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Abstract

P vs NP problem is the most important unresolved problem in the field
of computational complexity. Its impact has penetrated into all aspects
of algorithm design, especially in the field of cryptography. The security
of cryptographic algorithms based on short keys depends on whether P
is equal to NP. In fact, Shannon[1] strictly proved that the one-time-pad
system meets unconditional security, but because the one-time-pad sys-
tem requires the length of key to be at least the length of plaintext, how to
transfer the key is a troublesome problem that restricts the use of the one-
time-pad system in practice. Cryptography algorithms used in practice
are all based on short key, and the security of the short key mechanism
is ultimately based on one-way assumption. In fact, the existence of one-
way function can directly lead to the important conclusion P� NP.

In this paper, we originally constructed a short-key block cipher al-
gorithm. The core feature of this algorithm is that for any block, when
a plaintext-ciphertext pair is known, any key in the key space is valid,
that is, for each block, the plaintext-ciphertext pair and the key are inde-
pendence, and the independence between blocks is also easy to construct.
This feature is completely different from all existing short-key cipher al-
gorithms.

Based on the above feature, we construct a problem and theoreti-
cally prove that the problem satisfies the properties of one-way functions,
thereby solving the problem of the existence of one-way functions, that is,
directly proving that P�NP.
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1 Introduction

Cryptography is one of the most important applications in the field of communi-
cation and computer science. In recent years, with the application of commerce,
enterprises, banks and other departments, cryptography has been developed
rapidly. Especially after Shannon put forward the mathematical analysis of se-
curity in “Communication theory of secrecy systems”[1], various design tools
for cipher algorithms and corresponding attack tools have been developed one
after another. Among them, the most common attack methods include linear
attacks and differential attacks.

Linear attack was first proposed by M. Matsui[2], this is an attack method
that is currently applicable to almost all block encryption algorithms. Kaliski
BS[3] proposed a multi-linear attack based on the linear attack, but the multi-
linear attack has many limitations. And the Biryukov A[4] and Chao, J.Y[5]
and others further improved the framework of multi-linear attacks, thus making
linear attacks a larger application.

The differential attack method was first proposed by Eli Biham[6]. BIHAM
E[7] extended it to a more powerful attack method. TSUNOO[8] further con-
structed multiple attack methods. These attack methods have extremely high
skill in the attack process, which is worthy in-depth study.

In this paper, we first designed a new encoding algorithm, which we named
Eagle. Based on the Eagle encoding algorithm, we designed a new block sym-
metric cipher algorithm, For any block of plaintext-ciphertext pairs, any key
in the key space is valid. That is to say, there is no specific mathematical re-
lationship between the plaintext, key, and ciphertext in each block, showing a
completely randomly property. It can also be understood that for any plaintext,
encrypted with the same key every time, the ciphertext obtained is not uniquely
determined, but completely randomly in the possible ciphertext space. And this
feature makes the cipher algorithm can resistant all forms of linear attacks and
differential attacks.

At the end of this paper, we further construct a new cipher system. Un-
der this cipher system, if any plaintext-ciphertext pair is known, if an attacker
wants to guess the possible correct key, he cannot do it by any method other
than exhaustive search. We have proved theoretically that this kind of problem
satisfies the properties of one-way functions, that is, theoretically prove that
one-way functions exist, so that P � NP.

2 Introduction to Eagle encoding algorithm

We first introduce two common bit operations. XOR denoted as `. Do left cycle
shift of D by n bits which can be denoted as D�n, for example p10011010q�2 �
p01101010q .

We select two L-bits parameters w0 and w1, have odd number of different
bits. For example w0 � 10010011 and w1 � 11000111 have 3 bits (3 is odd)
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different.

w0 � 10010011

w1 � 11000111

We set the initial state of L-bit as s0, we choose one parameter w P tw0, w1u,
without loss of generality, assume that we choose w � w0, then we define the
following calculation

s1 � w ` ps0 ` s�1
0 q � w0 ` ps0 ` s�1

0 q (2.1)

From (2.1), we can easily know

s0 ` s�1
0 � s1 ` w (2.2)

If we only know s1, we don ’t know whether w � w0 or w � w1 we used in
(2.1), we can confirm it through a simple trial-and-error. For example, we guess
the parameter w � w1 was used in (2.1), we need to find a certain number sx
to satisfy

sx ` s�1
x � s1 ` w1 (2.3)

In fact, since w0 and w1 have odd number of different bits, such sx does not
exist. See Theorem 1 for details.

[Theorem 1] We arbitrarily choose two L-bit parameters w0 and w1 which
have odd number of different bits, for arbitrary s0, we set s1 � w0 ` ps0 ` s�1

0 q
, then there doesn’t exists sx satisfy sx ` s�1

x � s1 ` w1.

Proof. Firstly, by definition we have

s1 ` w1 � w0 ` ps0 ` s�1
0 q ` w1 � ps0 ` s�1

0 q ` pw0 ` w1q (2.4)

Where w0 and w1 have odd number of different bits, so there are odd number
of 1 in the bit string of w0 ` w1 .

Proof by contradiction, we suppose that there exists sx satisfy sx ` s�1
x �

s1 ` w1, then by (2.4), we have

sx ` s�1
x � ps0 ` s�1

0 q ` pw0 ` w1q (2.5)

By simple calculation we have

ps0 ` sxq ` ps0 ` sxq
�1 � w0 ` w1 (2.6)

We set sy � s0 ` sx, then there are odd number of 1 in the bit string of
sy ` s�1

y , without of generality, we suppose that the bits with 1 are l1, l2, ..., lu
(u is odd). Compare to the first bit of sy, the l1 � 1 bit of sy is different from
the first bit of sy , the l2 � 1 bit of sy is the same with the first bit of sy, the
l3�1 bit of sy is different from the first bit of sy, the l4�1 bit of sy is the same
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with the first bit of sy, and so on, since u is odd, u� 1 is even, the lu�1 � 1 bit
of sy is the same with the first bit of sy.

