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Abstract. A major challenge in cryptography is the construction of succinct garbling schemes
that have asymptotically smaller size than Yao’s garbled circuit construction. We present a new
framework for succinct garbling that replaces the heavy machinery of most previous constructions
by lighter-weight homomorphic secret sharing techniques.
Concretely, we achieve 1-bit-per-gate (amortized) garbling size for Boolean circuits under circular
variants of standard assumptions in composite-order or prime-order groups, as well as a lattice-
based instantiation. We further extend these ideas to layered circuits, improving the per-gate cost
below 1 bit, and to arithmetic circuits, eliminating the typical Ω(λ)-factor overhead for garbling
mod-p computations. Our constructions also feature “leveled” variants that remove circular-security
requirements at the cost of adding a depth-dependent term to the garbling size.
Our framework significantly extends a recent technique of Liu, Wang, Yang, and Yu (Eurocrypt 2025)
for lattice-based succinct garbling, and opens new avenues toward practical succinct garbling. For
moderately large circuits with a few million gates, our garbled circuits can be two orders of mag-
nitude smaller than Yao-style garbling. While our garbling and evaluation algorithms are much
slower, they are still practically feasible, unlike previous fully succinct garbling schemes that rely
on expensive tools such as iO or a non-black-box combination of FHE and ABE. This trade-off
can make our framework appealing when a garbled circuit is used as a functional ciphertext that is
broadcast or stored in multiple locations (e.g., on a blockchain), in which case communication and
storage may dominate computational cost.
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1 Introduction

Introduced by Yao in the 1980s, a garbling scheme [Yao82, BHR12] allows a “garbler” to trans-
form a Boolean circuit C : {0, 1}n → {0, 1}m into a garbled circuit Ĉ along with a pair of short
keys ki,0,ki,1 for each input bit xi. Given the circuit C, the garbled circuit Ĉ, and an encoded
input consisting of the input labels kx = {ki,xi}i∈[n] for an unknown input x, an efficient “eval-
uator” can compute C(x) while learning nothing else about x. An important feature of garbled
circuits is that the input keys are short, growing only with the security parameter λ and not
with the size of the circuit C.

Garbling schemes serve as fundamental building blocks in cryptography and have found a
variety of applications, including constant-round secure computation [Yao82, BMR90, FKN94,
GS18, BL18, HIKR23], low-complexity cryptography [AIK05], proof systems [GGP10], single-
key functional encryption [SS10], offline-online secure computation [CEMY09, AIKW13], and
many more. See [App17] for a survey.

A central research direction is to minimize the size of garbled circuits. This is motivated
by the fact that in typical applications, the garbler needs to communicate the garbled circuit
to the evaluator. Minimizing size has a compounded impact when the same garbled circuit is
distributed to multiple parties, translating into proportional bandwidth and storage savings
across all recipients. For example, a garbled circuit implementing a complex algorithm can
be generated and broadcasted to many receivers during an offline phase, or even stored on a
blockchain, allowing fast online computation once the inputs are known.

Succinct Garbling. In this work, we focus on the task of obtaining succinct garbled circuits.
Our default notion of succinctness requires that the bit-length of the garbled circuit be smaller
than the description size of the original circuit. Concretely, we say that a garbling scheme (for
Boolean circuits) is succinct, if for sufficiently large C we have |Ĉ| < |C| log |C|, where |C|
denotes the size of a Boolean circuit C (number of gates, with fan-in 23) and |Ĉ| denotes the bit
length of the string Ĉ;4 note that describing a general circuit C requires at least |C| log |C| bits.
This is a natural threshold, since it implies that a succinct garbled circuit is less expensive to
communicate than the original circuit. Once this minimal threshold of succinctness is crossed,
we can aim for a full spectrum of better levels of succinctness. Concrete succinctness goals we
consider in this work include garbling with 1-bit-per-gate, or even O(1/ log log λ)-bits-per-gate,
where λ is the security parameter. (These are all amortized costs, assuming |C| ≫ n,m, λ.) The
ultimate goal is achieving full succinctness, where the garbled circuit size is independent of the
size of the original circuit.

Over the past four decades, tremendous progress has been made on reducing the garbled
circuit size, even reaching the ultimate goal of full succinctness. However, significant gaps remain,
especially when requiring the constructions to be efficient enough to be implemented.

– Fast Non-Succinct Garbling Schemes. Yao’s original garbled circuit construction [Yao82] and
its optimizations [BMR90, NPS99, KS08, PSSW09, KMR14, GLNP15, ZRE15, RR21] remain
the most practical general-purpose garbling schemes, as they only rely on fast symmetric-
key cryptography. The current state-of-the-art, due to Rosulek and Roy [RR21], garbles an

3 By default, the number of gates counts all fan-in 2 gates, including XOR, AND, OR. But in fact, our results
apply also to circuits with a much richer set of gates that include all possible fan-in-O(log λ) gates; see below.

4 Note that C and Ĉ are syntactically different objects. C is a circuit, while Ĉ is a binary string. Adopting
standard notation, |C| denotes the number of gates in the original circuit C, while |Ĉ| denotes the bit-length
of the garbled circuit.
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AND gate using 1.5λ + 5 bits, while XOR and NOT gates are free, using a random oracle.
Note that this does not meet our succinctness criterion, since security against poly(|C|)-time
adversaries implies that λ > log |C|. Indeed, high communication cost is typically the main
practical bottleneck in applications that rely on Yao-style garbling.

– Fully Succinct Garbling Schemes. On the other extreme, fully succinct garbled circuits have
been shown feasible under standard assumptions. Though theoretically optimal, the con-
crete garbling size is astronomically large, making these constructions practically infeasible.
In addition, existing schemes rely either on indistinguishability obfuscation (iO) [KLW15,
BCG+18] or on a non-black-box combination of fully homomorphic encryption (FHE) and
attribute-based encryption (ABE) [GKP+13, BGG+14, HLL23]. These do not only incur a
high computational overhead but also rely on a limited class of assumptions, such as circular-
secure LWE (e.g., [Gen09, BV11, GSW13]) or combinations of multiple assumptions (e.g.,
LPN over large fields, local PRG, and DLin over bilinear groups).

As is often the case in cryptography, diversifying assumptions may also lead to efficiency benefits.
This motivates the following question:

Can succinct garbling schemes be based on a broader set of assumptions,
with improved efficiency?

Two recent works have made major progress on succinct garbling without the heavy machin-
ery of iO, FHE, or ABE. The work of [LWYY24] presented garbled circuits with 1-bit-per-gate
based on variants of RLWE or NTRU, while [ILL24] achieved fully succinct garbling for weak
classes of programs, including truth-tables and DFAs, from a variety of group-based assump-
tions. The latter results build on a fully succinct partial garbling scheme for general circuits,
applying a computation on a secret input on top of a computation on a public input. Here full
succinctness requires the garbled circuit size to be independent of the complexity of the public
part of the computation.

1.1 Our Results in a Nutshell

Following the recent momentum, we present a unified framework for constructing succinct gar-
bled circuits with 1-bit-per-gate using techniques for homomorphic secret sharing (HSS) [BGI16,
BGI+18, BKS19, OSY21, RS21, MORS24]. Our unified framework can be instantiated using
pirme order groups or Paillier groups or lattices, relying on circular-security variants of the
power-DDH assumption or a circular power-RLWE assumption. (See discussion of these as-
sumptions below.) We further show how to avoid circular security altogether in a “leveled”
variant of our unified framework, where the garbled circuits contain additional components of
size D ·poly(λ) that depend the circuit depth D but not on the circuit size. Note that the leveled
version already gives 1-bit-per-gate garbling for low-depth circuits, including NC1 or depth-λ cir-
cuits, that arise in many applications. We summarize our results on succinct Boolean garbling
in the following theorem, and compare it with prior schemes in Table 1.

Theorem (Succinct Boolean Garbling, Informal). Assuming either: (1) circular Power-DDH
in Paillier groups (Definition 7), or (2) a variant of circular Power-DDH in prime-order groups
(Definition 11), or (3) circular Power-RLWE (Definition 9), there is a garbling scheme for
Boolean circuits C with garbled circuit size |Ĉ| = |C|+ poly(λ).

Assuming Power-DDH (Definition 6) in Paillier or prime-order groups, or Power-RLWE
(Definition 8), there is a leveled variant with garbled circuit size |Ĉ| = |C| + D · poly(λ) for
circuits of depth D.
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See Theorem 2 and Corollary 1 for the formal statements on instantiations from Paillier
groups and lattices. The instantiation using prime order groups is slightly more complex and
proceeds in two steps. In the first step, we obtain a 1-bit-per-gate Boolean garbling with inverse
polynomial correctness and privacy errors assuming the circular Power-DDH assumption, as
formally stated in Theorem 2 and Corollary 1. Then in the second step, we make the errors
negligible, using correctness and privacy amplification, assuming a variant of the circular Power-
DDH assumption (Definition 11). Importantly, it turns out that the amplification does not
increase the (amortized) per-gate garbling size, keeping 1-bit-per-gate. See Section 5.5.

Class |Ĉ|+ |x̂| Tool Assumption

Yao [Yao82] general O(λ) · |C| Symmetric OWF

Fully Succinct
e.g.,[BGG+14]

general poly(λ) · (n+m)
iO

FHE+ABE Lattice cir-LWE

Fully Succinct
ILL24 [ILL24]

weak classes
e.g. DFA

poly(λ) · (n+m) HSS Group cir-P-DDH

LWYY24 [LWYY24] general |C|+ poly(λ) · n SHE Lattice
cir-RLWE
cir-NTRU

This Work general |C|+ poly(λ) · n HSS
Group
Lattice

cir-P-DDH
cir-P-RLWE

layered |C|
log log λ

+ poly(λ) · n

general |C|+ poly(λ) · (n+D)
P-DDH
P-RLWE

layered |C|
log log λ

+ poly(λ) · (n+D)

Table 1. Comparison between Boolean garbling schemes, in terms of the class of Boolean circuits handled, garbled
circuit size, the cryptographic tool used, and assumptions. For assumptions, we list both the mathematical structure
and the concrete assumption. λ denotes the security parameter, |C| the number of gates in C, n the input length,
m the output length, and D the depth. OWF stands for one-way function and SHE for somewhat homomorphic
encryption.

Extension 1: Beating 1-bit-per-gate. Our framework can be further extended in two inter-
esting ways. First, for layered circuits, we can improve the garbling size to O(1/ log log λ)-bits-
per-gate. This gives the first garbling scheme for a natural and general class of circuits that goes
below the bar of 1-bit-per-gate, without relying on iO or FHE plus ABE. Previously, this was
only achieved for simple programs such as DFAs [ILL24]. In fact, this follows as a corollary of
a more general construction of a garbling scheme for circuits built from “supergates”, including
all gates with O(log λ)-fan-in, and the garbling size is 1 bit per “supergate.”

Extension 2: Succinct arithmetic garbling. We extend our unified framework to garble
arithmetic circuits, whose gates perform additions and multiplications modulo p or over the
integers. Under the above assumptions, we garble arithmetic circuits modulo p with O(log p)-
bits-per-gate for general moduli p (for small modulus p = poly(λ), the constant behind the big-O
is 1). Note that garbling schemes for mod-p computations automatically imply garbling schemes
for bounded integer computations where the wire values are guaranteed to be smaller than p.

This represents significant progress on the front of succinct arithmetic garbling, without
relying on iO or FHE plus ABE. As summarized in Table 2, the state-of-the-art arithmetic
garbling schemes require Ω̃(log p · λ)-bits-per-gate for Zp computation [BLLL23, LL24, Hea24].
We eliminate the λ-multiplicative overhead.
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For the simpler task of bounded integer garbling, prior works [BLLL23, MORS24] have
shown how to trade the Ω(λ)-multiplicative overhead for an additive poly(λ)-overhead, achieving
(log p+poly(λ))-bits-per-gate, based on DCR. We improve the state-of-the-art by diversifying the
assumptions, adding prime-order groups and lattices, and removing the large additive poly(λ)
overhead.

Ring |Ĉ|+ |x̂| Tool Assumption

[BLLL23] Z |C| · (O(ℓ) + poly(λ)) LHE Paillier DCR

[MORS24] Z |C| · (ℓ+ poly(λ)) HSS Paillier cir-DCR

[BLLL23] Zp |C| · λ · (O(log p) + poly(λ)) LHE Paillier strong DCR

[LL24, Hea24] Zp |C| · λ ·O(log p) Symmetric CRH

This Work Zp

|C| ·O(log p) + poly(λ) · n ⋆

|C| ·O(log p) + poly(λ) · (n+D) ⋆

HSS
Paillier

Prime Group
Lattice

cir-P-DDH
cir-P-RLWE

P-DDH
P-RLWE

Table 2. Comparison between arithmetic garbling schemes, in terms of ring supported, garbled circuit size, the
cryptographic tool used, and assumptions. For integer computations, the wire values must be smaller than an
a priori upper bound 2ℓ. For assumptions, we list both the mathematical object it relies on and the concrete
assumption. λ denotes the security parameter, |C| the number of gates in C, n the input length, and D the depth.
CRH stands for Correlation Robust Hash, LHE for linearly homomorphic encryption. Strong DCR refers to DCR
where the secret exponent of the hard subgroup is chosen to be a random λ-bit number, instead of O(logN)-bit
number. ⋆ indicates that when the prime is O(log(λ))-bit long, the size of garbling is |C| · log p+poly(λ) · n and
|C| · log p+ poly(λ) · (n+D) respectively, eliminating the hidden constant factor multiplied with log p.

Concrete Succinctness. Our 1-bit-per-gate Boolean garbling scheme improves the concrete
garbling size even with just a moderately large number of gates. Recall that asymptotically the
garbling size is |Ĉ| = |C|+ poly(λ). Here the poly(λ) additive term represents the size of some
global public data pd. The concrete size of this global data determines when using our schemes
yields smaller garbled circuits compared with Yao-style garbled circuits. The break-even point
depends on the instantiation, as well as the choice of a PRG seed length. For our estimation
below and in Section 7, we optimistically assume an “HSS-friendly” PRG with 128-bit seed and
output length ≈ |C|. Designing MPC/FHE/HSS-friendly PRGs is an active research direction;
see, e.g., [ARS+15, GRR+16, BCG+17, CCKK21, ABG+24, FLLL24, CCH+24] and references
therein. For such PRGs, there is typically a tradeoff between computational cost and seed length;
the size of the global data pd in our constructions scales linearly with the seed length. On the
other hand, the number of restricted multiplications (between an intermediate value and an input
bit) needed for evaluating each output bit of the PRG, which is upper bounded by the branching
program size, directly influences the computational cost. While research on HSS-friendly PRGs
is still in its infancy, there is a large space of possible designs to explore. We hope that the
goal of practical succinct garbling will further motivate research on the concrete efficiency of
HSS-friendly PRGs.

Table 3 in Section 7 summarizes the concrete sizes of the global data. The Paillier instantia-
tion has just 0.38MB global data, the simple instantiation using Prime-order groups with inverse
polynomial errors5 has 5.1MB global data which can be optimized down to just 0.13MB, and

5 As mentioned above, these errors can be made negligible via correctness and security amplification. The am-
plification step increases the size of the global data and computational efficiency by a factor of ω(1) factor
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our lattice instantiation has 71MB global data. Comparing with using optimized Yao’s garbled
circuits with estimated size6 of λ|C|, our 1-bit-per-gate garbling is smaller when the original
circuit satisfies |C| > |pd|/(λ − 1). Concretely, the break-even point is |C| = 24K for Paillier
instantiation, 8K for optimized prime order groups, and 4.5M for lattices. For moderately large
circuits, e.g., of size 107 gates, our optimized prime order group instantiation is smaller than
Yao-style garbling by a factor of 116 (from 160MB to 1.38MB), while our Paillier group instan-
tiation is smaller by a factor of 98 with size 1.63MB. For reference, the plain circuit description
size is at least 29MB.

Compared with the recent work of Liu et al. [LWYY24] that constructed 1-bit-per-gate
garbled circuits based on circular RLWE, the public data in the latter has a much larger size
of 10GB. This results from the use of the Gentry-Sahai-Water fully homomorphic encryption
scheme [GSW13], which has much larger ciphertexts than the HSS encodings used in this work.

Finally, we compare with fully succinct garbling schemes. The iO-based constructions are
not currently implementable, while the FHE+ABE-based constructions [GKP+13, BGG+14,
HLL23] have astronomically large input labels and/or computational costs, and hence are also
impractical. The label size for each input bit of the RLWE instantiation of the succinct garbling
scheme of [GKP+13, BGG+14] is Ω(n2 log q4), where n and q are RLWE degree and modulus
satisfying n1−ϵ > log q > D for some ϵ ∈ (0, 1) and D is the circuit depth. This means each
input label has size ω(D6), which is prohibitive even for small depth such as 100. The recent
work [HLL23] removes the constraint of log q > D, allowing for smaller modulus and degree.
However, this requires performing “boostrapping” inside ABE, which is very computationally
expensive.

In summary, for circuits of moderate size around 105 to 106 gates, the garbled circuits of our
schemes are concretely smaller than all prior constructions.

Towards Practical Succinct Garbling. Concretely, our garbling schemes require evaluating a
PRG using HSS, in addition to a few other HSS operations per gate. Assuming each output bit of
the PRG can be evaluated using a restricted multiplication straightline (RMS) program of size S,
or alternatively a branching program of size S, then garbling and evaluating a general Boolean
circuit require |C| · (4S + O(1)) homomorphic RMS operations. In particular, since the HSS
restricted multiplication operation is much more expensive than the HSS addition operation,
if the PRG requires S× restricted multiplications, the per-gate cost of garbling is dominated
by 4S× + O(1) homomorphic restricted multiplication. As discussed above, we optimistically
conjecture an HSS-friendly PRG with a large stretch (as our garbling size scales linearly with
the seed length), and where each output bit can be evaluated using a reasonably small number
of restricted multiplication operations. Then in the lattice instantiation, the per-gate compu-
tation boils down to computing a small number of multiplication/addition of Rq elements and
rounding.

Our Assumptions. The leveled version of our unified framework can be based on natural
flavors of the Power Decisional Diffie Hellman (P-DDH) assumption (Definition 6), introduced
in [GJM03, CNs07, AHI11] and further used in [GHKW17, KY18, AMN+18, BMZ19, ILL24],
in Paillier or prime-order groups. P-DDH postulates that for appropriately sampled group el-

asymptotically, but does not increase the per-gate communication cost. For concrete efficiency, we consider the
simpler instantiation without amplification.

6 The state-of-the-art optimization over Yao’s garbled circuit is by [RR21], which contains 1.5λ bits per AND
gate, and garbling XOR is free. We use λ|C| as a rough estimation of the garbled circuit size.
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ement g and exponents s and a, b sampled randomly from a range [ℓ], the triple (g, gs, gs
2
) is

indistinguishable from (g, ga, gb).
To remove the D ·poly(λ) additive term in the size of “leveled” garbled circuits, we need the

following circular-security variant of this assumptions. The Circular Power Decisional Diffie Hell-
man (CP-DDH) assumption (Definition 7) asserts that a circular encryption of bits of the secret
key s using powers of the secret key is pseudorandom. More precisely, for appropriately sam-
pled group elements g, f and random exponents s and {ai, bi, ci}i, the following computational
indistinguishability holds:

CP-DDH: g, gs, gs
2
, (gai , gsai , gs

2ai · fs[i])i∈[log s] ≈c g, gs, gd, (gai , gbi , gci)i∈[log s].
7

The P-DDH and CP-DDH assumptions can be postulated over Paillier or prime order groups. For
the Paillier group, the assumption can be further simplified (still sufficient for succinct garbling)
to (gr, grs, grs

2
(1 + N)s) being pseudorandom, where g is a generator of the hard subgroup

and the exponents r, s are randomly sampled. This optimization is introduced for concrete
efficiency; see Section 7. For prime-order groups, Power-DDH and Circular Power-DDH hold in
the standard generic group model (GGM) [Sho97], as shown in [ILL24]. In particular, our succinct
garbling scheme can be instantiated in the (prime-order) GGM, under the mild assumption of
a PRF in NC1. Furthermore, under the CP-DDH assumption in prime order groups, we only
obtain succinct garbling with inverse polynomial errors. As mentioned above, we can amplify
correctness and privacy to make the errors negligible without hurting the amortized per-gate
garbling size. This requires a variant of the CP-DDH assumption, which instead of hiding the
bits of the secret s, hides bits of the secret shifted by a public constant s′, t = s+ s′.

CP-DDH*: g, gs, gs
2
, s′, (gai , gsai , gs

2ai · f t[i])i∈[log s] ≈c g, gs, gd, (gai , gbi , gci)i∈[log s] ,

where t = s+ s′

Alternatively, our garbling schemes can be based on the Power-RLWE assumption (Defi-
nition 8) for the leveled version and circular Power-RLWE assumption (Definition 9) for the
full-fledged version. Introduced in [ARS24], Power-RLWE postulates that RLWE samples with
small secrets s and s2, and the same public vector a in a polynomial ring Rq, (a, sa+e1, s

2a+e2)
is pseudorandom. The circular variant further uses the last sample to hide the secret s, assuming
the pseudorandomness of (a, sa+ e1, s

2a+ e2 + s∆), where ∆ is a constant.

1.2 Related Works

In this section we provide a detailed comparison between our results and prior or concurrent
related works.

Comparison with [ILL24]. The work of [ILL24] constructed fully succinct garbling schemes
for weak classes of programs, including truth tables, DFA, and decision trees, based on different
group-based assumptions. This builds on a fully succinct partial garbling schemes (equivalently,
conditional disclosure of secrets), where most of the input is public. cIn comparison, our garbling
schemes achieve a weaker level of succinctness, but apply to all circuits while fully hiding the
input. Our work provides a lattice-based instantiation of the succinct partial garbling scheme
from [ILL24] and the underling homomorphic MAC primitive.

7 Compared to [ILL24], our formulation here includes gs
2

in the indistinguishability, which we believe is more
natural and easier to use. See also the remark under Definition 7.
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Comparison with [LWYY24]. Another recent work [LWYY24] constructed 1-bit-per-gate
garbled circuits using special somewhat homomorphic encryption schemes, namely the GSW
scheme instantiated using circular variants of RLWE or NTRU. In comparison, our unified
framework presents a more general design principle using HSS. It yields instantiations based on
more diverse assumptions that include different group-based assumptions. Our garbled circuits
have smaller concrete sizes as discussed in the introduction (also see Table 3), owing to the fact
that HSS encoding is smaller than GSW ciphertexts. In addition, we show how to go below
1-bit-per-gate for layered circuits as well as an extension to arithmetic garbling.

Comparison with [MORS25]. The concurrent and independent work of [MORS25] achieves a
similar set of results to this work based on similar techniques. We note the following differences.
For Boolean garbling, both [MORS25] and this work achieve (amortized) 1 bit per gate for
general circuits, and O(1/ log log λ) bits per gate for layered circuits under circular assumptions.
Both works have leveled variants that avoid circular assumptions at the price of an additive
Depth(C) · poly(λ) size overhead. The differences are in the underlying assumptions: the work
of [MORS25] focuses on constructions in Paillier groups based on a circular DCR assumption
(resp., standard DCR for the leveled variant), while our work presents a unified framework
with instantiations in Paillier groups, prime-order groups, or lattices, based on the CP-DDH or
CP-RLWE assumptions (resp. P-DDH or P-RLWE for the leveled variants).

The difference in assumptions stems from the that [MORS25] use a more sophisticated
variant of the basic technique to base their construction (in the leveled case) on the standard
DCR assumption. While DCR is more widely used than P-DDH in Paillier groups used in our
work, these assumptions seem technically incomparable. We believe that adapting the technique
from [MORS25] to our constructions will give leveled variants under Paillier groups, prime-
order groups, or lattices based on the standard DDH or RLWE with small secret assumptions.
However, this seems to come at the price of a higher concrete overhead. The current work
initiates a study of the concrete efficiency of group-based and lattice-based garbling, including
an effort to optimize the additive terms.

For arithmetic garbling, the work of [MORS25] constructs a scheme over bounded integers
by 2ℓ, with (amortized) (ℓ + λ) bits per gate for general circuits, and O((ℓ + λ)/ log log λ) bits
per gate for layered circuits. In contrast, our work constructs schemes for computation over
ZR computation for any modulus R of ℓ bits, with (amortized) O(ℓ) bits per gate for general
circuits. We believe that we can also obtain additional savings in cost for layered arithmetic
circuits. Besides the distinction between supporting bounded integers vs. ZR computation, the
above differences in assumptions also hold for the arithmetic garbling results.

Comparison with [CHHK25]. The concurrent and independent work of [CHHK25] con-
structed Boolean garbling schemes with amortized per-gate garbling size below λ. Their first
scheme is proven in the Generic Group model (GGM), achieving λ/

√
log λ-bit-per-gate garbling

size. Their second scheme is proven in the plain model under the Power-DDH assumption to-
gether with the existence of a tweakable correlation robust hash, attaining a garbled circuit
size of λ · |C|/

√
log λ + poly(λ) · D, where D is the depth of the circuit for layered circuits.

In comparison, our Boolean garbling schemes achieve 1-bit-per-gate for general circuits, and
O(1/ log log λ)-bit-per-gate for layered circuits, again, removing the Ω̃(λ) multiplicative over-
head. On the other hand, our schemes make a non-black-box use of a PRF (or high-stretch
PRG), whereas their constructions can be cast unconditionally in the GGM.

Other Use of HSS in Garbling by [GN25]. The recent work of [GN25] constructed a garbling
scheme that supports mixed circuits with both Boolean and bounded integer arithmetics using
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HSS techniques. The core innovation is using HSS techniques to implement an efficient garbling
gadget for bit-decomposition that is compatible with the state-of-art arithmetic garbling scheme
of [MORS24]. Overall, their scheme has a garbling size of (amortized) O(λ) bits per Boolean gate,
(ℓ + λDCR) bits per arithmetic gate (over integers bounded by 2ℓ), and O(ℓ · λDCR/ log(λ)) bits
per bit-decomposition gate. In comparison, we apply HSS techniques to construct significantly
more succinct Boolean and arithmetic garbling with (amortized) 1 bit per Boolean gate, and
O(ℓ) bits per arithmetic gate (over an ℓ-bit modulus).

