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Abstract. In this paper, we study preimage resistance of the SHA-3
standard. We propose a squeeze meet-in-the-middle attack as a new
preimage attack method for the sponge functions. This attack combines
the squeeze attack and meet-in-the-middle attack, and is implemented
by internal differentials. We analyze the inverse operation of the SHA-3
round function, and develop a new target internal differential algorithm
as well as a linearization technique for the Sbox in the backward phase. In
addition, we propose the concept of a value-difference distribution table
(VDDT) to optimize the attack complexity. These techniques lead to faster
preimage attacks on five (out of six) SHA-3 functions reduced to 4 rounds,
and also bring preimage attacks on 5 rounds of four SHA-3 instances. The
attack techniques are verified by performing practical preimage attack
on a small variant of 4-round Keccak.

Keywords: Hash Function · SHA-3 · Preimage Attack · Internal Differ-
entials · Linearization · Meet-in-the-Middle

1 Introduction

The Keccak hash function, designed by Guido Bertoni, Joan Daemen, Michaël
Peeters, and Gilles Van Assche [2], emerged victorious in the SHA-3 (Secure Hash
Algorithm-3) competition conducted by the National Institute of Standards and
Technology (NIST) in the United States. In 2015, NIST released the final version
of the SHA-3 standard [9]. The SHA-3 family consists of four cryptographic
hash functions, called SHA3-224, SHA3-256, SHA3-384 and SHA3-512, and two
extendable-output functions (XOFs), called SHAKE128 and SHAKE256, capable of
generating digests of variable lengths.
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The SHA-3 function, to say, Keccak, employs a sponge construction that
accommodates messages of varying lengths for hash function inputs. The mes-
sage undergoes padding and is then divided into uniform-sized message blocks.
The 1600-bit initial state of Keccak is XORed with the first message block,
followed by 24 rounds of the Keccak-f permutation applied to update the
state and XORing of subsequent message blocks until absorption is com-
plete. Finally, a final 24-round Keccak-f is applied to the state, and selected
state bits are extracted as the resulting digest. Since its introduction in 2008,
Keccak has emerged as a crucial hash function, undergoing extensive secu-
rity analysis, including evaluations of preimage resistance and collision resis-
tance [1,3,6,7,12,24,28,15,10,11,29,25,30].

In this paper, we focus on examining the security of the SHA-3 family against
preimage attacks. A preimage attack is to find a message that has a specific hash
digest. In the literature, the linear structure [12,16,15,26,17,14,18] is one of the
major cryptanalytic tools for security evaluation of SHA-3 against preimage
resistance. In 2016, Guo, Liu and Song [12] introduced the linear structure tech-
nique to linearize several rounds of Keccak and derived preimage attacks on up
to 4 rounds of Keccak. Building on Guo et al.’s framework, Li and Sun [16,15]
improved preimage attacks by the cross-linear structure and allocating approach.
Further improvements in this line were proposed in [26,17,14,18].

In 2021, Dinur [5] devised a polynomial method-based algorithm for solving
multivariate equation systems and obtained preimage and collision attacks on 4-
round variants of Keccak, including the existing best known preimage attacks
on 4-round Keccak-384 and Keccak-512 with complexities of 2374 and 2502

bit operations respectively.
In 2011, an MITM attack on 2-round Keccak was given by Naya-Plasencia

et al. [22]. They computed the inverse of one round Keccak from the target
and obtained partial internal states. Then, after dividing the message block into
many independent parts, the authors computed forward independently for each
part until the known internal states and filter the messages. In 2023, Qin et
al. [25] introduced a framework of MITM preimage attacks on sponge-based
hashing, where two independent forward chunks are applied (without backward
chunk). Starting from the r-bit outer part determined by the last message, the
two neutral sets compute independently forward to the m-bit matching point,
which is an m-bit deterministic relation on the two neutral sets by partially
solving the inverse of the permutation from the n-bit target. With the help of
linear structure technique, Qin et al. [25] presented an MITM preimage attack
on 4-round Keccak-512.

In addition, Bernstein [1] and Chang et al. [3] used algebraic techniques to
speed up a brute-force (second) preimage search for up to 9 rounds of Keccak.
However, the best known preimage attacks on the SHA-3 functions with more
than a tiny advantage over a brute-force search currently only reach 4 rounds.

Our Contribution. Different from the attacks mentioned above, we consider
the first application of internal differentials to preimage attacks on SHA-3. In-
ternal differential was initially developed by Peyrin [23] in the cryptanalysis of
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Grøstl hash function. In 2013, Dinur, Dunkelman and Shamir [6] described a
squeeze attack and conducted collision attacks on up to 5 rounds of SHA-3 by
utilizing generalized internal differentials. In the work of Dinur et al., a useful
algorithm, called target internal difference algorithm (TIDA), was developed for
constructing 1-round connector of internal differentials. Recently, Zhang, Hou
and Liu [29,30] proposed the conditional internal differentials and improved the
target internal difference algorithm by probabilistic linearization. With the help
of these methods, Zhang et al. presented collision attacks for the SHA-3 functions
reduced to up to 6 rounds. Inspired by the work of Dinur et al. [6] and Zhang et
al. [29,30] on internal differential collision attacks, we propose a new framework
for preimage attacks, which combines the squeeze attack with MITM attack
and makes use of internal differentials. It brings preimage attacks on the SHA-3
variants up to 5 rounds. The main contributions are summarized as follows.

Squeeze meet-in-the-middle attack. Launching a meet-in-the-middle at-
tack on sponge function essentially involves searching for a collision at the capac-
ity part in both forward and backward directions. Squeeze attack is an effective
method for collision attack. We propose the squeeze meet-in-the-middle attack
by combining these two approaches, and utilize internal differentials to facilitate
the squeezing process. The attack consists of three phases: forward phase, back-
ward phase, and collision phase. Each of the first two phases consists of a TIDA
stage and collecting messages stage.

Inverse internal differentials. We introduce inverse differential transition
conditions on the Keccak Sbox and use it to constrain the initial message space.
Combined with the linearization technique for the inverse of Sbox developed in
this paper, the complexity of the backward phase in the attack is reduced.

Backward target internal difference algorithm. In the backward phase
of the attack, we link the internal differential characteristics starting from the
penultimate round to the initial message space by randomly selecting the last
block and modifying the value of the second-to-last block. In Backward-TIDA,
we also introduce a value-difference distribution table (VDDT) to speed up the
construction of the connector.

The results of our attacks on SHA-3 are summarized in Table 1 with a com-
parison of the related previous work. We present the first 5-round preimage
attacks that are much faster than a brute-force search3 for four SHA-3 func-
tions, SHAKE128, SHA3-224, SHA3-256 and SHAKE256, with complexities of 2100.5
Keccak computations, 2216.03 bit operations, 2254.33 bit operations and 2254.33

bit operations, respectively. We also obtain the best known 4-round preimage
attacks for five SHA-3 functions, SHAKE128, SHA3-224, SHA3-256, SHAKE256 and
SHA3-384, with complexities of 281.5, 2135.5, 2151.5, 2151.5 and 2277.8 Keccak
computations, respectively. Besides, our 4-round and 5-round preimage attacks
on the two XOFs are valid for SHAKE128(M, 256) and SHAKE256(M, 512), which
support the strongest collision resistance and are adopted in the pre-hash signa-

3 An evaluation of the Keccak hash function is assumed to require thousands of bit
operations (see also [3,5]), so the complexity of a brute-force search over 2d messages
is significantly larger than 2d bit operations.
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Target Rounds Complexity Attack method Reference

SHA3-224

4 2221 Rotational cryptanalysis [19]
4 2217† Solving polynomial systems [5]
4 2213 Linear structure [13]
4 2207 Linear structure [15]
4 2192 Linear structure [14]
4 2135.5 Internal differential Section 6.5
5 2216.03† Internal differential Section 6.2

SHA3-256

4 2252 Rotational cryptanalysis [19]
4 2251 Linear structure [13]
4 2246† Solving polynomial systems [5]
4 2239 Linear structure [15]
4 2218 Linear structure [14]
4 2151.5 Internal differential Section 6.5
5 2254.33† Internal differential Section 6.3

SHA3-384

3 2322 Linear structure [13]
4 2378 Rotational cryptanalysis [19]
4 2374† Solving polynomial systems [5]
4 2277.8 Internal differential Section 6.4

SHA3-512

3 2504.2 Internal differential Section B
3 2482 Linear structure [13]
4 2506 Rotational cryptanalysis [19]
4 2504.58 MITM [25]
4 2502† Solving polynomial systems [5]

SHAKE128
4 2106# Linear structure [13]
4 281.5 Internal differential Section 6.5
5 2100.5 Internal differential Section 6.1

SHAKE256

4 2251# Linear structure [13]
4 2239# Linear structure [15]
4 2151.5 Internal differential Section 6.5
5 2254.33† Internal differential Section 6.3

† The complexity is calculated by bit operations.
# The attack target is SHAKE-X(M,d) with the digest length d = X,

and the complexity will increase by a factor of 2d−X for d > X.

Table 1: Comparison of preimage attacks on round-reduced SHA-3

tures of the post-quantum digital signature standards ML-DSA [20] and SLH-
DSA [21]. To the best of our knowledge, this is the first time that a preimage
attack is shown for these SHAKE instances.

The attack techniques are demonstrated by implementing a practical preim-
age attack on a small variant of Keccak, i.e., Keccak[r = 704, c = 96, nr = 4].

Organization. The rest of the paper is organized as follows. In Section 2, we
describe the SHA-3 hash function. In Section 3, we propose the squeeze meet-
in-the-middle attack. In Section 4, we list the notations used in this paper and
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review the internal differentials. Section 5 presents the framework of our attacks,
followed by detailed explanations over our techniques. The results of our attacks
are given in Section 6. We conduct experiments for verifying our attacks in
Section 7, and conclude the paper in Section 8.

2 Description of SHA-3

In this section, we give a brief description of the sponge construction and the
SHA-3 hash function, i.e., the Keccak hash function. Subsequently, the security
strengths of SHA-3 instances are given.

2.1 The Sponge Function

The sponge construction is a framework for constructing hash functions based
on permutations. The sponge construction proceeds in two phases: absorbing
phase and squeezing phase, as shown in Figure 1. The message is firstly padded
by appending a bit string of 10*1, where 0* represents a shortest string of 0’s so
that the length of padded message is multiple of r, and cut into r-bit blocks. The
b-bit internal state is initialized to be all zeros. In absorbing phase, each message
block is XORed into the first r bits of the current state, and then applying a
fixed permutation to the entire b-bit state. The sponge construction switches to
the squeezing phase after all message blocks are processed. In this phase, the
first r bits of the state are returned as output and the permutation is applied in
each iteration. This process is repeated until all d bits digest are produced.

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

Fig. 1: The sponge construction

2.2 The Keccak Hash Function

The Keccak permutation has 24 rounds, which operates on the 1600-bit state
that can be viewed as a 3-dimensional array of bits. One bit of the state at
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position (x, y, z) is noted as A[x][y][z], where 0 ≤ x, y < 5 and 0 ≤ z < 64. The
designers of Keccak defined the following naming conventions: A[·][y][z] is a
row, A[x][·][z] is a column, and A[x][y][·] is a lane; A[x][·][·] is a sheet, A[·][y][·]
is a plane, and A[·][·][z] is a slice.

There are five mappings in each round of the permutation:

θ :A[x][y][z]← A[x][y][z] +

4∑

y′=0

A[x− 1][y′][z] +
4∑

y′=0

A[x+ 1][y′][z − 1].

ρ :A[x][y][z]← A[x][y][z + T (x, y)],where T (x, y) is a predefined constant.

π :A[x][y][z]← A[x′][y′][z],where
(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
.

χ :A[x][y][z]← A[x][y][z] + (¬(A[x+ 1][y][z])) ∧A[x+ 2][y][z].

ι :A← A+RC[ir],where RC[ir] is the round constants.

The addition and multiplication are in GF (2). Since we analyse round-
reduced variant with at most 5 rounds, we only give the first four
round constants: 0000000000000001, 0000000000008082, 800000000000808a,
8000000080008000 (given in hexadecimal using the little-endian format).

2.3 Instances of SHA-3

The four instances of SHA-3 family named SHA3-d are defined from Keccak[c]
by appending a two-bit suffix ‘01’ to the message, where b = 1600, c = 2d and
d ∈ {224, 256, 384, 512}. After that, the padding of Keccak is applied. SHAKE128
and SHAKE256 are two XOF instances with the capacity c = 256 and 512 respec-
tively, and the original message M is appended with an additional 4-bit suffix
‘1111’ before applying the padding rule. The suffixes “128” and “256” indicate the
security strengths that these two functions can generally support. We summarize
specifications and security strengths of the SHA-3 functions in Table 2.

Function Rate Capacity Output Security Strengths in Bits
Size Size Size Collision Preimage 2nd Preimage

SHA3-224 1152 448 224 112 224 224
SHA3-256 1088 512 256 128 256 256
SHA3-384 832 768 384 192 384 384
SHA3-512 576 1024 512 256 512 512
SHAKE128 1344 256 d min(d/2, 128) ≥ min(d, 128) min(d, 128)

SHAKE256 1088 512 d min(d/2, 256) ≥ min(d, 256) min(d, 256)

Table 2: Specifications and security strengths of SHA-3 functions
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3 Squeeze Meet-in-the-Middle Attack

In this section, we first recall Dinur et al.’s squeeze attack, then describe a
generalized framework, called squeeze meet-in-the-middle attack.

3.1 Squeeze Attack

Dinur et al. [6] employed a method for collision attack on Keccak by focusing on
a specific subset of outputs to find hash function collisions. It describes how, by
limiting outputs to a smaller subset and considering the probabilities of inputs
leading to these outputs, one can potentially find collisions more efficiently than
traditional methods. This strategy is called a squeeze attack.

S : 21600 states

S ′ : 2196 states

D : 2384 outputs

p = 2−12

p = 2−12

p = 2−12

discard

Collision

D′ : 2270 outputs

Fig. 2: A Squeeze Attack on 4-round SHA3-384

To illustrate this attack, assume that the hash function F maps a set S of
possible inputs into a set D of possible outputs. By the birthday paradox, we
have to try a subset S′ ⊆ S of size |D|1/2. We consider a subset D′ of D, where
|D′| = q|D|, and the probability of picking an input in S′ whose output is in
D′ is p. To find a collision in D′, the number of inputs in S′ we have to try is
(q1/2/p)|D|1/2. When the mapping is random, p = q, making this attack worse
than the birthday bound for all D′ which are smaller than D. If we can exploit
some non-random behavior of the hash function in order to find sets S′ and
D′ for which p2 > q, we can get an improved collision finding algorithm. This
is called a squeeze attack, as we are forcing a larger than expected number of
inputs to squeeze into a smaller subset of possible outputs where collisions are
more likely. Figure 2 shows the collision attack on 4-round SHA3-384 in [6].

3.2 Squeeze Meet-in-the-Middle Attack

In the sponge hash function, the meet-in-the-middle attack can be used to recover
the original preimage of any digest H. For example, in the attack on SHA-3,
given a digest H of length d-bit (c/2 ≤ d ≤ 1600), first fill it with all ‘0’ bits
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or random bits to a 1600-bit state H. Then we use three blocks of message
M0||M1||M2 to perform the meet-in-the-middle attack. Set the value set of the
capacity part to D. Randomly select multiple M0 and M2 and calculate f(M0)
and f−1(f−1(H) ⊕M2). The projections of f(M0) and f−1(f−1(H) ⊕M2) in
the capacity part are stored in sets DL and DS respectively, where DL and DR

are subsets of D. We employ hash table technique to exhaustively search the
elements in DL and DS until we find two values f(M0) and f−1(f−1(H)⊕M2)
with the same value in capacity part. Finally, modify the value of M1 to make
f(M0)⊕M1 = f−1(f−1(H)⊕M2), so M0||M1||M2 is a preimage of H. According
to Sasaki’s analysis in [27], if the sizes of DL and DR satisfy |DL|×|DR| = |D| =
2c, the attacker can perform the above meet-in-the-middle attack with a success
probability of 0.63, which is also the success probability of the preimage attack by
exhaustive search. When |DL| = |DR|, the attack takes the minimum complexity
of 2c/2+1. This attack does not undermine the security strength of c/2.

In this paper, we combine the squeeze attack with the meet-in-the-middle
attack and propose a new preimage attack method. Consider a subset D′ of D,
where |D′| = q|D|, along with the input subset S′L of f and input subset S′R of
f−1. The outputs of S′L and S′R on the capacity part are filtered and stored in
the subsets D′L and D′R of D′, respectively, with probabilities pL = 2−K1 and
pR = 2−K2 . Set |D′L| = 2n1 , |D′R| = 2n2 , if 2n1+n2 = |D′| = q · 2c, the adversary
can also launch a meet-in-the-middle attack with a success probability of 0.63.
The total complexity of the attack is 2K1+n1 + 2K2+n2 , and the minimum value
q1/2 · 2(K1+K2+c)/2+1 is taken when K1 + n1 = K2 + n2. If we can exploit some
non-random behavior of the hash function in order to find set S′L, S

′
R and D′L, D

′
R

for which K1+K2+2 < log2(1/q), we can get an improved preimage recovering
algorithm. This is called a squeeze meet-in-the-middle attack.

