
Homomorphic Signature-based Witness Encryption
and Applications

Alireza Kavousi∗1 and István András Seres†2
1University College London
2Eötvös Loránd University

March 24, 2025

Abstract

Practical signature-based witness encryption (SWE) schemes recently emerged as a viable alternative to instan-
tiate timed-release cryptography in the honest majority setting. In particular, assuming threshold trust in a set of
parties that release signatures at a specified time, one can “encrypt to the future” using an SWE scheme. Applica-
tions of SWE schemes include voting, auctions, distributed randomness beacons, and more. However, the lack of
homomorphism in existing SWE schemes reduces efficiency and hinders deployment. In this work, we introduce
the notion of homomorphic SWE (HSWE) to improve the practicality of timed-release encryption schemes. We show
one can build HSWE using a pair of encryption and signature schemes where the uniqueness of the signature is
required when the encryption scheme relies on injective one-way functions. We then build threeHSWE schemes in
various settings using BLS, RSA, and Rabin signatures and show how to achieve a privacy-preserving variant that
only allows extracting the homomorphically aggregated result while keeping the individual plaintexts confidential.

1 Introduction
Timed-release cryptography [RSW96] can be instantiated from computational puzzles (e.g., repeated modular
squaring) or obfuscation [BGJ+16] in the dishonest majority setting. On the other hand, timed-release crypto is
also possible in the honest majority setting by assuming (a threshold of) trusted parties that release certain informa-
tion (e.g., signatures, commitment openings, etc.) at a specified time. In recent years, we have seen significant
interest and development in the former category spearheaded by works such as homomorphic time-lock puz-
zles [MT19], verifiable delay functions [BBBF18], and numerous derived applications: distributed randomness
beacons [CATB23], auctions [TAF+23], voting schemes [GSZB23], cryptographic time-stamping services [LSS20],
and more. However, practical deployments of timed-release cryptography from computational puzzles are almost
nonexistent due to the severe technical challenges that hinder deployment. Next, we highlight some of these hur-
dles.

Inherent sequentiality of delay functions. Repeated squaring is themost popular andwell-understood candidate
as the computational puzzle in timed-release cryptography. However, little is known about the sequentiality
of repeated squaring. In RSA groups, it was shown that one cannot speed up generically repeated squaring
unless factoring is easy [RS20]. Lower bounds for circuit depth computing modular squaring are known due
to Wesolowski and Williams [WW20]. However, speeding up repeated squaring is possible, though at the
expense of massive parallelism [BS07]. The situation with repeated squaring in class groups is even more
dire. Little is known about the sequentiality of repeated squaring in class groups [Wes19]. Importantly, it is
not clear how these theoretical results on circuit-depth lower bounds translate to lower bounds on practical
running time that would be necessary for any real-world deployment. Recently proposed alternative delay
functions based on root finding modp have been successfully attacked in [BFH+24] and thus abandoned.

∗a.kavousi@cs.ucl.ac.uk
†seresistvanandras@gmail.com

1

Timed-release Crypto

Time-lock Puzzle [RSW96] Signature-based Witness Encryption [DHMW23]

dishonest majority honest majority

VDF [BBBF18] Obfuscation [BGJ+16] HTLP [MT19]

verifiability homomorphism

HSWE (our work)

homomorphism

Obfuscation [ADM+24]

Consensus [CP19] DRB [CATB23, SJH+21] Auction [TAF+23] Voting [GSZB23] DRBVoting Auction

Figure 1: Timed-release cryptography [RSW96] from a bird’s-eye view. Only a limited number of papers and
schemes are shown due to space constraints. In this paper, we contribute to the honest-majority line of work by
extending the applicability and practicability of signature-based witness encryption schemes by adding homomor-
phism to theirmessage spaces, see the orange node. Unlocked applications of time-based cryptography are denoted
with yellow color.

Instantiating the cryptographic group. Generic group delay functions require groups of unknown order [RSS20],
e.g., RSA or class groups of imaginary quadratic fields. Timed-release cryptography is further hindered by
the challenges of efficiently and securely instantiating groups of unknown order. In the case of RSA groups,
one typically needs to perform a multi-party distributed modulus generation protocol [FLOP18]. Securely
implementing and running such a distributed modulus generation protocol for hundreds of parties turned
out to be an extremely difficult and error-prone endeavour. In the case of class groups, one can transparently
generate a large random prime∆ = −p as a secure discriminant for the group Cl(∆). However, class groups
are considered inefficient as they must be instantiated in significantly larger groups than RSA groups for
a given security parameter λ, e.g., for λ = 128 one needs a 3072-bit semiprime as modulus, while a class
group must be instantiated in a 6784-bit discriminant ∆ [DGS20]. In resource-constrained environments,
e.g., blockchains, these parameters are considered highly inefficient.

Hardware assumptions. An implicit non-cryptographic assumption of every computational puzzle-based timed-
release cryptography is the adversary’s inability to compute the puzzle faster than the currently available
best specialized hardware (e.g., GPU, FPGA, ASIC) can do. Even minor speedups achieved in computing the
puzzle can endanger the security of the applications built on the assumption that the adversary cannot speed
up the puzzle computation. Moreover, algorithms exist that allow the parallelization of repeated squaring
assuming numerous processors [BS07]. However, we note that this algorithm’s practicality is still disputed.

Despite the numerous promising applications enabled by time-lock puzzles and related primitives, we are yet
to see their widespread deployment and adoption in practice. We argue that the dishonest majority trust model
is essentially overkill in many of the applications we have in mind. For instance, blockchain consensus typically
already assumes an honest majority, e.g., Nakamoto consensus [Nak08]. Thus, for the sake of efficiency, it makes
sense to build and apply cryptographic primitives from the honest majority branch of timed-release cryptography,
see Figure 1. Therefore, in this work, we turn our attention to timed-release cryptography in the honest majority
setting.

1.1 Timed-release Cryptography in the Honest Majority Setting
Imagine a threshold of trusted parties that release certain information, e.g., signatures, commitment openings, or
verifiable random function (VRF) outputs, at a specified future time. In practice, such quorums of parties al-
ready exist and are widely used in applications. Examples include the Drand distributed randomness beacon
(DRB) [DRA20] run by the League of Entropy industrial consortium that releases BLS signatures on UNIX times-
tamps every 30 seconds [GMR23]. Similarly, 32 elected Ethereum validators BLS-sign the epoch number, which
is incremented at every 384 seconds. Additional notable randomness services for randomness generation are the
Chainlink VRF [BCC+21] or the Supra dVRF service [GHK+24]. This work focuses on timed-release cryptography

2

built on signature-based services. One can build timed-release cryptography by encrypting a messagem towards a
future timestamp or (blockchain) epoch number ρ, which later can be decrypted by a corresponding valid signature
σ on ρ under a (distributed) public key pk. This functionality is enabled by a specific case of witness encryption.

Witness Encryption (WE) is a powerful cryptographic primitive that enables encrypting amessage with respect
to some NP statement such that its decryption is done via the corresponding witness [GGSW13]. In general, prac-
ticalWE scheme for all NP seems out of reach, i.e., existing schemes are highly impractical and inefficient. However,
there exist several witness encryption schemes that support important NP languages, e.g., [FHAS25]. As a practi-
cal and promising realization, signature-based witness encryption (SWE) allows encryption with respect to some
tag as a statement with its corresponding witness being some signature on it [DHMW23]. SWE is seen by many as
a practical way to achieve the functionality of encrypting messages to the future [RSW96]. Recently, practical time-
lock encryption schemes [GMR23, DHMW23] (interchangeably referred to as signature-basedwitness encryption)
have seen a resurgence in applied cryptography partly due to the difficulty of deploying time-based cryptography
using computational puzzles. SWE foregoes the delicate cryptographic assumptions of timed-release crypto built
on computational puzzles and builds efficient timed-release cryptography assuming threshold trust. Specifically,
the threshold SWE assumes that k participants of a quorum of n parties release a signature σ on a tag ρ (specifying
a predefined future date) under some verification key pk.

SWE schemes have significant advantages over common threshold encryption schemes [Des92], making them
an excellent choice for use in blockchain settings with dynamic participation. In particular, SWE does not necessar-
ily require an expensive setup phase for the decryption committee, as the ciphertext is generated only with respect
to a tag and some verification key pk. This verification key pk could be either a common public key (secret-shared
in the threshold setting) or even a set of individual verification keys {pki}ni=1 for better liveness. However, the
downside of the latter is that the size of the ciphertext depends on the number of verification keys and thus grows
linearly [ADM+24]. Moreover, unlike threshold encryption, SWE allows stateless decryption, i.e., the decryption
can occur independently from andwith no prior knowledge about the ciphertexts, as it only requires a signature on
some publicly known tag. These propertiesmake SWE a promising option for being used on blockchainswhere val-
idators already generate signatures on epoch/block numbers for various purposes (e.g., in Ethereum: RANDAO
contributions, attestations), offering an efficient piggyback to have publicly verifiable decryption. SWE schemes
hold significant promise for various on-chain applications such as DAO/governance voting and sealed-bid auc-
tions [TAF+23], primarily due to their communication efficiency. In particular, a batch of SWE ciphertexts of size
O(B) can be decrypted with O(n) communication cost per validator in a threshold setting that is independent of
the batch size. In comparison, a typical threshold encryption scheme would incur an asymptotic cost of O(nB) for
decrypting the same batch.

1.2 Homomorphic Signature-based Witness Encryption
Motivated by the growing demand for efficient and secure solutions in various privacy-preserving on-chain appli-
cations (e.g.,DAO/governance voting, sealed-bid auctions), we explore how to achieve homomorphism in signature-
based witness encryptions (HSWE). We design several constructions that are applicable in both threshold and
non-threshold settings, offering a range of security-performance trade-offs tailored to different use cases. By in-
corporating homomorphism, the goal is to significantly boost performance. Existing popular SWE schemes, such
as the ones based on Identity-Based Encryption (IBE) and BLS signature [DHMW23, GMR23], require a pairing
operation for decrypting each individual ciphertext. In contrast, our solution allows for the homomorphic decryp-
tion of a batch of ciphertexts of size B using only a single pairing, reducing the computational cost from O(B) to
O(1). Our work can be considered an efficient alternative for Homomorphic Time-Lock Puzzles (HTLP) [MT19],
though without suffering from the inherent issues relevant to time-based cryptography as already outlined.

In a nutshell, we make the following contributions in this paper.
Formal definition for HSWE. We present a formal definition for HSWE and provide its security properties. In

particular, we prove that while using a pair of encryption and digital signature schemes with the encryption
scheme’s key generation algorithm built from an injective one-way function, the accompanying signature
should be unique, i.e., there is only one valid signature σ for each pair of (m, pk). The most notable unique
signature schemes are BLS and RSA.

