
High-Order Masking of BIKE

Matthias Trannoy1,2

1 University of Luxembourg
2 IDEMIA, Cryptography & Security Labs, Courbevoie, France

matthias.trannoy@idemia.com

Abstract. Every cryptographic implementation on embedded device is vulnerable to side-channel attacks. To
prevent these attacks, the main countermeasure consists in splitting each sensitive variable in shares and process-
ing them independently. With the upcoming of new algorithms designed to resist quantum computers and the
complexity of their operations, this protection represents a real challenge. In this article, we present an attack
on an earlier attempt to protect the decoder of BIKE cryptosystem against first-order attack. Additionally, we
introduce a new procedure for the high-order masking of the decoder, up-to-date with its latest improvement. We
also present the first fully masked implementation of the whole cryptosystem, including the key generation and
the encapsulation. Eventually, to assess the correctness of our countermeasures and initiate further comparison,
we implemented our countermeasures in C and provide benchmarks of their performance.

1 Introduction

Post-Quantum Cryptography. The emergence of quantum computers poses a significant security risk
to our existing methods of communication. Currently, the security of our main asymmetric cryptographic
systems, relying on RSA and Elliptic Curve cryptography, is at stake. This concern arises from Shor’s
development of efficient algorithms capable of solving the factorization and discrete logarithm problems on
a scalable quantum computer. To address this impending threat, the National Institute of Standards and
Technology (NIST) initiated a standardization process in 2016 to identify new standards for asymmetric
cryptography encompassing encryption and signatures. This competition eventually reached an important
milestone in 2022 with the adoption of Kyber as the standard for Key Encapsulation Mechanism (KEM).

Moreover, NIST has initiated a fourth round with the objective of selecting a KEM based on Error-
correcting codes in addition to the lattice-based Kyber scheme. This supplementary round aims to further
enhance the security and resilience of the chosen algorithms against potential quantum attacks.

BIKE Key Encapsulation Mechanism. BIKE, BIt-flipping KEy, is an improvement of the original
McEliece scheme. Its security relies on the hardness of decoding erroneous codewords in an arbitrary error
correcting code. Additionally, BIKE employs more structured code than McEliece, which allows optimization
of the computation involved, along with much more compact keys and ciphertext sizes. The main idea of
the algorithm is to use two representations of an error correcting code: a public one for which correcting
errors is hard, and a secret one that allows efficient error correction.

Side-channel Vulnerabilities. When implementing cryptography on embedded devices, it is well-known
that implementations can suffer from attacks that are not considered in the security model in which BIKE
security is proven. Namely, those peculiar attacks make use of physical leakage happening during the exe-
cution of the algorithm to retrieve sensitive intermediate variables that a classic attacker could not access.
With the emergence of more and more powerful attacks using template attacks and deep-learning assistance,
those attacks aim to extend their range of targets and attack CPU implementations.

Masking Countermeasures. To prevent these attacks, the generic countermeasure is masking. Given
a sensitive variable x, the idea of masking is to blind x into x ⊕ r with a uniform random mask r and
perform operations on x ⊕ r and r separately. Therefore, any leakage on one of the shares x ⊕ r or r
is decorrelated from the sensitive data x. Formally, we model the adversary to be able to probe up to t

intermediate variables during the execution of the algorithm. When t ≥ 2, masking with 2 shares is not
sufficient. To ensure t-probing security, we need to split sensitive data into at least t + 1 shares, with t
uniform random masks. In 2003, a generic compiler was described in [ISW03]. In their work, they showed
how to transform any Boolean circuit into t-probing secure with 2t+1 masks and with a factor of O(t2) on
the number of gates. Later, with the introduction of the Non-Interference framework [BBD+16], the authors
showed how to reduce the number of masks to t. They developed a framework in which the security of a
whole circuit can be broken down into the security of individual parts by introducing stricter notions of
security, the Non-Interference (NI) and Strong Non-Interference (SNI), along with composability theorems.
While theoretically, any circuit can be compiled into an equivalent t-probing secure one, the conversion is
in practice quite inefficient. Particularly in the case of post-quantum cryptography, it represents a challenge
due to the complexity of the operations involved.

State of the Art. To the best of our knowledge, the only article dealing with the masking of the BIKE
scheme is [CEvMS16]. This article initiated the research on masking BIKE. However, we note the following
points. On the one hand, the article only deals with the masking of the decoding part of the algorithm and
not the complete scheme. This motivated our work since the decoder has been tweaked in the past 7 years
and the countermeasure does not directly apply. Additionally, in the case of Key Encapsulation, we also need
to mask the encryption, and as recently shown, new template attacks can target the key generation directly.
This shows the necessity of masking the whole scheme. On the other hand, this article’s countermeasure
only claims to achieve first-order security, and as we will show in our article, their implementation actually
suffers from a 1st-order attack.

Concurrent Work. Concurrently to our paper a recent e-print dealing with BIKE high-order masking
was published [DR24]. While our article shares many similarities with the work of [DR24], we diverge by
proposing an alternative approach to sparse representation, leveraging the inherent structure of the ring
Z2[X]/(Xr − 1). This alternate representation facilitates a significantly more efficient conversion between
sparse and dense representations of masked polynomials. Furthermore, alongside our proposed countermea-
sures, we unveil an attack targeting a previous endeavor to protect BIKE cryptosystem against side-channel
attacks, providing a comprehensive examination of security measures and vulnerabilities.

Our Contributions. In this paper we present a high-order description of BIKE cryptosystem, a NIST
fourth round candidate. More precisely, we provide high-order algorithm of each step of the cryptosystem,
including the key generation, the encapsulation and the decapsulation. Our countermeasures are proven
secure against t-probing attacker with the methodology introduced by [BBD+16]. The main challenge is the
high-order masking of the decoder of BIKE error correcting codes. We review an earlier attempt to secure
the decoder against first order attack with threshold implementation methodology [CEvMS16] against which
we present a first order attack using the unmasking of an intermediate variable, the UPC. Additionally, our
countermeasure focuses on the high-order security (not only first-order security) and is up-to-date to the
latest refinement of the decoder. Regarding the key generation and the encapsulation, we present a high-
order countermeasure for the fixed-weight sampler of BIKE. In particular, we introduce a new representation
of masked polynomial of fixed-weight altogether with this sparse representation, we also describe a procedure
to convert this new representation into the usual arithmetic masked representation of polynomials.

Eventually, we provide a performance analysis of our countermeasure with a proof-of-concept implemen-
tation made in C and run on an AMD Ryzen CPU.

2 Definitions and Notations

2.1 Notations

In this section we detail the notations and parameters we will use across the article.

2

1. System Parameters:

– r (block length): a prime number such that 2 is of maximal order in Z×r .
– w (row weight): an even positive integer such that w/2 is odd.

– t (error weight): a positive integer.

– ℓ (shared secret size): a positive integer.

2. Space sets:

– M = {0, 1}ℓ: the message space.

– K = {0, 1}ℓ: the shared secret space.

– R = F2[X]/(Xr − 1): cyclic polynomial ring.

– Hw = {(h0, h1) ∈ R2 | |h0| = |h1| = w/2}: the private key space.

– Et = {(e0, e1) ∈ R2 | |e0|+ |e1| = t}: the error space.

3. Hash Functions:

– H :M 7→ Et: Instantiated as the EOF SHAKE256

– K :M×R×M 7→ K: Instantiated as SHA3− 384

– L : R2 7→ M: Instantiated as SHA3− 384

2.2 Code Definitions

The BIKE scheme is built upon Quasi-Cyclic Moderate Density Parity Check McEliece, QC-MDPC.

In the BIKE scheme, error correcting codes are characterized by their parity-check matrices. For a parity
check matrix H ∈ Fn1×n2

2 , a codeword c ∈ Fn2
2 belongs to the code if and only if its syndrome s = H ·c ∈ Fn1

2

is zero.

The codes used in BIKE are more structured than the initial McEliece, notably being Quasi-Cyclic.

Definition 1 (Quasi-Cyclic Code). An error correcting code is termed Quasi-Cyclic if there exists an
integer n0 such that for all codewords c, the cyclic shift shiftn0(c) by n0 places is also a code word.

This definition implies, in particular, that the Parity-Check Matrix H can be expressed in blocks as
H = [H0 | · · · | Hn0−1], where each sub-matrix Hi ∈ Fn1×n1

2 is a square circulant. It also implies that
n2 = n0 × n1.

In the case of BIKE, n0 = 2, signifying that the parity-check matrix can be expressed as H = [H0 | H1] ∈
Fr×2r
2 , where r is the block length parameter of the scheme.

Definition 2 (Circulant Matrix). A matrix H ∈ Fr×r
2 is deemed circulant if and only if it can be

expressed as:

H =


a1 a2 · · · an
an a1 · · · an−1
...
. . .

. . .
...

a2 a3 · · · a1


Circulant matrices can be succinctly represented by their first row a1, . . . , an. Additionally, the sets of

circulant matrices are isomorphic to the set of polynomials F2[X]/(Xr − 1) = R. Hence, the parity-check
matrix H in the BIKE scheme can be represented as a pair of polynomials (h0, h1).

Finally, the secret matrix H exhibits moderate density, enabling a more compact representation of the
secret key by storing only the positions of the non-zero coefficients. This density is also a prerequisite for
the decoding algorithm described in Section 3.1 to function.

Definition 3 (Moderate Density Parity Check Code). A quasi-cyclic error correcting code is deemed
as moderate density parity check if and only if it the row weight of the parity-check matrix is O(

√
r).

3

In the case of BIKE, the secret key (h0, h1) has a row weight of w. Specifically, each polynomial h0 and
h1 has the same weight w/2. Since 2 is of maximal order in Z×r each polynomial h0 and h1 is invertible in
Z2[X]/(Φr), where Φr is the r-th cyclotomic polynomial. Additionally, w/2 is odd, it ensures that both h0
and h1 are invertible in Z2[X]/(X + 1) polynomials. From the Chinese Remainders Theorems, the choice
of parameters garantees that both h0 and h1 are invertible polynomials in Z2[X]/(Xr + 1)

Throughout the remainder of the article, we will favor the polynomial notation due to its more compact
form.

2.3 Non-Interference Security Notions

To formalize the security properties of our masking countermeasures, we recall two key notions introduced
in [BBD+16]: Non-Interference (t-NI) security and Strong Non-Interference (t-SNI) security.

Definition 4 (t-NI Security). Consider a gadget G taking n input shares (a1, . . . , an) and producing n
output shares (b1, . . . , bn). The gadget G is t-NI secure if, for any set of t1 intermediate variables and any
subset O ⊂ [1, n] of output indices such that t1 + |O| ≤ t, there exists a subset of input indices I ⊂ [1, n]
such that the t1 intermediate variables and the outputs b|O can be perfectly simulated from a|I , with |I| ≤ t1.

Definition 5 (t-SNI Security). Let G be a gadget taking n input shares (a1, . . . , an) and outputting n
shares (b1, . . . , bn). The gadget G is t-SNI secure if, for any set of t1 intermediate variables and any subset
O ⊂ [1, n] of output indices such that t1 + |O| ≤ t, there exists a subset of input indices I ⊂ [1, n] such that
the t1 intermediate variables and the outputs b|O can be perfectly simulated from a|I , with |I| ≤ t1.

These security notions imply the t-probing security of [ISW03]. Therefore, it ensures that an adversary
capable of probing up to t variable cannot retrieve any sensitive data. Moreover, the authors of [BBD+16]
additionally proved composability theorems that allows to break down the security of an algorithm by
proving the security of its individual parts. The two security notions differs in the following sense.