SL : 21600 states SR : 21600 states

S ′L : 2672 states S ′R : 2640 states

D : 2256 outputs

pL = 2−60

pR = 2−11discard

discard

Collision

D′ : 2128 outputs

D′L
D′R

Fig. 3: A Squeeze Meet-in-the-Middle Attack on 5-round SHAKE128

In this paper, we utilize internal differentials to launch squeeze meet-in-the-
middle attack. The size of D′ is 2c/2 in our attack (using internal differentials of
period 32), so the number of messages collected from the forward and backward
directions needs to satisfy 2n1+n2 = 2c/2. Figure 3 shows our squeeze meet-in-
the-middle attack model for 5-round SHAKE128. The detailed description of the
attack framework will be shown in Section 5.
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4 Notations and Review of Internal Differentials

In this section, we review the concepts of internal differentials, accompanied by
a list of notations used in this paper.

4.1 Notations

The addition operation of the state is performed on GF (2) or the linear space
over GF (2). We summarize the major notations to be used in this paper here.

nr Number of attacked rounds
c Capacity of a sponge function
r Rate of a sponge function
b Width of a Keccak permutation in bits, b = r + c
d Length of the digest in bits
p Number of minimum fixed bits in the initial state due to padding
i Period of a symmetric state
θ, ρ, π, χ, ι The five mappings that comprise a round.
L Composition of θ, ρ, π and its inverse denoted by L−1

Rj(·) Keccak permutation reduced to the first j rounds
S(·) 5-bit Sbox operating on each row of Keccak state
δin, δout 5-bit input and output differences of an Sbox
M Padded message of M . Note that M is the fifth block in our attack
M0||M1 Concatenation of strings M0 and M1

αj−1 Input internal difference of the j-th round function with period 32
βj−1 Input internal difference of χ in the j-th round with period 32
β → α⋆ β is the internal difference input to χ and α⋆ is the output difference
∆(·) Internal difference of one state
E[·] Expectation of one random variable
kj Transition condition number of j-th round in forward phase
k′j Transition condition number of j-th round in backward phase

4.2 Internal Differentials

The internal differential collision attack is essentially a squeeze attack. Inter-
nal differential was initially developed by Peyrin [23] in the cryptanalysis of the
Grøstl hash function. This method was later generalized by Dinur et al. [6] in
collision attacks on Keccak. Similar to the case of standard differential anal-
ysis, the adversary’s goal is to find several internal differential characteristics
with high transition probability by tracking the differences between different
parts of the internal state through the cryptographic function. The difference
between standard differential and internal differential is that the input of the
former is multiple message pairs, while the input of latter is multiple messages.
Another difference is that in standard differential analysis, the adversary can
check whether a collision occurred after each input of a message pair. In internal
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differential analysis, the adversary has to input enough messages to enter the
characteristic, and search for each collision subset at the end of the character-
istic until a collision is found. It can be seen that internal differential analysis
is a squeeze attack, the collision subset is a subset of the output set D, and the
transition probability of the internal differential characteristic is the probability
p that the input enter the output subset.

In Keccak, a state is called a symmetric state if it has period i in the z -axis.
This means that for all (x, y, z), there is some positive integer i less than 64 such
that state A satisfies A[x][y][z] = A[x][y][(z+i) mod 64]. An interesting property
of Keccak is that after applying any of the θ, ρ, π, χ operations to a symmetric
state, the new state is still a symmetric state and maintains its period.

In this paper, we set i = 32, and a symmetric state consists of two repetitions
of slices 0-31. Each sequence of slices (0-31, 32-63) is called a consecutive slice
set or CSS in short.

Note that the round constants are not periodic, so the ι operation will in-
troduce a difference between the two CSS’s, and this difference will propagate
through other operations. To characterize the difference, the internal difference
is defined as follows. The set {v+u|u is symmetric} obtained by adding all sym-
metric states to a single state v is called internal difference, recorded as [i, v].
If v = 0, the subset [i,0] is called zero internal difference, and other internal
differences [i, v] are cosets of [i,0]. The state v is called the representative state.
We choose v satisfying v[x][y][z] = 0 (z ∈ {32, 33, ..., 63}) as the canonical rep-
resentative state. For a state v, we refer to its corresponding canonical represen-
tative state of the internal difference as its internal difference, denoted by ∆(v).
Then, an internal differential for round function R is a pair of internal differences
(α1, α2), and its probability is defined as Pr(∆(R(v)) = α2|∆(v) = α1).

Similarly to the standard differential characteristics, an internal differential
characteristic is defined as the propagation of internal differences through round
function. The internal differential transition of the j-th round in the character-
istic is denoted by αj−1

L−→ βj−1
χ−→ α⋆

j
ι−→ αj , where j ≥ 1.

Definition 1. [29] Given the non-zero input difference δin = (δ0, . . . , δ4)
T of the

5-bit Keccak Sbox, the output difference δout is determined by q (2 ≤ q ≤ 4)

linear conditions with respect to the actual input x = (x0, . . . , x4)
T . The q linear

conditions {Lt(x)}q−1t=0 (without constant terms) are called differential transition
conditions. Equivalently, δout = S(x)⊕ S(x⊕ δin) = C ·x⊕ η, where C ∈ F5×5

2 is
a matrix (rank(C) ∈ {2, 3, 4}) and η ∈ F5

2 is a constant vector. It can be easily
verified that C and η can be represented by δin as

C =




δ2 δ1
δ3 δ2

δ4 δ3
δ4 δ0
δ1 δ0




, η = S(δin) =




δ0 ⊕ (δ1 ⊕ 1)δ2
δ1 ⊕ (δ2 ⊕ 1)δ3
δ2 ⊕ (δ3 ⊕ 1)δ4
δ3 ⊕ (δ4 ⊕ 1)δ0
δ4 ⊕ (δ0 ⊕ 1)δ1




.

Definition 2 (Transition Condition Number [29]). Given an internal dif-
ferential characteristic, for the input internal difference βj−1 of the j-th χ oper-
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ation, the rank of the set of all differential transition conditions obtained from
βj−1 is called the transition condition number (denoted as kj).

Property 1. [29] If the transition condition number of βj−1 is k, there are at
most 2k possible output internal differences and the lower bound of transition
probability is 2−k.

4.3 Target Internal Difference Algorithm

In [6], Dinur et al. proposed the target internal difference algorithm (TIDA) for
constructing 1-round connector of internal differentials. The 1-round internal
connector with the target internal difference α1 can be constructed by finding a
2-block message M0||M1, such that

∆(R(Rnr (M0||0c)⊕ (M1||0c))) = α1. (1)

Zhang et al. redesigned TIDA for conditional internal differentials in [29] and
further improved the algorithm by probabilistic linearization method in [30].
Its essence is to transform the system (1) into two linear systems E∆ and
E∆(L(α0))→α⋆

1
, in a probabilistic way rather than in a deterministic way. The

system E∆ is called the input difference system (Def. 4), and its solution space
contains correct input internal differences with a probability of p⋆1. That is, solv-
ing 1/p⋆1 systems of E∆’s gives an input internal difference α0 propagated to α1

on average. The system E∆(L(α0))→α⋆
1

is differential transition system (Def. 5),
used to determine whether the input internal difference α0 can be propagated
to α1 for legal messages. To describe the algorithm, we recall the concept of
difference density in [30].

Definition 3. [30] Given a non-zero output difference δout of the Keccak Sbox,
for the t-dimensional affine space U (1 ≤ t ≤ 5), the proportion of the input
differences of δout in U is called the difference density of U with respect to δout,
recorded as P(U, δout).

We now recall the establishment process of linear system E∆. The first step
is to select an 800-dimensional subspace (named W ) to which the initial inter-
nal difference α0 = (∆R, ∆C) propagates through the linear layer L, that is,
W = L(∆R, ∆C), where ∆R and ∆C respectively denote the internal differences
in the rate part and capacity part. For each non-active Sbox involved in α⋆

1, it
is still constrained by five linear equations. For an active Sbox, given the out-
put difference δout, we select an t-dimensional affine subspace U and add the
corresponding (5 − t) linear equations to the system. The other details of es-
tablishment are shown in Procedure PIDS [30]. Assuming that E∆ is consistent
and ∆(L−1(β0)) is a solution to E∆, the probability p⋆1 of β0 being the input
difference of α⋆

1 is determined by the product of the corresponding difference
density of each selected affine subspace.

Definition 4 (Input Difference System). [30] In internal differentials of
SHA-3, given the characteristic starting from the second round, the linear system
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with respect to the input difference α0 of the first round is the input difference
system, regarded as E∆. The last (c/2 + p) bits of α0 and the last (c + p) bits
of the input state of the second block are defined as padding and inner bits (or
inner bits for short), which are known but can not be controlled. After applying
Gaussian elimination to E∆, the equations related only to the inner bits are
called the inner part (or inner system) of E∆, denoted as EC.

Definition 5 (Differential Transition System). [30] Given an input differ-
ence β and its output difference α after χ, the linear system composed of all
differential transition conditions and their values of the constant terms is called
the differential transition system from β to α, regarded as Eβ→α.

5 Preimage Attacks Using Internal Differentials

In this section, we first describe the framework of preimage attacks on the SHA-3
functions with reduced rounds. Afterwards we present the technical details of
each phase in the attack and some optimizations for improving the attack.

5.1 The Attack Framework

Inspired by the work of Dinur et al. [6] and Zhang et al. [29,30] on collision at-
tacks, we propose a novel attack framework for preimage attacks. In the attack,
we utilize two consecutive internal differential characteristics in opposite direc-
tions. Taking the 5-round preimage attack as an example, the characteristic cov-
ering 4 rounds in the forward phase starts from the second round, and the char-
acteristic covering 3.5 rounds in the backward phase starts from the nonlinear
layer of the second-to-last round. Our preimage attack consists of three phases,
namely the forward phase, backward phase, and collision phase, and we select
5-block messages as inputs, as depicted in Figure 4. Assume that the forward
internal differential characteristic is α1

R−→ α2
R−→ α3

R−→ α4
R−→ α5 and the back-

ward internal differential characteristic is β′3
L−1

−−−→ α′3
R−1

−−−→ α′2
R−1

−−−→ α′1
R−1

−−−→ α′0,
where α5 = α′0 is truncated internal difference at the capacity part. Next, we
give an overview of the three phases.

Phase I – Forward Phase. This phase includes two stages: Forward-TIDA
and Forward-Collecting Messages.
• Forward-TIDA stage: For the target internal difference α1, we establish the

input difference system E∆ and filter out the first blocks M0 that make E∆

consistent. After that, select α0 from the solution space of each E∆ that can
be legally propagated to α1.

• Forward-Collecting Messages stage: Perform linearizations on the first non-
linear layer χ and solve the differential transition systems Eβ1→α⋆

2
to get

several subspaces of the second block M1 passing the first two rounds. Then,
compute the messages after 5 rounds functions from the subspaces and filter
out the states where the truncated internal difference is α5 to store in the
set D′L.

12



M0
R5

−−→ ⊕ −→ E∆, Eβ0→α⋆
1
−→ [i, α0]

R−−−−−→
p=2−k1

[i, α1]
R−−−−−→

p=2−k2

[i, α2]
R3

−−−−−−−−−−→
p=

∏5
i=3 2−ki

[i, α5] −→ ⊕ ←− [i, α′0]

Forward-Collecting Messages SearchingForward-TIDA

M1

Inconsistent Linearization (p = 1)

D′L D′R

M2

(R−1)2

—
p=

∏2
i=1 2−k′

i

[i, α′2]
R−1

←−−−−−
p=2−k′

3

[i, α′3]
L−1

←−−− [i, β′3]
χ−1◦ι−1◦L−1

←−−−−−−−−−
p=2−k′

4

[i, β′4]←− V
χ−1◦ι−1

←−−−−− ⊕ (R−1)5←−−−− ⊕ (R−1)5←−−−− H

Output difference space after L ◦ ι ◦ χ

Linearization (p = 1) M3 M4

Backward-Collecting Messages Backward-TIDA

Forward Phase Collision Phase

Backward Phase

Fig. 4: The framework of 5-round preimage attack

Phase II – Backward Phase. This phase includes Backward-TIDA stage and
Backward-Collecting Messages stage.

• Backward-TIDA stage: In this stage, we start with the digest H to be recov-
ered and first append a suffix of ‘0’ bits to H to pad it to 1600 bits, denoted
by H. The target internal difference is β′3. After β′3 passes through χ, all
possible output differences form an affine space, denoted as V . We randomly
select M3 and M4, invert the state from H through the underlying permuta-
tion twice, and reversely calculate half of the round function, i.e., χ−1 ◦ ι−1,
until the internal difference β′4 of the 4.5-th round appears in V .

• Backward-Collecting Messages stage: Modify the state value with internal
difference β′4, perform linearizations on the nonlinear layer χ−1 of the fourth
round, and solve the differential transition systems Eβ′

2←α′⋆
3

to obtain the
states entering [i, α′2]. Then continue to calculate backward and collect the
states with truncated internal difference α′0 and store them in the set D′R.

Phase III – Collision Phase. This phase only includes the searching stage.

• Searching stage: Using hash table techniques, perform an exhaustive search
in D′L and D′R until two states with the same capacity value belonging to
different sets are found. Finally, modify the third block M2 to complete the
matching of the entire state.

Remark 1. The fifth block M4 is introduced here to eliminate the impact of
SHA-3’s padding rule on the degree of freedom. In this case, the fourth block M3

is equivalent to the internal state where the first r bits are free variables and the
last c bits are all zero.
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Remark 2. Since the χ operation can be applied to each plane independently,
we modify the values of the first few planes in the rate part in [i, β′4], which
is equivalent to modifying the fourth block M3. In the Backward-Collecting
Messages stage, we start from the set [i, β′4] and calculate backward. After a
match is achieved in the collision phase, we calculate the value of M3 to complete
the entire attack.

5.2 Forward Phase

Forward-TIDA stage. The Forward-TIDA stage can be abstracted as Algo-
rithm 1, which modifies [30, Algorithm 1] and does not consider the padding
bits. In this stage, for each active Sbox, we only keep the input differences
with a transition condition number of 3 and restrict the possible input differ-
ences to a 1-dimensional affine subspace U . This is always possible because
from the DDT, each non-zero output difference has at least two input dif-
ferences with a transition condition number of 3, and any two non-zero vec-
tors can always span a 1-dimensional affine space. For example, all possi-
ble input differences δin and transition condition numbers k of δout = 0x05
are listed as follows. We choose 0x06 and 0x16 as possible input differences,
and the subspace {0x06, 0x16} can be characterized by four linear equations
{(δ0, . . . , δ4) ∈ F5

2|δ0 = 0, δ1 = 1, δ2 = 1, δ3 = 0}.

δin 0x04 0x06 0x07 0x0f 0x11 0x16 0x17 0x19 0x1b 0x1d
k 2 3 4 4 3 3 4 4 4 4

Correspondingly, in the Procedure PIDS, for each active Sbox, we add 4 linear
equations to the system E∆, and the probability p⋆1 = 1. Assuming that the total
number of active Sboxes is m, the difference transition condition number of the
input difference β0 obtained by solving E∆ is 3m. From Observation 2 [24], it
can be seen that solving the differential transition system Eβ0→α⋆

1
can linearize

all active Sboxes. For each non-active Sbox, we add three conditions to Eβ0→α⋆
1

that can linearize it, and solve Eβ0→α⋆
1

to linearzing the first nonlinear layer
χ. Since the total number of Sboxes is 160, there are at most 480 independent
linear equations in Eβ0→α⋆

1
, which means that completing the first round of

linearization consumes at most 480 degrees of freedom. For SHAKE128, SHA3-224,
SHA3-256 and SHAKE256, more degrees of freedom are still reserved for passing
subsequent rounds.

Forward-Collecting Messages stage. In this stage, we solve the differential
transition system Eβ1→α⋆

2
to obtain the solution space W2. After the first round

of linearization, Eβ1→α⋆
2

is a linear system about the initial message. The details
of the linearization are presented in Supplementary Material D in the full version
of this paper.

Assuming the q1 differential transition conditions are satisfied, the initial
message in the solution space W2 can pass through the first two rounds of the
forward characteristic with a probability 2−k1−k2+q1 . We select enough initial
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Algorithm 1: Forward-TIDA
Input: Target internal difference α1 and target number of attacked rounds nr

Output: the first block M0, the value subspace W1 of the second M1, initial
internal difference α0

1 Set E∆ = ∅, α⋆
1 = α1 ⊕RC[1] and p⋆1 = 1.

2 (E∆(∆R,∆C), p
⋆
1) = PIDS(∆T , p

⋆
1).

