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Abstract. State-of-the-art protocols that achieve constant-round secure multiparty computation
currently present a trade-off: either consume an amount of communication that scales quadratically
in the number of parties, or achieve better asymptotics at the cost of high constant factors (e.g.
schemes based on LPN or DDH).

We construct a constant-round MPC protocol where communication scales linearly in the number
of parties n. Our construction relies only on OT and RO, and it leverages packed secret sharing.
Due to building on simple primitives, our protocol offers concrete improvement over asymptotically-
efficient LPN-based schemes. We consider security in the presence of a dishonest majority where
the malicious (with abort) adversary corrupts an arbitrary constant fraction of parties.

By leveraging tri-state circuits (Heath et al. Crypto 2023), we extend our protocol to the RAM
model of computation. For a RAM program that halts within T steps, our maliciously-secure
protocol communicates O(n · T log3 T log log T · κ) total bits, where κ is a security parameter.

1 Introduction

Secure multiparty computation (MPC) protocols enable mutually untrusting parties to securely run
arbitrary programs on their joint, private inputs. It is well known that MPC can be achieved using only
a constant number of protocol rounds by applying the garbled circuit (GC) technique [Yao86].

Typically, GC techniques garble Boolean circuits in a gate-by-gate fashion. Roughly speaking, each
gate is encoded as a simple encryption of the rows of that gate’s truth table. These rows are encrypted us-
ing symmetric-key methods, based either on a PRG or a hash function/random oracle (RO). This means
that the garbling of each gate is a string of length O(κ), where κ is a security parameter corresponding
to the length of symmetric keys.

Multiparty Garbling. GC is most commonly used in the two party setting, but a line of works, start-
ing with [BMR90], uses GC to achieve MPC for an arbitrary number of parties n. Roughly speaking,
the [BMR90] protocol uses an MPC protocol to garble a circuit in a preprocessing phase. This jointly
garbled circuit can then be evaluated in a constant number of rounds, completing the protocol. A key
observation is that all of the circuit’s gates can be garbled in parallel, so the distributed garbling also
runs in a constant number of rounds. Thus, the protocol achieves constant-round MPC for any number
of parties.

A näıve variant of [BMR90] would use the preprocessing protocol to evaluate cryptographic primitives
inside MPC, an impractical1 non-black-box use of cryptography. Amazingly, [BMR90] showed that non-
black-box cryptography is unnecessary; each of the n parties can call a PRG locally, and yet they jointly
garble a single circuit. An undesirable side-effect of this black-box approach to distributed garbling is
that the garbling of each Boolean gate blows up to a string of length O(n2 · κ).
⋆ UIUC, email: daheath@illinois.edu

⋆⋆ Georgia Tech, email: kolesnikov@gatech.edu
⋆ ⋆ ⋆ UCLA, email: varunnkv@gmail.com

† UCLA, email: rafail@cs.ucla.edu
‡ UCLA, email: akashshah08@g.ucla.edu
1 Recently, [BEBB+24] showed that non-black-box garbling can be improved by employing MPC-friendly
PRFs [DGH+21]. Even with such PRFs, the non-black-box technique only outperforms black-box methods
when there are a large number of parties, and MPC-friendly PRFs are far less studied than standard PRFs.



Protocol Built on Free XOR RAM Bits per gate

[LPSY15] SHE, ZKPoPK ✗ ✗ O(n4 · κ)
[LSS16] SHE, ZKPoPK ✗ ✗ O(n3 · κ)
[HSS20] OT, RO ✓ ✗ O(n2 · κ)
[WRK17b] OT, RO ✓ ✗ O(n2 · κ)
[BCO+21] LPN ✓ ✗ O(n · κ)
[BGH+23] LPN ✗ ✗ O(κ)
[GGMP16] OT ✗ ✓ unspecified
[GLM+24] DDH ✗ ✗ O(n · κ)
Ours OT, RO ✓ ✓ O(n · κ)

Table 1: Constant-round MPC protocols with malicious security. [BCO+21,BGH+23] encrypt gates with
LPN, so their gate encryptions are concretely large.

Malicious Multiparty Garbling. Despite its quadratic scaling, the [BMR90] protocol is surprisingly ef-
ficient in the semi-honest model. However, the natural elevation to the malicious model by generic
application of ZK proofs [GMW87] is expensive. Subsequent works improved maliciously-secure garbled-
circuit-based MPC [LPSY15,LSS16,HSS20], culminating in the work of [WRK17b], which showed how
to use lightweight preprocessing (refined by [YWZ20]) to achieve a distributed garbled circuit whose
asymptotic size matches that of the original [BMR90] result: O(n2 · κ) bits per gate (see Table 1).

Of course, it is desirable to further reduce the cost of the multiparty garbling by reducing scaling in
the number of parties n. In search of this, prior work replaced straightforward encryptions of gates based
on a PRG or RO by encryptions based on the learning parity with noise (LPN) assumption [BCO+21],
or, more recently, based on DDH [GLM+24]. [BGH+23] showed that by using LPN it is even possible
achieve scaling independent of the number of parties, when a broadcast channel is available.

While these results are asymptotically excellent, they forgo the efficiency of simple PRG/RO-based
encryption. LPN-based encryption requires long keys, resulting in large truth table encryptions. This
cost manifests in high constant factors: for instance, although [BGH+23] asymptotically improves over
[WRK17b] by factor n2 (given broadcast channels), the size of their distributed garbled circuit breaks
even with that of [WRK17b] only when there are close to 300 MPC participants. Thus, it remains
interesting to explore multiparty garbled circuit techniques that scale well with small concrete costs.

We are interested in achieving the best of both worlds: linear in n complexity over point-to-point
channels, while relying only on concretely-cheap RO-based encryption.

Multiparty Garbled RAM. Many programs compile to large Boolean circuits, leading to impractical
garbled-circuit-based handling. Garbled RAM (GRAM) extends garbling to the random access ma-
chine model of computation, allowing to efficiently handle a broader variety of programs in constant
rounds [LO13]. The objective of GRAM is to construct a garbled program that scales only quasilinearly
in the runtime T of the cleartext RAM program.

While Garbled RAM in the two-party setting has enjoyed significant atten-
tion [GHL+14,GLO15,GLOS15,CH16,CCHR16,LO17,HKO22,PLS23,HKO23], multiparty variants
of GRAM are not well explored. [GGMP16] demonstrated malicious multiparty GRAM, but theirs is a
feasibility result; the authors make no efficiency claims, other than that they achieve quasilinear scaling
in T . Formally, their cost is O(T · poly(n, log T, κ)). To our knowledge, no subsequent work improved
this result, and it is crucial to consider multiparty GRAM with complexity that is more practical.

1.1 Our Contribution

We construct a novel maliciously-secure MPC protocol that runs in constant rounds and where the total
communication complexity is O(n · κ) bits per gate. Our protocol is secure against an adversary that
statically corrupts up to n(1− ϵ) parties, for any constant fraction ϵ > 0. We prove our protocol secure
assuming OT and a random oracle (RO).

Malicious MPC state-of-the-art comprises two protocols: [BGH+23] (constant in n over broadcast
channels but concretely expensive; they require an honest majority), and [GLM+24] (O(n) but concretely
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efficient and supports n− 1 corruptions). We improve performance over both. At n = 256, our garbled
circuit (resp. total) communication is 13.5× (resp. 1.76×) better compared to [GLM+24]. Compared to
[BGH+23], our garbled circuit (resp. total) communication is 3.4× (resp. 28×) better for same value
of n. Our improvement over [WRK17b] grows with n; for n = 256, our garbled circuit (resp. total)
communication is 60× (resp. 20×) better.

By leveraging the tri-state circuit (TSC) model [HKO23], we additionally achieve malicious multi-
party garbled RAM with total communication cost O(n · T log3 T log log T · κ).

In sum, we achieve the following:

Theorem 1 (Informal). In the (RO+OT)-hybrid model, there exists a constant-round n-party MPC
protocol that is secure in the presence of a malicious (with abort) adversary that statically corrupts any
t ≤ n(1 − ϵ) parties, for ϵ > 0. The protocol supports computations expressed either (1) as Boolean
circuits, with communication cost O(n · κ) bits per gate, or (2) as RAM programs, with communication
cost O(n · T log3 T log log T · κ) bits for a RAM program terminating within T steps.

Our construction improves multiparty garbling for moderate numbers of parties (i.e., fewer than
many hundreds of parties) and allows to handle the expressive class of RAM programs.

1.2 Intuition

At the highest level, we build on the approach of [WRK17b] (or just WRK). Roughly speaking, the WRK
protocol encodes each circuit wire as a BDOZ-style secret sharing [BDOZ11]. Namely, for each pair of
parties i, j, party i holds a bit that is authenticated to party j. Because the WRK approach considers
each pair of parties i, j, its encodings of wire values naturally have length O(n2 ·κ) bits. In other words,
the WRK circuit invariant can be characterized as maintaining MACs of XOR shares. WRK carefully
arranges that these MACs can be treated as keys suitable to circuit garbling.

Our key observation is that the WRK invariant is stronger than what is needed to ensure security.
Rather than maintaining MACs of shares, we can maintain shares of MACs. That is, we can encode each
circuit wire as a simple XOR secret sharing of n MACs – one MAC per party.

With this change to WRK made, we can consider replacing XOR secret sharing by something more
efficient: packed secret sharing. The parties still share n MACs, but these MACs are now packed into
a constant number of polynomials over F2κ , and each party holds only one point per polynomial. This
compresses the encoding of each wire value to a string of length only O(n · κ) bits.

Executing on this simple intuition requires a substantial redesign of the protocol, especially of the
preprocessing step. The payoff is that the protocol uses encodings that are significantly smaller than
those in the WRK approach, asymptotically and concretely reducing communication complexity (see
comparisons with prior work in Section 1).

2 Preliminaries

Notation. We use κ and σ to denote the computational security parameter and statistical security

parameter respectively. We use = to denote equality,← to denote assignment, and
$←− to denote sampling

a uniform distribution. ∥ denotes concatenation. We consider finite field F = GF (2κ) and q = log |F|.
H : {0, 1}ℓ1 → {0, 1}ℓ2 denotes a random oracle whose input length (ℓ1(κ)) and output length (ℓ2(κ))
are defined based on the context of its application.

Let f denote an n-party function, and C denote a boolean circuit computing f . Let W and G denote
the set of wires and set of gates in the circuit C. An XOR gate g ∈ G with α and β as left and right
input wires and γ as output wire will be denoted as g = (α, β,⊕, γ); and AND gate g with α and β as
left and right input wires and γ as output wire as g = (α, β,∧, γ). The set of gates is partitioned into
G⊕ and G∧ which are, respectively, the set of all XOR and AND gates in C. Let Ii be the input wires
of Pi for each i ∈ {1, . . . , n}, W⊕ be the set of all outputs wires of G⊕, and W∧ be the set of all outputs
wires of G∧, and O be the set of output wires. Then, {Ii}ni=1,W⊕ and W∧ form a partition of W.

3



2.1 Security Model

We consider the standard notion of maliciously-secure n-party MPC with abort. Let P1, . . . , Pn denote
the n parties. We prove standalone security against a non-adaptive computationally-bounded malicious
adversary that corrupts up to t < n(1− ϵ) of the parties, for some ϵ > 0. For completeness, we describe
the model in detail in Appendix A.

2.2 Secret Sharing

We use additive secret sharing, Shamir secret sharing and packed Shamir secret sharing in our construc-
tions.

Definition 1. An n-party t-private perfect secret sharing scheme for message domain X is defined by a
sharing function Share : X×R→ S1×. . .×Sn and a reconstruction function Reconstruct : S1×. . .×Sn →
X satisfying the following properties:

Correctness. For any x ∈ X and r ∈ R, Reconstruct(Share(x, r)) = x.

Privacy. For any x, x′ ∈ X, and set A ⊂ [n] such that |A| ≤ t, the following distributions are identically
distributed:(

si : i ∈ A
∣∣∣r $←− R; (s1, . . . , sn)← Share(x, r)

)
and

(
si : i ∈ A

∣∣∣r $←− R; (s1, . . . , sn)← Share(x′, r)
)
.

Additive Secret Sharing. We denote additive secret sharing of x ∈ F by ⟨x⟩ and share of party Pi is
denoted by ⟨x⟩i.

Packed Shamir secret sharing (PSS). PSS was proposed by [FY92]. Consider a finite field F over
at least n + ℓ distinct points (e1, . . . , en, a1, . . . , aℓ). A degree-d PSS of a secret x = (x1, . . . , xℓ) in Fℓ

is a vector s = (f(e1), . . . , f(en)) in Fn where f(·) is a polynomial over F of degree at most d sampled
uniformly at random, subject to the constraint that f(ai) = xi for all i ∈ [ℓ].

In other words, Share algorithm of PSS distributes a share si to each party Pi such that, denoting
(e1, . . . , en) by e and (a1, . . . , aℓ) by a, f(a) = x, and f(e) = s. For the same reason as in standard
Shamir secret sharing, a collusion of t ≤ d− ℓ+ 1 parties learn nothing about the secret. On the other
hand, d+ 1 shares can be interpolated to reconstruct the secret x (Reconstruct algorithm).

Throughout this paper, we will only consider degree-(n−1) PSS that secret shares ℓ = (n− t) secrets
with t-security. We use [x] to denote a polynomial of degree at most n − 1 with the secret x stored at
coordinates a = (n + 1, . . . , n + ℓ). We abuse this notation to also denote the output of PSS sharing
algorithm, whenever the coordinates holding the shares are clear from context. The share of party Pi

is denoted by [x]i. For two secrets x1,x2 ∈ Fℓ, [x1] + [x2] denotes each party Pi locally adding their
respective PSS shares to obtain shares of [x1 + x2].

We use information-theoretic MACs to verify the authenticity of computation. For a given PSS [x],
we hold PSS of the form [Ψ · x], where Ψ ∈$ F is the MAC key.

2.3 Circuits

In this work, we consider two circuit models: boolean circuits and tri-state circuits (TSCs) [HKO23]. A
circuit C (boolean or tri-state) is represented as a list of 2-input, 1-output gates (α, β, γ, type), where α
and β are the identifiers of input wires, γ is the identifier of the output wire, and type denotes the gate
type. For a boolean circuit, type ∈ {⊕,∧}. Below, we recall the notion of TSC as introduced in [HKO23].
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Definition 2 (Tri-State Circuit (TSC) [HKO23]). A tri-state circuit is a list of gates
(α, β, γ, type), where gate type “type” is either XOR (⊕), buffer (/), or join (▷◁). A tri-state wire carries
a value in the set {0, 1,Z,✗}. Informally, Z denotes that a wire does not yet have a value, and ✗ denotes
an error. The gate semantics are defined as follows:

⊕ Z 0 1 ✗

Z Z Z Z ✗
0 Z 0 1 ✗
1 Z 1 0 ✗
✗ ✗ ✗ ✗ ✗

/ Z 0 1 ✗

Z Z Z Z ✗
0 Z Z 0 ✗
1 Z Z 1 ✗
✗ ✗ ✗ ✗ ✗

▷◁ Z 0 1 ✗

Z Z 0 1 ✗
0 0 0 ✗ ✗
1 1 ✗ 1 ✗
✗ ✗ ✗ ✗ ✗

Tri-state circuits allow cycles in their graph. I.e., the input to a particular gate can be defined by a later
gate. Inputs to the tri-state circuit are boolean-valued (i.e., in {0, 1}), and all other wires initially hold
Z. At each step of evaluation, an arbitrary gate is chosen and its output wire is updated such that it
is consistent with its gate function and its input wires. This continues until their are no further gates
whose evaluation would change the wires.

It will be convenient to consider a specific class of tri-state circuits which [HKO23] refer to as total
TSCs:

Definition 3 (Total TSC [HKO23]). Change the semantics of tri-state join gates such that they are
multidirectional. Namely, executing a join gate updates each of its connected wires to the value α ▷◁ β ▷◁ γ.
A tri-state C is considered total if after executing C on arbitrary input x, every wire in C has a boolean
value. We henceforth only consider tri-state circuits that are total.

The interesting property of tri-state circuits is that they can execute RAM programs [HKO23].
Namely, T steps of random access machine execution can be compiled to a quasilinear in T number
of tri-state gates. The key to this reduction is that tri-state circuit gates can execute in an order that
depends on the input; this is formalized by the arbitrary gate evaluation order in Definition 2.

Additionally, tri-state circuits can be garbled. The idea here is that the garbled circuit evaluator can
evaluate gates in the runtime-prescribed order. However, this requires leaking to the evaluator the order
in which gates should execute. To account for this, we consider oblivious tri-state circuits:

Definition 4 (Oblivious TSC [HKO23]). We refer to the “denominator” β of each buffer gate
(α, β, γ, /) as its control wire. Let controls(C, x) denote the collection of all control wire values in C
upon executing with input x. Let D denote a distribution on bitstrings. We say that a tri-state circuit
family {Ci : i ∈ N} and family of distributions {Di : i ∈ N} form an oblivious tri-state circuit if there
exists a simulator Simctrl such that for all inputs x the following ensembles are statistically close:

{controls(Cσ, (x; r)) : r
$←− Dσ} ≈ Simctrl(1

σ)

[HKO23] show that the order of execution of a tri-state circuit is implied by the configuration of
its “control wires” alone. For particular tri-state circuits with randomized input, it is possible to show
that these control wire values can be simulated, which implies that the garbled circuit evaluator learns
nothing about the true input from the order of execution. Note that in the malicious setting, the tri-
state circuit distribution Dσ must be jointly sampled by all parties as part of preprocessing. Here, it is
crucial that the considered distributions are “simple”. In this work, all distributions consist simply of
multiplication triples.

2.4 RAM Model of Computation and Connection to TSCs

We consider a standard word random access machine (word RAM). The considered machine runs for T
steps and has a memory where each memory cell has size w = Θ(log T ) bits. We assume that each basic
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instruction of the machine can be expressed by a Boolean circuit of size O(log2 T ); this is sufficient to
include instructions such as addition, multiplication, etc.

[HKO23]’s key contribution was to show that there exists a relatively small oblivious tri-state circuit
that achieves the behavior of such a machine. Specifically, there exists an oblivious tri-state circuit of size
O(T · log3 T · log log T ) that implements a word RAM. For our purposes, this means that it is sufficient
to achieve the semantics of tri-state gates. By achieving multiparty garbling of each tri-state gate at cost
O(n · κ), we as a corollary obtain multiparty garbled RAM with cost O(n · T log3 T log log T · κ).

2.5 Super Invertibility

We recall the notion of super invertibility below.

Definition 5 (Super Invertible Matrix). Let M ∈ Fn×m. For any H ⊂ {1, . . . , n} of size m, let
MH be the m×m dimensional sub-matrix defined by the rows H of M . The matrix M is super-invertible
if MH is invertible for every H ∈ {1, . . . , n} of size m.

Proposition 1. Suppose M ∈ Fn×m is a super-invertible matrix. Then, for any H ⊂ {1, . . . , n} of size
m and any fixing of vi ∈ F for each i ∈ {1, . . . , n}\H, when vi is uniformly and independently distributed
in F for each i ∈ H, (v1, . . . , vn) ·M is uniformly distributed in Fm.

3 Technical Overview

In this section, we present in sufficient low-level detail to understand our contribution. Subsequent
sections formalize our protocol.

We start by reviewing [WRK17b]’s multiparty garbling protocol. Recall from Table 1, WRK incurs
quadratic total communication in the number of parties n. As discussed in Section 1.2, rather than using
WRK’s MACs on shares approach, we instead simplify to shares of MACs. This change is crucial, as
it enables us to cleanly integrate packed secret sharing (PSS) into WRK. This results in a scheme for
multi-party authenticated garbling of boolean circuits whose communication scales linearly with n.

We extend this approach to tri-state circuits [HKO23], achieving multi-party authenticated GRAM.
The communication of this construction also scales linearly with n, so our GRAM incurs communication
cost O(n · log3 T · log log T · κ).

3.1 [WRK17b] Review

Readers familiar with details of WRK may choose to skip this subsection.

WRK introduces a multiparty garbling protocol where party P1 serves as the evaluator, and parties
P2, . . . , Pn act as garblers. The protocol maintains a key invariant: the evaluator learns the value on each
circuit wire masked by a random bit. To securely evaluate a circuit, the parties propagate this invariant
across circuit gates, and then they jointly decrypt the circuit output.

In more detail, WRK associates with each circuit wire w a random mask r(w). This bit r(w) is secret-
shared and authenticated to prevent a malicious adversary (even one who corrupts a majority of the
parties) from learning or tampering with r(w). To achieve this, WRK uses BDOZ-style secret sharing
[BDOZ11]. In BDOZ-style secret sharing, each party Pi holds a global MAC key ∆i ∈ {0, 1}κ. The
BDOZ-style sharing of a bit x comprises additive secret shares (x1, . . . , xn). In addition, each party Pi’s
share xi is authenticated to every other party Pj ̸=i, using the latter party’s MAC key ∆j . Specifcally, a
BDOZ-style secret sharing of x, which we denote by bdoz(x), has the following form:

bdoz(x)i = (xi, (Ki[xj ])j ̸=i, (Mj [xi])j ̸=i)
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Here, each Ki[xj ] is chosen uniformly from {0, 1}κ, and each Mj [xi] = Kj [xi] ⊕ xi∆j . It is easy to see
that BDOZ-style secret sharing is linearly homomorphic. Namely, if parties hold shares bdoz(x), bdoz(y),
and if they locally XOR their respective shares, they obtain a valid BDOZ-style sharing bdoz(x⊕ y).

WRK makes the important observation that, due to linear homomorphism, the same ∆i can be
re-used as both the MAC key for BDOZ-style authentication, as well as garbler Pi’s Free XOR correla-
tion [KS08].

During evaluation, WRK maintains the invariant that for an evaluated wire w holding logical value

x(w), evaluator P1 holds the masked true value ρ(w) = x(w)⊕ r(w) and all garblers’ MACs (X
(w)
i ⊕ ρ(w) ·

∆i)i ̸=1 authenticating ρ(w). Crucially, the mask r(w) hides logical value x(w) from P1, and the randomly

chosen X
(w)
i held by garbler Pi hides ρ

(w) ·∆i (and hence ∆i) from P1.

In short, WRK handles XOR gates “for free”, thanks to the linear homomorphism of its representation
of wire values. AND gates require that each garbler send to the evaluator an encryption of size O(nκ) bits.
Thus, each AND gate incurs a total communication cost of O(n2κ) bits. For completeness, Appendix B
provides a detailed explanation of WRK’s gate handling.

3.2 Replacing BDOZ-Style Sharings by Packed Secret Sharings

The BDOZ-style secret sharing of r(w) requires that each party save an authentication of each other
party’s additive share of r(w), using their global MAC. Hence, each party stores Ω(nκ) bits per wire
mask; consequently, each party’s garbling of an AND gate requires Ω(nκ) bits. However, we observe that
authenticating each party’s share to all other parties is not necessary. Instead, it suffices to authenticate
r(w) itself using every party’s MAC key.

The goal of authenticating r(w) is to prevent an adversary from erroneously flipping r(w), which
would consequently flip wire value x(w), compromising the protocol’s security. But, neither security nor

correctness of the protocol is affected by manipulations of shares (r
(w)
i )i∈[n] that leave r(w) unchanged,

although the WRK protocol would abort under such manipulations. This observation was previously
exploited in [KPR18].

Building on this observation, we replace the BDOZ-style secret sharing of the wire mask r(w) by
an authenticated secret sharing of (1) the value r(w) and (2) the authentication of r(w) by each party’s
MAC. In the authenticated sharing of r(w), denoted by sec(r(w)), Pi’s share is as follows (⟨·⟩ denotes an
additive secret-sharing over a field F, and ∆i is Pi’s MAC):

sec(r(w))i = (⟨r(w)⟩i, (⟨r(w) ·∆j⟩i)nj=1)

As in WRK, we maintain the invariant that for an evaluated wire w with logical value x(w), the
evaluator P1 holds the following:

ρ(w) = x(w) ⊕ r(w) and (X
(w)
i ⊕ ρ(w) ·∆i)i ̸=1,

Here, each X
(w)
i is a label held by garbler Pi. Garbling and evaluation closely follows WRK’s approach,

as the redefined secret-sharing sec is also linearly homomorphic. XOR gates are handled locally, and
AND gates are garbled similarly to as in WRK, by preprocessing multiplication triples of the following
form:

sec(r(α)), sec(r(β)), sec(r(α) · r(β))

Here, r(α), r(β) are the masks on input wires to an AND gate.