The t-NI security ensures that the total number of input shares required for simulation is bounded by
the total number of probes and outputs combined.

On the other hand, the Strong Non-Interference (t-SNI) security modifies this requirement, limiting the
total number of input shares by the number of internal probes only.

These security notions were extended in work by [BBE+18], who introduced the Non-Interference with
public output (t-NIo) security.

Definition 6 (t-NIo Security). Let G be a gadget taking input (xi)1≤i≤n and outputting b. The gadget G
is t-NIo secure if, for any set of t1 ≤ t intermediate variables, there exists a subset I of input indices with
|I| ≤ t1, such that the t1 intermediate variables can be perfectly simulated from x|I and b.

The t-NIo security is particularly relevant in scenarios like encryption and encapsulation, where the
algorithm processes sensitive data (e.g., message and session key), but part of the output (e.g., ciphertext)
needs to be unmasked.

3 Description of BIKE: Bit Flipping Key

This section provides an overview of the BIKE Key Encapsulation Mechanism, an enhancement of the orig-
inal Code-Based McEliece. The BIKE scheme leverages structured codes to achieve improved performance
with significantly reduced key sizes. Specifically, it capitalizes on the Quasi-Cyclic (QC) code structure to
compress matrices, benefiting from faster computations due to the isomorphism to polynomial quotient
rings.

The core idea of the BIKE scheme revolves around the difficulty of decoding errors in arbitrary quasi-
cyclic codes. The secret key is a low-weight parity-check matrix sk = (h0, h1) ∈ (F2[X]/Xr−1)⋆. The public
key pk = (1, h) is derived from the secret key, where h = h1 · h−10 . Encoding a message involves introducing

4

an error (e0, e1), with syndromes computed in both the public code (spub = 1 · e0 + h · e1) and the secret
code (spriv = h0 · e0 + h1 · e1). Notably, the private syndrome can be deduced from the public one using the
private row h0, as shown by the equation:

h0 · spub = h0e0 + h0he1 = h0e0 + h1e1 = spriv

The ciphertext then corresponds to the tuple (c0, c1) = (spub,m ⊕ L(e0, e1)), where c0 is the public
syndrome spub and c1 the message blinded by a hash of the error, m⊕ L(e0, e1).

The security of BIKE then relies on the hardness of retrieving low-weight h0 and h1 from h and the
difficulty of decoding the error given the public code representation and the public syndrome spub.

In order to decrypt a ciphertext, one needs to first decode the error vector from the public syndrome c0
and then recompute the mask of the message in c1. Decoding the error (e0, e1) from the private syndrome
and the private key (h0, h1) is achieved using the Bit-Flipping decoding algorithm introduced by Galager
in [Gal62]. This algorithm’s efficiency and correctness depend on the quasi-cyclic structure of the code and
the low-weight of the parity-check matrix. To address potential decoding failures, the algorithm was refined
in [DGK19] to minimize the Decoding Failure Rate, upon which the CCA security of BIKE relies (refer to
Section 3.1 for detailed explanation of the decoder).

The following sections provide a detailed explanation of each part of the BIKE scheme.

Key Generation The key generation process, illustrated in Alg. 1, proceeds as follows: First, it generates
two rows h0 and h1 of odd weight w/2. Due to the chosen parameters, the polynomials h0 and h1, or
equivalently the circulant matrices they represent, are invertible. This allows the computation of the public
key as h = h1 · h−10 . Additionally, a seed σ is generated for implicit rejection during decapsulation [BP18].
The security of the private key relies on the difficulty of recomputing h0 and h1 from h.

Encapsulation The encapsulation process, depicted in Alg. 2, proceeds as follows: It generates a random
message m and hashes it using a special hash function H, producing an error vector e = (e0, e1) of fixed
weight t. The ciphertext is then computed as the concatenation of the syndrome e0+ e1 ·h and the blinding
of the message m through L(e0, e1). The security of the ciphertext lies in the difficulty of computing the
error vector (e0, e1) from its syndrome spub = e0 + e1 · h given a bad representation of the code (1, h).

Decapsulation The decapsulation process, depicted in Alg. 3, proceeds as follows: It decodes the error
(e0, e1) using the decoding algorithm in Alg. 6 given the secret key (h0, h1). It then recomputes the message
m from the ciphertext c1 and tests its well-formedness by recomputing e and checking its correspondence
with the output of the decoder. Depending on the outcome of this check, the real or dummy session key is
output.

Table 1 summarizes the parameters corresponding to several levels of security defined by NIST.

Algorithm 1 Key Generation

Output: (h0, h1, σ) ∈ K, h ∈ R
1: h0, h1 ←$ Hw

2: h← h1 · h−10

3: σ ←M
4: return (h0, h1, σ), h

Algorithm 2 Encapsulation

Input: h
Output: K ∈ K, c ∈ R×M
1: m←$M
2: e0, e1 ← H(m)
3: spub ← e0 ⊕ e1 · h
4: (c0, c1)← (spub,m⊕ L(e0, e1))
5: K ← K(m, c0, c1)
6: return K, (c0, c1)

5

Algorithm 3 Decapsulation

Input: (h0, h1, σ) ∈ K ×M, (c0, c1) ∈ R×M
Output: K ∈ K
1: (e′0, e

′
1)← decode(c0h0, h0, h1)

2: m′ ← c1 ⊕ L(e′0, e
′
1)

3: if (e′0, e
′
1) = H(m′) then

4: K ← K(m′, c0, c1)
5: else
6: K ← K(σ, c0, c1)
7: end if
8: return K

NIST Security r w t

Level 1 12323 142 134

Level 3 24659 206 199

Level 5 40973 274 264

Table 1. BIKE parameters.

3.1 Decoding Algorithm

This section offers a comprehensive explanation of the Bit Flipping decoding algorithm employed in the
decryption process of BIKE. The algorithmic intuition is presented, followed by a step-by-step breakdown
of its operation.

Consider a valid codeword, denoted a null error (e0, e1) = (0, 0). By design, we have the syndrome
s = h0e0 + h1e1 = 0, where (h0, h1) represents the parity-check matrix. Now, assume we have a non-zero
error, denoted as (e0, 0), obtained by introducing a single error at the i-th position, effectively flipping
the i-th bit. This error can be represented as e1 = Xi in the polynomial representation. Computing the
syndrome for (e0, 0) yields:

s = (h0, h1) · (e0, 0) = Xi · h0 ⊕ 0 · h1 = Xih0

Here, Xih0 corresponds to a cyclic shift of i places of the polynomial h0 since h0 ∈ F2/(X
r − 1).

Equivalently, it corresponds to the i-th row of the parity-check matrix since the matrix is circulant.
By comparing the syndrome s to the rows of h0, X

jh0, we can determine which bit was erroneously
flipped. Specifically, we employ the Hamming weight of s ∧ Xjh0 to assess the similarities between s and
the rows of h0. In the literature, this value is generally denoted as the Unsatisfied Parity Check (UPC).

In the case of multiple errors, the same procedure applies. We flip the i-th bit of c0 when the syndrome
s and Xih0 are sufficiently close, indicated by ∥s ∧Hj∥1 ≥ T , where T represents a threshold value. This
approach enables effective correction of multiple errors. The same process is then repeated by comparing
the syndrome to rows of h1 to correct errors occurring in c1.

The success rate of the decoding algorithm is further influenced by the selection of appropriate threshold
values T and the sparsity of the parity-check matrix.

The current decoding algorithm utilized in BIKE, known as the Black-Gray decoder [DGK19], is a variant
derived from the original Bit-Flipping algorithm presented in [Gal62]. It has been tailored to minimize the
decoding failure rate (DFR) while maximizing efficiency. The Black-Gray algorithm differs in the choice of
parameters, the number of Bit-Flip Iterations, and the addition of two so-called masked iterations.

6

Algorithm 4 Bit-Flipping iteration BFIter

Input: A syndrome s, an error vector (e0, e1), a threshold T , a parity-check matrix (h0, h1)
Output: An updated error vector e, two masks black and gray

1: for k = 0 to 1 do
2: for j = 1 to r do
3: if ∥Xjhk ∧ s∥1 ≥ T then

4: e
(j)
k ← e

(j)
k ⊕ 1

5: black
(j)
k ← 1

6: elseif ∥Xjhk ∧ s∥1 ≥ T − τ

7: gray
(j)
k ← 1

8: end if
9: end for
10: end for
11: return (e0, e1), (black0, black1), (gray0, gray1)

Algorithm 4 sums up the original Bit-Flip iterations, during the bit flip iterations it also keeps track of
the flipped bit in the variable black and the bit that was close to the threshold but not flipped in the gray
variable.

Algorithm 5 Bit-Flipping masked iteration BFMaskedIter

Input: A syndrome s, a error vector (e0, e1), a mask (mask0,mask1), a parity-check matrix (h0, h1)

Output:
1: for k = 0 to 1 do
2: for j = 1 to r do
3: if ∥Xjhk ∧ s∥1 ≥ (w/2 + 1)/2 + 1 then

4: e
(j)
k ← e

(j)
k ⊕mask

(j)
k

5: end if
6: end for
7: end for
8: return e0, e1

Algorithm 5 describe the masked bit-flip iterations that are added in [DGK19]. The mask involved are
the black and gray variable respectively. It proceed similarly to a classic Bit-Flip iteration with a fixed
threshold (w/2 + 1)/2 + 1. It differs then to the flipping of the error bit which occurs if and only if the bit
of the mask, black or gray, is set. This additional steps allows to correct bits that was wrongfully flipped
during the first iterations thanks to the black mask and correct bits that should have been flipped during
the first iteration thanks to the gray mask.

7

Algorithm 6 Black-Gray Decoder decode

Input: A syndrome s ∈ Fr
2, a parity-check matrix (h0, h1)

Output: An error vector (e0, e1) ∈ F2r
2 such that s = e0h0 ⊕ e1h1 or a decoding failure ⊥

1: e0, e1 ← 02r, black0, black1 ← 02r, gray0, gray1 ← 02r

2: for i = 1 to NbIter do
3: T ← threshold(∥s∥1)
4: (e0, e1), (black0, black1), (gray0, gray1)← BFIter(s, (e0, e1), T, (h0, h1))
5: s← s⊕ e0h0 ⊕ e1h1
6: if i = 1 then
7: (e0, e1)← BFMaskedIter(s, (e0, e1), (black0, black1), (h0, h1))
8: s← s⊕ e0h0 ⊕ e1h1
9: (e0, e1)← BFMaskedIter(s, (e0, e1), (gray0, gray1), (h0, h1))
10: s← s⊕ e0h0 ⊕ e1h1
11: end if
12: end for
13: if s = 0 then
14: return e0, e1
15: else
16: return ⊥
17: end if

Eventually, the whole algorithm is described in Algorithm 6. It repeats NbIter Bit-Flip operations and
2 masked bit-flip iterations for the masks black and gray, right after the first Bit-Flip. The threshold for
the Bit-flip operation is also recomputed for each new iteration depending on the Hamming weight of the
syndrome through the following procedure described in Algorithm 7

Algorithm 7 Threshold threshold

Input: The Hamming weight S of a syndrome
Output: The decoding threshold th

1: if NIST Level 1 then
2: return max(⌊0.0069722 · S + 13.530⌋, 36)
3: end if
4: if NIST Level 3 then
5: return max(⌊0.005265 · S + 15.2588⌋, 52)
6: end if
7: if NIST Level 5 then
8: return max(⌊0.00402312 · S + 17.8785⌋, 69)
9: end if

Masking The Scheme Like every cryptographic scheme implemented on embedded devices, the BIKE
scheme is susceptible to side-channel attacks. This realization has prompted the development of various
masking techniques and frameworks to enhance our countermeasures. Depending on the nature of the
operations involved, different types of masking are preferred, with Boolean and Arithmetic masking being
common standards for Boolean and arithmetic operations, respectively. Conveniently, in the case of BIKE,
the characteristic 2 of arithmetic operations causes the two masking representations to coincide in most
cases.