3 Reduce E∆(∆R,∆C) = ER(∆R,∆C) ∪ EC(∆C).
4 Set W1 to NULL.
5 do
6 Set ∆⋆

c = (δ′800−c/2, ..., δ
′
799).

7 do
8 Randomly select M0 and compute ∆(Rnr (M0)).
9 for each integer j ∈ [800− c/2, 800) do

10 δ′j = ∆(Rnr (M0))[j]. // the j-th bit of ∆(Rnr (M0))
11 end
12 while ∆⋆

c is not a solution of EC ;
13 Solve ER(∆R,∆

⋆
C) and obtain its solution space UC .

14 do
15 Randomly choose and delete a solution α0 of UC .
16 β0 = ∆(L(α0)).
17 if β0 is the input difference of α⋆

1 then
18 Obtain the differential transition system Eβ0→α⋆

1
. // as defined

in Def. 5
19 Solve the linear system Eβ0→α⋆

1
(Rnr (M0)⊕ (X||0c)) on X, and get

its solution space W1 if it has solutions.
20 end
21 while W1 is NULL and UC ̸= ∅;
22 while W1 is NULL;
23 return (M0,W1, α0)

messages from W2 for calculation. Store the filtered messages in the set D′L at
the end of the forward internal differential characteristic.

Remark 3. In the attacks on 4-round SHA3-384 and 3-round SHA3-512, we only
add 1 linear equations for each active Sbox with difference density of 9/32 to the
input difference system E∆ and the corresponding difference density becomes
9/16. Each non-active Sbox still provides 5 equations. The probability p⋆1 is
therefore equal to the product of the difference densities of all active Sboxes in
5-dimensional space. After solving E∆ and obtaining the input differential β0,
we solve the differential transition system Eβ0→α⋆

1
and obtain the solution space

W1. In the Forward-Collecting Messages stage, we do not perform linearization,
but simply collect messages at the end of the forward characteristic.

5.3 Backward Phase

Backward-TIDA stage. In this stage, our objective is to find the fifth block
M4 and multiple sets W3 of M3 that satisfy the target difference β′nr−2.
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For a given β′nr−2
, we consider the internal differential characteristic

β′nr−2
ι◦χ−−→ α′nr−1

L−→ β′nr−1
ι◦χ−−→ α′nr

= ∆M,

where M = χ−1◦ι−1(M3⊕R−nr (R−nr (H)⊕M4)). Since for any internal difference
input to χ, its output differences form an affine space, we know all the possible
differences β′nr−1’s form an affine space, denoted by V . In the following, we
discuss how to find M3 and M4 such that ∆M matches V .

A property of the χ operation can be exploited here that χ acts independently
on each plane and is a reversible operation. In the nr-round attacks, taking
SHA3-384 as example, the first two planes of the fourth message block M3 are
free variables, so we can modify M3 to ensure that the projection of the internal
difference ∆M matches V on the first two planes. At this point, we only need to
randomly select the value of M4 so that the last three planes of the difference ∆M
align with an arbitrary element β′nr−1 in V . However, for all SHA-3 functions,
there is always one plane that cannot be fully covered by the rate part (since
each plane has 320 bits). To address this issue, we introduced the value-difference
distribution table (VDDT).

Definition 6 (Value-Difference Distribution Table). Set Sbox S : F5
2 →

F5
2. Given any input difference δin and 2t-bit value (y, y′), δin ∈ F5

2, y, y
′ ∈ Ft

2, the
entry VDDT(α, y, y′) in the value-difference distribution table records the number
of elements in the set {(x, x′) ∈ F2×(5−t)

2 |S−1(x||y) + S−1(x′||y′) = δin}.

Taking SHA3-384 as an example, its capacity part is the last 12 lanes of the
state, then the last two lanes in the third plane are not controlled by the fourth
block M3. We first randomly take the fifth block M4 to get the output difference
β′nr−1 that matches the last two planes. Then fix M4, and check the VDDT with
2t-bit value of each Sbox in the second plane to determine whether β′nr−2 is the
output difference, where t = 2. If not, continue to randomly select M4 until a
matching output difference is obtained. Then we construct the inverse differen-
tial transition system according to the inverse differential transition condition
(Def. 7) and to obtain the set W3 about states in [i, β′nr−1]. The details of this
stage are shown in Algorithm 2.

Definition 7 (Inverse Differential Transition Condition and Inverse
Differential Transition System). Given the non-zero output difference
δout and the input difference δin of the 5-bit Keccak Sbox. If each output
value y that satisfies q independent linear conditions is a solution to δin =
S−1(x)+S−1(x+δout), then the q linear conditions are called inverse differential
transition conditions. Given an output difference α and its input difference β be-
fore χ, the linear system composed of inverse differential transition conditions is
called the inverse differential transition system from α to β, regarded as Eβ←α.

Backward-Collecting Messages stage. In this stage, for the attacks on 4-
round SHA3-384 and 3-round SHA3-512, we directly calculation the messages
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Algorithm 2: Backward-TIDA
Input: Target internal difference β′nr−2 and a digest H
Output: The fifth block M4, the set W3 of the fourth block M3, internal

difference β′nr−1

1 Compute the affine space V generated by β′nr−2 after L ◦ ι ◦ χ operation.
2 Set H = H||0 . . . 0, Np = ⌊c/320⌋, Nl = c/64− 5 · ⌊c/320⌋.

/* Np represents the maximum number of planes that can be covered
by the capacity part in the internal difference */

3 do
4 Det = 1.// Determine whether β′nr−1 matches ∆M in capacity
5 if Np > 0 then
6 do
7 Randomly select M4 and compute

M = χ−1 ◦ ι−1 ◦ R−nr (R−nr (H)⊕M4).
8 while there is no β′nr−1 ∈ V matching ∆M on the last Np planes;
9 for each Sbox with β′4 in the (5−Np)-th plane do

10 Get the input difference δin and the value (y, y′) of the last 2Nl

bits corresponding to M .
11 if VDDT(δin, y, y′) = 0 then
12 Det = 0, break.
13 end
14 end
15 else
16 Randomly select M3,M4 and compute

M = χ−1 ◦ ι−1(M3 ⊕ R−nr (R−nr (H)⊕M4)).
17 Randomly select β′nr−1 ∈ V .
18 if β′nr−1 does not match ∆M on the last plane then
19 Det = 0.
20 end
21 end
22 while Det = 0;
23 Solve all linear systems Eβ′

nr−2←α′⋆
nr−1

(L−1(X)) on X, and get the union W3

of their solution spaces.// as defined in Def. 7
24 return (M0,W3, β

′
nr−1)

in W3 backward and store the states in the set D′R. For the other versions,
the optimization objective is to solve the subspace W4 of W3, in which the
states can pass through the backward characteristic with higher probability.
Let the state in set [i, β′nr−1] be X ⊕ β′nr−1, where X is a symmetric state.
We add additional linear equations to Eβ′

nr−2←α′⋆
nr−1

(L−1(X)) to linearize χ−1,
then solve the inverse differential transition system Eβ′

nr−3←α′⋆
nr−2

about X and
obtain the solution set W4. Then select states from W4 and repeat the backward
calculation and storage steps.
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In fact, the process of constructing the inverse differential transition system
about χ−1 is different from the forward phase. In order to linearize χ−1, we
introduce the concept of inverse-linearizable affine subspace (Def. 8).

Definition 8 (Inverse-Linearizable affine subspace). Inverse-Linearizable
affine subspaces are affine output subspaces on which the inverse of Sbox substitu-
tion is equivalent to a linear transformation. If V is a inverse-linearizable affine
subspaces of an Sbox operation S(·), ∀y ∈ V , S−1(y) = A · y + b, where A is a
matrix and b is a constant vector.

Exhaustive search for the inverse-linearizable affine subspaces of the Keccak
Sbox shows:

Observation 1 Given δin, δout ∈ F5
2, denote the set V = {y = (y0, ..., y4) :

S−1(y) + S−1(y + δout) = δin} and S−1(V ) = {S−1(y) : y ∈ V }, we have

a. There are totally 80 2-dimensional inverse-linearizable affine subspaces, as
listed in Table 4 in Supplementary Material F in our full version paper. And
there are 8 subspaces, which are a partition of F5

2. There does not exit any
inverse-linearizable affine subspace with dimension 3 or more.

b. if DDT(δin, δout) = 2 or 4, then V is an inverse-linearizable affine subspace.
c. if DDT(δin, δout) = 8, then there are two 2-dimensional inverse-linearizable

subspaces Wi ⊂ V , i = 0, 1, such that W0 ∪ W1 = V . And there are two
independent linear conditions L1 and L2, all elements in V satisfy L1, and
6 elements satisfy L2.

δout V L1 L2

0x01 0x14,0x15,0x11,0x10,0x1a,0x1b,0x1d,0x1c y4 = 1 y1 = 0
0x11 0x06,0x17,0x02,0x13,0x08,0x19,0x0e,0x1f y4 + y0 = 0 y1 = 1
0x09 0x00,0x09,0x05,0x0c,0x0a,0x03,0x0d,0x04 y4 = 0 y1 = 0
0x19 0x12,0x0b,0x16,0x0f,0x18,0x01,0x1e,0x07 y4 + y0 = 1 y1 = 1

We summarize all cases where δin = 0x01 and DDT(δin, δout) = 8 in the
above table. Taking (δin, δout) = (0x01, 0x11) as an example, the solution set
V = W0 ∪W1, where W0 = {y = (y0, ..., y4) : y0 + y4 = 0, y1 = 1, y3 = 0} and
W1 = {y = (y0, ..., y4) : y0+y4 = 0, y1+y2 = 0, y3 = 1}. We call the linear condi-
tion that all values in V satisfy the first linear condition, such as L1 : y4+y0 = 0;
and the linear condition that only 3/4 of the values in V satisfy is called the the
second linear condition, such as L2 : y1 = 1. For the Sbox with DDT ≤ 4, the
inverse differential transition conditions are all the first linear conditions. For the
Sbox with DDT = 8, there is one first linear condition and two second linear con-
ditions. In the j-th round, assuming that the number of Sboxes with transition
probabilities of 2−2, 2−3, and 2−4 are Nk=2, Nk=3, and Nk=4 respectively, the
differential transition probability is 2−(2Nk=2+3Nk=3+4Nk=4). After adding all the
first linear conditions, there are Nk=2 +3Nk=3 +4Nk=4 equations in the inverse
differential transition system Eβ←α. The transition probability of the state ob-
tained by solving Eβ←α is 2−Nk=2 . If we add q second linear conditions belonging
to different Sboxes to Eβ←α and solve the system, the transition probability of
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the solution is 2−(Nk=2−q) · (3/4)q = 2−Nk=2+q·log2(3/2). When there are sufficient
degrees of freedom, for each Sbox with transition probability of 2−2, we can add
three inverse differential transition conditions to the Eβ←α to characterize the
inverse-linearizable affine subspace (as W0), so that the solved state determinis-
tically pass χ−1. The degrees of freedom consumed in solving system Eβ←α are
3Nk=2 + 3Nk=3 + 4Nk=4 = Nk=2 + k′j . In the attack, we adjust the number of
equations according to different versions. From Observation 1, to linearize χ−1,
we also need to add at least 3 linear conditions to the output space of each Sbox.

Remark 4. Since the linearization technique is performed on χ−1, the linear
system contains an inverse difference transition system Eβ′

nr−2←α′⋆
nr−1

, so the
complexity of solving the inverse difference transition systems in Algorithm 2
will be calculated in the total complexity of the linearization operation. For
the attack without using linearization in the backward phase, the complexity of
solving the inverse difference transition systems Eβ′

nr−2←α′⋆
nr−1

, i.e., Step 23 of
Algorithm 2, is not the dominant in the algorithm.

5.4 Collision Phase and Time Complexity

Collision Phase. In the Searching stage, we use hash table technique to ex-
haustively search the two sets D′L and D′R. Store the states in the set D′R into
hash table TH , and traverse the elements in D′L until an element v1 is found that
has the same value as the state v2 in D′R in the capacity part.

Set the size of D′L is 2n1 and the size of D′R is 2n2 . From Section 3.2, we know
that the number of collected messages needs to satisfy 2n1 · 2n2 = 2c in order to
find a collision in the capacity part with a success rate of 0.63. Assuming that the
transition probability of the forward characteristic is 2−K1 and the probability
of the backward characteristic is 2−K2 , the number of initial messages required
in the forward phase is 2n1+K1 , and the number of initial messages required
in the backward phase is 2n2+K2 . The complexity of the our attack is mainly
dominated by the complexity of the forward phase and backward phase, and the
time complexity of the collision phase can be ignored in comparison.

Complexity. The time complexity is determined by the complexity of the fol-
lowing parts. In the following analysis, j takes 1 or 2, where j = 1 means that
this stage is in the forward phase, and j = 2 means that this phase is in the
backward phase.

1. TIDA stage: Let the complexity of running a TIDA be 2Ij , and the size of
the initial message space is 2dj . Then the complexity TA,j of this stage is
2Ij ·max{2nj+Kj−dj , 1}.

2. Collecting Messages stage: Let the complexity of a linearization be 2Lj , and
linearization is performed 2sj times. The complexity TB,j of performing lin-
earization is 2Lj+sj . In addition, there are qj differential transition condi-
tions that are satisfied in this stage, so the complexity TC,j of calculating
the nr-round permutations of the selected messages is 2nj+Kj−qj . The total
complexity of this part is TB,j + TC,j = 2Lj+sj + 2nj+Kj−qj .

19



Thus, the final complexity T of preimage attack is summarized in Equation (2),

2∑

j=1

(TA,j+TB,j+TC,j) =

2∑

j=1

(2Ij ·max{2nj+Kj−dj , 1}+2Lj+sj +2nj+Kj−qj ). (2)

Remark 5. In the attack on 4-round SHA3-384 and 3-round SHA3-512, we do
not implement linearization in both the forward phase and backward phase.
Therefore, the total complexity T is TA,1 + TC,1 + TA,2 + TC,2.

6 Results and Complexity Analysis

In this section, we present the details of our preimage attacks on round-reduced
SHA-3. Given a forward internal differential characteristic and a backward char-
acteristic, the procedure of the attack is depicted as follows.

1. The digest H of length d bits is padded to H of length 1600 bits by adding an
arbitrary (1600− d)-bit suffix. Calculate the number N1 and N2 of required
initial messages for the forward phase and backward phase respectively based
on the internal difference characteristic.

2. Run Algorithm 1 to obtain the first block M0, internal difference α0, and the
value subspace W1 of the second block M1. If there are sufficient degrees of
freedom in W1, utilize the linearization technique for the first nonlinear layer
χ and solve the differential transition system Eβ1→α⋆

2
to obtain the subspace

W2 of W1.
3. Traverse the messages in the affine space W1 or W2, and propagate the

truncated difference after nr rounds. Store the states that pass the forward
internal difference characteristics into the set D′L. If the size of D′L is less
than N1, go back to Step 2.

4. Run Algorithm 2 to obtain the fifth block M4, internal difference β′nr−1, and
the value set W3 of [i, β′nr−1]. If there are sufficient degrees of freedom in W3,
utilize the linearization technique for the (nr− 1)th nonlinear layer χ−1 and
solve the differential transition system Eβ′

nr−2←α′⋆
nr−1

to obtain the subspace
W4 of W3.

5. Traverse the messages in the set W3 or the affine space W4, and propagate
the truncated difference backward through nr rounds. Store the states that
pass the backward internal difference characteristics into the set D′R. If the
size of D′R is less than N2, go back to Step 4.

6. Exhaustively search the sets D′L and D′R until we find states v1 and v2 that
are consistent in the capacity part.

7. Calculate the third block M2 = v1 ⊕ v2 and the fourth block M3 =
Rnr (Rnr (Rnr (M0)⊕M1)⊕M2)⊕ (R−1)nr ((R−1)nr (H)⊕M4).

8. Return a preimage M0||M1||M2||M3||M4 of the digest H.

Remark 6. In this paper, we use the Strassen algorithm to solve linear systems
with a complexity of µω bit operations, where ω = log2(7) and µ is the maximum
between the number of variables and the number of equations in the linear
system. In the following, (µω)† means µω bit operations.
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Remark 7. Our attack eliminates the effect of padding bits by introducing the
fifth block M4. For any digest of length within r bits, the cost of a preim-
age attack is equivalent to that of attacking a digest of length c/2. Conse-
quently, the attack procedures for SHA3-256 and SHAKE256 are identical, and
we only describe the attack of SHA3-256. But it is important to stress here
that our preimage attacks on round-reduced variants of SHAKE are valid for
SHAKE128(M,d) and SHAKE256(M,d) with d ≤ 1344 and d ≤ 1088 respectively,
including SHAKE128(M, 256) and SHAKE256(M, 512).