HSWE for one-bit messages. We propose a CPA-secure HSWE scheme for single-bit messages (i.e., useful in coin-
flipping applications) based on Cocks IBE scheme [Coc01], and Rabin’s signature scheme [Rab79].

CPA-secure HSWE. Wepropose a CPA-secureHSWE scheme based on Boneh-Franklin IBE scheme [BF01] and BLS
signature scheme [BLS01]. This scheme has a poly(λ)-sized message space and allows for homomorphism

3

both under common and across distinct tags.
Stateful HSWE. We propose a CPA-secure HSWE scheme for exponentially-sized message spaces using a pair of

modified Paillier encryption [Pai99], and RSA signature scheme [RSA78]. This scheme is stateful in the sense
that the decryption (i.e., the message the trusted parties sign) depends on the set of aggregated ciphertexts.

Privacy-preserving HSWE. We show how to build a privacy-preserving HSWE that preserves the confidentiality
of individual plaintexts while still offering homomorphism for the corresponding ciphertexts.

1.3 Applications of HSWE Schemes
The following four applications motivate the design of homomorphic SWE schemes.

Voting. Homomorphic encryption schemes have a long history of being applied in e-voting schemes. Most voting
schemes (e.g., rank choice, Borda-votes, range voting) apply additive scoring functions. Thus, linearly homomor-
phic encryption schemes suffice to instantiate these popular voting schemes. Notable examples are the application
of the Paillier encryption scheme or the exponential ElGamal encryption scheme in Helios [Adi08]. HSWE schemes
enable efficient voting schemes by reducing the tallying cost ofO(n) decryption operations to typically anO(1) de-
cryption since the secret ballots can be homomorphically aggregated into a single ciphertext.

Auctions. In auctions, similarly to voting schemes, user’s bids can be homomorphically aggregated into a single
aggregated bid using an HSWE scheme. At the end of the auction, it is enough to decrypt a single aggregated
ciphertext instead of decrypting each and every user’s encrypted bid. Furthermore, this design when applying
HSWE enables a one-round protocol, unlike a regular commit-reveal auction design. As a concrete example, HSWE
could be used as an alternative to the linearly homomorphic time-lock puzzles used in building one-round sealed-
bid auctions [GSZB23].

Randomness beacons. Distributed randomness beacons (DRB) are extensively applied and deployed in lot-
teries, proof-of-stake consensus algorithms, games, and many more [KWJ24, CMB23, RG22]. Recently, it has
been shown that unbiasable distributed randomness beacons in the dishonest majority setting require delay func-
tions [BBCE24]. Again, the delay functionality can be achieved using SWE schemes in the honest majority setting.
Homomorphism comes into play in this application when each participant’s randomness contribution could be
“squashed” homomorphically into a single ciphertext. Once all randomness contributions are received, homomor-
phism allows participants to decrypt a single aggregated ciphertext encompassing all randomness contributions
instead of decrypting every single contribution. As a concrete scenario, we now briefly sketch such an unbiasable
DRB design for the EthereumBeacon Chain based on anHSWE scheme. Crucially, this design allows for generating
secure on-chain randomness that can mitigate RANDAO manipulation [AW24, NTSL25, TLN25].

In particular, the 32 validators of an epoch e could encrypt their random contributions {Re
i }32i=1 towards a veri-

fication key pk using our HSWE scheme. We can take two approaches to instantiate this verification key pk:
External service In principle, an external service’s (e.g., Drand) signature issued for pk on the epoch e could be

used for decrypting the validator’s randomness contributions. Likely, the reliance on an external service is
unwanted for a standalone, high-stake cryptocurrency like Ethereum.

Validator’s public key The corresponding verification key pk could belong to the last validator in the epoch. This
approach suffers from liveness issues in case the validator fails publishing the signature on the epoch number
e. Without the valid signature from pk, the DRB output could not be decrypted. To tackle this liveness issue,
the protocol could demand the (last) validator to secret share their signing key to a designated committee
so that the committee can recover the signature when needed. Alternatively, the {Re

i }32i=1 could be encrypted
towards multiple public keys for increased robustness.

We elaborate on the cryptographic and engineering details of such (on-chain) DRB protocol in a future work.

MEV protection. A random permutation on the block of encrypted transactions turns out to be necessary to
protect against the type of maximal extractable value (MEV) attacks that do not depend on the content of trans-
actions [RSKK, KLJD23]. An illustrative example is arbitrage, allowing block proposer to benefit from MEV by
taking the top of the block spots. Our HSWE scheme allows generating uniform randomness (i.e., involving at least
one honest contribution) with low on-chain communication (i.e., a single signature) and computation (i.e., a single
pairing) overheads.

4

1.4 Technical Overview
Adesignprinciple of all current SWE schemes is the following recipe: consider an identity-based encryption scheme
(IBE) whose decryption key “is” a valid signature produced by a suitable signature algorithm. Both [DHMW23,
GMR23] follow this SWE design paradigm building on the Boneh-Franklin IBE scheme [BF01] and the BLS signa-
ture scheme [BLS01]. We follow the same design principle for our HSWE schemes in Section 5. Additionally, we
also build an HSWE scheme from the Cocks IBE scheme and the Rabin signature scheme in Section 4.

We extend the aforementioned recipe by considering more than just efficient IBE schemes as the constituent
encryption algorithm in our HSWE schemes. In Section 6, we show that one can build HSWE from a Paillier-like
encryption scheme, indicating that it is also possible to build SWE schemes from weaker public-key encryption
schemes.

1.4.1 HSWE from Cocks IBE and Rabin signature schemes

Our first scheme supports a binary message space, i.e., m ∈ {±1}, with XOR-homomorphism. It builds on the
folklore observation that the Cocks IBE scheme’s decryption key can be viewed as a Rabin signature on a suitable
message. Cocks IBE ciphertexts are made homomorphic by the techniques introduced in [LaV16].

1.4.2 HSWE from Boneh-Franklin IBE and BLS signature schemes

Due to the inherent conflict between homomorphism and the strongest notion of CCA security [AGHV25], the
best we can hope for is an efficient CPA-secure HSWE scheme. To do so, we modify the Boneh-Franklin IBE scheme
by lifting the messages to the exponent. This allows homomorphic addition of the ciphertext at the expense of
limiting themessage space to poly(λ)-size as the decryptor needs to solve a small discrete logarithm instance. While
we consider homomorphism merely under a common tag, we observe that one can homophonically aggregate
different ciphertexts under distinct tags using this scheme which could be of independent interest. We prove the
security of our scheme under the hardness of Decisional Bilinear Diffie-Hellman assumption.

1.4.3 A stateful HSWE from modified Paillier encryption and RSA signature schemes

Our previous schemes support a limited message space, i.e., either |M|= 2 or |M|= poly(λ). Here, we present
a scheme that supports homomorphism for an exponentially large message space, that is, ZN . The caveat is that
the signing parties must be stateful: they need to sign a message for decryption that is not independent of the
ciphertexts. However, this implies a form of conditional decryption of (aggregated) ciphertexts with the benefit
of a dynamic decision on the set of ciphertexts to be (homomorphically) decrypted. This is useful in applica-
tions where the decision about which ciphertexts are decrypted is non-monotone, such as block building in block-
chains [AFP24]. It is a fascinating open problem to devise an efficient scheme that is both stateless and homomorphic
for a large message space. The high-level technical idea of our stateful scheme is as follows. As we keep the
messages in the exponent, we need a subgroup where the discrete logarithm is easy. Observe that working in
modN2 allows achieving homomorphism for the entire ZN , since it is easy to compute the discrete logarithm of
(1+N)m mod N2 due to the binomial theorem, i.e., (1+N)m mod N2 = 1+Nm mod N2. Hence, we choose towork
in ZN2 , and make use of a pair of modified Paillier encryption [Pai99] and RSA signature [RSA78] schemes. Our
statefulHSWE ciphertext has the form of ct = (U, V) = ((1+N)mH(ρ)Nrρ,H(ρ)Nerρ), whereH(·) is a cryptographic
hash function modeled as random oracle.

1.4.4 Privacy-preserving HSWE

An underlying aspect of all the previous HSWE constructions is that they allow the decryption of every ciphertext
cti once the signature σ has been released. In some applications (e.g., voting, auctions), individual user submis-
sions (i.e., ballots, bids) must remain hidden even after the voting/bidding period ends. The idea of our privacy-
preserving variant is to randomize each user i’s ciphertext cti with some randomness si. The blinding factor si is
secret shared with the signing parties. At the decryption time, the signing parties also reconstruct the sum of the
corresponding users’ blinding factor si, i.e., they obtain ∑

si to decrypt the aggregated ciphertext. Since no indi-
vidual si is reconstructed, user ciphertexts remain encrypted. This technique is generic and renders the resulting
HSWE scheme stateful. In Section 6.1, we describe the full details of our privacy-preserving HSWE scheme.

5

Organization. The remainder of this paper is organized as follows. In Section 2 we recall the pertinent back-
ground knowledge. In Section 3, we formally define homomorphic SWE schemes. In Section 4, we introduce an
HSWE scheme for one-bit messages. In Section 5, we introduce our HSWE scheme for small message spaces. Sec-
tion 6, introduces our stateful HSWE schemes. We analyse the performance of our schemes in Section 7. We review
the relatedworks in Section 8. Finally, we conclude ourworkwith open questions and future directions in Section 9.

2 Background

2.1 Notations
We denote by λ ∈ N the security parameter and by x

$← S an element x being randomly sampled from a set S. We
further denote the set of integers {1, . . . , n} by [n]. By ⟨g⟩ = G, we denote g as a generator of the cyclic elliptic curve
group G with its (scalar) finite field being F. We consider probabilistic polynomial-time (PPT) adversaries A and
denote by poly(λ) and negl(λ) any polynomial or negligible functions running in the security parameter.

2.2 Bilinear Pairings
A bilinear pairing is a mapping between three groups G1,G2,GT of prime order p where e : G1 × G2 → GT . The
pairing is said to be symmetric when G1 = G2 and has the following properties:
Bilinearity: It requires that for all u ∈ G1, v ∈ G2, and a, b ∈ Fp: e(ua, vb) = e(u, v)ab

Non-degeneracy: It requires that e(g1, g2) ̸= 1, where g1, g2 are the generators for G1,G2.
Efficiency: It requires that the mapping e(·, ·) be computed efficiently.

A Type-III bilinear group requires that there is no efficiently computable mapping betweenG1 andG2. Without
loss of generality, we consider symmetric pairing where G = G1 = G2. Our schemes can be easily adapted to the
asymmetric setting, i.e., Type-III bilinear group.