If lu   L, the lu � 1 bit of sy is different from the first bit of sy, so the last
bit of sy is different from the first bit of sy. On the other hand, the last bit of
sy ` s�1

y is 0, so the last bit of sy is the same with the first bit of sy. This is
contradictory.

a b b a a b b b

0 1 0 1 0 1 0 0

l1 l2 l3
If lu � L, the last bit of sy is different from the the first bit of sy. On the

other hand, the last bit of sy is the same with lu�1 bit of sy which is the same
with the first bit of sy. This is contradictory.

a b b a a a a b

0 1 0 1 0 0 0 1

l1 l2 l3

So there doesn’t exists sx satisfy sx ` s�1
x � s1 ` w1 .

Let’s go back to the discussion just now, after a trial-and-error, we can ac-
curately confirm which one ( w � w0 or w � w1 ) we just used in (2.1).

Now we suppose that there is a binary sequence m � b1b2...bL with length
L. Start with s0, read each bit of M from left to right sequentially, when the
bit bip1 ¤ i ¤ Lq is 0, we set si � w0 ` psi�1 ` s�1

i�1q, when the bit bi is 1, we

set si � w1 ` psi�1 ` s�1
i�1q.

According to the above calculation, for every si, we can find the only wx � w0

or wx � w1 such that there exists si�1 satisfy si�1` s�1
i�1 � si`wx. According

to the properties of XOR and cyclic shift, we can easily see that there are only
two si�1 that satisfy si�1`s�1

i�1 � si`wx, and the two si�1 with each bit differ-
ent. As long as we know any one bit of si�1, si�1 can be uniquely determined.
So we only need to save one bit of si, finally by sL, we can completely restore
the original state s0 and the binary sequence m.

Based on the above discussion, we can construct a complete Eagle encoding
and decoding algorithm. The entire algorithm consists of three processes: gen-
erating parameters, encoding, and decoding.

[Parameter generation]
Firstly we choose two L-bit parameters w0 and w1 which have odd number

of different bits, then we choose L-bit initial state s0.
[Encoding]
For input data m, we record mrisp1 ¤ i ¤ Lq as the i-th bit of m, mris P
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t0, 1u, L is the length of m, the encoding process is as follows.
rE1s Execute E2 to E4 with i from 1 to L.
rE2s If mris � 0, set si � w0 ` psi�1 ` s�1

i�1q.

rE3s If mris � 1, set si � w1 ` psi�1 ` s�1
i�1q .

rE4s Set the last bit of si�1 as the i-th bit of c , cris � si�1rLs.
rE5s Use pc, sLq as the output.
[Decoding]
The output pc, sLq of the above encoding process is used as the input of the

decoding process, the decoding process is as follows.
rD1s Execute D2 to D4 with i from L to 1.
rD2s Do trial-and-error testing with si ` w0 or si ` w1 , find the unique

wxpx � 0 or x � 1q satisfy sx ` s�1
x � si ` wx.

rD3s After D2, use x as the i-th bit of m, mris � x.
rD4s For the two possible sx satisfy sx ` s�1

x � si ` wx in D2, we set the
one which the last bit is equal to cris as si�1.

rD5s Use m as the output.

Now we give an example of the above processes.
[Example 1] Eagle encoding
We choose the parameters as w0 � 10010011, w1 � 11000111, s0 � 01011001,

m � 10010101.
Since mr1s � 1, we set w � w1, then we have

s1 � w ` ps0 ` s�1
0 q � 11000111` 11101011 � 00101100

Since mr2s � 0, we set w � w0, then we have

s2 � w ` ps1 ` s�1
1 q � 10010011` 01110100 � 11100111

Since mr3s � 0, we set w � w0, then we have

s3 � w ` ps2 ` s�1
2 q � 10010011` 00101000 � 10111011

Since mr4s � 1, we set w � w1, then we have

s4 � w ` ps3 ` s�1
3 q � 11000111` 11001100 � 00001011

Since mr5s � 0, we set w � w0, then we have

s5 � w ` ps4 ` s�1
4 q � 10010011` 00011101 � 10001110

Since mr6s � 1, we set w � w1, then we have

s6 � w ` ps5 ` s�1
5 q � 11000111` 10010011 � 01010100

Since mr7s � 0, we set w � w0, then we have

s7 � w ` ps6 ` s�1
6 q � 10010011` 11111100 � 01101111
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Since mr8s � 1, we set w � w1, then we have

s8 � w ` ps7 ` s�1
7 q � 11000111` 10110001 � 01110110

Take the last bit of s0, s1, s2, s3, ..., s7 as c � 10111001.
We use pc, s8q � p10111001, 01110110q as the results generated by Eagle en-

coding.
Next, we will provide another example of Eagle decoding.

[Example 2] Eagle decoding
Known w0 � 10010011, w1 � 11000111, s8 � 01110110, c � 10111001, how

to compute m?
Firstly by s8 � w`ps7`s�1

7 q �¡ s7`s�1
7 � s8`w, we don’t know whether

w � w0 (the 8-th bit of m is 0) or w � w1 (the 8-th bit of m is 1), we need a
trial-and-error.