Note that we have not yet addressed the inefficient n2 scaling of WRK’s approach. This inefficiency
persists even with the redefined sharings sec(r(w)), since sec(r(w)) contains a sharing of each ∆i · r(w).
However, the above change makes it clearer that we can pack wire authentications together. Such packing
will come at the expense of reducing the corruption threshold to ensure a constant fraction of honest
parties, but it will greatly decrease communication cost.
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Specifically, the above secret-sharing consists of n additive shares of authentications; we replace these
by n/ℓ packed secret-sharings (PSS), where each packed secret-sharing holds authentications by ℓ distinct
MAC keys. (For simplicity, we assume ℓ divides n.) The use of PSS ensures security against corruption
of up to t = n−ℓ parties. When ℓ is a constant fraction of n, this results in a multiparty garbling scheme
with O(κ) sized garbling per party per gate.

Let ∆(χ) = (∆1+(χ−1)ℓ, . . . ,∆χℓ) for each 1 ≤ χ ≤ n/ℓ, and let [∆(χ) · r(w)] denote a packed secret

sharing of r(w) ·∆(χ), where the multiplication is the standard scalar-vector multiplication. Our new
sharings of wire masks r(w) are of the following form:

pack(r(w)) =
(
⟨r(w)⟩, ([∆(j) · r(w)])

n/ℓ
j=1

)
Additionally, each Pi holds a label X

(w)
i , and their share of a packing of these labels [X(w,χ)] for each

1 ≤ χ ≤ n/ℓ, whereX(w,j) = (X
(w)
1+(j−1)ℓ, . . . , X

(w)
jℓ ). For an evaluated wire w, our protocol also maintains

the invariant that P1 holds ρ(w) and X
(w)
i ⊕ ρ(w) ·∆i, for all i ̸= 1.

Interestingly, the garbling and evaluation procedures for these new forms is largely unchanged; we
present details of gate handling in Section 5. However, the preprocessing of appropriate multiplication
triples, needed to evaluate AND gates, becomes more sophisticated; see Section 3.4.

3.3 Multi-party Authenticated Garbled RAM

Recall that one of our goals in this work is to achieve malicious multiparty garbled RAM. The tri-state
circuit (TSC) model (see Section 2.3) provides a means by which to efficiently reduce RAM to a collection
of explicitly connected gates [HKO23].

The key attribute of TSCs is that their gates evaluate in data-dependent orders. Of course, this data
dependence could compromise security, so [HKO23] introduced the notion of an oblivious TSC. An
oblivious TSC is a randomized TSC circuit C that, in addition to the input x, also takes a string r of
random bits distributed according to a distribution D and outputs C(x, r). The randomness r ensures
that the order of execution of the gates can be simulated. [HKO23] showed that an oblivious TSC of
size O(T log3 T log log T ) can simulate T steps of any RAM program.

In general, the oblivious TSC definition allows arbitrary distributions D which, for us, would be
problematic, since, as we will discuss, the parties must sample D jointly. Fortunately, [HKO23] showed
that if the goal is to use an oblivious TSC to emulate RAM, then it suffices to consider a distribution D
consisting only of independent uniform bits and Beaver multiplication triples.

Our handling of oblivious TSCs many follows our handling of Boolean circuits, so we focus on the
differences. In our authenticated garbling of oblivious TSC (C,D), the garblers jointly garble of the
circuit C. They sample from distribution D using a preprocessing functionality.

By giving handling of each of the TSC gate types and appropriately incorporating preprocessing, we
show how to securely evaluate a TSC with cost O(nκ) bits per gate, and hence as a corollary we obtain
malicious multiparty garbled RAM at cost O(n ·T log3 T log log T ·κ). Section 6 expands on our handling
of TSCs.

3.4 Preprocessing the Correlations

To propagate our packed secret shares of authentications across gates, we will need appropriate prepro-
cessed randomness on each wire, and for AND gates we need a kind of preprocessed multiplication triple.
Moreover, these correlations need to be securely sampled with O(|C|) communication per party. Many of
the techniques needed for this preprocessing are known, but finding the right combination of techniques
and incorporating them with multiparty garbling is one of the more technically-involved aspects of this
work. We next present an overview of our preprocessing phase.
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In the main protocol, for each wire w that is not the output wire of an XOR gate, the bit mask r(w)

is to be sampled uniformly at random. To ensure free XOR, r(γ) is set to r(α)⊕ r(β) for every XOR gate
(α, β, γ,⊕). Further, for each AND gate σ = (α, β, γ,∧), r(σ) is set to r(α) ∧ r(β). Let D be correlation
among the bit masks corresponding to all the wires excluding the output wires of XOR gates and bit
masks corresponding to AND gates. In our construction, it suffices for the preprocessing stage to achieve
the following: distribute pack(r) for each bit mask in D; and for the output wire w of each AND gate,

deliver a randomly chosen label X
(w)
i to each Pi, and distribute PSS of X(w,χ) for each i ≤ χ ≤ n/ℓ,

where X(w,χ) = (X
(w)
1+(χ−1)ℓ, . . . , X

(w)
χℓ ). The latter can be achieved using an existing random secret

sharing protocol from the literature which requires amortized O(1) communication per party per wire.
The former is achieved in two steps. (i) securely sample bit masks according to the correlation D, and
distribute |D|/ℓ packed secret sharing, each secret sharing a fresh batch of ℓ bits in D; (ii) use the PSS
of bit masks to compute distribute pack(r(w) for each bit mask w.

To realize step (i), we first build an n-party circuit CD of size O(|C|) and constant depth that
effectively samples the bit masks {r(w)}w (embedded in the ambient characteristic 2 field) according
to the distribution D, and distributes SPDZ-style authenticated PSS of the bit masks; i.e., [r(ω)] and
[ϕ · r(ω)], where {r(ω)}ω is a batching of all the bits masks into vectors of length ℓ, and ϕ is a random
MAC key that is additively secret shared among the parties. The authentication of PSS prevents the
corrupt parties from tampering with their shares in step (ii) of the preprocessing. The step (i) is realized
by securely evaluating CD using a t-secure MPC protocol.

The next step is to compute pack(r(w) for each bit r(w) in D. This involves computing ∆i · r(w) for
each 1 ≤ i ≤ n: a computation requiring Ω(n|C|) multiplications, hence, cannot be realized within our
communication budget by securely evaluating an appropriately designed circuit since any such circuit
will be of size Ω(n|C|).

In this step, we ‘unpack’ [r(ω)] generated in step (i), and compute PSS r(w) ·∆(χ) for each bit mask
r(w) in D and ∆(i) = (∆1+(χ−1)ℓ, . . . ,∆χℓ) for each 1 ≤ χ ≤ n/ℓ. For this, every Pi and Pj engage

in a secure 2-party computation to compute an additive secret sharing of ∆i · [r(ω)]j where ∆i is Pi’s
randomly chosen global MAC. Using these additive shares, the parties obtain fresh PSS of [∆i · r(ω)] for
each ω and i. The next task is to reroute the secrets in {[∆i · r(ω)]}ω,i to obtain [∆(χ) · r(w)] for each
bit mask r(w) and χ. This is essentially a special case of network routing [GPS22]. For this we use an
observation about reconstructing sub-shares. If each Pi sub-shares their share in a scalar Shamir secret
sharing of a secret r ∈ F, and every party reconstructs the secret defined by the sub-shares they received,
then every party now holds a fresh re-sharing of r. Analogously in PSS, suppose each Pi sub-shares a
packed secret sharing of shares ([r(1)]i, . . . , [r

(ℓ)]i) where each [r(k)]i is Pi’s share in [r(k)] which secret
shares r(k) ∈ Fℓ, and every party reconstructs the secret vector defined by the sub-shares they received.

Then every party now holds their share in a fresh PSS of (r
(1)
j , . . . , r

(ℓ)
j ) for each 1 ≤ j ≤ ℓ.

Corrupt parties can sabotage the above approach in two ways: by providing incorrect and inconsistent
inputs during the 2-party computations, and by adding additive errors to the secret sharings in the
subsequent rounds. The latter effectively adds an additive error to the final output of every party which
does not affect the security of the multi-party garbling and circuit evaluation. However, the former can
sabotage the security of the protocol. To overcome this, we crucially use the fact that the step one
authenticated [r(ω)] with a SPDZ-style authentication [ϕ · r(ω)]. We use standard random consistency
checks to ensure that every corrupt party provided consistent inputs which preserve the secret shared
by every PSS in the 2-PC.

4 Preprocessing for Garbling of Boolean Circuits

In this section, we realize the preprocessing functionality FGBC-Pre described in Figure 4.1 that samples
the correlations required to carry out the garbling.

We follow the two step construction sketched in Section 3.4: (i) securely compute the mask correlation
D, and distribute |D|/ℓ PSS, each secret sharing a fresh batch of ℓ bits in D; (ii) use the PSS of bit
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masks to compute authenticated PSS of the masks, and, additionally, distribute the necessary random
labels and their PSS. At the end of the second step, we would have realized FGBC-Pre.

Public Input. Description of the circuit C.

1. Sample (r
(w)

w∈W\W⊕
, r

(g)
g∈G∧

)
$←− D. Map w ∈ G∧ ∪W \W⊕ to w ∈ {1, . . . , |G∧ ∪W \W⊕|} using Υ .

2. Sample ∆i
$←− F and send ∆i to party Pi, for each 1 ≤ i ≤ n.

3. For each 1 ≤ χ ≤ ⌈n/ℓ⌉, distribute PSS [∆(χ)]
$←− Share(∆(χ)), where ∆(χ) = (∆(1+(χ−1)ℓ), . . . ,∆(χℓ)).

4. For each 1 ≤ w ≤ |G∧ ∪W \W⊕|, distribute additive secret sharing ⟨r(w)⟩ $←− Share(r(w)), and PSS

[r(w) ·∆(χ)]
$←− Share(r(w) ·∆(χ)) for each 1 ≤ χ ≤ ⌈n/ℓ⌉.

5. For each 1 ≤ w′ ≤ |O ∪ I|, distribute additive secret sharing ⟨o(w
′)⟩ $←− Share(0).

6. For each 1 ≤ w′′ ≤ |G∧|, sample X
(w′′)
i

$←− F for each 1 ≤ i ≤ n; Send X(w′′)
i to each Pi, and distribute

PSS [X(w′′,χ)]
$←− Share(X(w′′,χ)) for each 1 ≤ χ ≤ n/ℓ, where X(w′′,χ) = (X

(w′′)
1+(χ−1)ℓ, . . . , X

(w′′)
χℓ ).

Corrupt Parties. Corrupt parties can choose their outputs and add an additive error to every secret sharing.

Fig. 4.1: Functionality FGBC-Pre

4.1 Generating Mask Correlation

We define a correlation D that describes the wire and gate masks required to generate the multiparty
garbling of C, and its XOR-free variant.

Definition 6 (Mask correlation). For each wire w ∈ W \ W⊕, choose r(w) uniformly and inde-
pendently from {0, 1}. Traverse C according to a topological ordering. Set r(γ) ← r(α) ⊕ r(β) for each
gate (α, β, γ,⊕) ∈ G⊕ and set r(γ) ← r(α) ∧ r(β) for each (α, β, γ,∧) ∈ G∧. The distribution D outputs
({r(w)}w∈W\W⊕ , {r(g)}g∈G∧).

For each w ∈ W \ W⊕, define W(w) = w. For each w ∈ W⊕, define W(w) ⊆ W \ W⊕ such that
r(w) = ⊕w′∈W(w)r(w

′) under the distribution D. The distribution D can be alternatively defined as

Pr

[
r(w) = b(w), ∀w ∈ W
r(g) = b(g), ∀g ∈ G∧

∣∣∣∣∣({r(w)}w∈W , {r(g)}g∈G∧

)
$←− D

]

= Pr

r(w) = b(w), ∀w ∈ W
r(g) = b(g), ∀g ∈ G∧

∣∣∣∣∣∣∣∣
r(w) $←− {0, 1}, ∀w ∈ W \W⊕

r(w) = ⊕w′∈W(w)r(w
′), ∀w ∈ W⊕

b(g) = r(α) ∧ r(β), ∀g = (∧, α, β, γ) ∈ G



Circuit for sampling the masked correlation. The circuit CD which samples authenticated PSS
of the masked correlation D is described in Figure 4.2. The circuit samples the bit masks according to
D, and distributes PSS [r(ω)] and [ϕ · r(ω)], where {r(ω)}ω is a batching of all the bits masks in D into
vectors of length ℓ, and ϕ is a randomly sampled MAC key that is additively secret shared among the
parties. The authentication of PSS is necessary to prevent the corrupt parties from tampering with their
shares in the secret shares distributed by this step during the next step of the preprocessing protocol.
CD also distributes authenticated PSS of a random x ∈ F which is also used in the checking phase of
the next step.

In D, for each w ∈ W \W⊕, r
(w) is a uniform bit. CD samples them as follows: CD expects each Pi

to provide r̂i such that (r̂1, . . . , r̂n) is a PSS of a random ℓ-bit string embedded in Fℓ. The circuit recon-
structs the secret (a linear operation) to obtain ℓ random bits. Repeating this sufficiently many times,
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CD obtains sufficiently many (purported) random bits. Indeed, each such r(w) is a uniform independent
bit if it belongs to {0, 1} ⊂ F; this membership can be verified with the check: r(w)(r(w) − 1) = 0. CD
outputs err as a random linear combination of the above checks computed for all the sampled values;
err is non-zero with overwhelming probability if at least one of the checks fail.

In D, for any AND gate g = (α, β, γ,∧), r(g) = (⊕(α)
w∈Wr(w)) ∧ (⊕(β)

w∈Wr(w)), where W(θ) ⊆ W \W⊕
for each θ ∈ {α, β}. Hence, CD can compute the remaining bits {r(g)}g∈G∧ using a depth 2 circuit.
The circuit then takes a random field element ϕi from each Pi and computes ϕ as its sum, effectively
additively secret sharing ϕ among the parties. It remains to distribute [r(ω)] and [ϕ ·r(ω)], where {r(ω)}ω
is a batching of all the bits masks into vectors of length ℓ. This is straightforward since the secret vector
and randomness can be mapped to the shares of the PSS using a linear transformation. The randomness
needed for PSS is obtained using a super-invertible matrix ensuring that (n− t) random field elements
can be extracted by taking one random element from each party. Along similar lines, the circuit also

computes [r(ω)] and [ϕ · r(ω)], where x
$←− Fℓ.

CD is t-secure, in that, the PSS distributed by CD are secure whenever the adversary corrupts at
most t among the n-parties evaluating the circuit. Further, the circuit uses O(|C| and gates and O(|C|/n)
field elements as inputs from each party. This is formalized in Lemma 1. Later, a t-secure MPC protocol
is used to securely evaluate CD resulting in t-securely sampling of all the PSS computed by the circuit.

Definitions. Define T = ⌈(|W \W⊕|+ |G∧|+ 1)/ℓ⌉. Let M ∈ Fn×ℓ be a super-invertible matrix. Let
Υ : (W \W⊕) ∪ G∧ → {1, . . . , |W \W⊕|+ |G∧|} be an enumeration such that for any w ∈ W \W⊕,
Υ (w) ≤ |W \W⊕|.
1. Receive ϕi for each Pi. Define ϕ =

∑
i ϕi.

2. For each 1 ≤ j ≤ ⌈(|W \W⊕|)/ℓ⌉, receive r̂(j)i ∈ F from each Pi. Interpret (r̂
(j)
1 , . . . , r̂

(j)
n ) as a PSS and

recover (r(1+(j−1)ℓ, . . . , r(jℓ)) as the secret vector.

3. Receive l̂
(j)
i ∈ F from each Pi and let (l(1+(j−1)ℓ), . . . , l(jℓ)) = (l̂

(j)
1 , . . . , l̂

(j)
n ) ·M for each

1 ≤ j ≤ ⌈|W \W⊕|/ℓ⌉. Set err =
∑|W\W⊕|

j=1 l(j) · r(j) · (r(j) ⊕ 1).

4. For each gate g ∈ G∧, when g = (α, β,∧, γ), define r(Υ (g)) =
(
⊕w∈W(α)rΥ (w)

)
∧
(
⊕w∈W(β)rΥ (w)

)
.

Finally, set r(|W\W⊕|+|G∧|+1) ← 1.
5. For each 1 ≤ j ≤ ⌈(2n+ (n− ℓ) · T ) /ℓ⌉, receive â(j)i ∈ F from each Pi. Let

(a(1+(j−1)ℓ), . . . , a(jℓ)) = (â
(j)
1 , . . . , â

(j)
n ) ·M.

6. For 1 ≤ ω ≤ T , let r(ω) = (r(1+(ω−1)ℓ), . . . , r(ωℓ)). Sample [r(ω)]
$←− Share(r(ω)) using

(a(1+(ω−1)(n−ℓ)), . . . , aω(n−ℓ)) as randomness.a I.e., using the appropriate Vander-Monde matrix V ,
compute

[r(ω)] = (r(1+(ω−1)ℓ), . . . , r(ωℓ), a(1+(ω−1)(n−ℓ), . . . , aω(n−ℓ)) · V.
7. Let a(j+1), . . . , a(j+n), for some j, be unused in the previous step, interpret (a(j+1), . . . , a(j+n)) as a PSS

[x].

8. Similarly, use fresh randomness to compute [ϕ · x] $←− Share(ϕ · x) and [ϕ · r(ω)]
$←− Share(ϕ · r(ω)) for each

1 ≤ ω ≤ T .
9. To each party Pi, send err, ϕi, [x]i, [ϕ · x]i, and [r(ω)]i and [ϕ · r(ω)]i for each 1 ≤ ω ≤ T .

a In the last iteration, pad (r(1+(T−1)ℓ, . . . , r(|W\W⊕|+|G∧|+1)) with unused a(k) to make it ℓ-dimensional

Fig. 4.2: Description of the circuit CD.

Lemma 1. Suppose (r̂
(j)
1 , . . . , r̂

(j)
n )

$←− Share(b(j)) where b(j)
$←− {0, 1}ℓ ⊂ F for each 1 ≤ j ≤ ⌈|W \

W⊕|/ℓ⌉. Let Pi, i ∈ M be a set of at most t = n − ℓ parties. Suppose each Pi, i /∈ M chooses each r̂
(j)
i

as defined above and the rest of the inputs uniformly at random. Then, for any fixing of the inputs of
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Pi, i ∈M, conditioned on err = 0, with all but 1/|F| probability, the outputs of CD are distributed as
ϕ,

[x], [ϕ · x],
{[r(ω)]}ω,

{[ϕ · r(ω)]}ω

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ
$←− F,x $←− Fℓ, [x]

$←− Share(x), [ϕ · x] $←− Share(ϕ · x),

{r(w)}1≤w≤|D|
$←− D, r(|D|+1) = 1, {r(w) $←− F}|D|+1<w≤ℓ⌈(|D|+1)/ℓ⌉,

r(ω) = (r(1+(ω−1)ℓ), . . . , r(ωℓ)), 1 ≤ w ≤ ⌈(|D|+ 1)/ℓ⌉

[r(w)]
$←− Share(r(w)), [ϕ · r(w)]

$←− Share(ϕ · r(w))

 .

Furthermore, CD has O(|C|) multiplication gates, receives O(|C|/n) inputs from each party, and provides
O(|C|/n) outputs to each party.

The proof of Lemma 1 is given in Appendix D.1.

Securely Evaluating Circuit CD\D⊕ . We use the SuperPack protocol (ΠSP) proposed in [EGP+23] to
securely compute circuit CD\D⊕ . The protocol makes use of programmable Multi-party Vector Oblivious

Linear Evaluation (VOLE) functionality, FnVOLE, and programmable OLE functionality, FProg
OLE , proposed

in [RS22] (see Appendix C for the description of these functionalities). Raichuri and Scholl [RS22] propose

instantiations of FProg
OLE and FnVOLE functionality that achieve sub-linear communication complexity in

the amount of preprocessed data in ΠSP construction based on variants of Ring-LPN/LPN assumption
[BCG+20,RS22]. We recall the result of [EGP+23] below.

Theorem 2. Let ϵ > 0 be a constant. For an arithmetic circuit C that computes an n-ary functionality
F , there exists an n-party protocol that computes C with computational security against a fully mali-
cious adversary who can control t ≤ n(1 − ϵ) corrupted parties with O(|C|n) total communication in

{FProg
OLE ,FnVOLE}-hybrid.

We highlight that using the SuperPack protocol to securely evaluate CD\D⊕ , the required Ring-
LPN/LPN instances are sublinear in circuit size |C|, whereas the constructions in [BCO+21] and
[GLM+24] respectively require Θ(|C|) LPN and DDH tuples.

ΠSP [EGP+23] uses instantiations of FProg
OLE and FnVOLE from [RS22], as they incur communication

that is sublinear in the size of the circuit. We observe that calls to the FProg
OLE and FnVOLE functionalities

can be replaced by calls to standard OLE correlations FOLE (see Figure C.2) and FnVOLE (see Figure C.5).
FnVOLE can be instantiated using FOLE. In turn, FOLE can be constructed using standard OT correlations
that are based on more standard assumptions.

The total communication complexity of the construction is still O(n|C|) with this modification. We
formalize it below.

Theorem 3. Let ϵ > 0 be a constant. For an arithmetic circuit C that computes an n-ary functionality
F , there exists an n-party protocol that computes C with computational security against a fully malicious
adversary who can control t ≤ n(1− ϵ) corrupted parties with O(|C|n) total communication and O(|C|n)
OLE correlations.

4.2 Preprocessing Protocol ΠGBC-Pre

We use the authenticated PSS of bit masks from step 1 to realize the preprocessing functionality in
the (Fmpc,F2pc,Frv)-hybrid model. The functionality Fmpc takes an n-party circuit as public input,
and securely evaluate it on the inputs provided by the parties. Similarly, F2pc takes a 2-party circuit
as public input, and securely evaluate it on the inputs provided by a pair of parties. The functionality

Frv effectively samples (r1, . . . , rn)
$←− Fn, delivers ri to each Pi and distributes PSS [r(χ)] where r(χ) =

(r(1+(χ−1)ℓ), . . . , r(χℓ)) for each 1 ≤ χ ≤ n/ℓ. The resulting protocol ΠGBC-Pre is presented in Figures 4.3
and 4.4. The protocol follows the outline sketched in Section 3.4.

The full proof of Theorem 4 appears in Appendix D.3.
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Definitions. Define T = {1, . . . , ⌈(|(W \W⊕)|+ |G∧|+ 1)/ℓ⌉}
1. Invoke Fmpc to compute the circuit CD described in Figure 4.2. The input of each Pi to CD is chosen as

follows:
a. Each Pi distributes {[s(j,i)]

$←− Share(b(j,i)) where b(j,i)
$←− {0, 1}ℓ ⊂ Fℓ for each

1 ≤ j ≤ ⌈|W \W⊕|/k⌉.
b. Define r̂

(j)
i = [r̂]i when [r̂] =

∑n
i=1[s

(i)]. All the remaining inputs uniformly and independently from F.
The parties receive their respective shares of {[r(ω)], [ϕ · r(ω)]}ω∈T , [x] and [ϕ · x]. Additionally, each Pi

receives ϕi and err.