6.1 A Preimage Attack on 5-round SHAKE128

For 5-round SHAKE128, we use the internal differential characteristic given
in Characteristic 1 in Supplementary Material G in the full version of this
paper. The transition condition numbers are (k2, k3, k4, k5, k

′
1, k
′
2, k
′
3, k
′
4) =

(155, 34, 15, 11, 7, 4, 98, 399). The scales of the sets D′L and D′R in the collision
phase satisfy 2n1+n2 = 2128. In this subsection and subsequent chapters, we de-
note the number of Sboxes with transition probabilities of 2−2, 2−3 and 2−4 in
the j-th round of the backward phase as Nj,k=2, Nj,k=3 and Nj,k=4. We con-
tinue to use the notation TA,j , TB,j , TC,j (j = 1, 2) in the complexity analysis in
Section 5.4.

Forward Phase. For α⋆
1, there are 124 active Sboxes and 36 non-active

Sboxes. During the Forward-TIDA stage, for the input difference system E∆,
each active Sbox provides 4 linear equations, and each non-active Sbox provides 5
linear equations. Thus the system E∆ contains 676 equations, of which the inner
part contains 67 equations. The output probability p⋆1 of Procedure PIDS is 1.
Therefore, the complexity of TIDA is 267. Since the transition condition number
k1 of the first round is limited to 124 × 3 = 372, the degree of freedom of the
message space W1 output by Algorithm 1 is at least r/2−372 = 300. The number
of Forward-TIDA executions is max (2n1+k2+k3+k4+k5−300, 1) = max (2n1−85, 1).
The complexity of this stage is TA,1 = 267 ·max (2n1−85, 1) = max (2n1−18, 267).

In the collecting messages stage, there are 372 fixed differential transi-
tion conditions among the 480 linear conditions that need to be added in
the linearization process. Each linearization is equivalent to solving a lin-
ear system with 300 variables and 36 × 3 + k2 = 263 equations, with a
complexity of 300ω = (223.12)†. The iteration number of linearization is
max (2n1+k2+k3+k4+k5−(r/2−480), 1) = max (2n1−23, 1). The total complexity
TB,1 of linearization is (max (2n1+0.12, 223.12))†, and the complexity of absorbing
and filtering the second blocks is TC,1 = 2n1+k3+k4+k5 = 2n1+60.

Backward Phase. For the subspace V composed of β′4, the dimension is
k4 = 399, and its projection dimension on the last plane is 160. Therefore, in
each run of Backward-TIDA, only one M4 needs to be randomly selected, and
the complexity is 1. The degree of freedom of the message set W3 output by
Algorithm 2 is at least 20 × 32 − 399 = 241. The number of TIDA runs is
max (2n2+98−241, 1) = 1, TA,2 = 1 · 1 = 1.
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In the collecting messages stage, there are 13 non-active Sboxes for β′3,
(N3,k=2, N4,k=2, N4,k=4) = (38, 48, 6). Each linearization is equivalent to solving
a linear system with 241 variables and 13×3+N4,k=2+k′3+N3,k=2 = 223 equa-
tions, with complexity of 241ω = (222.24)†. Based on the analysis in Section 5.3,
we add inverse differential transition conditions to each active Sbox in the third
round, resulting in an additional consumption of N3,k=2 degrees of freedom,
so the number of linearizations is max (2n2+k′

1+k′
2+k′

3+N3,k=2−(20×32−480), 1) =
max (2n2−13, 1). TB,2 = (max (2n2+9.24, 222.24))†, TC,2 = 2n2+k′

1+k′
2 = 2n2+11.

Complexity. The total complexity T = TA,1 + TB,1 + TC,1 + TA,2 +
TB,2 + TC,2 = max (2n1−18, 267) + (max (2n1+0.12, 223.12))† + 2n1+60 + 1 +
(max (2n2+9.24, 222.24))† + 2n2+11. We take (n1, n2) = (39.5, 88.5), in which case
the complexity T takes the minimum value 2100.5.

6.2 A Preimage Attack on 5-round SHA3-224

For 5-round SHA3-224, we use the internal differential characteristic given
in Characteristic 2 in Supplementary Material G in our full version pa-
per. The transition condition numbers are (k2, k3, k4,5, k

′
1, k
′
2, k
′
3, k
′
4) =

(158, 30, 17.64, 13, 8, 88, 384), where k4,5 is the transition probability from β3

to the truncated internal difference α5. The scales of the sets D′L and D′R in the
collision phase satisfy 2n1+n2 = 2224.

Forward Phase. For α⋆
1, there are 122 active Sboxes and 38 non-active

Sboxes. During the Forward-TIDA stage, each active Sbox provides 4 linear
equations, and each non-active Sbox provides 5 linear equations. The input dif-
ference system E∆ contains 678 equations, of which the inner part contains 102
equations. The output probability p⋆1 of Procedure PIDS is 1. Therefore, the
complexity of TIDA is 2102. Since the transition condition number k1 of the first
round is limited to 122 × 3 = 366, the degree of freedom of the message space
W1 output by Algorithm 1 is at least 800 − 224 − 366 = 210. The complexity
TA,1 of this stage is 2102 ·max (2n1+k2+k3+k4,5−210, 1) = max (2n1+97.64, 2102).

In the collecting messages stage, the remaining degrees of freedom after
each linearization are r/2 − 480 = 96, which can satisfy the 96 differen-
tial transition conditions in the second round. Each linearization is equiva-
lent to solving a linear system with 210 variables and 38 × 3 + 96 = 210
equations, with complexity of 210ω = (221.68)†. The number of linearizations
is max (2n1+k2+k3+k4,5−(r/2−480), 1) = 2n1+109.64. TB,1 = (2n1+131.32)†, TC,1 =

2n1+(k2−96)+k3+k4,5 = 2n1+109.64.
Backward Phase. For SHA3-224, the last 7 lanes of the state are the capac-

ity part, in the fourth plane, the last two lanes are constant. In the Backward-
TIDA stage, we consider the two Sboxes that generate the difference on the
fourth plane. For the subspace V composed of β′4, the dimension is k4 = 384. Its
projection dimensions on the second-to-last plane and the last two planes are 160
and 290 respectively. V can be equivalently expressed as a vector β′4(t), where t
has 384 degrees of freedom. The second-to-last plane and the last two planes of
β′4(t) have 160 and 290 degrees of freedom respectively. If the fourth plane of β′4(t)
is fixed, β′4(t) is changed to β′4(t

′), 160 degrees of freedom of the last two planes
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are consumed. The fifth plane of β′4(t′) has 130 degrees of freedom. For any 4-bit
value (y, y′), there is always an input difference δin such that VDDT(δin, y, y′) = 4,
and the input value of the Sbox forms a 2-dimensional affine subspace. To de-
termine β′4, we first randomly select M4 and calculate M = R−5(R−5(H) +M4).
By choosing the input difference of each Sbox of ∆(M) in the fourth plane, fix
the truncated difference of β′4(t) in the fourth plane to obtain β′4(t

′), where each
Sbox satisfies the above conditions on VDDT. Let the affine subspace spanned by
the fifth plane of β′4(t′) be V ′, with a dimension of 130. Then check whether the
fifth plane of ∆(χ−1 ◦ ι−1(M)) is in V ′, with a probability of 2−30. Therefore, in
each run of Backward-TIDA, an average of 230 the fifth blocks M4 need to be
randomly selected, and the complexity is 230. The degree of freedom of the mes-
sage space W3 output by Algorithm 2 is at least 17×32−384 = 160. In the third
round, 15 additional the second linear conditions L2 are added, the complexity
TA,2 of TIDA is at most 230 ·max (2n2+k′

1+k′
2+k′

3+15−160, 1) = max (2n2−6, 230).
In the collecting messages stage, there are 19 non-active Sboxes for β′3,

(N4,k=2, N4,k=3, N4,k=4) = (41, 98, 2). Each linearization is equivalent to solving
a linear system with 17×32−k′4+N4,k=2 = 201 variables and 19×3+N4,k=2+
N3,k=2+15 = 201 equations, with complexity of 201ω = (221.50)†. In the inverse
differential transition system Eβ′

2←α′⋆
3

, (N3,k=2, N3,k=3, N3,k=4) = (41, 3, 0), in
addition to 41 + 2× 3 = 47 first linear conditions, we also add 15 second linear
conditions L2 defined in Section 5.3 to Eβ′

2←α′⋆
3

. Then, we solve Eβ′
2←α′⋆

3
to ob-

tain the subspace W4. The probability that a randomly selected state from W4

can pass the third round χ−1 is 2−(k
′
3−47−15) · (3/4)15 = 2−k

′
3+55.77. The num-

ber of linearizations is max (2n2+k′
1+k′

2+k′
3+15·log2(4/3)−(17×32−480−N4,k=4), 1) =

2n2+53.23. TB,2 = (2n2+74.73)†, TC,2 = 2n2+k′
1+k′

2+k′
3−55.77 = 2n2+53.23.

Complexity. The total complexity T = TA,1 + TB,1 + TC,1 + TA,2 + TB,2 +
TC,2 = max (2n1+97.64, 2102) + (2n1+131.32)† + 2n1+47.64 + max (2n2−6, 230) +
(2n2+74.73)† + 2n2+53.23. We take (n1, n2) = (83.71, 140.29), in which case the
complexity T takes the minimum value (2216.03)†.

6.3 Preimage Attacks on 5-round SHA3-256/SHAKE256

For 5-round SHA3-256, we use the same characteristic used to attack 5-round
SHA3-224. The scales of the sets D′L and D′R satisfy 2n1+n2 = 2256.

Forward Phase. During the Forward-TIDA stage, the input difference sys-
tem E∆ contains 678 equations, of which the inner part contains 134 equations.
The output probability p⋆1 of Procedure PIDS is 1. Therefore, the complexity of
TIDA is 2134. The degree of freedom of the message space W1 output by Algo-
rithm 1 is at least 800−256−366 = 178. The complexity TA,1 of Forward-TIDA
stage is 2134 ·max (2n1+k2+k3+k4,5−178, 1) = 2n1+161.64.

In the collecting messages stage, the remaining degrees of freedom after
each linearization are r/2 − 480 = 64, which can satisfy the 96 differen-
tial transition conditions in the second round. Each linearization is equiva-
lent to solving a linear system with 178 variables and 38 × 3 + 64 = 178
equations, with complexity of 178ω = (221.01)†. The number of linearizations
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is max (2n1+k2+k3+k4,5−(r/2−480), 1) = 2n1+141.64. TB,1 = (2n1+162.65)†, TC,1 =

2n1+(k2−64)+k3+k4,5 = 2n1+141.64.
Backward Phase. For SHA3-256, the last 8 lanes of the state are the ca-

pacity part, and in the fourth plane, the last three lanes are constant. In the
Backward-TIDA stage, we first determine the value of the target internal dif-
ference on the fourth plane. For half of 6-bit values (y, y′), there is an input
difference δin such that VDDT(δin, y, y′) ≥ 3, and there are three input values
of Sbox covered by a 2-dimensional affine space W0. We first randomly select
M4 and check whether each Sbox in the fourth plane of ∆(R−5(R−5(H) +M4))
has an input difference that satisfies VDDT ≥ 3, with a probability of 2−32. Then
follow the step in Section 6.2 to determine the fifth plane of β′4, with a proba-
bility of 2−30. Therefore, in each run of Backward-TIDA, an average of 230+32

the fifth blocks M4 needs to be randomly selected, and the complexity is 262.
After obtaining the internal difference β′4, take the subspace W3 in [i, β′4] as
the message space. The degrees of freedom of W3 come from the first three
planes and the two-dimensional affine subspace W0 corresponding to each Sbox
on and the fourth plane, which is 15 × 32 + 2 × 32 = 544. In the attack, we
constrain the subspace W3 and select states from it, and then check whether
the selected states can be obtained by modifying M3. Since only 3 values in
each W0 can be obtained by modifying the value of M3, the number of valid
messages in W3 is 2544 · (3/4)32 = 2530.72. In the third round, 15 additional the
second linear conditions L2 are added, the complexity TA,2 of TIDA is at most
262 ·max (2n2+k′

1+k′
2+k′

3+15−(530.72−k′
4), 1) = 2n2+39.28.

In the collecting messages stage, each linearization is equivalent to solv-
ing a linear system with 201 variables and 201 equations, with complexity of
201ω = (221.50)†. The process of constructing the inverse differential transition
system Eβ′

2←α′⋆
3

is the same as that in Section 6.2. The number of linearizations
is max (2n2+k′

1+k′
2+k′

3+15·log2(4/3)+32·log2(4/3)−(17×32−480−N4,k=4), 1) = 2n2+66.51.
TB,2 = (2n2+88.01)†, TC,2 = 2n2+k′

1+k′
2+k′

3−55.77+32·log2(4/3) = 2n2+66.51.
Complexity. The total complexity The total complexity T = TA,1 + TB,1 +

TC,1 + TA,2 + TB,2 + TC,2 = 2n1+161.64 + (2n1+162.65)† + 2n1+141.64 + 2n2+39.28 +
(2n2+88.01)† + 2n2+66.51. We take (n1, n2) = (90.68, 165.32), in which case the
complexity T takes the minimum value (2254.33)†.

6.4 A Preimage Attack on 4-round SHA3-384

For 4-round SHA3-384, we use the internal differential characteristic given in
Characteristic 3 in Supplementary Material G in our full version paper. The
transition condition numbers are (k2, k3, k4, k

′
1, k
′
2, k
′
3) = (25, 18, 5, 33, 48, 210).

The scales of the sets D′L and D′R in the collision phase satisfy 2n1+n2 = 2384.
Forward Phase. For α⋆

1, there are 77 active Sboxes and 83 non-active
Sboxes. During the Forward-TIDA stage, each non-active Sbox provides 5 lin-
ear equations, and 27 active Sboxes do not provide equations. The other 50
active Sboxes provide 1 linear equation, and the corresponding difference den-
sity changes from 9/32 to 9/16. The input difference system E∆ contains 465
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equations, of which the inner part contains 98 equations. The output proba-
bility p⋆1 of Procedure PIDS is 284.88. Therefore, the complexity of TIDA is
284.88+98 = 2182.88. By the method of [30], since the expected transition con-
dition number E(k1) of the first round is 263, the average degree of freedom
of the message space W1 output by Algorithm 1 is at least r/2 − 263 = 153.
TA,1 = 2182.88 · max (2n1+k2+k3+k4−153, 1) = max (2n1+78.88, 2182.88), TC,1 =

2n1+k2+k3+k4 = 2n1+49.
Backward Phase. For SHA3-384, the last 12 lanes of the state are the

capacity part, in the second plane, the last two lanes are constant. In the Back-
TIDA stage, we consider the last two planes. For the subspace V composed of
β′3, the dimension is k3 = 210, and its projection dimension on the last two
planes is 194. We follow the steps in Algorithm 2 to first find β′2 ∈ V that
matches the last two planes of ∆(χ−1 ◦ ι−1 ◦R−4(R−4(H)+M4)), and then check
whether β′2 satisfies VDDT > 0 for each Sbox in the second plane. For half of 4-bit
values (y, y′), there are 24 input differences δin that satisfy VDDT(δin, y, y′) > 0;
for the other half of 4-bit values, there are 14 input differences δin that satisfy
VDDT(δin, y, y′) > 0, and the minimum non-value is 2. Therefore, the complexity
of running Backward-TIDA once is (24/32)16 · (14/32)16 · 210×32−194 = 2151.72.
The degree of freedom of the message set W3 output by Algorithm 2 is at least
10×32+32−210 = 142. The number of TIDA runs is max (2n2+k′

1+k′
2−142, 1) =

max (2n2−61, 1). TA,2 = 2151.72 ·max (2n2−61, 1) = max (2n2+90.72, 2151.72), TC,2 =

2n2+k′
1+k′

2 = 2n2+81.
Complexity. The total complexity T = TA,1 + TC,1 + TA,2 + TC,2 =

max (2n1+78.88, 2182.88) + 2n1+49 + max (2n2+90.72, 2151.72) + 2n2+81. We take
(n1, n2) = (197.92, 186.08), in which case T takes the minimum value 2277.8.

6.5 Preimage Attacks on 4-round SHAKE128/SHA3-224/SHA3-
256/SHAKE256

For 4-round SHAKE128, SHA3-224 and SHA3-256, we use internal differen-
tial characteristic given in Characteristic 4 in Supplementary Material G
in the full version of this paper. The transition condition numbers are
(k2, k3, k4, k

′
1, k
′
2, k
′
3) = (24, 22, 0, 11, 12, 239). Next we describe the details of

the attack on SHA3-256/SHAKE256, and discuss later the attacks on the other
two versions.