Inspiration from Arithmetic Garbling.Our work builds upon a recent line of research [BLLL23,
LL24, Hea24, MORS24] for improving the garbling size of arithmetic circuits. These circuits
consist of addition and multiplication gates, evaluated over a ring, typically Zp or Z, and an
input x consists of ring elements. Because there is a simple baseline solution that uses a Boolean
garbling scheme to garble a Boolean circuit implementing the arithmetic circuit of interest, re-
search naturally focuses on what can be done differently. The first work on arithmetic garbling
by Applebaum et al. [AIK11] proposed an aritsshmetic generalization of input keys and labels
– the keys of an input wire describes an affine functions Ki and the label for xi is the output
Ki(xi). They then constructed an garbling scheme for bounded integer computation with such
arithmetic input labels, based on LWE, which sends ℓ · poly(λ) bits per gate when the wire val-
ues are bounded by 2ℓ. Building upon [AIK11] and a subsequent work by Ball et al. [BMR16],
recent works [BLLL23, LL24, Hea24, MORS24] have renewed research on arithmetic garbling on
several different fronts: 1) diversifying assumptions, 2) supporting more models of computing,
such as, Zp computation, and mixed circuits with both arithmetic and Boolean gates, and 3)
optimizing succinctness.

We focus on the succinctness aspect. The baseline solution using Yao’s garbled circuits
requires Ω(λℓ log ℓ)-bits-per-gate. Interestingly, the work of Ball et. al. [BLLL23] showed that
bounded integer computations can be garbled with O(ℓ + poly(λ))-bits-per-gates, trading the
O(λ log ℓ) multiplicative factor for an additive poly(λ) term, assuming the DCR assumption
over Paillier/Damg̊ard-Jurik groups. Their technique relies on simple additive homomorphism
supported by DCR, rather than iO or FHE plus ABE underlying fully succinct garbling. The
work of [MORS24] further improved size to exactly ℓ+ poly(λ)-bits-per-gate, by applying HSS
techniques, assuming the circular security of Damg̊ard-Jurik encryption.

These works shed new light on how to avoid the O(λ)-multiplicative factor overhead associ-
ated with Yao’s garbled circuits, using lightweight tools. But their techniques are limited in two
ways. First, the additive poly(λ) is large, proportional to logN where N is the Paillier modulus,
and dominates when wire values are relatively small ℓ = o(logN). In particular, when used to
garble Boolean computation ℓ = 1, the size is O(logN)-bits-per-gate, worse than Yao’s garbled
circuits. Second, their methods do not extend to garbling Zp-arithmetic circuits. Despite past
efforts [AIK11, BMR16, BLLL23, LL24, Hea24], the most succinct garbled Zp-circuits have size
Ω(λ log p)-bit-per-gate, carrying the Ω(λ)-multiplicative factor overhead.

As discussed before, the current work overcomes the above two limitations. Our unified
framework also gives a Zp-garbling scheme with O(log p)-bits-per-gate for general p, based on
various group and lattice assumptions. Our technique is inspired by techniques developed in the
context of arithmetic garbling, particularly the HSS-based technique from [MORS24].
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2 Technical Overview

Starting Point: Succinct Garbling of [ILL24]. Our starting point is the recent new ap-
proach to succinct garbling from [ILL24], which combines a new primitive called fully succinct
partial garbling and fully homomorphic encryption (FHE) to obtain fully succinct standard gar-
bling. This follows the FHE+ABE blueprint of [GKP+13, BGG+14], replacing succinct ABE by
succinct partial garbling.

In more detail, a partial garbling scheme generalizes standard garbling to consider com-
putations with public and private parts, C(x,y) = CPriv(y, CPub(x)). A partial garbling of
C computes a garbling Ĉ and a pair of short keys kx,i,0,kx,i,0 for every bit in x, as well as

ky,i,0,ky,i,1 for every bit in y. The garbling Ĉ, the keys {kx,i}, {ky,i} selected corresponding
to inputs x,y, together with x in the clear reveals the computation result z = C(x,y), and
nothing else about the private input y. The scheme of [ILL24] achieves a fully succinct garbling
size |Ĉ| ≤ |CPriv| · poly(λ), independent of the complexity of CPub.

The observation from [ILL24] then is to apply partial garbling to the computation

C(ctx, sk) = Dec(sk,HEvalf (ctx)),

i.e. with a public part CPub(ctx) = HEvalf (ctx) = ct∗z computing homomorphic evaluation of
some function f over FHE ciphertexts ctx, and a private part CPriv(sk, ct

∗
z) decrypting evaluated

ciphertexts using the secret key sk as the private input. A partial garbling of C reveals the
evaluation result z = f(x), and guarantees privacy of the secret key sk, which further guarantees
privacy of x by FHE security. Therefore, a partial garbling of C can be viewed as a standard
garbling of the function f . Furthermore, the size of Ĉ only depends on the complexity of private
computation, i.e. FHE decryption, |Ĉ| ≤ |z| · |Dec| · poly(λ) = |z| · poly(λ), and does not depend
on the complexity of f . Hence the partial garbling of C is a fully succinct standard garbling of
f .

While conceptually simple, this solution is far from practically useful due to the heavy
computation complexity of FHE. A natural attempt is to use a less powerful, but much lighter-
weight, homomorphic encryption (HE) scheme to obtain fully succinct garbling for many low-
depth computations {f i}, and composing them into a high-depth one: f := fT ◦ fT−1 ◦ . . . ◦ f1.
However, some calculation shows a difficulty. Suppose each f i is a Boolean circuit of depth D
with width W . The succinct garbling of f i costs |f̂ i| = W · poly(λ), while our target size is
≤ WD · log(WD) to achieve succinctness. Without new ideas, we would need a powerful HE
supporting D = poly(λ) depth computation to achieve succinctness.

Indeed, our new ideas require looking into the construction of [ILL24], and finding new
ways to garble the private computation CPriv more efficiently, at the cost of supporting only a
restricted form of computation.

The Construction of [ILL24] in More Detail. The partial garbling construction of [ILL24]
relies on a new primitive, algebraic homomorphic MAC (aHMAC), and the standard Yao’s
Boolean garbling to handle the public and private computations respectively. We give a simplified
review here, assuming the the free-XOR [KS08] key format in Yao’s garbling.

The aHMAC Scheme. An aHMAC scheme is run between an authenticator and an evaluator.
They both hold an evaluation key evk. The authenticator additionally holds a PRF key k, and
a global secret s ∈ Z.

– The authenticator when given a bounded integer xi ∈ [B] as input, and an associated id,

computes its tag as σxi := s · xi + k
(i)
x over Z, where k

(i)
x = PRF(k, id) is derived from the id.

11



– The evaluator when given inputs x and tags σx = {σxi} can evaluate any arithmetic circuit C
(with bounded intermediate values byB) using the evaluation key: σz ← EvalTag(evk, C, σx,x).

– The authenticator when given only the ids, hence the derived keys kx = {k(i)x }, can evaluate
the same circuit: kz ← EvalKey(evk, C,kx).

The scheme guarantees the evaluated tags and keys are consistent: σz = s · z + kz over Z, and
also that the evaluation key evk and tags σx don’t leak anything about the global secret s.

In this work, we view a pair of tag and key σxi , k
(i)
x as an additive share of sxi over Z, written

as ⟨sxi⟩0 = k
(i)
x , and ⟨sxi⟩1 = σxi . We view the algorithms EvalKey,EvalTag as homomorphically

evaluating additive shares of sx between a garbler PG and an evaluator PE , who both hold an
evaluation key evk with respect to the global secret s. Note that the EvalTag algorithm by the
evaluator also needs x in the clear.

PG(evk) PE(evk,x)

⟨sz⟩0 ← EvalKey(evk, C, ⟨sx⟩0), ⟨sz⟩1 ← EvalTag(evk, C, ⟨sx⟩1,x).

The construction of [ILL24] guarantees that given any additive shares of sx, as long as all
intermediate values of C(x) are bounded by B, the results of EvalKey,EvalTag also form additive
shares of sz, where z = C(x).

Yao’s Garbling. In Yao’s garbling of a Boolean circuit C (assuming the free-XOR [KS08] key
format), the garbler PG samples a random key kj for every wire j in C, and a global secret s.
We view the keys {kj} and the global secret s as O(λ)-bit integers in this overview.

PG provides a garbled table for each gate to the evaluator PE , such that if PE obtains a set
of labels {li = s · xi + ki} according to an input x = {xi}, then she can use the garbled tables
to recover a label lj = s · vj + kj for every wire j corresponding to the correct wire value vj . In
order for PE to recover the values zo on the output wires o in C, a usual trick is to assume the
least significant bit (LSB) of s is 1, so that LSB(lo) = zo ⊕ LSB(ko). It suffices for PG to send
PE LSB(ko) for every output wire o.

We take an alternative view of Yao’s garbling not as a static scheme, but as a protocol
between a garbler PG and an evaluator PE .

– Initially PG and PE jointly hold additive shares of sx for some input x = {xi}: the garbler
holds ⟨sxi⟩0 = ki, and the evaluator holds ⟨sxi⟩1 = li.

– Then PG sends garbled tables to PE so that they jointly hold additive shares of svj for every
wire value vj in C.

– In the end, PG and PE jointly hold additive shares of sz for the output z = {zo}: the garbler
holds ⟨szo⟩0 = ko, and the evaluator holds ⟨szo⟩1 = lo. PG then sends {LSB(ko)} to PE to
reveal z.

The security of Yao’s garbling guarantees that if the global secret s is not leaked by the initial
additive shares ⟨sx⟩1 to PE , then all communication from PG to PE can be simulated by PE ,
given only the output z. To summarize the protocol between PG and PE , we write

(PG : ⟨sz⟩0), (PE : ⟨sz⟩1, z)← YaoC
(
(PG : ⟨sx⟩0), (PE : ⟨sx⟩1)

)
.

Succinct Partial Garbling from aHMAC and Yao.We again describe the partial garbling scheme

for evaluating C(x,y) = CPriv(y, CPub(x)) as a protocol between the garbler PG and the eval-
uator PE , which we believe is more intuitive. (See Section 5 for viewing garbling as a 2PC
protocol.) It represents a valid garbling scheme as long as PG’s communication is independent
of the inputs x,y except in an initialization phase.
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1. In the initialization phase, PG sets up the aHMAC scheme with a global secret s, and
evaluation key evk. He then samples random additive shares ⟨sx⟩0, ⟨sx⟩1, for the public
input x, and ⟨sy⟩0, ⟨sy⟩1 for the private input y. In the end, PG sends evk, x, ⟨sx⟩1 and
⟨sy⟩1 to PE .

2. To evaluate the public computation CPub,
8 PG and PE locally run EvalKey and EvalTag

respectively on their shares ⟨sx⟩0 and ⟨sx⟩1.

PG : ⟨sw⟩0 ← EvalKey(evk, CPub, ⟨sx⟩0),
PE : ⟨sw⟩1 ← EvalTag(evk, CPub, ⟨sx⟩1,x).

(1)

3. To evaluate the private computation CPriv, PG and PE jointly run Yao’s garbling.

(PG : ⟨sz⟩0), (PE : ⟨sz⟩1, z)
← YaoCPriv

(
(PG : ⟨sy⟩0, ⟨sw⟩0), (PE : ⟨sy⟩1, ⟨sw⟩1)

)
.

(2)

The evaluator PE outputs z in the end.

In the above protocol, communication from PG to PE after the initialization phase corresponds
to the garbling material Ĉ in the garbling scheme. We note since the public computation CPub is
evaluated by local procedures, with no communication, we indeed obtain a fully succinct partial
garbling scheme.

Recall that in this work, we intend to perform homomorphic evaluation of some low-depth
computation f i over HE ciphertexts ctxi using the public computation, and then HE decryption
using the private computation. Furthermore, in order to compose multiple such evaluations,
. . . f i+1 ◦ f i ◦ . . ., we need to also implement HE re-encryption using the private computation.
We illustrate the modified steps 2 and 3 below.

2’ To evaluate the public computation CPub := HEvalf
i
, PG and PE locally run EvalKey and

EvalTag respectively on their shares ⟨s · ctxi⟩0, ⟨s · ctxi⟩1. 9

PG : ⟨s · ct∗xi+1⟩0 ← EvalKey(evk,HEvalf
i
, ⟨s · ctxi⟩0),

PE : ⟨s · ct∗xi+1⟩1 ← EvalTag(evk,HEvalf
i
, ⟨s · ctxi⟩1, ctxi),

where ct∗ denotes homomorphically evaluated ciphertexts.

3’ To evaluate the private computation CPriv := Enc◦Dec, PG and PE jointly run Yao’s garbling.

(PG : ⟨s · ctxi+1⟩0), (PE : ⟨s · ctxi+1⟩1, ctxi+1)

← YaoEnc◦Dec
(
(PG : ⟨s · sk⟩0, ⟨s · ct

∗
xi+1⟩0), (PE : ⟨s · sk⟩1, ⟨s · ct

∗
xi+1⟩1)

)
.

Note that the results are shares of fresh HE ciphertexts ctxi+1 , so the parties can then repeat
Step 2’ and 3’ for the next evaluation of f i+1.

As explained, the communication by Yao’s garbling to implement Enc ◦Dec is too much for our
purpose. Instead, our idea is to use homomorphic secret sharing (HSS) to replace Yao’s garbling
in the above protocol.

8 A Boolean circuit CPub can be implemented by an arithmetic circuit over integers bounded by 2.
9 Technically, we mean shares of s · Bits(ctxi) here, and shares of s · Bits(sk) in step 3’. But we choose to abuse
notations to avoid cluttering.
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It may first seem a bit odd to consider HSS as a replacement for garbling. Indeed, in the
setting of HSS, both parties depend on the input, while in the setting of garbling, PG needs to
be independent of the input. Our observation is that in the private computation implemented by
Yao, Enc◦Dec(sk, ctx), the most complicated computations, e.g. evaluating a PRG, involve only
the secret key sk, which is indeed independent of the actual input x! One can therefore hope to
rely on HSS for the complicated computations involving only sk, and in the end incorporate ctx
in the remaining simpler steps.

Replacing Yao with HSS. An HSS scheme runs between two parties P0, P1. In common
constructions, such as [ADOS22, BGI16, BKS19], they both hold encryptions of an input y,
denoted Iy, and jointly an additive share of a global secret s over Z consistent with the encryp-
tions. Each party Pb can locally evaluate any NC1 Boolean circuits C over the encrypted inputs
via HSS.Evalb such that the two outputs form additive shares of s · z and z, where z = C(y) is
the evaluation result.

P0(Iy, ⟨s⟩0) P1(Iy, ⟨s⟩1)

⟨sz⟩0, ⟨z⟩0 ← HSS.Eval0(Iy, C, ⟨s⟩0), ⟨sz⟩1, ⟨z⟩1 ← HSS.Eval1(Iy, C, ⟨s⟩1).

In an additional step, the party P0 may send its share ⟨z⟩0 (mod 2) to P1 to reveal the Boolean
evaluation result z.

It was observed in [CMPR23] that the above HSS schemes allow for an extended evaluation
procedure, where if replacing the additive share of s with shares of s ·w and w for some integer
w, then the extended evaluation results form additive shares of s · w · z and w · z. In other
words, the HSS evaluation results over encrypted inputs y can be additionally multiplied with
an integer w, when the two parties hold additive shares of sw and w.

P0(Iy, ⟨s⟩0) P1(Iy, ⟨s⟩1)

⟨swz⟩0, ⟨wz⟩0 ⟨swz⟩1, ⟨wz⟩1
← ExtEval(Iy, C, ⟨sw⟩0, ⟨w⟩0), ← ExtEval(Iy, C, ⟨sw⟩1, ⟨w⟩1).

Taking the extended evaluation one step further, we can consider a matrix W as the additional
input, and compute z′ = W · C(y) (over Z) as the final output. Including the additional step
where P0 sends its share of z

′ (mod 2) to P1 to reveal z′, we obtain an HSS evaluation “protocol”
for NC1 Boolean circuits C, denoted HSSC :

(PG : ⟨sz′⟩0), (PE : ⟨sz′⟩1, z
′)

← HSSC
(
(PG : Iy, ⟨sW⟩0, ⟨W⟩0), (PE : Iy, ⟨sW⟩1, ⟨W⟩1)

)
,

which we replace Yao’s garbling with in step 3 (Equation 2) and 3’ from the previous paragraph.
10 The communication cost from HSS is only |z′| bits, much smaller than that of Yao.

One detail to note is that in Yao’s garbling we are free to use the global secret s from
aHMAC also as the secret in Yao, but now with HSS, we need compatible instantiations with
aHMAC, (see Section 4) so that they can share a common secret s. This usage of aHMAC and
HSS requires us to prove security of the overall garbling scheme in a non-black-box way.

As anticipated, the computation implemented by this protocol is restricted: z′ = W · C(y)
over Z, for an NC1 circuit C. In order to use HSSEnc◦Dec in place of YaoEnc◦Dec in Step 3’, we need

10 Readers may notice a mismatch, where from step 2 (Equation 1), the parties hold shares of sw, but not of w.
This is not an issue, as PE can compute w in the clear from the public input x. The parties now hold a trivial
share: ⟨w⟩0 = 0, ⟨w⟩1 = w.
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to find a suitable HE scheme where the Enc ◦ Dec circuit can be implemented in this restricted
way:

ctx︸︷︷︸
z′

= Enc ◦ Dec(sk, ct∗x) = Bits(ct∗x)︸ ︷︷ ︸
W

·C(sk)︸ ︷︷ ︸
C(y)

over Z.

While such an HE scheme may seem hard to find, our observation is that the size of evaluated
ciphertexts |ct∗x| don’t matter in our scheme, as the communication cost from HSS is exactly
the size of a fresh ciphertext |ctx|. In fact, viewing one-time-pad as a trivial HE scheme suffices!
We illustrate a simple case of homomorphically multiplying one-time-pad ciphertexts, and the
Enc ◦ Dec computation.

ctx := x⊕ rx, cty := y ⊕ ry, where rx = PRF(sk, 1), ry = PRF(sk, 2).

ct∗z = HMult(ctx, cty) = (ctx, cty, ctx · cty).
Enc ◦ Dec(sk, ct∗z) = (ctx ⊕ rx) · (cty ⊕ p2)⊕ rz, where rz = PRF(sk, 3)

= C1(sk)ctx + C2(sk)cty + C3(sk)ctx · cty + C4(sk) over Z.
= Bits(ct∗z) · C(sk) over Z where C := (C1, C2, C3, C4).

The final equality, writing Boolean operations as a polynomial over Z, uses the fact that x⊕y =
x+y−2xy over Z for x, y ∈ {0, 1}. In the following, we directly write x to denote one-time-padded
x, instead of ctx.

In summary, our final Boolean garbling scheme for a circuit C starts with two parties PG, PE

holding additive shares ⟨sx⟩ and PE holding x in the clear, where x represents one-time-padded
inputs. For every gate in C, in a topological order, both parties applie aHMAC evaluations to
“homomorphically” add or multiply two one-time-padded inputs, and then run HSS to decrypt
and re-encrypt the resulting bit. The communication cost per gate is excatly 1-bit from the HSS
protocol.

Generalization: Evaluating O(log λ)-ary Gates. Observe that the technique of combining
aHMAC and HSS from the previous paragraph can be viewed as a more general protocol for
computation over some public masked input x and a private secret key sk for deriving the masks.
Using aHMAC we can evaluate any arithmetic circuit CPub (with bounded intermediate values)
on x, and with HSS we can evaluate any NC1 Boolean circuit CPriv on sk. The two results are
then multiplied as an inner product over Z. We summarize it as a protocol aHMAC-HSSCPub,CPriv :

(PG : ⟨sz′⟩0), (PE : ⟨sz′⟩1, z
′)

← aHMAC-HSSCPub,CPriv
(
(PG : Isk, ⟨sx⟩0), (PE : Isk, ⟨sx⟩1,x)

)
,

// z′ = ⟨CPub(x), CPriv(sk)⟩.

The communication cost of this protocol is 1 bit. Note that the result z′ is revealed to the
evaluator PE , hence should always be masked by a pseudo-random pad derived from sk.

Given this more general view, we can in fact use aHMAC-HSSCPub,CPriv to compute any
function g over O(log λ) masked input bits, and re-mask the resulting value. In particular,
we choose CPub(x) to compute a one-hot vector (0, . . . , 0, 1, 0, . . . , 0), where all but the x-th
component are 0. (See Fact 1.) And we choose CPriv(sk) = (. . . , CPriv,v(sk), . . .)v to compute a
vector listing evaluated values g(x) (and then masked) for all possible values of x.

∀v ∈ {0, 1}|x|, CPub,v(x) = 1 iff x = v

CPriv,v(sk) = g(v ⊕ PRF(sk, id))⊕ PRF(sk, id′).

// z′ = ⟨CPub(x), CPriv(sk)⟩ = g(x)⊕ PRF(sk, id′).
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The id, id′ from the above means some distinct ids assigned to every wire of the overall circuit
consisting of these O(log λ)-ary gates.

In summary, our generalized technique can garble Boolean circuits consisting of arbitrary
O(log λ)-ary gates, costing 1 bit per such gate. As applications, we show how to obtain a scheme

for layered circuits CLayer with garbling size |ĈLayer| ≤ O(|CLayer|/ log log λ)+poly(λ) in Section 5,
and a scheme for arithmetic circuits C over ZR with garbling size |Ĉ| ≤ O(|C| logR) + poly(λ)
in Section 6.

Other Extensions. Our techniques rely on two primitives:

– aHMAC which has been instantiated under the circular power-DDH (CP-DDH) assumptions
in Paillier groups or prime-order groups in [ILL24];

– HSS which has been instantiated under the DDH assumption in Paillier groups [ADOS22],
prime-order groups [BGI16], and the RLWE assumption [BKS19].

We introduce a new lattice assumption, CP-RLWE, analogous to the CP-DDH assumption in
groups, and show three instantiations of our technique of combining aHMAC and HSS under
either CP-DDH in Paillier groups, in prime-order groups, or CP-RLWE. As noted earlier, since
we require using a common secret in both aHMAC and HSS, we have to prove the security of
our garbling schemes in a non-black-box way.

The work of [ILL24] also constructed leveled variants of aHMAC that avoids the circular
assumptions at the cost of a larger evaluation key evk with size linear in the supported evaluation
depth. We also construct leveled garbling schemes using leveled aHMAC and (normal) HSS at
the cost of increasing the garbling size by Depth(C) · poly(λ) bits. They can be instantiated
under P-DDH plus DDH in Paillier groups, P-DDH in prime-order groups, or P-RLWE. (See
Section 5.2 for details.)

Finally, we note that existing aHMAC and HSS instantiations under prime-order groups
suffer a 1/poly(λ) correctness error. This causes a 1/poly(λ) error for both correctness and
privacy in our garbling scheme under prime-order groups. We show in Section 5.5 how to adapt
existing HSS amplification techniques [BGI17] to our setting to remove the 1/poly(λ) error at
the price of increased computation cost and, in the non-leveled variant, assuming a variant of
CP-DDH (Definition 11).

3 Preliminaries

Notations.We use bold letters x to denote a vector, and write x[i] to denote its i-th component.
We write x ⊗ y to denote the tensor product between two vectors. For an integer value within
some range x ∈ [B], we write Bits(x) to denote its bit-representation as a Boolean vector of
dimension ⌈logB⌉, and BitComp(x ∈ {0, 1}⌈logB⌉) to denote the linear function that recovers x
from its bit-representation.

We write ⟨x⟩0, ⟨x⟩1 to denote a pair of additive shares (over a ring R) of the value x, i.e.
the notation represents two arbitrary values v0, v1 ∈ R such that v1 = v0 + x over R. In this
work we will consider additive shares over the integers R = Z and over the polynomial ring
R = Z[X]/(Xn + 1) where n is a power-of-two.

When describing invocations of (sub-)protocols between two parties PG, PE , we write

(PG : OG), (PE : OE)← Protocol ((PG : IG), (PE : IE))
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to mean the parties respectively hold inputs IG, IE when entering the protocol, and obtain
outputs OG, OE after the protocol.

We assume all gates and wires in a circuit are labeled by distinct ids in {0, 1}λ. We write
InWires(C) to denote the ids of all input wires to C, and InWires(g),OutWire(g) to respectively
denote the ids of input wires to, and output wire from a gate g ∈ C.

When writing invocations of a function f : X → Y, we use the short-hand f(x ∈ X ℓ) ∈ Yℓ

to mean parallel invocations of f on every component of the vector x. For example, given a
PRF : {0, 1}λ × {0, 1}λ → {0, 1}, we write

x = x⊕ PRF(sk, InWires(g))

to mean computing masked inputs x to some gate g using parallel invocations of a PRF (w.r.t.
different wire ids) under a secret key sk.

3.1 Definition of Garbling

Definition 1 (Garbling). A garbling scheme consists of two efficient algorithms:

– Garb(1λ, C) takes a circuit C : Rℓx → Rℓz , over some ring R, and outputs a garbling Ĉ,
and input key functions {K(i)}i∈[ℓx], where each key function K(i) maps an input x[i] ∈ R
to a label L(i) ∈ {0, 1}ℓ, where the label length is bounded by a fixed polynomial in λ and the
bit-length of R, independent of the circuit size |C|: ℓ ≤ poly(λ, |R|)

– Eval(C, Ĉ, {L(i)}i∈[ℓx]) takes a circuit C, a garbling Ĉ, and input labels L(i) (corresponding

to some input x ∈ Rℓx). It outputs the evaluation result z ∈ Rℓz .

Correctness: For every polynomials p(λ), p′(λ), there exists a negligible function negl(λ) such
that for all λ ∈ N, circuits C with size |C| ≤ p(λ), over rings R with bit-length |R| ≤ p′(λ), and
inputs x ∈ Rℓx, the following holds:

Pr

[
Eval(C, Ĉ, {L(i)})
= C(x)

∣∣∣∣∣ (Ĉ, {K(i)})← Garb(1λ, C),

L(i) = K(i)(x[i]).