2. Each Pi samples ∆i
$←− F, Ψi

$←− F, λi
$←− F and αi

$←− F.
3. Every pair of parties Pi, Pj use F2pc to realize the functionality that takes inputs

([x]k, [ϕ · x]k, {[r(ω)]k, [ϕ · r(ω)]k}ω∈T ,∆k, ϕk, αk, Ψk) from Pk, k ∈ {i, j} and distributes the following
2-wise additive secret sharings to Pi and Pj :
- ∆k · [r(ω)]k′ for each ω ∈ T and (k, k′) ∈ {(i, j), (j, i)};
- Ψk · [r(ω)]k′ and Ψk · [ϕ · r(ω)]k′ for each ω and (k, k′);
- Ψk · [x]k′ , Ψk · [ϕ · x]k′ , Ψk ·∆k′ , Ψk · ϕk′ , Ψk · λk′ and Ψk · αk′ for each (k, k′).
Henceforth, we will denote the additive secret sharing between Pi and Pj of ∆i · [r(ω)]j by
⟨∆i · [r(ω)]j⟩{i,j}, of Ψi ·∆j by ⟨Ψi ·∆j⟩{i,j}, and so on.

4. For each ω ∈ T :
5. Pi sets si,i ← [r(ω)]i ·∆i, and each Pj , j ̸= i sets si,j ← ⟨[r(ω)]j ·∆i⟩{i,j}j . Further, Pi sets s

′
i,i ← 0

and s′i,j ← ⟨[r(ω)]j ·∆i⟩{i,j}i for each j ̸= i.

6. Pi samples (o1, . . . , on)
$←− Share(0ℓ), and sends s′′i,j = s′i,j + oj to each Pj .

7. Each Pj , 1 ≤ j ≤ n sets [r(ω) ·∆i]j ← si,j + s′′i,j .

8. For each ω ∈ T and 1 ≤ χ ≤ n/ℓ:
9. Each Pi distributes (s

(i)
1 , . . . , s

(i)
n )

$←− Share(([r(ω) ·∆1+(χ−1)ℓ]i, . . . , [r
(ω) ·∆χℓ]i)).

10. Each Pi interprets (s
(1)
i , . . . , s

(n)
i ) as a PSS and reconstructs the secret vector u ∈ Fℓ. Pi stores uj

(1 ≤ j ≤ ℓ) as its share [∆(χ) · r(ω)
j ]i of [∆

(χ) · r(ω)
j ] = [∆(χ) · r(j+(ω−1)ℓ)] where

∆(χ) = (∆(1+(χ−1)ℓ), . . . ,∆(χℓ)).

11. For each ω ∈ T :
12. Each Pi sends a

(i)
j

$←− F to Pj , j ̸= i and sets a
(i)
i = [r(ω)]i −

∑
j ̸=i a

(i)
j .

13. Each Pi interprets (a
(1)
i , . . . , a

(n)
i ) as a PSS and reconstructs the secret vector u ∈ Fℓ. Pi stores uj as

its additive share in ⟨r(ω)
j ⟩ = ⟨r

(j+(ω−1)ℓ)⟩ for each 1 ≤ j ≤ ℓ.
14. For each 1 ≤ ω′ ≤ ⌈|(I|+ |O|)/ℓ⌉:
15. Each Pi shares [o

(ω′,i)]
$←− Share(0ℓ).

16. Define [o(ω′)] =
∑n

i=1[o
(ω′,i)]. Each Pi distributes additive secret sharing ⟨[o(ω′)]i⟩.

17. Each Pi interprets (⟨[o(ω′)]1⟩i, . . . , ⟨[o(ω′)]n⟩i) as a PSS, reconstructs the shared vector as

(⟨o(1+(ω′−1)ℓ)⟩i, . . . , ⟨o(ω
′ℓ)⟩i).

18. For 1 ≤ w′′ ≤ |W∧|: parties invoke Frv. Each Pi receives X
(w′′)
i and their share of [X(w′′,χ)] for each

1 ≤ χ ≤ n/ℓ.

Fig. 4.3: Protocol ΠGBC-Pre
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// Description of ΠMAC continued...

19. Each Pi broadcasts abort if err received in step 1 is non-zero.

20. Each Pi broadcasts λi and ϕi, and sends ⟨Ψj · λi⟩{i,j}i and ⟨Ψj · ϕi⟩{i,j}i to each Pj , j ̸= i.

21. Each Pi checks if, for each j ̸= i, ⟨Ψj · λi⟩{i,j}i + ⟨Ψj · λi⟩{i,j}j = λj · Ψi and

⟨Ψj · ϕi⟩{i,j}i + ⟨Ψj · ϕi⟩{i,j}j = ϕj · Ψi. If check fails for any j, Pi broadcasts abort; else sets λ =
∑n

j=1 λj

and ϕ =
∑n

j=1 ϕj .

22. Each Pi broadcasts [u]i = λ|T |+1 · [x]i +
∑

ω∈T λ
ω · [r(ω)]i, and

[ϕ ·u]i = λ|T |+1 · [ϕ · x]i +
∑

ω∈T λ
ω · [ϕ · r(ω)]i. We stress that, here, λω is “λ raised to the power of ω”.

23. Each Pi sends to Pj , 1 ≤ j ≤ n, ⟨Ψj · [u]i⟩{i,j}i = λ|T |+1 · ⟨Ψj · [x]i⟩{i,j}i +
∑

ω∈T λ
ω · ⟨Ψj · [r(ω)]i⟩{i,j}i ,

and ⟨Ψj · [ϕ · u]i⟩{i,j}i = λ|T |+1 · ⟨Ψj · [ϕ · x]i⟩{i,j}i +
∑

ω∈T λ
ω · ⟨Ψj · [ϕ · r(ω)]i⟩{i,j}i .

24. Each Pi holding Ψi, [x]i and ⟨Ψj · [r(ω)]i⟩{i,j}i validate uj by checking if

Ψi · [u]j = ⟨Ψi · [u]j⟩{i,j}j + λ|T |+1 · ⟨Ψi · [x]j⟩{i,j}i +
∑

ω∈T λ
ω · ⟨Ψi · [r(ω)]j⟩{i,j}i and similarly checks the

validity of [Ψi · u]j for each j ̸= i. If any check fails Pi broadcasts abort; else Pi reconstructs the vectors û
and v̂ shared by [u] and [ψ · u], respectively. If ϕ · û ̸= v̂, Pi broadcasts abort.

25. Each Pi broadcasts ∆i + λ · αi, and sends ⟨Ψj ·∆i⟩{i,j}i + λ · ⟨Ψj · αi⟩{i,j}i to each Pj , j ̸= i.
26. Each Pi checks if, for each j ̸= i,

⟨Ψi ·∆j⟩{i,j}i + ⟨Ψi ·∆j⟩{i,j}j + λ · ⟨Ψi · αj⟩{i,j}i + λ · ⟨Ψi · αj⟩{i,j}j = Ψi(∆j + λ · αj). If check fails for any
j, Pi broadcasts abort.

27. Each Pi outputs ∆i; its share in ⟨r(w)⟩ and [r(w) ·∆(w,χ)] for each 1 ≤ w ≤ |G∧ ∪W \W⊕| and χ; its
share in ⟨o(w

′)⟩ for 1 ≤ w′ ≤ |I ∪ O|. X(w′′)
i and its share in [X(w′′,χ)] for each 1 ≤ w′′ ≤ |G∧|; Define

t = |G⊕ ∪W \W⊕|+ 1. Since r(t) = 1; Pi stores [r
(t) ·∆(χ)] as [∆(χ)] for each χ.

Fig. 4.4: Protocol ΠGBC-Pre (Continued)

Theorem 4. The protocol ΠGBC-Pre realizes FGBC-Pre with statistical t ≤ (n − ℓ)-security in the
(Fmpc,F2pc,Frv)-hybrid model, where ℓ = nϵ and ϵ > 0.

Proof Sketch. We will first establish that the protocol realizes FGBC-Pre with perfect t-security in the
semi-honest setting, and then argue that the protocol continues to be statistically secure in the presence
of a malicious adversary.

It is easily verified that, at the end of step 7, the parties hold securely sampled PSS [∆i · r(ω)] for
each ω and 1 ≤ i ≤ n. We claim, the vector u computed by Pi in step 10 of iteration ω and χ is such

that uj is Pi’s share of a fresh t-secure PSS of r
(ω)
j ·∆(χ). Let {l(j)k ∈ F}1≤k≤n be the linear operator

reconstructing coordinate j of the ℓ-length vector secret shared using PSS. Then,

uj =
∑

k l
(j)
k · s

(k)
i =

∑
k l

(j)
k · [([r(ω) ·∆1+(χ−1)ℓ]k, . . . , [r

(ω) ·∆χℓ]k)]i

= [(
∑

k l
(j)
k · [r(ω) ·∆1+(χ−1)ℓ]k, . . . ,

∑
k l

(j)
k · [r(ω) ·∆χℓ]k)]i.

But,
∑

k l
(j)
k · [r(ω) ·∆1+(χ−1)ℓ]k = r

(ω)
j ·∆1+(χ−1)ℓ and so on. Hence, uj is the the i-th share of a fresh

secret sharing of (r
(ω)
j ·∆1+(χ−1)ℓ, . . . , r

(ω)
j ·∆χℓ). Correctness is ensured by the fact that the bit masks

are sampled according to D and, when k = |G∧ ∪W \W⊕|+ 1, r(k) = 1 and hence r(k) ·∆(χ) = ∆(χ).

Steps 11-13 additively secret share r
(ω)
j for 1 ≤ j ≤ ℓ in iteration ω, and steps 14-17 sample ℓ additive

secret shares of 0 in each iteration. This can be proved along the lines of the previous argument.

We next argue that the protocol is statistically t-secure against malicious adversary with abort.
Maliciously corrupt parties can sabotage the protocol by (i). providing invalid inputs to CD during
the Fmpc invocation in step 1; (ii). providing incorrect value of [r(ω)]i or inconsistent values for ∆i in
F2pc invocations involving honest parties; and (iii). distributing secret shares of incorrect values in the
subsequent steps.

In step 1.a, the parties sample packed secret sharing of a random bit vector, to which the adversary
may add an additive error. But, in this setting, Lemma 1 guarantees that the output of Fmpc is correctly
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distributed with overwhelming probability conditioned on err (received by all parties) is zero; and parties
abort otherwise. Hence, attacks of type (i) can be ignored. Since all the steps after step 3 are linear, type
(iii) attack only applies an additive error to the output computed by the protocol, but the garbling and
evaluation steps are robust to such errors since all the wire masks are authenticated with every party’s
global MAC. Type (ii) attack is prevented by the consistency checks in steps 20-26. We elaborate:

We will show that the parties abort if a corrupt Pj uses inconsistent values for {[r(ω)]j}ω and [xj ]

across invocations of F2pc involving honest parties. Let s
(ω)
j,i be the purported value of [r(ω)]j for each ω,

and let s′j,i be the purported value of [x]j that Pj uses in the invocation of F2pc with honest Pi. Define

u = s′j,i +
∑

ω λω · s(ω)
j,i . Suppose Pj broadcasts ũ and sends ṽ to Pi as purported values of [u]j and

⟨Ψi · [u]j⟩{i,j}j , respectively. If ũ ̸= u, the check by Pi fails with probability 1/|F|. To see this, suppose

v′ = ⟨Ψi·s′j,i⟩
{i,j}
j +

∑
ω λω ·⟨s(ω)

j,i ⟩
{i,j}
j +δ for some δ ∈ F. Pi’s check succeeds only if Ψi·ũ = Ψi·u+Ψi·(ũ−u)

coincides with v′ + ⟨Ψi · s′j,i⟩
{i,j}
i +

∑
ω λω · ⟨s(ω)

j,i ⟩
{i,j}
i = δ+Ψi · (s′j,i +

∑
ω λω · s(ω)

j,i ) = δ+Ψi ·u. Here, we
used homomorphism of additive secret sharing under addition and scalar multiplication. These values
coincide with probability 1/|F| for any δ over the randomness of Ψi.

Using simpler variants of the same argument, it can be shown that each Pj uses consistent values
for ϕj , λj and ∆j across invocations of F2pc involving honest parties. Consequently, each corrupt Pj is
prevented from changing their choice of ϕj and λj . Thus ϕ and λ are uniformly random in F over the
random choices of honest parties.

Next, we argue that Pj sends the same purported value of {[r(ω)]j}ω and [xj ] to all honest parties.
The computation of [u]i as a function of λ is a polynomial of degree T . Hence, if Pj provides distinct
values as purported shares to honest Pi and Pi′ , the probability with which the corresponding values of
[u]i agree exaclty the probability with which the two polynomials agree on the randomly chosen point
λ; i.e., |T |/|F| = O(|C|)/|F|.

The above checks do not eliminate the possibility that the corrupt parties used incorrect (albeit
consistent) values for their shares in ({[r(ω)]j}ω, [x]j). This is ensured by checking that ϕ · û = v̂. Since ϕ
is random, the above check fails with overwhelming probability unless [r(ω)] defined by purported shares
that corrupt parties use in all F2pc invocations involving honest parties and shares of honest parties
indeed form a secret sharing of r(ω) for all ω. Finally, note that revealing {[u]i} reveal no information
about r(ω) since x is a purely random vector. Similarly, ∆i+λ ·αi reveals no information about ∆i.

5 Garbling Boolean Circuits

Figures 5.1 and 5.2 present the garbling scheme ΠGBC for any n-party circuit C that provides output only
to P1. In Appendix E.2, we discuss a straightforward extension of the construction to general circuits.

In Πgbc, P1 acts as the evaluator and P2, . . . , Pn act as garblers. The parties invoke the preprocessing
functionality FGBC-Pre (steps 1 of Figure 5.1). For each wire w ∈ W ∪W⊕, the parties receive an additive
secret sharing of the bit mask r(w) and its authentication using each party’s global MAC ∆i (also
provided by FGBC-Pre) packed together as [r(w) · ∆(χ)] for 1 ≤ χ ≤ n/ℓ. Each Pi will refer to their
authenticated share of r(w) comprising ⟨r(w)⟩i and {[r(w) ·∆(χ)]i}χ as pack(r(w))i. The preprocessing
also provides authenticated bit masks pack(r(g) associated with each AND gate g.

During evaluation, the protocol maintains the invariant that for an evaluated wire w holding logical
value x(w), evaluator can verifiably receive the masked value ρ(w) = x(w) ⊕ r(w), and all garblers’ MACs

(X
(w)
i ⊕ ρ(w) · ∆i)i ̸=1 authenticating ρ(w). In the input phase of the protocol (discussed later), this

invariant is induced on all the input wires. The garbling phase prepares multi-party garbling for each
gate so that the invariant can be propagated from the input wires to the output wire of each gate,
allowing the evaluator to propogate the invariant to the output wire. We now go over how the garbling
phase of ΠGBC:

15



XOR Gates. For an XOR gate (α, β, γ,⊕) with input wires α and β and output wire γ, we require
r(γ) = r(α) ⊕ r(β). To ensure this, in the garbling phase, the parties locally set

pack(r(γ))← pack(r(α))⊕ pack(r(β)) = bdoz(r(α) ⊕ r(β)).

In addition, each garbler Pi sets X
(γ)
i ← X

(α)
i ⊕X

(β)
i .

The evaluator P1 holds ρ(θ) = x(θ) ⊕ r(θ) and (X
(θ)
i ⊕ ρ(θ) ·∆i)i ̸=1 for each input wire θ ∈ {α, β} by

the protocol’s invariant during the evaluation. P1 computes the output encoding simply as the XOR of
input encodings. I.e.,

ρ(γ) ← ρ(α) ⊕ ρ(β) X̃
(γ)
i ← (X

(α)
i ⊕ ρ(α) ·∆i ⊕X

(β)
i ⊕ ρ(β) ·∆i)i ̸=1.

Thus, ρ(γ) = (x(α) ⊕ x(β)) ⊕ (r(α) ⊕ r(β)) = x(γ) ⊕ r(γ), and X̃
(γ)
i = X

(γ)
i ⊕ ρ(γ) · ∆i, propagating the

invariant across XOR gates without any communication.

AND Gates. Consider an AND gate (α, β, γ,∧). Let ⊔ be a fixed additive secret sharing of 1 along with
its authentication using all global MACs. That is, ⊔ = (⟨1⟩, [∆(χ)]χ) where ⟨1⟩ is a fixed additive secret
sharing of 1. For all (m0,m1) ∈ {0, 1}2, the garblers locally prepare as

pack(r(γ,m0,m1))

← pack(r(σ))⊕ pack(r(γ))⊕m1 · pack(r(α))⊕m0 · pack(r(β))⊕ (m0 ∧m1) · ⊔
= pack((r(α) ∧ r(β))⊕ r(γ) ⊕ (m1 · r(α))⊕ (m0 · r(β))⊕ (m0 ∧m1))

= pack(r(γ) ⊕ (r(α) ⊕m0) ∧ (r(β) ⊕m1)). (1)

Using their share of pack(r(γ,m0,m1)) and {[X(w,χ)]}n/ℓχ=1 (provided by preprocessing), each garbler locally

computes their share of ⟨r(γ,m0,m1)⟩ and [X(w,χ) ⊕∆(χ) · r(γ,m0,m1)] for each χ. Then, each garbler Pi

prepares the garbling

G
(γ,m0,m1)
i = H(X

(α)
i ⊕m0 ·∆i, X

(β)
i ⊕m1 ·∆i)

⊕
(
⟨r(γ,m0,m1)⟩i, {[X(w,χ) ⊕∆(χ) · r(γ,m0,m1)]i}n/ℓχ=1

)
,

and sends it to the evaluator for each (m0,m1) ∈ {0, 1}2.

By eq. (5), pack(r(γ),ρ
(β),ρ(α)

) = pack(r(γ) ⊕ (x(α) ∧ x(β))) = pack(ρ(γ)). This allows P1 to decrypt

G
(γ,ρ(β),ρ(α))
i to obtain each garbler Pi’s share ⟨ρ(γ)⟩i and [X(γ,χ)⊕∆(χ)·ρ(γ)]i for each χ. After computing

its own shares of these secret sharings, P1 can recover ρ(γ), and X
(γ)
i ⊕ ρ(γ) ·∆i for each i ̸= 1, verify

the validity of ρ(γ) using ρ(γ) ·∆1 and then propogate the protocol invariant.

We next go over the input phase of ΠGBC in which the parties induce the invariant for each input

wire before the circuit evaluation begins. For each input wire w, each garbler Pi sets X
(w)
i uniformly

at random. If w takes input from Pi, parties use pack(r(w)) to reveal r(w) and r(w) · ∆i to Pi. Since,
r(w) ·∆i is packed with the authentication of r(w) by other ℓ − 1 parties, it is revealed after adding an
additive secret sharing of zero, which hides the other secrets in the PSS. Pi checks the validity of r(w)

using r(w) ·∆i and then broadcasts ρ(w) = r(w)⊕x(w) where x(w) is Pi’s input for wire w. Subsequently,

each garbler Pi computes and sends X
(w)
i ⊕∆i · ρ(w) to P1, establishing the invariant for the input wire.

In the output phase, the parties reveal r(w) and r(w) ·∆1 for each output wire w to Pi, who checks
their authenticity and output recover x(w) using ρ(w) it holds, and r(w). In fact, we will refrain from
sampling the labels altogether but for the output wires of AND gates forseeing this reassignment.

We give a formal proof of Theorem 5 in Appendix E.

We prove below Theorem in Appendix E. The proof closely follows the proof of security of the WRK
protocol.
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Preprocessing Phase
1. The parties invoke FGBC-Pre. Each Pi receives:

- (i) ∆i and their share of {[∆(χ)]}⌈n/ℓ⌉
χ=1 ;

- (ii) Their share of ⟨r(w)⟩ and {[r(w) ·∆(χ)]}⌈n/ℓ⌉
χ=1 , for each 1 ≤ w ≤ |G∧ ∪W \W⊕|;

- (iii) Their share of ⟨o(w
′)⟩ for each 1 ≤ w′ ≤ |O ∪ I|;

- (iv) X
(w′′)
i and their share of {[X(χ)]}⌈n/ℓ⌉

χ=1 , for each 1 ≤ w′′ ≤ |G∧|.
2. For each 1 ≤ h ≤ |(W \W⊕) ∪ G∧|, each Pi defines

pack(r(h))i =
(
⟨r(h)⟩i, {[∆(χ) · r(h)]i}[⌈n/ℓ⌉]

χ=1

)
.

Garbling Phase.

3. For each input wire w ∈ I, each Pi assigns X
(w)
i uniformly from F.

// Process each g ∈ G following a topological ordering:

4. If g = (α, β,⊕, γ), each Pi sets pack(r
(γ))i ← pack(r(α))i + pack(r(β))i, and X

(γ)
i ← X

(α)
i +X

(β)
i .

5. If g = (α, β,∧, γ), for each (m0,m1) ∈ {0, 1}2, each Pi locally defines

pack(r(γ,m0,m1))i

← pack(r(g))i + pack(r(γ))i +
(
⟨0⟩i, {[X(γ,j)]i}⌈n/ℓ⌉

j=1

)
+m1 · pack(r(α))i +m0 · pack(r(β))i + (m0 ∧m1)

(
⟨1⟩i, {[∆(j)]i}⌈n/ℓ⌉

j=1

)
where ⟨0⟩ and ⟨1⟩ are, respectively, fixed (non-random) publicly agreed secret sharing of 0 and 1; ⟨0⟩ can
simply be the all zero vector.

6. Each garbler i prepares a garbled table comprising of four ciphertexts G
(γ,m0,m1)
i , for (m0,m1) ∈ {0, 1}2,

using random oracle H as:

G
(γ,m0,m1)
i = H(X

(α)
i +m0 ·∆i, X

(β)
i +m1 ·∆i)⊕ pack(rγ,m0,m1)i. (2)

Each Pi sends each (G
(γ,m0,m1)
i ) to P1.

Fig. 5.1: Protocol ΠGBC
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Evaluation Phase.
Input Processing.

7. For each input wire w ∈ Ii of Pi, every Pj sends ⟨r(w)⟩j and ⟨o(w)⟩j ⊕ α(l,j) · [∆(k) · r(w)]j to Pi, where

l, k such that ∆(i) · r(w) = (∆(k) · r(w))l and (α(l,1), . . . , α(l,n)) is the reconstruction vector for
reconstructing ∆(i) · r(w) from [∆(k) · r(w)].

8. Pi reconstructs the purported values of r(w) and ∆(i) · r(w), and checks if they are consistent. If the check

passes, they broadcasts ρ(w) ← r(w) ⊕ x(w) to all parties, where x(w) is the input value. Otherwise, Pi

broadcasts abort.
9. Each garbler Pj sends X

(w)
j ⊕ ρ(w) ·∆j to P1.

Circuit Evaluation.
// P1 evaluates the circuit according to a topological order. This ensures that, when

evaluating any gate σ = (α, β,T, γ) ∈ C, P1 holds ρ(w) and {X(w)
i ⊕ (ρ(w)) ·∆i}i∈[2,n]

corresponding to input wires w ∈ {α, β}.
10. If T = ⊕, assign ρ(γ) ← ρ(α) ⊕ ρ(β) and, for each i ∈ [2, n],

(X
(γ)
i ⊕ ρ(γ) ·∆i)← (X

(α)
i ⊕ ρ(α) ·∆i)⊕ (X

(β)
i ⊕ ρ(β) ·∆i).

11. If T = ∧, for each i ∈ [2, n], recover

pack(r(γ,ρ
(α),ρ(β)))i = H(X(α,i) ⊕ ρ(α) ·∆i, X

(β,i) ⊕ ρ(β) ·∆i)⊕G(γ,ρ(α),ρ(β))
i .

Interpret the result as
(
⟨ρ(γ)⟩, {[X(γ,j) +∆(j) · ρ(γ)]}⌈n/ℓ⌉

i=1

)
. Reconstruct ρ(γ) and X

(γ)
j +∆j · ρ(γ) for

each 1 ≤ j ≤ n.
12. Using the known X

(γ)
1 and ∆1, check the consistency of the obtained ρ(γ), and X

(γ)
1 +∆1 · ρ(γ). If the

check fails, abort; else store ρ(γ) and X
(γ)
i ⊕∆i · ρ(γ) for each 2 ≤ i ≤ n.

Output Processing.

13. For each output wire w, every Pi sends to P1 the values ⟨r(w)⟩i and ⟨o(w)⟩i ⊕ α(1,i) · [∆(1) · r(w)]i, when

∆
(1)
1 = ∆1.

