with a distributed host in protocol ΠV,W0

NI-VSS
and a secret of worth at most V . Given (k−2) malicious parties, the SPE under mechanism (W0,P)
is each rational party playing C̄ in Stage 1 if λp > 0 and 1

2(λp + λs − λr) > V . (W0,P) is fair in
the same setting. Its fairness hazard is (n− k).

Setting proof collection window ∆ When setting ∆, we take into account the offline time of
participants δ1, network delays δ2 that can be induced by potential distributed denial-of-service
(DDoS) attacks, and proof generation time δ3. Specifically, we set ∆ = max{δ1, δ2}+ δ3. δ1 depends
on the application scenario. For typical blockchain applications, we can give a conservative estimate
of multiple weeks. For δ2, based on the DDoS attack report in 2024 Q2 released by Cloudflare [30],
less than 1% of the network-layer DDoS attacks last over 3 hours. We can set it conservatively
to multiple weeks as well. For δ3, the relatively more expensive collaborative zkSNARKs [46] only
takes hundreds of microseconds per constraint. Overall, we can set ∆ to be multiple weeks.

Online dealer If the dealer can be online periodically or at a known time (before a pre-determined
proof collection window), we can adopt an alternative approach for report verification in step 5○:
the dealer can directly generate equality or inequality proofs for submitted reports.

4.3 Collusion deterrence in repeated VSS runs

We next discuss the reconstruction game with d secrets (d > 1) where each secret is of individual
worth ⩽ V .
Order of events. We denote this d-secret game as Gd, consisting of d instances of the original
reconstruction game G. We summarize the repeated collusion-deterrent NI-VSS in Fig. 7, which is
slightly updated from Fig. 6. Overall, repetition essentially only changes the parameterization of
the mechanism.

Given a finite and known d, we achieve the same results as in Theorem 1 as we can still apply
backward induction from the end game. However, given an infinite or unknown d, as observed in
prior works [26], there is no end game, and the outcome depends on how patient the parties are.
Let δ ∈ [0, 1] be the discount factor for how the most patient party among the n parties discounts
future returns. Higher δ means that they are more patient and value future returns closer to current
returns. We then have the following corollary.

Corollary 1. Consider the d-secret reconstruction game Gd with a distributed host in protocol
ΠV,W0

NI-VSS, where each secret is of worth at most V , and the most patient party has discount fac-
tor δ ∈ [0, 1]. If d is known and finite, Theorem 1 holds. Otherwise, given (k − 2) malicious par-
ties, the SPE under mechanism (W0,P) is each rational party playing C̄ in Stage 1 if λp > 0,
1
2(λp + λs − λr) > V and Eq. (4) holds.

δ

1− δ
V <

1

2
(λr + λs − λp)−

λs

1− δ
(4)
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Preprocessing
0○ Each of the d dealers of each secret x(0,i) (i ∈ [d]) obtains qi ⩾ 0 random secrets x(1,i), . . . , x(qi,i) uniformly at
random. Each dealer permutes their (qi + 1) secrets at random.
Dealing
1○ Each dealer i generate shares for the (qi + 1) permuted secrets x̃(0,i), . . . , x̃(qi,i) for the n parties via ΠNI-VSS.
The dealer sends cmt to V, including the commitments of the shares

⟨Comm(x̃
(0,1)
1 ), . . . ,Comm(x̃(qd,d)

n )⟩

The dealer then sends de-commit information to the corresponding servers.
3○ If the service fee amount is compatible with λr (Eq. (3)), and other parameters satisfy Eq. (1), (2) and Corollary 1,
V accepts reports about non-trivial knowledge about any secret from all parties until ∆⋆ time has passed. Otherwise,
V aborts.
Routines 2○ and 4○- 6○ are the same as Fig. 6.

Fig. 7: Repeated collusion deterrence with a distributed verifier V.

(W0,P) is fair in the same setting. Its fairness hazard is (n− k).

Intuitively, we only need to make R appealing in Stage 2 by letting repeatedly colluding with
each other without reporting undesirable compared with receiving reward λr from reporting. Then
reasoning backwards, the slower parties are discouraged from colluding in Stage 1.

Proof (sketch). Consider the alternative strategy of always colluding and never reporting, and when
someone reports collusion, its colluding partners never collude with this party again. This strategy
(C R̄) gives returns

(V + λs)
∞∑
i=0

δi =
V + λs

1− δ

The alternative (our desired) strategy of (C R) yields returns at least
p(V + λr + λs) + (1− p)(V − λp) = V + p(λr + λs)− (1− p)λp

where p is the probability of a party becoming the winner. For the slowest rational party, p ⩽ 1/2.
Letting the second quantity be greater than the previous quantity gives us Eq. (4). This means that
rational parties are discouraged from playing strategy (C R̄). The rest then follows from Theorem 1.