Forward Phase. For α⋆
1, there are 115 active Sboxes and 45 non-active

Sboxes. During the Forward-TIDA stage, each active Sbox provides 4 linear
equations, and each non-active Sbox provides 5 linear equations. The input dif-
ference system E∆ contains 685 equations, of which the inner part contains 141
equations. The output probability p⋆1 of Procedure PIDS is 1. Therefore, the
complexity of TIDA is 2141. Since the transition condition number k1 of the first
round is limited to 115×3 = 345, the degree of freedom of the message space W1

output by Algorithm 1 is at least 800 − 256 − 345 = 199. The complexity TA,1

of Forward-TIDA stage is 2141 ·max (2n1+k2+k3+k4−199, 1) = max (2n1−12, 2141).
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In the collecting messages stage, the remaining degrees of freedom after each
linearization are r/2−480 = 96, which can satisfy all differential transition condi-
tions in the second round. Each linearization is equivalent to solving a linear sys-
tem with 199 variables and 45×3+k2 = 159 equations, with complexity of 199ω =

(221.46)†. The number of linearizations is max (2n1+k2+k3+k4−(r/2−480), 1) =

max (2n1−18, 1). TB,1 = (max (2n1+3.46, 221.46))†, TC,1 = 2n1+k3+k4 = 2n1+22.
Backward Phase. For the subspace V composed of β′3, the dimension

is k3 = 284, and its projection dimension on the last two planes is 201. In
Backward-TIDA, we give up the degree of freedom of the fourth plane, ran-
domly select M4 and find β′3 ∈ V that matches χ−1 ◦ R−4(R−4(H)⊕M4) in the
last two planes. Therefore, in each run of Backward-TIDA, about 2320−201 = 2109

the fifth blocks M4 need to be randomly selected, and the complexity is 2109.
The degree of freedom of the message set W3 output by Algorithm 2 is at
least 15 × 32 − 284 = 196. No linearization is performed in this phase. The
number of Backward-TIDA runs is max (2n2+k′

1+k′
2−196, 1) = max (2n2−173, 1).

TA,2 = 2109 ·max (2n2−173, 1) = max (2n2−64, 2109), TC,2 = 2n2+k′
1+k′

2 = 2n2+23.
Complexity. The total complexity T = TA,1 + TB,1 + TC,1 + TA,2 + TC,2 =

max (2n1−12, 2141) + (max (2n1+3.46, 221.46))† + 2n1+22 + max (2n2−64, 2109) +
2n2+23. We take (n1, n2) = (128.5, 127.5), T takes the minimum value 2151.5.

For 4-round SHAKE128 and SHA3-224, the attack has the same procedure as
SHA3-256, with complexities of 281.5 and 2135.5 respectively. The differences are
that their inner parts in E∆ contain less equations (73 for SHAKE128 and 109 for
SHA3-224) and the scales of the sets D′L and D′R in the collision phase satisfy
2n1+n2 = 264 for SHAKE128 and 2112 for SHA3-224, due to different capacities.
Besides, the backward linearization is used in the attack on SHAKE128 and cuts
down the complexity by a factor of 2−6. The details of the attacks can also be
found in Supplementary Material A.

6.6 Summary of Preimage Attacks

We summarize our preimage attacks in Table 3. The preimage attack on 3-round
SHA3-512 is shown in the Supplementary Material B in our full version paper,
the canonical representative states of the last round in the forward characteristic
and the first round in backward characteristic are in CP-kernel. For 4-round and
5-round SHA-3, we use MILP to search for internal differential characteristic with
more rounds. The canonical representative states of the last two rounds in the
forward characteristic and the first two rounds in the backward characteristic
are in the CP-kernel. Since ι brings about extra internal differences, we do not
find the characteristics where the canonical representative states of the three
consecutive rounds are all in CP-kernel. In order to make the forward and back-
ward characteristic match in the capacity part, we first search for characteristics
in one direction, and then continue to search in the other direction starting from
the truncated internal difference of the characteristics at the matching point.
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Target nr k2 k3 k4 k5 k′1 k′2 k′3 k′4 Char. Compl. (log2)
SHA3-512 3 7 3 - - 4 64 - - 5 504.2

SHAKE128 4 24 22 0 - 11 12 239 - 4 81.5

SHA3-224 4 24 22 0 - 11 12 239 - 4 135.5

SHA3-256/SHAKE256 4 24 22 0 - 11 12 239 - 4 151.5

SHA3-384 4 25 18 5 - 33 48 210 - 3 277.8

SHAKE128 5 155 34 15 11 7 4 98 399 1 100.5

SHA3-224 5 158 30 17.64 13 8 88 384 2 216.03

SHA3-256/SHAKE256 5 158 30 17.64 13 8 88 384 2 254.33

Table 3: The parameters of characteristics and complexities

7 Experiments

In order to illustrate the internal differential preimage attack, and to validate
the new attack boundary, we implement an actual preimage attack on a reduced
version of Keccak, called Keccak[c = 704, r = 96, nr = 4]. The internal state
size of Keccak[704, 96, 4] is 800 bits, with the first 704 bits being the rate part
and the remaining 96 bits the capacity part. The underlying permutation is
reduced to 4 rounds, and the length of the digest is set to 704 bits.

In our preimage attack on this Keccak instance, the basic framework aligns
with the analysis of 5-round SHAKE128 as shown in Section 6.1, by using 5-block
messages for the preimage. Initially, we find a 3-round forward characteristic
from round 2 to round 4 and a 3-round backward characteristic from round 1 to
round 3 through MILP, see also Characteristic 6 in Supplementary Material G
in the full version of this paper. On a desktop with an Intel Core i9-13900KF
processor, it takes 1000 seconds to recover the preimage of a digest with all ‘1’
with 16 threads, consuming 32MB of memory. The theoretical complexity needs
to satisfy the product of the number of forward and backward messages to be
266.5. In the experiment, 235 and 232 messages are calculated in the forward
phase and backward phase respectively, and the product is 267, which matches
the theoretical value. We provide the details of the attack as well as a concrete
preimage in Supplementary Material C in our full version paper.

8 Conclusions

In this paper, we present preimage attacks on up to 5 rounds against all SHA-3
variants by introducing internal differential analysis. We combine the squeeze
attack and MITM attack to develop squeeze meet-in-the-middle attack, and im-
plement it with the internal differential. The new attack framework is divided
into the forward phase, the backward phase and the collision phase. The TIDA
algorithm is redesigned to construct the internal differential connector in the for-
ward phase and the backward phase. In addition, we also develop a new lineariza-
tion technique and apply it to the collecting message stage, which further reduces
the time complexity. For 4-round SHAKE128, SHA3-224, SHA3-256, SHAKE256 and
SHA3-384, our preimage attack outperforms the best known attacks. And the
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first 5-round preimage attacks that are much faster than a brute-force search are
presented for SHAKE128, SHA3-224, SHA3-256 and SHAKE256.

In addition, we have also tried to apply our attack to other sponge hash
functions, such as Xoodyak [4] and Ascon [8]. We propose a preimage attack on
3-round Xoodyak with a time complexity of 2118. The details of the attack are
presented in Supplementary Material I. For ASCON, the situation becomes more
complicated. To launch a squeezed meet-in-the-middle preimage attack, we face
two challenges. The first one is to find a full state that corresponds to the digest.
In our attack framework as depicted in Fig. 4, the Backward-TIDA starts from
a full state H, but for ASCON a 128/256-bit digest is obtained by squeezing 64-
bit state twice or four times due to its rate of 64. The second challenge is to
effectively construct internal differential connectors or develop new properties
like internal differentials. The rate of ASCON is small such that the degree of
freedom is very limited after constructing internal differential connectors. We
leave these challenges as open problems.

We stress that our attack does not threaten the security of the full SHA-3.

References

1. Bernstein, D.J.: Second preimages for 6 (7?(8??)) rounds of keccak. NIST mailing
list (2010)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) 3(30), 320–337 (2009)

3. Chang, D., Kumar, A., Morawiecki, P., Sanadhya, S.K.: 1st and 2nd Preimage
Attacks on 7, 8 and 9 Rounds of Keccak-224,256,384,512. In: SHA-3 workshop
(2014)

4. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Xoodyak, a
lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020). https://doi.org/10.13154/TOSC.V2020.IS1.60-87

5. Dinur, I.: Cryptanalytic applications of the polynomial method for solving mul-
tivariate equation systems over GF(2). In: Advances in cryptology – EURO-
CRYPT 2021. 40th annual international conference on the theory and applica-
tions of cryptographic techniques, Zagreb, Croatia, October 17–21, 2021. Pro-
ceedings. Part I, pp. 374–403. Cham: Springer (2021). https://doi.org/10.1007/
978-3-030-77870-5_14

6. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of
SHA-3 using generalized internal differentials. In: Moriai, S. (ed.) Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers. Lecture Notes in Computer Science, vol. 8424, pp.
219–240. Springer (2013), https://doi.org/10.1007/978-3-662-43933-3_12

7. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-
reduced keccak. J. Cryptol. 27(2), 183–209 (2014). https://doi.org/10.1007/
s00145-012-9142-5

8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021). https://doi.
org/10.1007/S00145-021-09398-9

9. Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions (2015). https://doi.org/10.6028/nist.fips.202

28

https://doi.org/10.13154/TOSC.V2020.IS1.60-87
https://doi.org/10.13154/TOSC.V2020.IS1.60-87
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/S00145-021-09398-9
https://doi.org/10.1007/S00145-021-09398-9
https://doi.org/10.1007/S00145-021-09398-9
https://doi.org/10.1007/S00145-021-09398-9
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.fips.202


10. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical Collision Attacks
against Round-Reduced SHA-3. J. Cryptol. 33(1), 228–270 (2020). https://doi.
org/10.1007/s00145-019-09313-3

11. Guo, J., Liu, G., Song, L., Tu, Y.: Exploring SAT for cryptanalysis: (quantum)
collision attacks against 6-round SHA-3. In: Agrawal, S., Lin, D. (eds.) Advances
in Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, December
5-9, 2022, Proceedings, Part III. Lecture Notes in Computer Science, vol. 13793,
pp. 645–674. Springer (2022), https://doi.org/10.1007/978-3-031-22969-5_22

12. Guo, J., Liu, M., Song, L.: Linear structures: Applications to cryptanalysis of
round-reduced keccak. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 249–274
(2016), https://doi.org/10.1007/978-3-662-53887-6_9

13. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 249–274. Springer (2016)

14. He, L., Lin, X., Yu, H.: Improved preimage attacks on 4-round keccak-224/256.
IACR Trans. Symmetric Cryptol. 2021(1), 217–238 (2021). https://doi.org/10.
46586/TOSC.V2021.I1.217-238

15. Li, T., Sun, Y.: Preimage attacks on round-reduced Keccak-224/256 via an allocat-
ing approach. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 556–584. Springer (2019)

16. Li, T., Sun, Y., Liao, M., Wang, D.: Preimage attacks on the round-reduced kec-
cak with cross-linear structures. IACR Trans. Symmetric Cryptol. 2017(4), 39–57
(2017). https://doi.org/10.13154/TOSC.V2017.I4.39-57

17. Lin, X., He, L., Yu, H.: Improved preimage attacks on 3-round keccak-224/256.
IACR Trans. Symmetric Cryptol. 2021(3), 84–101 (2021). https://doi.org/10.
46586/TOSC.V2021.I3.84-101

18. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic attacks on round-reduced
keccak. In: Baek, J., Ruj, S. (eds.) Information Security and Privacy - 26th
Australasian Conference, ACISP 2021, Virtual Event, December 1-3, 2021, Pro-
ceedings. Lecture Notes in Computer Science, vol. 13083, pp. 91–110. Springer
(2021). https://doi.org/10.1007/978-3-030-90567-5_5, https://doi.org/10.
1007/978-3-030-90567-5_5

19. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational Cryptanalysis of Round-
Reduced Keccak. In: Moriai, S. (ed.) Fast Software Encryption - 20th In-
ternational Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 8424, pp. 241–262.
Springer (2013). https://doi.org/10.1007/978-3-662-43933-3_{1}{3}, https:
//doi.org/10.1007/978-3-662-43933-3_13

20. National Institute of Standards and Technology: Module-Lattice-Based Digital Sig-
nature Standard (Aug 2024). https://doi.org/10.6028/NIST.FIPS.204

21. National Institute of Standards and Technology: Stateless Hash-Based Digital Sig-
nature Standard (Aug 2024). https://doi.org/10.6028/NIST.FIPS.205

22. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round
keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) Progress in Cryptology - IN-
DOCRYPT 2011 - 12th International Conference on Cryptology in India, Chen-
nai, India, December 11-14, 2011. Proceedings. Lecture Notes in Computer

29

https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/978-3-031-22969-5_22
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.46586/TOSC.V2021.I1.217-238
https://doi.org/10.46586/TOSC.V2021.I1.217-238
https://doi.org/10.46586/TOSC.V2021.I1.217-238
https://doi.org/10.46586/TOSC.V2021.I1.217-238
https://doi.org/10.13154/TOSC.V2017.I4.39-57
https://doi.org/10.13154/TOSC.V2017.I4.39-57
https://doi.org/10.46586/TOSC.V2021.I3.84-101
https://doi.org/10.46586/TOSC.V2021.I3.84-101
https://doi.org/10.46586/TOSC.V2021.I3.84-101
https://doi.org/10.46586/TOSC.V2021.I3.84-101
https://doi.org/10.1007/978-3-030-90567-5\_5
https://doi.org/10.1007/978-3-030-90567-5_5
https://doi.org/10.1007/978-3-030-90567-5_5
https://doi.org/10.1007/978-3-030-90567-5_5
https://doi.org/10.1007/978-3-662-43933-3\_{1}{3}
https://doi.org/10.1007/978-3-662-43933-3_{1}{3}
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205


Science, vol. 7107, pp. 236–254. Springer (2011). https://doi.org/10.1007/
978-3-642-25578-6_{1}{8}, https://doi.org/10.1007/978-3-642-25578-6_18

23. Peyrin, T.: Improved differential attacks for ECHO and grøstl. In: Rabin, T. (ed.)
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6223, pp. 370–392. Springer (2010), https://doi.org/10.1007/
978-3-642-14623-7_20

24. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced kec-
cak. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 10212, pp. 216–243 (2017),
https://doi.org/10.1007/978-3-319-56617-7_8

25. Qin, L., Hua, J., Dong, X., Yan, H., Wang, X.: Meet-in-the-middle preimage
attacks on sponge-based hashing. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-
27, 2023, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 14007,
pp. 158–188. Springer (2023). https://doi.org/10.1007/978-3-031-30634-1_6,
https://doi.org/10.1007/978-3-031-30634-1_6

26. Rajasree, M.S.: Cryptanalysis of round-reduced KECCAK using non-linear struc-
tures. In: Hao, F., Ruj, S., Gupta, S.S. (eds.) Progress in Cryptology - IN-
DOCRYPT 2019 - 20th International Conference on Cryptology in India, Hy-
derabad, India, December 15-18, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11898, pp. 175–192. Springer (2019). https://doi.org/10.1007/
978-3-030-35423-7_9, https://doi.org/10.1007/978-3-030-35423-7_9

27. Sasaki, Y.: Memoryless unbalanced meet-in-the-middle attacks: impossible re-
sults and applications. In: Applied cryptography and network security. 12th in-
ternational conference, ACNS 2014, Lausanne, Switzerland, June 10–13, 2014.
Proceedings, pp. 253–270. Berlin: Springer (2014). https://doi.org/10.1007/
978-3-319-07536-5_16

28. Song, L., Liao, G., Guo, J.: Non-full Sbox Linearization: Applications to Collision
Attacks on Round-Reduced Keccak. In: Katz, J., Shacham, H. (eds.) Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 10402, pp. 428–451. Springer (2017), https://doi.org/
10.1007/978-3-319-63715-0_15

29. Zhang, Z., Hou, C., Liu, M.: Collision attacks on round-reduced SHA-3 using condi-
tional internal differentials. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Pro-
ceedings, Part IV. Lecture Notes in Computer Science, vol. 14007, pp. 220–251.
Springer (2023), https://doi.org/10.1007/978-3-031-30634-1_8

30. Zhang, Z., Hou, C., Liu, M.: Probabilistic linearization: Internal differential col-
lisions in up to 6 rounds of SHA-3. In: Reyzin, L., Stebila, D. (eds.) Ad-
vances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings,
Part IV. Lecture Notes in Computer Science, vol. 14923, pp. 241–272. Springer
(2024). https://doi.org/10.1007/978-3-031-68385-5_8, https://doi.org/10.
1007/978-3-031-68385-5_8

30

https://doi.org/10.1007/978-3-642-25578-6\_{1}{8}
https://doi.org/10.1007/978-3-642-25578-6_{1}{8}
https://doi.org/10.1007/978-3-642-25578-6\_{1}{8}
https://doi.org/10.1007/978-3-642-25578-6_{1}{8}
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-031-30634-1\_6
https://doi.org/10.1007/978-3-031-30634-1_6
https://doi.org/10.1007/978-3-031-30634-1_6
https://doi.org/10.1007/978-3-030-35423-7\_9
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/978-3-030-35423-7\_9
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/978-3-319-07536-5_16
https://doi.org/10.1007/978-3-319-07536-5_16
https://doi.org/10.1007/978-3-319-07536-5_16
https://doi.org/10.1007/978-3-319-07536-5_16
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-031-30634-1_8
https://doi.org/10.1007/978-3-031-68385-5\_8
https://doi.org/10.1007/978-3-031-68385-5_8
https://doi.org/10.1007/978-3-031-68385-5_8
https://doi.org/10.1007/978-3-031-68385-5_8


Supplementary Material

A Preimage Attacks on 4-round SHAKE128 and
SHA3-224

For 4-round SHAKE128 and SHA3-224, we use the same characteristic used to
attack 4-round SHA3-256/SHAKE256.