]
≥ 1− negl(λ).

Security: There exists an efficient simulator Sim such that for every polynomials p(λ), p′(λ),

sequence of circuits {Cλ} where |Cλ| ≤ p(λ), over rings Rλ with bit-lengths |Rλ| ≤ p′(λ) and
sequence of inputs {xλ ∈ Rℓx

λ }, the following holds (suppressing the subscript λ for brevity):

{
Sim(1λ, C, C(x))

}
λ
≈c

{
Ĉ, {L(i)},

∣∣∣∣∣ (Ĉ, {K(i)})← Garb(1λ, C),

L(i) = K(i)(x[i]).

}
λ

Definition 2 (Succinct Garbling Schemes). We say a garbling scheme is succinct if there
exists a polynomial p(λ) such that for every supported ring R and every λ ∈ N, sufficiently large
circuits C (over R) with |C| > p(λ) have garbling sizes |Ĉ| ≤ |C| · log |C|.

3.2 Hardness Assumptions in Paillier Groups

We consider two types of groups, Paillier groups (of composite orders) and prime-order groups
in this work. We first provide a quick review of these groups and the standard DDH assumption
in them. We next introduce two variants of the standard DDH assumption in those groups.
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Definition 3 (Paillier Groups). Paillier groups are defined by the following instance gener-
ation algorithm Gen.

– Gen(1λ, 1ζ) uniformly samples two λ-bit primes p, q such that p = 2p′ + 1, q = 2q′ + 1 where
p′, q′ are also primes. It outputs (N = pq, ζ) as the group description of G = Z∗

Nζ+1.

Lemma 1 (Facts about Paillier Groups [Pai99, DJ01]). Let G = Z∗
Nζ+1 be a Paillier

group sampled by Gen(1λ, 1ζ) for a polynomial ζ(λ).

– G has a subgroup F = {(1 + N)x : x ∈ N ζ} where discrete log (i.e., finding x) can be
efficiently solved.

– G has a subgroup H that’s isomorphic to Z∗
N , and G = F ×H.

– Consider a random element g ∈ G such that the Jacobi symbol of g mod N is 1. Then ⟨g⟩
contains F except with negligible probability. We write g ← Samp(N, ζ) to mean sampling
such elements g with Jacobi symbol 1.

Definition 4 (Prime-order Groups). We consider prime-order groups defined by an instance
generation algorithm Gen with the following syntax.

– Gen(1λ) outputs (G, p, g) where G is a group description of prime order p > 2λ, and g is a
generator of G.

The following DDH assumption in Paillier groups is adapted from the formulation by [ADOS22],
where the authors formulate a separate “small exponent” assumption stating it’s secure to sam-
ple the secret exponents in DDH from a smaller, but still sufficiently large, range than the order
of g. We directly state the small-exponent variant of DDH in Paillier groups here, as it’s required
to obtain the HSS construction from [ADOS22] (Lemma 5).

Definition 5 (DDH Assumption). We say DDH holds in Paillier groups if the following
holds for every polynomial ζ(λ):{

pp, g, ga, gb, gab

∣∣∣∣∣ pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

g ← Pai.Samp(pp), a, b← [N ].

}
λ

≈c

{
pp, g, ga, gb, gc

∣∣∣∣∣ pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

g ← Pai.Samp(pp), a, b, c← [N ζ+1].

}
λ

.

We say DDH holds in prime-order groups if the following holds:{
pp, g, ga, gb, gab

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

a, b← Zp.

}
λ

≈c

{
pp, g, ga, gb, gc

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

a, b, c← Zp.

}
λ

.

Our first variant, power-DDH, was first introduced by [CNs07, AHI11] in prime-order groups,
and formulated in Paillier groups (as an instance of the NIDLS framework) by [ARS24]. Roughly,
the assumption states that a group element g raised to the powers of a random secret exponent
s, s2, s3, . . . still “look random”. In this work we only need the weaker version that consider the
first and second powers s, s2.
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Definition 6 (Power-DDH Assumption [CNs07, AHI11, ARS24]). We say the power-
DDH assumption (P-DDH) holds in Paillier groups if the following holds for every polynomial
ζ(λ): {

pp, g, gs, gs
2

∣∣∣∣∣ pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

g ← Pai.Samp(pp), s← [N ].

}
λ

≈c

{
pp, g, ga, gb

∣∣∣∣∣ pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

g ← Pai.Samp(pp), a, b← [N ζ+1].

}
λ

.

We say P-DDH holds in prime-order groups if the following holds:{
pp, g, gs, gs

2

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

s← Zp.

}
λ

≈c

{
pp, g, ga, gb

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

a, b← Zp.

}
λ

.

Remark 1. As remarked in [ILL24], in prime-order groups, power-DDH implies DDH: the re-
duction given a power-DDH tuple (g, gs, gs

2
) samples a, b ← Zp to re-randomize the tuple as

(g, gs·a, gs·b, gs
2·ab), which becomes a valid DDH tuple. If the reduction is given a random tuple

(g, gs, gr), the re-randomized is also random. However, in Paillier groups there is no clear way
to perform this re-randomization.

The next circular variant was first introduced by [ILL24] both over Paillier groups and
prime-order groups. It further assumes that the DDH sample using s2 as the secret exponent
can securely hide (bits of) the secret s itself, after proper re-randomization.

Definition 7 (Circular-Power-DDH [ILL24]). We say the circular-power-DDH assumption
(CP-DDH) holds in Paillier groups if the following holds for every polynomial ζ(λ):{

pp, g, gs, gs
2
, gai , gsai , gs

2ai(1 +N)s[i]

(for i ∈ ⌈logN⌉)

∣∣∣∣∣ pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

g ← Pai.Samp(pp), s, {ai} ← [N ].

}
λ

≈c

{
pp, g, gs, gd, gai , gbi , gci

(for i ∈ ⌈logN⌉)

∣∣∣∣∣ pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

g ← Pai.Samp(pp), s, d, {ai, bi, ci} ← [N ζ+1].

}
λ

.

We say CP-DDH holds in prime-order groups if the following holds:{
pp, g, gs, gs

2
, gai , gsai , gs

2ai+s[i]

(for i ∈ ⌈log p⌉)

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

s, {ai} ← Zp.

}
λ

≈c

{
pp, g, gs, gd, gai , gbi , gci

(for i ∈ ⌈log p⌉)

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

s, d, {ai, bi, ci} ← Zp.

}
λ

.

Remark 2. We modify the formulation from [ILL24] to include the gs
2
term in the indistinguisha-

bility, so that it implies both DDH and P-DDH and looks more natural. The proof (Theorem 4
in [ILL24]) that CP-DDH in prime-order groups holds in the generic group model (GGM) still
goes through for our variant.
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3.3 Lattice Hardness Assumptions

In this work, we consider two variants to the standard RingLWE assumption over polynomial
rings of the form R = Z[X]/(Xn + 1), where n(λ) is a power-of-2. Let q(λ) > 2 be a modu-
lus, Derr(λ),Dsk(λ) ⊆ R be error and secret distributions. The standard RingLWE assumption
(w.r.t. R, q,Dsk,Derr) states that for every polynomial m(λ), the following computational indis-
tinguishability holds:{

a, s · a+ e

(over Rq)

∣∣∣∣∣ s← Dsk, e← Dm
err,

a← Rm
q

}
λ

≈c

{
a,b← Rm

q

}
λ
,

where Rq = R/(qR). The first variant considers the case where two vectors of RingLWE samples
are computed using the same public vector a, correlated secrets s, s2, and fresh errors e1, e2.
This is a weaker version of the power RingLWE assumption first introduced in [ARS24], which
considers multiple powers of s instead of just 2.

Definition 8 (Power RingLWE[ARS24]). We say the power RingLWE (P-RLWE) assump-
tion holds with respect to the ring R(λ), a modulus q(λ), error and secret distributions Derr(λ),Dsk(λ)
if the following holds for every polynomial m(λ):{

a, s · a+ e1, s
2 · a+ e2

(over Rq)

∣∣∣∣∣ s← Dsk, e1, e2 ← Dm
err,

a← Rm
q

}
λ

≈c

{
a,b, c← Rm

q

}
λ

Remark 3. P-RLWE implies the standard RLWE, which just requires indistinguishability of the
first 2 terms in the above.

Our next circular variant further assumes that the RingLWE sample using s2 as the secret
can securely hide the secret s itself.

Definition 9 (Circular Power RingLWE). We say the circular power RingLWE (CP-RLWE)
assumption holds with respect to the ring R(λ), two modulus p(λ), q(λ) such that q = p ·∆, error
and secret distributions Derr(λ),Dsk(λ) if the following holds for every polynomial m(λ):{

a, s · a+ e1, s
2 · a+ e2 + s ·∆

(over Rq)

∣∣∣∣∣ s← Dsk, e1, e2 ← Dm
err,

a← Rm
q

}
λ

≈c

{
a,b, c← Rm

q

}
λ

4 aHMAC and HSS as Evaluation Procedures

In this work, we make use of two tools from prior works, an algebraic homomorphic MAC
scheme (aHMAC) [ILL24], and a homomorphic secret sharing scheme (HSS) with extended
evaluations [CMPR23, ARS24]. At a highlevel, both schemes are run between a pair of parties,
which we call the garbler and the evaluator, who jointly hold (not neccessarily additive) secret
shares with respect to some input values x.

– An aHMAC scheme allows the parties to locally evaluate arithmetic circuits (over bounded
integers) on their input shares, if the evaluator additionally knows the inputs x in the clear.

– An HSS scheme allows the parties to locally evaluate a weaker program class (including NC1
Boolean circuits), but without requiring the evaluator to learn x.
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When garbling and evaluating a circuit, our techniques require interleaving aHMAC and HSS
evaluations on secret shares of intermediate wire values. In particular, they require conversions
between the two schemes’ share formats.

For this reason, (except in the leveled variants of our grabling constructions,) we need to
setup the two schemes using correlated secret randomness, and hence cannot directly invoke their
standard security definitions. In the following lemmas we focus only on their correctness prop-
erties, and expose the underlying construction detail of their “setup” algorithm (for generating
public data pd).

We stress that our garbling schemes will use the evaluation procedures of HSS and aHMAC
as subroutines, and we will directly prove the security of our garbling schemes without relying
on the security aHMAC and HSS in a black-box way.

4.1 aHMAC and HSS under Paillier Groups

The following lemmas summarize the aHMAC constructions under Paillier groups from [ILL24],
including both the non-leveled and leveled variants. We refer readers to [ILL24] for more details.
We note that [ILL24] presents the constructions in the language of NIDLS framework [ADOS22],
which covers Paillier groups, class groups, and a variant of Joye-Libert encryption as known
instantiations. In this work, we chose to focus on Paillier groups for clarity. Our results can be
generalized to fit NIDLS framework, and enjoy other instantiations covered by it.

Lemma 2 (aHMAC Gate Evaluation under Paillier Groups). Let B < 2poly(λ) be a
bound on input values, and ζ = ⌈logB/(2λ)⌉+ 1. There exist two pairs of efficient algorithms:

– MultKey(pd, wx
0 , w

y
0) takes as inputs public data pd and two integer values wx

0 , w
y
0 ∈ Z. It

outputs an integer wz
0 ∈ Z.

– MultTag(pd, wx
1 , w

y
1 , x, y) takes as input public data pd and four integer values wx

1 , w
y
1 , x, y ∈

Z. It outputs an integer wz
1 ∈ Z.

– AddKey,AddTag have the same syntax as MultKey,MultTag, respectively.

For every λ ∈ N, pp = (N, ζ) in the support of Pai.Gen(1λ, 1ζ), secret exponents, s, s′ ∈ [N ],
inputs x, y ∈ [B] such that xy < B, and additive shares (over Z) ⟨sx⟩0, ⟨sx⟩1, ⟨sy⟩0, ⟨sy⟩1, the
following holds:

Pr

[
wz
1 = wz

0 + s′ · xy
(over Z)

∣∣∣∣∣wz
0 = MultKey(pd, ⟨sx⟩0, ⟨sy⟩0)

wz
1 = MultTag(pd, ⟨sx⟩1, ⟨sy⟩1, x, y)

]
> 1− negl(λ),

Pr

[
wz
1 = wz

0 + s · (x+ y)

(over Z)

∣∣∣∣∣wz
0 = AddKey(pd, ⟨sx⟩0, ⟨sy⟩0)

wz
1 = AddTag(pd, ⟨sx⟩1, ⟨sy⟩1, x, y)

]
> 1− negl(λ),

over the randomness of pd, which is computed as follows:

g ← Pai.Samp(pp), r← [N ]⌈logN⌉, seed← {0, 1}λ

pd := (pp, seed, gr, grs, {gr[i]s2 · (1 +N)Bits(s
′)[i]}).

We write aHMACPai.pd(pp, s, s′) to denote public data pd computed as above with freshly sampled
g, r, and seed.
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In the above, if we choose the secret exponents s′ = s, then we can compose MultKey,
MultTag, MultKey, MultTag to obtain algorithms EvalKey,EvalTag that respectively evaluates
an arithmetic C over additive shares. Note that each invocation of those algorithms imposes a
bound B on the underlying wire values. We therefore only consider bounded integer evaluations.

Definition 10 (Admissible Input w.r.t. B). Let C be an arithmetic circuit (with ℓx inputs)
over Z. We say an input x ∈ Zℓx is admissible w.r.t. some positive integer B if all intermediate
wire values of C(x) are bounded by B.

Lemma 3 (aHMAC Circuit Evaluation under Paillier Groups). Under the same setting
as Lemma 2, and assume the existence of a PRG, there exists a pair of efficient algorithms:

– EvalKey(pd, C,wx
0) takes public data pd, an arithmetic circuit C : Zℓx → Zℓz , and a vector

wx
0 ∈ Zℓx. It outputs a vector wz

0 ∈ Zℓz .
– EvalTag(pd, C,wx

1 ,x) takes public data pd, an arithmetic circuit C, two vectors wx
0 ,x ∈ Zℓx.

It outputs a vector wz
1 ∈ Zℓz .

For every polynomial p(λ), there exists a negligible function negl(λ) such that for every λ ∈ N,
pp = (N, ζ) in the support of Pai.Gen(1λ, 1ζ), secret exponents, s ∈ [N ], arithmetic circuit C with
|C| ≤ p(λ), admissible inputs x w.r.t B, and additive shares (over Z) ⟨sx⟩0, ⟨sx⟩1, the following
holds:

Pr

[
wz

1 = wz
0 + s · C(x)

(over Z)

∣∣∣∣∣wz
0 = EvalKey(pd, C, ⟨sx⟩0)

wz
1 = EvalTag(pd, C, ⟨sx⟩1,x)

]
> 1− negl(λ),

over the randomness of pd, which is computed as pd← aHMACPai.pd(pp, s, s).

Alternatively, by using a vector of different secret exponents s ∈ Zd+1 we can compose
MultKey, MultTag, MultKey, MultTag to obtain leveled variants of algorithms EvalKeyd,EvalTagd

that respectively evaluates an arithmetic C of depth bounded by d. 11

Lemma 4 (aHMAC Leveled Circuit Evaluation under Paillier Groups). Under the
same setting as Lemma 2, assuming the existence of a PRG, for every polynomial depth bound
d(λ), there exists a pair of efficient deterministic algorithms:

– EvalKeyd(pd, C,wx
0) takes public data pd, an arithmetic circuit C : Zℓx → Zℓz of depth at

most d, and a vector wx
0 ∈ Zℓx. It outputs a vector wz

0 ∈ Zℓz .
– EvalTagd(pd, C,wx

1 ,x) takes public data pd, an arithmetic circuit C of depth at most d, two
vectors wx

0 ,x ∈ Zℓx. It outputs a vector wz
1 ∈ Zℓz .

For every polynomial p(λ), there exists a negligible function negl(λ) such that for every λ ∈ N,
pp = (N, ζ) in the support of Pai.Gen(1λ, 1ζ), secret exponents, s ∈ [N ]d+1, arithmetic circuit C
with |C| ≤ p(λ) and Depth(C) < d(λ), admissible inputs x w.r.t B, and additive shares (over
Z) ⟨s[0] · x⟩0, ⟨s[0] · x⟩1, the following holds:

Pr

[
wz

1 = wz
0 + s[d] · C(x)

(over Z)

∣∣∣∣∣w
z
0 = EvalKeyd(pd, C, ⟨s[0] · x⟩0)

wz
1 = EvalTagd(pd, C, ⟨s[0] · x⟩1,x)

]
> 1− negl(λ),

11 In the leveled variant, shares of two intermediate wires to a gate can have different secret “levels”. We can
artificially increase the lower wire by multiplying with a constant wire of value 1. In this work, we assume
the inputs to a computation contains a constant wire 1 (with secret level 0). Multiplying 1 with itself then
provides constant wires with any secret level as needed. This assumption does not affect the asymptotic size
of our garbling schemes.
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over the randomness of pd = {pd(j)}[d], computed as

pd(j) ← aHMACPai.pd(pp, s[j], s[j + 1]).

The following lemma summarizes the HSS construction under Paillier groups from [ADOS22].
Again, the results in [ADOS22] are presented in the language of NIDLS framework, which covers
Paillier groups as a particular instantiation. We refer readers to [ILL24] for more details.

Lemma 5 (HSS Extended Evaluation under DCR Groups [ADOS22]). Under the same
setting as Lemma 2, and assume the existence of a PRG, there exists a pair of efficient algo-
rithms, ExtEval0, ExtEval1, where

– ExtEvalb(pdy, C,w
x
b ,v

x
b ): takes public data pdy (with respect to some vector y ∈ {0, 1}ℓy), an

NC1 Boolean circuit C : {0, 1}ℓy → {0, 1}ℓx, and two vectors wx
b ,v

x
b ∈ Zℓx. It outputs a pair

of integers wz
b , v

z
b ∈ Z.

For every logarithmic function d(λ) ≤ O(log λ), and every polynomial p(λ), there exists a negli-
gible function negl(λ) such that for every λ ∈ N, pp = (N, ζ) in the support of Pai.Gen(1λ, 1ζ),
Boolean circuit C : {0, 1}ℓy → {0, 1}ℓx with |C| < p(λ) and Depth(C) < d(λ), secret exponents
s ∈ [N ], inputs x ∈ [B]ℓx and y ∈ {0, 1}ℓy , and additive shares (over Z) ⟨sx⟩0, ⟨sx⟩1, ⟨x⟩0, ⟨x⟩1,
the following holds:

Pr

w
z
1 = wz

0 + sz

vz1 = vz0 + z

(over Z)

∣∣∣∣∣∣∣
wz
b , v

z
b = ExtEvalb(pdy, C, ⟨sx⟩b, ⟨x⟩b)
z := InnerPord(x, C(y)) (over Z).

 > 1− negl(λ),

over the randomness of pdy, which is computed as follows.

g ← Pai.Samp(pp), r, r′ ← [N ]ℓy , seed← {0, 1}λ

pd
(i)
y :=

(
gr[i], gr[i]s · (1 +N)y[i],

gr
′[i]s, gr

′[i] · (1 +N)y[i]

)
∀i ∈ [ℓy],

pdy := (pp, seed, {pd(i)y }).

We write HSSPai.pd(pp, s,y) to denote public data pdy computed as above with freshly sampled
g, r, r′, and seed.

4.2 aHMAC and HSS under Prime-Order Groups

The following lemmas summarize the aHMAC constructions under prime-order groups from [ILL24],
including both the non-leveled and leveled variants. The main difference between these construc-
tions and those under Paillier groups is that these only achieve δ = 1/poly(λ) correctness, and
have computation costs scaling with

√
1/δ. We refer readers to [ILL24], for more details.

Lemma 6 (aHMAC Gate Evaluation under Prime-Order Groups). Let B < poly(λ) be
a bound on input values, δ = 1/poly(λ) be an error bound, and Pri.Gen be an instance generation
algorithm for prime-order groups. There exists two pairs of efficient deterministic algorithms:
MultKey,MultTag,AddKey,AddTag with analogous syntax to Lemma 2.
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For every λ ∈ N, pp = (G, p, g) in the support of Pri.Gen(1λ), secret exponents, s, s′ ∈
{0, 1}⌈log p⌉, inputs x, y ∈ [B] such that xy < B, and additive shares (over Z) ⟨sx⟩0, ⟨sx⟩1, ⟨sy⟩0, ⟨sy⟩1,
the following holds:

Pr

[
wz

1 = wz
0 + s′ · xy

(over Z)

∣∣∣∣∣wz
0 = MultKey(pd, ⟨sx⟩0, ⟨sy⟩0)

wz
1 = MultTag(pd, ⟨sx⟩1, ⟨sy⟩1, x, y)

]
> 1− δ(λ)− negl(λ),

Pr

[
wz

1 = wz
0 + s · (x+ y)

(over Z)

∣∣∣∣∣wz
0 = AddKey(pd, ⟨sx⟩0, ⟨sy⟩0)

wz
1 = AddTag(pd, ⟨sx⟩1, ⟨sy⟩1, x, y)

]
> 1− δ(λ)− negl(λ),

over the randomness of pd, which is computed as follows:

r← Z⌈log p⌉
p , seed← {0, 1}λ, s := BitComp(s),

pd := (pp, seed, gr, grs, grs
2+s′).

We write aHMACPri.pd(pp, s, s′) to denote public data pd computed as above with freshly sampled
r, and seed.

Remark 4. The lemma also holds when the secret exponent s′ has a different dimention ℓ ≥
⌈log p⌉ than s. In this case, the public data are computed with r← Zℓ

p to match the dimension
of s′. We need to support this edge case when using aHMAC together with the HSS scheme based
on BHHO encryption (Lemma 10), whose secret exponents has a dimension of ⌈3 log p⌉.

Lemma 7 (aHMAC Circuit Evaluation under Prime-Order Groups). Under the same
setting as Lemma 6, assuming the existence of a PRG, there exists a pair of efficient deterministic
algorithms: EvalKey,EvalTag with analogous syntax to Lemma 3.

For every polynomial p(λ), there exists a negligible function negl(λ) such that for every λ ∈ N,
pp = (G, p, g) in the support of Pri.Gen(1λ), secret exponents, s ∈ {0, 1}⌈3 log p⌉, arithmetic circuit
C with |C| ≤ p(λ), admissible inputs x w.r.t B, and additive shares (over Z) ⟨s⊗ x⟩0, ⟨s⊗ x⟩1,
the following holds:

Pr

[
Wz

1 = Wz
0 + s⊗ C(x)

(over Z)

∣∣∣∣∣Wz
0 = EvalKey(pd, C, ⟨s⊗ x⟩0)

Wz
1 = EvalTag(pd, C, ⟨s⊗ x⟩1,x)

]
> 1− δ(λ)− negl(λ),

over the randomness of pd, which is computed as pd← aHMACPri.pd(pp, s, s).

Lemma 8 (aHMAC Leveled Circuit Evaluation under Prime-Order Groups). Under
the same setting as Lemma 6, assuming the existence of a PRG, for every polynomial depth bound
d(λ), there exists a pair of efficient deterministic algorithms: EvalKeyd,EvalTagd with analogous
syntax to Lemma 4.

For every polynomial p(λ), there exists a negligible function negl(λ) such that for every λ ∈ N,
pp = (G, p, g) in the support of Pri.Gen(1λ), secret exponents S ∈ {0, 1}(d+1)×⌈3 log p⌉, arithmetic
circuit C with |C| ≤ p(λ) and Depth(C) < d(λ), admissible inputs x w.r.t B, and additive shares
(over Z) ⟨S[0]⊗ x⟩0, ⟨S[0]⊗ x⟩1, the following holds:

Pr

[
Wz

1 = Wz
0 + S[d]⊗ C(x)

(over Z)

∣∣∣∣∣W
z
0 = EvalKeyd(pd, C, ⟨S[0]⊗ x⟩0)

Wz
1 = EvalTagd(pd, C, ⟨S[0]⊗ x⟩1,x)

]
> 1− δ(λ)− negl(λ),
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over the randomness of pd = {pd(j)}[d], computed as

pd(j) ← aHMACPri.pd(pp,S[j],S[j + 1]).

The following two lemmas summarize the HSS constructions under prime-order groups
from [BGI16]. The first variant was proven secure assuming circular security of ElGamal en-
cryption. We modify it slightly:

ElGamal CT of y under s : gr, gr·s+y

modified : gr·s, gr·s
2+y.

The modified ciphertext can be decrypted in the same way using s, but we can now use CP-DDH
to replace circular security assumption of ElGamal when proving security of the joint usage of
aHMAC and this variant is secure.

Lemma 9 (HSS Extended Evaluation Based on ElGamal [BGI16]). Under the same
setting as Lemma 6, assuming the existence of a PRG, there exists a pair of efficient deterministic
algorithms, ExtEval0, ExtEval1, with analogous syntax to Lemma 5.

For every logarithmic function d(λ) ≤ O(log λ), polynomial p(λ), there exists a negligible
function negl(λ) such that for every λ ∈ N, pp = (G, p, g) in the support of Pri.Gen(1λ), circuit
C : {0, 1}ℓy → {0, 1}ℓx with |C| < p(λ), Depth(C) < d(λ), secret exponents s ∈ ⌈log p⌉, inputs
x ∈ [B]ℓx, y ∈ {0, 1}ℓy , and additive shares (over Z) ⟨x⊗ s⟩0, ⟨x⊗ s⟩1, ⟨x⟩0, ⟨x⟩1, the following
holds:

Pr

w
z
1 = wz

0 + s · z
vz1 = vz0 + z

(over Z)

∣∣∣∣∣∣∣
wz
b , v

z
b = ExtEvalb(pdy, C, ⟨x⊗ s⟩b, ⟨x⟩b)
z := InnerPord(x, C(y)) (over Z).

 > 1− δ(λ)− negl(λ),

over the randomness of pdy, which is computed as follows.

r← Zℓy
p , R← Zℓy×⌈log p⌉

p , seed← {0, 1}λ, s := BitComp(s)

pdy := (pp, seed, gr·s, gr·s
2+y, gR·s, gR·s2+y⊗s).