2.3 Computational Assumptions
Here, we present the computational assumptions that our constructions and their applications rely on for their
security.
co-Diffie-Hellman assumption. A bilinear group bg = (e, p,G,GT , g, gT) with mapping e : G×G→ GT satisfies

the co-Diffie-Hellman (co-CDH) assumption if for all PPT adversaries A, it holds

Pr[A(g, gα, gβ) = gαβ : α, β
$← Fp] ≤ negl(λ) .

Gap Diffie-Hellman assumption. Abilinear group bg = (e, p,G,GT , g, gT)withmapping e : G×G→ GT satisfies
the Gap Diffie-Hellman (GDH) assumption if for all PPT adversaries A, it holds∣∣∣∣∣Pr [A(gα, gβ , gαβ) = 1 : α, β

$← Fp

]
− Pr

[
A(gα, gβ , gγ) = 1 : α, β, γ

$← Fp

] ∣∣∣∣∣ ≤ negl(λ) .

In other words, the GDH assumption is the extension of the DDH assumption to bilinear groups requiring its
intractability in the group G.
Bilinear Diffie-Hellman assumption. A bilinear group bg = (e, p,G,GT , g, gT) with mapping e : G × G → GT

satisfies the Bilinear Diffie-Hellman (BDH) assumption if for all PPT adversaries A, it holds

Pr[A(g, gα, gβ , gγ) = e(g, g)αβγ : α, β, γ
$← Fp] ≤ negl(λ) .

It is helpful to note that the BDH assumption is an extension of the CDH assumption to bilinear groups, and
its hardness implies the hardness of the Diffie-Hellman (DH) assumption in both G and GT . First, if the DHP in
G can be efficiently solved, then one could solve an instance of the BDH by computing gab and then e(gαβ , gγ) =

e(g, g)αβγ . Also, if the DH in GT can be efficiently solved, then the BDH instance could be solved by having gαβT =

e(gα, gβ), gγT = e(g, gγ), and then gαβγT .

6

Decisional Bilinear Diffie-Hellman assumption. A bilinear group bg = (e, p,G,GT , g, gT)with the bilinear map-
ping e : G × G → GT satisfies the Decisional Bilinear Diffie-Hellman (DBDH) assumption if for all PPT
adversaries A, it holds∣∣∣Pr[A(g, gα, gβ , gγ , e(g, g)αβγ) = 1 : α, β, γ

$← Fp]−Pr[A(g, gα, gβ , gγ , e(g, g)η = 1 : α, β, γ, η
$← Fp]

∣∣∣ ≤ negl(λ) .

2.4 Shamir Secret Sharing
A (t, n) Shamir secret sharing [Sha79] allows a dealer to distribute a secret s ∈ Fp among a set of n shareholders
via Share(s)→ {s1, . . . , sn}, where the dealer samples f(x) ∈R Ft

p[X] such that f(0) = s ∧ ∀i ∈ [n] : f(i) = si. The
secret s can only be uniquely reconstructed by at least t+1 shares Recon(s′χ1

, . . . , s′χt+1
)→ s, while no information

about the secret is revealed otherwise. Reconstruction of the secret can be performed by Lagrange interpolation.
In particular, the Lagrange-basis polynomials lj(x) =

∏
1≤m≤t+1

m ̸=j

x−χm

χj−χm
allow the reconstruction of the secret as

s = f(0) =
t+1∑
j=1

s′χj
lj(0).

2.5 BLS Signature
The BLS signature was introduced by Boneh, Lynn, and Shacham [BLS01] and consists of the following algorithms:

BLS.KeyGen(1λ). It samples a secret key sk
$← Fp and sets the public key pk = gsk ∈ G.

BLS.Sign(sk,m). It computes the signature σ := H(m)sk ∈ G, where H : {0, 1}∗ → G is a hash-to-curve function,
and modeled as a random oracle.

BLS.Verify(pk,m, σ). It outputs 1 if e(σ, g2) = e(H(m), pk) holds, and 0 otherwise.
The BLS signature scheme enjoys uniqueness and also satisfies a strong unforgeability property under the co-

CDH assumption [BLS01]. In a threshold setting [Bol02], the secret key sk is shared among a set of signers via
a distribted key generation (DKG) setup phase, where anyone can generate a partial signature σi(= gski) using
their share ski similar to the single-signer scheme. Any threshold subset of partial signatures can then produce the
threshold signature σ = H(m)sk via Lagrange interpolation in the exponent.

2.6 Number Theory and Assumptions
We build upon the following number theoretic assumptions in Z∗

N for a semiprimeN with unknown factorization.
Definition 1 (Factoring Assumption). Let define Pλ as the set of all prime numbers with λ-bit security. Then for
all PPT algorithms Awe have:

Pr[A(N) = (p, q) : p
$←− Pλ, q

$←− Pλ, N = p · q] ≤ negl(λ)

Definition 2 (RSA Assumption [RSA78]). Informally, the RSA assumption states that no efficient adversary can
compute the eth roots of a randomgroup element g. It holds for a groupof unknownorderwith generator algorithm
GGen(·) if for any probabilistic polynomial time adversary A there exists negl(·) such that:

Pr

 G $←− GGen(λ)

ue = g : (g, e)
$←− G× (N \ {1})

u←− A(G, g, e)

 ≤ negl(λ) . (2.1)

In other words, computing eth roots in groups of unknown order, e.g., Z∗
N , is hard. It is well-known that if the

factoring assumption is easy, then so is the RSA assumption. It is an open problem, however, if the RSA assumption
is equivalent to the factoring assumption.

The quadratic residuosity problem is arguably the oldest cryptographic assumption andwas described byGauss
in Disquisitiones Arithmeticae in 1801. In modern cryptography, it was first used by Goldwasser and Micali to
build a probabilistic encryption scheme [GM19]. Informally, the quadratic residuosity assumption states that in an
RSA group, it is computationally infeasible to distinguish between quadratic residues and non-residues without
knowing the group’s order.

7

Definition 3 (Quadratic Residuosity Assumption). We say that deciding quadratic residuosity is hard relative to
a group generator algorithm N

$← GGen(λ) if for all PPT algorithms A, there exists a negl(·) such that:∣∣∣∣∣Pr [A(N, qr) = 1 : qr
$← QRN

]
− Pr

[
A(N, qnr) = 1 : qnr

$← QNRN

] ∣∣∣∣∣ ≤ negl(λ),

where QRN and QNRN denote the set of quadratic residues and non-residues, respectively.
Definition 4 (Decisional Composite Residuosity). LetN be an RSAmodulus. Then, for all PPT algorithmsA there
exists a negligible function negl(λ) such that:

Pr

 x
$←− Z∗

N ; b
$←− {0, 1}

b← A(N, y) : if b = 0 then y
$←− Z∗

N2

if b = 1 then y := xN

 ≤ 1

2
+ negl(λ). (2.2)

2.7 Rabin Signature Scheme
The Rabin signature is a probabilistic signature scheme whose security guarantee has been shown to be equivalent
to the complexity of integer factorization [Rab79]. It is standardized in [Kal00], and defined as follows.
Definition 5 (Rabin signature scheme). We assume the existence of a cryptographically secure hash function H :
{0, 1}∗ → Z∗

N . The Rabin signature scheme Σ = (KeyGen,Sign,Verify) consists of the following three efficient
algorithms.
Rabin.KeyGen(1λ)→ (sk, pk). The KeyGen(·) algorithm outputs sk = (p, q) λ-bit primes and pk = (n, b), where n =
p · q and 0 ≤ b < n. Finally, let d := b/2 mod n.
Rabin.Sign(sk,m)→ σ. First, the signer samples u $← Z∗

N . The signer computes c := H(m,u). If c + d2 mod n is
a quadratic non-residue, then start over1 by sampling random u. Otherwise, the signer computes x mod n using
the Chinese Remainder Theorem (CRT) such that x2 + b ≡ H(m,u) mod n is satisfied. Return: σ = (u, x).
Rabin.Verify(pk,m, σ)→ {0, 1}. Parse pk = (n, b) and σ = (x, u). The verifier returns 1 if x2 + b ≡ H(m,u) mod n,
and 0 otherwise.

In the Rabin signature scheme, one can choose b to be any constant residue class mod n. For simplicity, we
chose (n, 0).

3 Homomorphic SWE
This section introduces the notion of homomorphic SWE (HSWE). First, we recall the definition of plain SWE scheme.
Afterwards, we define an HSWE scheme and argue about the necessity of having unique signatures for an SWE
scheme.

3.1 Definition
Definition 6 (Signature-based Witness encryption (SWE)). Given an existentially unforgeable signature scheme
under chosen-message attacksΣ = (KeyGen,Sign,Verify), wedefine the SWEencryption scheme EΣ = (Setup,Enc,Dec)
as follows.
Setup(1λ)→ pp. Given the security parameter 1λ, this probabilistic algorithmoutputs pp. The public parameters pp

describe the message spaceM, the tag space R, and the description of the cryptographic groups. Implicitly,
all following algorithms take pp as input.

Enc(m, f(ρ), pk)→ ct. The encryption algorithm takes as input the message m ∈ {0, 1}∗, a tag ρ ∈ {0, 1}λ, a func-
tion f : {0, 1}λ → G and a public key pk from the underlying signature scheme Σ. The encryption algorithm
outputs the ciphertext ct.

1This happens with probability 0.75 at each round. Therefore, after 4 iterations, on average, the signer finds a quadratic residue as required.

8

Dec(ct, f(ρ), σ)→ m. Given the ciphertext ct, the tag f(ρ), a signature σ, the decryption algorithm outputs a mes-
sagem.