14. For each output wire w, using the received shares, P1 reconstructs purported values of r(w) and r(w) ·∆1,

and checks their consistency. If check fails, P1 aborts; else outputs x(w) = ρ(w) ⊕ r(w).

Fig. 5.2: Protocol ΠGBC (continued)
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Theorem 5. Let f be an n-party function with output only for P1, and let C be a Boolean circuit
computing f . The protocol ΠGBC described in fig. 5.1 and fig. 5.2 securely computes f in the FGBC-Pre-
hybrid and random oracle model with statistical t-security with abort, where t ≤ n − ℓ and ℓ ≥ ϵ · n for
any ϵ > 0.

The concrete communication cost of ΠGBC, during the preprocessing phase and the garbling phase
are computed in Appendix H and compared with state-of-the-art MPC protocols in Section 7.

Remark 1 (Use of Broadcast.). In the preprocessing and the garbling protocol, we have used broadcast
at several steps. These uses can be classified into two sets: use of broadcast by parties to report abort
just before premature termination as in steps 19, 21, 24 and 26 of ΠGBC-Pre, and steps 8, 12 and 14 of
ΠGBC; and use of broadcast to send the same message to all parties as part of the computation as in
steps 20, 22 and 25 of ΠGBC-Pre and step 8 of ΠGBC. The user may convince themselves that the former
type of broadcast can be replaced with the semi-honest broadcast: the party sending the message to
be broadcast separately to each party. However, the security of our constructions require that there is
consensus with abort even for messages from corrupt parties. In this case, we employ the two round
broadcast with abort which involves the sender sending the message separately to all parties, and all
parties echoing the message they received, incurring n2 communication per broadcast. We avoid the high
communication this demands by the echoing only a digest of a batch of broadcasts after hashing all the
broadcast message.

6 Garbling Tri-state Circuits

In this section, we construct a garbling scheme, called ΠGTSC-Pre, to garble (oblivious) tri-state circuits.
Formally, we achieve the following:

Theorem 6. Let (C,D) be an oblivious tri-state circuit, and D be an ensemble of beaver triples and uni-
form independent bits. The protocol ΠGTSC instantiated with C,D securely realizes (C,D) in the random
oracle model with computational t-security and selective abort, where t ≤ n − ℓ and ℓ ≥ ϵ · n, for any
ϵ > 0.

Theorem 6, combined with the result of [HKO23], implies the following:

Theorem 7 (Multi-party Garbled RAM). There exists a multi-party Garbled RAM scheme with
communication cost O(n · T log3 T log log T · κ) that achieves computational t-security with abort for
t ≤ n− ℓ, where ℓ ≥ ϵn, for any ϵ > 0 in the random oracle model.

Now, we describe our garbling of oblivious tri-state circuits. Section F.1 defines our preprocessing
functionality FGTSC-Pre, and Section F.2 presents our formal garbling scheme. We first start by porting
the handling of TSC gates to the multiparty setting, without PSS. Then, we show how to optimize
communication by applying PSS.

[HKO23] introduced a two-party authenticated garbling scheme for tri-state circuits. The garbler G
and evaluator E possess global MAC keys ∆1 and ∆2 respectively. Similar to [WRK17a], their construc-
tion maintains the invariant that, for a wire w carrying true value x(w), both G and E hold additive
secret shares of x(w) along with its authentication with the MAC keys of both parties. Specifically, G
and E maintain secret shares of x(w) · (1 ∥∆1 ∥∆2).

We generalize that invariant. Namely, as in our approach to Boolean circuits, each party Pi holds a
global MAC Key ∆i. For a wire w carrying a true value x(w), parties hold additive secret shares of x(w)

and its authentication with each party’s MAC key ∆i. That is, at runtime parties maintain an additive

secret-sharing of x(w) ·(1∥∆1 ∥· · ·∥∆n). Let X
(w)
i = (X

(w)
i,0 , X

(w)
i,1 . . . , X

(w)
i,n ) denote the share of party Pi.

Thus, ⊕iX
(w)
i,0 = x(w), and ⊕iX

(w)
i,j = x(w) ·∆j , ∀j ∈ {1, . . . , n}. Moreover, the share X

(w)
i of each garbler
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Pi ̸=1 is fixed statically. Whereas, the share X
(w)
1 of evaluator is decided at runtime. We next show how

we garble each of the tri-state circuit gates: XOR (⊕), buffer (/), and join (▷◁). The procedures closely
follow the 2-party garbling procedures of respective gates proposed in [HKO23]. We use ∆ to denote
(1 ∥∆1 ∥ · · · ∥∆n).

XOR Gate. For an XOR gate (α, β, γ,⊕), each party Pi holds X
(α)
i and X

(β)
i . Owing to linear homo-

morphism property of shares, to obtain X
(γ)
i , parties locally XOR shares X

(α)
i and X

(β)
i .

Buffer Gate. Consider a buffer gate γ ← β/α, where β is the data wire, α is the control wire, and γ is

the output wire. Based on the invariant, each party Pi holds shares X
(α)
i and X

(β)
i s.t. ⊕iX

(α)
i = x(α) ·∆

and ⊕iX
(β)
i = x(β) ·∆.

Recall from Section 2.3 that to correctly implement TSC semantics, the evaluator must learn the
order of execution of gates, which requires that the evaluator learn the cleartext value of each control
wire α. In the authenticated setting, we should be aware of two aspects: 1) The privacy of inputs of
party Pi ̸=1 is not compromised. Data privacy is maintained due to obliviousness of TSCs (see Section
2.3). 2) Malicious garblers should not be able to reveal incorrect value to evaluator P1 which is ensured
using MAC key ∆1.

As a first attempt to reveal a control bit to the evaluator (P1), each garbler Pi sends its XOR share of

x(α) and {X(α)
i,j }i ̸=j to P1. P1 computes2 Y

(α)
i = ⊕j /∈{1,i}X

(α)
j,i , for each i. P1 computes bit x(α) = ⊕ix

(α)
i

and x · ∆1 = X
(α)
1,1 ⊕ Y

(α)
1 . Thus, P1 can verify the authenticity of the reconstructed value. For every

i ∈ {2, . . . , n}, P1 can also compute Z
(α)
i = X

(α)
i,i ⊕ x(α) · ∆i = X

(α)
1,i ⊕ Y

(α)
i . It is not difficult to

confirm that revealing Z
(α)
i doesn’t compromise the security of the global MAC key ∆i of party Pi. But

we already see an inefficiency issue with this approach. That is, revealing control bit α requires total
communication of O(n2κ). Looking ahead, we address this concern via PSS.

Now, we consider how to garble the buffer gate itself. We first lay out an approach inspired by the
approach of [HKO23] in 2-party setting. Later in this section, we observe a concern that limits the
efficient applicability of PSS to this approach, and thus, outline an alternative approach.

Each garbler Pi sets X
(γ)
i ← H(X

(α)
i,i ⊕∆i)⊕X

(β)
i , where H : {0, 1}κ → {0, 1}nκ+1 is an RO. When

x(α) = 1, P1 holds Z
(α)
i = X

(α)
i,i ⊕∆i, ∀i ∈ {2, . . . , n}. P1 computes X

(γ)
1 ← ⊕n

i=2H(Z
(α)
i )⊕X

(β)
1 . This

computation is correct:

⊕n
i=1X

(γ)
i = ⊕n

i=2H(Z
(α)
i )⊕X

(β)
1 ⊕n

i=2 H(X
(α)
i,i ⊕∆i)⊕X

(β)
i

= ⊕n
i=1X

(β)
i = x(β) ·∆ = x(γ) ·∆.

Thus, when the control wire is live, i.e., x(α) = 1, the invariant holds for authenticated shares of the

output wire. Critically, P1 can compute its correct share X
(γ)
1 only when the output wire is live because

if x(α) = 0, Z
(α)
i ̸= Xα

i,i +∆i.

Join Gate. Consider a join gate g = {γ ← α ▷◁ β}. We construct the garbling of a join gate assuming
the evaluated tri-state circuit is total (see Section 2.3). For a wire w, this ensures that evaluator P1 never

obtains two shares consistent with both possible boolean values. I.e., P1 never holds two shares X̃
(α)
1,0

and X̃
(α)
1,1 such that X̃

(α)
1,0 ⊕n

i=2 X
(α)
i = 0 ·∆ and X̃

(α)
1,1 ⊕n

i=2 X
(α)
i = 1 ·∆.

The join gate fires even when only one of its input wires is defined. All garblers Pi set X
(γ)
i ← X

(α)
i .

The evaluator’s share X
(γ)
1 can only be determined during runtime. Depending on the active input wire,

we have two cases:

– If wire α is active, i.e., x(α) ̸= Z, Evaluator simply sets X
(γ)
1 ← X(α). Thus, the invariant holds for

the output shares, i.e., ⊕n
i=1X

(γ)
i = x(α) ·∆ = x(γ) ·∆.

2 While not essential to this approach, it is useful to abstract the value Y
(α)
i to apply optimization using PSS.
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– If wire β is active and α is not (i.e., x(β) ̸= Z and x(α) = Z), evaluator holds X
(β)
1 = ⊕n

i=2X
(β)
i ⊕

x(β) · ∆. Each garbler Pi sends X
(g)
i = X

(α)
i ⊕ X

(β)
i to P1. P1 computes X

(γ)
1 ← X

(β)
1 ⊕n

2=1 X
(g)
i ,

resulting in a correct share:

⊕i∈[n]X
(γ)
i = X

(β)
1 ⊕n

i=2 X
(g)
i ⊕n

i=2 X
(α)
i

= X
(β)
1 ⊕n

i=2

(
X

(α)
i ⊕X

(β)
i

)
⊕n

i=2 X
(α)
i

= ⊕n
i=1X

(β)
i = x(β) ·∆ = x(γ) ·∆.

Thus, garbling a join gate requires O(n2κ) communication.

Optimization using PSS. As mentioned above, the main inefficiencies of our TSC handling come
from (1) the need to reveal control bits to the evaluator and (2) the handling of join gates. In short, we
optimize both inefficiencies by compressing the representation of authentications via PSS.

However, the switch to PSS introduces nuance with the handling of buffers: The shares held by
garblers at the output of buffers are not compatible with PSS, because those shares are computed by a
random oracle H. Thus, we design alternative buffer gate handling where each garbler sends a translation
table of length O(κ). With this change, the asymptotic gate complexity remains linear in n. We now
present our handling of PSS-based TSC handling in more detail.

For a wire w, for each i ̸= 1, Pi holds:

t-pack(x(w))i =
(
⟨x(w)⟩i,K(w)

i , {[Y(w,χ)]i}c=⌈n/ℓ⌉
χ=1

)
,

and P1 holds:

t-pack(x(w))1 =
(
⟨x(w)⟩1,K(w)

1 , {M (w)
j }nj=1, {[Y(w,χ)]1}c=⌈n/ℓ⌉

χ=1

)
,

where Y(w,χ) = (Y
(w)
1+(χ−1)ℓ, . . . , Y

(w)
χℓ ), ∀χ ∈ {1, · · · , c}. The construction maintains the invariant that,

x(w) = ⊕n
i=1⟨x(w)⟩i and K

(w)
i ⊕ Y

(w)
i ⊕M

(w)
i = x(w) ·∆i, for each i ∈ {2, . . . , n}.

XOR. Due to PSS’s linear homomorphism, XOR gates remain free.

Buffers. To garble buffer gate g = {γ ← β/α}, each garbler Pi sends ⟨x(α)⟩i and shares {[Y(α,χ)]i}cχ=1

to P1. P1 reconstructs x(α) and each Y(α,χ), then verifies that x(α) ·∆1 = K
(α)
1 ⊕ Y

(α)
1 ⊕M

(α)
1 . It can

also compute Z
(α)
i = K

(α)
i ⊕ x(α) ·∆i = M

(α)
i ⊕ Y

(α)
i .

Each garbler Pi samples K
(γ)
i and sets:

t-pack(x(γ))i ← t-pack(x(β))i ⊕ (0,K
(β)
i ⊕K

(γ)
i , {0}ck=1).

Additionally, each Pi sends G
(g)
i = H(K

(α)
i ⊕∆i)⊕K

(β)
i ⊕K

(γ)
i , where H : {0, 1}κ → {0, 1}κ is a random

oracle.

When x(α) = 1, P1 computes K
(β)
i ⊕K

(γ)
i ← H(Z

(α)
i )⊕G

(g)
i , for each i ∈ {2, . . . , n} and sets:

t-pack(x(γ))1 ← t-pack(x(β))1 ⊕ (0, 0κ, {0}i=1 ∥ (K(β)
i ⊕K

(γ)
i )ni=2, {0}ck=0).

One can observe that {t-pack(x(γ))i}i∈{1,...,n} is set such that x(γ) = x(β), and for each i ∈ {2, . . . , n},

K
(γ)
i ⊕ Y

(γ)
i ⊕M

(γ)
i = K

(γ)
i ⊕ Y

(β)
i ⊕

(
M

(β)
i ⊕ (K

(β)
i ⊕K

(γ)
i )

)
= K

(β)
i ⊕ Y

(β)
i ⊕M

(β)
i = x(β) ·∆i = x(γ) ·∆i.
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For i = 1,

K
(γ)
1 ⊕ Y γ

1 ⊕M
(γ)
1 = K

(β)
1 ⊕ Y β

1 ⊕M
(β)
1 = x(β) ·∆1 = x(γ) ·∆1. (3)

Thus, the invariant is maintained for the output wire γ. P1 can compute its correct share t-pack(x(γ))1
only when the output wire is live because if x(α) = 0, Z

(α)
i ̸= Kα

i +∆i.

Joins. For a join gate g = {γ ← α ▷◁ β}, parties invoke preprocessing functionality such that each party
Pi obtains t-pack(x

g)i for a random x(g). Each garbler Pi sets t-pack(x
(γ))i ← t-pack(x(g))i. Each garbler

sends G
(g,0)
i ← t-pack(x(g))i ⊕ t-pack(x(α))i and G

(g,1)
i ← t-pack(x(g))i ⊕ t-pack(x(β))i to P1.

If wire α is fired (if wire β is fired the protocol proceeds analogously), i.e., x(α) ̸= Z, P1 parses

each G
(g,0)
i as (⟨x(µ)⟩i,K(µ)

i , {[Y(µ,χ)]i}nχ=1). For each χ ∈ {1, . . . , c}, P1 computes [Y(µ,χ)]1 ← [Y(g)]1+

[Y(α,χ)]1. P1 reconstructs Y(µ,χ), ∀χ, where Y(µ,χ) = (Y
(µ)
1+(χ−1)·ℓ = Y

(g)
1+(χ−1)·ℓ + Y

(α)
1+(χ−1)·ℓ, . . . , Y

(µ)
χℓ =

Y
(g)
χℓ + Y

(α)
χℓ ). P1 sets its share as:

t-pack(x(γ))1 ← t-pack(x(α))1 ⊕ (⊕n
i=2⟨x(µ)⟩i, 0κ, {K(µ)

i ⊕ Y
(µ)
i }ni=1, {[Y(g,χ)]1}ck=1),

where K
(µ)
1 = 0κ. Now, let us verify that the invariant holds for shares {t-pack(xγ)i}i.

x(γ) = ⊕i⟨x(γ)⟩i = (⟨xα⟩1 ⊕n
i=2 (⟨xg⟩i ⊕ ⟨xα⟩i))⊕n

i=2 ⟨x(g)⟩i = ⊕n
i=1⟨x(α)⟩i = x(α).

For i ∈ [2, n],

K
(γ)
i ⊕ Y

(γ)
i ⊕M

(γ)
i = K

(g)
i ⊕ Y

(g)
i ⊕

(
M

(α)
i ⊕K

(µ)
i ⊕ Y

(µ)
i

)
= K

(g)
i ⊕ Y

(g)
i ⊕

(
M

(α)
i ⊕

(
K

(g)
i ⊕K

(α)
i

)
⊕
(
Y

(g)
i ⊕ Y

(α)
i

))
= K

(α)
i ⊕ Y

(α)
i ⊕M

(α)
i = x(α) ·∆i = x(γ) ·∆i.

For P1,

K
(γ)
1 ⊕ Y

(γ)
1 ⊕M

(γ)
1 = K

(α)
1 ⊕ Y

(g)
1 ⊕

(
M

(α)
1 ⊕ Y

(µ)
1

)
= K

(α)
1 ⊕ Y

(g)
1 ⊕

(
M

(α)
1 ⊕

(
Y

(g)
1 ⊕ Y

(α)
1

))
= K

(α)
1 ⊕ Y

(α)
1 ⊕M

(α)
1 = x(α) ·∆1 = x(γ) ·∆1.

In the formal presentation of the protocol in appendix F.2, we will apply further optimizations on the
approach sketched above.

7 Communication Cost Comparison with Prior Works

Garbling of Boolean Circuits. In this section, we compare the concrete communication cost of our
proposed multiparty authenticated garbling scheme ΠGBC (see Section 5) with protocols proposed in
[WRK17b,BGH+23,GLM+24]. We compare the total communication cost and size of garbled circuits of
ΠGBC in Table 2 with prior works for garbling of AES-128 circuit that comprises 6400 AND Gates and
28176 XOR Gates. The works of [WRK17b] and [GLM+24] are in the strict dishonest majority setting,
i.e., they support for t ≤ n − 1 corruptions. Whereas, [BGH+23] is in the honest majority setting and
we set t = (n − 1)/4 for their construction. Recall that our construction is in the dishonest majority
setting and we set the corruption threshold t = 2n/3 for our construction in the comparison. Also note,
we report the communication cost of [BGH+23] assuming broadcast channel.
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#Parties
Total Communication Size of Garbled Circuits

[WRK17b] [BGH+23] [GLM+24] Ours [WRK17b] [BGH+23] [GLM+24] Ours

8 0.16 254.5 0.47 0.89 23.44 1375 12.5 168.83
16 0.68 254.5 0.94 1.16 93.75 1375 25 337.66
32 2.75 254.5 1.89 1.69 375 1375 50 675.31
64 11 254.5 3.78 2.75 1500 1375 100 1350.62
128 44 254.5 7.57 4.87 6000 1375 200 2701.25
256 176 254.5 15.14 9.11 24000 1375 400 5402.5
512 704 254.5 30.27 17.61 96000 1375 800 10805
1024 2816 254.5 60.54 34.72 384000 1375 1600 21610
2048 11264 254.5 121.08 69.33 1536000 1375 3200 43220
4096 45056 254.5 242.17 140.07 6144000 1375 6400 86440

Table 2: Comparison of Total Communication (reported in GB) and Size of Garbled Circuits (reported
in MB) for varying values of n for garbling of AES-128 circuits.

Total Communication. From the table it can be observed that for small values of n, [WRK17b] is
the most performant among all the schemes. But as the value of n increases, we can see the impact
of quadratic factor in the performance of [WRK17b]. As expected the total communication cost of
[BGH+23] is independent of the number of parties. While it is evident that the performance of [GLM+24]
scales linearly in n. From n = 32 to n = 4096, our scheme has the least communication cost. For
instance, our scheme is 1.76×, 7.3×, and 81× more efficient than [GLM+24], [BGH+23], and [WRK17b],
respectively, for n = 512.

Size of Garbled Circuit. The table illustrates the quadratic, independency, and linear overhead of
number of parties in size of the garbled circuits of schemes [WRK17b], [BGH+23], and ([GLM+24] and
Ours), respectively. For n = 8 to n = 512, our scheme has the smallest garbled circuit. For instance, for
n = 128, the total size of our garbled circuit is 30×, 6.9× and 13.5× smaller than [WRK17b], [BGH+23]
and [GLM+24], respectively. From n = 1024 onwards, [BGH+23] is the most performant.

Break-even point with [BGH+23]. We observe that our scheme outperforms [BGH+23] in terms of
total communication for up to n > 7000 and in terms of size of garbled circuit for up to n ≈ 880. Despite
our construction scaling linearly in n, it outperforms [BGH+23] for a large range of n which further
demonstrates the practicality of our construction.
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A Detailed Security Model

In this work, we consider security with abort against a non-adaptive (static) computationally bounded
adversary. The security is defined in the real/ideal paradigm [Ode09], wherein security against an adver-
sary A is proved by producing an ideal adversary Sim (simulator) that can influence an ideal computation
carried out using a trusted third party (ideal functionality) as much as the influence of the adversary in
the real computation using the protocol.

Let Π be an n-party communication protocol computing an n-party function f . Let A be a non-
adaptive (static) computationally bounded adversary. In the following discussion, we define security of
Π against A with abort in the real/ideal paradigm. We first formally describe the real/ideal world, and
the trusted functionality modelling computation with abort:

Real World. In the real world, an adversary A chooses a set of partiesM to corrupt in the onset of Π.
The protocol is then executed after handing over the control of the corrupt parties to A and initializing
the uncorrupt (honest) parties H = [n] \M with their respective inputs and random tapes. If Π uses
a random oracle as resource, the parties and adversary are given access to the random oracle as well.
In each round of Π, an honest party computes their message using their input, random tape, messages
received in all the previous rounds, by potentially making multiple queries to the random oracles. The
adversary controlling the corrupt parties can choose the messages of each corrupt parties according its
strategy (deviating arbitrarily from the protocol instructions) based on the messages received by all
corrupt parties in all the previous rounds and the current round (as the adversary is rushing) from the
honest parties, private randomness of A, making oracle calls to the random oracle. When the protocol
terminates, the honest parties output their respective outputs in the protocol and the adversary outputs
a function of their view, which consists of the view of all corrupt parties and the private randomness
of the adversary. In a joint execution of Π and A corruptingM, for a security parameter κ, auxilliary
input z, and inputs {xi}i∈H to the honest parties, we denote the joint distribution of the outputs of
honest parties and the adversary by REALΠ,A(z),M(1κ, {xi}i∈[n]\H.
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Ideal World. In the ideal world, a simulator Sim chooses a set of parties M to corrupt and interacts
with an ideal functionality F that computes f with abort. F , which is aware of the setM, behaves as
follows:

Collecting inputs from parties: For each i ∈ H, the functionality receives input xi from honest party
Pi. For each i ∈M, the functionality receives an input xi from Sim.

Early abort: If F receives signal abort from Sim, the functionality sends ⊥ as output to all honest
parties and terminates.

Computing function: The functionality computes y = f(x1, . . . , xn) and sends y to Sim.

Late abort: Sim can deny the honest parties from receiving the output by sending abort to F , in which
case, F sends ⊥ as output to all honest parties and terminates.

Function computation: If Sim sends continue to F , the functionality sends y to all honest parties
and terminates.

The honest parties output whatever they receive from F and Sim computes their output as a function
of their own randomness, and all the messages they sent and received from F . In a joint execution of
F and Sim corrupting M, for a security parameter κ, auxilliary input z, and inputs {xi}i∈H to the
honest parties, we denote the joint distribution of the outputs of honest parties and the adversary by
IDEALF,A(z),M(1κ, {xi}i∈[n]\H.

Using the above definitions, security is defined as follows:

Definition 7. An n-party communication protocol Π computes an n-party function f with computa-
tional t-security with abort if for anyM⊂ [n] of size at most t, and any PPT adversary A, there exists
an ideal adversary (simulator) Sim such that, security parameter κ, for all {xi}i∈[n]\M, and auxiliary
input z ∈ {0, 1}∗,

REALΠ,A(z),M(1κ, {xi}i∈[n]\M) ≈c IDEALF,Sim(z),M(1κ, {xi}i∈[n]\M). (4)

Here, ≈c denotes computational indistinguishability with distinguishing advantage that is negligible in
the security parameter κ.

B Extended Review of the WRK Approach

In Section 3.1 we explained the main invariant of the WRK approach to authenticated garbling. Here,
we for completeness describe how WRK propagates its invariant across Boolean gates.

XOR Gates. For an XOR gate (α, β, γ,⊕) with input wires α and β and output wire γ, we require
r(γ) = r(α) ⊕ r(β). To ensure this, in the garbling phase, the parties locally set

bdoz(r(γ))← bdoz(r(α))⊕ bdoz(r(β)) = bdoz(r(α) ⊕ r(β)).