We write HSSEG.pd(pp, s,y) to denote public data pdy computed as above with freshly sampled
r, R, and seed.

The second variant was proven secure assuming only DDH, without assuming circular se-
curity, by using BHHO [BHHO08] encryption instead of ElGamal. We use this variant in our
leveled garbling scheme, together with leveled aHMAC, so that we can use P-DDH instead of
CP-DDH when proving security of garbling scheme.

Lemma 10 (HSS Extended Evaluation under BHHO [BGI16]). Under the same setting
as Lemma 6, assuming the existence of a PRG, there exists a pair of efficient deterministic
algorithms, ExtEval0, ExtEval1, with analogous syntax to Lemma 5.

For every logarithmic function d(λ) ≤ O(log λ), polynomial p(λ), there exists a negligi-
ble function negl(λ) such that for every λ ∈ N, pp = (G, p, g) in the support of Pri.Gen(1λ),
Boolean circuit C : {0, 1}ℓy → {0, 1}ℓx with |C| < p(λ), Depth(C) < d(λ), secret exponents
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s ∈ {0, 1}⌈3 log p⌉, inputs x ∈ [B]ℓx, y ∈ {0, 1}ℓy , and additive shares (over Z) ⟨x⊗ s⟩0, ⟨x⊗ s⟩1,
⟨x⟩0, ⟨x⟩1, the following holds:

Pr

w
z
1 = wz

0 + s · z
vz1 = vz0 + z

(over Z)

∣∣∣∣∣∣∣
wz
b , v

z
b = ExtEvalb(pdy, C, ⟨x⊗ s⟩b, ⟨x⟩b)
z := InnerPord(x, C(y)) (over Z).

 > 1− δ(λ)− negl(λ),

over the randomness of pdy, which is computed as follows.

c← Z⌈3 log p⌉
p , r← Zℓy

p , R← Zℓy×⌈3 log p⌉
p , seed← {0, 1}λ,

pdy := (pp, seed, gc⊗r, gc⊗R, gInnerPord(c,s)·r+y, gInnerPord(c,s)·R+y⊗s).

We write HSSBHHO.pd(pp, s,y) to denote public data pdy computed as above with freshly sampled
c, r, R, and seed.

4.3 aHMAC and HSS under Lattices

The following lemmas summarize analgous aHMAC constructions to Lemma 2, 3, and 4 under
lattices. We present details of these constructions (hence prove the lemmas) in Section 4.4.

Lemma 11 (aHMAC Gate Evaluation under Lattices). Let B < 2poly(λ) be a bound
on input values, R be the polynomial ring R = Z[X]/(Xn + 1) where n(λ) is a power-of-two,
p ≥ B ·λω(1), q = p·∆ be two moduli, where ∆ = B ·p·λω(1) is a scaling factor, and Dsk(λ),Derr(λ)
be error and secret distributions with coefficients bounded by poly(λ). There exists two pairs of
efficient deterministic algorithms, MultKey,MultTag,AddKey,AddTag, with analogous syntax to
Lemma 2.

For every λ ∈ N, secret elements s, s′ ∈ Dsk, inputs x, y ∈ [B] such that xy < B, and additive
shares (over R) ⟨sx⟩0, ⟨sx⟩1, ⟨sy⟩0, ⟨sy⟩1, the following holds:

Pr

[
wz
1 = wz

0 + s′ · xy
(over R)

∣∣∣∣∣wz
0 = MultKey(pd, ⟨sx⟩0, ⟨sy⟩0)

wz
1 = MultTag(pd, ⟨sx⟩1, ⟨sy⟩1, x, y)

]
> 1− negl(λ),

Pr

[
wz
1 = wz

0 + s · (x+ y)

(over R)

∣∣∣∣∣wz
0 = AddKey(pd, ⟨sx⟩0, ⟨sy⟩0)

wz
1 = AddTag(pd, ⟨sx⟩1, ⟨sy⟩1, x, y)

]
> 1− negl(λ),

over the randomness of pd, which is computed (over Rq) as follows:

pp := (R, p, q,Derr,Dsk)

a← Rq, e1, e2 ← Derr, seed← {0, 1}λ,
pd := (pp, seed, a, s · a+ e1, s

2 · a+ e2 − s′ ·∆).

We write aHMACLat.pd(pp, s, s′) to denote public data pd computed as above with freshly sampled
a, e1, e2, and seed.

Lemma 12 (aHMAC Circuit Evaluation under Lattices). Under the same setting as
Lemma 11, assuming the existence of a PRG, there exists a pair of efficient deterministic algo-
rithms: EvalKey,EvalTag with analogous syntax as Lemma 3.
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For every polynomial p(λ), there exists a negligible function negl(λ) such that for every λ ∈ N,
secret elements s ∈ Dsk, arithmetic circuit C with |C| ≤ p(λ), admissible inputs x w.r.t B, and
additive shares (over R) ⟨sx⟩0, ⟨sx⟩1, the following holds:

Pr

[
wz

1 = wz
0 + s · C(x)

(over R)

∣∣∣∣∣wz
0 = EvalKey(pd, C, ⟨sx⟩0)

wz
1 = EvalTag(pd, C, ⟨sx⟩1,x)

]
> 1− negl(λ),

over the randomness of pd, which is computed as pd← aHMACLat.pd(pp, s, s).

Lemma 13 (aHMAC Leveled Circuit Evaluation under Lattices). Under the same set-
ting as Lemma 11, assuming the existence of a PRG, for every polynomial depth bound d(λ),
there exists a pair of efficient deterministic algorithms: EvalKeyd,EvalTagd with analogous syntax
as Lemma 4.

For every polynomial p(λ), there exists a negligible function negl(λ) such that for every λ ∈ N,
secret elements s ∈ Dd+1

sk , arithmetic circuit C with |C| ≤ p(λ) and Depth(C) < d(λ), admissible
inputs x w.r.t B, and additive shares (over R) ⟨s[0] · x⟩0, ⟨s[0] · x⟩1, the following holds:

Pr

[
wz

1 = wz
0 + s[d] · C(x)

(over R)

∣∣∣∣∣w
z
0 = EvalKeyd(pd, C, ⟨s[0] · x⟩0)

wz
1 = EvalTagd(pd, C, ⟨s[0] · x⟩1,x)

]
> 1− negl(λ),

over the randomness of pd = {pd(j)}[d], computed as

pd(j) ← aHMACLat.pd(pp, s[j], s[j + 1]).

The following lemma summarizes the HSS construction under lattices from [BKS19]. We
refer readers to [BKS19] for more details.

Lemma 14 (HSS Extended Evaluation under Lattices [BKS19]). Under the same set-
ting as Lemma 11, assuming the existence of a PRG, there exists a pair of efficient deterministic
algorithms, ExtEval0, ExtEval1, with analogous syntax to Lemma 5.

For every logarithmic function d(λ), every polynomial p(λ), there exists a negligible function
negl(λ) such that for every λ ∈ N, Boolean circuit C : {0, 1}ℓy → {0, 1}ℓx with |C| < p(λ),
Depth(C) < d(λ), secret elements s ∈ Dsk, inputs x ∈ [B]ℓx and y ∈ {0, 1}ℓy , and additive
shares (over R) ⟨sx⟩0, ⟨sx⟩1, ⟨x⟩0, ⟨x⟩1, the following holds:

Pr

w
z
1 = wz

0 + sz

vz1 = vz0 + z

(over R)

∣∣∣∣∣∣∣
wz
b , v

z
b = ExtEvalb(pdy, C, ⟨sx⟩b, ⟨x⟩b)
z := InnerPord(x, C(y)) (over Z).

 > 1− negl(λ),

over the randomness of pdy, which is computed (over Rq) as follows.

a← Rℓy
q , r1, r2 ← Dsk, e, e1, e2, e

′
1, e

′
2 ← D

ℓy
err

b := s · a+ e, c1 := r1 · a+ e1 + y ·∆, c′1 := r1 · b+ e′1,

c2 := r2 · a+ e2, c′2 := r2 · b+ e′2 + y ·∆.

pdy := (pp, seed, c1, c
′
1, c2, c

′
2).

We write HSSLat.pd(pp, s,y) to denote public data pdy computed as above with freshly sampled
a, r1, r2, the errors, and seed.
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4.4 aHMAC Constructions under Lattices

We show a construction of MultKey, MultTag, AddKey and AddTag, which proves Lemma 2.

Construction 1 (aHMAC Gate Evaluation under Lattices). The construction is with
respect to the following public parameters pp = (R, p, q,Derr,Dsk):

– a polynomial ring R = Z[X]/(Xn + 1) where n is a power-of-two;

– two modulus p > B · λω(1), and q = p ·∆, where ∆ > B2λω(1), for some input bound B.

– error and secret distributions Derr,Dsk ⊆ R with coefficients bounded by poly(λ).

As described in Lemma 2, the public data with respect to two secrets s, s′ ∈ Dsk are sampled as
follows

a← Rq, e1, e2 ← Derr, seed← {0, 1}λ,
pd := (pp, seed, a, s · a+ e1︸ ︷︷ ︸

b

, s2 · a+ e2 − s′ ·∆︸ ︷︷ ︸
c

).

wz
0 ← MultKey(pd, wx

0 ∈ R, w
y
0 ∈ R) : Read seed from pd, and expand from it pseudo-random

“shifting factors” rx, ry, rz ∈ Rp.

1. Shift the coefficients of wx
0 , w

y
0 by the random factors rx, ry ∈ Rp, and then reduce them

mod p.

wx
0 ← (wx

0 + rx mod p), wy
0 ← (wy

0 + ry mod p).

2. Read a from pd, and compute the output wz
0 as follows.

wz
0 ← (⌊awx

0w
y
0/∆⌋+ rz) mod p.

wz
1 ← MultTag(pd, wx

1 ∈ R, w
y
1 ∈ R, x ∈ ZB, y ∈ ZB) : Read seed from pd, and expand from it

pseudo-random “shifting factors” rx, ry, rz ∈ Rp.

1. Shift the coefficients of wx
1 , w

y
1 by the random factors rx, ry ∈ Rp, and then reduce them

mod p. As a result, we have ∥wx
1∥∞, ∥wy

1∥∞ < p.

wx
1 ← (wx

1 + rx mod p), wy
1 ← (wy

1 + ry mod p).

Note that if the input satsify wx
1 = sx + wx

0 over R, where x ∈ [B], then it also holds,
except with negligible probability, that (wx

1 + rx mod p) = sx+ (wx
0 + rx mod p) over R,

as long as ∥sx∥∞ ≪ p. (See Lemma 2 in [BKS19].) The same holds for wy
1 .

2. Read a, b, c ∈ Rq from pd, and compute the following over Rq:

d = −a · wx
1 · w

y
1 + b · (x · wy

1 + y · wx
1 )− c · x · y.

Assuming wx
1 = sx+wx

0 , and wy
1 = sy+wy

0 , where x, y ∈ [B] and xy < B, then the above
computation equals

d =− a · (s2xy + sxwy
0 + sywx

0 + wx
0w

y
0)

+ (sa+ e1) · (2sxy + xwy
0 + ywx

0 )− (s2a+ e2 − s′∆) · xy
=s′xy∆− awx

0w
y
0 + e1(xw

y
1 + ywx

1 ) + e2xy︸ ︷︷ ︸
∥error∥∞≤B·p·poly(λ)≪∆
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3. Round the coefficients of d by ∆, and shift resulting coefficients again by the random
factor rz ∈ Rp.

wz
1 ← (⌊d/∆⌋+ rz mod p).

We have shown that the error term from d is much smaller than ∆. Hence the rounding
step removes it, except with negligible probability. (See Lemma 1 in [BKS19].)

wz
1 = ⌊d/∆⌋+ rz = s′xy + ⌊awx

0w
y
0/∆⌋+ rz︸ ︷︷ ︸
wz

0

modp.

Shifting by the random factor rz ensures that wz
1 = s′xy + wz

0 over R holds except with
negligible probability, as long as ∥s′xy∥∞ ≪ p.

wz
0 ← AddKey(pd, wx

0 , w
y
0) : output wz

0 = wx
0 + wy

0 over R.
wz
1 ← AddTag(pd, wx

0 , w
y
0 , x, y) : output wz

1 = wx
1 + wy

1 over R.
Note that assuming wx

1 = sx+ wx
0 , and wy

1 = sy + wy
0 , then we have

wz
1 = s(x+ y) + wx

0 + wy
0︸ ︷︷ ︸

wz
0

.

We have directly analyzed the correctness in the construction, and have proven Lemma 2. By
composing the algorithms MultKey, MultTag, AddKey and AddTag in an analogous way to the
instantiations under Paillier groups (see Section 4.1), we derive Lemma 11 and 12 as corollaries.

Additionally, we note that our new lattice construction implies an aHMAC scheme (and a
leveled variant) as originally defined in [ILL24]. We refer readers to [ILL24] for the definition of
an aHMAC scheme.

Theorem 1 (aHMAC Under Lattices). Assuming CP-RLWE (Definition 9) with respect to
the public parameters ppLat specified in Section 5.3, there exists an aHMAC scheme achieving
negl-correctness, with an evk of size ℓz · poly(λ) bits.

Alternatively, assuming P-RLWE (Definition 8, with respect to ppLat), there exists a leveled
aHMAC scheme achieving negl-correctness, with an evk of size (ℓz +D) · poly(λ) bits.

5 Succinct Boolean Garbling Schemes

For a more intuitive presentation, we first show a 2PC protocol BoolCircEvalC,Pai (Figure 1, 2,
under Paillier groups) for evaluating Boolean circuits between a garbler PG and an evaluator
PE :

– In an Init phase, the garbler PG sends public data and input shares w.r.t. a Boolean vector
x ∈ {0, 1}ℓx to the evaluator PE ;

– In an Eval phase, the two parties jointly evaluate gates of a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz in topological order;

– In a Final phase, the garbler PG sends some decryption data to reveal the final output
z ∈ {0, 1}ℓz to the evaluator PE .

We note that all messages in this protocol are from the garbler PG to the evaluator PE . We
further divide them into two parts, each satisfying a special property.12

12 Without the special properties, a trivial protocol is letting the garbler PG directly send z := C(x) to the
evaluator PE .
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1. Input shares w.r.t. to the vector x. We ensure they are decomposable, i.e., each bit in this
communication depends only on a single bit of x.

2. Garbling materials. These include the public data during Init, the decryption data during
Final, and all communication during Eval. We ensure they are independent of the input x.

Therefore, we can directly “compile” the above 2PC protocol into a garbling scheme as follows.

– The Garb algorithm outputs (1) key functions {K(i)
x } such that labels {L(i)

x := K
(i)
x (x[i])}

exactly equal to the input shares w.r.t. x, and (2) a garbling Ĉ that contains the garbling
materials.

– The Eval algorithm performs all steps of PE in the 2PC protocol to recover the final output.

Protocol BoolCircEvalC,Pai

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz . It uses the following ingradients:

– aHMAC evaluation procedures EvalKey,EvalTag over bounded integers by B = 2, and public data
generation procedure aHMACPai.pd under Paillier groups; (See Lemma 3;)

– HSS evaluation procedures ExtEval0,ExtEval1 and public data generation procedure HSSPai.pd under
paillier groups; (See Lemma 5;)

– a PRF : {0, 1}λ × {0, 1}λ → {0, 1} in NC1. a

Inputs: PG holds a vector x ∈ {0, 1}ℓx , while PE holds notinog.
Outputs: PG outputs nothing, while PE outputs a vector z ∈ {0, 1}ℓz .

– Init :
1. PG sends public data pd to the evaluator PE .

ζ := 2, pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

s← [N ], sk← {0, 1}λ

pd :=
(
aHMACPai.pd(pp, s, s),HSSPai.pd(pp, s, sk)

)
. (3)

2. PG sends masked inputs x and additive shares ⟨sx⟩1 to PE .
b

x = x⊕ PRF(sk, InWires(C)),

⟨sx⟩1 := sx+ ⟨sx⟩0 (over Z), where ⟨sx⟩0 ← [N · λω(1)]ℓx .

a With a bound on |C|, the PRF can be replaced with a PRG where each bit can be evaluated in NC1.
b (x, ⟨sx⟩1) jointly is what we call input shares in the overview text.

Fig. 1. The Init phase of our 2PC protocol for Boolean circuits under Paillier groups.

The core of our construction is a sub-protocol BoolGateEval (Figure 3, and Section 5.1) for
evaluating an arbitrary Boolean gate with up to O(log λ) input wires, and a single output,
costing 1 bit per gate.

The sub-protocol itself stays unchanged when we instantiate the underlying primitives aHMAC
and HSS under Paillier groups, prime-order groups, or lattices. The only changes under different
instantiations lie in the Init phases of the main protocol, during which PG computes public data
pd differently. We describe the Init phase under Paillier groups in Figure 1, under lattices in
Section 5.3, and under prime-order groups in Section 5.4. In summary, we obtain the following
theorem.
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Protocol BoolCircEvalC,Pai Continued

– Eval : PG, PE evaluate gates g ∈ C in the topological order while maintaining the following invariant:
1. PG, PE jointly hold additive shares ⟨sxg⟩, where xg are masked input wire values to the gate g

xg = xg ⊕ PRF(sk, InWires(g)). (4)

2. PE holds the masked wire values xg.
To evaluate the gate g, PG, PE jointly call the sub-protocol BoolGateEval.

(PG : ⟨szg⟩0), (PE : ⟨szg⟩1, zg)

← BoolGateEvalC,g ((PG : pd, ⟨sxg⟩0), (PE : pd, ⟨sxg⟩1,xg)
)

– Final : PG sends masks PRF(sk,OutWires(C)) mod 2 on all output wires to PE , who then recovers the
output z by removing the masks mod2. a

a The final message from PG to PE can be avoided via an optimization: let BoolGateEval compute z,
instead of masked z, for values on the output wires.

Fig. 2. The Eval,Final phases of our 2PC protocol for Boolean circuits.

Theorem 2 (Garbling O(log λ)-ary Gates). Let CArb = {CArbλ } be the class of circuits (of
unbounded size) consisting of arbitrary gates with O(log λ) input wires and 1 output wires.

Assuming CP-DDH in Paillier groups or CP-RLWE with respect to the public parameters
ppLat specified in Section 5.3, there exists a garbling scheme for CArb over Z2, where the garbling
size Ĉ for a circuit C ∈ CArbλ is |Ĉ| ≤ |C|+ poly(λ).

Assuming CP-DDH in prime-order groups, there exists a garbling scheme for CArb over Z2

achieving the same garbling size as above, but with 1/poly correctness and privacy errors. The
errors can be made negligible assuming a variant of CP-DDH (Definition 11).

The proof of Theorem 2 follows from Proposition 1, 3, and 5, which are proven in Sec-
tion 5.1, 5.3, and 5.4 respectively. We show amplification techniques in Section 5.5 for removing
correctness and privacy errors from prime-order group instantiations. Applying Theorem 2 to
garbling standard Boolean circuits with binary gates gives a scheme costing 1 bit per gate.

Corollary 1 (Boolean Garbling). Assuming any of the assumptions in Theorem 2, there
exists a garbling scheme for all Boolean circuits C (with binary gates) with garbling size |Ĉ| ≤
|C|+ poly(λ).

The scheme assuming CP-DDH in prime-order groups has 1/poly correctness and privacy
errors, which can be made negligible assuming a variant of CP-DDH (Definition 11).

In the special case of layered circuits CLayer, we can re-write CLayer into another circuit
C ′ in terms of general gates for log log λ-depth computations, with the guarantee that |C ′| <
O(|CLayer|/ log log λ). (See Lemma 4.12 in [BGI16].) Since each general gate depends on at
most log λ input values, we can apply Theorem 2 to garble C ′ which yields a scheme costing
O(1/ log log λ) bits per gate.

Corollary 2 (Boolean Garbling for Layered Circuits). Assuming any of the assumptions
in Theorem 2, there exists a garbling scheme for all layered Boolean circuits CLayer (with binary
gates) with garbling size |ĈLayer| ≤ O(|CLayer|/ log log λ) + poly(λ).

The scheme assuming CP-DDH in prime-order groups has 1/poly correctness and privacy
errors, which can be made negligible assuming a variant of CP-DDH (Definition 11).
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In Section 5.2, we describe a leveled variant of the 2PC protocol LBoolCircEval (Figure 4
, 5, under Paillier groups), based on a leveled variant of the core sub-protocol LBoolGateEval
(Figure 6). We describe the Init phases of this variant under lattices and prime-order groups in
Section 5.3 and 5.4 respectively. In summary, we obtain the following theorem.

Theorem 3 (Leveled Garbling of O(log λ)-ary Gates). Let CArb = {CArbλ } be the class of
circuits (of unbounded size) consisting of arbitrary gates with O(log λ) input wires and 1 output
wires.

Assuming P-DDH and DDH in Paillier groups, or P-RLWE with respect to the public pa-
rameters ppLat specified in Section 5.3, there exists a garbling scheme for CArb over Z2, where
the garbling size Ĉ for a circuit C ∈ CArbλ is |Ĉ| ≤ |C|+Depth(C) · poly(λ).

The proof of Theorem 3 follows from Proposition 2, 4, and 6, which are proven in Sec-
tion 5.1, 5.3, and 5.4 respectively. Security amplification for the leveled variant under prime-
order groups is analogous to the non-leveled variant as described in Section 5.5. We obtain two
corollaries analogous to the non-leveled case.

Corollary 3 (Leveled Boolean Garbling). Assuming any of the assumptions in Theorem 3,
there exists a garbling scheme for all Boolean circuits C (with binary gates) with garbling size
|Ĉ| ≤ |C|+Depth(C) · poly(λ).

Corollary 4 (Leveled Boolean Garbling for Layered Circuits). Assuming any of the
assumptions in Theorem 2, there exists a garbling scheme for all layered Boolean circuits CLayer

(with binary gates) with garbling size |ĈLayer| ≤ O(|CLayer|/ log log λ) + Depth(C) · poly(λ).

5.1 Sub-protocol for Garbling O(log λ)-ary Boolean Gates

In the sub-protocol BoolGateEvalC,g, both parties PG, PE hold public data pd = (aHMAC.pd,
HSS.pdsk) prepared in the Init phase of the main protocol (Figure 1), and jointly hold additive
shares ⟨sx⟩, where s is a global secret exponent sampled during Init, and x represent masked
input values to the gate g ∈ C (with masks derived from sk). Additionally, PE holds x in the
clear.

Inputs: (PG : pd, ⟨sx⟩0), (PE : pd, ⟨sx⟩1,x).

Their goal is to jointly obtain shares of ⟨s · z⟩, where z is the masked output of g. Additionally,
PE should hold z in the clear.

Outputs: (PG : ⟨sz⟩0), (PE : ⟨sz⟩1, z).

Their first steps are local aHMAC and HSS evaluations by both parties over the input shares ⟨sx⟩.
For now, assume there are arithmetic circuits Cv (Fact 1) and Boolean circuits Cg,v (Equation 6)
which satsify

z =
∑

v∈{0,1}ℓx
Cv(x) · Cg,v(sk) over Z. (5)

The parties apply aHMAC to locally evaluate Cv over ⟨sx⟩ to obtain shares ⟨s · C(x)⟩. They also
locally hold additive shares of ⟨C(x)⟩ as PE can compute C(x) on its own.

PG :⟨s · Cv(x)⟩0 ← EvalKey(aHMAC.pd, Cv, ⟨sx⟩0),
PE :⟨s · Cv(x)⟩1 ← EvalTag(aHMAC.pd, Cv, ⟨sx⟩1,x).
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The parties next apply HSS to locally evaluate Cg,v over the public data HSS.pdsk and addition-
ally “multiply” the results with C(x) to obtain shares ⟨sz⟩ and ⟨z⟩.

PG :(⟨sz⟩0, ⟨z⟩0)← ExtEval0(HSS.pdsk, (. . . , Cg,v, . . .),
{
⟨s · Cv(x)⟩0, ⟨Cv(x)⟩0

}
v
)

PE :(⟨sz⟩1, ⟨z⟩1)← ExtEval1(HSS.pdsk, (. . . , Cg,v, . . .),
{
⟨s · Cv(x)⟩1, ⟨Cv(x)⟩1

}
v
).

In summary, the parties now hold shares ⟨sz⟩, ⟨z⟩ through local computations. In the last step,
PG sends its share ⟨z⟩ mod 2 to PE , who then recovers z.

It remains to specify the arithmetic circuits Cv and Boolean circuits Cg,v satisfying Equa-
tion 5. For this, we let Cv implement the indicator polynomial pv specified as follows.

Fact 1 (Indicator Polynomial). For every positive integer ℓx ∈ N, every vector v ∈ {0, 1}ℓx ,
there exists a polynomial pv (over Z) such that

pv(x) =

{
1 for x = v

0 for x ∈ {0, 1}ℓx ,x ̸= v.

Furthermore, pv can be implemented by an arithmetic circuit Cv : Zℓx → Z of size |Cv| ≤ O(ℓx),
Depth(Cv) ≤ O(log ℓx) and such that all Boolean inputs x ∈ {0, 1}ℓx are admissible w.r.t. the
bound B = 2.

We define Cg,v(sk) to compute a masked output z pretending x = v.

Cg,v(sk) = PRF(sk,OutWire(g))⊕ g
(
v ⊕ PRF(sk, InWires(g))

)
. (6)

Effectively, Equation 5 computes all possible evaluation results of z via Cg,v(sk), and selects
the correct one via Cv(x), which only equals 1 when v = x. Assuming PRF is in NC1 and
ℓx = O(log λ), Cg,v can indeed be evaluated using HSS.

We summarize the sub-protocol BoolGateEvalC,g in Figure 3. Note that in each invocation,
the only communication is one bit b := ⟨z⟩0 sent from the garbler PG to the evaluator PE . We
summarize its correctness and security in the following lemmas.