Note that in the decryption algorithm Dec(·), the signature σ acts essentially as the decryption secret key.
Definition 7 (Correctness). The perfect correctness of SWE requires that for every pp output by Setup, and for
every m ∈ M, for every ρ ∈ R, and for every signature σ on f(ρ) for which Σ.Verify(f(ρ), σ, pk) = 1, the following
holds:

Pr[Dec(Enc(m, f(ρ), pk), f(ρ), σ) = m] = 1 . (3.1)
The indistinguishability security experiments for SWE resemble thewell-known semantic security against adap-

tive chosen-plaintext, and chosen-ciphertext attacks, namely SWE−CPA and SWE−CCA. In the former, the adver-
sary should not distinguish a ciphertext encrypting one of the two messages (of equal length) of its choice while
only having (adaptive) oracle access to the signatures on arbitrary tag/identity, except for the one used for gen-
erating the challenge ciphertext. 2 In the latter, the adversary further can (adaptively) query decryption oracle
for any ciphertexts of its choice, except for the one corresponding to the challenge ciphertext. More formally, the
indistinguishability security game is defined in Figure 2.
Definition 8 (SWE indistinguishability). Indistinguishable security for a SWE scheme EΣ = (Setup,Enc,Dec) re-
quires that no PTT adversary A has more than a negligible advantage in the experiment ExpSWE−IND. Thus,

AdvASWE−IND := Pr[ExpSWE−IND(A, 1λ) = 1] ≤ 1

2
+ negl(λ) . (3.2)

Definition 9 (Homomorphic SWE (HSWE)). Given an existentially unforgeable signature scheme under chosen-
message attacks Σ = (KeyGen,Sign,Verify), a homomorphic SWE scheme is a tuple of PPT algorithms EΣ =
(Setup,Enc,Dec,Eval). Let C = {Cλ}λ∈N be a set of circuits where C ∈ Cλ and (Setup, Enc, Dec) are defined as
in Definition 6.
Evalpk,f(ρ)(C, ct1, . . . , ctn)→ ct. A probabilistic algorithm that takes as input a circuit C ∈ Cλ, a set of ciphertexts

{cti}ni=1 and outputs a ciphertext ct with respect to some pk and f(ρ).
Note that the aboveHSWE definition allows homomorphism for any efficiently computable, probabilistic circuit

C ∈ Cλ. However, this work focuses solely on additive homomorphism, which has already unlocked interesting
applications. We leave the exploration of other homomorphism types to future work.
Definition 10 (HSWE Correctness). Given a set of circuits C = {Cλ}λ∈N, an HSWE scheme (Setup,Enc,Dec,Eval) is
correct if ∀λ ∈ N,∀C ∈ Cλ,∀ρ ∈ R and for all inputs/plaintexts (m1, . . . ,mn) ∈Mn, the following condition holds:

Pr[Dec(Evalpk,f(ρ)(C, ct1, . . . , ctn)→ ct) ̸= C(m1, . . . ,mn)] ≤ negl(λ) . (3.3)

3.2 On the Necessity of Unique Signatures
It is well-known that trapdoor permutations imply public-key encryption [KL07]. For example, the RSA f(x) = xe

mod N or the Rabin f(x) = x2 mod N trapdoor permutations imply the RSA and Rabin encryption schemes.
Note that in both cases, f(·) is a one-way function, but they can be efficiently inverted with a trapdoor (i.e., the
factorization of N). We show that a large class of (H)SWE schemes using trapdoor permutations cannot be built
from a non-unique signature scheme.
Theorem 1 (Unique signatures are necessary). There is no SWE scheme EΣ = (Setup,Enc,Dec) built from a trap-
door permutation Π = (Gen,Sample, f, Inv) that applies a non-unique signature scheme Σ = (KeyGen,Sign,Verify).
Proof. Assume towards contradiction that there exists such an SWE scheme EΣ = (Setup,Enc,Dec) that is built on
a non-unique signature scheme Σ = (KeyGen,Sign,Verify). Let σ0, σ1 be two different, valid signatures on a tag ρ.
For a message m, the ciphertext f(m) must be correctly decryptable with two different signatures σ0, σ1. For our
assumed SWE scheme, decryption is carried out via the Invtd(·) function for some trapdoor td. However, decryption
fails Invσ0

(f(m)) ̸= Invσ1
(f(m)) as b ∈ {0, 1} : Invσb

(·) is a permutation.
2In the standard experiment the adversary is challenged on a random public key instead of the one of its choice as here.

9

Experiment ExpSWE-IND

ExpSWE-IND

Qso := ∅, Qdo := ∅
Setup(1λ)→ pp, KeyGen(1λ)→ (pk, sk)

AΣO,DecO (pp, pk)→ (ρ∗,m0,m1)

b
$← {0, 1}

Enc(mb, f(ρ
∗), pk)→ ctρ

∗

b

AΣO,DecO (pp, pk, ctρ
∗

b)→ b′

b0 := (b = b′)
b1 := (ρ∗ /∈ Qso)

b2 := ({ρ∗, ctρ
∗

b } /∈ Qdo)
return b0 ∧ b1∧b2

DecryptO(ρ, ctρ): Decryption Oracle
Qdo := Qdo ∪ {ρ, ctρ}
return Dec(ct, f(ρ),Sign(pp, sk, f(ρ)))

ΣO(ρ): Signing Oracle
Qso := Qso ∪ {ρ}
Sign(pp, sk, f(ρ))→ σ̃
return σ̃

Figure 2: Indistinguishability Security Experiment for SWE

The previous theoremalready rules out several impossible combinations of encryption and signature schemes to
build SWE schemes. However, the result of Theorem 1 does not say anything about numerous encryption schemes.
Next, we observe that it is enough that the public-key encryption scheme used in the SWE key generation algorithm
be an injective function.
Theorem 2. There is no SWE scheme EΣ = (Setup,Enc,Dec) with an injective key-generation algorithm (i.e., the
SK → PKmapping is injective) that applies a non-unique signature scheme Σ = (KeyGen,Sign,Verify).
Proof. The public encryption key of an EΣ is f(ρ) for a roud number ρ and a function f(·).3 The corresponding
decryption secret key is a valid signature σ on ρ. If there were multiple valid signatures σ0, σ1 on ρ, then due to
the injectivity of the encryption schemes key generation algorithm, there were different encryption public keys
ρ0, ρ1 corresponding to the decryption keys σ0, σ1. This means that one of the decryptions would fail, violating the
correctness of the SWE scheme.
Remark 1. Note that Theorem 2 is in line with the result of [GKPW24]. Garg et al. show that SWE schemes
exist for any signature scheme whose verification is a public linear constraint system; that is, verification equation
of the signature scheme is linear in the signature σ. Theorem 2 implies that there cannot be SWE schemes with an
injective key generation algorithm for any signature schemewith a higher-degree polynomial verification equation.
This is because, in that case, there would be multiple valid signatures for a round number ρ, which is ruled out
per Theorem 2.

4 HSWE for One-bit Messages
First, as a feasibility result, we introduce an HSWE scheme for one-bit messages, i.e., m ∈ {±1} supporting XOR-
homomorphism. Such an HSWE scheme is useful in coin-flipping protocols. Our scheme is based on the Cocks
IBE scheme [Coc01] that can be made homomorphic by a technique developed in [LaV16].

4.1 Correctness and Homomorphism
Recall r2 = H(ρ, u), i.e., r is a Rabin signature on the message ρ. Moreover,

c+ 2r = t+
H(ρ, u)

t
+ 2r = t(1 + 2rt−1 +H(ρ, u)t−2) = t(1 + rt−1)2 . (4.1)

3In our constructions f(·) is a hash-to-group function, e.g., hash-to-curve.

10

HSWE with one-bit message space
Public parameters: Setup(1λ)→ pp := (N, ρ, u) such that N = p · q ∧ p ≡ q ≡ 3 mod 4 and p, q are primes. A
public tag ρ (e.g., epoch number or timestamp) and u s.t.

(
H(ρ, u)

N

)
= 1.

Sign(pp, sk, ρ)→ πρ = r such that r2 = H(ρ, u) mod N// Note that r is a Rabin signature on the public tag ρ.
Furthermore, u could be published in advance accompanied with ρ.

Encryption: Enc(m, ρ,N)→ ct := (c1, c2).

1. Sample t $← Z∗
N such that

(
t

N

)
= m.

2. Let c = t+ H(ρ,u)
t mod N . // Observe that the encryptor needs to know u at the encryption time.

Return ct = c.

Decryption: Dec(ct, ρ, πρ).
1. Parse the ciphertext ct as c.
2. Let r := πρ. // Recall r is a Rabin signature on the public tag ρ satisfying r2 = H(ρ, u) mod N .

3. Compute m =

(
c+ 2r

N

)
.

Return: m.

Figure 3: A CPA-secure HSWE scheme with one-bit message space.

Correctness of the HSWE scheme now follows from Equation (4.1) since:(
c+ 2r

N

)
=

(
t(1 + rt−1)2

N

)
=

(
t

N

)
= m . (4.2)

Recall that our ciphertext, cf. Figure 3, is a Cocks IBE ciphertext for which simple homomorphism exists. For
technical details, we refer to [LaV16]. Note that at the expense of doubling the ciphertext size, we could omit u
from the public parameters. Specifically, the requirement that

(
H(ρ, u)

N

)
= 1 enables us to have a single ciphertext

element, although, the signing parties need to publish u as well to every ρ, since without the factorization of n no
party can compute quadratic residuosity. If this increase in the public parameters is unwanted, then it could be
traded off by doubling the ciphertext size as is classically done in the Cocks IBE scheme. In our applications, we
are interested in reducing the ciphertext sizes.

4.2 Security Claims
Theorem 3. The homomorphic SWE scheme in Figure 3 is CPA-secure in the random oracle model, assuming the
quadratic residuosity assumption (cf. Definition 3).
Proof. A’s challenge plaintexts are m0,m1 ∈ {0, 1}. Let c∗ be the challenge ciphertext encrypting mb (b ∈R {0, 1}),
i.e.,

(
c∗ + 2r

N

)
= mb. A straightforward reduction from the quadratic residuosity assumption shows that the ad-

versary cannot distinguish between the encryptions of 0 and 1. For the formal proof, we refer to [Coc01].
Remark 2. We highlight that the Rabin signature scheme is not a unique signature, as each quadratic residue
mod n(= pq) has 4 square roots implying that each message might have 4 different valid Rabin signatures. Thus,
we note that our construction in Figure 3 is not captured by the Theorems in Section 3.2. In otherwords, it is possible
to design SWE schemes for non-unique signature schemes, if they are paired with a suitable encryption scheme.

11

A CPA-secure HSWE with small message space
Public parameters: G,GT elliptic curve groups such that |G|= |GT |= p for some large prime p. G is the source
group and GT is the target group of e(·, ·) : G×G→ GT , an efficiently computable, non-degenerate, bilinear
pairing. Let g ∈ G, gT , hT ∈ GT be generators of the respective groups. A cryptographically secure hash-to-
curve function is denoted as H : {0, 1}λ → G. Let P = gs ∈ G be a BLS public key, whose secret key is s ∈R Fp.
We denote ρ as a public tag (e.g., epoch number or timestamp).

Encryption: Enc(m, ρ, P)→ ct := (U, V).
1. Compute an ephemeral key U = gr for some r ∈R Fp.
2. Compute gρ = e(H(ρ), P)

3. Set c = (gr, gmT gρ
r) := (U, V)

Return: ct = c.

Sign(pp, sk, ρ) → πρ := H(ρ)s. // This is a BLS signature used to extract the key-pair for ρ with respect to the
public key P .