Setting privacy protection window ∆⋆ for repeated games In known finite runs of VSS,
the dealers determine ∆⋆ according to the needs of the applications. Otherwise, if one implements
the penalty by having each party make a deposit in the beginning and depriving a party of λp of its
deposit if it is marked as a colluder, the deposit can be set according to the self-insurance in [26].
Overall, it needs to be large enough to account for possibly frequent collusion attempts in repeated
VSS runs and in the meantime, be affordable to share-holders.

5 The second mechanism

We now introduce the second mechanism (W1,P) utilizing trackability of access structures. We
start with a single run of VSS with a distributed host and then extend the discussion to repeated
VSS runs.

19



5.1 Impossibility

We first define the untrackability of access structures and establish that given untrackable access
structures, one cannot achieve a zero fairness hazard while ensuring non-trivial effectiveness.

Definition 8 (Untrackability). A k-homogeneous access structure A is untrackable if there exist
a set X of (k− 1) parties such that any subset Xs ⊆ X co-exist in at least two distinct minimal sets
A,B ∈ A⋆ where A ∩B = Xs.

An example of an untrackable access structure is the threshold access structure A(k) = {A ⊆ [n] :
|A| ⩾ k} where parties can substitute each other. We now state the impossibility result.

Proposition 2. For VSS defined on an untrackable access structure, there does not exist an effective
collusion deterrence mechanism with 0 fairness hazard in the current model.

Proof. Let A′ be an untrackable access structure. Suppose for contradiction that we have a collusion
deterrence mechanism with 0 fairness hazard for VSS defined on A′. By untrackability definition,
there exists a group of (k − 1) parties that belong to at least two access groups in A′. Denote this
set of (k − 1) parties as D and the two authorized groups that they are in as B,C. Let pB, pC be
the two distinct parties of B,C, i.e., B = D∪ pB and C = D∪ pC . Consider the following scenarios
where pB, pC have a network disadvantage in submitting reports:

– World 1 Only parties in B collude. Because the mechanism has fairness hazard 0, pC is never
marked as a colluder.

– World 2 Only parties in C collude. Because the mechanism has fairness hazard 0, pB is never
marked as a colluder.

The mechanism cannot distinguish between World 1 and 2 when pB, pC do not submit reports.
Then pB, pC cannot be penalized by the mechanism by staying silent. Then by the effectiveness
of the mechanism, at least one of the colluding parties in D must suffer from loss imposed by the
mechanism to be discouraged from collusion. Then this party is disincentivized from submitting
reports. This is similar to the reason that pB and pC do not report, i.e., silence allows it to take
advantage of the untrackability of the access structure. We can apply this reasoning until there is
no reporters, which contradicts the effectiveness of the mechanism.

5.2 Optimally fair collusion deterrence with TAS

Optimally fair single-shot collusion deterrence. We adopt the same protocol in Fig. 6 but
with two slight changes: First, the winner selection rule in the mechanism is now parameterized
with W1, i.e., ΠV,W1

NI-VSS; second, the underlying NI-VSS protocol ΠNI-VSS is now constructed on
(n, k, ω)-TAS.

Recall that W1 (presented in Section 2.1) states three rules. Let there be m reporters. Rule 1.A
applies when m ⩾ k, and it marks the last free rider (i.e., a party that does not make up a complete
access group with any other (k − 1) reporters) as the colluder. Rule 1.B applies when ω < m < k
or when there is no free rider, and it marks the last reporter as the colluder. Rule 2 applies when
there are exactly ω reporters. It first locates the minimal set that contains these parties and marks
the remaining members in the access group as colluders.

We now formally state the following theorem.
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Theorem 2. Consider the secret reconstruction game G with a distributed host in protocol ΠV,W1

NI-VSS
constructed on an (n, k, ω)-TAS and a secret of worth at most V . Given up to (k− 1−ω) malicious
parties, the SPE under mechanism (W1,P) is each rational party playing C̄ in Stage 1 if λp > 0
and 1

ω+1(ωλp +ωλs− λr) > V . (W1,P) is fair if there are up to (k− 1) malicious parties, yielding
a fairness hazard of 0.

We provide a visual proof in Fig. 1. The formal proof for the effectiveness of the mechanism given
up to (k − 1 − ω) malicious parties shares a similar rationale to the proof in Proposition 1. So we
slightly simplify the first part of the proof.