Let’s assume w � w0, we have

s7 ` s�1
7 � s8 ` w0 � 01110110` 10010011 � 11100101

There is no such s7 satisfies s7 ` s�1
7 � 11100101.

a b a b b b a a

1 1 1 0 0 1 0 1

a` a � 1

Let’s assume w � w1, we have

s7 ` s�1
7 � s8 ` w1 � 01110110` 11000111 � 10110001

There exists two solutions s7 � 01101111 and s7 � 10010000, these two
solutions are bit reversed.

Since the 8-th bit of c is cr8s � 1, the last bit of s7 is 1, we have s7 �
01101111.

According to the above, because w � w1, the 8-bit of m is 1.
Similarily we get m � 10010101.

It is not difficult to find that the above encoding process and decoding pro-
cess are correct, that is pc, sLq generated by encoding from m can be completely
restored through the decoding process. In addition, the encoding process is se-
quential encoding in the order of m’s bits, and the decoding process is sequential
decoding in the reverse order of c’s bits.

s0 s1 s2 ... sL

s0 s1 s2 ... sL

mr1s mr2s mr3s mrLs

cr1s cr2s cr3s crLs
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We also noticed the fact that in the above encoding and decoding process, all
inputs and outputs do not need to appear s0 , This means that the selection of
s0 will not affect the correctness of the encoding process and decoding process.
The arbitrary of s0 will bring the uncertainty of the encoded output.

For the convenience of the discussion in the following chapters, here we
briefly analyze the effect of uncertainty of s0 on the encoded output.

Given the parameters w0 and w1 that have odd number of different bits, for
a certain input m of L bits, since s0 is arbitrarily selected, it is obvious that c
is uncertain, but is the final state sL necessarily uncertain?

In fact, the answer is no. In some cases, such as L � 2u (that is, the pa-
rameter length is the power of 2), the final state sL is determined for different
choices of s0 . The final state variable sL which is the output of the encoding
process is only related to the input m and has nothing to do with the choice of
the initial state s0. See Theorem 2 for details.

[Theorem 2] In Eagle encoding, given the parameters w0 and w1 that have L
bits with different odd bits, for a certain L bit input m, if L � 2u is satisfied,
then for any initial state s0, after the Eagle encoding process, the final state sL
is only related to the input m, and is unrelated with the choice of the initial
state s0.

Proof. We represent m as binary stream x1x2...xL , which xi P t0, 1u, 1 ¤ i ¤ L.
We execute the Eagle encoding process to m from x1 to xL as follows.

s1 � wx1
` ps0 ` s�1

0 q � f1pwx1
q ` ps0 ` s�1

0 q

s2 � wx2
` ps1 ` s�1

1 q � f2pwx1
, wx2

q ` ps0 ` s�2
0 q

s3 � wx3 ` ps2 ` s�1
2 q � f3pwx1 , wx2 , wx3q ` ps0 ` s�1

0 ` s�2
0 ` s�3

0 q

s4 � wx4 ` ps3 ` s�1
3 q � f4pwx1 , wx2 , wx3 , wx4q ` ps0 ` s�4

0 q

It is not difficult to find that for any m � 2v, sm � fmpwx1
, ..., wxm

q` ps0`
s�m
0 q holds, this can be proved by a simple mathematical induction.

In fact, the conclusion is correct for v � 1.
We assume that the conclusion is correct for v � 1 , we have

sm{2 � fm{2pwx1
, ..., wxm{2

q ` ps0 ` s
�m{2
0 q

Since sm{2 to sm must do calculations with m{2 steps, we have

sm � fmpwx1 , ..., wxmq ` ps0 ` s
�m{2
0 q ` ps

�m{2
0 ` s�m

0 q

� fmpwx1
, ..., wxm

q ` ps0 ` s�m
0 q

Since L � 2u, we have sL � fLpwx1 , ..., wxL
q ` ps0 ` s�L

0 q , where fip...q
is irrelevant with s0, by definition of cycle shift, we have s0 � s�L

0 , so sL �
fLpwx1

, ..., wxL
q which is irrelevant with s0.
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From theorem 2, for any parameters w0 and w1 with length L � 2u, for any
initial state s0, execute Eagle encoding on m to obtain sL which is irrelevant
with s0. In order to facilitate the description in the following chapters, we in-
troduce two symbols ξ and ς.

ξw0,w1
: ps0,mq Ñ psL, cq : use the key pw0, w1q to execute Eagle encoding

([E1]-[E5]) on initial state s0 and input m to obtain c and sL .
ςw0,w1 : psL, cq Ñ ps0,mq : use the key pw0, w1q to execute Eagle decoding

([D1]-[D5]) on c and sL to obtain s0 and m.
ξ and ς both represent a complete Eagle encoding process and Eagle de-

coding process, and their introduction is mainly for the convenience of deriving
encryption algorithms later. The Eagle encryption algorithm is a block symmet-
ric encryption algorithm, and a complete Eagle encoding process is performed
for each block.

In all the following chapters of this paper, we assume the length L is a power
of 2.

3 Eagle encryption algorithm

The core idea of Eagle encryption algorithm comes from the Eagle encoding
process. If we use the parameters w0 and w1 in the Eagle encoding process as
encryption keys, the process of encoding input can be regarded as the process
of encrypting plaintext input . Output pc, sLq can be used as ciphertext. In
fact, we can introduce uncertainty into the initial state s0 without affecting the
correctness of the decoding process. We will see later that uncertainty allows
us to design a more secure encryption system.

Next, we will introduce the Eagle encryption algorithm in detail. The en-
tire Eagle encryption algorithm is divided into three processes: key generator,
encryption process, and decryption process.