Decryption: Dec(ct, ρ, πρ).
1. Parse the ciphertext ct as (U, V).
2. Compute gmT = V e(πρ, U)−1

3. Solve the discrete logarithm problem in GT for Z = gmT to obtainm.
Return: m.

Figure 4: A CPA-secure HSWE scheme with poly(λ)-sized message space.

5 HSWE for Small Message Spaces

5.1 A CPA-secure HSWE Scheme
In this section, we present a CPA-secure HSWE scheme for a poly(λ)-sized message space. We adapt the design of
the Boneh-Franklin IBE [BF01] to make it homomorphic. To do so, we work with the message in the exponent.
Thus, it is required to solve a discrete logarithm instance for decryption. The full scheme is described in Figure 4.

The correctness of the scheme in Figure 4 is easy to follow. Now, we argue that this scheme is additively homo-
morphic. Let ct1, ct2 be two distinct ciphertexts:

ct1 = (U1, V1) = (gr1 , gm1

T gρ
r1)

ct2 = (U2, V2) = (gr2 , gm2

T gρ
r2)

By component-wise aggregating the ciphertexts, we obtain:

ct∗ = (gr1+r2 , gm1+m2

T gr1+r2
ρ) := (U∗, V ∗) (5.1)

Then, due to the bilinearity of the pairing map, we correctly obtain the homomorphically added plaintext:

gm1+m2

T = V ∗e(πρ, U
∗)−1 = V ∗e(H(ρ), P)−(r1+r2) = V ∗g−(r1+r2)

ρ .

Theorem 4. TheHSWE scheme in Figure 4 is CPA-secure in the random oracle model under the Decisional Bilinear
Diffie-Hellman (DBDH) assumption.
Proof. Assuming the existence of a PPT adversary A that breaks the CPA-security of our HSWE scheme, we con-
struct a PPT adversaryB that breaks the DBDH assumption. That is, B internally runsA and acts as a relay between
it and the DBDH challenger to use its advantage in the indistinguishability game ExpSWE-IND to succeed in its own

12

DBDH game. The proof is implied, given the contradiction. Before we proceed with the proof details, we borrow
an argument from Boneh-Franklin IBE scheme (Lemma 4.2, [BF01]) due to the similarity of our designs. That is,
querying the signing oracle on arbitrary tags/identities does not help the adversary in its game in comparison to
getting challenged in an (identical) public key encryption scheme without such privilege. More formally, given
a IND-CPA adversary A1 with advantage ϵ(λ) that makes at most qs queries to the signing oracle, there is a IND-
CPA adversary A2 that has an advantage at least ϵ(λ)

e(1+qs)
, where e is base of the natural logarithm. We rely on this

argument in our security proof and refer the reader to [BF01] for further details.
Suppose there is a PPT adversary A that wins the CPA-security game of ExpSWE−IND with a (non-negligible)

advantage ϵ(λ). Then, we show there is a PPT adversaryB thatwins theDecisional BilinearDiffie-Hellman (DBDH)
game with a relevant advantage.

- The DBDH challenger C runs Setup(1λ) and sends the bilinear pairing parameters bg = (e, p,G,GT , g, gT) to
DBDH adversary B and it further forwards them to the CPA adversary A for initialization.

- In the first phase,A canmake asmany queries as it would like to get their corresponding ciphertexts. Let’s denote
them bym1, . . . ,mt, where t is upper bounded by some polynomial q(λ).

- C randomly samples γ $← Fp. For each query i ∈ [t], it further samples α, β from Fp and gives back to B a tuple
(gα, gβ , gγ , T)where T is chosen according to its random sampling b

$← {0, 1}. If b = 0 then T = e(gβ , gγ)α =

e(g, g)αβγ , otherwise T $← GT .
- B then creates the queried ciphertexts as ct = (U, V) = (gα, gmi

T T) and sends it to the CPA adversary A.
- A generates a challenge plaintext pair (m0,m1)where |m0|= |m1| and send them to B to generate the correspond-

ing challenge ciphertext. To do so, B randomly samples br $← {0, 1} and sends a query to C. It then generates
the challenge ciphertext as ct⋆ = (gα

⋆

, g
mbr

T T) and sends it to the CPA adversary A.
- In the second phase, A can make further encryption queries conditioned on the total number of queries is upper

bounded by q(λ). Then, it outputs the guess b̃ regarding if the challenge ciphertext ct⋆ encryptsm0 orm1.

- If b̃ = br, then the DBDH adversary B outputs b̂ = 0 in its own game and else it outputs b̂ = 1.

Now, we need to analyze the winning probability of the DBDH adversary B in its own game that is amount to
Pr[b̂ = b].

Pr[b̂ = b] = Pr[b̂ = b|b = 0]Pr[b = 0] + Pr[b̂ = b|b = 1]Pr[b = 1]

= Pr[Expπ,ASWE−IND = 1]1/2 + Pr[b′ = b|b = 1]1/2
(5.2)

Note that Pr[b′ = b|b = 1] is equivalent to the probability that the CPA adversary A fails in its own game when
the challenger C picks a random group element in GT . Let denote the corresponding (encryption) scheme by π′.4
So, we have

Pr[b̂ = b] = Pr[Expπ,ASWE−IND = 1]1/2 + Pr[Expπ
′,A

SWE−IND = 0]1/2

= Pr[Expπ,ASWE−IND = 1]1/2 + (1− Pr[Expπ
′,A

SWE−IND = 1])1/2

= 1/2 + 1/2(Pr[Expπ,ASWE−IND = 1]− Pr[Expπ
′,A

SWE−IND = 1])

(5.3)

Let repeat be an event where the randomness α∗ used in challenge ciphertext ct∗ appears more than once in
encryption queries. Then, we have

4This is obviously not a proper encryption algorithm as there is no corresponding decryption. We just use it for the purpose of establishing
the proof.

13

Pr[b̂ = b] = 1/2 + 1/2(Pr[Expπ,ASWE−IND = 1]− (Pr[Expπ
′,A

SWE−IND = 1|repeat] Pr[repeat]

+ Pr[Expπ
′,A

SWE−IND = 1| ¯repeat] Pr[¯repeat])

≥ 1/2 + 1/2(Pr[Expπ,ASWE−IND = 1]− (Pr[repeat] + Pr[Expπ
′,A

SWE−IND = 1| ¯repeat]))

≥ 1/2 + 1/2(Pr[Expπ,ASWE−IND = 1]− (
q(λ)

2λ
+ 1/2))

≥ 1/2 + 1/2(1/2 + ϵ(λ)− q(λ)

2λ
− 1/2)

= 1/2 +
ϵ(λ)

2
− q(λ)

2λ+1
.

(5.4)

5.2 HSWE with Homomorphism Across Tags
We observe that our CPA-secure HSWE in Figure 4 also allows for homomorphism across distinct tags. That is,
one can homomorphically aggregate two (or more) ciphertexts ct1 and ct2 generated under two (or more) tags ρ1
and ρ2, but under the same public key P . To do so, the idea is to treat the tag as a public key with an unknown
discrete logarithm ρ′, i.e., H(ρ) = gρ

′ . It is useful to remark that the hash-to-curve function H : {0, 1}∗ → G in the
original scheme also produces an elliptic curve point H(ρ)with an unknown discrete logarithm [BLS01], and here
we present it with an explicit representation to show how homomorphismworks out. In our original definition for
HSWE (see Section 9) the homomorphism was merely limited under a common tag.

Let ct1, ct2 be two ciphertexts under two distinct tags ρ1 and ρ2:

ct1 = (U1, V1) = (gr1 , gm1

T gr1ρ1
) = (gr1 , gm1

T e(g, P)ρ
′
1r1)

ct2 = (U2, V2) = (gr2 , gm2

T gr2ρ2
) = (gr2 , gm2

T e(g, P)ρ
′
2r2)

By component-wise aggregating the ciphertexts, we obtain:

ct∗ = (gr1+r2 , gm1+m2

T e(g, P)ρ
′
1r1+ρ′

2r2) := (U∗, V ∗) (5.5)
Given two BLS signatures on tags πρ1

= gρ
′
1s and πρ2

= gρ
′
2s and due to the bilinearity of the pairing map, one

can correctly obtain the homomorphically added plaintext as follows:

e(U1, πρ2
) = e(gr1 , gρ

′
2s) = e(g, P)ρ

′
2r1

e(U2, πρ1) = e(gr2 , gρ
′
1s) = e(g, P)ρ

′
1r2

Therefore,

gm1+m2

T = V ∗e(πρ1
πρ2

, U∗)−1e(U1, πρ2
)e(U2, πρ1

)

= V ∗e(gr1+r2 , P ρ′
1+ρ′

2)−1e(U1, πρ2
)e(U2, πρ1

)

= V ∗e(g, P)−(ρ′
1r1+ρ′

1r2+ρ′
2r1+ρ′

2r2)e(U1, πρ2
)e(U2, πρ1

)

= V ∗e(g, P)−(ρ′
1r1+ρ′

1r2+ρ′
2r1+ρ′

2r2)e(g, P)ρ
′
2r1e(g, P)ρ

′
1r2

= V ∗e(g, P)−(ρ′
1r1+ρ′

2r2) .

(5.6)

We note that in a similar fashion, one can claim homomorphism for ciphertexts encrypted towards different public
keys P1, P2 ∈ G but under the same tag H(ρ).

5.3 Discussions
We just presented a practical HSWE scheme in Section 5.1. However, the fact that some components of the cipher-
texts are in the target group GT incurs a few practical challenges that we discuss next.

14

Proving statements about the plaintext. In the applications we have in mind, users need to prove the well-
formedness of their ciphertexts, e.g., their bid or vote is well-formed, or the plaintext is below a threshold to allow
efficient decryption. These proofs would be costly in the target groupGT . However, for example, given a ciphertext
c = (gr, gmT gρ

r) := (U, V) of the scheme described in Figure 4, the prover could map the ciphertext element V to
V ′ ∈ G and prove statements efficiently about this element V ′ = gmhr. Later, the prover can show the consistency
of V and V ′ using standard techniques [DHMW23].

Efficient decryption. Decryption entails computing a small discrete logarithm instance in GT . There are well-
known lookup table techniques for solving small discrete logarithms. Furthermore, these tables can be significantly
compressed and made practical even for mobile phones using the techniques of [CCN21].

Avoiding theGT target group operations. For certain applications, the target group operation inGT is not avail-
able to the app developer or prohibitively expensive to use. Therefore, inmost real-world applications, onewants to
minimise the number of target group operations. As per the Pectra hard fork activated at 8th April 2025, the Ethe-
reum Virtual Machine (EVM) supports BLS12-381 group operations and the hash-to-curve function [VOSS20].
However, at the time of writing, the EVM still does not support efficient GT group operations. Implementing GT

group operations in the EVM is certainly possible. However, arithmetic in GT = Fpk (k = 12 in case of the BLS12 -
381 curve) might be costly. A future hard fork could enable a precompile contract enacting efficient GT group
operations. We leave the exploration of these concrete deployment costs to future work.