In addition, each garbler Pi sets X
(γ)
i ← X

(α)
i ⊕X

(β)
i .

The evaluator P1 holds ρ(θ) = x(θ) ⊕ r(θ) and (X
(θ)
i ⊕ ρ(θ) · ∆i)i̸=1 for each input wire θ ∈ {α, β}

by the WRK invariant during the evaluation. P1 computes the output encoding simply as the XOR of
input encodings. I.e.,

ρ(γ) ← ρ(α) ⊕ ρ(β) X̃
(γ)
i ← (X

(α)
i ⊕ ρ(α) ·∆i ⊕X

(β)
i ⊕ ρ(β) ·∆i)i ̸=1.

Thus, ρ(γ) = (x(α) ⊕ x(β)) ⊕ (r(α) ⊕ r(β)) = x(γ) ⊕ r(γ), and X̃
(γ)
i = X

(γ)
i ⊕ ρ(γ) · ∆i, propagating the

invariant across XOR gates without any communication.
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AND Gates. Consider an AND gate (α, β, γ,∧). In the preprocessing phase, the parties engage in an MPC
protocol which takes bdoz(r(α)) and bdoz(r(β)) as input and distributes bdoz(r(σ)) = bdoz(r(α) ∧ r(β))
as output.

Let ⊔ be a fixed BDOZ-style secret sharing of 1 in which the share of Pi is (bi, (Ki[bj ])j ̸=i, (Mj [bi])j ̸=i),
where, for each i, bi = 1 if i = 1 and 0 otherwise, Ki[bj ] = ∆i if j = 1 and 0 otherwise, and Mj [bi] = 0
for all j. For each (m0,m1) ∈ {0, 1}2, the parties locally prepare

bdoz(r(γ,m0,m1))

← bdoz(r(σ))⊕ bdoz(r(γ))⊕m1 · bdoz(r(α))⊕m0 · bdoz(r(β))⊕ (m0 ∧m1) · ⊔
= bdoz((r(α) ∧ r(β))⊕ r(γ) ⊕ (m1 · r(α))⊕ (m0 · r(β))⊕ (m0 ∧m1))

= bdoz(r(γ) ⊕ (r(α) ⊕m0) ∧ (r(β) ⊕m1)). (5)

For each (m0,m1) ∈ {0, 1}2, each garbler Pi computes X
(γ,m0,m1)
i = X

(γ)
i ⊕j ̸=i Ki[r

(γ,m0,m1)
j ] ⊕

r
(γ,m0,m1)
i ·∆i, and sends ciphertext G

(γ,m0,m1)
i to P1, computed using random oracle H.

G
(γ,m0,m1)
i = H(X

(α)
i ⊕m0 ·∆i, X

(β)
i ⊕m1 ·∆i)

⊕ (r
(γ,m0,m1)
i , (Mj [r

(γ,m0,m1)
i ])j ̸=i, X

(γ,m0,m1)
i ),

where bdoz(r(γ,m0,m1))i = (r
(γ,m0,m1)
i , {Ki[r

(γ,m0,m1)
j ]}j ̸=i, {Mj [r

(γ,m0,m1)
i ]}j ̸=i). For each i ̸= 1, P1

holding ρ(θ) = x(θ)⊕ r(θ) and (X
(θ)
i ⊕ ρ(θ) ·∆i)i ̸=1 for input wires θ ∈ {α, β} can decrypt G

(γ,ρ(β),ρ(α))
i to

obtain (r
(γ,ρ(α),ρ(β))
i , (Mj [r

(γ,ρ(α),ρ(β))
i ])j ̸=i, X

(γ,ρ(α),ρ(β))
i ). P1 verifies each share r

(γ,ρ(α),ρ(β))
i by checking if

K1[r
(γ,ρ(α),ρ(β))
i ]⊕M1[r

(γ,ρ(α),ρ(β))
i ] equals r

(γ,ρ(α),ρ(β))
i .∆1. If all MAC checks are successful, P1 computes

ρ(γ) ← ⊕i∈[n]r
(γ,ρ(α),ρ(β))
i and labels X̃

(γ)
i as:

X̃
(γ)
i = X

(γ,ρ(α),ρ(β))
i

⊕
j ̸=i

Mi[r
(γ,ρ(α),ρ(β))
j ] = X

(γ)
i

n⊕
j=1

r
(γ,ρ(α),ρ(β))
j ·∆i = X

(γ)
i ⊕ ρ(γ) ·∆i.

ρ(γ) = r(γ,ρ
(α),ρ(β)) = r(γ) ⊕

((
r(α) ⊕ ρ(α)

)
∧
(
r(β) ⊕ ρ(β)

))
= r(γ) ⊕ (x(α) ∧ x(β)).

Thus, the invariant in evaluation holds for the output wires of AND gate.

C Sub-functionalities

In this section, we first provide a formal description of Oblivious Transfer functionality, FOT, and Oblivi-
ous Linear Evaluation functionality, FOLE. FOT and FOLE are two-party functionalities executed between
parties PA and PB .

On receiving (m0,m1) from PA (sender), where |m0| = |m1| = p(κ) (where p(·) is a polynomial), and
b ∈ {0, 1} from PB (receiver), output mb to PB .

Fig. C.1: Functionality FOT

We recall two-party functionality FProg
OLE and n-party functionality FnVOLE from [RS22] below.

The construction ΠSP invokes the functionalities FProg
OLE and FnVOLE with the parameter m = |C|/n,

where C denotes the circuit. We observe that instead of using pseudorandom vectors in the functionalities,
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On receiving u ∈ F from PA and x ∈ F from PB , sample v
$←− F. Compute w ← u · x− v. Output w to PA

and v to PB .
Corrupted Party: If PB is corrupted, v may be chosen by A. If PA is corrupted, w can be chosen by A (and
v is computed as u · x− w).

Fig. C.2: Functionality FOLE

Parameters: An expansion function Expand : S → Fm with seed space S and output length m. The
functionality runs between parties PA and PB .
On receiving sa from PA and sb from PB , where sa, sb ∈ S:

1. Compute u← Expand(sa), x← Expand(sb), and sample v ← Fm.
2. Output w = u · x− v to PA and v to PB .

Corrupted Party: If PB is corrupted, v may be chosen by A. If PA is corrupted, w can be chosen by A (and
v is computed as u · x−w).

Fig. C.3: Functionality FProg
OLE

Parameters: An expansion function Expand : S → Fm with seed space S and output length m. The
functionality runs between parties P1, P2, . . . , Pn.
Initialize: On receiving (Init,∆i) from Pi for i ∈ {1, . . . , n}, where ∆i ∈ F, store (i,∆i) and ignore all
subsequent Init commands from Pi.
Extend: On receiving Extend from every Pi ∈ {P1, . . . , Pn}:

1. Sample seed seedi ← S for all Pi.
2. Compute ui = Expand(seedi).

3. Sample vi
j ← Fm for all Pi and j ̸= i. Retrieve ∆j and compute wi

j = ui ·∆j − vi
j .

4. Output
(
seedi, (w

i
j ,v

j
i )j ̸=i

)
to Pi for all Pi ∈ {P1, . . . , Pn}.

Corrupted Party: A corrupted party Pi can choose ∆i and seedi. It can also choose wi
j (where vi

j is

computed as ui ·∆j −wi
j) and vj

i .
Global Key Query: If Pi is corrupted, receive (query,∆′) from A with ∆′ ∈ Fn.

1. If ∆′ = ∆, where ∆ = (∆1, . . . ,∆n), send success to Pi and ignore any subsequent global key query.
2. Otherwise, send (abort,∆) to Pi, and abort to Pj and all other parties.

Fig. C.4: Functionality FnVOLE
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one can use random vectors. That is, ΠSP can invoke FOLE and FnVOLE instead. With this modification,
we require O(n2 ·m) = O(n|C|) OLE correlations. Consequently, the total communication complexity
remains O(n|C|).

Parameters: The functionality runs between parties P1, P2, . . . , Pn.
Initialize: On receiving (Init,∆i) from Pi for i ∈ {1, . . . , n}, where ∆i ∈ F, store (i,∆i) and ignore all
subsequent Init commands from Pi.
Extend: On receiving Extend from every Pi ∈ {P1, . . . , Pn}:

1. Sample ui
$←− Fm for all Pi.

2. Sample vi
j ← Fm for all Pi and j ̸= i. Retrieve ∆j and compute wi

j = ui ·∆j − vi
j .

3. Output
(
ui, (w

i
j ,v

j
i )j ̸=i

)
to Pi for all Pi ∈ {P1, . . . , Pn}.

Corrupted Party: A corrupted party Pi can choose ∆i and ui. It can also choose wi
j (where vi

j is computed

as ui ·∆j −wi
j) and vj

i .
Global Key Query: If Pi is corrupted, receive (query,∆′) from A with ∆′ ∈ Fn.

1. If ∆′ = ∆, where ∆ = (∆1, . . . ,∆n), send success to Pi and ignore any subsequent global key query.
2. Otherwise, send (abort,∆) to Pi, and abort to Pj and all other parties.

Fig. C.5: Functionality FnVOLE

D Proof Omitted From Section 4

The proof of the below proposition is straightforward.

Proposition 2. Suppose [r]
$←− Share(r) where r ∈ Fℓ. Further, let (s1, . . . , sn) be a valid packed secret

sharing of e. Then, when ≡ denotes equivalence of distributions,(
{si, [r]i + si}i∈M

∣∣∣[r] $←− Share(r)

)
≡

(
{si, [r′]i}i∈M

∣∣∣[r′] $←− Share(r + e)

)
.

D.1 Proof of Lemma 1

For each 1 ≤ j ≤ ⌈|W \W⊕|/k⌉, let [b(j)]
$←− Share(b(j)) where b(j)

$←− {0, 1}ℓ ⊂ Fℓ. For each j, let r̂
(j)
i be

the input of Pi in step 1, where r̂
(j)
i = [b(j)]i for each i /∈M. Let ei = b

(j)
i − r̂

(j)
i for each 1 ≤ i ≤ n. Let

e ∈ Fℓ be the vector secret shared by (e1, . . . , en) when interpreted as a PSS. Then, by Proposition 2,

(r̂
(j)
1 , . . . , r̂

(j)
n ) is distributed as Share(b(j)+e) conditioned on the view of Pi, i ∈M. For any e ∈ {0, 1}ℓ,

(r(1+(j−1)ℓ), . . . , r(jℓ)) = b(j) + e is uniformly distributed in {0, 1}ℓ conditioned of this view. Whereas, if
e /∈ {0, 1}ℓ, then b(j) + e /∈ {0, 1}ℓ.

For each 1 ≤ j ≤ ⌈|W \ W⊕|/ℓ⌉ in step 3, (l(1+(j−1)ℓ), . . . , l(jℓ)) is uniformly distributed in Fℓ by

Proposition 1, since M is a super-invertible matrix, and l̂
(j)
i is uniformly and independently distributed

in F, for each i /∈M.

In step 2, suppose r(j
∗) /∈ {0, 1} for some j∗. Since each l(j) is uniformly and independently distributed

in F,
∑

j l
(j) · r(j)(r(j) − 1) is uniformly distributed in F, and hence err ̸= 0 with probability 1− 1/|F|.

For each 1 ≤ j ≤ ⌈(2n+ (n− ℓ) · T ) /ℓ⌉, (a(1+(j−1)ℓ), . . . , a(jℓ)) is uniformly random because M is a

super invertible matrix, and â
(j)
i is uniformly and independently distributed in F, for each i /∈ M. This

guarantees generation of a random packed secret sharing, i.e., [r(ω)], of (r(1+(j−1)ℓ), . . . , r(jℓ)), for each
1 ≤ j ≤ T in step 6 of the circuit. Similarly, step 8 generates a random packed secret sharing [ϕ · r(j)]
for each 1 ≤ j ≤ T .
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Definitions.M is the set of parties corrupted by ideal adversary Sim.

1. For each 1 ≤ i ≤ n, receive ri ∈ F from Sim if i ∈M; else, ri
$←− F.

2. For each 1 ≤ i ≤ n, receive δi ∈ F from Sim if i ∈ H; else δ(i) ← 0.

3. Receive (c
(1)
j , . . . , c(n/ℓ)) ∈ Fℓ for each j ∈M from Sim.

4. For 1 ≤ χ ≤ n/ℓ, when r(χ) = (r1+(χ−1)ℓ, . . . , rχℓ), uniformly sample a secret sharing [r(χ)] of r(χ)

subject to [r(χ)]j = c
(χ)
j for each j ∈M.

5. For each 1 ≤ i ≤ n, send ri + δi and [r(χ)]i for each 1 ≤ χ ≤ n/ℓ to Pi.

Fig.D.1: Frv.

D.2 Functionality Frv: Definition and Construction

The functionality Frv effectively samples (r1, . . . , rn)
$←− Fn, delivers ri to each Pi and distributes PSS

[r(χ)] where r(χ) = (r(1+(χ−1)ℓ), . . . , r(χℓ)) for each 1 ≤ χ ≤ n/ℓ. The functionality it formally defined in
Figure D.1. The protocol Πrv in Figure D.2 realizes ℓ copies of Frv using O(n2) total communication.

Definition. For 1 ≤ χ ≤ n/ℓ, define Sχ = {1 + (χ− 1)ℓ, . . . ,min(n, χ · ℓ)}.
1. for each 1 ≤ χ ≤ n/ℓ do (in parallel):

2. Each Pi, 1 ≤ i ≤ n distributes [s(χ,i)]
$←− Share(s(χ,i)) where s(χ,i) $←− Fℓ.

3. Each Pi interprets ([s
(χ,1)]i, . . . , [s

χ,n]i) as a packed secret sharing and reconstructs the shared vector

(t
(χ,i)
1 , . . . , t

(χ,i)
ℓ ). Pi sends t

(χ,i)
j to Pj+(χ−1)ℓ for 1 ≤ j ≤ ℓ.

4. Each Pi, i ∈ Sχ interprets (t
(χ,1)

i−(χ−1)ℓ, . . . , t
(χ,n)

i−(χ−1)ℓ) as a packed secret sharing and reconstructs the

shared vector as (r
(1)
i , . . . , r

(1)
i ).

5. For each 1 ≤ j ≤ ℓ, Pi outputs [r
(χ,j)]i = s

(χ,i)
j , and, if i ∈ Sχ, also r

(j)
i .

Fig.D.2: Protocol Πrv realizing ℓ invocations of Frv.

Lemma 2. The protocol Πrv in Figure D.2 realizes ℓ serial invocations of the functionality Frv with
perfect (n− ℓ)-security.

Proof. We first prove the security of the protocol against any adversary A that corrupts exactly n − ℓ
parties using a simulation argument. Consider a simple simulator Sim that runs A as a subroutine and
interacts with ℓ serial invocations of Frv as follows:

1. Sim executes emulates the honest parties Pi, i ∈M, and interacts with A. The simulator keeps track
of all the messages exchanged between the emulated honest parties and the corrupt parties controlled
by A. Let View be the view of A consisting of its private randomness, and all messages exchanged
between emulated honest parties and corrupt parties controlled by A. Let ([r(1,i)]j , . . . , [r

(n/ℓ,i)]j)

be the shares and r
(i)
j be the secret output by each Pj , j ∈ H for 1 ≤ j ≤ ℓ.

2. For each 1 ≤ χ ≤ n/ℓ and i ∈ M, Sim chooses s(χ,i) ∈ Fℓ and private randomness for Pi subject to
the constraint that [s(χ,i)]j for each j ∈ H is consistent with that in View. Note that, such s(χ,i) and
private randomness exist since the secret sharing is of degree (n− 1). Consider an honest execution
of Πrv with above mentioned initial state for each Pi, i ∈ M and the same initial state as in step 1

(i.e., Sim’s interaction with A) for each Pi, i ∈ H. Let ([r̃(1,i)]j , . . . , [r̃(n/ℓ,i)]j) be the shares and r̃
(i)
j

be the secret output by each Pj , 1 ≤ i ≤ n for 1 ≤ j ≤ ℓ. Define δ
(i)
j = r

(i)
j − r̃

(i)
j for each 1 ≤ i ≤ ℓ

and j ∈ H.
3. For each 1 ≤ i ≤ ℓ, Sim sends the following to the i-th parallel invocation of Frv:

– (c
(1)
j , . . . , c

(n/ℓ)
j ) = ([r̃(1,i)]j , . . . , [r̃

(1,i)]j) for each j ∈M;
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– rj = r̃
(i)
j for each j ∈M;

– δj = δ
(i)
j for each j ∈ H.

Sim terminates with whatever A outputs.

We will now prove that the ideal and real world execution are identically distributed using a sequence
of hybrids.

Hybrid 1. Sim emulates all the honest parties and interacts with A. The output of emulated parties are
routed to the output of the real honest parties.

This hybrid is identical to the real world execution.

Hybrid 2. Sim interacts with A as prescribed in steps 1 and 2 in the simulator. Finally, for each i ∈ H,
route [r̃(1,i)]j , . . . , [r̃

(n/ℓ,i)]j and r̃
(i)
j + δ

(i)
j as output of Pj .

This hybrid is identical to the previous hybrid. This can be seen as follows: The shares output by Pj

are the same in both hybrids since the same initial state, specifically same {s(χ,i)} (which dictate the

shares in the output), are used by Pi in step 1 and step 2 of the simulation. Further, r̃
(i)
j + δ

(i)
j = r

(i)
j .

Hybrid 3. Sim interacts with A as prescribed in steps 1 and 2 in the simulator. For each 1 ≤ i ≤ ℓ: Sim

plays Frv after corrupting the parties Pi, i ∈ M. Sim sends (c
(1)
j , . . . , c

(n/ℓ)
j ) = ([r̃(1,i)]j , . . . , [r̃

(1,i)]j),

rj = r̃
(i)
j and δj = 0 for each j ∈ M. Let ([r̃(1,i)]j , . . . , [r̃

(n/ℓ,i)]j) and r̃
(i)
j be the output of Frv to Pj

for each j ∈ H. Then, Sim routes ([r̃(1,i)]j , . . . , [r̃
(n/ℓ,i)]j) and r̃

(i)
j + δ

(i)
j as output of each honest Pj for

each 1 ≤ i ≤ ℓ.

Equivalence of Hybrid 2 and Hybrid 3 follow immediately from Lemma 3 since the only difference
between the two hybrids is that the semi-honest execution of the protocol (for a fixed set of inputs to
malicious parties) in the former is replaced by a call to the functionality.

Hybrid 4. The ideal execution involving the interaction between Sim and Funcrv.

The only difference between Hybrid 3 and Hybrid 4 is that the latter carries out the addition of r̃
(i)
j

and δ
(i)
j by passing it as an argument to Frv. Equivalence follows.

Lemma 3. Πrv realizes Frv with semi-honest (n− ℓ)-security.

Proof. Fix 1 ≤ χ ≤ ℓ. For each 1 ≤ k ≤ ℓ, let {l(k)i ∈ F}1≤i≤n be the linear operator for reconstructing
coordinate k of the vector secret shared using PSS. I.e., when (s1, . . . , sn) is a PSS of (r1, . . . , rℓ),∑n

i=1 l
(k)
i = rk.

For each 1 ≤ j ≤ ℓ, let r(χ,j) be the secret defined when (s
(χ,1)
j , . . . , s

(χ,n)
j ) is interpreted as a (n−1)-

degree packed secret sharing of an ℓ-dimensional secret. Then, for any 1 ≤ i ≤ ℓ, Pi+(χ−1)ℓ receives∑n
j=1 l

(i)
j · [s(χ,j)]k from each Pk, 1 ≤ k ≤ n. In other words, Pi+(χ−1)ℓ receives the shares

n∑
j=1

l
(i)
j · [s

(χ,j)] =

 n∑
j=1

l
(i)
j · (s

(χ,j)
1 , . . . , s

(χ,j)
ℓ )


=

 n∑
j=1

l
(i)
j · s

(χ,j)
1 , . . . ,

n∑
j=1

l
(i)
j · s

(χ,j)
ℓ


=

[(
r
(χ,1)
i , . . . , r

(χ,ℓ)
i

)]
.
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The final equality follows from the definition of {l(i)j }1≤j≤n. Since each Pi sets their shares

(r
(χ,1)
i , . . . , s(χ,ℓ)i) to be (s

(χ,i)
1 , . . . , s(χ,i)ℓ), the correctness of the protocol follows.

Consider a semi-honest adversary A that corrupts Pi, i ∈ M. We observe that Πrv is essentially
a packed variant of BGW protocol with (n − ℓ)-private packed secret sharing for computing a linear
functionality in which the input of each Pi is s(χ,i) and output of each Pi is s(χ,i) and, additionally,

(r
(χ,1)
i−(χ−1)ℓ, . . . , r

(χ,ℓ)
i−(χ−1)ℓ) if i ∈ Sχ. The privacy follows from that of BGW protocol. This functionality

implies Frv in the semi-honest setting. We conclude that Πrv realizes Frv.

D.3 Proof of Theorem 4

Let A be an adversary corrupting Pi, i ∈ M. Let H = {1, . . . , n} \ M. We construct a simulator Sim
that runs A as a subroutine while interacting with FGBC-Pre. Sim is described as follows:

1. Throughout the protocol, Sim interacts with A by emulating the honest parties {Pi}i∈H, playing the
functionalities Fmpc and F2pc, and recording the output of each of these functionalities. If the honest
parties abort at any point, Sim signals FGBC-Pre to issue abort, and outputs whatever A outputs.

2. Sim signals FGBC-Pre to issue unanimous abort, and terminates with the output of A at the end of
the simulation in the following scenarios:
(a) In step 1 of ΠGBC-Pre, while Sim interacts with A by playing the role of Fmpc. Fmpc expects A

to provide the input of every corrupt Pi to the circuit CD on each of their input wires. If there

exists some 1 ≤ ω ≤ W \ W⊕ for which A provides r
(ω)
j /∈ {0, 1} on behalf of some corrupt

Pj , j ∈M, and the value of err is non-zero,
(b) If there exists i ∈M for which A uses incorrect values of {[r(ω)]i}ω∈T , {[ϕ ·r(ω)]i}ω∈T on behalf

of Pi in the invocation of F2pc with some honest Pj ,
(c) If there exists i ∈ M and j, j′ ∈ H such that the purported value of ∆i, αi, λi used by A on

behalf of Pi in the invocations of F2pc with Pj and Pj′ are inconsistent.
3. Sim carries out the following computations. In all emulations carried out in the following computa-

tions, each honest party is emulated with the same states as in the emulation in step 1.

A. For each ω ∈ T and i ∈ M, Sim chooses (a
(ω,i)
1 , . . . , a

(ω,i)
n ) and a packed secret sharing

(o
(ω,i)
1 , . . . , o

(ω,i)
n ) of 0 such that for each j ∈ H, o(ω,i)

j + ⟨r(ω) · ∆i⟩{i,j}i + a
(ω,i)
j = s′′j , where s′′j

is the value sent by Pi in step 6 to Pj in iteration ω. Let e be the vector that is packed secret shared

by (a
(ω,i)
1 , . . . , a

(ω,i)
n ). Define e(k+(ω−1)ℓ,i) = ek for 1 ≤ k ≤ ℓ. Next, arbitrarily fix the randomness

used by each Pj and advance the protocol till 10. For each 1 ≤ w ≤ |G∧ ∪ W \ W⊕| + 1 and χ,

let t
(w,χ)
i be the share of Pi, 1 ≤ i ≤ n in the purported secret sharing of r(w) ·∆(χ). Whereas, let

t
(w,χ)
i be the share of emulated Pi, i ∈ H in the purported secret sharing of r(w) · ∆(χ) in Sim’s
interaction with A in step 1 of the simulation. Let e′ to be the vector secret shared by (u1, . . . , un)

where ui = 0 if i ∈ M and ui = t
(w,χ)
i − t

(w,χ)
i if i ∈ H. Define ẽ(w,k+(χ−1)ℓ) = e′k for 1 ≤ k ≤ ℓ.

Define ν(w,χ) = (e(w,1+(χ−1)ℓ) + ẽ(w,1+(χ−1)ℓ), . . . , e(w,χℓ) + ẽ(w,χℓ)).