SHAKE128. The scales of the sets D′L and D′R satisfy 2n1+n2 = 2128.
Forward Phase. During the Forward-TIDA stage, the input difference sys-

tem E∆ contains 685 equations, of which the inner part contains 73 equations.
The output probability p⋆1 of Procedure PIDS is 1. Therefore, the complexity of
TIDA is 273. The degree of freedom of the message space W1 output by Algo-
rithm 1 is at least r/2−345 = 327. The complexity TA,1 of Forward-TIDA stage
is 273 ·max (2n1+k2+k3+k4−327, 1) = 273.

In the collecting messages stage, each linearization is equivalent to solv-
ing a linear system with 327 variables and 45 × 3 + k2 = 159 equa-
tions, with complexity of 327ω = (223.47)†. The number of linearizations is
max (2n1+k2+k3+k4−(r/2−480), 1) = 1. TB,1 = (223.47)†, TC,1 = 2n1+k3+k4 =
2n1+22.

Backward Phase. For SHAKE128, the last 4 lanes of the state are the ca-
pacity part. For the subspace V composed of β′3, the dimension is k3 = 239,
and its projection dimension on the last plane is 151. Therefore, in each run
of Backward-TIDA, an average of 29 the fifth blocks M4 needs to be randomly
selected, and the complexity is 29. After obtaining the target difference β′3, take
the subspace W3 in [i, β′3] as the message space. The degrees of freedom of W3

output by Algorithm 2 is at least 20 × 32 − 239 = 401. The complexity TA,2 of
this stage is 29 ·max (2n2+k′

1+k′
2+k′

3−401, 1) = 29.
In the collecting messages stage, there are 55 non-active Sboxes,

(N2,k=2, N3,k=2, N3,k=3, N3,k=4) = (6, 76, 29, 0). Each linearization is equivalent
to solving a linear system with 401 variables and 55×3+N3,k=2+k′2+N2,k=2 =
259 equations, with complexity of 401ω = (224.30)†. Based on the analysis in Sec-
tion 5.3, we add an inverse differential transition condition to each active Sbox in
the second round, resulting in an additional consumption of N2,k=2 = 6 degrees
of freedom, so the number of linearizations is max (2n2+k′

1+k′
2+6−(20×32−480), 1) =

1. TB,2 = (224.30)†, TC,2 = 2n2+k′
1 = 2n2+11.

Complexity. The total complexity The total complexity T = TA,1 + TB,1 +
TC,1+TA,2+TB,2+TC,2 = 273+(223.47)†+2n1+22+29+(224.30)†+2n2+11. We
take (n1, n2) = (58.5, 69.5), in which case T takes the minimum value 281.5.



SHA3-224. The scales of the sets D′L and D′R satisfy 2n1+n2 = 2224.
Forward Phase. During the Forward-TIDA stage, the input difference sys-

tem E∆ contains 685 equations, of which the inner part contains 109 equations.
The output probability p⋆1 of Procedure PIDS is 1. Therefore, the complexity of
TIDA is 2109. The degree of freedom of the message space W1 output by Algo-
rithm 1 is at least r/2−345 = 231. The complexity TA,1 of Forward-TIDA stage
is 2109 ·max (2n1+k2+k3+k4−231, 1) = max (2n1−76, 2109).

In the collecting messages stage, each linearization is equivalent to
solving a linear system with 231 variables and 45 × 3 + k2 = 159
equations, with complexity of 231ω = (222.06)†. The number of lin-
earizations is max (2n1+k2+k3+k4−(r/2−480), 1) = max (2n1−50, 1). TB,1 =

(max (2n1−27.94, 222.06))†, TC,1 = 2n1+k3+k4 = 2n1+22.
Backward Phase. For SHA3-224, the last 7 lanes of the state are the ca-

pacity part. For the subspace V composed of β′3, the dimension is k3 = 239, and
its projection dimension on the last two planes is 201. We implement Backward-
TIDA using the method in Section 6.6. In each run of Backward-TIDA, an
average of 2109 the fifth blocks M4 needs to be randomly selected, and the
complexity is 2109. The degrees of freedom of W3 output by Algorithm 2 is at
least 15 × 32 − 284 = 196. No linearization is performed in this phase. The
number of Backward-TIDA runs is max (2n2+k′

1+k′
2−196, 1) = max (2n2−173, 1).

TA,2 = 2109 ·max (2n2−173, 1) = max (2n2−64, 2109), TC,2 = 2n2+k′
1+k′

2 = 2n2+23.
Complexity. The total complexity T = TA,1 + TB,1 + TC,1 + TA,2 + TC,2 =

max (2n1−76, 2109) + (max (2n1−27.94, 222.06))† + 2n1+22 + max (2n2−64, 2109) +
2n2+23. We take (n1, n2) = (112.5, 111.5), T takes the minimum value 2135.5.

B A Preimage Attack on 3-round SHA3-512

For 3-round SHA3-512, we use the internal differential characteristic given in
Characteristic 5 in Supplementary Material G. The transition condition numbers
are (k2, k3, k′1, k′2) = (7, 3, 4, 64). The scales of the sets D′L and D′R in the collision
phase satisfy 2n1+n2 = 2512.

Forward Phase. For α⋆
1, there are 65 active Sboxes and 95 non-active

Sboxes. During the Forward-TIDA stage, each non-active Sbox provides 5 lin-
ear equations, 39 active Sboxes do not provide linear equations. The other
26 active Sboxes provide 1 linear equation, and the corresponding difference
density changes from 9/32 to 9/16. The remaining active Sboxes do not add
equations. The input difference system E∆ contains 501 equations, of which
the inner part contains 230 equations. The output probability p⋆1 of Proce-
dure PIDS is 283.24. Therefore, the complexity of TIDA is 2230+83.24 = 2313.24.
Since the expected transition condition number E(k1) of the first round is
225, the average degree of freedom of the message space W1 output by Algo-
rithm 1 is at least r/2 − 225 = 63. TA,1 = 2313.24 · max (2n1+k2+k3−63, 1) =

max (2n1+260.24, 2313.24), TC,1 = 2n1+k2+k3 = 2n1+11.
Backward Phase. For SHA3-512, the last 16 lanes of the state are the ca-

pacity part, in the second plane, the last lane is constant. In the Backward-TIDA
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stage, we consider the two Sboxes that generate the differential on the second
plane. For the subspace V composed of β′2, the dimension is k2 = 64, and its
projection dimension on the last three planes is 64. We follow the steps in Algo-
rithm 2 to first find β′2 ∈ V that matches the last three planes of ∆(M), and then
check whether β′2 satisfies VDDT > 0 for each Sbox in the second plane. For each 2-
bit value (y, y′), 28 of the 32 input difference δin satisfy VDDT(δin, y, y′) > 0, and
the minimum non-value is 8. Therefore, the complexity of running Backward-
TIDA once is (28/32)32 · 215×32−64 = 2422.16. The degree of freedom of the
message space W3 output by Algorithm 2 is at least 8 × 32 − 64 = 192.
The number of TIDA runs is max (2n2+k′

1−192, 1) = max (2n2−188, 1). TA,2 =

2422.16 ·max (2n2−188, 1) = max (2n2+234.16, 2422.16), TC,2 = 2n2+k′
1 = 2n2+4.

Complexity. The total complexity T = TA,1 + TC,1 + TA,2 + TC,2 =
max (2n1+260.24, 2313.24) + 2n1+11 + max (2n2+234.16, 2422.16) + 2n2+4. We take
(n1, n2) = (242.96, 269.04), in which case T takes the minimum value 2504.2.

C A Preimage Attack on Keccak[r = 704, c = 96, nr = 4]

For Keccak[r = 704, c = 96, nr = 4], we use the internal differential character-
istic given in Characteristic 6 in Supplementary Material G. The parameters are
(k2, k3, k4, k

′
1, k
′
2, k
′
3) = (27, 12.5, 0, 6, 8, 128), and there are 65 active Sboxes and

15 non-active Sboxes for α⋆
1. The scales of the sets D′L and D′R in the collision

phase satisfy 2n1+n2 = 248.
In the forward phase, we set 4 linear equations for each active Sbox and

5 linear equations for each non-active Sbox, and obtain 65 × 4 + 15 × 5 = 335
equations in input difference system. By applying the Procedure PIDS, the prob-
ability p⋆1 = 1. There are only a few equations in the inner part of the system E∆,
so the complexity of Forward-TIDA can be ignored. Since the initial degrees of
freedom are 352, the first round of linearization does not need to be performed
multiple times. After one linearization, the remaining degrees of freedom are
352 − 240 = 112. Then add the linear conditions in the differential transition
system Eβ1→α⋆

2
, which consumes 27 degrees of freedom, and we can get a mes-

sage subspace W2 with a dimension of 85. We randomly select 235 messages in
W2, and 222.5 of them enter the set D′L.

In the backward phase, we directly fix the target difference β′3. Since the last
three lanes of the state are capacity parts and have sufficient degrees of freedom,
we gave up the degrees of freedom of the last plane. In Backward-TIDA stage,
M4 is randomly selected until each Sbox in the last plane can be matched by
modifying the value of M3. In the experiment, we randomly select about 219 the
fifth blocks M4 to find a fourth block M3 that allowed the message to propagate
to β′3 on the last plane. At this time, M3 and the states in [i, β′3] have a degree
of freedom of 20 × 16 = 320. Then we impose 240 linearization conditions and
12 inverse differential transition conditions on the state in [i, β′3] to propagate
from α′⋆3 to β′3, and obtain a subspace W4 with 320 − 240 − 12 = 68 degrees of
freedom. We randomly select 232 messages from W4, and 226 of them enter the
set D′R.
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In the collision phase, we store the states in set D′L into hash table HT ,
and perform an exhaustive search on set D′R, and finally find a collision in the
capacity part. Then modify the values of M2 and M3 to complete the entire
preimage attack. The theoretical complexity needs to satisfy the product of the
number of forward and backward messages to be 2(48+k3+k4+k′

1)/2 = 266.5.
Below we give a preimage of the digest with all ‘1’ bits for Keccak[r =

704, c = 96, nr = 4].

|4477e7e-|f34d-eb2|4c-f5416|32f84625|856e5ca4|

|14d6ca2b|84c5ee95|89447339|df8afe-2|25ba93-9|

|2-3a416a|4c269ac9|d683d724|54736fee|83914e3c|

|3a971-95|ea84e-71|5b3e9e24|e615-cc3|3897c99c|

|cf799c75|1db9a6f3|

|e36dcbea|155-55-2|2765-778|3c229-3e|7-1ef815|

|-55785da|f629fffa|4c6ea-9f|e6-e-5a1|aa27-45d|

|c-58f97a|526d-b49|f77238-1|7dfc43-4|ee87875f|

|45366383|d36febcb|6d125fb7|54d9fc8c|f75de98b|

|2-6fabaf|-d8a11b8|b-a-b-e-|-77f398b|5b1a8--3|

⊕

|e6e7e66d|9fed9eed|c253c253|8-57815c|f98bf9--|

|78657835|38-73847|ebcf6bdf|3b6f3b6f|8ce1-ca1|

|e91ce91c|6a996399|92789258|db58d358|75a87588|

|f514fd14|2-cf28cf|263-2e3-|a359ab59|789f7-9f|

|47394739|faecfaec|1-631-63|5a9-5a9-|4b244b24|

⊕

|aa85eb77|c3c45cec|5-2d6964|35e9cd47|87e3c87a|

|7de--4-b|6531-c35|3628b-19|9e2175dc|9f29f151|

|718d-7b8|2a58171-|5176bfa4|f1db32b7|8d8f1697|

|1bd5-5-1|82d33e74|66bc5a64|84cc6583|63-21898|

|b646e981|-6c2-af2|27b2f468|8ebbcb5d|6be494d2|

⊕

|8e2186fd|116355-3|f9745742|5a429ab3|68da87f7|

|9efa48aa|de64d61e|d611f-19|91c38af8|ffb7d44c|

|d14721f-|69-7-af6|37-6fcc2|fdaa4269|2a457aed|

|adfad8ff|7e8-9aaf|d8-11a56|d-5b42af|6fbfdeb-|

|-6d24425|c53571dc|5987d-64|d87dca25|22-917d4|

⊕

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

R4

R4

R4

R4

R4

M0

H

|fdc352de|5462c379|2c41b666|f3f-6-b7|c757cc58|

|6-619d38|5acc46e6|d4e36-89|7b-fe876|2578b266|

|-b-f1561|97fb3844|47ce3c6d|-e255445|8db-7b6f|

|cd5a6481|3d391e53|152da7-2|7968a323|9-e88-9-|

|88eba33b|ed19e12b|

|ce-1ce8b|2-232123|d427d4-7|d642d759|3c6b3cf-|

|7ea87ef8|79157955|71dff1ef|16af16af|22f-a2a-|

|5bfe5bfe|ebdbe2db|c-16c-16|e315eb15|fbedfbdd|

|899a819a|af6fa76f|43724b52|a837a-37|769a7e8a|

|fe3efe3e|fb13fb13|

|eb9b9334|fcb75626|cb165a43|7783963b|48c118-6|

|-9596525|c147b74e|d61c643e|8bac495e|-4a6c49f|

|1fdae537|45a8f-d3|dae1b176|eb19c7b9|3639663-|

|-e2a75b8|1dc2ea53|b3949b35|1999d84-|3718d67a|

|46e4b83b|b7b17-bd|

|695-14e9|2a748ec6|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|ffffffff|ffffffff|ffffffff|

|ffffffff|ffffffff|

M1

M2

M3

M4

Preimage: A preimage (M0||M1||M2||M3||M4) for the digest H with all
‘1’ bits.
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D Sbox Linearization

In standard differential attack, Qiao et al. [24] chose some available subsets
with special properties to achieve fast enumerations. A similar approach can be
applied to internal differentials in order to find initial messages conforming 3-
round internal differential characteristic with a greater probability. It is obvious
to note the Sbox is non-linear when the entire 25 input space is considered. In
case of SHAKE128 and SHAKE256, we are to choose affine subspaces of size up to
4 which are linear with respective to the Sbox. Note that χ is the only nonlinear
part of the Keccak round function. Hence, the first round function becomes
linear when the initial messages are restricted to such a subspace. Formally, we
consider the following definition.

Definition 9 (Linearizable affine subspace [24]). Linearizable affine sub-
spaces are affine input subspaces on which Sbox substitution is equivalent to a
linear transformation. If V is a linearizable affine subspaces of an Sbox operation
S(·), ∀x ∈ V , S(x) = A · x+ b, where A is a matrix and b is a constant vector.

For example, when input x = (x0, 0, x2, 0, 1), the expression of the Sbox can
be re-written as linear transformation:

S(x) =




1 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



· x⊕




0
0
1
0
1




,

where x are bit vector of input values of the Keccak Sbox. Exhaustive search
for the linearizable affine subspaces of the Keccak Sbox shows:

Observation 2 ([24]) Given δin, δout ∈ F5
2, denote the value solution set V =

{x : S(x) + S(x+ δin) = δout} and S(V ) = {S(x) : x ∈ V }, we have

a. there does not exit any linearizable affine subspace with dimension 3 or more.
b. if DDT(δin, δout) = 2 or 4, the V is a linearizable affine subspace.
c. if DDT(δin, δout) = 8, then there are six 2-dimensional subspaces Wi ⊂ V ,

i = 0, 1, ..., 5 such that Wi(i = 0, 1, ..., 5) are linearizable affine subspaces.

Based on the above observations, given the input internal difference and the
output internal difference of the first round, we can first add the restriction
of differential transition conditions in the initial message space. Then add 3
linear conditions to each inactive Sbox and add one condition to each active
Sbox with 2 differential transition conditions until the whole Keccak state is
the direct product of all linearizable affine subspaces. Finally, the conditional
internal difference technique is applied to the nonlinear layers of the second and
third rounds to find messages conforming the internal differential characteristics
of the first three rounds. The full linearization consists of the following steps:
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1. For each active Sbox in the first round, add corresponding differential tran-
sition conditions to the initial message space to construct the differential
transition system Eβ→α. If the number of differential transition conditions
is 2, an additional linear condition is added to limit the input to a linearizable
affine subspace. And modifying the constants of each condition to maintain
Eβ→α being consistent.

2. For each non-active Sbox, add 3 linear conditions to system Eβ→α that
restrict its linearizable affine subspace. And modifying the constants of each
condition to maintain Eβ→α being consistent.

3. Solve system Eβ→α to obtain its solution space V , and consider R(V ) as the
new initial message space. Utilize conditional internal differential techniques
to select states passing the first three round functions from subspace R(V ).

E Procedure PIDS

Procedure PIDS(α⋆
1, MDST)

Input: Internal difference α⋆
1 and MDST.