3.1 Eagle key generator

First, the choice of the key is completely random, and the key needs to be
shared between the encryptor and the decryptor. Since w0 and w1 must have
odd number of different bits, there are only 22L�1 effective keys with bits length
of 2L, one bit will be lost. That is, in the Eagle encryption algorithm, the
number of bits for the key is always an odd number.

We randomly generate a number with bits length of 2L. We take the first
L bits as w0. When the next L bits are different from w0 with an odd number
of ”bits”, then we directly take the next L bits as w1; when the next L bits are
different from w0 with an even number of ”bits”, we set the next L bits as w1

with the last bit inverted.
For example, we generate a number with 16 bits as 1001001101001000, we

set w0 � 10010011 (the first 8 bits) and w1 � 01001000 (the last 8 bits), when
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w0 and w1 have 6 (even) bits different, we set the last bit of w1 inverted as
w1 � 01001001.

3.2 Eagle encryption process

For the 2L � 1-bit key w0 and w1, for the plaintext M , we construct Eagle
encryption processes as follows:

rM1s The plaintext M is grouped by L bits, and the last group with less
than L bits are randomly filled into L bits. The total number of groups is as-
sumed to be k , the grouped plaintext M is recorded as M � pM1,M2, ...,Mkq .

rM2s We randomly generate some parameters.

S0 : The initial state.

S
1

1, S
1

2, ..., S
1

k, S
1

k�1 : The intermediate states.

Mk�1 : The additional goup toM

rM3s Encrypt the plaintexts as follows.
For the first group, excute the Eagle encoding as

ξw0,w1
: pS0,M1q Ñ pS1, C1q

For the second group, excute the Eagle encoding as

ξw0,w1
: pS1 ` S

1

1,M2q Ñ pS2, C2q

For the third group, excute the Eagle encoding as

ξw0,w1
: pS2 ` S

1

2,M3q Ñ pS3, C3q

For the k-th group, excute the Eagle encoding as

ξw0,w1
: pSk�1 ` S

1

k�1,Mkq Ñ pSk, Ckq

For the k � 1-th group, excute the Eagle encoding as

ξw0,w1
: pSk ` Ck,Mk�1q Ñ pSk�1, Ck�1q

rM4s Encrypt the k intermediate states S
1

1, S
1

2, ..., S
1

k, S
1

k�1 as follows.
For the first intermediate state, excute the Eagle encoding as

ξw0,w1 : pSk�1 ` Ck�1, S
1

1q Ñ pS
3

1 , C
3

1 q

For the second intermediate state, excute the Eagle encoding as

ξw0,w1
: pS

3

1 ` C
3

1 , S
1

2q Ñ pS
3

2 , C
3

2 q

For the third intermediate state, excute the Eagle encoding as

ξw0,w1
: pS

3

2 ` C
3

2 , S
1

3q Ñ pS
3

3 , C
3

3 q
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For the k � 1-th intermediate state, excute the Eagle encoding as

ξw0,w1
: pS

3

k ` C
3

k , S
1

k�1q Ñ pS
3

k�1, C
3

k�1q

rM4s Output pC1, C2, ..., Ck�1, C
3

1 , C
3

2 , ..., C
3

k�1, S
3

k�1q as ciphertext.

3.3 Eagle decryption process

With the same key w0 and w1, for ciphertext pC1, C2, ..., Ck�1, C
3

1 , C
3

2 , ..., C
3

k�1, S
3

k�1q
, the Eagle decryption processes are as follows:

rC1s Restore intermediate states S
1

1, S
1

2, ..., S
1

k as follows.
Restore the k � 1-th intermediate state as

ςw0,w1
: pS

3

k�1, C
3

k�1q Ñ pS�
k , S

1

k�1q

Restore the k-th intermediate state as

ςw0,w1
: pS�

k ` C
3

k , C
3

k q Ñ pS�
k�1, S

1

kq

Restore the k � 1-th intermediate state as

ςw0,w1
: pS�

k�1 ` C
3

k�1, C
3

k�1q Ñ pS�
k�2, S

1

k�1q

Restore the k � 2-th intermediate state as

ςw0,w1 : pS�
k�2 ` C

3

k�2, C
3

k�2q Ñ pS�
k�3, S

1

k�2q

Restore the second intermediate state as

ςw0,w1
: pS�

2 ` C
3

2 , C
3

2 q Ñ pS�
1 , S

1

2q

Restore the first intermediate state as

ςw0,w1
: pS�

1 ` C
3

1 , C
3

1 q Ñ pS�
0 , S

1

1q

rC2s Calculate M1,M2, ...,Mk�1 as follows.
For the k � 1-th group, calculate MK�1 as

ςw0,w1 : pS�
0 ` Ck�1, Ck�1q Ñ pSk,Mk�1q

For the k-th group, calculate Mk as

ςw0,w1
: pSk ` S

1

k, Ckq Ñ pSk�1,Mkq

For the k � 1-th group, calculate Mk�1 as

ςw0,w1
: pSk�1 ` S

1

k�1, Ck�1q Ñ pSk�2,Mk�1q

For the second group, calculate M2 as

ςw0,w1
: pS2 ` S

1

2, C2q Ñ pS1,M2q
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For the first group, calculate M1 as

ςw0,w1
: pS1 ` S

1

1, C1q Ñ pS0,M1q

rC3s Output pM1,M2,M3, ...,Mkq as the plaintext.
Obviously, the above decryption processes can get the correct plaintext which

can be summarized as.