To address potential side-channel vulnerabilities, we discuss a first-order attack on the masking of the
decoder proposed by [CEvMS16]. This attack highlights the necessity of masking the Unsatisfied Parity

8

Check (UPC) value. Subsequently, we delve into the high-order masking of the BIKE scheme, starting with
the masking of the decapsulation process, which represents a significant challenge. We then explore the
masking strategies for key generation and encapsulation.

For each procedure in the scheme, we provide a comprehensive list of sensitive data and outline the
corresponding strategies employed to protect it.

4 Attack on [CEvMS16]

Existing Research. To date, the sole paper addressing the issue of masking in the context of BIKE is
[CEvMS16]. The primary contribution of this paper is the proposal of a first-order threshold implementation
for the decoder. However, since 2016, significant optimizations have been made to the decoder. While their
countermeasures could potentially be adjusted to accommodate these modifications, it is worth noting that
the authors of [CEvMS16] applied masking to nearly every step of the algorithm, except for the unsatisfied
parity-check value (UPC), denoted as ∥Xjhk ∧ s∥1. They argued that this value is not sensitive to side-
channel attacks.

Our Contributions. In the following sections, we demonstrate that the UPC value is actually sensitive to
side-channel attacks. Specifically, we describe a first-order attack on the UPC that enables the construction
of a side-channel assisted chosen-ciphertext attack (CCA) on the private key variables h0 and h1. This attack
allows for the computation of shifts in the private key, denoted as h′0 = Xih0 and h′1 = Xih1. These shifted
private keys are valid decryption keys corresponding to the same public key h. We outline the underlying
principle of this attack. The significance of this attack underscores the necessity to apply masking to the
check operation on line 3 of Algorithm 4. The following section will be dedicated to the description of our
attack.

4.1 Attack Principle

We assume the ability to probe the value of upc at the first iteration of Algorithm 4, i.e., the first iteration
of the For loop in line 3. This value corresponds to the value ∥s ∧ h0∥1 for a given input s = c0 · h0 =
(e0 + e1h)h0 = e0h0 + e1h1, for adversarially chosen (e0, e1). Equivalently, we assume we are able to utilize
side-channel analysis to construct an oracle, denoted as Oupc, which takes an error (e0, e1) as input and
returns the value ∥(h0e0 + h1e1) ∧ h0∥1.

In particular, we can query the oracle using the monomials (Xi, 0). This provides us with the values
∥Xih0 ∧ h0∥1 for 1 ≤ i ≤ r. Notably, for i = 0, we observe that ∥h0 ∧ h0∥1 = ∥h0∥1 = w/2, which is
independent of the key. However, for i = 1, we encounter an interesting scenario:

∥Xh0 ∧ h0∥1 = ∥shift1(h0) ∧ h0∥1

=
r∑

i=1

h
(i)
0 h

(i+1)
0

= |{i | h(i)0 and h
(i+1)
0 are 1}|

̸= 0⇔ there are two consecutive 1 in h0

This generalizes for 1 ≤ i ≤ r − 1: ∥Xih0 ∧ h0∥1 ̸= 0 if and only if there are two 1’s separated by i− 1
places in h0. Intuitively, knowledge of all the spaces between 1’s enables the construction of h0 up to a shift.
However, to ease the attack we can query our oracle Oupc with additional values to recover the key.

9

4.2 Description of the Attack

First Step We find i0 > 1 such that ∥Xi0h0 ∧ h0∥1 = 1 - which happens almost certainly due to sparsity
of h0. We therefore deduce there are exactly two 1’s separated by i0 − 1 places. We can construct h′0 =
(1, ⋆, . . . , ⋆, 1, ⋆, . . . , ⋆), where the second 1 is in the i0-th position and ⋆ represents unknown values. Up to

a shift of an unknown k0 places, we know that h′0 corresponds to h0, i.e., h
(k0)
0 = h

(k0+i0)
0 = 1.

Second Step We query our oracle Oupc using combinations Xi0⊕Xj for j ̸= i0. Through some calculations,
we remark:

∥(Xi0 ⊕Xj)h0 ∧ h0∥1 = ∥(Xi0h0 ⊕Xjh0) ∧ h0∥1

=

r∑
k=1

(h
(i0+k)
0 ⊕ h

(j+k)
0) · h(k)0

=

r∑
k=1

(h
(i0+k)
0 + h

(j+k)
0 − h

(i0+k)
0 h

(j+k)
0) · h(k)0

=

r∑
k=1

h
(i0+k)
0 h

(k)
0 + h

(j+k)
0 h

(k)
0 − h

(i0+k)
0 h

(j+k)
0 h

(k)
0

= ∥Xi0h0 ∧ h0∥1 + ∥Xjh0 ∧ h0∥1 −
r∑

k=1

h
(i0+k)
0 h

(j+k)
0 h

(k)
0

r∑
k=1

h
(i0+k)
0 h

(j+k)
0 h

(k)
0 = Oupc(X

i0) +Oupc(X
j)−Oupc(X

i0 ⊕Xj)

The sum on the left hand side of the equation can be simplified using ∥Xi0h0∧h0∥ = 1. Indeed, we have

h
(i0+k)
0 h

(k)
0 ̸= 0 only for k = k0 and h

(i0+k0)
0 h

(k0)
0 = 1.. Therefore, we deduce:

h
(j+k0)
0 =

r∑
k=1

h
(i+k)
0 h

(j+k)
0 h

(k)
0

= Oupc(X
i0) +Oupc(X

j)−Oupc(X
i0 ⊕Xj)

Consequently, by setting h
′(j)
0 = 1 if and only if Oupc(X

i0)+Oupc(X
j)−Oupc(X

i0 ⊕Xj) ̸= 0, we obtain
a column h′0 that is equal to h0 up to an unknown shift of k0 places, h′0 = Xk0h0.

Last Step From the public key h = h1h
−1
0 , we can then compute h′1 = h′0h = Xk0h1h

−1
0 h0 = Xk0h1. Even-

tually, we obtain a couple (h′0, h
′
1) which corresponds to a shift of the private key (h0, h1) but equivalently

corresponds to a private key leading to the same public key h. Therefore, our constructed (h′0, h
′
1) despite

not being the original private key, corresponds to a decryption key for h.
We describe in Alg. 18 in Appendix A a pseudo code for the attack.
Eventually, the attack described above shows the necessity to mask the upc value and therefore any

computation in which upc is involved.

5 Masking the Decapsulation

In this section, we detail the masking strategy employed in the decapsulation process of the BIKE scheme.
The critical variables are the session key K and the private key h0, h1. For security against side-channel
attacks, we therefore need to mask any intermediate computation upon which they directly relies. This

10

implies masking the syndrome, the error vector, the message and therefore the decoder algorithm and the
three hash function H, K and L.

The following section is organized as follows. It first describes the masking of the decoder by detailing
the masking of each individual iteration. Then, we describe the masking of the threshold function and the
Hamming weight that are employed for the decoder. Eventually, the masking of the whole decapsultation
in summed up in Alg. 12.

In order to assess the effectiveness of our countermeasure we provide for each algorithm a complexity
and security analysis.

5.1 Masking the decoder

As explained above, we need to protect the syndrome, the error vector and the private key.

Therefore, when applying our countermeasure to the decoder this implies that we need to mask any
intermediate variable it relies on. In particular, we need to mask the Hamming weight and the threshold
functions which are described in sections 5.3 and 5.2 respectively. Eventually, we need to mask the Bit-Flip
and the Masked Bit-Flip iterations.

BFIter To mask a bit-flipping iteration BFIter in Algorithm 4, we employ the following procedure.

First, we perform a high-order computation of the number of unsatisfied parity checks by applying the
high-order Hamming weight, Alg. 11, to the secure And of the Boolean masked syndrome and the j row of
the parity-check (PC) matrix. The result is an arithmetic masking modulo 2α. It is important to note that
since each row Xjhk of the matrix has a fixed weight of w/2, we know that the unsatisfied parity check
count upc = ∥s1 ∧ Xjhk∥1 lies within the range of [0, w/2]. To ensure correctness of the computation, we
choose α such that w/2 < 2α, instead of the constraint r < 2α that would be required without any further
consideration.

Next, we high-order compute the bit Jupc ≥ thK using shifts whose procedure SecIsPositive is described
in Alg. 21 in Appendix D.

The result is directly stored in the j-th bit of the variable black, as the following equivalence holds:

upc ≥ th⇔ black = 1

The bit flips of e are delayed until the end of the for loop since e is not involved in any of the computations
within the loop. Additionally, the flips can be performed by updating e as e← e+ black, since the j-th bit
of e is flipped if and only if upc ≥ th⇔ black(j) = 1.

Finally, we high-order compute the bits d = Jupc ≥ th − τK and obtain the gray bits through gray =
black ⊕ d. This is based on the following equivalences:

gray = 1⇔ upc ≥ th− τ ∧ upc < th

⇔ d = 1 ∧ black = 0

⇔ d⊕ black = 1

The last equivalence holds since black = 1 implies d = 1.

The entire procedure is described in detail in Algorithm 8.

11

Algorithm 8 Masked Bit-Flipping Iteration SecBFIter

Input: A Boolean sharing (s1, . . . , sn) of a syndrome, a Boolean sharing (e1, . . . , en) of the error vector,
an arithmetic sharing modulo 2α (th1, . . . , thn) of the threshold, a Boolean Sharing of the parity-check
(h0,1, . . . , h0,n), (h1,1, . . . , h1,n)

Output: A Boolean sharing (e1, . . . , en) of updated error vector, a Boolean sharing (black1, . . . , blackn) of
the black mask, a Boolean sharing (gray1, . . . , grayn) of the gray mask

1: for k = 0 to 1 do
2: for j = 1 to r do
3: r1, . . . , rn ← SecAnd((s1, . . . , sn), (X

jhk,1, . . . , X
jhk,n))

4: upc1, . . . , upcn ← SecHW(2α, (r1, . . . , rn))

5: black
(j)
1 , . . . , black

(j)
n ← SecIsPositive(upc1 − th1, . . . , upcn − thn)

6: d
(j)
1 , . . . , d

(j)
n ← SecIsPositive(upc1 − th1 + τ, upc2 − th2, . . . , upcn − thn)

7: end for
8: end for
9: for i = 1 to n do ei ← ei + blacki
10: for i = 1 to n do grayi ← blacki + di
11: return (e1, . . . , en), (black1, . . . , blackn), (gray1, . . . , grayn)

Complexity. Counting operations as above, we deduce the complexity of Algorithm 8

TSecBFIter(n, r, α) = 2r · (TSecAnd(n) + TSecHW(n, r) + 2TSecIsPositive(n, α)) + n+ n

= O((r2 + αr)n2)

Security. The following theorem shows our algorithm achieves NI

Theorem 1 ((n − 1) − NI of SecBFIter). For any set of t1 probes, there exists a subset I ⊂ [1, n], with
|I| ≤ t1 such that the t1 probes can be perfectly simulated from inputs e|I , th|I , H|I .