Proof (of Theorem 2). We first solve for the SPE of the sequential game under mechanism (W1,P)
with backward induction. Consider any authorized set. When there are up to (k− 1− ω) malicious
parties, this authorized set has at least (ω+ 1) rational parties. If no group colludes, every rational
party receives λs. If one group colludes, in the second stage, reporting is the NE because λp >
0. Note that at least one rational party does not win with a probability higher than 1/(ω + 1).
Then in the first stage, this slowest party selects action C̄ because its expected returns from C is
⩽ V + 1

ω+1(λr + λs)− ω
ω+1λp < λs. If more than one access group collude, then in the second stage,

we consider the following cases:

(a) All other colluding parties have reported. Then the remaining party picks R̄ since R results in
penalty λp according to rule 1.B in W1.

(b) All but one of the other colluding parties have reported. Considering that the last party picks
R̄ in case (a), then the other remaining party picks R̄ because R results in penalty λp according
to rule 1.A in W1.

(c) All other groups have revealed their members. The parties in the remaining colluding group
choose R̄ because R results in penalty λp after repeatedly applying the reasoning in case (b).

(d) One group has revealed its members. Any party in other colluding groups chooses R̄ because R
results in penalty λp after repeatedly applying the reasoning in scenario (c).

(e) One group X has revealed (k − 1) of its members. Before any party i in other colluding groups
report, the only remaining party x ∈ X picks R̄ to avoid penalty by rule 1.B in W1. If any
i takes action R, x would pick R. However, using backward induction, i picks R̄ to avoid the
penalty by rule 1.A. As a result, x picks R̄.

(f) One group X has revealed ω of its members. Any party i not in X does not share a group with
these ω parties by the definition of ω-trackability. The rest members in X and i choose R̄ by
repeatedly applying the reasoning in scenario (e).

(g) One group X has revealed u < ω of its members. Any x in the same colluding group with the u
reporters (not necessarily X) picks R because λp > 0. Consider any colluding party i that does
not share a colluding group with the u reporters. i only picks R if along with (ω − 1) parties in
its collusion group, it can outrun the fastest remaining (ω − u) parties in any group containing
the u existing reporters.

The implication of the case (g) is that in a group X with the fastest ω parties, these fast parties
pick R in Stage 2. Other parties in other colluding groups choose action R̄. Then the slowest party
in group X picks C̄ in Stage 1. Repeatedly applying backward induction, in each access group, the
slowest parties are disincentivized to collude in Stage 1.

We next examine the fault tolerance of the mechanism for achieving fairness. Consider up to
(k− 1) malicious parties. If they act rational when colluding with rational parties, then we achieve
the non-collusion outcome and as a result, fairness. Otherwise, collusion takes place in access groups
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with at least (k− ω) malicious parties, and at most (ω− 1) parties can co-exist in multiple groups.
When ω = 1, the malicious parties need to be in the same access group to cause successful collusion.
The only remaining rational party picks R in Stage 2, which results in the malicious parties being
marked as colluders. When ω = k − 1, the malicious parties can only possibly frame non-colluding
parties by being in the same access group, leaving no additional party to facilitate collusion outside
of this access group. In both cases, the fairness hazard is 0 regardless of the malicious parties’
actions. More generally, when 1 < ω < k+2

3 (i.e., (k − 1)− (k − ω) + (ω − 1) < (k − ω)), there is at
most one successful colluding group. (This is because when a group has more than ω rational parties,
they are disincentivized from collusion by the effectiveness of the mechanism.) Rational parties in
this group are incentivized to collude if they are fast. After collusion, if there are exactly ω rational
parties in this group, they pick R in Stage 2, become winners and receive λr. The reporters then
implicate a single collusion group and only malicious parties are penalized. If this collusion group
contains < ω rational parties, if only the rational parties report, W1 dismisses the reports. When
the malicious parties also report, either this collusion group is located or a late (malicious) reporter
(from another access group) is marked as a colluder.

When k+2
3 ⩽ ω < k − 1, there can be at least two successful colluding groups. Same as before,

rational parties in any of these groups are incentivized to collude if they are fast. If there are exactly
ω rational parties in any of these groups, rational parties in the fastest such group pick R in Stage
2, become winners and receive λr. This allows locating the corresponding group. If any collusion
group contains less than ω rational parties, when they are the only parties to report in Stage 2, W1

dismisses the reports if there are < ω total reports. When malicious parties may also participate,
rational parties have incentives to collude if they are fast. Overall, the mechanism achieves fairness
and has a fairness hazard of 0.

Optimally fair collusion deterrence in repeated VSS runs. Now we consider the d-secret
reconstruction game in protocol ΠV,W1

NI-VSS summarized in Fig. 7. We state the following result. The
intuition is similar to the intuition behind Corollary 1.

Corollary 2. Consider the d-secret reconstruction game Gd with a distributed host in protocol
ΠV,W1

NI-VSS, where each secret is of worth at most V , and the most patient party has discount fac-
tor δ ∈ [0, 1]. If d is known and finite, Theorem 2 holds. Otherwise, given (k − 1 − ω) malicious
parties, the SPE under mechanism (W1,P) is each rational party playing C̄ in Stage 1 if λp > 0,
1

ω+1(ωλp + ωλs − λr) > V , and Eq. (5) holds. (W1,P) is fair if there are up to (k − 1) malicious
parties, yielding a fairness hazard of 0.