Lemma 15 (Correctness of BoolGateEvalC,g under Paillier Groups). Let ℓ(λ) ≤ O(log λ)
be a bound on input length. There exists a negligible function negl(λ) such that for every λ ∈ N,
every Boolean circuit C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx,
pp = (N, ζ) in the support of Pai.Gen(1λ, 12), secret exponent s ∈ [N ], additive shares (over Z)
⟨sx⟩0, ⟨sx⟩1, and PRF key sk ∈ {0, 1}λ, the following holds:

Pr

w
z
1 = wz

0 + sz,

z = g(x)

∣∣∣∣∣∣∣∣∣∣
pd sampled per Equation 3,

(PG : wz
0), (PE : wz

1, z)

← BoolGateEvalC,g
(
(PG : pd, ⟨sx⟩0), (PE : pd, ⟨sx⟩1,x)

)
z := z ⊕ PRF(sk,OutWire(g)), x := x⊕ PRF(sk, InWires(g))


≥ 1− negl(λ).

Proof. The correctness of BoolGateEvalC,g follows from that of EvalKey, EvalTag and that of
ExtEvalb.
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Sub-protocol BoolGateEvalC,g

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean gate g ∈ C.
Inputs: PG, PE both hold public data pd = (aHMAC.pd,HSS.pdsk) (as defined in Equation 3), and jointly
hold additive shares ⟨sx⟩, where x ∈ {0, 1}ℓx is a masked input vector. PE additionally holds the vector x.
Outputs: PG, PE jointly output additive shares ⟨sz⟩, where z ∈ {0, 1} is the masked output. PE addition-
ally holds the bit z.

– PG, PE obtain additive shares ⟨sz⟩ and ⟨z⟩ through local computations, where

z := z ⊕ PRF(sk,OutWire(g)), z := g(x), x := x⊕ PRF(sk, InWires(g)). (7)

Let Cv and Cg,v be arithmetic and Boolean circuits specified in Fact 1 and Equation 6, respectively.
Further define Cg := (. . . , Cg,v, . . .).
1. PG, PE locally runs EvalKey,EvalTag, respectively, to obtain additive shares ⟨s · Cv(x)⟩ and ⟨Cv(x)⟩

for all v ∈ {0, 1}ℓx .

PG :⟨s · Cv(x)⟩0 ← EvalKey(aHMAC.pd, Cv, ⟨sx⟩0), ⟨Cv(x)⟩0 ← 0

PE :⟨s · Cv(x)⟩1 ← EvalTag(aHMAC.pd, Cv, ⟨sx⟩1,x), ⟨Cv(x)⟩1 ← Cv(x).

2. PG, PE locally runs ExtEval0,ExtEval1, respectively, to obtain additive shares ⟨sz⟩ and ⟨z⟩.

PG :(⟨sz⟩0, ⟨z⟩0)← ExtEval0(HSS.pdsk, Cg,
{
⟨s · Cv(x)⟩0, ⟨Cv(x)⟩0

}
v
)

PE :(⟨sz⟩1, ⟨z⟩1)← ExtEval1(HSS.pdsk, Cg,
{
⟨s · Cv(x)⟩1, ⟨Cv(x)⟩1

}
v
).

– PG sends a bit b := ⟨z⟩0 mod 2 to PE , who can then locally recover z.

z := ⟨z⟩1 − b mod 2.

Fig. 3. Our 2PC subprotocol for O(log λ)-ary Boolean gates.

Lemma 16 (Security of BoolGateEvalC,g under Paillier Groups). Under the same setting
as Lemma 15, there exists an efficient simulator Sim that, given the masked output z, statistically
simulates PG’s message in the sub-protocol BoolGateEvalC,g.

More precisely, there exists a negligible function negl(λ) such that for every λ ∈ N, every
Boolean circuit C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, pp = (N, ζ)
in the support of Pai.Gen(1λ, 12), secret exponent s ∈ [N ], additive shares (over Z) ⟨sx⟩0, ⟨sx⟩1,
and PRF key sk ∈ {0, 1}λ, the following holds.

SD
(
msgG(pd, ⟨sx⟩0),
Sim(pd, ⟨sx⟩1,x, z)

)
≤ negl(λ),

∣∣∣∣∣∣∣
pd sampled per Equation 3,

x := x⊕ PRF(sk, InWires(g)),

z := g(x)⊕ PRF(sk,OutWire(g))

where msgG(pd, ⟨sx⟩0) denotes PG’s message to PE in BoolGateEvalC,g.

Proof. The simulator computes ⟨z⟩1 following exactly PE ’s steps, and then simulates ⟨z⟩0 mod 2
(which is the message from PG) as z − ⟨z⟩1 mod 2.

Using the correctness and security of the core sub-protocol, BoolGateEval under Paillier
groups, we can now prove those of our garbling scheme under Paillier groups (compiled from the
2PC protocol BoolCircEval).

Proposition 1 (Garbling of O(log λ)-ary Gates under Paillier Groups). Assuming CP-
DDH in Paillier groups, the garbling scheme compiled from the protocol BoolCircEvalC,Pai (Fig-
ure 1, 2) is correct and secure.
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Proof of Proposition 1. The correctness of the protocol follows from that of BoolGateEval (Lemma 15).
Hence the correctness of the compiled garbling scheme follows. We focus now on proving security.

First, we recap the compiled garbling scheme. Given a circuit C, the garbler proceeds as
follows.

– Sample Paillier public parameters pp = (N, ζ), a secret exponent s ← [N ], a PRF key
sk← {0, 1}λ, and compute public data pd per Equation 3:

pp = (N, 2)← Pai.Gen(1λ, 12) g ← Pai.Samp(pp), seed← {0, 1}λ,
s← [N ], r← [N ]⌈logN⌉, r′, r′′ ← [N ]λ,

pd = (pp, seed, gr, grs, grs
2 ⊙ (1 +N)Bits(s),

gr
′
, gr

′s ⊙ (1 +N)Bits(sk), gr
′′s, gr

′′ ⊙ (1 +N)Bits(sk)).

(8)

where ⊙ denotes component-wise multiplication between two vectors.
– For every input wire i, sample a pad k(i) ← [N · λω(1)], and define the key function K(i) as

follows:

K(i)(b) := (b, s · b+ k(i)), where b := b⊕ PRF(sk, InWires(C)[i]).

– For every gate g ∈ C, in the topological order, where a pad k(i) is defined for all i ∈
InWires(g), follow the subprotocol BoolGateEval as PG with (pd, {k(i)}InWires(g)) as inputs,

and compute its message bg. The output of the subprotocol defines a pad k(j) for the output
wire j = OutWire(g).

– Compute the masks on output wires o = PRF(sk,OutWires(C)).
– Output the garbling Ĉ = (pd, {bg}C ,o) consisting of the public data, the bit bg for every

g ∈ C, and the masks on the output wires. Output the key functions {K(i)} as defined above.

Next, we describe the simulator Sim required by Definition 1. It takes the circuit C and the
evaluation results z as input, and simulates the garbling Ĉ and input labels {L(i)} as follows.

– Sample Paillier public parameter pp = (N, ζ) honestly, and sample random elements as

public data p̃d:

pp = (N, 2)← Pai.Gen(1λ, 12) g ← Pai.Samp(pp), seed← {0, 1}λ,
s← [N ], a,b, c← [N2]⌈logN⌉, a′,b′,a′′,b′′ ← [N2]λ,

p̃d = (pp, seed, ga, gb, gc, ga
′
, gb

′
, ga

′′
, gb

′′
).

(9)

– For every input wire i, sample a label l̃(i) ← [N · λω], and a masked bit x̃(i) ← {0, 1}. The
simulated input labels are L̃(i) = (x̃(i), l̃(i)). Further sample a masked bit x̃(j) ← {0, 1} for
every wires j in C, including the output wires.

– For every gate g ∈ C, in the topological order, where a label l̃(i) and a masked bit x̃(i) are
defined for all i ∈ InWires(g), follow the the subprotocol BoolGateEval as PE except the last

step (See Figure 3) with (p̃d, {l̃(i), x̃(i)}) as inputs. The computation results (corresponding
to ⟨sz⟩1 in Figure 3) define a label l̃(j) for the output wire j = OutWire(g). Then run the
simulator guaranteed by the security of the subprotocol (Lemma 16):

b̃g ← Sim′(p̃d, {l̃(i), x̃(i)}InWires(g), z̃
(j)),

where z̃(i) is the masked bit assigned to wire j = OutWire(g).
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– Let z̃ be the masked bits assigned to output wires OutWires(C), simulate the masks on
output wires as õ = z̃⊕ z.

– Output the simulated garbling C̃ = (p̃d, {b̃g}, õ), and the simulated input labels {L̃(i)}.

We now show a series of hybrid experiments, where Hyb0 describe the honest distribution of Ĉ
and {L(i) = K(i)(x[i])} for some input x, and Hyb5 describe the simulated distribution C̃ and
{L̃(i)}.

Hyb0 The real distribution of Ĉ and {L(i) = K(i)(x[i])} computed according to the garbling
scheme. (See the recap earlier.)

Hyb1 In this hybrid, instead of computing the bits {bg} as the garbler’s message following the
subprotocol BoolGateEval, simulate them using the simulator Sim′ guaranteed by the security
of the subprotocol:
– First compute the correct wire value x(j) on each wire j in C, and then the masked bit

x(j) = x(j) ⊕ PRF(sk, j).
– Let l(i) = k(i) + sx(i) be the labels on input wires. For every gate g ∈ C, in topological

order, follow the subprotocol as PE (except the last step) with (pd, {l(i), x(i)}InWires(g)) as

inputs to compute a label l(j) for the output wire j = OutWire(g). Then run the simulator

b̃g ← Sim′(pd, {l̃(i), x̃(i)}, z(j)),

where z(j) is the masked bit on wire j.
By the correctness and security of BoolGateEval (Lemma 15 and 16), the simulated bits bg
are statistically close to the correctly computed ones in Hyb0. Hence we have Hyb0 ≈ Hyb1.
Note that in Hyb1, the pads k(i) sampled for the input wires are not used for computing the
bits bg anymore.

Hyb2 In this hybrid, instead of computing the input labels as l(i) = x(i)s+ k(i), directly sample
l̃(i) ← [N · λω(1)].
The two ways of sample l(i) and l̃(i) are statistically close, hence we have Hyb2 ≈ Hyb1. Note
that in Hyb2, the secret exponent s within pd is not used for computing the input labels or
anywhere else.

Hyb3 In this hybrid, instead of computing the masks on the output wires directly using the
PRF, o = PRF(sk,OutWires(C)), compute it as õ = z ⊕ z, where z are the masked wire
values on the output wires. As the two ways of computing o and õ are equivalent, we have
Hyb3 ≡ Hyb2.

Hyb4 In this hybrid, instead of computing the public data pd as in Equation 8, simulate it with
random elements as in Equation 9.
We claim the two ways of sampling pd are computationally indistinguishable (Claim 1).
Hence we have Hyb4 ≈c Hyb3. Note that in Hyb4, the PRF key sk are only used for computing
masked wire values x(i) = x(i) ⊕ PRF(sk, i), and in particular not the public data anymore.

Hyb5 In this hybrid, instead of computing the masked wire values x(i) using a PRF, directly
sample them at random x̃(i) ← {0, 1}.
By the security of PRF, we have Hyb5 ≈c Hyb4. Note that Hyb5 computes exactly the
simulated distribution of C̃ and {L̃(i)}.

By a hybrid argument, we conclude Hyb0 ≈c Hyb5. It remains to prove the following claim.

Claim 1. For all sk ∈ {0, 1}λ, the distribution of pd defined by Equation 8 and p̃d by Equation 9
are computationally indistinguishable.
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Proof. We show a series of hybrid that transitions from the distribution of Equation 8 to Equa-
tion 9.

Hyb′0 This is the distribution of Equation 8.
Hyb′1 In this hybrid, instead of computing the aHMAC public data as

gr, grs, grs
2 ⊙ (1 +N)Bits(s)

where r, s are random exponents from [N ], simulate them as random elements

ga, gb, gc,

where a,b, c are random exponents from [N2]. By CP-DDH in Paillier groups (Definition 7),
we have Hyb′1 ≈c Hyb

′
0.

Hyb′2 In this hybrid, instead of computing the HSS public data as

gr
′
, gr

′s ⊙ (1 +N)Bits(sk), gr
′′s, gr

′′ ⊙ (1 +N)Bits(sk),

where r′, r′′, s are random exponents from [N ], simulate them as

ga
′
, gb

′ ⊙ (1 +N)Bits(sk), ga
′′
, gb

′′ ⊙ (1 +N)Bits(sk),

where a′,b′,a′′,b′′ are random exponents from [N2]. By DDH (Definition 5, which is implied
by CP-DDH) in Paillier groups, we have Hyb′2 ≈c Hyb

′
1.

Hyb′3 In this hybrid, instead of multiplying the term (1+N)Bits(sk) to random elements gb
′
and

gb
′′
as above, directly compute HSS public data at random

ga
′
, gb

′
, ga

′′
, gb

′′
.

By Lemma 1, the element g sampled by Pai.Samp(pp) has the guarantee that ⟨g⟩ contains
the subgroup generated by (1 + N). Therefore, gb

′
with a random exponent b′ from [N2]

perfectly hides the multiplicative factor (1 +N)Bits(sk). We have Hyb′3 ≡ Hyb′2.
Note that Hyb′3 computes exactly the distribution of Equation 9.

By a hybrid argument, we conclude that Hyb′0 ≈c Hyb
′
3, which proves the claim.

5.2 A Leveled Variant under Paillier Groups

Compared to the non-leveled protocol, the main changes in the leveled variant are (1) in the
core sub-protocol LBoolGateEval both parties now run leveled aHMAC local evaluations, and (2)
the leveled aHMAC and (normal) HSS instances no longer rely on common secret exponents.

The two differences together allow us to avoid circular security arguments in this variant.
On the other hand, they require much larger public data, of size linear in the circuit depth. We
now explain the differences in more detail.

– During Init, the garbler prepares appropriate public data (Equation 10) for Depth(C) in-
stances of leveled aHMAC and HSS to support the following two types of local evaluations.
Assume PG, PE jointly holds additive shares ⟨s(t) · x⟩, and PE additionally holds x.

Inputs: (PG : pd, ⟨s(t) · x⟩0), (PE : pd, ⟨s(t) · x⟩1,x).
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1. In the first type, they locally run leveled aHMAC evaluations on the input shares ⟨s(t) · x⟩
over arithmetic circuits Cv (of depth dInd; Fact 1) to obtain additive shares ⟨k[t] · Cv(x)⟩,
where k[t] is an independent secret exponent in the t-th HSS instance.

Via aHMAC Eval: (PG : ⟨k[t] · Cv(x)⟩0), (PE : ⟨k[t] · Cv(x)⟩1).

They then locally run HSS to evaluate C
(i)
g,v over public data HSS.pdsk,s(t+1) where s(t+1) is

an independent secret exponent in the (t+1)-th leveled aHMAC instance, and C
(i)
g,v(sk, s(t+1))

is defined to compute Cg,v(sk) · Bits(s(t+1))[i] (see Equation 6). The result can be addi-
tionally “multiplied” by Cv(x) via HSS extended evaluation. In the end, they jointly hold
additive shares of ⟨Bits(s(t+1))[i] · z⟩ and ⟨z⟩.

Via HSS Eval: (PG : ⟨Bits(s(t+1))[i] · z⟩0, ⟨z⟩0),
(PE : ⟨Bits(s(t+1))[i] · z⟩1, ⟨z⟩1).

Finally, they locally linearly combine the shares ⟨Bits(s(t+1))[i] · z⟩ into shares ⟨s(t+1) · z⟩.

Via Linear Comb.: (PG : ⟨s(t+1) · z⟩0), (PE : ⟨s(t+1) · z⟩1).

2. In the second type, they locally run leveled aHMAC evaluations on the input shares
⟨s(t) · x⟩ over the identity arithmetic circuit Cid (of appropriate depth) to obtain additive
shares ⟨s(t′) · x⟩, where t′ > t, and s(t

′) is an independent secret exponent in the t′-th
leveled aHMAC instance.

Via aHMAC Eval: (PG : ⟨s(t′) · x⟩0), (PE : ⟨s(t′) · x⟩1,x).

– During Eval, for every gate g ∈ C of depth t, assume PG, PE jointly holds additive shares
⟨s(t) · x⟩, and PE additionally holds x.

First, they apply type-1 local evaluations to obtain additive shares of ⟨s(t+1)z⟩, ⟨z⟩. Next, PG

sends his share ⟨z⟩ mod 2 to PE who then recovers z mod 2. Finally, for every gate g′ ∈ C of
depth t′ > t that uses z as an input, they apply type-2 local evaluations to obtain additive
shares of ⟨s(t′)z⟩.

Implementing the leveled variant requires careful book-keeping of the public data. We give full
details of the leveled variant of our 2PC protocol under Paillier groups in Figure 4 , 5, and the
leveled variant of the core sub-protocol in Figure 6.

Note that the total communication from PG to PE consists of one bit per invocation of the
sub-protocol LBoolGateEval, plus public data of size Depth(C) · poly(λ), assuming all gates
in C has fan-in O(log(λ)). We summarize the correctness and security of the sub-protocol
LBoolGateEval in the following lemmas.

Lemma 17 (Correctness of LBoolGateEvalC,g under Paillier Groups). Let ℓ(λ) ≤ O(log λ)
be a bound on input length, and dInd = O(log log λ) be the depth of the indicator arithmetic circuit
over ℓ inputs (Fact 1).

There exists a negligible function negl(λ) such that for every λ ∈ N, every Boolean circuit C
(of depth dC) with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, pp = (N, ζ)
in the support of Pai.Gen(1λ, 12), secret exponent s ∈ [N ]dC ·dInd+1, additive shares (over Z)
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Protocol LBoolCircEvalC,Pai

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz . It uses the following ingradients:

– aHMAC leveled evaluation procedures EvalKeydInd ,EvalTagdInd for bounded depth computations by
dInd = O(log log λ) a over bounded integers by B = 2, and public data generation procedure
aHMACPai.pd under Paillier groups; (See Lemma 4;)

– HSS evaluation procedures ExtEval0,ExtEval1 and public data generation procedure HSSPai.pd under
paillier groups; (See Lemma 5;)

– a PRF : {0, 1}λ × {0, 1}λ → {0, 1} in NC1.

Inputs: PG holds a vector x ∈ {0, 1}ℓx , while PE holds notinog.
Outputs: PG outputs nothing, while PE outputs a vector z ∈ {0, 1}ℓz .

– Init : Let dC = Depth(C), and d = dC · dInd.
1. PG sends public data pd to the evaluator PE .

ζ := 2, pp = (N, ζ)← Pai.Gen(1λ, 1ζ),

s← [N ]d+1, k← [N ]dC , sk← {0, 1}λ

// For short, write s(t) = s[t · dInd], s(t)end = s[(t+ 1) · dInd − 1].

∀j ∈ [d], aHMAC.pd(j) ← aHMACPai.pd(pp, s[j], s[j + 1]),

∀t ∈ [dC ], aHMAC.pd
(t)
k ← aHMACPai.pd(pp, s

(t)
end,k[t]),

∀t ∈ [dC ], HSS.pd
(t)
sk,s ← HSSPai.pd(pp,k[t], sk∥Bits(s(t+1))),

(10)

pd :=
(
{aHMAC.pd(j)}j∈[d], {aHMAC.pd

(t)
k ,HSS.pd

(t)
sk,s}t∈[dC ]

)
.

2. Let s = s[0]. PG sends masked inputs x and additive shares ⟨sx⟩1 to PE as in BoolCircEvalC,Pai

(Figure 1).

a dInd is the depth of the indicator arithmetic circuit over O(log λ) inputs (Fact 1).

Fig. 4. The Init phase of leveled 2PC for Boolean circuits under Paillier groups.

⟨s(t)x⟩0, ⟨s(t)x⟩1, and PRF key sk ∈ {0, 1}λ, the following holds: (where we use the shorthand
s(t) = s[t · dInd])

Pr


wz
1 = wz

0 + s(t+1)z,

z = g(x)

∣∣∣∣∣∣∣∣∣∣∣∣

pd sampled per Equation 10,

(PG : wz
0), (PE : wz

1, z)← LBoolGateEvalC,g(
(PG : pd, ⟨s(t)x⟩0), (PE : pd, ⟨s(t)x⟩1,x)

)
z := z ⊕ PRF(sk,OutWire(g)),

x := x⊕ PRF(sk, InWires(g))


≥ 1− negl(λ).

Proof. The correctness of LBoolGateEvalC,g follows from that of the leveled variants of EvalKey,
EvalTag (Lemma 4) and that of ExtEvalb (Lemma 5).

Lemma 18 (Security of LBoolGateEvalC,g under Pailler Groups). Under the same setting
as Lemma 17, there exists an efficient simulator Sim that, given the masked output z, statistically
simulates PG’s message in the sub-protocol LBoolGateEvalC,g.

More precisely, there exists a negligible function negl(λ) such that for every λ ∈ N, every
Boolean circuit C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, pp = (N, ζ)
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Protocol LBoolCircEvalC,Pai Continued

– Eval : PG, PE evaluate gates g ∈ C (at depth t) in the topological order while maintaining the following
invariant. (We write s(t) = s[t · dInd] for short.)
1. PG, PE jointly hold additive shares ⟨s(t)xg⟩, where xg are masked input wire values to the gate g

as in BoolCircEvalC (Equation 4).
2. PE holds the masked wire values xg.
To evaluate the gate g, PG, PE call the sub-protocol LBoolGateEval.

(PG : ⟨s(t+1)zg⟩0), (PE : ⟨s(t+1)zg⟩1, zg)

← LBoolGateEvalC,g
(
(PG : pd, ⟨s(t)xg⟩0), (PE : pd, ⟨s(t)xg⟩1,xg)

)
.

Then, for every gate g′ (at depth t′ > t+1) taking z as an input, PG, PE obtain shares ⟨s(t
′)z⟩ through

local computations.

diff := (t′ − t− 1) · dInd, pddiff := {aHMAC.pd((t+1)·dInd+j)}j∈[diff+1]

PG :⟨s(t
′)z⟩0 ← EvalKeydiff0 (pddiff , Cid, ⟨s(t+1) · z⟩0),

PE :⟨s(t
′)z⟩1 ← EvalTagdiff1 (pddiff , Cid, ⟨s(t+1) · z⟩1, z),

where Cid (with depth = diff) computes the identity function.
– Final : The same as BoolCircEvalC,Pai (Figure 2).

Fig. 5. The Eval,Final phases of the leveled 2PC protocol for Boolean circuits under Paillier groups.

in the support of Pai.Gen(1λ, 12), secret exponents s ∈ [N ]dC ·dInd+1, additive shares (over Z)
⟨s(t)x⟩0, ⟨s(t)x⟩1, and PRF key sk ∈ {0, 1}λ, the following holds.

SD
(
msgG(pd, ⟨s(t)x⟩0),
Sim(pd, ⟨s(t)x⟩1,x, z)

)
≤ negl(λ),

∣∣∣∣∣∣∣
pd sampled per Equation 10,

x := x⊕ PRF(sk, InWires(g)),

z := g(x)⊕ PRF(sk,OutWire(g))

where msgG(pd, ⟨s(t)x⟩0) denotes PG’s message to PE in LBoolGateEvalC,g.

Proof. Analogous to the proof of Lemma 16.

Using the correctness and security of LBoolGateEval under Paillier groups, we can now prove
those of our leveled garbling scheme under Paillier groups (compiled from the 2PC protocol
LBoolCircEval).

Proposition 2 (Leveled Garbling of O(log λ)-ary Gates under Paillier Groups). As-
suming P-DDH and DDH in Paillier groups, the garbling scheme compiled from the protocol
LBoolCircEvalC,Pai (Figure 4, 5) is correct and secure.

Proof of Proposition 2. The correctness of the protocol follows from that of LBoolGateEval (Lemma 17).
Hence the correctness of the compiled garbling scheme follows.

The security proof follows the same arguments as those for Proposition 1, except the public
data pd are computed and simulated differently. In the honest protocol, they are computed as
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Sub-protocol LBoolGateEvalC,g

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean gate g ∈ C.
Inputs: PG, PE both hold public data pd = {aHMAC.pd(j)}, {aHMAC.pd

(t)
k ,HSS.pd

(t)
sk,s} (as defined in

Equation 10), and jointly hold additive shares ⟨s(t)x⟩, where x ∈ {0, 1}ℓx is a masked input vector. PE

additionally holds the vector x.
Outputs: PG, PE jointly output additive shares ⟨s(t+1)z⟩, where z ∈ {0, 1} is the masked output. PE

additionally outputs the bit z.

– PG, PE obtain additive shares ⟨s(t)z⟩ and ⟨z⟩ through local computations, where z is defined as in
BoolGateEval (Equation 7). Let Cv and Cg,v be arithmetic and Boolean circuits specified in Fact 1

and Equation 6, respectively. Further define Cg := (. . . , Cg,v, . . .), and C
(i)
g : {0, 1}ℓx × {0, 1}⌈log ℓx⌉ →

{0, 1}2
ℓx ·⌈log ℓ⌉.

C(i)
g (sk, s(t+1)) = (. . . , Cg,v(sk) · Bits(s(t+1))[i], . . .)v∈{0,1}ℓx .

1. PG, PE locally runs EvalKeydInd ,EvalTagdInd , respectively, to obtain additive shares ⟨k[t] · Cv(x)⟩
and ⟨Cv(x)⟩ for all v ∈ {0, 1}ℓx .

pdInd := {aHMAC.pd(t·dInd+j)}j∈[dInd] ∪ {aHMAC.pd
(t)
k }

PG :⟨k[t]Cv(x)⟩0 ← EvalKeydInd(pdInd, Cv, ⟨s(t)x⟩0), ⟨Cv(x)⟩0 ← 0

PE :⟨k[t]Cv(x)⟩1 ← EvalTagdInd(pdInd, Cv, ⟨s(t)x⟩1,x), ⟨Cv(x)⟩1 ← Cv(x).