Proof. The SNI follows from the composition of SNI SecAnd, SecHW and NI SecIsPositive with sharewise
computations.

BFMaskedIter The high-order bit-flip masked iteration closely resembles Algorithm 8. The main difference
lies in the conditional bit flip based on the value of mask, which can be computed using the following
equivalences:

e← e+mask ⇔ d = 1

⇔ e← e+ d ∧mask

where d = Jupc ≥ (w/2 + 1)/2 + 1K is the result of the test. This means that if d = 1, the bit flip is
performed by updating e with the value of mask. Otherwise, if d = 0, then d ∧mask = 0 and there are no
flip. The entire procedure is outlined in detail in Algorithm 9.

12

Algorithm 9 Masked Bit-Flipping Masked Iteration SecBFMaskedIter

Input: A Boolean sharing (s1, . . . , sn) of a syndrome, a Boolean sharing (e1, . . . , en) of the error vector, a
Boolean sharing (mask1, . . . ,maskn) of the iteration mask, a Boolean Sharing of the parity-check matrix
(H1, . . . ,Hn)

Output: A Boolean sharing (e1, . . . , en) of updated error vector

1: for j = 1 to r do
2: r1, . . . , rn ← SecAnd((s1, . . . , sn), (Hj,1, . . . ,Hj,n))
3: upc1, . . . , upcn ← SecHw(2α, (r1, . . . rn))

4: d
(j)
1 , . . . , d

(j)
n ← SecIsPositive(upc1 − (w/2 + 1)/2 + 1, upc2, . . . , upcn)

5: end for
6: mask1, . . . ,maskn ← SecAnd((mask1, . . . ,maskn), (d1, . . . , dn))
7: for i = 1 to n do ei ← ei +maski
8: return e1, . . . , en

Complexity. The number of operations is

TSecBFMaskedIter(n, r, α) = 2r · (TSecAnd + TSecHW(n, r) + TSecIsPositive(n, α)) + TSecAnd(n) + n

= O((r2 + αr)n2))

Security. The theorem below shows that Algorithm 9 achieves NI security.

Theorem 2 (NI security of SecBFMaskedIter). For any set of t1 probes, there exists a subset I ⊂ [1, n],
with |I| ≤ t1, such that the t1 can be perfectly simulated from inputs s|I , e|I , mask|I , H|I .

Proof. The security follows from the composition of SNI SecAnd and the NI security of SecHW and SecIsPositive

5.2 Masking the Threshold

In the BIKE specification, the authors opt to compute the threshold based on the Hamming weight of
the syndrome, as depicted above in Algorithm 7. This choice was influenced by an analysis conducted in
[DGK19], aiming to minimize the decoding failure rate (DFR), which is crucial for achieving IND-CCA
security in the scheme.

While masking the maximum function is relatively straightforward, dealing with the floor value com-
putation using floating-point parameters poses a significant challenge when applying our masking counter-
measures. In order to address this challenge, we opt to replace the floating-point computations with integer
operations and boolean shifts. This modified algorithm retains the same functionality for our range of inputs
while benefiting from much simpler masking techniques. Ultimately, we address the secure computation of
the maximum value in Appendix D

Masking the floor value As described previously, we have replaced the floor value computation with a
more suitable approach that achieves the same functionality within our desired value range of 0 ≤ S ≤ r.
Specifically, we performed an algorithmic search to find integer values m, p, and k such that:

threshold(S) = max(⌊m · S + p

2k
⌋, lower)

This floor value can then be effectively masked using arithmetic masking and arithmetic shifts. We have
discovered the following parameters, where each equality holds when 0 ≤ S ≤ r:

13

⌊0.0069722 · S + 13.530⌋ =
⌊
58487 · S + 113498112

223

⌋
⌊0.005265 · S + 15.2588⌋ =

⌊
22083 · S + 64000256

222

⌋
⌊0.00402312 · S + 17.8785⌋ =

⌊
269987 · S + 1199806464

226

⌋
This revised computation approach allows us to more easily and efficiently apply our masking counter-

measures. In particular, the floor operation can now be regarded as a shift of k positions for the integer
value m · S + p. The former can be computed using arithmetic masking modulo 2k+α, while the latter can
be implemented using the efficient ShiftMod operation from [CGTZ23], as illustrated in Appendix C, to
achieve arithmetic masking modulo 2α.

The entire procedure is summarized in Algorithm 10.

Algorithm 10 Masked Threshold SecThreshhold

Input: An arithmetic masking modulo 2k+α, S1, . . . , Sn of an integer 0 ≤ S ≤ r.
Output: An arithmetic masking modulo 2α, th1, . . . , thn of the value threshold(S)

1: for i = 1 to n do Si ← m · Si mod 2k+α

2: S1 ← S1 + p mod 2k+α

3: th1, . . . , thn ← S1, . . . , Sn

4: for j = 0 to k − 1 do
5: th1, . . . , thn ← ShiftMod(2k−j+α, (th1, . . . , thn))
6: end for
7: th1, . . . , thn ← SecMax((th1, . . . , thn), (lower, 0, . . . , 0))
8: return th1, . . . , thn

Complexity. The number of operations of ShiftMod in [CGTZ23] is TShiftMod(n) = 2n2+10n−9. Therefore,
we deduce the complexity of Algorithm 10 :

TSecThreshold(n, k, α) = n+ 1 + k · TShiftMod(n) + TSecMax(α, n)

= n+ 1 + 2kn2 + 10kn− 9k + (2α+ 6)n2 + (10α− 5)n− 9α+ 2

= O((k + α) · n2)

Security. The following theorem shows our implementation of the threshold achieves SNI.

Theorem 3 ((n− 1)− SNI of SecThreshold). For any t1 intermediate variables and any subset O ⊂ [1, n]
such that t1+ |O| < n. There exists a subset I ⊂ [1, n], with |I| ≤ t1, such that the t1 intermediate variables
and the outputs th|O can be perfectly simulated from inputs S|I .

Proof. The theorem results from the composition of NI gadget ShiftMod from [CGTZ23] and SNI gadget
SecMax, see Theorem 12, altogether with sharewise operations.

5.3 Masking the Hamming Weight

We now show how to mask the computation of the Hamming weight. This procedure is inspired from
[CEvMS16] where the authors convert each bit from boolean masking to arithmetic masking.

14

The correctness of the algorithm relies on the following equation:

∥s∥1 =
r∑

i=1

s(i)

Each bit s(i) being masked in Boolean, the sum described shows the necessity of converting from Boolean
to arithmetic. In our countermeasure, we instantiated this conversion from 1 bit Boolean to arithmetic with
the efficient conversion from [SPOG19] recalled in Alg. 19 in App. B.

Algorithm 11 Masked Hamming Weight SecHW

Input: A modulus 2k, a Boolean sharing s1, . . . , sn of s ∈ Fr
2

Output: An arithmetic sharing S1, . . . , Sn modulo 2k of ∥s∥1
1: S1, . . . , Sn ← (0, . . . , 0)
2: for j = 1 to r do

3: s′1, . . . , s
′
n ← 1bitB2A2k(s

(j)
1 , . . . , s

(j)
n)

4: for i = 1 to n do Si ← Si + s′1 mod 2k

5: end for
6: return (S1, . . . , Sn)

Complexity. Given the complexity of 1bitB2A, T1bitB2A(n) = 2n2 +4n− 6 from [SPOG19], we deduce the
complexity of Alg. 11:

TSecHW(n, r) = n+ r · (T1bitB2A)(n) + n)

= n+ r · (2n2 + 4n− 6 + n)

= 2rn2 + 5rn− 6r + n

= O(2rn2)

Security. The following theorem shows Algorithm 11 achieves free-SNI.

Theorem 4 ((n−1)−SNI of SecHW). For any set of t1 intermediates variables and any subset O ⊂ [1, n],
such that t1 + |O| < n, there exists I ⊂ [1, n] such that the t1 intermediate variables and outputs S|O can be
perfectly simulated from inputs s|I , with |I| ≤ t1.

Proof. The proof follows from the composition of SNI 1bitB2A gadget with sharewise computations.

5.4 Decapsulation

Given the masking of the decoder we deduce the masking of the whole decapsulation. The whole procedure
is sum up in Algorithm 12.

Our countermeasures assume we are given a high-order implementation of the SHA3− 384 in order to
compute the hash functions L and K. We refer to [GSM17] where the secure implementation of SHA3− 384
is described. The high-order computation of the last hash function H is described in the following section.

15

Algorithm 12 Sec Decapsulation

1: for i = 1 to n, c0,i ← c0 · h0,i
2: e′0,1, . . . , e

′
0,n, e

′
1,1, . . . , e

′
1,n ← SecDecoder((c0,i, h0,i, h1,i)1≤i≤n)

3: m′1, . . . ,m
′
n ← SecL((e′0,i, e

′
1,i)1≤i≤n)

4: m′1 ← c1 ⊕m′1
5: es,1, . . . , es,n ← SecSampleH((m′1, . . . ,m

′
n), 2 · r, t)

6: ((e0,1, e1,1), . . . , (e0,n, e1,n)← DSSecMult((1, 0, . . . , 0), (es,1, . . . , es,n))
7: for i = 1 to n, e0,i ← e0,i ⊕ e′0,i
8: for i = 1 to n, e1,i ← e1,i ⊕ e′1,i
9: b1, . . . , bn ← ZeroTestBool((e0,i, e1,i)1≤i≤n)
10: K1, . . . ,Kn ← HOTSwap((b1, . . . , bn),SecK((m′i, c)1≤i≤n),SecK((σi, c)1≤i≤n))
11: return K1, . . . ,Kn

Complexity. Given the complexity of each part of the Decapsulation, we deduce the complexity of Alg.
12 is:

TSecDecaps(r, w, n) = O(r2n2)

Security. The following theorem shows the Decapsulation achieves NI security.

Theorem 5. For any set of t1 intermediate variables such that t1 < n. There exists a subset I ⊂ [1, n] such
that the t1 intermediate variables can be perfectly simulated from (h0,i, h1,i, σi)i∈I and c, with |I| ≤ t1.

Proof. The proof follows from the composition of each individual par composed with sharewise operations.

6 Masking the Key Generation

In this section, we give an overview of the masking the key generations. In particular, we need to mask the
secret key (h0, h1) and the seed for implicit rejection σ. To that extent, we need to mask the fixed weight
sampling algorithm of BIKE represented by H. The remaining operations are mainly arithmetic operations.

6.1 Sampling fixed weight polynomials

In BIKE, we need to sample uniform vectors of fixed weight. The generic procedure to sample fixed weight
vectors is depicted in Alg. 13. The same procedure is hence used both for sampling of the private key h0
and h1 and the error vector e by adjusting the parameters.