B. For each iteration ω and i ∈M, let a
(i)
j for j ∈ H be the message sent by corrupt Pi to emulated Pj

in step 12. Choose a
(i)
j arbitrarily for each j ∈M such that

∑n
j=1 a

(i)
j = [r(ω)]i. Advance the protocol

till step 13. Let s
(w)
i be the share of of each Pi, 1 ≤ i ≤ n in the purported additive secret sharing of

r(w). Whereas, let s
(w)
i be the share of emulated Pi, i ∈ H in the purported secret sharing of r(w) in

Sim’s interaction with A in step 1 of the simulation. Define µ(w) =
∑n

i∈H(s
(w)
i − s

(w)
i )−

∑
i∈M s

(w)
i .

C. For each iteration ω′ and i ∈ M, Sim chooses (a
(ω′,i)
1 , . . . , a

(ω′,i)
n ) and a packed secret sharing

(o
(ω′,i)
1 , . . . , o

(ω′,i)
n ) of 0 such that for each j ∈ H, a(ω

′,i)
j + o

(ω′,i)
j is the purported share of [o(w′,i)]

that Pi sends to Pj in step 15 of iteration ω′. Let e be the vector that is packed secret shared

by
∑

i∈M(a
(ω′,i)
1 , . . . , a

(ω′,i)
n ). Define e(k+(ω′−1)ℓ) = ek for 1 ≤ k ≤ ℓ. Next, arbitrarily fix the
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randomness used by each Pj , j ∈ M and advance the protocol till step 17. Let z
(w′)
i be the share

of of each Pi, 1 ≤ i ≤ n in the purported additive secret sharing of o(w
′). Whereas, let z

(w′)
i be the

corresponding share of emulated Pi, i ∈ H in Sim’s interaction with A in step 1 of the simulation.
Define ẽ(w

′) to be the value additively secret shared by (u1, . . . , un) where ui = 0 if i ∈ M and

ui = z
(ω,χ)
i − z

(ω,χ)
i if i ∈ H. Set δ(w′) = e(w

′) + ẽ(w
′).

4. Sim chooses the outputs of corrupt parties and additive error to the secret sharings as follows:

– Sample (r
(w)
w∈W\W⊕

, r
(g)
g∈G∧

)
$←− D. Map w ∈ G∧ ∪W \W⊕ to w ∈ {1, . . . , |G∧ ∪W \W⊕|} using

Υ . Sample ∆i
$←− F for each i ∈ H; ∆i for each i ∈M remains unchanged.

– For each i ∈ H, ∆i used by A on behalf of Pi in all F2pc calls involving honest parties in step 1

is chosen. Let k = |G∧ ∪W \W⊕|+ 1. For each χ, the share [∆(χ)]i of Pi, i ∈M is set to t
(k,χ)
i ;

and the error vector to be added to [∆(χ)] is the vector ν(k,χ).

– For each 1 ≤ w ≤ |G∧ ∪W \W⊕|, the share ⟨r(w)⟩i of Pi, i ∈ M is set to s
(w)
i ; and the additive

error to ⟨r(w)⟩ is µ(w).

– For each 1 ≤ w ≤ |G∧ ∪W \W⊕| and χ, the share [r(w,χ)]i of Pi, i ∈M is set to t
(w,χ)
i ; and the

error vector to be added to [r(w) ·∆(χ)] is the vector ν(w,χ).

– For each 1 ≤ w′ ≤ |I ∪ O|, the share ⟨o(w′)⟩i of Pi, i ∈ M is set to z
(w)
i ; and the additive error

to ⟨o(w′)⟩ is δ(w′).

– For each 1 ≤ w′′ ≤ |G∧|, X(w′′)
i and {[X(w′′,χ)]i}χ for i ∈ M is set to those used by A in the

w′′-th invocation of Frv on behalf of Pi; and the additive error vector to {[X(w′′,χ)]}χ is chosen
as that used by A in the w′′-th invocation of Frv.

We will now prove that the ideal and real world execution are identically distributed using a sequence
of hybrids.

Hybrid 1. After step 1 of the simulation where Sim interacts withA throughout the protocol by emulating
all the honest parties and functionalities, the output of emulated parties are routed to the output of the
real honest parties.

This hybrid is identical to the real world execution.

Hybrid 2. Same as Hybrid 1 with one caveat: Sim forces honest parties to abort if one of the following
occurs:

1. If there exists some 1 ≤ ω ≤ W \W⊕ for which A provides r
(ω)
j /∈ {0, 1} on behalf of some corrupt

Pj , j ∈M to Fmpc, and the value of err is non-zero,
2. For some i ∈ M, A uses incorrect values of {[r(ω)]i}ω∈T , {[ϕ · r(ω)]i}ω∈T on behalf of Pi in the

invocation of F2pc with some honest Pj in step 3.
3. For some i ∈ M and j, j′ ∈ H, A uses distinct values as purported values of (λi, ∆i, ϕi, αi) in the

input of Pi to invocations of F2pc with Pj and Pj′ .

The view of the adversary in both hybrids are identically distributed. As argued in Lemma 1, CD

outputs err ̸= 0 with probability 1/|mathbbF | whenever r(ω)
j /∈ {0, 1} for any 1 ≤ ω ≤ W\W⊕. Lemma 4

establishes that all honest parties abort in hybrid 1 with probability 1−O(|C|)/F if conditions 1 and 2
above are met in Hybrid 1. Hence, the joint distribution of A’s view and output of honest parties are at
most O(|C|)/F far in statistical distiance.

Hybrid 3. In this hybrid, we modify the manner in which the output of honest parties is computed
whenever they do not abort.

1. As described in step 3.A. of the simulation compute t(w,χ) for each 1 ≤ w ≤ |G∧ ∪W \W⊕|+ 1 and
χ. Route t(w,χ) + (t(w,χ) − t(w,χ)) as the share of each honest Pi in [r(w) ·∆(χ)] for each 1 ≤ w ≤
|G∧ ∪W \W⊕|.
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2. Let k = |G∧ ∪W \W⊕| + 1 and χ. Route t(k,χ) + (t(k,χ) − t(k,χ)) as the share of each honest Pi in
[∆(χ)].

3. As described in step 3.B. of the simulation compute s(w) for each 1 ≤ w ≤ |G∧ ∪W \ W⊕|. Route
s(w) + (s(w) − s(w)) as the share of each honest Pi in ⟨r(w)⟩.

4. As described in step 3.C. of the simulation compute z(w
′) for each w′. Route z(w

′) + (z(w
′) − z(w

′))
as the share of each honest Pi in [o(w

′)].

This hybrid is identical to the previous one by definitions of s(w), t(w,χ) and z(w
′).

Hybrid 4. In this hybrid, we again modify the manner in which the output of honest parties is computed
whenever they do not abort.

1. Define e(w,χ) = (e(w,1+(χ−1)ℓ), . . . , e(w,χ−ℓ)) for each 1 ≤ w ≤ |G∧ ∪W \W⊕|+ 1 and χ, when each

e(w,i) is as defined in step 3.A. of the simulation. For each w and χ, sample (t̃
(w,χ)
1 , . . . , t̃

(w,χ)
n )

$←−
Share(r(w) · ∆(χ) + e(w,χ)) subject to constraints t̃(w,χ) = t(w,χ) for each i ∈ M. Route t̃(w,χ) +
(t(w,χ)− t(w,χ)) as the share of each honest Pi in [r(w) ·∆(χ)] for each 1 ≤ w ≤ |G∧∪W \W⊕| and χ.

2. Let k = |G∧ ∪W \W⊕|+ 1. Route t̃(k,χ) + (t(k,χ) − t(k,χ)) as the share of each honest Pi in [∆(χ)].

3. For each w, sample (s̃
(w)
1 , . . . , s̃

(ω)
n )

$←− Share(r(w)) subject to constraints s̃(w) = s(w) for each i ∈M.
Route s̃(w) + (t(w) − t(w)) as the share of each honest Pi in ⟨r(w)⟩ for each 1 ≤ w ≤ |G∧ ∪W \W⊕|.

4. For each w′, with e(w
′) as defined in 3.C. sample (z̃

(w′)
1 , . . . , z̃

(w′)
n )

$←− Share(e(w
′)) subject to con-

straints z̃(w
′) = z(w

′) for each i ∈M. Route z̃(w
′) + (z(w

′) − z(w
′)) as the share of each honest Pi in

o(w
′) for each 1 ≤ w′ ≤ |G∧|.

(t(w,χ), . . . , t(w,χ)) form the output of an honest execution of the steps 8 to 10 with each Pj holding
o(χ,i) + a(ω,i) + [r(w)]j ·∆i for each ω and 1 ≤ i ≤ n. As in our security proof for Lemma 2, we observe
that an honest execution of iteration ω, χ of steps 8-10 of ΠGBC-Pre is essentially a packed variant of
BGW protocol with (n − ℓ)-private packed secret sharing for computing linear functionality that takes
input

([r(ω)]i ·∆1+(χ−1)ℓ + o
(ω,1+(χ−1)ℓ)
i + a

(ω,1+(χ−1)ℓ)
i , . . . , [r(ω)]i ·∆χℓ + o

(ω,χℓ)
i + a

(ω,χℓ)
i )

from each Pi, and computes a fresh packed secret sharing of u(k) for each 1 ≤ k ≤ ℓ, where u(k) =

(v
(1)
k , . . . ,v

(ℓ)
k ) such that v(l) is the vector that is packed secret shared by the vector

{[r(ω)]j ·∆l+(χ−1)ℓ + o
(ω,l+(χ−1)ℓ)
j + a

(ω,l+(χ−1)ℓ)
j }1≤j≤n.

Since {a(ω,l+(χ−1)ℓ)
l }1≤l≤n is a packed secret sharing of (e(1+(ω−1)ℓ,l+(χ−1)ℓ), . . . , e(ωℓ,l+(χ−1)ℓ)) and

{o(ω,l+(χ−1)ℓ)
l }1≤l≤n is a packed secret sharing of 0,

u(k) = (r
(ω)
k ∆1+(χ−1)ℓ + e(k+(ω−1)ℓ,1+(χ−1)ℓ), . . . , r

(ω)
k ∆χℓ + e(k+(ω−1)ℓ,χℓ))

= r(k+(ω−1)ℓ) ·∆(χ) + (e(k+(ω−1)ℓ,1+(χ−1)ℓ), . . . , e(k+(ω−1)ℓ,χℓ)).

Hence, for each 1 ≤ w ≤ |G∧ ∪ W \ W⊕| + 1, conditioned on A’s view (which is the same in the

honest execution and in the emulation in step 3.A.), (t
(w,χ)
1 , . . . , t

(ω,χ)
n ) is identically distributed as

(t̃
(w,χ)
1 , . . . , t̃

(ω,χ)
n )

$←− Share(r(w) ·∆(χ) + e(w,χ)) subject to constraints t̃(w,χ) = t(w,χ) for each i ∈M.

A similar analysis of steps 11-13 and 14-17 justifies the remaining changes made in the hybrid. We
conclude that the joint distribution of view and outputs of honest parties are identically distributed in
both hybrids.

Hybrid 5. In this hybrid, we again modify the manner in which the output of honest parties is computed
whenever they do not abort.
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1. Let ν(w,χ) be as described in step 3.A. of the simulation for each 1 ≤ w ≤ |G∧ ∪W \W⊕| + 1 and

χ. For each w and χ, sample (t̃
(w,χ)
1 , . . . , t̃

(ω,χ)
n )

$←− Share(r(w) ·∆(χ) + ν(w,χ)) subject to constraints
t̃(w,χ) = t(w,χ) for each i ∈ M. Route t̃(w,χ) as the share of each honest Pi in [r(w) ·∆(χ)] for each
1 ≤ w ≤ |G∧ ∪W \W⊕| and χ.

2. Let k = |G∧ ∪W \W⊕|+ 1. Route t̃(k,χ) as the share of each honest Pi in [∆(χ)].
3. Let µ(w) be as described in step 3.B. of the simulation for each 1 ≤ w ≤ |G∧ ∪W \W⊕|. For each w,

sample additive secret sharing (s̃
(w)
1 , . . . , s̃

(ω)
n )

$←− Share(r(w)+µ(w)) subject to constraints s̃(w) = s(w)

for each i ∈M. Route s̃(w) as the share of each honest Pi in ⟨r(w)⟩ for each 1 ≤ w ≤ |G∧ ∪W \W⊕|.
4. Let δ(w

′) be as described in step 3.B. of the simulation for each 1 ≤ w′ ≤ |O ∪I|. Route z(w
′) as the

share of each honest Pi in [o(w
′)].

The equivalence between Hybrid 4 and 5 follows from Proposition 2 definitions of ν(w,χ) for each 1 ≤
w ≤ |G∧ ∪W \W⊕|+ 1 and χ, µ(w) for each 1 ≤ w ≤ |G∧ ∪W \W⊕|, and δ(w

′) for each 1 ≤ w′ ≤ |G∧|.

Hybrid 6. This is the ideal execution. The only difference between Hybrid 5 and 6 is the resampling of ∆i

for each i ∈ H and r(w) for 1 ≤ w ≤ |G∧ ∪W \W⊕|. But, ∆i for each i ∈ H is sampled uniformly in step

1 (by emulated honest parties), and by Lemma 1, when each corrupt party chooses r
(ω)
i ∈ {0, 1}, r(w)

for 1 ≤ w ≤ |G∧ ∪W \W⊕| are distributed according to D, further r(k) = 1 when k = |G∧ ∪W \W⊕|+1
hence [r(k) ·∆(χ)] is a secret sharing of ∆(χ). Hence, to show the equivalence, it suffices to show that the
values of {∆i}i∈H and r(w) are not revealed during the protocol. The privacy of these values till step 17
is guaranteed by the security of Fmpc,F2pc and the fact that adversary only sees at most |M| ≤ n − ℓ
shares of any values asociated with these quantities. It remains to show that the privacy is maintained in
steps 19 onwards. Specifically, when [u] and [ϕ ·u] are revealed. But, [u] =

∑
ω∈T λω · [r(ω)]+λω+1 · [N ]

where [N ] is a packed secret sharing of a random ℓ-dimensional vector. This ensures that [u] reveals no
information about r(w). A similar condition holds for [ϕ · u] as well. We conclude that Hybrids 5 and 6
are equivalent, concluding the proof.

Lemma 4. Consider an execution of ΠGBC-Pre with A corrupting Pi, i ∈ M. The honest parties abort
the protocol with probability 1− 1/F if one of the following holds:

1. There exists i ∈ M for which A uses incorrect values of {[r(ω)]i}ω∈T , {[ϕ · r(ω)]i}ω∈T on behalf of
Pi in the invocation of F2pc with some honest Pj in step 3.

2. There exists i ∈ M and j, j′ ∈ H such that the purported value of ∆i used by A on behalf of Pi in
the invocations of F2pc with Pj and Pj′ are inconsistent.

Proof. Suppose a corrupt Pi broadcasts λi in step 15 but uses λi + δi,j while invoking F2pc with any

honest Pj . Pj accepts λi only if ⟨Ψj · (λ + δi,j)⟩{i,j}j and purported value of ⟨Ψj · (λ + δi,j)⟩{i,j}i that Pi

sends in step 16 add up to λi · Ψj . But, since Ψj is uniformly random and unknown to the adversary,
the probability with which this check succeeds when δi,j ̸= 0 is 1/F. As a consequence, the adversary
cannot adaptively choose λi for corrupt parties based on {λj}j∈H; we conclude λ =

∑n
i=1 λi is uniformly

random. Using the same argument, we conclude that adversary cannot adaptively change the value ϕi

that was used by corrupt Pi in step 3. Hence ϕ revealed in step 15 is necessarily uniformly random.

Let s
(ω)
i,j for each ω and s′i,j be, respectively, the purported value of [r(w)]i for each ω and [x]i

used by a corrupt Pi in the invocation of F2pc with an honest Pj . We will show that Pj will abort

with high probability if [u]i ̸= s′i,j +
∑

ω λω · s(ω)
i,j . This follows from a similar line of argument as

above but additionally uses the linear homomorphism of additive secret sharing. Pj accepts [u]i only

if
∑

ω λω · ⟨Ψj · s(ω)
i,j ⟩

{i,j}
j computed by Pj and the purported value of

∑
ω λω · ⟨Ψj · s(ω)

i,j ⟩
{i,j}
i that Pi

sends in step 16 add up to [u]i ·Ψj . This check succeeds with probability 1/F since Ψj is unknown to the

adversary. This further implies that, if s′i,j +
∑

ω λω · s(ω)
i,j ̸= s′i,j′ +

∑
ω λω · s(ω)

i,j′ for honest Pj and Pj′ ,
then one of Pj and Pj′ will report abort with 1− 1/F probability.

Suppose that there exists j, j′ ∈ H such that, s
(ω)
i,j ̸= s

(ω)
i,j′ for some ω. The polynomial (s′i,j − s′i,j′) +∑

ω(s
(ω)
i,j − s

(ω)
i,j′)x

ω is non-zero of degree at most |T |. Since λ is uniformly random, the probability with
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which the above polynomial evaluates to 0 at the value λ is at most |T |/F. Hence, we conclude that the
protocol abort with |T |/F probability if a corrupt Pi uses inconsistent values for purported values of
[r(w)]i in the invocations of F2pc with an honest parties. A similar condition holds for [r(w)]i for each ω.

Let s′i and s̃′i be the purported values of [x]i and [ϕ · x]i used by a corrupt Pi in the invocation of

F2pc with all honest parties. Let s
(ω)
i and s̃

(ω)
i be the purported values of [r(w)]i and [ϕ · r(w)]i used by

a corrupt Pi in the invocation of F2pc with all honest parties. Suppose (s′1, . . . , s
′
n) defines the secret û′

and (s̃′1, . . . , s̃
′
n) defines the secret v̂′. Further, (s

(ω)
1 , . . . , s

(ω)
n ) defines the secret û(ω) and (s̃

(ω)
1 , . . . , s̃

(ω)
n )

defines the secret v̂(w). We will next argue that the protocol aborts if û(ω) ̸= r(ω) or v̂(w) ̸= ϕ · r(ω) for
some ω. Consider the vector polynomial (ϕ · û′ − v̂′) +

∑
ω(ϕ · û(ω) − v̂(w))xω. Step 19 dictates that the

parties abort if the value of this polynomial at λ is non-zero. Hence, as argued before, the parties abort
with probability at most |T |/F. This leaves out the possibility that û(ω) ̸= r(ω) or v̂(w) ̸= ϕ · r(ω) for
some ω but ϕ · û(ω) = v̂(w) for all ω. Suppose this is true for some ω. To ensure this, A needs to choose
û(ω) − r(ω) and v̂(w) − ϕ · r(ω) (at least one of them non-zero) such that ϕ times the former equals the
latter. Since ϕ is uniformly random and unknown to A this occurs with 1/F probability.

Finally, we need to show that the protocol abort with 2/F probability if a corrupt Pi uses inconsistent
values of ∆i in the invocations of F2pc with an honest parties. This argument is similar to the ones
discussed above. This concludes the proof.

E Proof of theorem 5

In the following exposition, we will argue the security of the protocol. We will use the notion of patching
a (packed) secret sharing which we formalize below.

Definition 8 (Patching). Let [r]
$←− Share(r) where r ∈ Fℓ and H be a subset of {1, . . . , n} of size

ℓ = n− t. For any r′, [r] is converted to PSS of r′ by patching shares of Pi, i ∈ H as follows: Let p be the
polynomial of degree at most n− 1 such that p(i) = 0 for each i ∈ {1, . . . , n} \H, and p(n+ i) = ri − r′i
for each i ∈ {1, . . . , |H|}. Since |H| = ℓ, this uniquely defines p. Define [r′] by assigning [r′]i = [r]i+p(i)
for each i ∈ {1, . . . , n}.

The proof of the following proposition is straightforward, and follows from Proposition 2.

Proposition 3. Let H be a subset of {1, . . . , n} of size ℓ. Let [r]
$←− Share(r) and [r′]

$←− Share(r′) where
r, r′ ∈ F. Suppose (s1, . . . , sn) is obtained by by patching shares of Pi, i ∈ H to convert [r] to a PSS of
r′. Then, (s1, . . . , sn) is identically distributed as [r′].

E.1 Proof of Security.

Let A be an adversary corrupting Pi, i ∈M where |M| ≤ t. Let H = {1, . . . , n} \M and ℓ = n− t. Let
Ff denote the functionality computing f with selective abort.

We construct a simulator Sim that runs A as a subroutine while interacting with Ff . Sim is described
as follows:

1. In steps 1-6 (preprocessing and garbling phase) of ΠGBC, Sim interacts with A by emulating the
honest parties {Pi}i∈H and playing the functionality FGBC-Pre. Sim records the outputs of FGBC-Pre.
If any honest party reports abort in the process, Sim sends an early abort to F and outputs whatever
A outputs.

2. In step 7-9 (input processing phase), Sim interacts with A by emulating the honest parties {Pi}i∈H
after initializing each honest Pi with default input x(w) = 0 for every input wire w ∈ Ii. For each
corrupt Pi, for each w ∈ Ii, Sim receives ρ(w) from A and computes y(w) = ρ(w)⊕ r(w). If any honest
party reports abort, Sim sends an early abort to F and outputs whatever A outputs.

At this point, simulator separately considers two cases: P1 is honest and P1 is corrupt.
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Case: P1 is honest.

3. Sim emulates the honest parties and interacts with A in steps 10-14 (circuit evaluation and output
processing phase). If P1 aborts in any step, Sim sends an early abort to F , and outputs whatever A
outputs. Otherwise, for each i ∈M and w ∈ Ii, Sim sends y(w) to F on behalf of Pi.

Case: P1 is corrupt.

3’. On behalf of each corrupt Pi (i ∈M), for each w ∈ Ii, Sim sends y(w) to F . In response, Sim receives
the true value z(w) on every output wire w from the functionality. Sim locally evaluates C with input
y(w) for each w ∈ Ii when i ∈ M and default input 0 for each w ∈ Ii when i ∈ H. Let z′(w) be
the resulting value on each output wire w. If z(w) ̸= z′(w), Sim converts ⟨r(w)⟩ to a secret sharing
⟨1⊕ r(w)⟩ of r(w) ⊕ 1 by patching the share of some honest Pi; and converts [r(w) ·∆(χ)] to PSS of
[(1⊕ r(w)) ·∆(χ)] for each 1 ≤ χ ≤ n/ℓ by patching the shares of {Pi}H′ where H′ ⊆ H of size ℓ. If
z(w) = z′(w), Sim makes no changes to the shares.

4’. In steps 14 (output processing phase), Sim interacts with A by emulating the honest parties but
using updated shares of r(w) and {r(w) ·∆(i)} for each output wire w in step 14.

We will now prove that the ideal execution and real world execution are statistically indistinguishable
in the random oracle model.

First, suppose P1 is uncorrupted. We show the indisinguishability using a sequence of hybrids.

Hybrid1. Same as the real world execution of ΠGBC with A corrupting {Pi}i∈M.

Hybrid2. Let y(w) be the actual input for each input wire w ∈ I. Sim emulates all honest party Pi

(where i ∈ H) using x(w) = y(w) for each w ∈ Ii, and plays the functionality FGBC-Pre, and interacts
with A. The output of the honest P1 in the emulation is routed to the output of the real P1. Finally,
Sim outputs whatever the subroutine A outputs.

Hybrid2 is an equivalent way to describe Hybrid1.

Hybrid3. Same as Hybrid2, but, if none of the honest parties abort the protocol, Sim sends {y(w)}w∈Ii

to F on behalf of each corrupt Pi. The output of the F is routed to the output of real P1.

The view of A produced in Hybrid2 and Hybrid3 are identical. By Lemma 5, the output of P1 is the
same in both these hybrids with overwhelming probability.

Hybrid4. Same as Hybrid3, except, for each input wire w of any honest party, Sim samples r(w)

differently. Recall, in Hybrid3, r
(w) is a sampled uniformly and indepedently. Instead, Sim samples u(w)

uniformly and independently and sets r(w) = u(w) ⊕ x(w) while playing FGBC-Pre.