Parameters
Key : w0 pL� bitsq, w1 pL� bitsq

Plaintext : M1 | M2 | ... | Mk |
�� ��Mk�1

Encryption / Decryption

Random intermediate states : S
1

1 | S
1

2 | ... | S
1

k�1
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S0 Sk�1 Ñ Sk�1 ` Ck�1

M1 C1 S
1

1 C
3

1

S1 Ñ S1 ` S
1

1 S
3

1 Ñ S
3

1 ` C
3

1

M2 C2 S
1

2 C
3

2

S2 Ñ S2 ` S
1

2 S
3

2 Ñ S
3

2 ` C
3

2

M3 C3 S
1

3 C
3

3

... ...

Mk Ck S
1

k�1 C
3

k�1

Sk Ñ Sk ` S
1

k S
3

k�1

Mk�1 Ck�1

Sk�1 Ñ Sk�1 ` Ck�1

From above, for the plaintext with k groups, in the encryption or decryp-
tion process, it is encoded or decoded bit by bit, and the encoding or decoding
process of each bit is a certain calculation step, so the encryption process and
the decryption process have computational complexity OpkLq.

In addition, observing the structure of plaintext and ciphertext.

M1 M2 ... Mk

C1 C2 ... Ck C
3

1 C
3

2 ... C
3

k�1

Ck�1 S
3

k�1
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We can easily find another conclusion that after Eagle encryption, the length
of ciphertext is almost twice that of plaintext. This is because the system gen-
erates an additional random number of the same length as the plaintext before
encryption. This is different from other symmetric block cipher algorithms. It
is precisely because of this feature that the Eagle algorithm can resist all forms
of linear and differential attacks.

Furthermore, by observing the plaintext ciphertext pairs of each group pMi, Ciq
p1 ¤ i ¤ kq, we found that any pw0, w1q is valid, see the following theorem.

[Theorem 3] In the above algorithm, given the plaintext-ciphertext pair pMi, Ciq
of the i-th group, any key pw0, w1q is valid.

Proof. This theorem is equivalent to proving the following conclusion: for a
given pMi, Ciq, for any pw0, w1q, Sx and Sy can be found to satisfy the following.

ξw0,w1
: pSx,Miq Ñ pSy, Ciq (3.1)

Fixed any pw0, w1q, by theorem 2, Sy is only related to Mi, every Mi can
calculate Sy, every Sy can calculate Mi. Since Mi, Si P t0, 1u

L, they are equally
numerous, so Mi and Sy correspond one-to-one.

Use Sy and Ci to excute ςw0,w1 : pSy, Ciq Ñ pSx,Miq, we can get Sx satisfy
(3.1).

This conclusion indicates that, given any known plaintext-ciphertext pair
of any group, since pSx, Syq is unknown, no matter what algorithm (including
exhaustive search) you use, you cannot determine any characteristics of the key
pw0, w1q.

Moreover, since the encryption process between any two groups is indepen-
dent and there are no common variables between any two groups, any known or
constructed plaintext attack is invalid to Eagle encryption algorithm. For more
details, please refer to the following chapters.

4 Linear attack analysis to Eagle encryption al-
gorithm

Linear attack is a very effective attack method proposed by M. Matsui[2] at
the European Cryptographic Conference in 1993. Later, scholars quickly dis-
covered that the linear attacks are applicable to almost all block encryption
algorithms, and linear attacks have became the main attacks for block encryp-
tion algorithms. Various new attacks based on linear attacks are constantly
being proposed.

The core idea of linear attack is to take the nonlinear transformation in the
cryptographic algorithm, such as the linear approximation of the S-box, and
then extend the linear approximation to the linear approximation of the round
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function, and then connect these linear approximations to obtain a linear ap-
proximation of the entire cryptographic algorithm, finally a large number of
known plaintext-ciphertext pairs encrypted with the same key are used to ex-
haustively obtain the plaintext and even the key.

We have noticed that the reason why linear attacks have become an effective
attack for block encryption algorithms is that when the key is known, there is a
certain implicit linear relationship between the ciphertext and the plaintext. By
analyzing the known plaintext-ciphertext pairs, some effective linear relations
can be obtained, and some bits of the key can be guessed.

In the Eagle encryption processes, for a certain group, suppose that the ini-
tial state at the beginning of the group is Si�1 , the plaintext of the group is
Mi , the keys are w0 and w1 , after the [E1]-[E5], we obtain the new state Si

and the encoding result Ci . Only Ci is included in the ciphertext, only Mi

is included in the plaintext, Si�1 and Si are not included in the plaintext or
ciphertext, that is, Si�1 and Si are invisible to the decryption party and thus
invisible to the attacker.

Back to theorem 3, knownMi and Ci, for any w0 and w1, there exists pSx, Syq
satisfy ξw0,w1 : pSx,Miq Ñ pSy, Ciq. Here we introduce a stronger conclusion
that pSx, Syq not only exists, but is also unique, as shown in the following the-
orem.

[Theorem 4] Known M and C, fixed any w0 and w1, there exists unique
pSx, Syq satisfy ξw0,w1 : pSx,Mq Ñ pSy, Cq.

Proof. Fixed any w0 and w1, in the proof process of theorem 3, we know that
M and Sy correspond one to one, that is to say, Sy is unique.

Now we prove Sx is also unique by contradiction. Let’s assume that there
are two different Sx1

and Sx2
that both satisfy.

ξw0,w1
: pSx1

,Mq Ñ pSy, Cq

ξw0,w1
: pSx2

,Mq Ñ pSy, Cq

However, according to ςw0,w1 : pSy, Cq Ñ pSx, Cq, only one Sx can be satis-
fied, this is contradict.

The conclusion of Theorem 4 also indicates that, known Mi and Ci, any key
pw0, w1q in the key space have the same probability, which can be denoted as

PrpW � pw0, w1q|pM � Mi, C � Ciqq � 1{p22L�1q.