Algorithm 13 H implementation

Input: a seed seed, a vector size len, and a weight wt
Output: A list wlist of wt distinct elements in {0, . . . , len− 1}.
1: wlist← {}
2: s0, . . . , swt−1 ← SHAKE256− Stream(seed, 32 · wt)
3: for i = wt− 1 to 0 do
4: pos← i+ ⌊(len− i)si/2

32⌋
5: if pos ∈ wlist then
6: wlist← wlist ∪ {i}
7: else
8: wlist← wlist ∪ {pos}
9: end if
10: end for
11: return wlist

16

To sample a vector of length len with weight wt, the algorithm generates a sparse representation of the
vector by sampling a list of wt distinct entries in J0, len− 1K. More precisely, the algorithm first hashes the
seed and extends it to 32×wt bits using SHAKE256 in XOF mode. Each 32-bit word is then used to sample
a position in Jwt− 1, len− 1K, then Jwt− 2, len− 1K, ..., J0, len− 1K. To ensure only distinct positions are
generated without rejection sampling, the algorithm uses the fact that at step i, all previous indexes posj
generated satisfy posj > i. Hence, the algorithm samples a new candidate posi ∈ Ji, len− 1K and adds it to
the list. If the new candidate posi collides with a previous index, we add i instead of posi to the list. Since
posj > i, we know i is distinct from every other element. Eventually, this leads to a sparse representation
of the private key as a list of wt positions in Fr

2 that correspond to the positions of the coefficient 1 in
the usual dense polynomial representation. While this procedure induces a bias in the distribution, [Sen21]
showed that the distribution is sufficiently close to a uniform one to remain secure.

Algorithm 14 Masked Sample H SecSampleH

Input: A Boolean mask seed1, . . . , seedn of the seed, a parameter wt, a length len
Output: An arithmetic masking mod len wlist1, . . . , wlistn of a vector in Flen

2 of distinct elements.

1: s1, . . . , sn ← SECSHAKE256− Stream((seed1, . . . , seedn), 32 · wt)
2: wlist1, . . . , wlistn ← ((0, . . . , 0), . . . , (0, . . . , 0))
3: for j = wt− 1 to 0 do

4: (t1, . . . , tn)← BtoA232len(s
(j)
1 , . . . , s

(j)
n)

5: for i = 1 to n do posi ← (r − j)ti mod 232len
6: for i = 0 to 31 do
7: pos1, . . . , posn ← ShiftMod(232−i, (pos1, . . . , posn))
8: end for
9: pos1 ← pos1 + j mod len
10: b1, . . . , bn ← SecMembershipTest((pos1, . . . , pos2), (wlist

≤wt−1−j
1 , . . . , wlist≤wt−1−j

n))

11: wlist
(i)
1 , . . . , wlist

(i)
n ← HOTSwap((b1, . . . , bn), (pos1, . . . , posn), (j, 0, . . . , 0))

12: end for
13: return wlist1, . . . , wlistn

We describe in Alg. 14 a masked implementation of the sampler.

Given the high-order masked implementation of SHAKE256 as described in [GSM17], we are provided
with a Boolean masking of the output s1, . . . , sn. We split this s into 32-bit words, denoted s(j), and convert

each Boolean mask s
(j)
1 , . . . , s

(j)
n into an arithmetic mask modulo r232. We can therefore high-order compute

arithmetic masking modulo r232 by linearity and apply the ShiftMod algorithm from [BDK+21] to compute
the 32 shifts. Consequently, we obtain arithmetic sharing modulo r of the candidate positions. It remains
to high-order compute a Boolean masking of a bit b corresponding to the membership test of Jpos ∈ wlistK.
The procedure is based on the high-order comparison described in [CGMZ23], and detailed in Appendix F.
Eventually, we can append the new position pos or i depending on b through the HOTSwap, Alg. 22.

As in the original function, we opt to use a masked sparse representation of the output. More precisely,
the output is represented as a list of wt such that each index is arithmetically masked modulo r, i.e.,
i = i1 + · · ·+ in mod r.

17

Complexity Given the complexity of each part of Algorithm 14, we deduce the complexity to be:

TSecSampleH(n, r, wt) = TSecSHAKE(n, 32, wt)

+
wt−1∑
i=0

(TBtoA32(n) + n+ 32 · TShiftMod(n) + 1

+ TSecMembershipTest(n, i) + THOTSwap(n))

= O(wt2n2).

Security The following theorem shows our masked implementation of the sampler, Alg. 14, achieves the
NI security.

Theorem 6 (NI security of SecSampleH). For any set of t1 probes, there exists a subset I ⊂ [1, n], with
|I| ≤ t1, such that the t1 probes can be perfectly simulated from inputs s|I and H|I .

Proof. The proof follows from the composition of NI and SNI parts with sharewise operations.

6.2 Conversion Sparse to Dense Representation of Polynomials

The output of our sampler is represented as a sparse masked representation. This more compact represen-
tation nonetheless can not be directly used for further arithmetic operations. In this section, we describe a
conversion algorithm that takes as input a masked sparse representation and outputs a dense representa-
tions.

This conversion is actually represented as a multiplication algorithm between a sparse and a dense
representation whose output is dense whose input are the polynomial we need to convert and the constant
1 polynomial.

Assuming we have a masked sparse representation hs,0,1, . . . , hs,0,n of sparse hs,0 where each 1 position is

arithmetically shared modulo r, i.e for all j h
(j)
s,0 =

∑n
i=1 h

(j)
s,0,i mod r. We remark that the dense polynomial

can be retrieved from:

h0 =

w/2∑
j=1

Xh
(j)
s,0 =

w/2∑
j=1

n∏
i=1

Xh
(j)
s,0,i . (1)

In particular, this equality is based on the equivalence:

Xi = Xj mod (Xr − 1)⇔ i = j mod r. (2)

This leads to a masked multiplication algorithm between a masked dense polynomial and a masked
sparse polynomial that returns a masked dense polynomial, see Algorithm 15.

(f1 + · · ·+ fn) ·
w/2∑
k=1

Xg
(k)
s,1 · · ·Xg

(k)
s,n =

w/2∑
k=1

(f1 + · · ·+ fn) ·Xg
(k)
s,1 · · ·Xg

(k)
s,n

=
n∑

i=1

w/2∑
k=1

fi ·Xg
(k)
s,1 · · ·Xg

(k)
s,n

18

Algorithm 15 Secure Multiplication of dense and sparse polynomial DSSecMult

Input: A masked dense polynomial f1, . . . , fn and a masked sparse polynomial gs,1, . . . , gs,n of weight wt.
Output: A masked dense polynomial p1, . . . , pn of the product f · g
1: p1, . . . , pn ← (0, . . . , 0)
2: for k = 1 to wt do
3: sum1, . . . , sumn ← f1, . . . , fn
4: for i = 1 to n do

5: for j = 1 to n do sumj ← sumj ·Xg
(k)
s,i mod (Xr − 1)

6: sum1, . . . , sumn ← LinearRefresh(sum1, . . . , sumn)
7: end for
8: For i = 1 to n, pi ← pi + sumi

9: end for
10: return p1, . . . , pn

Eventually, the multiplication algorithm can be used with input h1, . . . , hn = (1, 0, . . . , 0) in order to
convert from sparse representation to dense representation.

Complexity. Counting each modular operation as unit we deduce the complexity of Algorithm 15 to be :

TDSSecMult(n,wt) = wt · (n · (n+ TLinearRefresh(n)) + n)

= wt · n · (n+ 3n− 3 + 1) = 4wt · n2 − 2wt · n
= O(wt · n2)

Security. The following theorem shows our algorithm achieves the SNI security.

Theorem 7 ((n − 1) − SNI security of DSSecMult). For any t1 intermediate variables and any subset
O ⊂ [1, n] such that t1 + |O| < n. There exists a subset I ⊂ [1, n] such that the t1 intermediate variables
and the outputs f|O can be perfectly simulated from inputs h|I and g|I , with |I| ≤ t1.

The proof of Theorem 7 can be found in Appendix G.

6.3 Masking of the Keygen

The masking of the key generation is straightforward by replacing each gadget with its masked alternative.
We note that we reuse the strategy from [KLRBG22] to perform the inversion, denoted as SecInv. Their
procedure is recalled in Appendix H. Namely, it consists of converting the additive shares into multiplicative
shares. Therefore, the inversion can then be handled by inverting each multiplicative share. Eventually, the
multiplicative shares are converted back to additive shares.

Algorithm 16 describes the whole process.

19

Algorithm 16 SecKeyGeneration

Output: A Boolean masking of the private key ((h0,i, h1,i, σi))1≤i≤n and the corresponding public key h.
1: sh0,1, . . . , sh0,n ←Mn

2: sh1,1, . . . , sh1,n ←Mn

3: h0,s,1, . . . , h0,s,n ← SecSampleH((sh0,1, . . . , sh0,n), w/2, r)
4: h1,s,1, . . . , h1,s,n ← SecSampleH(((sh1,1, . . . , sh1,n), w/2, r)
5: h0,1, . . . , h0,n ← DSSecMult((1, 0, . . . , 0), (h0,s,1, . . . , h0,s,n)
6: h1,1, . . . , h1,n ← DSSecMult((1, 0, . . . , 0), (h1,s,1, . . . , h1,s,n))
7: h0,1,inv, . . . , h0,n,inv ← SecInv(h0,1, . . . , h0,n)
8: h1, . . . , hn ← SecMult((h1,1, . . . , h1,n), (h0,1,inv, . . . , h0,n,inv))
9: h1, . . . , hn ← Refresh(h1, . . . , hn)
10: h←

∑n
i=1 hi

11: σ1, . . . , σn ←Mn

12: return (h0,i, h1,i, σi)1≤i≤n, h

Complexity. Given the complexity of each part of the Key Generation, we deduce the complexity of Alg.
16 is:

TSecKeygen(r, w, n) = O(w2 · n2).

Security. The following theorem shows the Key generation achieves NIo security when the public key h is
given to the simulator.

Theorem 8 ((n − 1)-NIo security of SecKeyGen). For any set of t1 intermediate variables such that
t1 < n. The t1 intermediate variables can be perfectly simulated from h

Proof. The proof of Theorem 8 follows from the composition of each individual part.

7 Masking of the Encapsulation

The masking of the encapsulation is straightforward given the masking of its individual parts described
above.

In particular, the main difficulty in masking the encapsulation is the sampling of the fixed weight error
vector, which is performed by the hash function H. The masking of H has already been studied in Sec. 6.1.

This procedure outputs a list of t indexes arithmetically masked modulo r. This sparse representation of
the error vector can then be converted into a dense representation using Alg. 15 with polynomial arithmetic
in F2[X]/(X2r− 1) instead of F2[X]/(Xr− 1). The result is therefore an arithmetic sharing of a polynomial
e ∈ F2[X]/(X2r − 1) from which we deduce the error vector by splitting the polynomial into low and high
monomials: e = e0 +Xre1.

The whole procedure is depicted in Alg. 17.

20

Algorithm 17 SecEncaps

Input: A public key h.
Output: A Boolean masking of a session key (K1, . . . ,Kn) and its encapsulation c under h.
1: m1, . . . ,mn ←$Mn

2: es,1, . . . , es,n ← SecSampleH((m1, . . . ,mn), 2 · r, t)
3: ((e0,1, e1,1), . . . , (e0,n, e1,n)← DSSecMult((1, 0, . . . , 0), (es,1, . . . , es,n))
4: for i = 1 to n, c0,i ← e0,i ⊕ e1,i · h
5: c0,1, . . . , c0,n ← Refresh(c0,1, . . . , c0,n)
6: c0 ←

∑n
i=1 c0,i

7: mask1, . . . ,maskn ← SecL((e0,i, e1,i)1≤i≤n)
8: for i = 1 to n, c1,i ← mi ⊕maski
9: c1,1, . . . , c1,n ← Refresh(c1,1, . . . , c1,n)
10: c1 ←

∑n
i=1 c1,i

11: c← (c0, c1)
12: K1, . . . ,Kn ← SecK((mi, c)1≤i≤n)
13: return (K1, . . . ,Kn), c

Complexity. Given the complexity of each part of the Encapsulation, we deduce the complexity of Alg.
17 is:

TSecEncaps(r, w, n) = O(w2 · n2).