δ

1− δ
V <

1

ω + 1
(λr + λs − ωλp)−

λs

1− δ
(5)

Proof (sketch). Similar to the proof of Corollary 1, we consider the alternative strategy of always
colluding and never reporting. This strategy (C R̄) gives returns

(V + λs)

∞∑
i=0

δi =
V + λs

1− δ

The alternative desired strategy of (C R) yields returns at least
V + p(λr + λs)− (1− p)λp
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where p is the probability of a party becoming the winner. For the slowest rational party, p ⩽ 1
ω+1 .

Letting the second quantity be greater than the previous quantity gives us Eq. (5). This means that
rational parties are discouraged from playing strategy (C R̄). The rest follows from Theorem 2.

6 TAS and trackable secret sharing schemes

6.1 Section-specific preliminaries

An (n, k, ω)-design is an k-uniform hyper-graph with pairwise intersections of hyper-edges of size
< ω. The independence number α of a hypergraph is the maximum size of a set of vertices in the
graph that contains no edges.
A Steiner system with parameters n, k, ω, denoted as S(n, k, ω), is an n-element set S together with
a set of k-element subsets of S (called blocks) such that each ω-element subset of S is contained
in exactly one block. The partial Steiner system, denoted Sp(n, k, ω) is obtained by relaxing the
condition that each ω-subset is contained in a unique block to the condition that each ω-subset is
contained in at most one block.

Example 1. The Fano plane (Fig. 1a) is a S(7, 3, 2) Steiner system.

A secret sharing is ideal if the share size of every party equals to the secret size. An access structure
is ideal if an ideal secret sharing realizes the access structure. An access structure is a star if a party
is contained in every authorized set.

6.2 Bound on optimal TAS

This section presents an upper bound on the size of TAS. We begin with an equivalent formulation
of TAS from a coding theory perspective. Recall that (n, k, ω)-TAS denotes a k-homogeneous ω-
trackable access structure over [n]. Also recall that A⋆ represents the minimal access structure of
A.

Lemma 1 (An equivalent definition of TAS). An access structure A is (n, k, ω)-trackable if
and only if A⋆, represented as a subset of Fn

2 , is a binary k-weight code with a Hamming distance
at least 2k − 2(ω − 1).

Proof. Each element A in A is equivalently represented as an indicator vector of the set A - a
codeword. For example, for n = 4, A = {1, 3}, and B = {1, 2, 4}, the codeword 1010 and 1101 are
the equivalent representation of A and B, respectively. The lemma follows from the following simple
observations. Every set of size k is represented as a code word in Fn

2 with weight k. Furthermore,
two sets of size k have an intersection at most (ω−1) if and only if the two corresponding codewords
in Fn

2 have a distance at least 2k − 2(ω − 1).

Theorem 3. Let A be an (n, k, ω)-TAS. It holds that

|A⋆| ⩽
(
n

ω

)
·
(
k

ω

)−1

The equality happens if and only if a Steiner system S(n, k, ω) exists.

Proof. We shall employ the Johnson bound for binary code to derive the result. By Lemma 1, A⋆

is a binary code with the following properties.
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(1) Every codeword in A⋆ has weight k.
(2) Distance between any two distinct codewords in A⋆ is at least 2k − 2(ω − 1).

Applying the well-known Johnson bound (Theorem 4 for the latter case) yields

|A| ⩽ A(n, 2k − 2(ω − 1), k) ⩽

⌊
n

k

⌊
(n− 1)

k − 1
· · ·

⌊
(n− (ω − 1))

k − (ω − 1)

⌋
· · ·

⌋⌋
⩽

n

k
· n− 1

k − 1
· · · n− (ω − 1)

k − (ω − 1)
=

(
n

ω

)
·
(
k

ω

)−1

.

The equality happens if and only if a Steiner S(n, k, ω) exists.

Johnson bound. Let C(n, d, ω) be the set of all binary codes with length n and minimum distance
d. Let every codeword in C(n, d, ω) have weight ω. Let A(n, d, ω) be the largest size of a code in
C(n, d, ω).

Theorem 4 (Johnson bound [32]). Let n, d, ω ∈ {1, 2, . . . , } such that d ⩽ n and ω ⩽ n.

1. If d > 2ω, then A(n, d, ω) = 1.
2. Else (d ⩽ 2ω), define

a =

{
d/2, if d is even
(d+ 1)/2, otherwise.