For a single group, known plaintext-ciphertext pair, any key is valid and
have the same probability to give a solution.

For two adjacent groups, the initial state of the next group differs from the
final state of the previous group by a random number. The calculation process
between two adjacent groups can be regarded as completely independent.
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5 Differential attack analysis to Eagle encryp-
tion algorithm

Differential attack was proposed by Biham and Shamir[6] in 1990, it is a chosen-
plaintext attack. Its core idea is to obtain key information by analyzing specific
plaintext and ciphertext differences.

The essence of a differential attack is to track the “difference” of the plain-
text pair, where the “difference” is defined by the attacker according to the
target, which can be an exclusive XOR operation or other target values. For
example, if you choose the plaintext M and the difference δ, the other plaintext
is M � δ. The attacker mainly analyzes the possible keys by analyzing the dif-
ference between the ciphertext C and C � ε.

For the Eagle encryption algorithm, suppose the differential attacker chooses
two specific plaintexts M1 and M2 , their difference is δ, that is M2 � M1 � δ,
the corresponding ciphertexts are C1 and C2 , and the difference between the
ciphertexts is ε , and That is C2 � C1 � ε . Since in the encryption processes
of Eagle algorithm, C1 and C2 are completely random, it is completely uncer-
tain whether the difference ε of the ciphertext is caused by randomness or the
spread of the plaintext. Furthermore, for any key pw0, w1q, ξw0,w1

p?,M1q and
ξw0,w1

p?,M2q subject to the same probability distribution, which can be denoted
as

PrpC1 � c1, C2 � c2|pM1 � m1,M2 � m2,W � pw0, w1qqq � 1{22L.

That is to say, for any specific plaintext M1 and M2 selected by the attacker,
after being encrypted with the same key, the corresponding block ciphertexts
C1 and C2 are completely random, and any possible value in the ciphertext
space appears with equal probability. The attacker has no way to capture the
propagation characteristics of the “difference” in the plaintext.

6 One-way function design

6.1 Introduction to one-way functions

Before constructing the one-way function, we briefly introduce the properties of
one-way function and the relationships with the P � NP problem.
[Definition 1] A function is a one-way function means that the function satis-
fies the following properties:

a) For a given x, there exists a polynomial-time algorithm that output fpxq.
b) Given y, it is difficult to find an x that satisfies y � fpxq, that is, there

does not exists a polynomial-time algorithm that finding the x.
The NP-complete problem refers to a set of problems that are verifiable in

polynomial-time algorithm. For all NP-complete problems, whether there exists
algorithms that are solvable in polynomial-time, this is the P vs NP problem. If
P � NP , then for some NP problems, there is no algorithm that is solvable in
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polynomial-time. If P � NP , then for all NP problems, there exists algorithms
that are solvable in polynomial-time.

If one-way function exists, it means that there exists such an NP prob-
lem, which has no deterministic polynomial time solvable algorithm, that is,
P � NP . This is a direct inference, which can be directly described as the
following theorem , See [9] for details.

[Theorem 5] If one-way function exists, then P � NP .

We then introduce an additional simple algorithmic problem, which we de-
scribe as the following theorem.

[Theorem 6] For two sets selected completely independently, the number of
elements is l1, l2 , then the average algorithm complexity of finding the common
elements of the two sets (there may be only one common element at most) is at
least c �minpOpl1q, Opl2qq , where c is a certain constant.

This is because the remaining unvisited elements in the two sets will be
visited at least once with equal probability before no common element is found.

6.2 Construction of one-way functions

For short key encryption algorithms, the security of the algorithm depends
on the computational complexity of cracking the key when given the known
plaintext-ciphertext pairs. In theory, if the key can only be cracked through ex-
haustive search, this algorithm is considered computationally secure. However,
currently all short key encryption algorithms, with known plaintext-ciphertext
pairs, have no evidence to suggest that attackers can only crack the key through
exhaustive search.

In this chapter, we will further upgrade the above encryption algorithm and
construct a new encryption algorithm called Eagle�, which is still a short key
encryption algorithm, and its encryption and decryption processes are com-
pleted within polynomial time. Given any known plaintext-ciphertext pairs, we
will prove that the problem of cracking its key can be equivalently reduced to
the problem of cracking plaintext using only ciphertext in another encryption
algorithm, which can only be tested through exhaustive search for every possible
key.

6.2.1 Introduction to Eagle�

The key is W � pw0, w1q, w0 and w1 have odd number of different bits.
The plaintext is M � pM1,M2, ...,Mkq which is gouped by L-bits.
Next, we will provide a detailed introduction to the design of the Eagle�

encryption system, which consists of three processes: Random parameters gen-
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erator, encryption process, and decryption process.

[Random parameters generator]
First we randomly generate k � 1 group keys.

pw
p0q
i , w

p1q
i q, 1 ¤ i ¤ k � 1

where w
p0q
i and w

p1q
i have odd number of different bits.

Then we randomly generate k intermediate states.

S
1

i, 1 ¤ i ¤ k

Then we randomly genrate the k� 1 group inserted plaintext and the initial
state.

Mk�1 : the k � 1 group inserted plaintext.

S0 : the initial state.