Security. The following theorem shows the Encapsulation achieves NIo security when the ciphertext is
given to the simulator c.

Theorem 9 ((n−1)-NIo security of SecEncaps). For any set of t1 intermediate variables such that t1 < n.
The t1 intermediate variables can be perfectly simulated from c.

Proof. The proof follows from the composition of each individual part composed with sharewise operations.

8 Implementation Results

In order to assess the correctness and efficiency of our countermeasures, we performed a proof-of-concept
implementation in the language C.

In the following section, we review the performance of our implementation. It’s worth noting that all
benchmarks were conducted on an AMD RYZEN 5 PRO 3400G with Radeon Vega Graphics 3.70GHz CPU.

Hereafter, we present the benchmark results for the entire execution of the BIKE scheme. The results are
shown in Table 2 for several masking orders up to order 6 in thousands of CPU cycles. We also compare our
results to the reference implementation described in [ABB+22], which was submitted to the fourth round
of the NIST competition.

Order t Ref 0 1 2 4 6

Level 1

Keygen 589 1 512 316 1 791 149 2 952 493 7 874 062 15 242 222

Encaps 97 76 650 146 884 280 769 778 527 1 227 860

Decaps 1 135 189 968 064 4 187 647 683 5 641 387 112 19 211 783 573 33 996 803 704

Level 3

Keygen 1 823 8 106 113 14 685 250 24 131 779 106 584 362 180 601 352

Encaps 223 355 894 1 890 992 3 560 430 8 010 906 13 575 219

Decaps 3 887 2 616 924 564 11 233 101 479 23 388 097 962 52 435 693 469 81 828 924 691

Level 5

Keygen − 72 568 264 88 779 611 116 292 757 347 387 738 412 328 052

Encaps − 4 772 084 6 828 964 13 115 061 24 088 345 33 576 154

Decaps − 6 482 717 125 26 717 510 118 57 632 897 876 103 659 520 225 155 281 028 553

Table 2. Cycle Counts for full implementation of BIKE for each level of security. Results in thousand of Cycles

21

We can observe a significant overhead between the reference implementation and our unmasked imple-
mentation. This overhead, particularly evident in the cases of key generation and encapsulation, is mainly
due to the implementation of polynomial arithmetic in our implementation. Specifically, the polynomial
multiplication we implemented is the naive schoolbook multiplication, which lacks many optimizations. As
shown in the complexity breakdown by operations in Tables 3 and 4, polynomial arithmetic represents the
bottleneck of these algorithms.

Order t Ref 0 1 2 4 6 8

h0, h1 ←Hw − 1 245 8 730 21 086 61 205 109 608 193 278

Conversion − 1 797 13 539 28 113 93 806 203 952 338 355

hinv ← h−1
0 − 1 434 019 1 532 175 2 200 004 5 486 895 10 403 040 17 422 752

Total 589 1 512 316 1 791 149 2 952 493 7 874 062 15 242 222 27 271 347

Table 3. Cycle Counts of KeyGen for NIST Level 1 of security. Cycle Counts are split into each main step of the process and
expressed in thousands of cycles.

Order t Ref 0 1 2 4 6 8

e′0, e
′
1 ← H(m) − 1 235 6 458 19 068 78 832 148 568 250 517

spub ← e0 ⊕ e1 · h − 73 727 128 952 208 726 437 339 639 743 1 132 106

c1 ← m⊕ L(e0, e1) − 196 7 127 31 027 192 434 287 010 600 875

k ← K(m, c) − 100 3 733 21 080 65 940 146 502 290 965

Total 97 76 650 146 884 280 769 778 527 1 227 860 2 566 731

Table 4. Cycle Counts of Encapsulation for NIST Level 1 of security. Cycle Counts are split into each main step of the process
and expressed in thousands of cycles.

Nonetheless, Tables 3 and 4 demonstrate the efficiency and scalability of our countermeasure for fixed-
weight sampling of polynomials, along with the conversion of the sparse representation, which was at the
core of our countermeasures. We also note that our results are consistent with the theoretical complexity
we provided for each gadget. However, a practical implementation should focus on implementing better
arithmetic, particularly benefiting from AVX2 and AVX512 instruction sets as in the reference implementation.

Eventually, as shown in Table 5, the significant overhead suffered by our implementation of the de-
capsulation is primarily due to the decoder, for which achieving first-order security requires millions of
cycles. This substantial overhead is explained by the theoretical complexity of our countermeasure, which
is O(r2n2). In particular, our implementation differs from the reference implementation in the computation
of a bit-flip iteration. In the reference implementation, the authors leverage the sparsity of the parity check
matrix and bit-slice techniques to compute all unique parity checks (UPCs) in parallel. More precisely, the
UPC |s∧h0|1 can be efficiently computed using only the positions of the nonzero coefficients of h0 through:

|s ∧ h0|1 =
∑

i,h
(i)
0 =1

s(i)

We describe in Appendix I an earlier attempt at an implementation of the computation of the UPC, following
the same strategy as the Bike Specification [ABB+22]. However, this alternative method has an O(log(w)·r)
space complexity, which makes it unrealistic for embedded implementations with limited RAM. We leave
as an open problem to further improve this strategy to fit the limitations of embedded cryptography.

22

Order t Ref 0 1 2 4 6

Decoder

S ← ∥s∥1 − 732 4 719 11 739 46 259 91 796

threshold − 2 18 57 186 301

BFIter − 13 377 779 234 574 115 408 338 435 1 384 092 908 3 077 727 375

BFMaskedIter − 14 218 186 584 971 905 1 128 762 724 3 020 288 121 6 218 525 136

Total − 187 465 013 4 185 318 401 5 639 079 456 19 209 286 698 33 993 736 284

m← c1 ⊕ L(e0, e1) − 287 14 880 46 293 352 475 555 930

e′0, e
′
1 ← H(m) − 1 697 12 386 29 701 83 890 300 499

K ← K(m, c) − 156 9 582 23 984 70 068 336 181

Total 1 135 189 968 064 4 187 647 683 5 641 387 112 19 211 783 573 33 996 803 704

Table 5. Cycle Counts of Decapsulation for NIST Level 1 of security. Cycle Counts are split into each main step of the process
and expressed in thousands of cycles.

9 Conclusion

In this work, we introduced the first high-order implementation of the entire BIKE scheme, marking a
significant advancement in masking code-based cryptography. Additionally, we scrutinized a prior article
addressing the masking technique applied to a previous decoder version, uncovering vulnerabilities and
suggesting enhancements. Through a C implementation, we evaluated the efficiency and scalability of our
countermeasures, presenting compelling experimental performance data. It is imperative to note that fur-
ther optimization of polynomial arithmetic could greatly enhance the efficiency of key generation and
encapsulation processes. Eventually, our implemented countermeasure introduces a significant overhead
during decoder, impacting overall performance of the decapsulation. Despite efforts to optimize polynomial
arithmetic, this overhead persists, posing a challenge in secure embedded implementations.

The primary factor behind this is the theoretical complexity of the Unsatisfied Parity Check (UPC)
computation, which scales as O(r · n2). Addressing this complexity remains an open problem for future
research, warranting further exploration and innovation.

We also note that we leave as an open problem the further evaluation of the practical security of our
countermeasures by performing concrete leakage evaluation.

References

[ABB+22] Nicolas Aragon, Paulo SLM Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe Deneuville,
Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, et al. Bike: bit flipping key encapsu-
lation, 2022.

[BBD+16] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and
Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 116–129, 2016. Publicly available at https://eprint.iacr.org/2015/506.pdf.

[BBE+18] Gilles Barthe, Sonia Beläıd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa Rossi, and Mehdi
Tibouchi. Masking the GLP lattice-based signature scheme at any order. In Advances in Cryptology - EURO-
CRYPT 2018 - Proceedings, Part II, pages 354–384, 2018.

[BDK+21] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-dilithium algorithm specifications and supporting documentation (version 3.1), 2021. https:

//pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf.

[BP18] Daniel J Bernstein and Edoardo Persichetti. Towards kem unification. Cryptology ePrint Archive, 2018.

[CEvMS16] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt. Masking large keys in hardware: A
masked implementation of mceliece. In Orr Dunkelman and Liam Keliher, editors, Selected Areas in Cryptography
– SAC 2015, pages 293–309, Cham, 2016. Springer International Publishing. https://eprint.iacr.org/2015/924.pdf.

[CGMZ23] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun. High-order polynomial comparison
and masking lattice-based encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(1):153–192, 2023. https:
//ia.cr/2021/1615.

[CGTZ22] Jean-Sebastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun. High-order masking of ntru. Cryp-
tology ePrint Archive, Paper 2022/1188, 2022. https://eprint.iacr.org/2022/1188.

23

[CGTZ23] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun. Improved gadgets for the high-order
masking of dilithium, 2023.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Proceedings of EUROCRYPT 2014, pages
441–458, 2014.

[DGK19] Nir Drucker, Shay Gueron, and Dusan Kostic. Qc-mdpc decoders with several shades of gray. Cryptology ePrint
Archive, Paper 2019/1423, 2019. https://eprint.iacr.org/2019/1423.

[DR24] Löıc Demange and Mélissa Rossi. A provably masked implementation of bike key encapsulation mechanism.
Cryptology ePrint Archive, Paper 2024/076, 2024. https://eprint.iacr.org/2024/076.

[Gal62] Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory, 8(1):21–28, 1962.

[GSM17] Hannes Gross, David Schaffenrath, and Stefan Mangard. Higher-order side-channel protected implementations of
keccak. Cryptology ePrint Archive, Paper 2017/395, 2017. https://eprint.iacr.org/2017/395.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against probing attacks. In
CRYPTO 2003, Proceedings, pages 463–481, 2003.

[KLRBG22] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. Efficiently masking polynomial inversion
at arbitrary order. Cryptology ePrint Archive, Paper 2022/707, 2022. https://eprint.iacr.org/2022/707.

[Sen21] Nicolas Sendrier. Secure sampling of constant-weight words – application to bike. Cryptology ePrint Archive,
Paper 2021/1631, 2021. https://eprint.iacr.org/2021/1631.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Efficiently masking binomial sampling at
arbitrary orders for lattice-based crypto. In PKC 2019, Proceedings, Part II, pages 534–564, 2019.

A Attack on [CEvMS16]

Algorithm 18 Attack Pseudo-Code

Input: A public key h, An oracle returning the first UPC Oupc

Output: A decryption key (h0, h1) for the public key h.

1: h0 ← 1
2: i0 ← 0
3: for i = 0 to r − 1 do
4: if Oupc(X

i) = 1 then
5: i0 ← i
6: h0 ← h0 ⊕Xi0

7: break for
8: end if
9: end for
10: for j = 0 to r − 1 do
11: if j ̸= i0 then
12: if O(Xi0) +O(Xj)−O(Xi0 ⊕Xj) ̸= 0 then
13: h0 ← h0 ⊕Xj

14: end if
15: end if
16: end for
17: h1 ← h · h0
18: return h0, h1

B 1bitB2A from [SPOG19]

We recall hereafter algorithm introduced in [SPOG19] that performs free-SNI - proved in [CGTZ23] -
conversion from 1 bit Boolean sharing to arithmetic sharing over arbitrary modulus.