Then
A(n, d, ω) ⩽

⌊
n

ω

⌊
(n− 1)

ω − 1
· · ·

⌊
(n− ω + a)

a

⌋
· · ·

⌋⌋
,

where ⌊·⌋ is the floor function. Furthermore, it holds that

A(n, 2δ, ω) ⩽
n

k
· n− 1

k − 1
· · · n− ω + δ

δ

with equality if and only if a Steiner system S(n, ω, ω − δ + 1) exists.

6.3 Optimal TAS

This section presents results and constructions of optimal TAS. By Theorem 3, constructing such
structure reduces to the constructions of binary constant-weight codes, particularly Steiner systems
for some parameter regime. Constructing the maximum size of constant weight codes A(n, d, ω)
and Steiner systems in general is a notoriously challenging problem8. The construction of optimal
A(n, d, ω) for large values of n, d, ω is a long-standing open problem in coding theory. We first
present some existing constructions on Steiner systems and binary constant weight codes. The
following result characterizes the size of optimal 2-trackable access structures with minimal sets of
size 3.

Theorem 5 ( [41,55]). The following statement holds.

|A⋆(n, 3, 2)| = A(n, 4, 3) =

{
⌊n3 ⌊

n−1
2 ⌋⌋ if n ̸≡ 5 mod 6

⌊n3 ⌊
n−1
2 ⌋⌋ − 1 if n ≡ 5 mod 6

The next result characterizes the size of maximal 3-trackable access structures with size-4 minimal
sets for almost all values of n except for n = 5 mod 6. Determining A(n, 4, 4) for n = 5 mod 6
remains an interesting open problem in coding theory.
8 For example, A(111, 20, 11) ⩽ 111, with equality if and only a projective plane of order 10 exists.
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Theorem 6 ( [33,41]). The following statement holds.

|A∗(n, 4, 3)| = A(n, 4, 4) =


n(n−1)(n−2)

24 if n ≡ 2 or 4 mod 6
n(n−1)(n−3)

24 if n ≡ 1 or 3 mod 6
n(n2−3n−6)

24 if n ≡ 0 mod 6

More on Steiner systems. Steiner systems are not universally attainable for all parameters; their
existence hinges on meeting specific natural divisibility criteria. For example, a S(n, 3, 2) exists if
and only if n ≡ 1, 3 mod 6. Keevash [35] demonstrates that, for general S(n, k, t) Steiner systems,
these essential conditions also serve as sufficient conditions, granted that n is adequately large.

6.4 Near-optimal TAS

This section presents constructions of some near-optimal TAS.

Polynomial-based constructions. The first construction in Figure 2 is based on Reed-Solomon
codes. This construction is common in combinatorial design (see Theorem 4.11 [3]). It is also used as
a fundamental building block in Nisan-Wigderson pseudorandom generators [45]. The construction
works when k is of order

√
n. We prove that the robustness of this access structure is n/k.To handle

the case where k is larger, we naturally extend this construction to Figure 3 based on algebraic
geometry codes with a slight loss in other parameters. We emphasize that these constructions are
efficient.

Theorem 7 (Near-optimal TAS with Reed-Solomon codes [3]). For every k > ω ⩾ 1 and
n ⩾ 2k2, there is an efficient construction of (n, k, ω)-trackable access strucure A satisfying

|A⋆| ⩾ (n/2k)ω, and r(A) = n/k.

Theorem 8 (Near-optimal TAS with AG codes). For every k > ω ⩾ 1 and k = Θ(n), there
is an efficient construction of (n, k, ω)-trackable access structure A satisfying

|A⋆| ⩾ pω−g, and r(A) = n/k,

where g is the genus of the divisor used in the AG codes.

A randomized constructions from combinatorial design. Some variants of the Rodl nibble
algorithm [49] are utilized to construct asymptotically optimal partial Steiner systems. Subsequent
works [28,36] have improved the o(1) term.

Theorem 9 ( [28,36,49]). For any fixed k > t, there is a partial Steiner system Sp(n, k, t) of size
at least

(1− o(1)) ·
(
n

t

)
·
(
k

t

)−1

.

6.5 TAS with optimal robustness

This section presents constructions of TAS with asymptotically optimal robustness based on partial
Steiner systems with high independence numbers.

Equivalence between robustness and minimum vertex cover of hypergraphs. Recall
that the robustness of an access structure is the minimum number of parties to corrupt to make
reconstruction impossible. The robustness is equivalent to the minimum cover of the hypergraph
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representing the access structure – each party is a vertex, and each authorized set is a hyperedge. By
the monotone property, the robustness equals the minimum cover of the hypergraph representing
the minimal access structure.

It is well-known that the dual of the minimum cover problem is the maximum independence set
problem. The sum of the minimum cover and the maximum independence set in a hypergraph equals
the total number of vertices. Thus, a high robustness access structure is equivalent to a hypergraph
with a small independence number – the size of the smallest independent set. We formalize the
above observation as follows.