[encryption process]
The encryption process is as follows.
rE1�s Encrypt pM1,M2, ...,Mk,Mk�1q.
For the first group M1, excute the following

ξ
w
p0q
1 ,w

p1q
1

: pS0,M1q Ñ pS1, C1q

For the second group M2, excute the following

ξ
w
p0q
2 ,w

p1q
2

: pS1 ` S
1

1,M2q Ñ pS2, C2q

For the i-th group Mi, excute the following

ξ
w
p0q
i ,w

p1q
i

: pSi�1 ` S
1

i�1,Miq Ñ pSi, Ciq

For the k � 1-th group Mk�1, excute the following

ξ
w
p0q
k�1,w

p1q
k�1

: pSk ` S
1

k,Mk�1q Ñ pSk�1, Ck�1q

rE2�s Use pw0, w1q to encrypt pw
p0q
1 , w

p1q
1 , ..., w

p0q
i , w

p1q
i , ..., w

p0q
k�1, w

p1q
k�1q and

pS
1

1, ..., S
1

i, ..., S
1

kq.

In this step, pw
p0q
1 , w

p1q
1 , ..., w

p0q
i , w

p1q
i , ..., w

p0q
k�1, w

p1q
k�1q and pS

1

1, ..., S
1

i, ..., S
1

k�1q
can be seen as another 2pk� 1q � k � 3k� 2 grouped plaintext, we can write it
as M� � pM�

1 ,M
�
2 , ...,M

�
3k�2q, where

$'&
'%

M�
i � w

p0q
i , 1 ¤ i ¤ k � 1

M�
i � w

p1q
i�k�1, k � 2 ¤ i ¤ 2k � 2

M�
i � S

1

i�2k�2, 2k � 3 ¤ i ¤ 3k � 2
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For the first group of M�, the initial state can be set as Sk�1, excute the
following

ξw0,w1
: pSk�1,M

�
1 q Ñ pS�

1 , C
�
1 q

For the second group of M�, excute the following

ξw0,w1
: pS�

1 ` C�
1 ,M

�
2 q Ñ pS�

2 , C
�
2 q

For the i-th group of M�, excute the following

ξw0,w1
: pS�

i�1 ` C�
i�1,M

�
i q Ñ pS�

i , C
�
i q

For the last group of M�, excute the following

ξw0,w1
: pS�

3k�1 ` C�
3k�1,M

�
3k�2q Ñ pS�

3k�2, C
�
3k�2q

rE3�s Output pC1, C2, ..., Ck�1, C
�
1 , C

�
2 , ..., C

�
3k�2, S

�
3k�2q as the ciphertext.

[decryption process]
The process of decryption are as the following
rD1�s Use pw0, w1q to decrypt pC�

1 , C
�
2 , ..., C

�
3k�2, S

�
3k�2q to obtain M� �

pM�
1 ,M

�
2 , ...,M

�
3pk�1qq.

For the last group p3k � 2q, excute the following

ςw0,w1
: pS�

3k�2, C
�
3k�2q Ñ pS��

3k�1,M3k�2q

For the 3k � 1 group, excute the following

ςw0,w1
: pS��

3k�1 ` C�
3k�1, C

�
3k�1q Ñ pS��

3k ,M3k�1q

For the i-th group, excute the following

ςw0,w1
: pS��

i ` C�
i , C

�
i q Ñ pS��

i�1,Miq

For the first group, excute the following

ςw0,w1
: pS��

1 ` C�
1 , C

�
1 q Ñ pS��

0 ,M1q

rD2s� Translate M� � pM�
1 ,M

�
2 , ...,M

�
3k�2q to (w

p0q
1 , w

p1q
1 , ..., w

p0q
i , w

p1q
i ,

..., w
p0q
k�1, w

p1q
k�1) and (S

1

1, ..., S
1

i, ... , S
1

k).

$'&
'%

w
p0q
i � M�

i , 1 ¤ i ¤ k � 1

w
p1q
i � Mi�k�1, 1 ¤ i ¤ k � 1

S
1

i � Mi�2k�2, 1 ¤ i ¤ k

rD3s� Decrypt pC1, C2, ..., Ck�1q to obtain pM1,M2, ...,Mk,Mk�1q.
For the last group, excute the following

ς
w
p0q
k�1,w

p1q
k�1

: pS��
0 , Ck�1q Ñ pSk,Mk�1q
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For the k�th group, excute the following

ς
w
p0q
k ,w

p1q
k

: pSk ` S
1

k, Ckq Ñ pSk�1,Mkq

For the i�th group, excute the following

ς
w
p0q
i ,w

p1q
i

: pSi ` S
1

i, Ciq Ñ pSi�1,Miq

For the first group, excute the following

ς
w
p0q
1 ,w

p1q
1

: pS1 ` S
1

1, C1q Ñ pS0,M1q

rD4s� Output pM1,M2, ...,Mkq as the plaintext.

6.2.2 Basic analysis of Eagle�

It is obvious that Algorithm Eagle� is correct because the decryption process
and encryption process are mutually inverse.

From the encryption process above, it can be seen that the Eagle� encryption
algorithm is divided into two stages: the preparation stage and the encryption
stage. In the preparation stage, different keys and initial states are randomly
generated for each group’s plaintext. In the encryption stage, the entire pro-
cess is divided into two independent processes. The first process encrypts the
plaintext of each group using independent random keys and states. The second
process encrypts all intermediate keys and states generated during the prepara-
tion phase using the given short key.

It should also be noted that after being encrypted by the Eagle� encryp-
tion algorithm, the length of the ciphertext is about 4 times the length of the
plaintext. This is because in the preparation stage of the Eagle� encryption
algorithm, independent random numbers with a length of about 3 times the
plaintext are generated, and then these random numbers are encrypted using
the known short key. The encrypted ciphertext formed by these random num-
bers is also bound to the final ciphertext.

The Eagle� encryption algorithm performs bit by bit in encryption and
decryption process, and the operation for each bit is also a constant level of
computational complexity. Therefore, the encryption and decryption complex-
ity of the Eagle� encryption algorithm can be regarded as OpkLq.