Output: Probabilistic input difference system E∆(∆R,∆C), probability p⋆1.
1 Set E∆ = ∅, p⋆1 = 1 and W = L(∆R,∆C).

/* W is a variable vector (w0, ..., w799), wi = wi(∆R,∆C) is a linear
function about ∆R = (δ0, ..., δ799−c/2),∆C = (δ800−c/2, ..., δ799) */

2 for j = 0 → 160 do
3 Get the output difference δout of the j-th Sbox from α⋆

1.
4 if δout = 0 then
5 E∆ = E∆ ∪ {w5j(∆R,∆C) = 0, . . . , w5j+4(∆R,∆C) = 0}.
6 else
7 Select one t-dimensional affine subspace U ⊂ F5

2.
8 Compute the corresponding difference density P(U, δout) and 5− t

linear equations {l(k)0 · w5j + · · ·+ l
(k)
4 · w5j+5 = q(k)}5−t

k=1.
9 E∆ = E∆ ∪ {l(k)0 ·w5j(∆R,∆C) + · · ·+ l

(k)
4 ·w5j+4(∆R,∆C) = q(k)}5−t

k=1.
10 p⋆1 = p⋆1 · P(U, δout).
11 end
12 end
13 return (E∆, p⋆1)
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F Inverse-Linearizable Affine Subspaces

The 80 2-dimensional linearizable affine subspaces are listed in Table 4.

{00, 09, 05, 0c} {12, 0b, 16, 0f} {00, 09, 0a, 03} {05, 0c, 0a, 03} {00, 12, 0a, 18}
{09, 12, 03, 18} {00, 0b, 0a, 01} {09, 0b, 03, 01} {12, 0b, 18, 01} {16, 0f, 18, 01}
{00, 09, 0d, 04} {05, 0c, 0d, 04} {0a, 03, 0d, 04} {05, 16, 0d, 1e} {0c, 16, 04, 1e}
{05, 0f, 0d, 07} {0c, 0f, 04, 07} {12, 0b, 1e, 07} {16, 0f, 1e, 07} {18, 01, 1e, 07}
{00, 12, 14, 06} {0a, 18, 14, 06} {09, 0b, 15, 17} {03, 01, 15, 17} {00, 05, 14, 11}
{09, 0c, 14, 11} {12, 05, 06, 11} {00, 05, 15, 10} {09, 0c, 15, 10} {0b, 0c, 17, 10}
{14, 15, 11, 10} {00, 16, 14, 02} {12, 16, 06, 02} {0b, 0f, 06, 02} {05, 16, 11, 02}
{0d, 1e, 11, 02} {09, 0f, 15, 13} {12, 16, 17, 13} {0b, 0f, 17, 13} {0c, 0f, 10, 13}
{04, 07, 10, 13} {06, 17, 02, 13} {14, 15, 1a, 1b} {11, 10, 1a, 1b} {00, 12, 1a, 08}
{0a, 18, 1a, 08} {14, 06, 1a, 08} {15, 06, 1b, 08} {14, 17, 1a, 19} {09, 0b, 1b, 19}
{03, 01, 1b, 19} {15, 17, 1b, 19} {06, 17, 08, 19} {02, 13, 08, 19} {0a, 0d, 1a, 1d}
{03, 04, 1a, 1d} {18, 0d, 08, 1d} {0a, 0d, 1b, 1c} {03, 04, 1b, 1c} {01, 04, 19, 1c}
{14, 15, 1d, 1c} {11, 10, 1d, 1c} {1a, 1b, 1d, 1c} {0a, 1e, 1a, 0e} {18, 1e, 08, 0e}
{01, 07, 08, 0e} {05, 16, 1d, 0e} {0d, 1e, 1d, 0e} {11, 02, 1d, 0e} {10, 02, 1c, 0e}
{03, 07, 1b, 1f} {18, 1e, 19, 1f} {01, 07, 19, 1f} {11, 13, 1d, 1f} {0c, 0f, 1c, 1f}
{04, 07, 1c, 1f} {10, 13, 1c, 1f} {06, 17, 0e, 1f} {02, 13, 0e, 1f} {08, 19, 0e, 1f}

Table 4: The 2-dimensional inverse-linearizable affine subspaces of Keccak Sbox

G Internal Differential Characteristics for the Attacks

The internal difference [i, v] is represented by its canonical representative state
defined in Section 4.2. Each state is given as a matrix of 5× 5 lanes of 64 bits,
order from left to right, where each lane is given in hexadecimal using the little-
endian format. The symbol ’-’ is used in order to denote a zero 4-bit value.
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|a34-6932|e3-ccb99|8--e5849|1-5ed12b|1459d411|

|234-c7ab|81-c9b-4|a--cd983|1-c-c323|1-e852-1|

|a34-c319|831c9b-4|9--4d888|1-589b-3|34c8d22-|

|834-c1-f|e38c9b--|e-acd88b|1-5e5323|5448d2-1|

|a24-c1-b|a3-c9a-4|8--cfa8b|1-5-d323|8448d2-1|

|----a838|----422-|4---188-|-----15-|----24--|

|8---a-2-|----4a-8|----1-9-|-----81-|-----44-|

|8---a132|----42-8|4---189-|------4-|-----4--|

|8---883-|----6a-8|4---1-8-|----3-5-|-----4--|

|8---a-3-|----4a-8|4---1-9-|-----84-|-----41-|

|----ba38|----5a3-|4---38d-|----2d7-|----4e--|

|8---ba3-|----5a18|----18d-|----ac7-|----464-|

|8---bb32|----5a18|4---18d-|----a47-|----461-|

|8---ba3-|4---7a18|4---1-d-|----b87-|----46--|

|8---ba3-|----5a18|4---18d-|----ac7-|----46--|

|8---8-8a|--------|--------|8------2|--------|

|-----81-|-4------|-----81-|-4---8--|--------|

|------5-|------1-|------1-|--------|--------|

|------4-|--------|--------|-4------|--------|

|-----8--|--------|-----8--|--------|--------|

|8---8-8a|--------|--------|--------|--------|

|--------|--------|-----81-|-4------|--------|

|------4-|--------|------1-|--------|--------|

|------4-|--------|--------|-4------|--------|

|--------|--------|-----8--|--------|--------|

|--------|--------|----8---|----8---|--------|

|--------|--------|-----2--|--------|-----1--|

|--------|---2-4--|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|---2----|--------|----8---|--------|

|----8---|----8---|--------|----8---|--------|

|--------|--------|-----2--|--------|-----1--|

|---2-4--|---2-4--|--------|--------|--------|

|--------|--------|--------|--------|--------|

|---2----|---28---|--------|----8---|--------|

|-----9--|--------|--2-----|--------|-2------|

|-----8--|9-------|--1-68--|--------|------8-|

|---1----|---18---|--------|---8----|24-----8|

|------4-|----9---|-81-----|-2------|------8-|

|-----1--|--------|---4----|--12----|---a----|

|********|********|********|********|********|

|********|********|********|********|********|

|********|********|********|********|********|

|********|********|********|********|********|

|********|---2----|---6----|--12----|---a----|

L ◦ ι

χ (p = 2−155)

L ◦ ι

χ (p = 2−34)

L ◦ ι

χ (p = 2−15)

L ◦ ι

ι ◦ χ (p = 2−11)

α⋆
1

α⋆
2

α⋆
3

α⋆
4

α5

β1

β2

β3

β4

|---e---1|---2----|--26----|--12----|---e----|

|---e----|---2----|--26----|--12----|---e----|

|---e----|---2----|--26----|--12----|---e----|

|---e----|---2----|--26----|--12----|---e----|

|---e---1|---2----|---6----|--12----|---a----|

|-------1|--------|--------|--------|-------1|

|--------|--------|--------|--------|---4----|

|--------|--------|--------|--------|---4----|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|-------1|--------|--------|--------|--------|

|--------|--------|--------|--------|---4----|

|--------|--------|--------|--------|---4----|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|------4-|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|-2------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|------4-|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|-2------|--------|--------|

|----8--2|-8-c2-4-|---2----|----4---|4-41----|

|--2-----|1-4---1-|-----4--|1-1-4-8-|--4----8|

|-8-1-1-4|----1---|---4----|-1-1-4--|-2------|

|2----8-8|-----8--|-2-2-81-|--2-----|---2----|

|------1-|---1----|--8-82--|---1----|1--2-2-8|

|-8-c8-42|-8-e2-4-|4-424---|4---4---|4-41--4-|

|--2--41-|--4---9-|--4--48-|1-3-4-8-|1------8|

|-8-5-1-4|-1-414--|---4-4--|-1---4--|-a---1-4|

|2------8|-22--81-|-22--81-|--2--8-8|---2---8|

|----821-|-----2--|1-8-82--|1--1-2-8|1--2-2-8|

|d4997e-4|41274-52|613e-44a|8-18c-98|--c-445-|

|886248c-|1-11142-|a483fe42|835e8-e8|13391438|

|1ad46548|42-9d-22|118e499-|4--1-1-1|f3717257|

|4a-818-a|cb57adc5|8-1b9-11|15e845b4|--d625ce|

|324298f-|446b-a46|a1---685|2afd88f9|159-439-|

L−1

χ−1 (p = 2−7)

ι−1 ◦ L−1

χ−1 (p = 2−4)

ι−1 ◦ L−1

χ−1 (p = 2−98)

ι−1 ◦ L−1

L ◦ ι ◦ χ (dim(V ) = 399)

α′0

α′⋆1

α′⋆2

α′⋆3

β′4V

β′0

β′1

β′2

β′3

The forward characteristic shown on the left and backward characteristic
shown on the right have a period of i = 32 for the 5-round attack on
SHAKE128, as described in Section 6.1.

Characteristic 1: The internal differential characteristic with parameters
(k2, k3, k4, k5, k

′
1, k
′
2, k
′
3, k
′
4) = (155, 34, 15, 11, 7, 4, 98, 399).
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|e5-47d95|22281-b4|4--2b85-|c3-27156|235adc4a|

|61-4fd1c|22-e52f4|c-8-a85-|cb-a7954|634a984c|

|612cb91c|22--4-b4|c---9-5-|4b-a71d4|21-85c4e|

|65-4ac-c|22-854bc|8---b81-|c2-a7-d4|23-afc6e|

|a1-4c514|-2-a14b4|c11-385c|e-1a7454|235edcc2|

|8---c-88|6-24----|-14-----|2---2---|--23---5|

|2---8--8|4-24---4|214-2---|--81----|8-221--1|

|--4-8---|2--4----|-11-----|4-2-2---|e-231--1|

|2---8---|4--4----|2-4-----|--2-2---|8-231--5|

|2---8---|4--4---4|214----1|--222---|8--91---|

|a-4-c-88|6-24----|21622--1|a-232---|e-238--5|

|2-4-8--8|6-24---4|21622--1|a-a3----|e-229--5|

|2-4-8---|6-24----|61322--1|a-232---|e-239--1|

|2-4-8---|6-24----|2-622--1|a-233---|e-239--5|

|2-4-8---|6-24---4|21622--1|a-232---|e--99--4|

|a-4-4--a|6-24----|21622--1|a-232---|e-238--5|

|2-4-8--8|6-24---4|21622--1|a-a3----|e-229--5|

|2-4-8---|6-24----|61322--1|a-232---|e-239--1|

|2-4-8---|6-24----|2-622--1|a-233---|e-239--5|

|2-4-8---|6-24---4|21622--1|a-232---|e--99--4|

|8---c--a|----4---|8----2-2|-------2|8---4--a|

|--------|------1-|--------|--------|--------|

|--------|--------|--------|--------|--------|

|------8-|------8-|--------|------8-|--------|

|--------|----4-1-|-----2--|--------|------1-|

|8---8--a|----4---|-----2--|--------|--------|

|--------|------1-|--------|--------|--------|

|--------|--------|--------|--------|--------|

|------8-|--------|--------|--------|--------|

|--------|----4-1-|-----2--|--------|--------|

|------8-|----4---|-----2--|--------|--------|

|--------|------1-|--------|--------|--------|

|--------|--------|--------|--------|--------|

|------8-|--------|--------|--------|--------|

|--------|----4-1-|-----2--|--------|--------|

|------8-|---1----|--------|--------|--------|

|--------|--------|--------|--------|------4-|

|----8---|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|------8-|--------|--------|---1----|---1--4-|

|********|********|********|********|********|

|********|********|********|********|********|

|********|********|********|********|********|

|********|********|--------|-----8--|--------|

|--------|--------|--------|--------|---4----|

L ◦ ι

χ (p = 2−158)

ι

L

χ (p = 2−30)

ι

L

R ◦ ι ◦ χ (p = 2−17.64)

α⋆
1

α⋆
2

α2

α⋆
3

α3

α5

β1

β2

β3

|-------1|--------|--------|--------|--------|

|-------1|-4------|--------|--------|---4----|

|--------|-4------|--------|-----8--|--------|

|--------|--------|--------|-----8--|--------|

|--------|--------|--------|--------|---4----|

|-------1|------4-|--------|-------1|-------1|

|--------|------4-|--------|--------|--------|

|--------|--------|------1-|--------|--------|

|--------|------1-|------1-|--------|--------|

|--------|--------|--------|--------|--------|

|-------1|------4-|--------|--------|--------|

|--------|------4-|--------|--------|--------|

|--------|--------|------1-|--------|--------|

|--------|--------|------1-|--------|--------|

|--------|--------|--------|--------|--------|

|--------|---4----|----8---|--------|--------|

|--------|--------|--------|--------|--------|

|------8-|--------|--------|--------|--------|

|--------|--------|--------|---8----|--------|

|--------|--------|--------|--------|--------|

|---48---|---4----|----8---|--------|--------|

|--------|--------|--------|--------|--------|

|------8-|--------|--------|--------|--------|

|--------|--------|--------|---8----|--------|

|--------|--------|--------|--------|--------|

|---c--82|5---2---|a-------|-----11-|---1----|

|-----8--|--4-----|--4--4--|a---4---|---28---|

|---2---4|-5------|-----1--|-----4--|------2-|

|2-------|--8-----|14---8--|-------a|------8-|

|---52---|------4-|-----2--|1-------|--14---8|

|f--c--82|7---2-1-|a--1----|---4-112|5--52---|

|-----c--|--4-----|--4-c4--|a---48--|---28---|

|---2---4|-5------|-----52-|-----42-|-1-2--2-|

|2-8--8--|148----8|14---8-2|-------a|------8-|

|---5224-|------4-|1--4-2-8|1-1-----|--11---8|

|e2986-1-|-3-19184|45f848-f|4e--cd91|8-6a-444|

|8-6688b6|1a-11-18|94b7--e4|-6-2219-|223d97-4|

|d---2-12|6a1f8a4-|b4-cd91c|-3-12-11|-9624a47|

|-2-831-d|294ec189|--c-6474|59158af4|7a167c8a|

|687a6e8a|3d533661|--8-c--8|29d-3164|6---c164|

L−1

χ−1 (p = 2−13)

ι−1 ◦ L−1

χ−1 (p = 2−8)

ι−1 ◦ L−1

χ−1 (p = 2−88)

ι−1 ◦ L−1

L ◦ ι ◦ χ (dim(V ) = 384)

α′0

α′⋆1

α′⋆2

α′⋆3

β′4V

β′0

β′1

β′2

β′3

The forward characteristic shown on the left and backward characteristic
shown on the right have a period of i = 32 for the 5-round attack on
SHA3-224, SHA3-256 and SHAKE256, as described in Section 6.2 and
Section 6.3.