Proposition 3. For any (monotone) access structure A ⊆ 2[n],
r(A) = n− α(A⋆),

where r(A) denotes the robustness of the structure A, and α(A⋆) denotes the independence number.

Our construction of high-robustness structures is then reduced to the construction of partial
Steiner systems with small independence numbers, which are well-studied in combinatorial design
literature.

Theorem 10 ( [50]). For any n > k > ω ∈ N with ω ⩾ 2, there exists an partial Steiner
(n, k, ω)-system with independence number

α(G) ⩽ c · n
k−ω
k−1 ((log n)

1
k−1 ),

where c = c(k, ω) is a constant depend only on k, ω.

Theorem 10 is tight up to the constant factor c. To prove Theorem 10, Rödl and Sinajová utilize
the Lovász Local Lemma to demonstrate that a randomly chosen k-uniform hypergraph qualifies
as such a design. Thus, although their finding establishes the existence of such designs, it does not
offer a direct method for their construction. Recently, in the context of randomness extractors, [14]
presented a deterministic construction.

Theorem 11 ( [14]). For any constants k > ω ∈ N, there are explicit partial Steiner (n, k, ω)-
systems (Gn)n∈N with independence number

α(Gn) =

{
ck,ω · n

2(k−ω)
k if k is even,

ck+1,ω · n
2(k+1−ω)

k+1 ) if k is odd,

where ck,ω is a constant depend only on k, ω.

The constant ck,ω = C · k4 for some global constant C. The construction for the odd case is based
on the construction of the even one. There is a slight loss in the parameters. Observe that the
independence number is sublinear in n if k ⩽ 2ω. Liu and Mubayi [39] provide constructions when
k ⩾ 2ω for certain pairs of (k, ω). Their proof is based on a recent result about the maximum size
of a set in Zn

6 , avoiding 6-term arithmetic progression.
Consequently, TAS with asymptotically optimal robustness can be obtained from the above

constructions.

Corollary 3 (Asymptotically optimal robustness). For any n > k > ω ∈ N, there is a
(n, k, ω)-trackable access structure A with robustness

r(A) ⩾ n(1− c · n−ε),

where c = c(k, ω) and ε = ε(k, ω) are constants depend only on k, ω.
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6.6 Secret sharing and VSS schemes

This section presents our constructions of secret sharing schemes.

Realizing secret sharing on TAS through generic constructions. A straightforward method
for constructing trackable secret sharing using generic approaches [9, 31] would entail each party’s
share size being proportionate to the minimal access structure’s size. For instance, Benaloh and
Leichter’s method for any access structure relies on monotone formulae [9]. It’s evident that a formula
with a size equal to the minimal access structure can represent any access structure. Employing
the Benaloh-Leichter construction, the secret share’s size is proportional to the minimal access
structure’s size, which can be approximately

(
n
ω

)
for (n, k, ω)-trackable access structures with the

largest size.

Some ideal secret sharing constructions. The above construction works for any access struc-
ture, but the information ratio can be huge for access structures of large size. Our objective is to
construct secret-sharing schemes more efficiently.

The Fano plane access structure (the S(n, 3, 2) Steiner triple system) admits an ideal secret-
sharing scheme [43, 44]. Martí-Farré and Padró [43] provide a complete characterization of the
ideal access structures with an intersection number equal to one—structures in which at most one
participant is in the intersection of any two distinct minimal qualified subsets. Note that this is
equivalent to characterizing which (n, ∗, ω = 2)-TAS9 admit an ideal secret sharing. An (n, ∗, 2)-
TAS A is ideal if and only if every connected component of A is a complete bipartite graph, a star,
the Fano plane access structure, or some specific small graphs. This implies that most (n, k, 2)-TAS
are not ideal. However, using this characterization and decomposition techniques [9, 56], we prove
the following result, improving the information rate compared to the generic constructions.

Theorem 12. There is an efficient construction of any 2-trackable secret sharing with information
ratio O(n), where n is the number of parties.

Proof. (1) It follows from [43] that a star access structure with an intersection number equal to
one admits a vector space construction. This implies a star (n, k, 2)-TAS admits an ideal secret
sharing.

(2) Decompose the access structure into stars, a star for each party. There will be n stars.
(3) Applying the decomposition technique [9, 56] yields a linear secret sharing schemes with infor-

mation ratio is n, which is O(n2) if using the generic constructions.