6 Stateful HSWE Schemes
In this section, we propose another class of HSWE schemes that support exponentially-sized message spaces and is
stateful. That is, the signing parties need to be aware of the set of ciphertexts to be (homomorphically) decrypted
prior to the release of the corresponding signature. This is in contrast to previous stateless HSWE schemes where
the signing parties only signed off of messages (e.g., timestamps, epoch/block numbers, etc.) that are independent
from the applications built on top of the signing parties.

We build our stateful HSWE described in Figure 5 using a pair of modified5 Paillier encryption [Pai99] and RSA
signature schemes [RSA78]. The correctness of the scheme is easy to follow. Now, we argue that this scheme is
additively homomorphic. Let ct1, ct2 be two ciphertexts on distinct messages:

ct1 = (U1, V1) = ((1 +N)m1H′(ρ)Nr1ρ,H′(ρ)Ner1ρ)

ct2 = (U2, V2) = ((1 +N)m2H′(ρ)Nr2ρ,H′(ρ)Ner2ρ)

By component-wise aggregating the ciphertexts, we obtain:

ct∗ = (U∗, V ∗) = ((1 +N)m1+m2H′(ρ)N(r1+r2)ρ,H′(ρ)Ne(r1+r2)ρ)

Let ct1, . . . , ctk be a batch of ciphertexts under tag ρ generated via our proposedHSWE scheme, where cti = ((1+
N)miH′(ρ)Nriρ,H′(ρ)Neriρ) mod N2 for i ∈ [k]. One could homomorhically decrypt the corresponding plaintexts
m1, . . . ,mk by first computing the aggregated ciphertext:

ct∗ = (U∗, V ∗) = ((1 +N)
∑

miH′(ρ)Nρ
∑

ri ,H′(ρ)Neρ
∑

ri) (6.1)
And then use a (modified) RSA signature on V ∗ as πρ := (V ∗)d = H′(ρ)Nρ

∑
ri mod N2. This would result in

(1 +N)
∑

mi mod N2 and thus∑mi by solving the (easy) discrete logarithm in the subgroup ⟨(1 +N)⟩ ⊂ Z∗
N2 .

Theorem 5. The HSWE scheme in Figure 5 is CPA-secure in the random oracle model under the Decisional Com-
posite Residuosity (DCR) and RSA assumptions.
Proof. Assuming the existence of a PPT adversary A that breaks the CPA-security of the scheme, we can construct
a PPT adversary B that breaks the security of the underlying DCR assumption. Before we proceed with the formal
proof, we intuitively argue that the CPA security of the ciphertext ct = (U, V) is concluded from two facts. First,
U is a random group element in Z∗

N2 and independent from the message m due to the randomness r ∈R Z∗
N

which essentially works as a one-time pad. Second, due to the RSA assumption, it is computationally infeasible
5We essentially use Paillier-like and RSA-like schemes and not the original constructions. This is due to the use of the random oracle in the

former and a modulus N2 in the latter, which, however, do not have security implications as we show in our security proof.

15

for an adversary to learn H′(ρ)Nrρ from observing V that has a uniform distribution in Z∗
N2 . Thus, for each pair of

messagesm0 andm1 (of the same sizes) the ciphertexts are computationally indistinguishable, and the distribution
of the adversary’s views is identical.

Suppose there is a PPT adversary A that wins the CPA-security game of ExpSWE−IND with a (non-negligible)
advantage ϵ(λ). Then, we show there is a PPT adversary B that wins the DCR game with a relevant advantage.

- TheDCR challenger C runs Setup(1λ) to generate theRSAgrouppublic key pk = (N, e) and secret key sk = (p, q, d)
and only sends (1λ, N, e) to the DCR adversary B and it further forwards them to the CPA adversary A for
initialization.

- In the first phase,A can make as many queries as it would like to get their corresponding ciphertexts. Let denote
them bym1, . . . ,mt, where t is upper bounded by some polynomial q(λ).

- For each query i ∈ [t], the DCR challenger C samples b $← {0, 1} and gives back to B a value y accordingly. If b = 0

then y = xN , where x $←− Z∗
N . Otherwise, it samples y $←− Z∗

N2 .

- B then samples a random value ri $←− Z∗
N and creates the queried ciphertexts as ct = (U, V) = ((1+N)miyri , yeri)

and sends it to the CPA adversary A.
- A generates a challenge plaintext pair (m0,m1)where |m0|= |m1| and send them to B to generate the correspond-

ing challenge ciphertext. To do so, B randomly samples br $← {0, 1} and r⋆
$←− Z∗

N and sends a query to C
to get y. It then generates the challenge ciphertext as ct⋆ = ((1 + N)mbr yr

⋆

, yer
⋆

) and sends it to the CPA
adversary A.

- In the second phase, A can make further encryption queries conditioned on the total number of queries is upper
bounded by q(λ). Then, it outputs the guess b̃ regarding if the challenge ciphertext ct⋆ encryptsm0 orm1.

- If b̃ = br, then the DCR adversary B outputs b̂ = 0 in its own game and else it outputs b̂ = 1.

Note that in case b = 0, the ciphertext simulated by B has an identical distribution to the one expected from
A in its CPA-security game under ρ in the random oracle model. Moreover, applying decryption after encryption
produces the original message m as required. Looking forward, we can conduct a similar probabilistic analysis
as in Theorem 4 to compute the winning probability of the DCR adversary in its own game that is equivalent to
Pr[b̂ = b] = 1/2 + ϵ(λ)

2 −
q(λ)
2λ+1 .

We based our security reduction on the hardness of the DCR assumption and showed a successful CPA-security
attack results in a successful attack on the underlying hardness assumption. However, observe that the security
of our stateful HSWE also relies on the hardness of the RSA assumption. Given a ciphertext ct = (U, V) = ((1 +
N)mH′(ρ)Nrρ,H′(ρ)Nerρ), an attacker breaking the RSA assumption can learn H′(ρ)Nrρ from V and then retrieve
(1 +N)m from U .

Remark 3. It is well-known that the plain RSA signature is forgeable due to its inherent homomorphism. That is,
having two signatures σ1 = md

1 and σ2 = md
2, one can generate a valid signature on m1m2 by simply computing

σ1σ2 = (m1m2)
d. A common way to fix the issue is to use “hash-then-sign” variant. However, following this would

affect the homomorphism of ourHSWE scheme in Figure 5. Interestingly, we observe that our schememaintains its
security against an adversary exploiting homomorphism/forgery due to the use of fresh randomness for generating
each ciphertext. That is, it essentially does not change the advantage of adversary in decrypting the challenge
ciphertext. More accurately, given two signatures σ1 = V d

1 and σ2 = V d
2 the probability of decrypting a challenge

ciphertext ct⋆ with an (aggregated) signature σ = σ1σ2 (i.e., having a ciphertext ct⋆ where for its underlying
randomness it holds r⋆ = r1 + r2) is negligible.
Remark 4. Despite its fast verification, the RSA signature may not be a favorable option for various applications
deployed on top of blockchain. This is mainly due to the relatively large size for signature and public keys (e.g.,
256 bytes). However, we highlight that it could be an attractive choice for HSWE given that just a single signature is
enough for a (homomorphic) batch decryption. Moreover, this single signature only needs to live in CALLDATA,
i.e., temporal storage: after the transaction call is finished and necessary state changes are performed (e.g., the win-
ner of the election has been granted with some rights), the signature can be safely discarded for efficiency reasons.
This is particularly interesting given that in a blockchain environment permanent storage is extremely expensive

16

A stateful HSWE scheme
Public parameters: a public tag (e.g., epoch number or timestamp), a hash function H′(N) → Z∗

N2 modeled
as random oracle, an RSA group public key pk = (N, e), with the corresponding secret key sk = (p, q, d)where
N = pq ∧ ed ≡ 1 mod ϕ(N2).

Encryption: Enc(m, ρ, pk)→ ct := (U, V).
1. Samples the randomness r ∈R Z∗

N and compute U = (1 +N)mH′(ρ)Nrρ mod N2

2. Let V = H′(ρ)Nerρ mod N2.
Return: ct = (U, V).

Sign(pp, sk, ρ) → πρ := V d mod N2. // This is the RSA signature on V . Hence, this scheme is stateful as the
signer needs to be aware of the to-be-decrypted ciphertext.

Decryption: Dec(ct, ρ, πρ).
1. Parse the ciphertext ct as (U, V).
2. Let W := U/πρ.
3. Solve the easy discrete logarithm instance for W mod N2 for the base (1 +N) to obtain m.

Return: m.

Figure 5: A stateful HSWE scheme with exponentially-sized message space.

(unlike temporary storage). Furthermore, we can consider an RSA-based streaming randomness beacon [BCK+23]
as the signing oracle with history generation, i.e., one could derive all the previous beacon values (i.e., signatures)
from reading the current one. So, the last value suffices to derive all past outputs, demanding only a constant size
storage cost.
Remark 5. An established batching technique known as RSA screening [BGR98] enables the efficient verification
of multiple signatures. This method allows an aggregator to generate a proof of constant size, certifying that a
given set of distinct messages has been signed under a public key (N, e). Rather than verifying each signature
individually, the verifier can authenticate the entire batch by validating this single proof, thereby optimizing the
verification process. This approach not only enhances computational efficiency but also reduces data transmission
overhead. A brief introduction to this technique is provided below, with further details available in [BGR98].

Given an RSA public key (N, e), consider a sequence of k distinct messages m0,m1, . . . ,mk accompanied by
their corresponding RSA signatures σ0, σ1, . . . , σk. The aggregator computes the proof, denoted as πsig, simply by
computing the product of all signatures modulo N :

πsig =
∏
i∈[k]

σi mod N

The verifier checks
πe
sig

?
=

∏
i∈[k]

H(mi) mod N

where H(·) is the hash function used for the RSA signature.

6.1 Privacy-preserving HSWE

A potential downside of all of our schemes up to this point is that after the signature σ has been released, every
ciphertext, and not only the homomorphically aggregated one, is publicly decryptable. In some applications this is
unwanted as it translates, for instance in the case of a voting application, to the lack of individual ballot privacy. This
motivates us to devise amethod to retain the privacy of each individual plaintext, and only allow for the decryption
of the final aggregated ciphertext. We define the experiment for a privacy-preserving HSWE in Figure 7.

17

A privacy-preserving HSWE scheme
Public parameters: a public tag ρ (e.g., epoch number or timestamp) and underlying group description pp.
Encryption: For some message m:

1. Sample a secret s ∈R Fp.
2. Compute the Shamir shares Share(s)→ s1, . . . , sn and send si to each (signing) party i ∈ [n].
3. Run Enc(m, ρ, pk)→ ct and set ct′ = gsct.