6.2.3 Safety analysis of Eagle�

When given the ciphertext (C1, C2, ..., Ck�1, C
�
1 , C

�
2 , ... , C

�
3k�2, S

�
3k�2) of the

Eagle� encryption algorithm, we define the following function.

fpw0, w1q � pM1,M2, ...,Mkq
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where w0, w1 is the short key and pM1,M2, ...,Mkq is the plaintext decrypted
by the Eagle� decryption algorithm.

The inverse function of f can be defined as

f�1pM1,M2, ...,Mkq � tpw0, w1q|fpw0, w1q � pM1,M2, ...,Mkqu

Solving f�1 is equivalent to finding the key pw0, w1q to obtain the plaintext
pM1,M2, ...,Mkq.

In fact, if we can prove that only exhaustive search can solve f�1, that is,
for any attacker who only knows the plaintext-ciphertext pairs, there is no more
effective method other than exhaustive search to find the correct key, then the
Eagle� algorithm can be considered secure in the sense of computational com-
plexity.

Next, we will argue that there is indeed no effective method other than ex-
haustive search to solve f�1.

We observe the process of Eagle� encryption algorithm and it is not difficult
to find the following structure.

M1,M2, ...,Mk

w
p0q
1 , w

p1q
1 , S

1

1, ..., w
p0q
k , w

p1q
k , S

1

k, w
p0q
k�1, w

p1q
k�1 w0, w1

C1, C2, ..., Ck, Ck�1 C�
1 , C

�
2 , ..., C

�
3k�2, S

�
3k�2

The ciphertext pC1, C2, ..., Ck�1, C
�
1 , C

�
2 , ..., C

�
3k�2, S

�
3k�2q can be divided into

two independent parts pC1, C2, ..., Ck�1q and pC�
1 , C

�
2 , ..., C

�
3k�2, S

�
3k�2q. The

plaintext pM1,M2, ...,Mkq is only related to the first part of the ciphertext
pC1, C2, ..., Ck�1q, and has no association with the other part of the ciphertext
pC�

1 , C
�
2 , ..., C

�
3k�2, S

�
3k�2q.

How to find pw
p0q
i , w

p1q
i , S

1

jq? For the left part of the diagram, given any

pMi, Ciq, according to Theorem 3, any pw
p0q
i , w

p1q
i q is valid. For the right part

of the diagram, solving pw
p0q
i , w

p1q
i , S

1

jq is equivalent to obtain the plaintext with
the ciphertext pC�

1 , C
�
2 , ..., C

�
3k�2, S

�
3k�2q and the key pw0, w1q. In fact, the key

pw0, w1q in the right part is exactly the solution that f�1 is looking for.
The above process can be equivalently understood as follows: the key stream

on the left is the plaintext on the right. For the left part, in the case where the

plaintext ciphertext pair is known, finding pw
p0q
i , w

p1q
i , S

1

jq is valid is equivalent
to finding the key in OTP encryption when only the ciphertext is known. For

the right part, finding pw
p0q
i , w

p1q
i , S

1

jq that is valid is equivalent to solving the
plaintext when only the ciphertext is known.

Since we don’t know pw
p0q
i , w

p1q
i , S

1

jq, the only way to find a valid pw0, w1q is
to use exhaustive search to test every pw0, w1q.

The formal description is as follows.
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[Theorem 7] The computational complexity of solving f�1 is at least Op22L�1q.

Proof. We first consider solving pw
p0q
i , w

p1q
i q, formally defined the following func-

tion
f1pw

p0q
i , w

p1q
i q � pM1,M2, ...,Mkq

where 1 ¤ i ¤ k � 1.
f�1
1 can be written as

f�1
1 pM1,M2, ...,Mkq � tpw

p0q
i , w

p1q
i q|f1pw

p0q
i , w

p1q
i q � pM1,M2, ...,Mkqu

where 1 ¤ i ¤ k � 1.
Solving f�1

1 is equivalent to solving the following equations

$''''''&
''''''%

F ppC1, C2, ..., Ck�1q, pM1,M2, ...,Mkqq

� pw
p0q
1 , w

p1q
1 , w

p0q
2 , w

p1q
2 , ..., w

p0q
k�1, w

p1q
k�1q

GppC�
1 , C

�
2 , ..., C

�
3k�2, S

�
3k�2qq

� pw
p0q
1 , w

p1q
1 , w

p0q
2 , w

p1q
2 , ..., w

p0q
k�1, w

p1q
k�1q

where F solve pw
p0q
i , w

p1q
i q in the left part and G solve pw

p0q
i , w

p1q
i q in the

right part. Obviously F and G are two independent processes.

For F , according to Theorem 3, all pw
p0q
i , w

p1q
i q are valid, which means there

are 2pk�1qp2L�1q feasible solutions.
For G, since all pw0, w1q are valid, there are 22L�1 feasible solutions.
According to theorem 6, the computation complexity of solving f�1

1 is at
least Op22L�1q.

Moreover, solving f�1 can directly solve f�1
1 in polynomial time, because

pw0, w1q can directly decrypt using Eagle� decryption algorithm to obtain

pw
p0q
1 , w

p1q
1 , w

p0q
2 , w

p1q
2 , ..., w

p0q
k�1, w

p1q
k�1q in polynomial time.

So the computational complexity of solving f�1 is at least Op22L�1q.

Due to the fact that solving f can be completed in polynomial time and the
computational complexity of solving f�1 is exponential, f is a one-way function.

According to Theorem 5, we conclude that P � NP .
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