2. PG, PE locally runs ExtEval0,ExtEval1, respectively, to obtain additive shares ⟨s(t+1)z⟩ and ⟨z⟩.
(PE ’s computation is analogous PG’s.)

PG :( , ⟨z⟩0)← ExtEval0(HSS.pd
(t)
sk,s, Cg,

{
⟨k[t]Cv(x)⟩0, ⟨Cv(x)⟩0

}
v
),

( , ⟨z · Bits(s(t+1))[i]⟩0)

← ExtEval0(HSSpd
(t)
sk,s, C

(i)
g ,

{
⟨k[t]Cv(x)⟩0, ⟨Cv(x)⟩0

}
v
),

⟨s(t+1)z⟩0 ← BitComp
(
⟨z · Bits(s(t+1))[i]⟩0

)
over Z.

– PG sends a bit b := ⟨z⟩0 mod 2 to PE , who can then locally recover z.

z := ⟨z⟩1 − b mod 2.

Fig. 6. Leveled 2PC protocol for Boolean gates.

follows according to Equation 10, with respect to a PRF key sk ∈ {0, 1}λ:

pp = (N, 2)← Pai.Gen(1λ, 12), s← [N ]d+1, k← [N ]dC ,

// For short, write s(t) = s[t · dInd], s
(t)
end = s[(t+ 1) · dInd − 1].

∀j ∈ [d], aHMAC.pd(j) ← aHMACPai.pd(pp, s[j], s[j + 1]),

∀t ∈ [dC ], aHMAC.pd
(t)
k ← aHMACPai.pd(pp, s

(t)
end,k[t]),

∀t ∈ [dC ], HSS.pd
(t)
sk,s ← HSSPai.pd(pp,k[t], sk∥Bits(s(t+1))),

pd :=
(
{aHMAC.pd(j)}j∈[d], {aHMAC.pd

(t)
k ,HSS.pd

(t)
sk,s}t∈[dC ]

)
.

(11)
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In the simulation, the are computed as follows:

pp = (N, 2)← Pai.Gen(1λ, 12),

∀j ∈ [d], aHMAC.p̃d
(j)
← aHMACPai.Sim(pp, 1⌈logN⌉),

∀t ∈ [dC ], aHMAC.p̃d′
(t)
,← aHMACPai.Sim(pp, 1⌈logN⌉),

∀t ∈ [dC ], HSS.p̃d
(t)
← HSSPai.Sim(pp, 1⌈logN⌉+λ),

p̃d :=
(
{aHMAC.p̃d

(j)
}j∈[d], {aHMAC.p̃d′

(t)
,HSS.p̃d

(t)
}t∈[dC ]

)
,

(12)

where aHMACPai.Sim(pp, 1ℓ) is as follows

g ← Pai.Samp(pp), a,b, c← [N2]ℓ, seed← {0, 1}λ

aHMACPai.p̃d = (pp, seed, ga, gb, gc),
(13)

and HSSPai.Sim(pp, 1ℓ) as as follows

g ← Pai.Samp(pp), a,b, c,d← [N2]ℓ, seed← {0, 1}λ

HSSPai.p̃d = (pp, seed, ga, gb, gc, gd).
(14)

We show an analogous claim (to Claim 1) which completes the proof.

Claim 2. For all sk ∈ {0, 1}λ, the distribution of pd defined by Equation 11 and p̃d by Equa-
tion 12 are computationally indistinguishable.

Proof. We show a series of hybrid that transitions from the distribution of Equation 11 to
Equation 12.

Hyb′0 This is the distribution of Equation 11.
Hyb′0,1 Instead of computing the first instance of aHMAC public data aHMAC.pd(0) as aHMACPai.pd

(pp, s[0], s[1]), simulate it as aHMACPai.Sim(pp, 1⌈logN⌉). We claim (Claim 3) the two ways
of generating aHMAC.pd(0) are computationally indistinguishable. Hence we have Hyb′0,1 ≈c

Hyb′0.
Hyb′0,j for 1 < j < dInd− 1, instead of computing the j-th instance of aHMAC public data from

aHMACPai.pd(pp, s[j], s[j + 1]),

simulate is as
aHMACPai.Sim(pp, 1⌈logN⌉).

By Claim 3 again, we have Hyb′0,j ≈c Hyb
′
0,j−1.

Hyb′0,j for j = dInd−1, instead of computing the aHMAC public data aHMACPai.pd(j), aHMACPai.pd′
(0)

from (where s
(0)
end := s[dInd − 1])

aHMACPai.pd(pp, s[s
(0)
end, s[dInd]), aHMACPai.pd(pp, s[s

(0)
end],k[0]),

simulate them as

aHMACPai.Sim(pp, 1⌈logN⌉), aHMACPai.Sim(pp, 1⌈logN⌉).

By Claim 3 again, we have Hyb′0,j ≈c Hyb
′
0,j−1.
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Hyb′0,j for j = dInd, instead of computing the HSS public data HSSPai.pd(0) from

HSSPai.pd(pp,k[0], sk∥Bits(s(1))),

simulate it as
HSSPai.Sim(pp, 1⌈logN⌉+λ).

We claim (Claim 4) the two ways of generating HSS.pd(0) are computationally indistinguish-
able. Hence we have Hyb′0,j ≈c Hyb

′
0,j−1.

Hyb′t,j for 1 < t < dC , 1 ≤ j ≤ dInd is analogous to the case of Hyb′0,j , except replacing the 0 in
its description with t.
We have Hyb′t,1 ≈c Hyb′t−1,dInd

, and Hyb′t,j ≈c Hyb′t,j−1. Note that Hyb′dC−1,dInd
computes

exactly the distribution of Equation 12.

By a hybrid argument, we conclude that Hyb′0 ≈c Hyb′dC−1,dInd
, which proves the claim. It

remains to prove the following sub-claims.

Claim 3. For all s′ ∈ Z, with bit-length ℓ ≤ poly(λ) the following computational indistinguisha-
bility holds {

pp, aHMACPai.pd(pp, s, s′)
∣∣s← [N ]

}
λ

≈c

{
pp, aHMACPai.Sim(pp, 1ℓ)

}
λ

where the public parameter pp is sampled as pp = (N, 2)← Pai.Gen(1λ, 12) in both sides.

Proof. This follows directly from P-DDH and DDH (Definition 7 and 6) in Paillier groups.

Claim 4. For all s′ ∈ Z, with bit-length ℓ ≤ poly(λ), and sk ∈ {0, 1}λ the following computa-
tional indistinguishability holds{

pp,HSSPai.pd(pp, s, sk∥Bits(s′))
∣∣s← [N ]

}
λ

≈c

{
pp,HSSPai.Sim(pp, 1ℓ)

}
λ

where the public parameter pp is sampled as pp = (N, 2)← Pai.Gen(1λ, 12) in both sides.

Proof. This follows directly from DDH (Definition 5) in Paillier groups.

5.3 Instantiations under Lattices

In this section, we instantiate the non-leveled and leveled variants of our 2PC protocols under
lattices, BoolCircEvalC,Lat, LBoolCircEvalC,Lat. As explained in the begining of Section 5, the
protocols stay mostly unchanged, except for the Init phases, during which PG computes public
data pd differently. We show them in Figure 7 and 8 respectively.

Parameter Settings. Our instantiations under lattices uses the following public parameter
settings: A polynomial ring R(λ) = Z[X]/(Xn(λ) + 1), two moduli p(λ), q(λ), and error and
secret distributions Derr(λ),Dsk(λ) where

– n ≤ poly(λ) is a power-of-two,
– p ≥ λω(1), q = p ·∆, and ∆ ≥ p · λω(1);
– Derr(λ), Dsk(λ) have coefficients bounded by poly(λ).
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We write ppLat = (R, p, q,Derr,Dsk).

The Non-leveled Variant. The non-leveled 2PC protocol is shown in Figure 7. It uses the
same core sub-protocol BoolGateEvalC,g (Figure 3) which stays unchanged. We summarize the
correctness and security of BoolGateEvalC,g under lattices in the following lemmas. Their proofs
are completely analogous to those of Lemma 15 and 16, hence are omitted.

Protocol BoolCircEvalC,Lat

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz . It uses the following ingradients:

– public parameters ppLat = (R, p, q,Derr,Dsk) specified in Section 5.3;
– aHMAC evaluation procedures EvalKey,EvalTag over bounded integers by B = 2, and public data

generation procedure aHMACLat.pd under lattices; (See Lemma 12;)
– HSS evaluation procedures ExtEval0,ExtEval1 and public data generation procedure HSSLat.pd under

lattices; (See Lemma 14;)
– a PRF : {0, 1}λ × {0, 1}λ → {0, 1} in NC1.

Inputs: PG holds a vector x ∈ {0, 1}ℓx , while PE holds notinog.
Outputs: PG outputs nothing, while PE outputs a vector z ∈ {0, 1}ℓz .

– Init :
1. PG sends public data pd to the evaluator PE .

s← Dsk, sk← {0, 1}λ

pd :=
(
aHMACLat.pd(ppLat, s, s),HSSLat.pd(ppLat, s, sk)

)
. (15)

2. PG sends masked inputs x and additive shares ⟨sx⟩1 to PE .

x = x⊕ PRF(sk, InWires(C)),

⟨sx⟩1 := sx+ ⟨sx⟩0 (over R), where ⟨sx⟩0 ←R
ℓx
λω(1) .

– Eval,Final phases are the same as BoolCircEvalC,Pai (Figure 2).

Fig. 7. Our 2PC protocol for Boolean circuits under lattices.

Lemma 19 (Correctness of BoolGateEvalC,g under Lattices). Let ℓ(λ) ≤ O(log λ) be a
bound on input length, and ppLat be the public parameters specified in Section 5.3. There exists
a negligible function negl(λ) such that for every λ ∈ N, every Boolean circuit C with a gate g
of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, secret exponent s ∈ Dsk, additive shares
(over R) ⟨sx⟩0, ⟨sx⟩1, and PRF key sk ∈ {0, 1}λ, the following holds:

Pr

w
z
1 = wz

0 + sz,

z = g(x)

∣∣∣∣∣∣∣∣∣∣
pd sampled per Equation 15,

(PG : wz
0), (PE : wz

1, z)

← BoolGateEvalC,g
(
(PG : pd, ⟨sx⟩0), (PE : pd, ⟨sx⟩1,x)

)
z := z ⊕ PRF(sk,OutWire(g)), x := x⊕ PRF(sk, InWires(g))


≥ 1− negl(λ).

Lemma 20 (Security of BoolGateEvalC,g under Lattices). Under the same setting as Lemma 19,
there exists an efficient simulator Sim that, given the masked output z, statistically simulates
PG’s message in the sub-protocol BoolGateEvalC,g.
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More precisely, there exists a negligible function negl(λ) such that for every λ ∈ N, every
Boolean circuit C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, secret
exponent s ∈ Dsk, additive shares (over R) ⟨sx⟩0, ⟨sx⟩1, and PRF key sk ∈ {0, 1}λ, the following
holds:

SD
(
msgG(pd, ⟨sx⟩0),
Sim(pd, ⟨sx⟩1,x, z)

)
≤ negl(λ),

∣∣∣∣∣∣∣
pd sampled per Equation 15,

x := x⊕ PRF(sk, InWires(g)),

z := g(x)⊕ PRF(sk,OutWire(g))

where msgG(pd, ⟨sx⟩0) denotes PG’s message to PE in BoolGateEvalC,g.

Using the correctness and security of the core sub-protocol, BoolGateEval under lattices, we
can now prove those of our garbling scheme under lattices (compiled from the 2PC protocol
BoolCircEval).

Proposition 3 (Garbling of O(log λ)-ary Gates under Lattices). Assuming CP-RLWE
with respect to the public parameters ppLat specified in Section 5.3, the garbling scheme compiled
from the protocol BoolCircEvalC,Lat (Figure 7) is correct and secure.

Proof of Proposition 3. The correctness of the protocol follows from that of BoolGateEval (Lemma 19).
Hence the correctness of the compiled garbling scheme follows.

The security proof follows the same arguments as those for Proposition 1, except the public
data pd are computed and simulated differently. In the honest protocol, they are computed
as follows according to Equation 15, with respect to a PRF key sk ∈ {0, 1}λ, and the public
parameters ppLat = (R, p, q,Derr,Dsk) described in Section 5.3.

seed← {0, 1}λ, s, r1, r2 ← Dsk, a← Rq,a
′ ← Rλ

q ,

e1, e2 ← Derr, e
′, e′1, e

′
2, e

′′
1, e

′′
2 ← Dλ

err, b := sa′ + e′

pd = (ppLat, seed, a, sa+ e1, s
2a+ e2 − s∆

r1a
′ + e′1 + Bits(sk)∆, r1b+ e′′1,

r2a
′ + e′2, r2b+ e′′2 + Bits(sk)∆).

(16)

In the simulation, they are computed as random elements:

seed← {0, 1}λ, a, b, c← Rq, b
′, c′,b′′, c′′ ← Rλ

q ,

p̃d = (ppLat, seed, a, b, c, b′ c′,b′′, c′′).
(17)

We show the analogous claim (to Claim 1) which completes the arguments for this proof.

Claim 5. For all sk ∈ {0, 1}λ, the distribution of pd defined by Equation 16 and p̃d by Equa-
tion 17 are computationally indistinguishable.

Proof. We show a series of hybrid that transitions from the distribution of Equation 16 to
Equation 17.

Hyb′0 This is the distribution of Equation 16.
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Hyb′1 In this hybrid, instead of computing the aHMAC public data, together with the interme-
diate value b as

a, sa+ e1, s
2a+ e2 − s∆, b := sa′ + e′

where a,a′ are random elements in Rq, s is a secret sampled from Dsk, and e1, e2, e
′ are errors

from Derr, simulate them as random elements a, b, c,b from Rq. By CP-RLWE (Definition 9),
we have Hyb′1 ≈c Hyb

′
0.

Hyb′2 In this hybrid, instead of computing the HSS public data as

r1a
′ + e′1 + Bits(sk)∆, r1b+ e′′1, r2a

′ + e′2, r2b+ e′′2 + Bits(sk)∆,

where a,a′,b are random elements fromRq, r1, r2 secrets sampled from Dsk, and e′1, e
′
2, e

′′
1, e

′′
2

are errors from Derr, simulate them as

b′ + Bits(sk)∆, c′, b′′, c′′ + Bits(sk)∆,

where b′, c′,b′′, c′′ are random elements fromRq. By RLWE (which is implied by CP-RLWE)
we have Hyb′2 ≈c Hyb

′
1.

Hyb′3 In this hybrid, instead of adding the term Bits(sk)∆ to random elements b′ and c′′ as
above, directly compute HSS public data as random elements b′, c′,b′′, c′′ from Rq.
Since b′, c′′ are random, they perfectly hide the additive factor Bits(sk)∆. We have Hyb′3 ≡
Hyb′2. Note that Hyb′3 computes exactly the distribution of Equation 17.

By a hybrid argument, we conclude that Hyb′0 ≈c Hyb
′
3, which proves the claim.

The Leveled Variant. The leveled 2PC protocol is shown in Figure 8. It uses the same core sub-
protocol LBoolGateEvalC,g (Figure 6) which stays unchanged. We summarize the correctness and
security of LBoolGateEvalC,g under lattices in the following lemmas. Their proofs are completely
analogous to those of Lemma 17 and 18, hence are omitted.

Lemma 21 (Correctness of LBoolGateEvalC,g under Lattices). Let ℓ(λ) ≤ O(log λ) be
a bound on input length, ppLat be the public parameters specified in Section 5.3, and dInd =
O(log log λ) be the depth of the indicator arithmetic circuit over ℓ inputs (Fact 1).

There exists a negligible function negl(λ) such that for every λ ∈ N, every Boolean circuit
C (of depth dC) with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, secret
exponents s ∈ DdC ·dInd+1

sk , additive shares (over R) ⟨s(t)x⟩0, ⟨s(t)x⟩1, and PRF key sk ∈ {0, 1}λ,
the following holds: (where we use the shorthand s(t) = s[t · dInd])

Pr


wz
1 = wz

0 + s(t+1)z,

z = g(x)

∣∣∣∣∣∣∣∣∣∣∣∣

pd sampled per Equation 18,

(PG : wz
0), (PE : wz

1, z)← LBoolGateEvalC,g(
(PG : pd, ⟨s(t)x⟩0), (PE : pd, ⟨s(t)x⟩1,x)

)
z := z ⊕ PRF(sk,OutWire(g)),

x := x⊕ PRF(sk, InWires(g))


≥ 1− negl(λ).

Lemma 22 (Security of LBoolGateEvalC,g under Lattices). Under the same setting as
Lemma 21, there exists an efficient simulator Sim that, given the masked output z, statistically
simulates PG’s message in the sub-protocol LBoolGateEvalC,g.
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Protocol LBoolCircEvalC,Lat

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz . It uses the following ingradients:

– public parameters ppLat = (R, p, q,Derr,Dsk) specified in Section 5.3;
– aHMAC leveled evaluation procedures EvalKeydInd ,EvalTagdInd for bounded depth computations by

dInd = O(log log λ) over bounded integers by B = 2, and public data generation procedure aHMACLat.pd
under lattices; (See Lemma 13;)

– HSS evaluation procedures ExtEval0,ExtEval1 and public data generation procedure HSSLat.pd under
lattices; (See Lemma 14;)

– a PRF : {0, 1}λ × {0, 1}λ → {0, 1} in NC1.

Inputs: PG holds a vector x ∈ {0, 1}ℓx , while PE holds notinog.
Outputs: PG outputs nothing, while PE outputs a vector z ∈ {0, 1}ℓz .

– Init : Let dC = Depth(C), and d = dC · dInd.
1. PG sends public data pd to the evaluator PE .

s← Dd+1
sk , k← DdC

sk , sk← {0, 1}λ

// For short, write s(t) = s[t · dInd], s(t)end = s[(t+ 1) · dInd − 1].

∀j ∈ [d], aHMAC.pd(j) ← aHMACLat.pd(ppLat, s[j], s[j + 1]),

∀t ∈ [dC ], aHMAC.pd
(t)
k ← aHMACLat.pd(ppLat, s

(t)
end,k[t]),

∀t ∈ [dC ], HSS.pd
(t)
sk,s ← HSSLat.pd(ppLat,k[t], sk∥Bits(s(t+1))),

(18)

pd :=
(
{aHMAC.pd(j)}j∈[d], {aHMAC.pd

(t)
k ,HSS.pd

(t)
sk,s}t∈[dC ]

)
.

2. Let s = s[0]. PG sends masked inputs x and additive shares ⟨sx⟩1 to PE as in BoolCircEvalC,Lat

(Figure 7).
– Eval,Final phases are the same as LBoolCircEvalC,Pai (Figure 5).

Fig. 8. Our leveled 2PC protocol for Boolean circuits under lattices.

More precisely, there exists a negligible function negl(λ) such that for every λ ∈ N, every
Boolean circuit C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, secret
exponents s ∈ DdC ·dInd+1

sk , additive shares (over Z) ⟨s(t)x⟩0, ⟨s(t)x⟩1, and PRF key sk ∈ {0, 1}λ,
the following holds:

SD
(
msgG(pd, ⟨s(t)x⟩0),
Sim(pd, ⟨s(t)x⟩1,x, z)

)
≤ negl(λ),

∣∣∣∣∣∣∣
pd sampled per Equation 18,

x := x⊕ PRF(sk, InWires(g)),

z := g(x)⊕ PRF(sk,OutWire(g))

where msgG(pd, ⟨s(t)x⟩0) denotes PG’s message to PE in LBoolGateEvalC,g.

Using the correctness and security of LBoolGateEval under lattices, we can now prove those
of our leveled garbling scheme under lattices (compiled from the 2PC protocol LBoolCircEval).

Proposition 4 (Leveled Garbling of O(log λ)-ary Gates under Lattices). Assuming P-
RLWE with respect to the public parameters ppLat specified in Section 5.3, the garbling scheme
compiled from the protocol LBoolCircEvalC,Lat (Figure 8) is correct and secure.

Proof of Proposition 4. The correctness of the protocol follows from that of LBoolGateEval (Lemma 21).
Hence the correctness of the compiled garbling scheme follows.
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The security proof follows the same arguments as those for Proposition 1, except the public
data pd are computed and simulated differently. In the honest protocol, they are computed
as follows according to Equation 18, with respect to a PRF key sk ∈ {0, 1}λ and the public
parameters ppLat = (R, p, q,Derr,Dsk) described in Section 5.3:

s← Dd+1
sk , k← DdC

sk ,

// For short, write s(t) = s[t · dInd], s
(t)
end = s[(t+ 1) · dInd − 1].

∀j ∈ [d], aHMAC.pd(j) ← aHMACLat.pd(ppLat, s[j], s[j + 1]),

∀t ∈ [dC ], aHMAC.pd
(t)
k ← aHMACLat.pd(ppLat, s

(t)
end,k[t]),

∀t ∈ [dC ], HSS.pd
(t)
sk,s ← HSSLat.pd(ppLat,k[t], sk∥Bits(s(t+1))),

pd :=
(
{aHMAC.pd(j)}j∈[d], {aHMAC.pd

(t)
k ,HSS.pd

(t)
sk,s}t∈[dC ]

)
.

(19)

In the simulation, the are computed as follows:

∀j ∈ [d], aHMAC.p̃d
(j)
← aHMACLat.Sim(ppLat),

∀t ∈ [dC ], aHMAC.p̃d′
(t)
,← aHMACLat.Sim(ppLat),

∀t ∈ [dC ], HSS.p̃d
(t)
← HSSLat.Sim(ppLat),

p̃d :=
(
{aHMAC.p̃d

(j)
}j∈[d], {aHMAC.p̃d′

(t)
,HSS.p̃d

(t)
}t∈[dC ]

)
,

(20)

where aHMACLat.Sim(pp) is as follows

a, b, c← Rq, seed← {0, 1}λ

aHMACPai.p̃d = (pp, seed, a, b, c),
(21)

and HSSLat.Sim(pp) as as follows

a,b, c,d← Rn log q+λ
q , seed← {0, 1}λ

HSSPai.p̃d = (pp, seed,a,b, c,d).
(22)

We show an analogous claim (to Claim 2) which completes the proof.

Claim 6. For all sk ∈ {0, 1}λ, the distribution of pd defined by Equation 19 and p̃d by Equa-
tion 20 are computationally indistinguishable.

Proof. The proof is again analogous to that of Claim 2, based on the following two sub-claims.

Claim 7. For all s′ ∈ Dsk, the following computational indistinguishability holds{
ppLat, aHMACLat.pd(ppLat, s, s′)

∣∣s← Dsk

}
λ

≈c

{
ppLat, aHMACLat.Sim(ppLat)

}
λ

Proof. This follows directly from P-RLWE (Definition 8).
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Claim 8. For all s′ ∈ [N ], and sk ∈ {0, 1}λ the following computational indistinguishability
holds {

ppLat,HSSLat.pd(ppLat, s, sk∥Bits(s′))
∣∣s← Dsk

}
λ

≈c

{
ppLat,HSSLat.Sim(ppLat)

}
λ
.

Proof. This follows from RLWE, which is implied by P-RLWE.

5.4 Instantiations under Prime-Order Groups

In this section, we instantiate the non-leveled and leveled variants of our 2PC protocols un-
der prime-order groups, BoolCircEvalC,Pri, LBoolCircEvalC,Pri. As explained in the begining of
Section 5, the protocols stay mostly unchanged, except for the Init phases, during which PG

computes public data pd differently. We show them in Figure 9 and 10 respectively.

The Non-leveled Variant. The non-leveled 2PC protocol is shown in Figure 9. It uses the
same core sub-protocol BoolGateEvalC,g (Figure 3) which stays unchanged. We summarize the
correctness and security of BoolGateEvalC,g under prime-order groups in the following lemmas.
Their proofs are completely analogous to those of Lemma 15 and 16, hence are omitted.

Protocol BoolCircEvalC,Pri

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz . It uses the following ingradients:

– aHMAC evaluation procedures, with error bound δ = 1/(poly(λ) · |C|), EvalKey,EvalTag over bounded
integers by B = 2, and public data generation procedure aHMACPri.pd under prime-order groups; (See
Lemma 7;)

– HSS evaluation procedures ExtEval0,ExtEval1 and public data generation procedure HSSEG.pd under
ElGamal; (See Lemma 9;)

– a PRF : {0, 1}λ × {0, 1}λ → {0, 1} in NC1.

Inputs: PG holds a vector x ∈ {0, 1}ℓx , while PE holds notinog.
Outputs: PG outputs nothing, while PE outputs a vector z ∈ {0, 1}ℓz .

– Init :
1. PG sends public data pd to the evaluator PE .

pp = (G, p, g)← Pri.Gen(1λ),

s← Zp, s := Bits(s), sk← {0, 1}λ

pd :=
(
aHMACPri.pd(pp, s, s),HSSEG.pd(pp, s, sk)

)
. (23)

2. PG sends masked inputs x and additive shares ⟨s⊗ x⟩1 to PE .

x = x⊕ PRF(sk, InWires(C)),

⟨s⊗ x⟩1 := s⊗ x+ ⟨s⊗ x⟩0 (over Z),

where ⟨s⊗ x⟩0 ← [λω(1)]⌈3 log p⌉×ℓx .

– Eval,Final phases are the same as BoolCircEvalC,Pai (Figure 2), except for syntactical changes from using
dot products · when multiplying with a scalar s to using tensor products ⊗ when multiplying with a
vector s.

Fig. 9. Our 2PC protocol for Boolean circuits under prime-order groups.
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Lemma 23 (Correctness of BoolGateEvalC,g under Prime-Order Groups). Let ℓ(λ) ≤
O(log λ) be a bound on input length, and δ = 1/(poly(λ) · |C|) be the error bound specified in Fig-
ure 9. There exists a negligible function negl(λ) such that for every λ ∈ N, every Boolean circuit
C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, pp = (G, p, g) in the sup-
port of Pri.Gen(1λ), secret exponents s ∈ {0, 1}⌈log p⌉, additive shares (over Z) ⟨s⊗ x⟩0, ⟨s⊗ x⟩1,
and PRF key sk ∈ {0, 1}λ, the following holds:

Pr

w
z
1 = wz

0 + sz,

z = g(x)

∣∣∣∣∣∣∣∣∣∣
pd sampled per Equation 23,

(PG : wz
0), (PE : wz

1, z)

← BoolGateEvalC,g
(
(PG : pd, ⟨s⊗ x⟩0), (PE : pd, ⟨s⊗ x⟩1,x)

)
z := z ⊕ PRF(sk,OutWire(g)), x := x⊕ PRF(sk, InWires(g))


≥ 1− δ(λ)− negl(λ).