Hybrid4 is equivalent to Hybrid3.

Hybrid5. Same as Hybrid4, except, Sim emulates each honest Pi using default input x(w) ← 0 for every
wire w ∈ Ii.

For each input wire w of any honest Pi, until the circuit evaluation phase, the view of the adversary
is decided by x(w) ⊕ r(w) = ρ(w) for each such wire, and a set of random variables that are identically
distributed independent of the values of x(w) and r(w).

Thus, it suffices to show that probability with which P1 reports an abort in steps 2-5 in the evaluation
phase is the same conditioned on the same view in both hybrids.
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Clearly, the event in which P1 aborts in step 15 depends only on mask correlation sampled for the
output wires, and hence is independent of x(w). Hence, we focus on step 13. Observe that P1 aborts while
processing gate (α, β, γ,∧) if and only if the verification fails for the row (m0,m1) = (ρ(α), ρ(β)). The
indistinguishability now follows from our previous observation that ρ(w) for each input wire of honest
party is identically distributed in both hybrids. Security follows since Hybrid4 is identical to the ideal
execution.

We next consider the case where P1 is corrupted. We show the indisinguishability using a sequence
of hybrids.

Hybrid1. Same as the real world execution ofΠGBC in FGBC-Pre-hybrid model with A corrupting {Pi}i∈M.

Hybrid2. Sim emulates every honest party Pi using their actual inputs {y(w)}w∈Ii
and plays the

functionality FGBC-Pre, and interacts with A. In step 7-9, Sim learns y(w) = ρ(w) ⊕ r(w) for each input
wire w taking input from any malicious party. For each i ∈M, Sim sends {y(w)}w∈Ii

to F on behalf of
each corrupt Pi. Finally, Sim outputs whatever the subroutine A outputs.

No honest party receives any output from the functionality. The view of A is the same in both hybrids.

Hybrid3. Same as Hybrid2, but, Sim uses a default input 0 for all input wires of every honest party. In
steps 14-15 (output processing), simulator behaves as described in 4′.

Similar to our analysis for the case where P1 is honest, the view of the adversary till step 9 is decided
by x(w) ⊕ r(w) for each such wire, and a set of random variables that are independent of the values of
x(w) and r(w). This is argued along the lines of the previous case, however, since P1 is corrupt, the view
of the adversary also contains X(w,i)⊕ ρ(w) ·∆i, which is also independent of all other random variables
since X(w,i) is sampled uniformly independent by honest Pi for each of its input wire w.

For any output wire w, when z(w) ̸= z′(w), the shares obtained by patching ⟨r(w)⟩ as described in
3’ of the simulator is a random secret sharing of 1 + r(w) by Proposition 3. Similarly, shares obtained
by patching [r(w) ·∆(χ)] is a random secret sharing of [(1⊕ r(w))∆(χ)] for each 1 ≤ χ ≤ n/ℓ. Since the
adversary has no knowledge of r(w) and {r(w) ·∆i}i∈{1,...,n}, they are indistinguishable from 1⊕r(w) and

{(1⊕ r(w))∆i}i∈{1,...,n}.

The inputs used by Sim for honest parties are different in both hybrids. Hence, we also need to show
that the rows that can be decrypted by A are identically distributed in both hybrids. Lemma 6 shows
that a corrupt P1 can only decrypt one of the rows in each honest party’s garbled table. Since r(w) for
all w ∈ W \ (∪i∈MIi) are unknown to A, masked values and garbled keys obtained by recovering one
row of the garbled table (across all parties) is indistinguishable in both hybrids.

Lemma 5. Consider an adversary A corrupting parties {Pi}i∈M such that 1 /∈ M. For each i ∈ M
and w ∈ Ii, let y(w) be as defined in the simulation; for each i ∈ H and w ∈ Ii, let y(w) be the true input
of Pi for input wire w. Then, with all but negligible probability, P1 either aborts or learns the evaluation
of f with {y(w)}w∈I as inputs.

Proof. For each wire w ∈ W \ I, let y(w) be the value on wire w when the circuit is evaluated with
{y(w)}w∈I as inputs. We will prove by induction that, if the protocol is not aborted, P1 holds ρ(w) =
r(w) ⊕ y(w) for each wire w.

Base Case. We show that the statement holds for each w ∈ I. If w is an input wire of a malicious Pi, the
statement holds by the definition of y(w). When w is an input wire of an honest Pi, ρ

(w) ̸= r(w) ⊕ y(w)

only if A chooses the purported value δj of ⟨o(w)⟩j + α(l,j) · [r(w) · ∆(k)]j (where k, l are such that
i = l + (k − 1)ℓ) for each j ∈M such that∑

j∈M
δj +

∑
j∈H
⟨o(w)⟩j + α(l,j) · [r(w) ·∆(k)]j = (1⊕ r(w)) ·∆i.
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We will argue that this can occur only when A correctly forges the MAC which occurs with probability
at most 1/|F|.

The adversary learns at most n−ℓ shares (corresponding to corrupt parties) of [r(w) ·∆(k)] for masking
bit r(w) and (k−1)ℓ < i ≤ k · ℓ. Since the secret sharings are (n− ℓ)-secure, these shares are independent
of the real value ∆i. Additionally, for each j ∈ M and w′ ∈ Ij , A learns ⟨o(w′)⟩c ⊕ α(l,c) · [r(w′) ·∆(k)]c

for all c ∈ {1, . . . , n} when ∆
(k)
l = j. However, since ⟨o(w′)⟩ is an additive secret sharing of 0, this only

reveals
n∑

c=1

α(l,c) · [r(w
′) ·∆(k)]c = r(w

′) ·∆(k)
l = r(w

′) ·∆j .

The remaining components of the view are independent of ∆i. Thus, A suceeds in inducing ρ(w) ̸=
r(w) ⊕ y(w) only if it sucessfully forges the MAC without any information about ∆i which is chosen
uniformly and independently. This establishes the claim.

Induction Step. For each gate, we will show that the statements hold for the output wire if they hold
for the input wires.

For any XOR gate (α, β, γ,⊕), this follows from facts ρ(γ) = ρ(α) ⊕ ρ̂(β) (step 11), r(γ) = r(α) ⊕ r(β)

(by FGBC-Pre) and y(γ) = y(α) ⊕ y(β) (by definition of XOR).

For any AND gate σ = (α, β, γ,∧), P1 decrypts the garbled row (ρ(α), ρ(β)) of the gate in garbled
circuit provided by each garbler. Thus ,P1 decrypts the purported values of

pack(r(σ)) + pack(r(γ)) +
(
⟨0⟩, {[X(γ,χ)]}n/ℓχ=1

)
+ ρ(β) · pack(r(α)) + ρ(β) · pack(r(γ)) + (ρ(α) ∧ ρ(β))

(
⟨1⟩, {[∆(χ)]}n/ℓj=1

)
= pack(r(σ)) +

(
⟨0⟩, {[X(γ,χ)]}n/ℓχ=1

)
+ pack((r(α) + ρ(α)) ∧ (r(β) ⊕ ρ(β)))

=
(
⟨(r(σ) ⊕ (y(α) ∧ y(β)))⟩, {[X(i) ⊕ (r(σ) ⊕ (y(α) ∧ y(β))) ·∆(χ)]}n/ℓχ=1

)
.

Here, the first equality used the linear homomorphism of pack, and the fact that r(σ) = r(α) ∧ r(β). The
second equality used the assumption that ρ(w) = r(w) ⊕ y(w) for w ∈ {α, β}, and the definition of pack.
P1 recovers purported values of r(σ) ⊕ (y(α) ∧ y(β)) and X(γ,1) ⊕ (r(σ) ⊕ (y(α) ∧ y(β))) ·∆1 and checks if
they are consistent using X(γ,1) available locally. P1 sets the former as ρ(γ) if the check succeeds. As we
established earlier, the view of A is independent ∆i chosen by any honest party Pi. Hence, to force P1

to set ρ(w) ̸= r(σ) ⊕ (y(α) ∧ y(β)), the adversary needs to forge the MAC without any information about
uniformly chosen ∆1 which occurs with 1/F probability.

We have established that, for every output wire w, ρ(w) = ρ̂(w) = y(w) ⊕ r(w). Finally, in step 15, if
P1 does not abort, it learns the correct value for r(w) by unforgeability of MAC. Thus, for each output
wire w, P1 outputs y(w) if it does not abort.

Lemma 6. The adversary learns both garbled labels generated by an honest party for a gate with negli-
gible probability.

Proof. For each wire w ∈ W \ I, let y(w) be the value on wire w when the circuit is evaluated with
{y(w)}w∈I as inputs, and let ρ(w) = y(w) ⊕ r(w).

We will prove by induction that, a corrupt P1 cannot learn the value of X
(w)
i ⊕ (ρ̂(w) ⊕ 1)∆i for any

i ∈ H.

Base Case. The statement holds any input wire w of any honest party Pi. Similar to the proof of
Lemma 5, we can argue that the adversary’s view is independent of ∆i. Since P1 is also corrupt in this
case, the view additionally contains X(w,i) ⊕ ρ(w) ·∆i. But, since X(w,i) is chosen uniformly by Pi, the
view continues to be independent of ∆i. This directly implies that X(w,i) ⊕ (ρ(w) ⊕ 1)∆i is indepedent
of A’s view.
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Induction Step. Since any gate (α, β, γ,⊕) is processed silently, it is clear that P1 does not learn X
(w)
i ⊕

(ρ̂(γ) ⊕ 1)∆i if it does not learn X
(w)
i ⊕ (ρ̂(w) ⊕ 1)∆i for both w ∈ {α, β}: the induction assumption.

We focus on gates of the kind (α, β, γ,∧). The row (m0,m1) of the garbling of the gate is masked by

H(X
(α)
i ⊕m0 ·∆i, X

(β)
i ⊕m1 ·∆i). Since the adversary knows these values exactly for one value of m0

and m1 (for ρ(α) and ρ(β) respectively) by the assumption, the lemma follows.

This concludes the proof of security of ΠGBC.

E.2 Dealing with circuits that provide outputs to all parties

We extend the construction to accomodate n-party circuits that deliver (potentially distinct) outputs
to all parties with security with selective abort. The protocol follows the protocol in Figure 5.1 and
Figure 5.2 until the output processing phase (until step 13). The output processing phase is modified as
described in Figure E.1.

// Follow the protocol ΠGBC as described in Figure 5.1 and Figure 5.2 until step 13;

output processing phase is modified as follows.

Output Processing Phase.

13. For the output wire w ∈ O, if w belongs to Pi (i could be 1), P1 sends ρ(w) and X
(w)
i ⊕ ρ(w) ·∆i to Pi.

14. For each output wire w, if w belongs to Pi, every Pj sends to Pi the values ⟨r(w)⟩j and

⟨o(w)⟩j ⊕ α(k,l) · ⟨∆(k) · r(w)⟩j , where k, l are such that ∆
(k)
l = ∆i.

15. For each output wire w, if w belongs to Pi, each Pi reconstructs purported values of r(w) and r(w) ·∆i

using the purported shares, and checks their consistency. Further, Pi checks the consistency of ρ(w) and
X

(w)
i ⊕ ρ(w) ·∆i (note, Pi knows X

(w)
i ). If both check succeed, Pi outputs x

(w) = ρ(w)⊕ r(w); else aborts.

Fig. E.1: Protocol for securely evaluating n-party circuits with outputs at all parties with (n−ℓ)-security.

Theorem 8. Let f be an n-party function with output to all parties, and let C be a Boolean circuit
computing f . The protocol described in Figure E.1 securely computes f in the FGBC-Pre-hybrid and random
oracle model with statistical t-security and selective abort, where t ≤ n− ℓ and ℓ ≥ ϵ · n for any ϵ > 0.

Proof. Let w be an input wire of an honest Pi. Let y
(w) be the true value on w when f is evaluated with

the actual inputs of honest parties and input on any input wire w of a malicious Pj being set to ρ
(w)⊕r(w),

where ρ(w) is the value broadcasted by Pj in step 8 during input processing. Pi outputs 1⊕ y(w) without

aborting only if P1 sends ρ̃(w) = y(w) ⊕ r(w) ⊕ 1 and its valid MAC of the form X
(w)
i ⊕ ρ̃(w) ·∆i in step

14, or the adversary forces Pi to reconstruct 1⊕ r(w) and (1⊕ r(w)) ·∆i in step 16 by forging the MAC.
The latter occurs with negligible probability if the adversary’s view is independent of ∆i.

While proving security of ΠGBC in Theorem 5, we established that an honest evaluator P1 learns
ρ(w) = y(w)⊕ r(w) or aborts. On the other hand, we argued in the proof of Theorem 5 that an adversary

A corrupting P1 only learns X
(w)
i ⊕ρ(w) ·∆i and A’s view is independent of ∆i until the output processing

phase (step 13). We now argue that this continues to hold after steps 14-16. The only addition to A’s
view are effectively r(w

′) and {⟨0(w′)⟩(add)c ⊕ α(k,l) · ⟨∆(k) · r(w′)⟩c}c∈[n] where ∆
(k)
l = ∆j for all output

wires w′ ∈ Oj for each corrupt Pj . But, since ⟨0(w
′)⟩(add) is a secret sharing of 0, this only reveals∑n

c=1 α
(k,l) · ⟨∆(k) · r(w′)⟩c = ∆j . Hence, A can successfully guess X

(w)
i ⊕ ρ̃(w) · ∆i with negligible

probability.
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Inputs. Bit r, MAC Keys ∆1, . . . ,∆n.

1. Sample {Ki
$←− F}ni=1.

2. Sample additive sharing ⟨r⟩ of r.
3. For each χ ∈ {1, . . . , c = ⌈n/ℓ⌉}, compute packed secret sharing [Y(χ)], where

Y(χ) = (K1+(χ−1)ℓ ⊕ r ·∆1+(χ−1)ℓ, . . . ,K(χℓ) ⊕ r ·∆(χℓ)).
4. Set Mj ← 0, ∀j ∈ {1, . . . , n}.
5. return t-pack(r) = (t-pack(r)1, . . . , t-pack(r)n), where t-pack(r)1 = (⟨r⟩1,K1, {Mj}nj=1, {[Y(χ)]1}cχ=1)

and t-pack(r)i = (⟨r⟩i,Ki, {[Y(χ)]i}cχ=1), ∀i ∈ {2, . . . , n}.

Fig. F.1: compute-tpack(·) algorithm in Garbling of TSCs

F Garbled Tri-State Circuits, Extended

F.1 Preprocessing Functionality

The preprocessing functionality is described in Figure F.2. It is parameterized by (W,N, V ). W denotes
the number of random bits that are authenticated, as described in Section 6 and formalized in Figure F.1.
Step 2 of FGTSC-Pre generates these authenticated random bits. N denotes the number of authenticated
multiplication triples that are computed in step 3 of FGTSC-Pre. Finally, V denotes the number of packed
secret sharing of random vectors that are generated in step 4 of the protocol.

The correlations computed in FGTSC-Pre are similar to those in FGBC-Pre (see Figure 4.1), with two key
differences. First, in FGBC-Pre, the bit masks in the multiplication triple associated with an AND gate
depend on the bit masks associated with its input wires, while in FGTSC-Pre, the multiplication triples
are sampled independently. This difference can be addressed by plugging in a simpler circuit than CD in
the construction, without affecting its O(n|C|) complexity, where (C,D) denotes the oblivious TSC. The
second difference is that in FGBC-Pre, the shares of labels {[X(w,χ)]}⌈n/ℓ⌉χ=1 and the shares of authentication

of the random bit r(w), i.e., {[r(w)∆(χ)]}⌈n/ℓ⌉χ=1 , are distributed separately by the functionality. In contrast,

FGTSC-Pre distributes shares of authentication of the random bit masked with the label, i.e., {[K(w,χ) +

r(w)∆(χ)]}⌈n/ℓ⌉χ=1 . This difference can be addressed by parties locally adding the two shares. Thus, a
protocol to instantiate FGTSC-Pre with O(n|C|) communication complexity can be constructed following
the same approach as protocol ΠGBC-Pre.

Public Input. Number of required authenticated random bits, W , number of required beaver triples, N ,
and number of random bit vectors, V .

1. Sample {∆i
$←− F}i∈[n].

2. For w ∈ {1, . . . ,W}, sample r(w) $←− {0, 1} and compute

t-pack(r(w))
$←− compute-tpack(r(w),∆1, . . . ,∆n) (see Figure F.1).

3. For g ∈ {1, . . . , N}, sample r(gα), r(gβ) $←− {0, 1}. Compute r(g) ← r(gα) ∧ r(gβ). Compute

t-pack(r(gα))
$←− compute-tpack(r(gα),∆1, . . . ,∆n). Similarly, compute t-pack(r(gβ)) and t-pack(r(g)).

4. For v ∈ {1, . . . , V }, compute packed secret sharing of {[Y(v,χ)]}c=⌈n/ℓ⌉
χ=1 , where

Y(v,χ) = (Y
(v)

1+(χ−1)ℓ, · · · , Y
(v)
χℓ ) is a uniformly random vector in Fℓ.

5. If Sim sends abort, send abort to all the parties. Else, send {∆i, {t-pack(r(w))i}Ww=1,

{t-pack(r(gα))i, t-pack(r
(gβ))i, t-pack(r

(g))i}Ng=1, {{[Y(v,χ)]i}cχ=1}Vv=1} to Pi.
Corrupt Parties:

Corrupt parties can choose their outputs and add an additive error to every secret sharing.

Fig. F.2: Functionality FGTSC-Pre
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Inputs. Oblivious Tri-state Circuit (C,D).
Circuit-Independent Phase.
1. Determine the number of required authenticated random bits, W , number of required beaver triples, N ,

and number of random bit vectors, V , from the description of circuit C (see Section F.2).
2. Parties invoke FGTSC-Pre with parameters (W,N, V ). Each party Pi receives {∆i, {t-pack(r(w))i}Ww=1,

{t-pack(r(gα))i, t-pack(r
(gβ))i, t-pack(r

(g))i}Ng=1, {{[Y(v,χ)]i}c=⌈n/ℓ⌉
χ=1 }Vv=1} from FGTSC-Pre.

Garbling Phase.
Random Input Wire.

3. For a random input wire w, each party Pi associates wire w with sharing t-pack
(w)
i = t-pack(r(w))i.

Input Wire.

4. Each input wire w is associated with t-pack(r(w)).

5. Each garbler Pi samples ⟨x̂(w)⟩i
$←− {0, 1} and K̂(w)

i

$←− F and sets

t-pack
(w)
i ← (⟨x̂(w)⟩i, K̂(w)

i , {[Y(w,χ)]i}cχ=1}).
XOR Gate.

6. For XOR Gate (α, β, γ,⊕), each garbler Pi sets t-pack
(γ)
i ← t-pack

(α)
i ⊕ t-pack

(β)
i .

Buffer Gate.

7. For buffer gate g = (α, β, γ, /), each garbler Pi samples K
(γ)
i uniformly at random and sets:

t-pack
(γ)
i ← t-pack

(β)
i ⊕ (0,K

(β)
i ⊕K(γ)

i , {0}cχ=1).

8. Each garbler Pi parses t-pack
(α)
i as (⟨x(α)⟩i,K(α)

i , {[Y(α,χ)
i }cχ=1). Pi sends ⟨x(α)⟩i, shares

{[Y(α,χ)]i}cχ=1), and G
(σ)
i = H(K

(α)
i ⊕∆i)⊕K(β)

i ⊕K(γ)
i to P1, where H : {0, 1}κ → {0, 1}κ is a

random oracle.
Join Gate.

9. For join gate g = (α, β, γ, ▷◁), each garbler Pi samples ⟨x(γ)⟩i
$←− {0, 1},K(γ)

i

$←− F. Each garbler Pi sets:

t-pack
(γ)
i ← (⟨x(γ)⟩i,K(γ)

i , {[Y(g,χ)]i}cχ=1).

10. Each garbler sends G
(g,0)
i ← t-pack

(γ)
i ⊕ t-pack

(α)
i and G

(g,1)
i ← t-pack

(γ)
i ⊕ t-pack

(β)
i to P1.

Fig. F.3: Protocol ΠGTSC
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F.2 Garbling Scheme

The garbling scheme is presented in Figures F.3 and F.4. In step 1, W is equal to the number of wires
in the circuit (except the ones accounted in multiplication triples), N is determined from distribution
D, and V is equal to the number of Join Gates in the circuit. The parties then invoke the preprocessing
functionality FGTSC-Pre (steps 2 in Figure F.3) to obtain their respective global key ∆i, a list of packed
authenticated sharing t-pack(r(w)) of a random bit r(w), a list of packed authenticated multiplication
triples (t-pack(r(gα)), t-pack(r(gβ)), t-pack(r(g))) such that r(g) ← r(gα) ∧ r(gβ). Recall, t-pack(r) provides
each party Pi with an additive share of r, a MAC key Ki, and share of packed secret sharing of {Yi}i∈[n]

over c = ⌈n/ℓ⌉ polynomials, each packing ℓ such values. P1’s share of t-pack(r) additionally contains
{Mj}j∈[n] such that Mi ⊕Ki ⊕ Yi = r ·∆i. Additionally, with each Join Gate g = (α, β, γ, ▷◁), parties

receive packed sharing of random values Y
(g)
1 , . . . , Y

(g)
n .

Evaluation Phase.
Input Processing.

11. For an input wire w of party Pi, each party Pj sends (⟨r(w)⟩j , {[Y(w,χ)]i}), where χ = ⌈i/ℓ⌉ to Pi. Pi

computes r(w) ← ⊕n
j=1⟨r(w)⟩j . Pi reconstructs Y

(w,χ) to determine Y
(w)
i . Pi checks if

r(w) ·∆i = K
(w)
i ⊕ Y (w)

i . If the check passes, Pi broadcasts ρ
(w) ← r(w) ⊕ x(w) to all parties, where x(w)

is the input value. Each garbler Pi computes

t-pack
(w)

i = (x̃
(w)
i , K̃

(w)
i , {0}ck=1)← t-pack

(w)
i ⊕ t-pack(r(w))i ⊕ (0, ρ(w) ·∆i, {0}ck=1) and sends it to P1.

P1 computes t-pack
(w)
1 ← t-pack(r(w))1 ⊕

(
ρ(w) ⊕n

i=2 x̃
(w)
i , ρ(w) ·∆1, {K̃(w)

i }ni=1, {0}cχ=1

)
, where

K̃
(w)
1 = 0.

Circuit Evaluation.
12. P1 evaluates the circuit in the order prescribed by tri-state semantics as described in Definition 2.

13. For g = (α, β, γ,⊕), P1 simply sets t-pack
(γ)
1 ← t-pack

(α)
1 ⊕ t-pack

(β)
1 .

14. For g = (α, β, γ, /), P1 holds ⟨x(α)⟩i, shares {[Y(α,χ)]i}cχ=1 and garbled table G
(g)
i from each garbler Pi.

P1 reconstructs x(α) and {Y(α,χ)}cχ=1. P1 verifies if x(α) ·∆1 = K
(α)
1 ⊕ Y (α)

1 ⊕M (α)
1 . P1 computes

Z
(α)
i ←M

(α)
i ⊕ Y (α)

i , ∀i ∈ {2, . . . , n}. P1 computes K
(β)
i ⊕K(γ)

i ← H(Z
(α)
i )⊕G(g)

i , for each
i ∈ {2, . . . , n}. P1 sets t-pack(x(γ))1 to

t-pack(x(β))1 ⊕ (0, 0κ, {0}i=1 ∥ (K(β)
i ⊕K(γ)

i )ni=2, {0}ck=0).

15. For g = (α, β, γ, ▷◁):

If wire α is fired, P1 considers m = 0th entry, else if wire β is fired P1 considers m = 1th entry. P1 parses
each G

(g,m)
i as (x

(µ)
i ,K

(µ)
i , {[Y(µ,χ)]i}cχ=1). For each χ ∈ {1, . . . , c}, P1 computes

[Y(µ,χ)]1 ← [Y(g,χ)]1 + [Y(α,χ)]1. P1 reconstructs Y(µ,χ), ∀χ, where Y(µ,χ) = (Y
(µ)

1+(χ−1)ℓ, . . . , Y
(µ)
χℓ ). P1

sets its share as:

t-pack(x(γ))1 ← t-pack(x(α))1 ⊕ (0, 0κ, {K(µ)
i ⊕ Y (µ)

i }ni=1, {[Y(g,χ)]1}cχ=1),

where K
(µ)
1 = 0κ.