24

Algorithm 19 1bitB2A

Input: x1, . . . , xn ∈ {0, 1}
Output: v1, . . . , vn ∈ Zq such that v1 + · · ·+ vn mod q = x1 ⊕ · · · ⊕ xn

1: xn+1 ← x1, v1 ← x2 ▷ v1 = x2 (mod q)
2: for i = 2 to n do
3: (v1, . . . , vi)← LinearRefreshZq(v1, . . . , vi−1, 0)
4: (v1, . . . , vi)← (1− 2xi+1) · (v1, . . . , vi) mod q
5: v1 ← v1 + xi+1 mod q ▷

∑i
j=1 vi = x2 ⊕ · · · ⊕ xi+1 (mod q)

6: end for
7: (vn, . . . , v1)← LinearRefreshZq(vn, . . . , v1)
8: return (v1, . . . , vn)

C ShiftMod from [CGTZ23]

We recall hereafter algorithm introduced in [CGTZ23] that performs t-NI Boolean shift over arithmetic
sharing on even moduli with complexity O(n2)

Algorithm 20 ShiftMod

Input: A modulus q′ = 2q and x1, . . . , xn ∈ Z2q

Output: a1, . . . , an ∈ Zq such that a1 + · · ·+ an = ⌊(x1 + · · ·+ xn)/2⌋ (mod q)

1: for i = 1 to n do bi ← xi&1
2: (y1, . . . , yn)← 1bitB2A(2q, (b1, . . . , bn))
3: for i = 1 to n do zi ← xi − yi mod 2q
4: for i = 1 to n− 1 do
5: zn ← zn + (zi&1) mod 2q
6: zi ← zi − (zi&1) mod 2q
7: end for
8: for i = 1 to n do ai ← zi ≫ 1
9: return a1, . . . , an

D Masking the maximum

In this section, we demonstrate how to mask the maximum operation. We observe that the maximum of two
values, a and b, can be expressed as follows: First, we compute the bit d = Ja < bK. Then, based on the value
of d, we return b if d = 1, and a otherwise. The bit d can be computed in a high-order manner by shifting an
arithmetic sharing of the value b−a using the ShiftMod operation from [CGTZ23], as recalled in Algorithm
20 in Appendix C. This approach is similar to the one in [SPOG19], but we avoid converting the arithmetic
sharing into Boolean sharing and performing individual shifts on each sharing. This optimization is made
possible by utilizing a power of 2 modulus instead of a prime modulus as in [SPOG19]. The algorithm for
testing the positivity of a number is described in Algorithm 21.

25

Algorithm 21 Masked Test of Positivity SecIsPositive

Input: A power of 2 modulus 2α, an arithmetic sharing modulo 2α (x1, . . . , xn) of a value −2α−1 ≤ x < 2α.
Output: A Boolean masking (b1, . . . , bn) of a bit b such that b = 1 iff x ≥ 0.

1: b1, . . . , bn ← x1, . . . , xn
2: for j = 1 to α− 1 do
3: b1, . . . , bn ← ShiftMod(2α−j+1, (b1, . . . , bn))
4: end for
5: b1 ← b1 ⊕ 1
6: return b1, . . . , bn

Once the bit d is computed in Boolean sharing, we can apply the high-order table-based computation
from [Cor14] to the function f : {0, 1} → {a, b}, where f(0) = a and f(1) = b. The description of this
high-order computation named HOTSwap is described in Alg. 22.

Algorithm 22 Secure Swap HOTSwap

Input: A Boolean sharing (d1, . . . , dn) of a bit d, two sharings (a1, . . . , an) and (b1, . . . , bn) of two values a
and b

Output: A sharing of the value a if d = 0 or b if d = 1

1: T [0]← (a1, . . . , an)
2: T [1]← (b1, . . . , bn)
3: for i = 1 to n− 1 do
4: T ′ ← T [1]
5: T [di]← T [0]
6: T [di ⊕ 1]← T ′

7: T [0]← LinearRefresh(T [0])
8: T [1]← LinearRefresh(T [1])
9: end for
10: return T [dn]

Eventually, the masking of the entire procedure is described in Algorithm 23.

Algorithm 23 Masked maximum SecMax

Input: An arithmetic sharing mod 2α a1, . . . , an of a value a and an arithmetic sharing mod 2α b1, . . . , bn
of a value b.

Output: An arithmetic sharing mod 2α c1, . . . , cn of max(a, b)

1: for i = 1 to n do di ← bi − ai
2: d1, . . . , dn ← SecIsPositive(2α, (d1, . . . , dn))
3: d1, . . . , dn ← Refresh(d1, . . . , dn)
4: (c1, . . . , cn)← HOTSwap((d1, . . . , dn), (a1, . . . , an), (b1, . . . , bn))
5: return c1, . . . , cn

26

Complexity. Given the complexity of the ShiftMod: TShiftMod = 2n2+10n−9 and LinearRefresh: TLinearRefresh(n) =
3n− 3, we deduce the complexity of Alg. 23 to be:

TSecMax(n, α) = n+ α · TShiftMod(n) + TRefresh(n) + 2

+ (n− 1) · (3 + 2 · TLinearRefresh(n)) + TLinearRefresh(n))

= n+ 2αn2 + 10αn− 9α+ 3n2 − 3n+ 2 + (n− 1)(6n− 3) + 3n− 3

= (2α+ 9)n2 + (10α− 8)n− 9α+ 2

= O(αn2)

Security. The following theorem shows our algorithm achieves the stronger SNI security.

Theorem 10 ((n− 1)−SNI of SecMax). For any t1 intermediate variables and any subset O ⊂ [1, n] such
that t1 + |O| < n. There exists a subset I ⊂ [1, n], with |I| ≤ t1, such that the t1 intermediate variables and
the outputs c|O can be perfectly simulated from inputs a|I and b|I

Proof. The proof follows from the compositions of 2 SNI parts.

E ZeroTestBool from [CGMZ23]

We recall hereafter the algorithm introduced in [CGMZ23] that performs t-SNI zero-test over Boolean
sharing with complexity O(log(k) · n2).

Algorithm 24 ZeroTestBool

Input: k ∈ Z and x1, . . . , xn ∈ {0, 1}k
Output: b1, . . . , bn ∈ {0, 1} with ⊕n

i=1bi = 1 if ⊕n
i=1xi = 0 and ⊕n

i=1b = 0 otherwise
1: m← ⌈log2 k⌉
2: y1 ← x1 or (22

m − 2k)
3: for i = 2 to n do yi ← xi
4: for i = 0 to m− 1 do
5: (z1, . . . , zn)← RefreshMasks(y1 ≫ 2i, . . . , yn ≫ 2i)
6: (y1, . . . , yn)← SecAnd(m, (y1, . . . , yn), (z1, . . . , zn))
7: end for
8: return (y1 & 1, . . . , yn & 1)

F High-Order Membership Test

In order to perform the membership test needed for the sampling of fixed weight polynomials in 13 we
describe 2 methods based on the parameters.

Given an arithmetic sharing x1, . . . , xn of a value x and a list of t arithmetic sharings (w
(i)
1 , . . . , w

(i)
n)1≤i≤t

we actually test:

x ∈ (w(i))1≤i≤t ⇔ ∃i, x = w(i)

⇔
∨

1≤i≤t
Jx− w(i) = 0K = 1

⇔
⊕
1≤i≤t

Jx− w(i) = 0K = 1

The last equivalence holds since we assume the elements of (w(i)) to be distinct and therefore there is
at most one i for which x = w(i). In order to high-order compute the zero-test Jx − w(i) = 0K we employ

27

Alg. 24 from [CGMZ23] preceded by an arithmetic to Boolean conversion since the value x and w(i) are
arithmetically masked. The whole procedure is described in Alg. 25.

Algorithm 25 Masked Membership Test SecMembership

Input: An arithmetic sharing modulo q (x1, . . . , xn) of a value x, a list of t arithmetic sharings modulo q

(w
(i)
1 , . . . , w

(i)
n)1≤i≤t of distinct values (w

(i))1≤i≤t
Output: A Boolean masking (b1, . . . , bn) of a bit b such that b = 1 iff x = w(i) for some i

1: for i = 1 to t do
2: for k = 1 to n do p

(i)
k ← w

(i)
k − xk mod q

3: end for
4: b1, . . . , bn ← (0, 0, . . . , 0)
5: for i = 1 to t do
6: a1, . . . , an ← AtoBq(p

(i)
1 , . . . , p

(i)
n)

7: b′1, . . . , b
′
n ← ZeroTestBool(a1, . . . , an)

8: for k = 1 to n do
9: bk ← b′k ⊕ bk
10: end for
11: end for
12: return b1, . . . , bn

Complexity. Counting the operations as above, we deduce the complexity of Alg. 25 to be:

TSecMembership(n, q, t) = n+ t · (TAtoB(n, q) + TZeroTestBool(n, log(q)) + n)

= O(t log(q) · n2)

Security. The following theorem shows our algorithm achieves the NI security.

Theorem 11 ((n−1)−NI of SecMembership). For any t1 intermediate variables and any subset O ⊂ [1, n]
such that t1 + |O| < n. There exists a subset I ⊂ [1, n], with |I| ≤ t1 + |O|, such that the t1 intermediate

variables and the outputs b|O can be perfectly simulated from inputs x|I and (w
(i)
|I)1≤i≤t

Proof. The proof follows from the compositions of the NI AtoB conversion, the NI ZeroTestBool zero-test
and sharewise operations.

In the particular case of BIKE, the memebership test is used during the sampling of the private key in
Alg. 1 and the sampling of the error vector in Alg. 2 and 3. For the sampling of the private key, the masking
modulus, r, is a prime number and therefore we can improve the membership test using the following
equivalence:

x ∈ (w(i))1≤i≤t ⇔
∏

1≤i≤t
(x− w(i)) = 0

The equivalence is based on the integrity of the field Zr, i.e ab = 0⇒ a = 0∨b = 0. This structure allows
us to perform only one arithmetic to boolean conversion and one high-order zero test as described in Alg.
26. We note that this optimization can not be applied to the sampling of the error vector in Encapsulation
and Decapsulation since the modulus involved, 2 · r, is composite.

28

Algorithm 26 Masked Membership Test SecMembershipPrime

Input: A prime number r, An arithmetic sharing modulo r (x1, . . . , xn) of a value x, a list of t arithmetic

sharings modulo r (w
(i)
1 , . . . , w

(i)
n)1≤i≤t of values (w

(i))1≤i≤t
Output: A Boolean masking (b1, . . . , bn) of a bit b such that b = 1 iff x = w(i) for some i

1: for i = 1 to t do
2: for k = 1 to n do p

(i)
k ← w

(i)
k − xk mod r

3: end for
4: prod1, . . . , prodn ← (1, 0, . . . , 0)
5: for i = 1 to t do
6: prod1, . . . , prodn ← SecMult((prod1, . . . , prodn), (p

(i)
1 , . . . , p

(i)
n))

7: end for
8: prod1, . . . , prodn ← AtoBr(prod1, . . . , prodn)
9: b1, . . . , bn ← ZeroTestBool(prod1, . . . , prodn)
10: return b1, . . . , bn

Complexity. Counting the operations as above, we deduce the complexity of Alg. 26 to be:

TSecMembership(n, r, t) = n+ t · TSecMult(n) + TAtoB(n, r) + TZeroTestBool(n, log(r))

= O(t · n2 + log(r)n2

Security. The following theorem shows our algorithm achieves the stronger SNI security.