Lemma 24 (Security of BoolGateEvalC,g under Prime-Order Groups). Under the same
setting as Lemma 23, there exists an efficient simulator Sim that, given the masked output z,
statistically simulates PG’s message in the sub-protocol BoolGateEvalC,g.

More precisely, there exists a negligible function negl(λ) such that for every λ ∈ N, every
Boolean circuit C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, pp =
(G, p, g) in the support of Pri.Gen(1λ), secret exponents s ∈ {0, 1}⌈log p⌉, additive shares (over Z)
⟨s⊗ x⟩0, ⟨s⊗ x⟩1, and PRF key sk ∈ {0, 1}λ, the following holds:

SD
(
msgG(pd, ⟨s⊗ x⟩0),
Sim(pd, ⟨s⊗ x⟩1,x, z)

)
≤ negl(λ) + δ(λ),

∣∣∣∣∣∣∣
pd sampled per Equation 23,

x := x⊕ PRF(sk, InWires(g)),

z := g(x)⊕ PRF(sk,OutWire(g))

where msgG(pd, ⟨s⊗ x⟩0) denotes PG’s message to PE in BoolGateEvalC,g.

Using the correctness and security of the core sub-protocol, BoolGateEval under prime-order
groups, we can now prove those of our garbling scheme under prime-order groups (compiled
from the 2PC protocol BoolCircEval).

Proposition 5 (Garbling O(log λ)-ary Gates under Prime-Order Groups). Assuming
CP-DDH in prime-order groups, the garbling scheme compiled from the protocol BoolCircEvalC,Pri

(Figure 9) achieves 1/poly correctness and privacy error.

Proof of Proposition 5. The correctness of the protocol, with an error δ · |C| = 1/poly(λ) follows
from that of BoolGateEval (Lemma 23), and a union bound on the error probability over all
gates in C. Hence the correctness of the compiled garbling scheme follows.

The security proof follows the same arguments as those for Proposition 1, except for two
differences.

– In Hyb1, which changes from following the subprotocol BoolGateEval as PG with (pd, {k(i)})
as inputs, into following the subprotocol as PE with (pd, {l(i), x(i)}) as inputs, there is an
error probability for every gate in C. Therefore, the statistical distance between Hyb1 and
Hyb0 is bounded by negl(λ) + δ(λ) · |C| ≤ 1/poly(λ).

– The public data pd are computed and simulated differently as explained below. We need to
argue the honestly computed pd and the simulated are computationally indistinguishable,
which completes the argument for this proof.
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In the honest protocol, the public data pd are computed as follows according to Equation 23,
with respect to a PRF key sk ∈ {0, 1}λ.

seed← {0, 1}λ, pp = (G, p, g)← Pri.Gen(1λ),

s← Zp, r← Z⌈log p⌉
p , r′ ← Zλ

p , R← Zλ×⌈log p⌉
p ,

pd = (pp, seed, gr, grs, grs
2+Bits(s),

gr
′s, gr

′s2+Bits(sk), gRs, gRs2+Bits(sk)⊗Bits(s)).

(24)

In the simulation, they are computed as random elements:

seed← {0, 1}λ, pp = (G, p, g)← Pri.Gen(1λ),

a,b, c← Z⌈log p⌉
p , a′,b′ ← Zλ

p , A,B← Zλ×⌈log p⌉
p ,

pd = (pp, seed, ga, gb, gc, ga
′
, gb

′
, gA, gB).

(25)

We show the analogous claim (to Claim 1) which completes the arguments for this proof.

Claim 9. For all sk ∈ {0, 1}λ, the distribution of pd defined by Equation 24 and p̃d by Equa-
tion 25 are computationally indistinguishable.

Proof. We show a series of hybrid that transitions from the distribution of Equation 24 to
Equation 25.

Hyb′0 This is the distribution of Equation 16.
Hyb′1 In this hybrid, instead of computing the last two terms of HSS public data as

H1 = gRs,H2 = gRs2+Bits(sk)⊗Bits(s),

whereR are random exponents, simulate them based on the aHMAC public data grs, grs
2+Bits(s)

as follows.
H̃1 = gBits(sk)⊗rs+Rs, H̃2 = gBits(sk)⊗(rs2+Bits(s))+Rs2 .

By the randomness of R, we have Hyb′1 ≡ Hyb′0.
Hyb′2 In this hybrid, instead of computing the aHMAC public data as

gr, grs, grs
2+Bits(s),

where r, s are random exponents, simulate them as random elements

ga, gb, gc,

for random exponents a,b, c. By CP-DDH in prime-order groups, (Definition 7), we have
Hyb′2 ≈c Hyb

′
1.

Hyb′3 In this hybrid, instead of computing the HSS public data as

gr
′s, gr

′s2+Bits(sk), H̃1 = gBits(sk)⊗b+Rs, H̃2 = gBits(sk)⊗c+Rs2 .

where r′,R, b, c are random exponents, simulate them as

ga
′
, gb

′+Bits(sk)H̃1, = gBits(sk)⊗b+A, H̃2 = gBits(sk)⊗c+B.

where a,a′,b,b′,A,B are exponents. By P-DDH (Definition 6, which is implied by CP-DDH)
in prime-order groups, we have Hyb′3 ≈c Hyb

′
2.
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Hyb′4 In this hybrid, remove the additive terms involving Bits(sk) from the exponents.

Due to the randomness of b′,A,B, We have Hyb′4 ≡ Hyb′3. Note that Hyb
′
4 computes exactly

the distribution of Equation 25.

By a hybrid argument, we conclude that Hyb′0 ≈c Hyb
′
4, which proves the claim.

The Leveled Variant. The leveled 2PC protocol is shown in Figure 10. It uses the same core
sub-protocol LBoolGateEvalC,g (Figure 6) which stays unchanged. We summarize the correctness
and security of LBoolGateEvalC,g under prime-order groups in the following lemmas. Their proofs
are completely analogous to those of Lemma 17 and 18, hence are omitted.

Protocol LBoolCircEvalC,Pri

The protocol runs between a garbler PG and an evaluator PE , to evaluate a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz . It uses the following ingradients:

– aHMAC leveled evaluation procedures, with error bound δ = 1/(poly(λ) · |C|), EvalKeydInd ,EvalTagdInd
for bounded depth computations by dInd = O(log log λ) over bounded integers by B = 2, and public
data generation procedure aHMACPri.pd under lattices; (See Lemma 8;)

– HSS evaluation procedures ExtEval0,ExtEval1 and public data generation procedure HSSBHHO.pd under
BHHO; (See Lemma 10;)

– a PRF : {0, 1}λ × {0, 1}λ → {0, 1} in NC1.

Inputs: PG holds a vector x ∈ {0, 1}ℓx , while PE holds notinog.
Outputs: PG outputs nothing, while PE outputs a vector z ∈ {0, 1}ℓz .

– Init : Let dC = Depth(C), and d = dC · dInd.
1. PG sends public data pd to the evaluator PE .

pp = (G, p, g)← Pri.Gen(1λ), K← {0, 1}dC×⌈3 log p⌉, sk← {0, 1}λ

S ∈ {0, 1}(d+1)×⌈log p⌉ where sj ← Zp, S[j] := Bits(sj),

// For short, write s(t) = S[t · dInd], s(t)end = S[(t+ 1) · dInd − 1].

∀j ∈ [d], aHMAC.pd(j) ← aHMACPri.pd(pp,S[j],S[j + 1]),

∀t ∈ [dC ], aHMAC.pd
(t)
k ← aHMACPri.pd(pp, s

(t)
end,K[t]),

∀t ∈ [dC ], HSS.pd
(t)
sk,s ← HSSBHHO.pd(pp,K[t], sk∥Bits(s(t+1))),

(26)

pd :=
(
{aHMAC.pd(j)}j∈[d], {aHMAC.pd

(t)
k ,HSS.pd

(t)
sk,s}t∈[dC ]

)
.

2. Let s = S[0]. PG sends masked inputs x and additive shares ⟨s⊗ x⟩1 to PE as in BoolCircEvalC,Pri

(Figure 9).
– Eval,Final phases are the same as LBoolCircEvalC,Pai (Figure 5) except for syntactical changes from

using dot products · when multiplying with a scalar s to using tensor products ⊗ when multiplying
with a vector s.

Fig. 10. Our leveled 2PC protocol for Boolean circuits under prime-order groups.

Lemma 25 (Correctness of LBoolGateEvalC,g under Prime-Order Groups). Let ℓ(λ) ≤
O(log λ) be a bound on input length, δ = 1/(poly(λ)·|C|) be the error bound specified in Figure 10,
and dInd = O(log log λ) be the depth of the indicator arithmetic circuit over ℓ inputs (Fact 1).

There exists a negligible function negl(λ) such that for every λ ∈ N, every Boolean circuit C
(of depth dC) with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, pp = (G, p, g)
in the support of Pri.Gen(1λ), secret exponents S ∈ {0, 1}(d+1)×⌈log p⌉, additive shares (over Z)
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⟨s(t) ⊗ x⟩0, ⟨s(t) ⊗ x⟩1, and PRF key sk ∈ {0, 1}λ, the following holds:

Pr


wz

1 = wz
0 + s(t+1)z,

z = g(x)

∣∣∣∣∣∣∣∣∣∣∣∣

pd sampled per Equation 26,

(PG : wz
0), (PE : wz

1, z)← LBoolGateEvalC,g(
(PG : pd, ⟨s(t) ⊗ x⟩0), (PE : pd, ⟨s(t) ⊗ x⟩1,x)

)
z := z ⊕ PRF(sk,OutWire(g)),

x := x⊕ PRF(sk, InWires(g))


≥ 1− δ(λ)− negl(λ).

Lemma 26 (Security of LBoolGateEvalC,g under Prime-Order Groups). Under the same
setting as Lemma 25, there exists an efficient simulator Sim that, given the masked output z,
statistically simulates PG’s message in the sub-protocol LBoolGateEvalC,g.

More precisely, there exists a negligible function negl(λ) such that for every λ ∈ N, every
Boolean circuit C with a gate g of ℓx ≤ ℓ(λ) inputs, every masked input x ∈ {0, 1}ℓx, pp =
(G, p, g) in the support of Pri.Gen(1λ), secret exponents S ∈ {0, 1}(d+1)×⌈log p⌉, additive shares
(over Z) ⟨s(t) ⊗ x⟩0, ⟨s(t) ⊗ x⟩1, and PRF key sk ∈ {0, 1}λ, the following holds:

SD
(
msgG(pd, ⟨s(t) ⊗ x⟩0),
Sim(pd, ⟨s(t) ⊗ x⟩1,x, z)

)
≤ negl(λ) + δ(λ),

∣∣∣∣∣∣∣
pd sampled per Equation 26,

x := x⊕ PRF(sk, InWires(g)),

z := g(x)⊕ PRF(sk,OutWire(g))

where msgG(pd, ⟨s(t) ⊗ x⟩0) denotes PG’s message to PE in LBoolGateEvalC,g.

Using the correctness and security of LBoolGateEval under prime-order groups, we can now
prove those of our leveled garbling scheme under prime-order groups (compiled from the 2PC
protocol LBoolCircEval).

Proposition 6 (Leveled Garbling of O(log λ)-ary Gates under Prime-Order Groups).
Assuming P-DDH in prime-order groups, the garbling scheme compiled from the protocol LBoolCircEvalC,Pri

(Figure 10) achieves 1/poly correctness and privacy error.

Proof of Proposition 6. The correctness of the protocol follows from that of LBoolGateEval (Lemma 25).
Hence the correctness of the compiled garbling scheme follows.

The security proof follows the same arguments as those for Proposition 1, except the public
data pd are computed and simulated differently. In the honest protocol, they are computed as
follows according to Equation 26, with respect to a PRF key sk ∈ {0, 1}λ:

pp = (G, p, g)← Pri.Gen(1λ),

S ∈ {0, 1}(d+1)×⌈log p⌉ where sj ← Zp, S[j] := Bits(sj),

K← {0, 1}dC×⌈3 log p⌉, sk← {0, 1}λ

// For short, write s(t) = S[t · dInd], s
(t)
end = S[(t+ 1) · dInd − 1].

∀j ∈ [d], aHMAC.pd(j) ← aHMACPri.pd(ppPri,S[j],S[j + 1]),

∀t ∈ [dC ], aHMAC.pd
(t)
k ← aHMACPri.pd(ppPri, s

(t)
end,K[t]),

∀t ∈ [dC ], HSS.pd
(t)
sk,s ← HSSBHHO.pd(ppLat,K[t], sk∥Bits(s(t+1))),

pd :=
(
{aHMAC.pd(j)}j∈[d], {aHMAC.pd

(t)
k ,HSS.pd

(t)
sk,s}t∈[dC ]

)
.

(27)
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In the simulation, the are computed as follows:

pp = (G, p, g)← Pri.Gen(1λ),

∀j ∈ [d], aHMAC.p̃d
(j)
← aHMACPri.Sim(pp, 1⌈log p⌉),

∀t ∈ [dC ], aHMAC.p̃d′
(t)
,← aHMACPri.Sim(pp, 1⌈3 log p⌉),

∀t ∈ [dC ], HSS.p̃d
(t)
← HSSBHHO.Sim(ppLat),

p̃d :=
(
{aHMAC.p̃d

(j)
}j∈[d], {aHMAC.p̃d′

(t)
,HSS.p̃d

(t)
}t∈[dC ]

)
,

(28)

where aHMACPri.Sim(pp, 1ℓ) is as follows

a,b, c← Zℓ
p, seed← {0, 1}λ

aHMACPai.p̃d = (pp, seed, ga, gb, gc),
(29)

and HSSBHHO.Sim(pp) as as follows

a,b,← Z⌈log q⌉+λ
q , C,D← Z(⌈log q⌉+λ)×⌈3 log p⌉

q , seed← {0, 1}λ

HSSBHHO.p̃d = (pp, seed, ga, gb, gC, gD).
(30)

We show an analogous claim (to Claim 2) which completes the proof.

Claim 10. For all sk ∈ {0, 1}λ, the distribution of pd defined by Equation 27 and p̃d by Equa-
tion 28 are computationally indistinguishable.

Proof. The proof is again analogous to that of Claim 2, based on the following two sub-claims.

Claim 11. For all s′ ∈ {0, 1}ℓ, with ℓ ≤ poly(λ) the following computational indistinguishability
holds {

pp, aHMACPri.pd(pp, s, s′)
∣∣s← Zp, s := Bits(s)

}
λ

≈c

{
pp, aHMACPri.Sim(pp, 1ℓ)

}
λ

where the public parameter pp is sampled as pp = (G, p, g)← Pri.Gen(1λ) in both sides.

Proof. This follows from P-DDH (Definition 6) and DDH (Definition 5, which is implied by
P-DDH) in prime-order groups.

Claim 12. For all s′ ∈ {0, 1}ℓ, with ℓ ≤ poly(λ) and sk ∈ {0, 1}λ the following computational
indistinguishability holds{

pp,HSSBHHO.pd(pp, s, sk∥Bits(s′))
∣∣s← Dsk

}
λ

≈c

{
pp,HSSBHHO.Sim(pp, 1ℓ)

}
λ
.

where the public parameter pp is sampled as pp = (G, p, g)← Pri.Gen(1λ) in both sides.

Proof. This follows from the security of the BHHO [BHHO08] encryption scheme, which is based
on DDH (Definition 5) in prime-order groups.
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5.5 Security Amplification for Prime-Order Group Instantiations.

In this section, we show how to adapt the amplification techniques from [BGI17] to remove
the 1/poly privacy and correctness errors of our garbling scheme under prime-order groups.
For simplicity, we focus on the non-leveled variant in this section. The leveled variant can be
amplified in the analogous way.

The Reason For the Errors. The the 1/poly privacy and correctness errors of our garbling
scheme both come from the 1/poly correctness errors in the aHMAC and HSS constructions
under prime-order groups. While it’s clear correctness of our garbling scheme depends on those
of aHMAC and HSS, it’s less obvious how privacy depends on those. We briefly review our proof
strategy (see the proof of Proposition 5) to illustrate the cause of this error.

The relevant step in our proof consists the following hybrid experiments for computing the
garbled circuits Ĉ, and labels {L(i)}.

Hyb0 : This is the real world distribution.

– First sample a global secret s and a PRF key sk. Compute public data pd w.r.t. seed, s, sk
following Equation 23.

– Next sample a random pad k(i) for every input wire i in C, and compute the labels L(i)

as L(i) = s · (x[i]⊕ PRF(sk, i)) + k(i), where x is the input.

– For every gate g in C, in topological order, run aHMAC and HSS (as PG described in
Figure 3) evaluations over {k(i)}, for input wires i to g. The results are a pad k(j) and
an integer r(j). Set b(j) = r(j) mod 2.

– In the end, compute o = PRF(sk,OutWires(C)) and set Ĉ = (pd, {b(j)},o).
Hyb1 : In this hybrid, compute the bits {b(j)} differently.

– For every output wire j of some gate g ∈ C, compute the correct wire value x(j) according
to the input x. Then set x(j) = x(j) ⊕ PRF(sk, j).

– For every gate g in C, in topological order, run aHMAC and HSS (as PE described in
Figure 3) evaluations over {L(i), x(i)}, for the input wires i to g. The results are a label
L(j) and an integer u(j). Set the bit b(j) = x(j) + u(j) mod 2.

If there are no error in the aHMAC and HSS evaluations, then we have L(j) = s · x(j) +k(j), and
u(j) = x(j) + r(j) for every output wire j of some gate g ∈ C. Hence conditioned on no error
occurs, Hyb0,Hyb1 compute the same distribution.

In our construction (Figure 9) we set the error chance of each aHMAC and HSS evaluation
to be ≤ 1/(poly(λ)|C|). Hence by a union bound, no error occurs except with 1/poly chance,
creating a 1/poly statistical distance between Hyb0 and Hyb1.

Removing the Correctness Error. The correctness errors from both aHMAC and HSS evalua-
tions stem from the following distributed discrete logarithm (DDLog) technique, which underlies
their constructions (Lemma 7 and 9). In particular, the following DDLog evaluation is invoked
for every intermediate multiplication within aHMAC and HSS.

Lemma 27 (Distributed Discrete Log with Error [BGI16, DKK18]). For any cyclic
group G with order p and a generator g, there exists an algorithm DDLogG,g:

– DDLogG,g(δ ∈ (0, 1], B ∈ [p], ϕ : G → {0, 1}⌈log(2B/δ)⌉, a ∈ G) takes an error bound δ, a
message bound B, a function ϕ mapping group elements to bit strings, and an element a. It
outputs a value α ∈ Zp.
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The algorithm requires O(
√

B/δ) group operations, and has the guarantee that for all 0 < δ ≤ 1,
B < p, a ∈ G, and m ≤ B:

Pr

[
DDLogG,g(δ,B, ϕ, a · gm)

=DDLogG,g(δ,B, ϕ, a) +m mod p

∣∣∣∣∣ ϕ← $

]
≥ 1− δ,

where ϕ← $ means sampling at random from all possible mappings.

The DDLog algorithm is setup with a sufficiently small error bound δ such that the overall
error probability (through a union bound) of all aHMAC and HSS multiplications is bounded
by 1/poly. A (pseudo-)random mapping function ϕ used for DDLog is specified by the public
PRG seed included in the public data pd of aHMAC and HSS.

To remove the correctness error, we follow the observation from [BGI17] that when two
parties locally run DDLog on two elements a, a · gm, one of the party, which we call the left
party, can actually detect potential errors as long as there is a bound B on the value m:

– The left party aborts with probability ≤ δ over the randomness of ϕ;
– When the left party doesn’t abort, both parties output the correct results except with neg-

ligible probability.

Armed with this detection technique, we can remove the correctness error from our grabling
scheme: when the garbler – who acts as the left party in DDLog – aborts, it restarts with fresh
randomness.

By setting the error probability δ in each DDLog invocation to be sufficiently small, ≤
1/(poly(λ) · |C|), the garbler only restarts with 1/poly(λ) probability. In expectation, it takes a
constant number of restarts before the garbler produces a garbled circuit that’s guaranteed to
be correct.

Removing the Privacy Error. While restarting removes the 1/poly correctness error, there
is still a 1/poly privacy error in the resulting scheme.

Looking again at the two hybrids Hyb0,Hyb1 in our proof strategy, it may seem with restarting
we have ensured no error occurs during all aHMAC and HSS evaluations, and have removed the
1/poly statistical difference between Hyb0 and Hyb1. However, the subtle issue is that in Hyb0,
the experiment runs DDLog as the left party to detect errors and restarts, while in Hyb1 the
experiment runs DDLog as the right party, who does not have the same restarting pattern.

To simulate the restarting pattern of Hyb0, our first step is to use another observation
from [BGI17]: the right party running DDLog can actually predict potential abort from the left
party with possibly false positives:

– The right party can additionally output a bit pred, which equals 1 with probability ≤ 2δ
over the randomness of ϕ;

– When pred = 0, the left party does not abort.

Armed with this prediction technique, in Hyb1, the experiment can proceed as the right party
running DDLog as long as pred = 0.

However, when the experiment sees pred = 1 during some DDLog invocation, it then needs to
re-run this particular DDLog as the left party to check if there needs to be a restart (as pred = 1
may be a false positive). As we explain next, re-running the DDLog as the left party relies on
some leakages on the global secret s and the PRF key sk. We then show how to deal with those
leakages by adapting techniques from [BGI17].
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Leakages in aHMAC and HSS. In order to explain the leakage, we now expose a bit more detail
on how the left and right parties, which correspond to PG and PE respectively in Figure 3, run
DDLog within aHMAC and HSS evaluations.

– aHMAC evaluations are over input shares ⟨s⊗ x⟩, where s is the global secret. The results
are output shares ⟨s · Cv(x)⟩, where Cv is an arithmetic circuit with intermediate values
bounded by B = 2. The right party additionally holds x in the clear.
In each invocation of DDLog, the left and right parties respectively hold inputs of the form
a, a · gs[i]·v:

Left : DDLog(δ, ϕ,B, a),

Right : DDLog(δ, ϕ,B, a · gs[i]·v),

where v is an intermediate wire value of Cv(x).
When the right party predicts a potential abort and needs to re-run DDLog as the left party,
it needs to know both s[i] and v. As all intermediate wire values v are known to the right
party in the clear, the only leakage required is a certain bit s[i] from the global secret.

– HSS evaluations are over input shares ⟨s⊗ x⟩, and ⟨x⟩. The results are output shares
{⟨s · InnerPord(x, Cg(sk))⟩}, where Cg is a Boolean circuit (implementable by an arithmetic
circuit with B = 2), and sk is the global PRF key. The right party additionally holds x in
the clear.
In each invocation of DDLog, the left and right parties respectively hold inputs of the form
a, a · gs[i]·x[j]·v:

Left : DDLog(δ, ϕ,B = 2, a),

Right : DDLog(δ, ϕ,B = 2, a · gs[i]·x[j]·v),

where v is an intermediate wire value of Cg(sk).
When the right party predicts a potential abort and needs to re-run DDLog as the left party,
it needs to know s[i], x[j], and v. As x is known to the right party in the clear, the leakage
required is a certain bit s[i] from the global secret, and an intermediate wire value v from
Cg(sk).

In summary, the Hyb1 experiment proceeds as the righ party running DDLog in aHMAC and
HSS evaluations, as long as pred = 0. In the case pred = 1, it relies on the following leakage to
re-run the DDLog as the left party.

– If the DDLog is within an aHMAC evaluation, the leakage is a bit s[i] from the global secret
s.

– If the DDLog is within an HSS evaluation, the leakage is a bit s[i] and an intermediate wire
value v in Cg(sk).

If the re-run as the left party indeed aborts, then Hyb1 restarts with fresh randomness, and
all the leakages have no effect. However if the re-run does not abort, (i.e. pred = 1 is a false
positive), then Hyb1 continues as the right party. This restarting pattern exactly simulates that
of Hyb0, so we have Hyb0 ≡ Hyb1.

Note that as pred = 1 happens independently in each DDLog invocation with ≤ 2δ ≤
1/(poly(λ) · |C|) probability, in an eventual accepting Hyb1 experiment with no aborts, there are
at most some ω(1) ≤ λ instances of leakages except with negligible probability.

In conclusion, the overall leakage in Hyb1 are (1) ≤ λ bits from the global secret s and (2)
≤ λ intermediate values in the circuit Cg(sk).
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Removing the Leakages. We explain the solutions to each leakage type in more detail. They
are adapted from the techniques introduced in [BGI17] for dealing with similar types leakages.

1. The global secret s ∈ {0, 1}⌈log p⌉ in our garbling scheme is sampled as follows, per Equa-
tion 23:

s← Zp, s := Bits(s).

Our security proof (of Proposition 5) relies on the s being a random exponent and the CP-
DDH assumption (Definition 7) to argue that the public data pd leaks nothing about the
PRF key sk. With ≤ λ bits of leakage from s, the secret exponent s is no longer random.

Our solution is to create λ+1 additive shares of s, and define s to be the bits of all λ+1 shares.
Any ≤ λ bits leaked from s are now statistically independent of the secret exponent s, which
remains random. In more detail, we modify Equation 23 and correspondingly aHMACPri.pd,
HSSEG.pd as follows:

Modified Equation 23 :

∀i ∈ [λ+ 1], si ← Zp, s :=
∑
i

si mod p, s := (. . . ∥Bits(si)∥ . . .).

Modified aHMACPri.pd,HSSEG.pd :

parse s = (. . . ∥si∥ . . .), s :=
∑
i

BitComp(si) mod p.