Sign(pp, sk, ρ)→ πρ.

Decryption: For a batch of (privacy-preserving) HSWE ciphertexts ct′1, . . . , ct′k:

1. Each (signing) party i ∈ [n] computes s∗i =
∑k

j=1 sij .
2. For a threshold subset of (aggregated) shares s⋆i , reconstruct the secret in the exponent

Recon(s∗1, . . . , s
∗
t+1)→ gs

∗
= gs1+...+sk .

3. Compute ct∗ =
∏j=k

j=1 ct
′
j = gs

∗ ∏j=k
j=1 ctj

4. Run Dec(ct∗, ρ, πρ) and return m∗ = m1 + . . .+mk

Figure 6: A privacy-preserving HSWE scheme.

We outline our protocol that turns any HSWE encryption scheme into a privacy-preserving variant, i.e., all the
plaintexts remain hidden, except the final aggregated one. The underlying trick is to blind each HSWE ciphertext
using some randomness and secret share it towards the signing parties. Upon decryption, the signing parties
reconstruct the aggregated randomness corresponding to the set ofHSWE ciphertexts and release it togetherwith the
signature. This transformation, however, comes at the cost of rendering the underlyingHSWE scheme stateful given
that the signing parties need to be aware of the set of HSWE ciphertexts to release the corresponding aggregated
randomness. For concreteness, we present our privacy-preserving HSWE scheme in Figure 6 assuming groups
of prime order and Shamir Secret sharing while the technique is generally agnostic and can extend to groups of
unknown order and/or other variants of (linear) secret sharing.

Setup(1λ)→ pp, KeyGen(1λ)→ (pk, sk)a

AΣO
(pp, pk)→ (ρ⋆,m0,m1)

b
$← {0, 1}

where for any batch of [k] users/ciphertexts under ρ⋆:

Enc(m
[k]
b , f(ρ∗), pk)→ ct

[k]
b

Sample s[k] ∈R Fp and set ct′b[k] = gs[k]ct
[k]
b

AΣO
(pp, pk, {ct′b[k]})→ b′

output 1 if b′ = b

aWe implicitly assume the key generation KeyGen is run with less
than a threshold corruption, guaranteeing its security and liveness.

Figure 7: The experiment for privacy-preserving HSWE.

Theorem 6. TheHSWE scheme in Figure 6 is privacy-preserving, assuming less than a threshold number of signing
parties is corrupted.
Proof. The correctness of the scheme is easy to check. Given that eachHSWE ciphertext ct is blindedwith a uniform
randomness s as ct′ = gsct any two ciphertexts ct1 and ct2 are statistically indistinguishable. Assuming less than a

18

threshold corruption (for signing parties), the scheme is privacy-preserving as no PPT adversary can learn about
an individual plaintextm (corresponding to some ct′) knowing only the aggregated randomness (in the exponent).

7 Performance

7.1 Theoretical Performance
We compare the theoretical performance of our proposed HSWE schemes in Table 1.

HSWE scheme Assumption |M| |pk| |ct| Enc Dec Stateless
Section 4 Quadratic-residuosity 2 |ZN | |ZN | 5|ZN |+Ha |ZN |
Section 5.1 Decisional Bilinear Diffie-Hellman poly(λ) |G| |G|+|GT | |G|+|P| |G|+|P|+DL
Section 6 DCR and RSA |Z∗

N | |ZN | 2|ZN2 | 3|ZN2 |+2H 2|ZN2 | #

Table 1: Comparing the theoretical performance of our proposed HSWE constructions. The message space, public
key, and ciphertext sizes are denoted by |M|,|pk|, and |ct|, respectively. With a bit of abuse in notation, the number
of applied groupG,GT and hashing operations H computed during encryption and decryption are denoted by the
size of the corresponding groups. In certainHSWE schemes, a small discrete logarithm computation for decryption
is needed that is denoted by DL.

aThis only holds in expectation as one needs to compute four Jacobi symbols in expectation, to find a quadratic residue mod N .

8 Related Work
Signature-based witness encryption (SWE) allows one to build an encryption scheme from a signature scheme. In-
tuitively, the ciphertext is created with respect to some statement (e.g., tag) and the decryption is done if and only
if there is a valid witness (i.e., signature) on the corresponding statement. The authors in [GMR23, DHMW23]
showed how to construct an SWE using (threshold) BLS signature. Their constructions resembles that of Boneh-
Franklin identity-based encryption [BF01] where the identity is essentially the statement under which the cipher-
text is generated and the secret key is the corresponding BLS signature on the hash of the identity. While the
authors in [GMR23] assume the existence of a threshold committee with honest majority to encrypt the plaintext
under their common public key, Mcfly [DHMW23] consider a setting where each t-out-of-n share of plaitext is en-
crypted under some validator’s public key so that a threshold number of (multi-)signatures is needed as witness
for decryption. This makes the size of ciphertext to grow linearly in the number of public keys (i.e., committee
size), an issue recently addressed by the work of Avitabile et al. [ADM+24], though only of theoretical interest due
to the use of expensive tools such as indistinguishability obfuscation [KLW15]. However, the approach mentioned
above relies on an all-or-nothing decryption mechanism for a batch of ciphertexts under a given identity.

Recent works, such as [CGPP24, AFP24], have explored how to efficiently preserve the confidentiality of indi-
vidual ciphertexts rather than having all get decrypted at once. This is particularly relevant for applications such
as MEV protection, which requires privacy for pending transactions. In particular, Choudhuri et al. [CGPP24]
proposed a commitment-based witness encryption where the messages is encrypted towards some (polynomial)
commitment and the decryption is done using the corresponding proof of opening. This intriguing design pro-
tects the privacy of all the messages whose ciphertexts are not part of interpolating the degree-B polynomial, for a
batch of B ciphertexts to be decrypted. On the other hand, our privacy-preserving HSWE offers privacy for all the
individual messages except for the aggregated one. The authors in vetkeys [CCN+23] introduced techniques for
the private (and verifiable) transfer of BLS signature shares from validators to users. This enables private decryp-
tion of ciphertexts by the individuals, rather than making the decryption publicly available. Garg et al. [GKM+24]
devised a protocol that generates multi-receiver ciphertexts along with a (constant-size) proof for public verifica-
tion. Their underlying building block is a scheme called multi-identity based encryption that encrypts multiple
messages under multiple identities. We noticed that their underlying technique is similar to that of our CPA-secure
HSWEwith poly(λ)-sized message space, while the motivation and security proofs are different. As the decryption
in an SWE scheme is done uniquely using a signature on the current epoch, it does not allow to decrypt any cipher-
texts generated under the previous epochs. To tackle this issue that demands a linear storage cost for storing all the

19

previous epoch keys (i.e., signatures), previous works such as [BMS22] proposed solutions that allow unlocking
the (old) ciphertexts under prior epochs with only a logarithmic size on-chain cost. As mentioned, using an RSA-
based randomness beacon with history generation enables our stateful HSWE to achieve this property only with a
constant size storage.

9 Conclusion and Future Work
In this work, we defined the notion of homomorphic signature-based witness encryption (HSWE) that allows an
encryptor to encrypt a message m towards a tag ρ and a verification key pk. Later, the ciphertext ct can only be
decrypted if and only if a valid signature σ with respect to pk on the message ρ is available. Our HSWE schemes
allow the computation of simple but useful functions of the plaintexts m. Specifically, they support linear homo-
morphism that already turns out to be highly useful in various applications such as voting, sealed-bid auctions or
randomness beacons. We presented four practical HSWE schemes and proved their security assuming standard
cryptographic assumptions in the RSA and elliptic curve groups endowed with a bilinear pairing.

Despite our work on HSWE being over-arching, we leave open several important directions for future work.
Homomorphism for larger message spaces. Our proposed stateless HSWE schemes support homomorphism for a

limited O(poly(λ))-sized message space since the decryptor needs to compute a discrete logarithm problem
in the corresponding cryptographic group, i.e., gmT for a message m. Future HSWE schemes should be more
practical by supporting larger, exponentially-sized message spaces. Moreover, ideally one should have the
message in one of the source groups, i.e., G1 or G2.

Robust HSWE schemes. Similarly to non-homomorphic SWE schemes [DHMW23], it would be beneficial to be
able to encrypt not only to a single verification key pk but also to a threshold of multiple verification keys
{pk}ni=1. In our current schemes, the signature generation can be optionally thresholdized to avoid a single
point of failure. To support a wider range of applications, just like in [DHMW23], future HSWE schemes
should allow the encryption of a message under a set of verification keys for better liveness should some
parties fail to produce their signatures. It seems reachable to modify the schemes in [DHMW23] to endow
their message spaces with homomorphism as well.

Post-quantum secure HSWE schemes. Finally, for future applications and deployments, achieving post-quantum
security for HSWE schemes will have the utmost importance. For digital signatures and key encapsulation
mechanisms, this is already mandated by NIST. In particular, by 2035, NIST dictates that no federal and
governmental bodies can use pre-quantum cryptography for digital signatures and key encapsulation. We
anticipate a similar post-quantum transition needs to happen for applications using HSWE schemes. To the
best of our knowledge, currently, there is no known post-quantum unique signature scheme, cf. Theorem 1.

Acknowledgements. István András Seres was supported by the Ministry of Culture and Innovation and the Na-
tional Research, Development, and Innovation Office within the Quantum Information National Laboratory of
Hungary (Grant No. 2022-2.1.1-NL-2022-00004).