Theorem 12 ((n − 1) − SNI of SecMembershipPrime). For any t1 intermediate variables and any subset
O ⊂ [1, n] such that t1 + |O| < n. There exists a subset I ⊂ [1, n], with |I| ≤ t1 + |O|, such that the t1

intermediate variables and the outputs b|O can be perfectly simulated from inputs x|I and (w
(i)
|I)1≤i≤t

Proof. The proof follows from the compositions of the NI AtoB conversion, the NI ZeroTestBool with the
SNI gadget SecMult. We note that the multiplication at the first iteration of the for loop with prod = 1
corresponds to a SNI full refresh on the masks of p(1) therefore it decorrelates the masks of p(i) and prod
ensuring the SNI composition.

G Proof of Theorem 7

In order to prove the SNI security of Alg. 15, we introduce Alg. 28 which corresponds to the processing of

the ℓ first shares of an index g
(k)
s of the sparse representations. We remark the algorithm can be rewritten

as in Alg. 27 where the core of the for loop is presented in Alg. 28 for ℓ = n. The proof strategy is as follow,
we first show by induction on ℓ that Alg. 28 achieves SNI security and then we conclude by composition
that the overall algorithm achieve SNI security.

Algorithm 27 Secure Multiplication of dense and sparse polynomial DSSecMult

Input: A masked dense polynomial h1, . . . , hn and a masked sparse polynomial gs,1, . . . , gs,n of weight wt.
Output: A masked dense polynomial f1, . . . , fn of the product h · g
1: f1, . . . , fn ← (0, . . . , 0)
2: for k = 1 to wt do
3: sum1, . . . , sum1 ← Pn((h1, . . . , hn), (g

(k)
s,1 , . . . , g

(k)
s,n))

4: For i = 1 to n, fi ← fi + sumi

5: end for
6: return f1, . . . , fn

29

Algorithm 28 Core of for loop of Pℓ

Input: A masked dense polynomial h1, . . . , hn and an arithmetic sharing modulo r x1, . . . , xn of an index
of a term Xx in gs.

Output: A masked dense polynomial f1, . . . , fn of the product h ·Xx|ℓ where x|ℓ =
∑ℓ

i=1 xi mod r.

1: f1, . . . , fn ← h1, . . . , hn
2: for i = 1 to ℓ do
3: for j = 1 to n do fj ← fj ·Xxi mod (Xr − 1)
4: for j = 1 to n− 1 do ▷ Linear Refresh
5: pi,j ←$ F2[X]/(Xr − 1)
6: fj ← fj + pi,j
7: fn ← fn − pi,j
8: end for
9: end for
10: return f1, . . . , fn

SNI security of Pℓ We show by induction on 1 ≤ ℓ ≤ n the following property: If Pℓ−1 achieves NI security
then Pℓ achieves SNI security.

The base step is trivial, since P0 is the algorithm that returns the input h1, . . . , hn and is therefore NI.

We will now show the induction step.

We assume Pℓ−1 achieves NI security for some 1 ≤ ℓ ≤ n. Let W be any set of t0 intermediate variables
in Pℓ and O ⊂ [1, n] such that t0 + |O| ≤ n. We show how to construct I of cardinality |I| ≤ t0 such that
the t0 intermediate variables of W and the outputs f|O can be perfectly simulated from h|I and x|I .

First, we split W = W1 ∪W2 where |Wi| = ti and W1 corresponds to the variables probed during the
execution of the first ℓ − 1 iteration of the main loop, i.e in Pℓ−1 and W2 the variables probed during the
execution of the ℓ-th iteration of the main loop.

By induction hypothesis, there exists I1, such that the t1 variables form W1 can be perfectly simulated
from h|I1 and x|I1 .

We now show how to simulate the remaining W2 variables by extending our current input set. We start
with I = I1.

– For each probe pℓ,j ∈ W2, we add j to I

– For each probe fj + pℓ,j ∈ W2, we add j to I

– For each probe fn − pℓ,j ∈ W2, we add n to I

– For each probe fj ·Xxℓ ∈ W2, we add j to I if j /∈ I or l to I if j ∈ I.

By construction, we have |I| ≤ |I1|+ t2 ≤ t1 + t2 = t0. Since the new set I contains I1, by extension of
the input set we can perfectly simulate all variables in W1 with input h|I and x|I .

By construction, we can trivially simulate each variables of W2 of the form pℓ,j , fj + pℓ,j , fn − pℓ,j by
simulating pℓ,j with uniform random variables and propagating the simulation since fj can be simulated
from h|I .

To simulate the remaining variables of W2 (of the form fj ·Xxℓ), we distinguish two cases depending on
l ∈ I or not.

Case l ∈ I: If ℓ ∈ I by construction j ∈ I, therefore any probe fj ·Xxℓ can be perfectly simulated from
input h|I and x|I .

Case l /∈ I: If l /∈ I, then by construction fj · Xxℓ is the only probe involving fj and j ∈ I. Therefore
we can perfectly simulate fj before the shift by propagating simulation from h|I and x|I . The value fj ·Xxi

can then be simulated by fj ·Xu with a uniform u.

It remains to show how to simulate the outputs f|O from inputs h|I and x|I .

For o ∈ O ∩ I, the output fo can be perfectly simulated from inputs h|O and x|O by propagating the
simulations.

30

For o ∈ O \ I \ {n}, by construction none of pℓ,o, fo + pℓ,o and fn− pℓ,o has been probed. Therefore, pℓ,o
acts as a one time pad on fo and we can perfectly simulate the output with a uniform random.

For n ∈ O \ I, the output fn corresponds to f ′n −
∑

j pℓ,j where f ′n represents the value of fn at the
beginning of the last iteration i = l. From the hypothesis t1 + |O| < n, we know there exists j⋆ such that
j ∈ [1, n] \ (I ∪ O). By expressing fn as fn = (f ′n −

∑
j ̸=j⋆ pℓ,j) − pℓ,j⋆ we remark that pℓ,⋆ is independent

of all simulated variables and acts as a one time pad on fn. Henceforth, the output fn can be perfectly
simulated with a uniform random.

Finally, we have shown the induction step, i.e Pℓ−1 is NI implies Pℓ achieves SNI. Since P0 is NI, we
conclude that Pn achieves the SNI security.

SNI security of DSSecMult Given the SNI security of the core of the for loop Pn we deduce the SNI of
Alg. 27 since it consists in the composition of wt SNI part with sharewise operations.

H SecInv from [KLRBG22]

In their work, the authors of [KLRBG22] demonstrated an efficient method for inversing an element that is
arithmetically masked over an arbitrary ring. Their method is based on converting from arithmetic sharing
into multiplicative sharing, as inversion is linear under the multiplicative law. To that extent, they also
described the converse conversion from multiplicative to additive masking. We recall their algorithm to
convert from additive masking to multiplicative masking in Algorithm 29, and the reverse conversion from
multiplicative to additive sharing in Algorithm 30.

Algorithm 29 Additive to multiplicative conversion (A2MINV)

Input: An arithmetic sharing (a1, . . . , an) of an invertible a ∈ F2[X]/(Xr − 1)
Output: A multiplicative sharing (m1, . . . ,mn) of the inverse of a−1

1: for i = 1 to n do
2: ri ← F2[X]/(Xr − 1)⋆

3: for j = 1 to n do aj ← ri · aj
4: a1, . . . , an ← LinearRefresh(a1, . . . , an)

5: mi ← ri ▷ a =
(∑n

j=1 aj

)∏i
j=1m

−1
j

6: end for
7: m1 ← m1 · (

∑n
j=1 aj)

−1 ▷ a−1 = m1 ·m2 · · · · ·mn

8: return m1, . . . ,mn

Algorithm 30 Multiplicative to additive conversion (M2A)

Input: A multiplicative sharing (m1, . . . ,mn) of an invertible element m ∈ F2[X]/(Xr − 1)
Output: An arithmetic sharing (a1, . . . , an) of m

1: a1 ← m1

2: for i = 1 to n− 1 do
3: a1, . . . , ai+1 ← LinearRefresh(a1, . . . , ai, 0)
4: for j = 1 to i+ 1 do aj ← aj ·mi+1

5: end for
6: return a1, . . . , an

31

We note that Algorithm 29 actually converts into the inverse of the input. This optimization allows for
only 1 inversion instead of 2n−1 in the original algorithm, where n−1 shares were inverted twice. Moreover,
Algorithm 29 is the corrected version by [CGTZ22], as the original version suffered from a third-order attack.

Therefore we can deduce the following inversion algorithm depicted in Alg. 31

Algorithm 31 Inversion based on multiplicative masking INVMul

Input: An arithmetic sharing (a1, . . . , an) of an invertible a ∈ F2[X]/(Xr − 1)
Output: An arithmetic sharing (b1, . . . , bn) of the inverse a−1

1: m1, . . . ,mn ← A2MINV(a1, . . . , an)
2: b1, . . . , bn ← M2A(m1, . . . ,mn)
3: return b1, . . . , bn

I Alternative Computation of the UPC

In this section, we introduce an alternative approach to computing the Unsatisfied Parity Check (UPC).
Rather than calculating the UPC dynamically during each Bit-Flip iteration, we choose to precompute all
UPC values and store them in an array. This strategy results in a substantial complexity improvement of
Algorithm 9 by a factor of O(w/r). However, this optimization requires storing all UPC values, leading to
a space complexity of O(log(w)r).

The idea of Alg. 32 is to perform only one conversion from 1 bit Boolean sharing to additive sharing.
Then, it computes the UPC following the same idea as in the reference implementation [ABB+22]:

|s ∧Xih0|1 =
∑

j | h(j)
0 =1

s(i+j mod r)

Where s is arithmetically mask modulo 2log(w) and h0 is masked using sparse representation. Using this
representation of h0, the equation becomes:

|s ∧Xih0|1 =
w/2∑
j=1

s(i+
∑n

k=0 h
(j)
s,0,k) mod r

Therefore, we deduce the following algorithm to perform the precomputation of all UPCs:

32

Algorithm 32 Masked computation of UPCs SecUPCalter

Input: A Boolean sharing (s1, . . . , sn) of a syndrome s, a masked sparse representation (hs,1, . . . , hs,n) of
the polynomial h

Output: An array of arithmetic sharing modulo 2α of the values (|s ∧Xih|1)1≤i≤n
1: for i = 1 to r do
2: t

(i)
1 , . . . , t

(i)
n ← 1bitB2A2α()s

(i)
1 , . . . , s

(i)
n)

3: upc
(i)
1 , . . . , upc

(i)
n ← (0, . . . , 0)

4: end for
5: for j = 1 to w/2 do
6: for i = 1 to r do
7: u

(i)
1 , . . . , u

(i)
n ← t

(i)
1 , . . . , t

(i)
n

8: end for
9: for k = 1 to n do
10: for i = 1 to r do

11: u
(i)
1 , . . . , u

(i)
n ← u

(i+h
(j)
s,k)

1 , . . . , u
(i+h

(j)
s,k)

n

12: end for
13: for i = 1 to r do
14: u

(i)
1 , . . . , u

(i)
n ← LinearRefresh(u

(i)
1 , . . . , u

(i)
n)

15: end for
16: end for
17: for i = 1 to r do
18: for k = 1 to n do
19: upc

(i)
k ← upc

(i)
k + u

(i)
k

20: end for
21: end for
22: end for
23: return upc1, . . . , upcn

33