Now our proof argument of pd computed using the modified Equation 23 goes through, under
a slight variant of the CP-DDH assumption that incorporates the extra secret sharing steps.
(In the leveled variants, the P-DDH assumption unmodified suffices.)

Definition 11 (CP-DDH* Over Prime-Order Groups). We say CP-DDH* holds in
prime-order groups if the following holds:

pp, s1, . . . , sλ, g, g
s, gs

2
,

ga, gs·a, gs
2·a+(...∥Bits(si)∥...)

∣∣∣∣∣∣∣∣∣
pp = (G, p, g)← Pri.Gen(1λ),

s0,s1, . . . , sλ ← Zp, s :=
∑
i

si mod p

a← Z⌈log p⌉·(λ+1)
p


λ

≈c

pp, s1, . . . , sλ, g, g
s, gd,

ga, gb, gc

∣∣∣∣∣∣∣
pp = (G, p, g)← Pri.Gen(1λ),

s, s1, . . . , sλ, d← Zp,

a,b, c← Z⌈log p⌉
p .


λ

.

Remark 5. This formulation can be further simplified to{
pp, s′, g, gs, gs

2
,

ga, gs·a, gs
2·a+Bits(s+s′ mod p)

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

s,s′ ← Zp, a← Z⌈log p⌉
p

}
λ

≈c

{
pp, s′, g, gs, gd,

ga, gb, gc

∣∣∣∣∣ pp = (G, p, g)← Pri.Gen(1λ),

s, s′, d← Zp, a,b, c← Z⌈log p⌉
p .

}
λ

.

(31)

We sketch this through the following hybrid arguments:
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Hyb′0 This is the left-hand-side distribution from the CP-DDH* assumption, in a slightly
more convenient form:

pp, s1, . . . , sλ, g, g
s, gs

2
,

{gai , gs·ai , gs
2·ai+Bits(si)}i=0,1,...,λ.

∣∣∣∣∣∣∣∣∣
pp = (G, p, g)← Pri.Gen(1λ),

s0,s1, . . . , sλ ← Zp, s :=
∑
i

si mod p

ai ← Z⌈log p⌉
p

Hyb′1 Equivalently sample s← Zp and set s′ :=
∑

i>0 si mod p, and s0 := s− s′ mod p. The
distribution is:

pp, s1, . . . , sλ, g, g
s, gs

2
,

ga0 , gs·a0 , gs
2·a0+Bits(s−s′ mod p), {gai , gs·ai , gs

2·ai+Bits(si)}i=1,...,λ.

We have Hyb′0 ≡ Hyb′1.
Hyb′2 Replace the terms gs

2
, gs·a0 , gs

2·a0+Bits(s−s′ mod p), with gd, gb0 , gc0 for random expo-
nents d,b0, c0:

pp, s1, . . . , sλ, g, g
s, gd,

ga0 , gb0 , gc0 , {gai , gs·ai , gd·ai+Bits(si)}i=1,...,λ.

By the simplied assumption in Equation 31, we have Hyb′2 ≈c Hyb
′
1.

Hyb′3 Replace the terms gs·ai and gd·ai with gbi , gci for random exponents bi, ci:

pp, s1, . . . , sλ, g, g
s, gd,

ga0 , gb0 , gc0 , {gai , gbi , gci+Bits(si)}i=1,...,λ.

By DDH (which is implied by Equation 31), we have Hyb′3 ≈c Hyb
′
2.

Hyb′4 Remove the additive terms Bits(si) from the exponents. By the randomness of exponents
ci, we have Hyb′4 ≡ Hyb′3. Note that the resulting is exactly the right-hand-side distribution
from the CP-DDH* assumption.

2. To deal with the second leakage type, we need to ensure the leaked intermediate values from
Cg(sk), for all gates g ∈ C, are independent of the PRF key sk.
The solution is to replace Cg with a leakage resilient circuit Cg such that any set of ≤ λ
intermediate values can be computationally simulated from the evaluation result only. We
cite the result from [BGI17] that there exists a compiler from any NC1 Boolean circuit Cg

to a leakage resilient one Cg also in NC1, together with a compiler for the inputs sk to sk
such that Cg(sk) = Cg(sk).

Lemma 28 (Leakage Resilient Circuits for NC1 [BGI17]). Assuming there is a PRF
in NC1. There exists a pair of compilers LRCirc LRInput satisfy the following.

Correctness: For every logarithmic depth bound d ≤ O(log λ), there exists another logarith-
mic bound d′ ≤ O(log λ), and a polynomial p ≤ poly(λ) such that for every λ ∈ N, Boolean
circuit C : {0, 1}ℓx → {0, 1} of depth ≤ d(λ), and inputs x ∈ {0, 1}ℓx:
– C ← LRCirc(C) has depth ≤ d′(λ);

– x← LRInput(x) has bit-length ≤ ℓx · p(λ);
– C(x) = C(x).
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Leakage Resilience: There exists a simulator Sim such that for every logarithmic depth
bound d ≤ O(log λ), Boolean circuits {Cλ} of depth ≤ d(λ), inputs {xλ}, and sets of leakage
wires {Sλ} of size ≤ λ:{

Wire values

in S of C(x)

∣∣∣∣∣C ← LRCirc(C),

x← LRInput(x),

}
λ

≈c {Sim(C(x))}λ

Now we just need to modify Equation 23 to compile the sampled PRF key sk into leakage
resilient inputs sk, and correspondingly modify Figure 3 to use leakage relient circuits in HSS
evaluations:

Modified Equation 23 : sk← {0, 1}λ, sk← LRInput(sk)

Modified Figure 3 Step 2 : run ExtEvalb with Cg ← LRCirc(C).

After applying the two solutions, we can now conclude that in Hyb1 the leakages (required to
simulating restarting patterns of Hyb0) do not affect the remaining proof arguments.

The overhead of our solutions for removing leakages are (1) larger public data pd caused by
a larger global secret vector s and a larger leakage resilient version of the PRF key sk and (2)
heavier computation in HSS evaluations caused by the leakage resilient circuits Cg.

6 Efficient Arithmetic Garbling Schemes

Our observation is that the Boolean garbling schemes from Theorem 2 (and their leveled vari-
ants), supporting evaluations of arbitrary O(log λ)-ary gates, can implement arithmetics over
small modulus R(λ) ≤ poly(λ) very efficeintly. This is because multiplications and additions
between two ZR values can be implemented by (2 logR)-ary Boolean gates, costing logR bits
per multiplication or addition.

A small issue prevents directly using Theorem 2 to obtain arithmetic garbling schemes for
small modulus. An arithmetic garbling scheme requires arithmetic labels for its inputs x ∈ Zℓx

R ,
while the schemes from Theorem 2 require Boolean labels for the bit representations Bits(x).

Therefore, to obtain arithmetic garbling over polynomial modulus R(λ) < poly(λ), we need
a special garbling scheme in which the evaluation algorithm Eval takes in arithmetic labels for
some input x ∈ Zℓx

R , and outputs Boolean labels for their bit-representations Bits(x), as required
by the scheme from Theorem 2. Fortunately, such schemes exist based on Chinese Remainder
Theorem and the minimal assumption of one-way functions. (See Section 8 in [AIK11], and
also [LL24, Hea24] for more efficient constructions based on stronger assumptions.)

Lemma 29 (Bit-Decomposition Garbling Scheme [AIK11]). Assuming one-way func-
tions exist, there exists a garbling scheme for the class of functions C : ZR → {0, 1}⌈logR⌉×ℓ 13

specified by any modulus R, and any set of Boolean key functions K(i) : {0, 1} → {0, 1}ℓ for
i ∈ [⌈logR⌉]:

C(x) = {K(i)(Bits(x)[i])}.

The garbling size is poly(logR, ℓ, λ).

13 Technically we are generalizing Definition 1 to allow functions with different input and output rings: ZR and
Z2.
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Composing a bit-decomposition garbling scheme with Theorem 2 results in an arithmetic
garbling scheme satisfying Definition 1, and creates only an additive cost of |x| · poly(λ) to the
garbling size. We therefore obtain the following corollary.

Corollary 5 (Arithmetic Garbling for Small Modulus). Let R(λ) ≤ poly(λ) be a modulus.
Assuming any of the assumptions in Theorem 2, there exists a garbling scheme for all arithmetic
circuits C (with binary gates, ℓx inputs) over ZR with garbling size

|Ĉ| ≤ |C| · logR+ ℓx · poly(λ).

The scheme assuming CP-DDH in prime-order groups has 1/poly correctness and privacy errors,
which can be made negligible assuming a variant of CP-DDH (Definition 11).

Alternatively, assuming any of the assumptions in Theorem 3, there exists a garbling scheme
for all arithmetic circuits C (with binary gates, ℓx inputs) over ZR with garbling size

|Ĉ| ≤ |C| · logR+ (ℓx +Depth(C)) · poly(λ).

Using Chinese Remainder Theorem, we can further compose multiple schemes, supporting co-
prime polynomial moduli {Ri}, into one supporting a large modulus R∗ =

∏
iRi. We additionally

show how to emulate an arbitrary modulus R using a sufficiently large one R∗ = O(R2) in
Section 6.1 (protocol ArithCircEvalC , Figure 2). We show its instantiation under Paillier groups
to illustrate our techniques. Other instantiations under prime-order groups and lattices differ
only by how the public data are generated during the Init phase, analogous to the Boolean case.
In summary, we obtain the following result.

Theorem 4 (Arithmetic Garbling for Large Modulus). Assuming any of the assumptions
in Theorem 2, there exists a garbling scheme for all arithmetic circuits C (with binary gates, ℓx
inputs) over an arbitrary modulus ZR with garbling size

|Ĉ| ≤ O(|C| · logR) + ℓx · poly(λ, logR).

The scheme assuming CP-DDH in prime-order groups has 1/poly correctness and privacy errors,
which can be made negligible assuming a variant of CP-DDH (Definition 11).

We can also obtain leveled variants analogous to the Boolean case to avoid circular assump-
tions at the cost of an additive Depth(C) · poly(λ, logR) term in the size of the garbling.

Theorem 5 (Leveled Arithmetic Garbling for Large Modulus). Assuming any of the
assumptions in Theorem 3, there exists a garbling scheme for all arithmetic circuits C (with
binary gates, ℓx inputs) over an arbitrary modulus ZR with garbling size

|Ĉ| ≤ O(|C| · logR) + (ℓx +Depth(C)) · poly(λ, logR).

Note that we cannot use the schemes from Theorem 2 (and their leveled variants) to support
general arithmetic gates with ℓx = ω(1) inputs over polynomial modulus R(λ) < poly(λ), as their
computation cost would become super-polynomial Rℓx = λω(1). Therefore, we do not directly
obtain analogous (to Theorem 2 and 4) arithmetic garbling schemes for layered circuits.
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Protocol ArithCircEvalC,Pai

The protocol runs between a garbler PG and an evaluator PE , to evaluate an crithmetic circuit over ZR,
C : Zℓx

R → Zℓz
R . It uses the same ingradients as BoolCircEvalC,Pai (Figure 1), except with a different PRF:

– a PRF : {0, 1}λ × {0, 1}λ → [R2 · λω(1)] in NC1.

Inputs: PG holds a vector x ∈ Zℓx
R , while PE holds notinog.

Outputs: PG outputs nothing, while PE outputs a vector z ∈ Zℓz
R .

– Init : PG sends public data pd to PE computed in the same way as BoolCircEvalC,Pai (Figure 1). Then
PG sends masked inputs x and additive shares ⟨sBits(x)⟩1 to PE .

x[i] = x[i] + r(i) mod R, ⟨sBits(x)⟩ := sBits(x) + ⟨sBits(x)⟩0 over Z,

where r(i) ← PRF(sk, InWires(C)[i]), ⟨sBits(x)⟩0 ← [Nλω(1)]ℓx·⌈logR⌉.

– Eval : PG, PE evaluate gates g ∈ C in the topological order while maintaining the following invariant:
1. PG, PE jointly hold additive shares ⟨sBits(xg)⟩, where xg are masked input wire values to the gate

g
xg[i] = xg[i] + r(i) mod R where r(i) ← PRF(sk, InWires(g)[i]). (32)

2. PE holds the masked wire values xg.
To evaluate the gate g, PG, PE jointly call the sub-protocol ArithGateEval.

(PG : ⟨sBits(zg)⟩0), (PE : ⟨sBits(zg⟩1, zg))

← ArithGateEvalC,g ((PG : pd, ⟨sBits(xg)⟩0), (PE : pd, ⟨sBits(xg)⟩1,xg)
)

– Final : PG sends masks PRF(sk,OutWire(g)) mod R on all output gates g ∈ C to PE , who can then
recovers the output z by removing the masks modR.

Fig. 11. 2PC protocol for Arithmetic circuits with large modulus.

6.1 Handling Large R using Chinese Remainder Theorem

The overall protocol ArithCircEvalC,Pai (under Paillier groups) is shown in Figure 2. It’s mostly
the same as the Boolean protocol BoolCircEvalC,Pai except how wire values are masked.

– In the Boolean protocol, each wire value (on wire i) is masked by a single bit derived by
PRF(sk, i).

– In the arithmetic protocol, each wire value (on wire i) is masked by an integer mod R derived
by PRF(sk, i).

The wire values are always represented as bits. In particular, the input shares during the Init
phases are defined as additive shares of bit representations of the masked inputs. We can still
compile such a protocol to an arithmetic garbling scheme with arithmetic input labels, relying
on existing techniques [AIK11, LL24, Hea24] as explained in Section 6.

As in the Boolean case, we rely on a core sub-protocol ArithGateEvalC,g (Figure 12) to evaluate
arithmetic gates (+, ×). It proceeds in the following steps.

– First find enough number of O(log λ)-bit primes {pi} such that their product Q =
∏

i pi is
sufficiently large, Q > R2 · λω(1). Let ℓ be the number of primes needed. Also define CRT
representations with respect to Q as

CRT(x) = {xi} where xi := x mod pi, CRT−1({xi}) = x, (33)
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Sub-protocol ArithGateEvalC,g

The protocol runs between a garbler PG and an evaluator PE , to evaluate an arithmetic gate (+ or ×)
g ∈ C.
Inputs: PG, PE both hold public data pd = (aHMAC.pd,HSS.pdsk) (as defined in Equation 3), and jointly
hold additive shares ⟨sBits(x)⟩, ⟨sBits(y)⟩, where x, y ∈ ZR are masked inputs. PE additionally holds the
values x, y.
Outputs: PG, PE jointly output additive shares ⟨sBits(z)⟩, where z ∈ ZR is the masked output. PE

additionally holds the value z.

– Let CRT,CRT−1 be functions defined in Equation 33, and CCRT, C InvCRT be Boolean circuits imple-
menting them (Equation 34).

– PG, PE obtain additive shares ⟨sBits(CRT(x))⟩ through local computations:

PG :{⟨sBits(xi)⟩0},← EvalKey(aHMAC.pd, CCRT, ⟨sBits(x)⟩0),

PE :{⟨sBits(xi)⟩1} ← EvalTag(aHMAC.pd, CCRT, ⟨sBits(x)⟩1, x),

where xi := x mod pi. Similarly obtain shares of ⟨sBits(CRT(y))⟩.
– ∀i ∈ [ℓ], PG, PE apply BoolGateEval′ over the shares ⟨sBits(xi)⟩, ⟨sBits(yi)⟩.

(PG : ⟨sBits(zi)⟩0), (PE : ⟨sBits(zi)⟩0, zi)

← BoolGateEval′C,g((PG : pd, ⟨sBits(xi, yi)⟩0,
(PE : pd, ⟨sBits(xi, yi)⟩1, xi, yi),

)
where BoolGateEval′ is a slight variant of BoolGateEval (Figure 3) as explained in Section 6.1.

– PG, PE obtain additive shares ⟨sBits(z′)⟩ where z′ := CRT−1({zi}) through local computations.

PG :⟨sBits(z′)⟩0,← EvalKey(aHMAC.pd, C InvCRT, {⟨sBits(zi)⟩0}),

PE :⟨sBits(z′)⟩1 ← EvalTag(aHMAC.pd, C InvCRT, {⟨sBits(zi)⟩1}, {zi}),

Then obtain additive shares ⟨sBits(z)⟩ where z := z′ mod R through local computations.

PG :⟨sBits(z)⟩0,← EvalKey(aHMAC.pd,modR, ⟨sBits(z′)⟩0),
PE :⟨sBits(z)⟩1 ← EvalTag(aHMAC.pd,modR, ⟨sBits(z′)⟩1, z

′).

Fig. 12. 2PC protocol for Arithmetic gates.

and Boolean circuits computing those conversions.

CCRT(Bits(x)) := {Bits(x mod pi)}i = Bits(CRT(x)),

C InvCRT(Bits(CRT(x))) := Bits(x).
(34)

– PG, PE apply the aHMAC evaluations locally on the shares ⟨sBits(x)⟩, ⟨sBits(y)⟩ to obtain
shares of their CRT representations:

Input ⟨sBits(x)⟩, ⟨sBits(y)⟩
via aHMAC {⟨sBits(xi)⟩}, {⟨sBits(yi)⟩}.

– After decomposing the large values x, y into small CRT representations, PG, PE jointly call
BoolGateEval′

C,g
to evaluate the gate function g on each CRT components xi, yi:

via BoolGateEval′ {⟨sBits(zi)⟩},

where BoolGateEval′
C,g

is the same as BoolGateEvalC,g (Figure 3) except using a different
Boolean circuit C ′

g,v(sk) defined as follows.
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1. Parse v as two values xi, yi ∈ Zpi .
2. Compute x′i, y

′
i as

x′i = xi − (rx mod R), y′i = yi − (ry mod R) where

rx ← PRF(sk, InWires(g)[0]), ry ← PRF(sk, InWires(g)[1]).

3. Outputs Bits(zi) where zi is computed as

zi = g(x′i, y
′
i) + r(z) mod pi, where rz ← PRF(sk,OutWire(g)).

We note two facts of the values zi computed by BoolGateEval′
C,g

.

CRT−1({zi}) ≡ g(x, y) + PRF(sk,OutWire(g)) mod R,

|CRT−1({zi})| ≤ R2 · λω(1).
(35)

where x, y are the actual wire values to the gate g.
– Finally, convert the shares of small CRT components ⟨szi⟩ back into a share of an integer,

and then compute the mod R circuit on it.

via aHMAC {⟨sBits(z′)⟩}, where z′ = CRT−1({zi})
via aHMAC {⟨sBits(z)⟩}, where z = z′ mod R.

The security of the subprotocol ArithGateEvalC,g and of the overall protocol ArithCircEvalC,Pai

can be proved analogously to the Boolean case. Hence we omit them here.

7 Concrete Efficiency Analysis

In this section, we analyze the concrete garbling sizes of our non-leveled schemes, which corre-
sponds to the communication sizes in the protocols BoolCircEvalC,Pai (Figure 1, 2), BoolCircEvalC,Pri

(Figure 9), and BoolCircEvalC,Lat (Figure 7). They consist of two parts: (1) 1-bit per gate in the
circuit (during the Eval phase), and (2) public data pd (during the Init phase). We analyze the
size of the public data pd in different instantiations below, and summarize them in Table 3.

Concrete Size Asymptotic

Ours (Paillier) 0.38 MB 8λ⌈logN⌉
Ours (Prime-Order) 5.1 MB (4/β)λ2⌈log p⌉

size opt. ver. 0.13 MB

Ours (Lattice) 71 MB 4λn⌈log q⌉
[LWYY24] (Lattice) 10 GB 4λn⌈log q⌉2

Table 3. Concrete sizes for the public data pd in our non-leveled schemes, and an optimistic estimation
for [LWYY24]. Our scheme under prime-order groups has a 1/poly correctness and privacy error. Here N is
the Paillier modulus, p is the prime-order group size, β denotes digit-decomposition by 2β (explained below), and
n, q are the degree and the modulus of the polynomial ring Rq = Zq[X]/(Xn + 1).

In the following, we use λ = 128 as the computational security parameter, and κ = 40 as the
statistical security parameter. We also recall the following parameters:
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– Under Paillier groups, N and ζ specify the group Z∗
Nζ+1 .

– Under prime-order groups, p denotes the group size.
– Under lattices, n and q specify the polynomial ring Rq = Zq[X]/(Xn +1), where the degree

n is a power-of-two.

Paillier Groups Instantiation. The public data for aHMAC evaluations contains a λ-bit seed,
and 3⌈logN⌉ elements in Z∗

Nζ+1 . (See Lemma 2.) The public data for HSS evaluations can share
the seed from aHMAC, and additionally contains 4λ elements in ZNζ+1 . In total:

|pdPai| = λ+ (3⌈logN⌉+ 4λ) · (ζ + 1) · ⌈logN⌉.

An optimization to reduce this size is to compress the public data of aHMAC. As long as the
order of the sub-group generated by (1+N) is sufficiently larger than the secret exponent s, i.e.,
N ζ ≫ |s|, we can compress the public data from consisting 3⌈logN⌉ elements to 3 elements:

gr
∗
, gr

∗s, gr
∗s2 · (1 +N)s, where r∗ =

∑
i

r[i], and r← [N ]⌈logN⌉.

Note that the compressed version of pd can be derived from the original, hence is still secure.
Furthermore, if aggressively assuming the secret exponent in CP-DDH only needs to have 2λ 14

instead of ⌈logN⌉ bits, it suffices to set ζ = 1 to guarantee N ζ = N ≫ 2λ. In total

|pdPai| = λ+ (3 + 4λ) · 2 · ⌈logN⌉.
// w/ compressed aHMAC pd and small exponents.

Concretely, we set the Paillier modulus N to have 3072 bits (which is believed to provides 128
bits of security), which gives |pdPai| = 0.38MB.

Prime-Order Groups Instantiation. The public data for aHMAC evaluations contains a λ-bit
seed, and 3⌈log p⌉ elements in Zp. (See Lemma 6.) The public data for HSS evaluations can share
the seed from aHMAC, and additionally contains 2λ+2λ⌈log p⌉ elements in Zp. (See Lemma 9.)
In total:

|pdPri| = λ+ (3⌈log p⌉+ 2λ+ 2λ⌈log p⌉) · ⌈log p⌉.

We can reduce this size by similarly assuming the secret exponent only needs 2λ instead of
⌈log p⌉ bits. Furthermore, we can considering digit-decomposition instead of bit-decomposition
of the secret s. When using a base 2β, the public data for aHMAC now only needs to contain
6λ/β elements, and the public data for HSS only needs to contain 2λ+ (4/β)λ2 elements. 15 A
final optimization is to use a random oracle (RO) to obtain the first elements in all ElGamal
ciphertexts for free, as suggested in [BGI16], which reduces the public data for HSS by a factor
of 2. In total:

|pdPri| = λ+
(
(6/β + 1)λ+ (2/β)λ2

)
· ⌈log p⌉.

// w/ small exponents, digit decomposition, and RO.

Concretely, we consider two settings. First, optimizing for computation time, we follow the
optimized implementation from [BGI17] to use “conversion friendly” primes for p. As noted

14 We estimate a 2λ-bit exponent to have λ-bit security following the estimation for small-exponent ElGamal
in [BGI17].

15 As a consequence of using digit decomposition, the computation cost of our scheme will increase (by a at least
a factor of 2β).
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there, compared to a general prime, such conversion friendly primes needs to have a 50% larger
bit-length to provide a similar level of security. Therefore, we estimate ⌈log p⌉ = 5000 to provide
128 bits of security. We also follow [BGI17] to set β = 4, which gives |pdPri| = 5.07MB.

Second, optimizing for garbling size, we choose elliptic curves of 256-bit as the prime-order
group, and more aggressively set β = 8, which gives |pdPri| = 0.13MB.

Lattice Instantiation. The public data for aHMAC evaluations contains a λ-bit seed, and 3
elements in Rq. (See Lemma 11.) The public data for HSS evaluations can share the seed from
aHMAC, and additionally contains 4λ elements in Rq. (See Lemma 14.) In total:

|pdLat| = λ+ (3 + 4λ) · n · ⌈log q⌉.

Concretely, we follow [BKS19] to use uniform ternary secrets with coefficients from {0,−1, 1},
and rounded Gaussian error distributions with parameter σ = 8/

√
2π. We choose a modulus

with ⌈log q⌉ = 142 bits, and the polynomial ring with degree n = 213 = 8192. These settings
are estimated 16 to achieve 128 bits of security, and a correctness error 2−40. We get |pdLat| =
71.42MB.

Comparing with the Scheme of [LWYY24] Based on FHE. The scheme of [LWYY24]
is based on the GSW [GSW13] fully homomorphic encryption (FHE) scheme (and assuming its
KDM-security). Under the RLWE version of GSW, the garbling material contains 1 bit per gate,
a λ-bit seed, public parameters pp, and λ FHE ciphertexts. We refer to the seed, pp and the
ciphertexts as the public data pdGSW in this scheme. In more detail, pp consists of 2 + 8⌈log q⌉
elements in Rq, and each ciphertext consists of 4⌈log q⌉ elements in Rq. In total:

|pdGSW| = λ+ (2 + 8⌈log q⌉+ 4⌈log q⌉λ) · n · ⌈log q⌉.

Compared to our lattice instantiation, the public data in [LWYY24] is asymptotically greater
by a factor of log q, assuming the polynomial ring degree n and the modulus q being equal.

In the GSW FHE scheme, the modulus q not only needs to satisfy a similar set of constraints
to our lattice instantiation, but also needs to support homomorphic evaluations of a low-depth
PRG. Therefore, we expect concretely the scheme of [LWYY24] needs a much larger q than ours,
and consequently also a larger n, to achieve 128 bits of estimated security. Optimistically, under
the same settings of ⌈log q⌉ = 142 and n = 213 = 8192, we get |pdGSW| = 10.00GB.

Acknowledgments. Y. Ishai was supported by ISF grants 2774/20 and 3527/24, BSF grant
2022370, and ISF-NSFC grant 3127/23. H. Lin and H. Li were supported by NSF grant CNS-
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16 Using the LWE security estimator: https://github.com/malb/lattice-estimator
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