20

References
[Adi08] Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium, volume 17, pages

335–348, 2008. 4
[ADM+24] Gennaro Avitabile, Nico Döttling, Bernardo Magri, Christos Sakkas, and Stella Wohnig. Signature-

based witness encryption with compact ciphertext. Cryptology ePrint Archive, 2024. 2, 3, 19
[AFP24] Amit Agarwal, Rex Fernando, and Benny Pinkas. Efficiently-thresholdizable batched identity based

encryption, with applications. Cryptology ePrint Archive, 2024. 5, 19
[AGHV25] Adi Akavia, Craig Gentry, Shai Halevi, andMargarita Vald. Achievable cca2 relaxation for homomor-

phic encryption. Journal of Cryptology, 38(1):1–43, 2025. 5
[AW24] Kaya Alpturer and Matthew Weinberg. Optimal randao manipulation in ethereum. Advances in Fi-

nancial Technologies, 2024. 4
[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Annual

international cryptology conference, pages 757–788. Springer, 2018. 1, 2
[BBCE24] Joseph Bonneau, Benedikt Bünz, Miranda Christ, and Yuval Efron. Good things come to those who

wait: Dishonest-majority coin-flipping requires delay functions. Cryptology ePrint Archive, 2024. 4
[BCC+21] Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis, Ari Juels, Farinaz

Koushanfar, AndrewMiller, BrendanMagauran, Daniel Moroz, et al. Chainlink 2.0: Next steps in the
evolution of decentralized oracle networks. Chainlink Labs, 1:1–136, 2021. 2

[BCK+23] Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias, Kevin Lewi, Ladi
de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino. Strobe: Streaming threshold ran-
dom beacons. In 5th Conference on Advances in Financial Technologies (AFT 2023), pages 7–1. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2023. 17

[BF01] DanBoneh andMatt Franklin. Identity-based encryption from theweil pairing. InAnnual international
cryptology conference, pages 213–229. Springer, 2001. 3, 5, 12, 13, 19

[BFH+24] Alex Biryukov, Ben Fisch, Gottfried Herold, Dmitry Khovratovich, Gaëtan Leurent, Marı́a Naya-
Plasencia, and BenjaminWesolowski. Cryptanalysis of algebraic verifiable delay functions. InAnnual
International Cryptology Conference, pages 457–490. Springer, 2024. 1

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and Brent Wa-
ters. Time-lock puzzles from randomized encodings. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pages 345–356, 2016. 1, 2

[BGR98] Mihir Bellare, Juan A Garay, and Tal Rabin. Fast batch verification for modular exponentiation and
digital signatures. In Advances in Cryptology—EUROCRYPT’98: International Conference on the Theory
and Application of Cryptographic Techniques Espoo, Finland, May 31–June 4, 1998 Proceedings 17, pages
236–250. Springer, 1998. 17

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International
conference on the theory and application of cryptology and information security, pages 514–532. Springer,
2001. 3, 5, 7, 14

[BMS22] Leemon Baird, Pratyay Mukherjee, and Rohit Sinha. i-tire: Incremental timed-release encryption or
how to use timed-release encryption on blockchains? InProceedings of the 2022ACMSIGSAC conference
on computer and communications security, pages 235–248, 2022. 20

[Bol02] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In International Workshop on Public Key Cryptography, pages
31–46. Springer, 2002. 7

[BS07] Daniel Bernstein and Jonathan Sorenson. Modular exponentiation via the explicit chinese remainder
theorem. Mathematics of Computation, 76(257):443–454, 2007. 1, 2

21

[CATB23] Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. Bicorn: An optimistically efficient dis-
tributed randomness beacon. In International Conference on Financial Cryptography and Data Security,
pages 235–251. Springer, 2023. 1, 2

[CCN21] Panagiotis Chatzigiannis, Konstantinos Chalkias, and Valeria Nikolaenko. Homomorphic decryption
in blockchains via compressed discrete-log lookup tables. In International Workshop on Data Privacy
Management, pages 328–339. Springer, 2021. 15

[CCN+23] Andrea Cerulli, Aisling Connolly, Gregory Neven, Franz-Stefan Preiss, and Victor Shoup. vetkeys:
How a blockchain can keep many secrets. Cryptology ePrint Archive, 2023. 19

[CGPP24] Arka Rai Choudhuri, Sanjam Garg, Julien Piet, and Guru-Vamsi Policharla. Mempool privacy via
batched threshold encryption: Attacks and defenses. Cryptology ePrint Archive, 2024. 19

[CMB23] Kevin Choi, Aathira Manoj, and Joseph Bonneau. SoK: Distributed randomness beacons. Cryptology
ePrint Archive, Paper 2023/728, 2023. 4

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Cryptography
and Coding: 8th IMA International Conference Cirencester, UK, December 17–19, 2001 Proceedings 8, pages
360–363. Springer, 2001. 3, 10, 11

[CP19] Bram Cohen and Krzysztof Pietrzak. The chia network blockchain. White Paper, Chia. net, 9, 2019. 2
[Des92] Yvo Desmedt. Threshold cryptosystems. In International Workshop on the Theory and Application of

Cryptographic Techniques, pages 1–14. Springer, 1992. 3
[DGS20] Samuel Dobson, Steven D Galbraith, and Benjamin Smith. Trustless groups of unknown order with

hyperelliptic curves. IACR Cryptol. ePrint Arch., 2020:196, 2020. 2
[DHMW23] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. Mcfly: verifiable encryption to

the future made practical. In International Conference on Financial Cryptography and Data Security, pages
252–269. Springer, 2023. 2, 3, 5, 15, 19, 20

[DRA20] Team drand, drand project website. https://drand.love, 2020. 2
[FHAS25] Nils Fleischhacker, Mathias Hall-Andersen, and Mark Simkin. Extractable witness encryption for

kzg commitments and efficient laconic ot. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 423–453. Springer, 2025. 3

[FLOP18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed rsa key
generation for semi-honest and malicious adversaries. In Advances in Cryptology–CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings,
Part II 38, pages 331–361. Springer, 2018. 2

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 467–476, 2013. 3

[GHK+24] Jacob Gorman, Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Pratik
Sarkar, and Sri AravindaKrishnan Thyagarajan. Vraas: Verifiable randomness as a service on block-
chains. Cryptology ePrint Archive, 2024. 2

[GKM+24] Sanjam Garg, Aniket Kate, Pratyay Mukherjee, Rohit Sinha, and Sriram Sridhar. Insta-pok3r: Real-
time poker on blockchain. Cryptology ePrint Archive, 2024. 19

[GKPW24] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold encryp-
tion with silent setup. In Annual International Cryptology Conference, pages 352–386. Springer, 2024.
10

[GM19] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker keeping
secret all partial information. In Providing sound foundations for cryptography: on the work of Shafi Gold-
wasser and Silvio Micali, pages 173–201. 2019. 7

22

https://drand.love

[GMR23] Nicolas Gailly, Kelsey Melissaris, and Yolan Romailler. tlock: Practical timelock encryption from
threshold bls. Cryptology ePrint Archive, 2023. 2, 3, 5, 19

[GSZB23] Noemi Glaeser, István András Seres, Michael Zhu, and Joseph Bonneau. Cicada: A framework for
private non-interactive on-chain auctions and voting. Cryptology ePrint Archive, 2023. 1, 2, 4

[Kal00] Burt Kaliski. Ieee standard specifications for public-key cryptography. ieee std 1363–2000, 2000. 8
[KL07] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography: principles and protocols. Chap-

man and hall/CRC, 2007. 9
[KLJD23] Alireza Kavousi, Duc V Le, Philipp Jovanovic, and George Danezis. Blindperm: Efficient mev miti-

gation with an encrypted mempool and permutation. Cryptology ePrint Archive, 2023. 4
[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for tur-

ing machines with unbounded memory. In Proceedings of the forty-seventh annual ACM symposium on
Theory of Computing, pages 419–428, 2015. 19

[KWJ24] Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. Sok: Public randomness. In 2024 IEEE 9th
European Symposium on Security and Privacy (EuroS&P), pages 216–234, 2024. 4

[LaV16] Rio LaVigne. Simple homomorphisms of cocks ibe and applications. Cryptology ePrint Archive, 2016.
5, 10, 11

[LSS20] Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-interactive cryptographic times-
tamping based on verifiable delay functions. In Financial Cryptography and Data Security: 24th Inter-
national Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised Selected Papers 24,
pages 541–558. Springer, 2020. 1

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic time-lock puzzles and ap-
plications. In Annual International Cryptology Conference, pages 620–649. Springer, 2019. 1, 2, 3

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi Nakamoto, 2008. 2

[NTSL25] Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki. Forking the randao: Manipu-
lating ethereum’s distributed randomness beacon. Cryptology ePrint Archive, 2025. 4

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Interna-
tional conference on the theory and applications of cryptographic techniques, pages 223–238. Springer, 1999.
4, 5, 15

[Rab79] Michael O Rabin. Digitalized signatures and public-key functions as intractable as factorization. 1979.
3, 8

[RG22] Mayank Raikwar and Danilo Gligoroski. Sok: Decentralized randomness beacon protocols. In Aus-
tralasian Conference on Information Security and Privacy, pages 420–446. Springer, 2022. 4

[RS20] Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is equivalent to factoring:
Sharp thresholds for all generic-ring delay functions. In Annual International Cryptology Conference,
pages 481–509. Springer, 2020. 1

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978. 4, 5, 7, 15

[RSKK] Ben Riva, Alberto Sonnino, and Lefteris Kokoris-Kogias. Seahorse: Efficiently mixing encrypted and
normal transactions. 4

[RSS20] Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions require hidden-order groups.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 155–
180. Springer, 2020. 2

[RSW96] Ronald L Rivest, Adi Shamir, andDavidAWagner. Time-lock puzzles and timed-release crypto. 1996.
1, 2, 3

23

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979. 7
[SJH+21] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and EdgarWeippl. Randrun-

ner: Distributed randomness from trapdoor vdfs with strong uniqueness. 2021. 2
[TAF+23] Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières. Riggs:

Decentralized sealed-bid auctions. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 1227–1241, 2023. 1, 2, 3

[TLN25] János Tapolcai, Bence Ladóczki, and Ábel Nagy. Slot a la carte: Centralization issues in ethereum’s
proof-of-stake protocol. Cryptology ePrint Archive, 2025. 4

[VOSS20] AVlasov, KOlson, A Stokes, andASanso. eip-2537: Precompile for bls12-381 curve operations [draft].
ethereum improvement proposals, (2537), 2020. 15

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38, pages 379–407. Springer, 2019. 1

[WW20] Benjamin Wesolowski and Ryan Williams. Lower bounds for the depth of modular squaring. Cryp-
tology ePrint Archive, 2020. 1

24

	Introduction
	Timed-release Cryptography in the Honest Majority Setting
	Homomorphic Signature-based Witness Encryption
	Applications of HSWE Schemes
	Technical Overview
	HSWE from Cocks IBE and Rabin signature schemes
	HSWE from Boneh-Franklin IBE and BLS signature schemes
	A stateful HSWE from modified Paillier encryption and RSA signature schemes
	Privacy-preserving HSWE

	Background
	Notations
	Bilinear Pairings
	Computational Assumptions
	Shamir Secret Sharing
	BLS Signature
	Number Theory and Assumptions
	Rabin Signature Scheme

	Homomorphic SWE
	Definition
	On the Necessity of Unique Signatures

	HSWE for One-bit Messages
	Correctness and Homomorphism
	Security Claims

	HSWE for Small Message Spaces
	A CPA-secure HSWE Scheme
	HSWE with Homomorphism Across Tags
	Discussions

	Stateful HSWE Schemes
	Privacy-preserving HSWE

	Performance
	Theoretical Performance

	Related Work
	Conclusion and Future Work