7 Related work

Traceable secret sharing. When given access to a private reconstruction program created by
colluding parties, the traceable secret sharing (TSS) primitive [12, 27] allows tracing at least 1
colluding party with non-negligible probability (defined as traceability) and never implicates non-
colluding parties (defined as non-imputability). Aside from a sharing and a reconstruction algorithm,
TSS specifies a tracing algorithm for generating proofs of guilt from a reconstruction program and
a judging algorithm for verifying the proof. To ensure non-imputability, the sharing phase in [27]
utilizes a secure 2PC such that the dealer does not learn the complete shares of a party. The size
of shares in the constructed TSS is quadratic in the size of the secret. [12] improves the quadratic
9 The size of minimal sets is not necessarily the same.
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overhead to linear for the widely used Shamir [54] and Blakley [11] secret sharing schemes but only
if the reconstruction box outputs the entire secret (instead of anything non-trivial about the secret
as in [27]). Overall, the setting in TSS is more benign: computation circuits are known; one can
query the pirate reconstruction program; and at least one share holder submits a share individually.
Utilize MPC hardness. Assuming that computing many hashes on a secret quickly is hard using
MPC but feasible for an individual knowing the secret, Dziembowski et al. [22] design a secret
sharing with snitching scheme under network synchrony. A snitching party and the dealer can prove
to a judge that another party colluded by computing sufficiently many hashes in a short time. The
scheme has an inefficient reconstruction algorithm that involves repeatedly computing many hashes.
Besides, restricting the collusion method to MPC can be limiting.
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A Additional preliminaries

Commitment scheme. A commitment scheme is a tuple of two algorithms (Comm(·),Reveal(·)):
– c← Comm(v): Given input value v, output a commitment c on v.
– v′ ← Reveal(c): Given a commitment c, reveal the committed value c′.

A secure commitment scheme achieves hiding and binding properties. Hiding requires that by ob-
serving the commitment c, one does not learn more about the committed value v. Binding requires
that the committer cannot open the commitment to another value v′ ̸= v. Both guarantees can be
either information-theoretic or computational but cannot be information-theoretic simultaneously.
zkSNARKs. Informally, a proof for a relation R is a protocol that allows a prover P with an
instance x to prove to an efficient verifier that there exists a witness w such that R(x,w) = 1. If
the proof avoids sending the entire witness w to V, it is called succint. If the proof contains a single
message from P to V, it is called non-interactive, which can be described with a tuple of three
algorithms:

– pp← Setup(1λ,R): Given the security parameter and the relation, output public parameters.
– π/⊥ ← Prove(pp, x, w): Given the public parameters, instance x and witness w, if R(x,w) = 1,

output a proof π. Otherwise, output ⊥.
– {1, 0} ← Verify(pp, x, π): Verify proof π of instance x.

Informally, a zkSNARK is a proof (or more suitably, an argument) that satisfies the following
properties [46]:

– (Completeness) If R(x,w) = 1, then an honest P convinces V except with negligible probability.
If R(x,w) = 0, Prove outputs ⊥.

– (Computational knowledge soundness) For every prover P that convinces V to output 1, there
exists a polynomial time extractor that can use P to output w such that R(x,w) = 1.

– (Zero-knowledge) The triple (pp, x, π) reveals nothing about witness w.
– (Sunccintness) Proof size and verification time are o(|R|).

B Measure non-trivial information gain

Let X be a discrete random variable (for a secret x) on a finite alphabet X = {x1, . . . , xn} according
to a probability distribution p = (p1, . . . , pn) where pi = P[X = xi] for i ∈ [n]. Let f : X 7→ Y be
any function, e.g., f(x) = x or f(x) outputs the most significant bit or Hamming weight of x. We
are interested in the following question:

30



Given a constant γ ∈ (0, 1), is P[guessing f(x) correctly in one shot] < γ?

If f is a bijective function, then the best guess one can come up with is when f is evaluated at
the most likely value for x. Otherwise, one naive approach is to evaluate f on all possible inputs, or
at least the significant ones. Another approach is to connect the guessability notion with existing
entropy measures.
Entropy of a function of a random variable. First, consider Shannon entropy (Definition 9).
If f is a bijection, then

H(f(X)) = H(X)

where H(·) computes the Shannon entropy.
If f is a surjection, H(f(X)) < H(X). Cicalese, Gargano and Vaccaro [20] provides tighter upper

and lower bounds for the entropy of these functions as follows. Recall the probability distribution
p = (p1, . . . , pn). Without loss of generality, we let p1 ⩾ p2 . . . ⩾ pn ⩾ 0. Let m be an integer and
2 ⩽ m < n. Let set Ym = {y1, . . . , ym}. Denote the family of surjective functions with m possible
outputs as Fm = {f |f : X 7→ Ym, |f(X )| = m}. Define Rm(p) = (r1, . . . , rm) where ∀i ∈ [m], ri =

1
m

if the maximum probability p1 <
1
m , and

ri =

{
pi i = 1, . . . , i∗∑n

j=i∗+1 pj
m−i∗ i = i∗ + 1, . . . ,m

if p1 ⩾ 1
m . Here i∗ = max{i ∈ [m− 1] : pi ⩾

∑n
j=i+1 pj
m−i }.