Output Processing.

16. For each output wire w, each garbler Pi sends (⟨x(w)⟩i, {[Y(w,χ)]i}cχ=1) to P1. P1 computes

x(w) ← ⊕n
i=1⟨x(w)⟩i and reconstructs {Y(w,χ)}ck=1. P1 verifies if x(w)∆1 = K

(w)
1 ⊕ Y (w)

1 ⊕M (w)
1 .

Fig. F.4: Protocol ΠGTSC (continued)

Using these correlations, the parties then locally compute the garbling of XOR, buffer and join gates.
The garbling is carried out with the objective of arranging for the following invariant for each evaluated

wire w: M
(w)
i ⊕K

(w)
i ⊕ Y

(w)
i = x(w) ·∆i, where x(w) is the true value on the wire, further each garble

circuit and the evaluator holds an XOR share of x. XOR gates are free, owing to linear homomorphism
of packed secret sharing and the use of ∆i as the free XOR correlation. To evaluate the buffer gate
g = (α, β, γ, /), the output of the control wire α is verifiably revealed to the evaluator. Each garbler Pi

uses the same state for the data wire and output wire but with a freshly sampled label K
(γ)
i . Then, it

writes out a translation from the label of β to that of γ that the evaluator can decrypt (only) when the
control wire takes the value 1. Each garbler processes the join gate g = (α, β, γ, ▷◁) by simply adopting
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the same state as the α wire for γ wire. Recall, the output of join gate is the same as any of its inputs. To
aid the evaluator in greedily evaluating g when only β wire fires, each garbler shares a translation between
the states of α and β wires. The size of garbling of buffers (/) and joins (▷◁) is nκ and 2n((c+ 1)κ+ 1)
respectively.

This is followed by the evaluation phase which begins with an input processing phase. At the end
of this phase, similar to our previous construction, the parties help the evaluator to set up the above
mentioned invariant on the input wires. The evaluator processes the circuit, maintaining this invariant,
according to a topological ordering. Finally, the output of the circuit is verifiably recovered by P1 and
revealed to the garblers along similar lines as in our previous construction.

Theorem 9. Let (C,D) be an oblivious tri-state circuit, and D be an ensemble of beaver triples and uni-
form independent bits. The protocol ΠGTSC instantiated with C,D securely realizes (C,D) in the FGTSC-Pre-
hybrid and random oracle model with computational t-security and selective abort, where t ≤ n− ℓ and
ℓ ≥ ϵ · n, for any ϵ > 0.

We prove the Theorem in the next section.

G Proof of theorem 9

Let A be an adversary corrupting Pi, i ∈M where |M| ≤ t. Let H = {1, . . . , n} \M and ℓ = n− t. Let
Ff denote the functionality computing f with selective abort.

We construct a simulator Sim that runs A as a subroutine while interacting with Ff . Sim is described
as follows:

1. In steps 1-10 (preprocessing and garbling phase) of ΠGBC, Sim interacts with A by emulating the
honest parties {Pi}i∈H and playing the functionality FGTSC-Pre. Sim records the outputs of FGTSC-Pre.
If any honest party reports abort in the process, Sim sends an early abort to F and outputs whatever
A outputs.

2. In step 11 (input processing phase), Sim interacts with A by emulating the honest parties {Pi}i∈H
after initializing each honest Pi with default input x(w) = 0 for every input wire w ∈ Ii. For each
corrupt Pi, for each w ∈ Ii, Sim receives ρ(w) from A and computes y(w) = ρ(w)⊕ r(w). If any honest
party reports abort, Sim sends an early abort to F and outputs whatever A outputs.

At this point, simulator separately considers two cases: P1 is honest and P1 is corrupt.

Case: P1 is honest.

3. Sim emulates the honest parties and interacts with A in steps 12-16 (circuit evaluation and output
processing phase). If P1 aborts in any step, Sim sends an early abort to F , and outputs whatever A
outputs. Otherwise, for each i ∈M and w ∈ Ii, Sim sends y(w) to F on behalf of Pi.

Case: P1 is corrupt.

3’. On behalf of each corrupt Pi (i ∈ M), for each w ∈ Ii, Sim sends y(w) to F . In response, Sim
receives the true value z(w) on every output wire w from the functionality. Sim locally evaluates C
with input y(w) for each w ∈ Ii when i ∈ M and default input 0 for each w ∈ Ii when i ∈ H. Let
z′(w) be the resulting value on each output wire w. If z(w) ̸= z′(w), Sim converts ⟨x(w)⟩ to a secret
sharing ⟨1⊕x(w)⟩ of x(w)⊕ 1 by patching the share of some honest Pi; and converts [Y(w,χ)] to PSS
of [Y(w,χ) ⊕∆(χ)] for each 1 ≤ χ ≤ n/ℓ by patching the shares of {Pi}H′ where H′ ⊆ H of size ℓ. If
z(w) = z′(w), Sim makes no changes to the shares.

4’. In steps 16 (output processing phase), Sim interacts with A by emulating the honest parties but
using updated shares of x(w) and (Y(w,χ))χ∈n/ℓ for each output wire w.
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We will now prove that the ideal execution and real world execution are statistically indistinguishable
in the random oracle model.

First, suppose P1 is uncorrupted. We show the indisinguishability using a sequence of hybrids.

Hybrid1. Same as the real world execution of ΠGTSC with A corrupting {Pi}i∈M.

Hybrid2. Let y(w) be the actual input for each input wire w ∈ I. Sim emulates all honest party Pi

(where i ∈ H) using x(w) = y(w) for each w ∈ Ii, and plays the functionality FGTSC-Pre, and interacts
with A. The output of the honest P1 in the emulation is routed to the output of the real P1. Finally,
Sim outputs whatever the subroutine A outputs.

Hybrid2 is an equivalent way to describe Hybrid1.

Hybrid3. Same as Hybrid2, but, if none of the honest parties abort the protocol, Sim sends {y(w)}w∈Ii

to F on behalf of each corrupt Pi. The output of the F is routed to the output of real P1.

The view of A produced in Hybrid2 and Hybrid3 are identical. By Lemma 7, the output of P1 is the
same in both these hybrids with overwhelming probability.

Hybrid4. Same as Hybrid3, except, for each input wire w that takes input from an honest Pi, the
simulator uses the default input 0 instead of x(w).

For each w that takes input from an honest Pi, until the circuit evaluation phase, the view of the
adversary is decided by x(w) ⊕ r(w) = ρw) for each such wire, and a set of random variables that are
identically distributed independent of the values of x(w) and r(w). But, ρ(w) is identically distributed in
both hybrids. Thus, it suffices to show that probability with which P1 reports an abort in the subsequent
steps is the same conditioned on the same view in both hybrids.

During the circuit evaluation–steps 12-15 in the circuit evaluation phase–P1 aborts only if the MAC
check in step 14 for evaluating the control wire in any of the buffer gates fails. At this point we invoke
the obliviousness of the tristate circuit which states that, over the randomness of the random inputs to
the tri-state circuit, the distribution on the values on the buffer wires is identically distributed for any
distinct pair of inputs. Since the values on the random wires are not revealed during the garbling, the
probability of abort is independent of the input of the honest parties.

Security follows since Hybrid4 is identical to the ideal execution.

We next consider the case where P1 is corrupted. We show the indisinguishability using a sequence
of hybrids.

Hybrid1. Same as the real world execution of ΠGTSC in FGTSC-Pre-hybrid model with A corrupting
{Pi}i∈M.

Hybrid2. Sim emulates every honest party Pi using their actual inputs {y(w)}w∈Ii
and plays the

functionality FGTSC-Pre, and interacts with A. In step 11, Sim learns y(w) = ρ(w) ⊕ r(w) for each input
wire w taking input from any malicious party. For each i ∈M, Sim sends {y(w)}w∈Ii

to F on behalf of
each corrupt Pi. Finally, Sim outputs whatever the subroutine A outputs.

No honest party receives any output from the functionality. The view of A is the same in both hybrids.

Hybrid3. Same as Hybrid2, but, Sim uses a default input 0 for all input wires of every honest party. In
steps 16 (output processing), simulator behaves as described in 4′.

Similar to our analysis for the case where P1 is honest, here also, for each w that takes input from an
honest Pi, until the circuit evaluation phase, the view of the adversary is decided by x(w)⊕r(w) = ρ(w) for
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each such wire, and a set of random variables that are identically distributed independent of the values
of x(w) and r(w). This is argued along the lines of the previous case, however, since P1 is corrupt, the

view of the adversary contains K̃
(w)
i . However, the value of ∆i of any honest party is still unknown to the

adversary since K̃
(w)
i is obtained by masking with uniformly random string unknown to the adversary.

Finally, ρ(w) is identically distributed in both hybrids.

For any output wire w, when z(w) ̸= z′(w), the shares obtained by patching ⟨x(w)⟩ as described in 3’
of the simulator is a random secret sharing of 1 + x(w) by Proposition 3. Similarly, shares obtained by
patching [Y(w,χ)] is a random secret sharing of [Y(w,χ)+∆(χ)] for each 1 ≤ χ ≤ n/ℓ. Since the adversary

has no knowledge of x(w) and {Y(w,χ)}n/ℓχ=1, they are indistinguishable from 1⊕x(w) and [Y(w,χ)+∆(χ)].

This concludes the proof of security of ΠGTSC.

Lemma 7. Consider an adversary A corrupting parties {Pi}i∈M such that 1 /∈ M. For each i ∈ M
and w ∈ Ii, let y(w) be as defined in the simulation; for each i ∈ H and w ∈ Ii, let y(w) be the true input
of Pi for input wire w. Then, with all but negligible probability, P1 either aborts or learns the evaluation
of f with {y(w)}w∈I as inputs.

Proof. For each wire w ∈ W \ I, let y(w) be the value on wire w when the circuit is evaluated with
{y(w)}w∈I as inputs.

We will prove using induction that, with all but negligible probability, if the protocol is not aborted,

for each output wire w, P1 holds K
(w)
1 ,M

(w)
1 (as part of t-pack

(w)
1 ), and parties hold shares [Y(w,1)]

(consisting Y
(w)
1 ) such that

K
(w)
1 ⊕M

(w)
1 ⊕ Y

(w)
1 = y(w) ·∆1,

where y(w) is the actual value on the wire.

Base Case. We show that the statement holds for each w ∈ I.
For each input wire w from party Pi, where i ∈ M, y(w) = ρ(w) ⊕ r(w) by definition. In

this case, after the garbling phase each garbler Pj ̸=1 holds t-pack
(w)
j . P1 holds t-pack(r(w)) =

(⟨r(w)⟩1,K1(r
(w)), {0}⌈n/ℓ⌉χ=1 , ([Y(w,χ)]1)

⌈n/ℓ⌉
χ=1 ). P1 sets t-pack

(w)
1 in such a way that K

(w)
1 = K1(r

(w)) +

ρ(w) · ∆1 and M1 = 0. Let (s1, . . . , sn) denote the shares of [Y(w,1)] obtained from FGTSC-Pre. There

exist coefficients (α(1,j))nj=1 such that the linear combination
∑n

j=1 α
1,j · sj = Y

(w)
1 , where Y

(w)
1 =

K1(r
(w)) + r(w) ·∆1. One can observe that, K

(w)
1 +M

(w)
1 + Y

(w)
1 = ρ(w) ·∆1 + r(w) ·∆1 = y(w)∆1.

Adversary A holds (t-pack
(w)
j )j∈M. Thus, A learns atmost n− ℓ shares of [Y(w,1)]. Since, the secret

sharings are (n− ℓ) secure, these shares are independent of the real value ∆1. Moreover, the remaining

components of (t-pack
(w)
j )j∈M are clearly independent of ∆1.

For K
(w)
1 + M

(w)
1 + Y

(w)
1 ̸= y(w) · ∆1, A needs to transform shares of [Y(w,1)] corresponding to

corrupt parties, i.e., (sj)j∈M to shares (s′j)j∈M such that
∑

j∈H α1,j · sj +
∑

j∈M α1,j · s′j = Y
(w)
1 +∆1.

The probability that A succeeds is atmost 1/F.

For each input wire w from party Pi, where i ∈ H, Pi receives ⟨r(w)⟩j and [Y(w,χ)]j , where χ =
⌈i/ℓ⌉ from each party Pj ̸=i. Let the shares of [Y(w,χ)]j be denoted by (sj)

n
j=1. There exist coefficients

(α(l,j))nj=1, where i = l + (χ− 1)ℓ, such that
∑n

j=1 α
(l,j) · sj = Y

(w)
i .

Adversary A holds (t-pack
(w)
j )j∈M. Thus, A learns atmost n− ℓ shares of [Y(w,χ)]. Since, the secret

sharings are (n− ℓ) secure, these shares are independent of the real value ∆i. Moreover, the remaining

components of (t-pack
(w)
j )j∈M are clearly independent of ∆i.

In this case, ρ(w) ̸= r(w) ⊕ y(w) only if A can come up with shares (s′j)j∈M such that
∑

j∈H αl,j ·
sj +

∑
j∈M αl,j · s′j = Y

(w)
i + ∆i. The probability that A succeeds is atmost 1/F. Thus, except with
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negligible probability ρ(w) = r(w) ⊕ y(w). By following the proof for the case when input belonged to a

corrupt party, we conclude that except with probability at most 1/F, K(w)
1 +M

(w)
1 + Y

(w)
1 = y(w) ·∆1.

Induction Step. For a gate (α, β, γ, T ) such that T ∈ {⊕, /, ▷◁}, we will show that this property holds
for the output wire assuming it holds for the input wires.

When T = ⊕, each garbler Pi ̸=1 computes t-pack
(γ)
i = t-pack

(β)
i ⊕ t-pack

(α)
i . In the evaluation phase,

evaluator P1 computes t-pack
(γ)
1 = t-pack

(β)
1 ⊕ t-pack

(α)
1 . Observe that y(γ) = y(α) ⊕ y(β) and K

(γ)
1 ⊕

M
(γ)
1 ⊕ Y

(γ)
1 = y(γ) ·∆1 due to linear homomorphism of PSS and additive secret sharing.

A holds t-pack
(γ)
i , for each i ∈ M. These comprise of n − ℓ shares of [Y(γ,1)]. Since, the sharings

are n − ℓ secure, these shares are independent of ∆1. The remaining components of (t-pack
(γ)
i )iınM

are independent of ∆1. Due to same argument as above, the probability that A transforms shares of

[Y(γ,1)] held by corrupt parties such that K
(γ)
1 ⊕M

(γ)
1 ⊕ Y

(γ)
1 ̸= y(γ) ·∆1 is 1/F, i.e., negligible.

When T = /, P1 processes the output wire only if the control wire α carries the value 1. By our
invariant, if P1 does not abort, then it evaluates the buffer gate if and only if the control wire is live;
this follows from the same reasoning as above, i.e., the adversary cannot flip the value on α given our
invariant since the adversary cannot reveal incorrect shares of [Y(α,1)] without making P1 abort (except

with probability 1/F). Further, when control wire is live, observe that K
(γ)
1 = K

(β)
1 , M

(γ)
1 = M

(β)
1 , and

Y
(γ)
1 = Y

(β)
1 . The property holds since γ = β when α = 1.

Suppose T =▷◁. We will w.l.o.g. consider the case where α fires; the other case can be handled simi-
larly. Once again, we exploit the fact that the adversary cannot change except with negligible probability

the shares on [Y(µ)] to argue that P1 correctly receives Y
(µ)
1 = Y

(g)
1 ⊕ Y (α). Hence,

K
(γ)
1 ⊕ Y

(γ)
1 ⊕M

(γ)
1 = K

(α)
1 ⊕ Y

(g)
1 ⊕

(
M

(α)
1 ⊕ Y

(µ)
1

)
= K

(α)
1 ⊕ Y

(g)
1 ⊕

(
M

(α)
1 ⊕

(
Y

(g)
1 ⊕ Y

(α)
1

))
= K

(α)
1 ⊕ Y

(α)
1 ⊕M

(α)
1 = y(α) ·∆1 = y(γ) ·∆1.

We have established that the invariant holds for every wire. Finally, in the output processing, if P1

does not abort, it learns the correct value for x(w) = y(w) by the same line of argument we used above.
Thus, for each output wire w, P1 outputs x(w) if it does not abort.

H Concrete Communication Analysis of Our Protocol ΠGBC

In this section, we determine the total communication cost of our construction with FGBC-Pre instantiated
with ΠGBC-Pre.

H.1 Size of circuit CD

Let C denote the base circuit, i.e., the circuit we would like to securely evaluate using our garbling scheme.
Let Winp, Wout and G∧ denote the number of input wires, output wires, and AND gates, respectively in
C.

As a first step, we determine the communication cost of securely evaluating circuit CD described
in Figure 4.2. We use Superpack protocol ΠSP [EGP+23] to securely evaluate the circuit CD. In ΠSP

communication is incurred in processing of input wires, output wires, and multiplication gates. Due to
linear homomorphism of additive and packed secret sharings used in their construction, addition gates
are supported for free. Thus, let us determine the number of input wires (Winp), output wires (Wout), and
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multiplication gates in CD (G×), in order to determine the communication cost of securely evaluating it
using ΠSP.

Step 1 of CD takes n many inputs in total from the parties. Step 2 takes n · (Winp + G∧)/ℓ many
inputs in total. Step 3 takes n · (Winp +G∧)/ℓ inputs in total and comprises 2(Winp +G∧) multiplication
gates. Step 4 comprises G∧ many multiplication gates. Step 5 and 8 in total have 2n(2n+ (n− ℓ) · T )/ℓ
many inputs, where T = (Winp + 2G∧ + 1)/ℓ. Step 6 and 7 are local operations. Step 8 has (T + 1)ℓ
multiplication gates. Step 9 has n(2T + 4) many output wires in total. Let k = δn and ℓ = ϵn. Thus,

Winp = n+ n · (Winp + G∧)/ℓ+ n · (Winp + G∧)/ℓ+ 2n(2n+ (n− ℓ) · T )/ℓ
= n+ 2 · (Winp + G∧)/ϵ+ 2(2n+ (1− ϵ) · (Winp + 2G∧ + 1)/ϵ)/ϵ

≈Winp ·
(
2

ϵ
+

2(1− ϵ)

ϵ2

)
+ G∧ ·

(
2

ϵ
+

4(1− ϵ)

ϵ2

)
. (6)

Wout = n(2T + 4)

= n(2(Winp + 2G∧ + 1)/ℓ+ 4)

≈Winp ·
(
2

ϵ

)
+ G∧ ·

(
4

ϵ

)
. (7)

G× = 2(Winp + G∧) + G∧ + (T + 1)ℓ

= 2(Winp + G∧) + G∧ + ((Winp + 2G∧ + 1)/ℓ+ 1)ℓ

≈Winp · (2) + G∧ · (5) (8)

H.2 Communication Analysis of ΠGBC-Pre Protocol

Below, we discuss the communication cost in terms of the number of field elements unless stated explicitly
otherwise. For an input wire, the communication cost of preprocessing and online phase in ΠSP is
(6n + 33/ϵ) and 10/ϵ, respectively. For an output wire, the communication cost of preprocessing and
online phase inΠSP is (4n+31/ϵ) and 24/ϵ, respectively. For each mulitplication gate, the communication
cost incurred in the preprocessing and online phase in ΠSP is 6n+ 39/ϵ and 6/ϵ respectively.

Now, let us analyze the communication cost of ΠGBC-Pre protocol (see Figure 4.3). Step 1.(a) incurs
a communication cost of n(n − 1)(Winp + G∧)/ℓ. Having determined the size of the circuit CD, we can
now evaluate the communication cost of step 1.(b) (Cost1) of ΠGBC-Pre as shown below.

Cost1 = Winp · (6n+ 43/ϵ) +Wout (4n+ 55/ϵ) + G× (6n+ 45/ϵ) . (9)

Step 3 requires n(n− 1) · (3T + 6) many 2PC multiplications. Input of one party is same in several
instances of such 2PC multiplications which allows for efficient instantiation using Vector OLE. In step
6, the total communication cost is n · (n− 1) ·T . The communication cost of step 9 is n · (n− 1) · (T ) · nℓ .
The communication cost of step 12 of the protocol is n · (n − 1) · T . Communication cost of step 15-
16 is 2n · (n − 1) · (Winp + Wout)/ℓ. In step 18, parties invoke G∧ many instances of Frv functionality.
Communication cost of an instance of Frv when instantiated with Πrv protocol is n2(n − 1 + ℓ)/ℓ2.
Step 19 has n(n− 1) bits as communication cost. The communication cost of step 20 of the protocol is
4n(n− 1). Communication cost of step 21, 22, 23, 24, 25 and 26 is n(n− 1) bits, 2n(n− 1), 2n(n− 1),
n(n− 1) bits, 2n(n− 1) and n(n− 1) bits, respectively. The total communication cost of preprocessing
protocol ΠGBC-Pre denoted as CostGBC-Pre ignoring low-order terms is

CostGBC-Pre =n(n− 1)(Winp + G∧)/ℓ+ Cost1 + n · (n− 1) · (3T )Cost2PC + n · (n− 1) · T

+ n · (n− 1) · (T ) · n
ℓ
+ n · (n− 1) · T

+ 2n · (n− 1) · (Winp +Wout)/ℓ+ G∧ · n2 · (n− 1 + ℓ)/ℓ2 + 16n(n− 1).
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We can use FnVOLE functionality to instantiate the 2PC multiplications. In more detail, parties first
invoke FnVOLE functionality. Each party Pi then sends correction to party Pj holding ∆j based on its
random vector and pseudorandom expansion of the seed held by it. Thus, the amortized communication
cost of a 2PC multiplication is κ bits or one field element.

Thus, the total communication cost is

CostGBC-Pre =Winp

((
2

ϵ
+

2(1− ϵ)
ϵ2

)
· (6n+ 43/ϵ) +

(
2

ϵ

)
· (4n+ 55/ϵ)

+ 2 · (6n+ 45/ϵ) + 8

(
n− 1

ϵ

)
+
n− 1

ϵ2

)
+ G∧

((
2

ϵ
+

4(1− ϵ)
ϵ2

)
(6n+ 43/ϵ) +

(
4

ϵ

)
· (4n+ 55/ϵ)

+ 4 · (6n+ 45/ϵ) + 11

(
n− 1

ϵ

)
+

3(n− 1) + ϵn

ϵ2

)
+Wout

(
2(n− 1)

ϵ

)
+ 16n(n− 1). (10)

H.3 Communication Analysis of ΠGBC

Now, we determine the concrete communication cost of ΠGBC described in Figure 5.1. The first 5 steps
incur no communication in the FGBC-Pre-hybrid. In step 6, each garbler Pi̸=1 sends G∧ many garbled
tables each of size 4(⌈n/ℓ⌉+1). I.e., each garbler sends total garbled material of size 4 ·G∧ · (⌈n/ℓ⌉+1).
The total communication cost is 4 · n · G∧ · (⌈n/ℓ⌉ + 1). In bits, the total communication in garbling is
4 · n · G∧ · (⌈n/ℓ⌉+ 1)κ.

In the evaluation, for processing each input wire, the total communication is 2(n− 1)κ+ 2(n− 1) +
(n − 1)κ bits. Thus, the total communication is Winp · (3(n − 1)κ + 2(n − 1)) bits. For an output wire,
the communication cost is 2(n− 1)κ bits. Thus, the total communication is Wout · (2(n− 1)κ) bits.

The total cost of our protocol (in bits) is:

Costtotal =CostGBC-Pre · κ+ 4 · n · G∧ · (⌈n/ℓ⌉+ 1)κ+Winp · (3(n− 1)κ+ 2(n− 1))

+Wout · (2(n− 1)κ). (11)
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