Define Qm(p) = (q1, . . . , qm) where

qi =

{∑n−m+1
j=1 pj i = 1

pn−m+i i = 2, . . . ,m

Then
max
f∈Fm

H(f(X)) ∈ [H(Rm(p))− µ,H(Rm(p))]

where µ = 1− 1+ln(ln 2)
ln 2 < 0.09 and

min
f∈Fm

H(f(X)) = H(Qm(p))

Remark 3. Computing the exact lower bound is easy. Computing the exact upper bound of the
Shannon entropy of any surjective function on a random variable is NP-hard [20], which can be
shown with a reduction from partition problem. But a polynomial time approximation algorithm
with additive approximation factor µ exists.

Remark 4. Computing the Shannon entropy of a specific function on a random variable can be done
explicitly on all inputs or sampled inputs (Definition 2 and Theorem 1 in Lorentz [40]).

Sason [51] considers Rényi entropy (Definition 10) and proves the following upper and lower
bounds

max
f∈Fm

H(f(X)) ∈ [H(Rm(p))− e(d), H(Rm(p))]
min
f∈Fm

Hd(f(X)) = Hd(Qm(p))

where e(d) = 0.09 for d = 1 (Shannon entropy case) and e(d) = log d−1
2d−2

− d−1
d log d

2d−1
otherwise.

As d increases, the error e(d) increases.
Relationship between entropy and guessability. Entropy in general captures the degree of
uncertainty.
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Definition 9 (Shannon entropy). Let X be a discrete random variable which takes values in a
finite alphabet X . For x ∈ X , let p(x) = P[X = x], and p(x) > 0. The Shannon entropy of X is

H(X) = −
∑
x∈X

(p(x) log2(p(x)))

Definition 10 (Rényi entropy). Let X be a discrete random variable which takes values in a
finite alphabet X . For x ∈ X , let p(x) = P[X = x], and p(x) > 0. The Rényi entropy of order
d ∈ (0, 1) ∪ (1,∞) is

Hd(X) =
1

1− d
log(

∑
x∈X

p(x)d)

When guessing the output, the optimal strategy that minimizes the average number of guesses
is to guess the values in order of decreasing probabilities. When parties are restricted to one guess,
we desire the probability of guessing a non-trivial function output correctly to be small. In other
words, to show a function f is non-trivial, it is sufficient to show that its min-entropy (d = ∞ in
Rényi entropy) is above a known constant threshold (set by a protocol designer). More specifically,
consider a threshold γ (preferably closer to 1).

(1) When proving the non-triviality of a function, one utilizes the lower bound for the min-entropy
and shows that it is > log 1

γ .
(2) When proving the triviality of a function, one utilizes the upper bound and shows that it

is ⩽ log 1
γ , though it might be harder to prove due to the higher approximation error as d

approaches ∞. In this case, one can resort to prove by evaluating the entropy of the function
explicitly.

(3) When the min-entropy lower bound is lower than the threshold and its upper bound is higher,
one can resort to evaluating the entropy directly.

C Malicious dealer problem

Consider a malicious dealer who aims to frame a set of share-holding parties regardless of monetary
loss. Suppose the dealer controls ω of k parties in one access group. This cohort of parties is
instructed by the dealer to submit fake reports on behalf of the dealer to frame the rest parties
in the access group. Our goal is to reduce the probability of a successful framing. In [27], sharing
is done via secure two-party computation between the dealer and each share-holder. Conceptually,
each share consists of two parts where one part is known to the dealer, and the other is known only
to the share-holding party. In this way, the dealer does not have knowledge about the share; without
the share, the dealer cannot frame the party in [27].

We cannot directly adopt the proposed protocol in [27] because first we consider general secret
sharing schemes instead of Shamir’s secret sharing [54]. And second, in our setting, parties indicate
the existence of collusion by proving non-trivial information gain about a secret and providing
their own corresponding secret share (instead of other colluding parties’ shares). This means that
the dealer can collude with ω share-holding parties to frame others without the need to learn other
(k−ω) shares. But we can still employ general-purpose MPC to generate q random secrets, generate
shares for each secret, and re-randomize and permute the shares for each party so that the dealer does
not have knowledge of the shares corresponding to any specific secret. On the higher level, the dealer
successfully frames (k − ω) parties with probability 1+qγ

q+1 and expects to lose ω(1+qγ
q+1 λr − q(1−γ)

q+1 λp)
when sounding the false alarm. When carrying out the next framing attempt, the dealer needs to
corrupt a new set of ω parties from another access group. The success probability remains 1+qγ

q+1 .
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