Characteristic 2: The internal differential characteristic with parameters
(k2, k3, k4,5, k

′
1, k
′
2.k
′
3, k
′
4) = (158, 30, 17.64, 13, 8, 88, 384).
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|--a---4a|8184--2-|8496--31|8782---c|8382--1a|

|8-a---49|-194--68|8-94--31|8682---4|8382--1a|

|8-a---49|-184--6-|8484--31|8782---4|8382--1a|

|8-a----9|-18---6-|8494--31|8382---4|8382--1a|

|8-8---49|-184--6-|849---35|8782---4|838---18|

|8------2|----8--1|8-------|----8---|8---8---|

|8-------|--------|--------|8-------|8---8---|

|------81|-------1|--------|--------|------8-|

|--------|--------|--------|--------|--------|

|----8---|----8---|--------|----8---|--------|

|8------2|-------1|--------|--------|----8---|

|8-------|--------|--------|--------|----8---|

|------8-|-------1|--------|--------|--------|

|--------|--------|--------|--------|--------|

|----8---|--------|--------|--------|--------|

|8---8-8-|--------|--------|--------|--------|

|--------|-------8|-----4--|--------|--------|

|-------2|--------|--------|--------|-------2|

|-----4--|-------8|-----4--|--------|--------|

|--------|--------|--------|--------|--------|

|8---8-8-|--------|--------|--------|--------|

|-------8|-------8|-----4--|--------|--------|

|-------2|--------|--------|--------|--------|

|--------|-------8|-----4--|--------|--------|

|--------|--------|--------|--------|--------|

|-------a|----8---|--------|--------|--------|

|--------|--------|------1-|---1----|--------|

|--------|---1----|--------|--------|--------|

|--------|------8-|--------|-2------|--------|

|--------|--------|--------|--------|--------|

|********|********|********|********|********|

|********|********|********|********|********|

|********|********|********|--------|--------|

|--------|------8-|--------|-2------|--------|

|--------|--------|--------|--------|--------|

L ◦ ι

χ (p = 2−25)

L ◦ ι

χ (p = 2−18)

L ◦ ι

ι ◦ χ (p = 2−5)

α⋆
1

α⋆
2

α⋆
3

α4

β1

β2

β3

|--124---|--1-2---|-----2--|-2------|----1---|

|--------|--1-----|--------|--------|----1---|

|--124---|----2-8-|-----2--|--------|--------|

|--------|------8-|--------|-2------|--------|

|--------|--------|--------|--------|--------|

|--124---|-------1|--1-----|----4---|--------|

|--2-----|-------1|--92----|--1-----|--------|

|--2-4---|--------|--------|--------|--------|

|------8-|--------|--82----|--------|--------|

|------8-|--------|--------|--------|--------|

|---24--1|-------1|--1-----|--1-----|--------|

|--a-----|---2---1|--92----|--3-----|--------|

|--2-4---|--------|--------|--2-----|--------|

|--82--8-|---2----|--82----|--------|--------|

|------8-|--------|--------|--------|--------|

|---24---|2---1---|--------|--------|--------|

|---1----|--------|-1-2----|4-------|--------|

|-------2|248-----|----4---|--------|-2------|

|--------|-a------|--------|------41|--------|

|---4----|----18--|--------|-4-1---1|--------|

|2--25---|2---1---|--------|---2----|--------|

|---3----|--------|-1-2----|4-------|--------|

|-4--4--2|248-----|----4---|--------|-2------|

|-2------|-a------|------4-|------41|-2------|

|---41---|-4--18--|--------|-4-1---1|--------|

|35-2c-82|1----24-|3244-414|--2-2-48|--5--2-2|

|--1--4-4|14--8-8-|88-28-1-|2----5c-|1-5-c11-|

|-8-22---|e1-22-2-|8--2-48-|-8-14--a|----541-|

|--4-4--a|5-31---1|-4-----2|-46-4143|41-5-34-|

|2-a1822-|2-2-812-|-4--a--5|--2---2e|8--46---|

L−1

χ−1 (p = 2−33)

ι−1 ◦ L−1

χ−1 (p = 2−48)

ι−1 ◦ L−1

L ◦ ι ◦ χ (dim(V ) = 210)

α′0

α′⋆1

α′⋆2

V

β′0

β′1

β′2

β′3

The forward characteristic shown on the left and backward characteristic
shown on the right have a period of i = 32 for the 4-round attack on
SHA3-384, as described in Section 6.4.

Characteristic 3: The internal differential characteristic with parameters
(k2, k3, k4, k

′
1, k
′
2, k
′
3) = (25, 18, 5, 33, 48, 210).
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|4--324ae|--12acc5|---8c435|8--43678|8--27d26|

|c--324ac|4--2acc5|---ac435|8--43c78|8--27d26|

|c--324ac|4-12acc5|-4-ac435|8--43e78|c--27d26|

|c--324ac|4-12acc5|---ac435|8--43e78|8--27d26|

|c--324ac|4-12acc5|-4-ac435|---43e78|8--67d26|

|8------3|-------1|------2-|--------|-------1|

|------8-|--------|--------|--------|--8-----|

|8-------|--------|--------|--------|--------|

|--------|--------|--------|--------|--8-----|

|----8---|-------1|------2-|--------|--------|

|8------2|-------1|------2-|--------|--------|

|------8-|--------|--------|--------|--8-----|

|8-------|--------|--------|--------|--------|

|--------|--------|--------|--------|--8-----|

|----8---|-------1|------2-|--------|--------|

|8---8-8-|--------|--------|--------|--------|

|--------|-----8--|-------4|--------|-------4|

|-------2|--------|--------|8-------|-------2|

|--------|-----8--|--------|--------|--------|

|-------8|--------|--------|--------|-------4|

|8---8-8-|--------|--------|8-------|--------|

|--------|-----8--|--------|--------|-----8-4|

|-------2|--------|--------|8-------|--------|

|--------|-----8--|--------|--------|-----8--|

|-------8|--------|--------|--------|-------4|

|-------a|--8-----|--------|--------|---1----|

|-8------|8-4-----|------1-|-1------|--------|

|--------|--------|-1------|---8----|--2-----|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|********|********|********|********|********|

|********|********|********|********|********|

|********|********|********|********|********|

|********|********|--------|--------|--------|

|--------|--------|--------|--------|--------|

L ◦ ι

χ (p = 2−24)

L ◦ ι

χ (p = 2−22)

L ◦ ι

ι ◦ χ (p = 1)

α⋆
1

α⋆
2

α⋆
3

α4

β1

β2

β3

|-------1|--------|--------|------8-|--------|

|--------|--------|-1------|------8-|--------|

|-------1|--------|-1------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|-------1|--------|-------8|--------|--------|

|-------8|--------|-------8|--------|--------|

|--------|4-------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|4-------|--------|--------|--------|

|-------1|--------|-------8|--------|--------|

|--------|--------|-------8|--------|--------|

|--------|4-------|--------|--------|4-------|

|--------|--------|--------|--------|--------|

|--------|4-------|--------|--------|4-------|

|--------|--------|--------|--------|----1---|

|--------|--------|--------|--------|--------|

|--------|-----2--|--------|--------|--------|

|--------|--------|-----1--|--------|--------|

|-------2|--------|------2-|--------|-------1|

|--------|--------|--------|----1---|----1---|

|--------|--------|--------|--------|--------|

|--------|-----2--|--------|--------|-----2--|

|--------|--------|-----1--|--------|--------|

|------22|------2-|------21|-------2|-------1|

|----96c3|-82e2---|-1112---|a46----4|445-c---|

|3----352|142---11|----b2-8|1-5c4---|a----44-|

|---1-5c4|---889--|46----4a|-11142--|598c----|

|1----8-a|---1641-|-2-388--|1192----|21----25|

|-----889|918---12|--89a1--|--2c82--|---2-b-8|

L−1

χ−1 (p = 2−11)

ι−1 ◦ L−1

χ−1 (p = 2−12)

ι−1 ◦ L−1

L ◦ ι ◦ χ (dim(V ) = 239)

α′0

α′⋆1

α′⋆2

V

β′0

β′1

β′2

β′3

The forward characteristic shown on the left and backward characteristic
shown on the right have a period of i = 32 for the 4-round attack on
SHAKE128, SHA3-224, SHA3-256 and SHAKE256, as described in Section 6.4.

Characteristic 4: The internal differential characteristic with parameters
(k2, k3, k4, k

′
1, k
′
2, k
′
3) = (24, 22, 0, 11, 12, 239).
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|-----62d|-----f44|----26b4|----14fc|----18a4|

|-----6ac|----4f44|----24bc|----14fc|----18a4|

|-----6ac|----4f44|----26bc|----14fc|----18a4|

|-----6ac|----4f44|----26bc|----14fc|----1824|

|-----6ac|----4f44|----26bc|----14fc|----18a4|

|-----62c|-----f44|----26b4|----14fc|----18a4|

|-----6ac|----4f44|----24bc|----14fc|----18a4|

|-----6ac|----4f44|----26bc|----14fc|----18a4|

|-----6ac|----4f44|----26bc|----14fc|----1824|

|-----6ac|----4f44|----26bc|----14fc|----18a4|

|------8-|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|----8---|----8---|--------|----8---|--------|

|--------|--------|--------|--------|--------|

|-------2|--------|--------|--------|--------|

|------8-|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|----8---|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|-------2|--------|--------|--------|--------|

|----8--2|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|----8---|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|-------2|--------|--------|--------|--------|

|----8--2|--------|--------|--------|--------|

|--------|--------|---4----|--------|--------|

|--------|--------|--------|--------|---8----|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|********|********|********|********|********|

|********|********|********|********|--------|

|--------|--------|--------|--------|---8----|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

ι

L

χ (p = 2−7)

ι

L

ι ◦ χ (p = 2−3)

α⋆
1

α1

β1

α⋆
2

α2

β2

α3

|--------|--------|--------|--------|---8----|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|---8----|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|----4---|--------|--------|--------|--------|

|--------|--------|-4------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|----4---|--------|--------|--------|--------|

|--------|--------|-4------|--------|--------|

|-------1|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|--------|--------|--------|--------|--------|

|----4---|--------|--------|--------|--------|

|--------|--------|-4------|--------|--------|

|-------1|-4--1-8-|--------|----8---|2---8---|

|--4-----|--2----8|--------|-8--21--|--8-----|

|1---8--2|--------|---8----|--8--2--|--------|

|1----4--|--------|-1---42-|--------|---4----|

|--------|---2----|--4--1--|--8-----|2--1---4|

L−1

χ−1 (p = 2−4)

ι−1

L−1

L ◦ ι ◦ χ (dim(V ) = 64)

α′0

β′0

α′⋆1

α′1

β′1

V β′2

The forward characteristic shown on the left and backward characteristic
shown on the right have a period of i = 32 for the 3-round attack on
SHA3-512, as described in Section 6.4.

Characteristic 5: The internal differential characteristic with parameters
(k2, k3, k

′
1, k
′
2) = (7, 3, 4, 64).
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|1ca9|-42f|882-|b4-8|de--|

|142a|-61f|88a6|f618|de--|

|142a|-42f|8c87|b4-8|9c--|

|14ae|-42f|88a6|a448|de--|

|142a|4627|88a6|b4-8|de-4|

|1ca8|-42f|882-|b4-8|de--|

|142a|-61f|88a6|f618|de--|

|142a|-42f|8c87|b4-8|9c--|

|14ae|-42f|88a6|a448|de--|

|142a|4627|88a6|b4-8|de-4|

|-882|--23|-821|-8-2|---1|

|----|----|----|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|8-21|-821|--21|-8-1|-821|

|--82|---1|--2-|-8--|----|

|----|----|----|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|8---|---1|--2-|-8--|----|

|8---|---1|--2-|-8--|----|

|----|----|----|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|8---|---1|--2-|-8--|----|

|8---|----|----|----|----|

|--8-|----|----|----|---4|

|---2|----|----|----|---2|

|----|----|----|----|---8|

|---8|----|----|----|---4|

|****|****|****|****|****|

|****|****|****|****|****|

|****|****|****|****|****|

|****|****|****|****|****|

|----|----|----|----|----|

|****|****|****|****|****|

|****|****|****|****|****|

|****|****|****|****|****|

|****|****|****|****|****|

|----|----|----|----|----|

ι

L

χ (p = 2−27)

ι

L

L ◦ ι ◦ χ (p = 2−12.5)

ι ◦ χ (p = 1)

α⋆
1

α1

β1

α⋆
2

α2

β2

β3

α4

|----|----|--2-|--1-|--1-|

|----|----|--2-|----|--1-|

|----|----|--2-|----|--1-|

|----|----|--2-|----|--1-|

|----|----|----|----|----|

|----|----|----|----|---4|

|---1|----|----|----|---4|

|----|----|----|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|----|----|----|----|---4|

|---1|----|----|----|---4|

|----|----|----|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|---1|----|----|----|----|

|----|--4-|----|----|----|

|----|----|----|----|----|

|2---|--1-|----|----|----|

|----|----|----|----|----|

|---1|----|----|---1|----|

|----|--4-|----|----|----|

|----|----|----|----|----|

|2---|--1-|----|----|----|

|----|----|----|----|----|

|8-23|3a-c|9--2|----|9-41|

|1---|1-64|-5--|7412|4--a|

|41-7|148-|----|-641|-28-|

|32-8|-a--|-e82|--29|----|

|8-14|----|832-|4-41|82-e|

|a-29|3a-c|---3|8--1|-a44|

|1-2-|2-66|21-a|641-|4--a|

|5187|1-c-|-6-1|-441|46--|

|3--8|-888|-e83|--21|1a--|

|--14|4-4-|-123|4-41|82-a|

|3-23|e2-2|1-2-|----|a--2|

|-8-2|2-a4|-83a|-118|--64|

|7488|c248|c--8|--18|425-|

|2-42|-a--|2-42|-64-|6-4-|

|--8-|18b2|--22|1-41|--21|

L−1

χ−1 (p = 2−6)

ι−1 ◦ L

χ (p = 2−8)

ι−1 ◦ L−1

χ (p = 2−125)

ι−1 ◦ L−1

α′0

β′0

α′⋆1

β′1

α′⋆2

β′2

α′⋆3

β′3

The forward characteristic shown on the left and backward characteris-
tic shown on the right have a period of i = 16 for the attack on
Keccak[r = 704, c = 96, nr = 4], as described in Section 7.

Characteristic 6: The internal differential characteristic with parameters
(k2, k3, k4, k

′
1, k
′
2, k
′
3) = (27, 12.5, 0, 6, 8, 125).
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|b83b|e979|5563|7932|

|dc-1|f4bc|aab1|3c99|

|6355|3279|-3b8|79e9|

|b83b|e979|5563|7932|

|b8-3|e979|5563|7932|

|b8-3|e979|5563|7932|

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|-3c-|----|----|----|

|----|----|----|----|

|----|----|----|----|

|-3c-|----|----|----|

|----|----|----|----|

|----|----|----|----|

|-3c-|----|----|----|

|----|----|----|----|

|----|----|----|----|

ρeast

ι ◦ ρwest ◦ θ

χ (p = 1)

ρeast

ι ◦ ρwest ◦ θ

χ (p = 2−8)

ρeast

α⋆
1

α1

β1

α⋆
2

α2

β2

α⋆
3

α3

|----|----|----|----|

|----|----|----|----|

|----|----|----|----|

|--58|----|----|----|

|----|----|----|----|

|----|----|----|----|

|--58|----|----|----|

|---8|----|----|----|

|----|----|----|----|

|--58|----|----|----|

|--1-|----|----|----|

|----|----|----|----|

|--6-|-912|----|----|

|----|--1-|-912|----|

|----|9-48|----|----|

|--6-|8952|----|----|

|----|1---|-912|----|

|----|9148|-81-|----|

|--6-|8952|----|----|

|----|2---|1224|----|

|1--8|----|----|4891|

|43ad|8-4a|8--1|4--b|

|4--b|4--d|2918|9225|

|2a8-|c-48|-c--|d-44|

ι ◦ ρwest ◦ θ

χ−1 (p = 2−6)

ρ−1
east

ι ◦ ρwest ◦ θ

χ−1 (p = 2−28)

ρeast

ι ◦ ρwest ◦ θ

α′0

β′0

α′⋆1

α′1

β′1

α′⋆2

α′2

β′2

The characteristic has a period of i = 16 for the 3-round preimage attack
on Xoodyak-XOF with a 128-bit digest, as described in Section I.3.

Characteristic: The internal differential characteristic with parameters
(k1, k2, k3, k

′
1, k
′
2, k
′
3) = (116, 0, 8, 6, 28, 72).

H Value-Difference Distribution Table of Keccak Sbox

Here we list the value-difference distribution table corresponding to 2-bit
value, 4-bit value and 6-bit value (y, y′). VDDT(δin, y, y′) = #{(x, x′) ∈
F2×(5−t)
2 |S−1(x||y) + S−1(x′||y′) = δin}.
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(y4, y
′
4) δin VDDT S−1(x||y)

(0, 0)

00 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
01 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
02 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
03 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}
04 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
05 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
06 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
07 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}
08 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
09 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
0a 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
0b 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}
0c 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
0d 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
0e 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
0f 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}
11 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
12 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
13 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}
15 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
16 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
17 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}
19 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
1a 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
1b 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}
1d 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
1e 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
1f 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}

(1, 1)

00 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
01 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
02 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
03 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}
04 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
05 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
06 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
07 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}
08 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
09 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
0a 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
0b 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}
0c 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
0d 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
0e 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
0f 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}
11 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
12 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
13 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}
15 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
16 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
17 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}
19 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
1a 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
1b 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}
1d 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
1e 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
1f 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}

Table 5: 2-bit Value-Difference Distribution Table of Keccak Sbox
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(y4, y
′
4) δin VDDT S−1(x||y)

(0, 1)

01 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
02 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
03 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}
05 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
06 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
07 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}
09 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
0a 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
0b 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}
0d 8 {0b, 16, 12, 0f, 1a, 03, 1e, 07}
0e 8 {00, 16, 04, 12, 1a, 08, 0c, 1e}
0f 8 {16, 09, 0d, 12, 1a, 01, 05, 1e}
10 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
11 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
12 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
13 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}
14 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
15 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
16 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
17 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}
18 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
19 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
1a 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
1b 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}
1c 16 {00, 0b, 16, 09, 0d, 04, 12, 0f, 1a, 01, 08, 03, 05, 0c, 1e, 07}
1d 8 {00, 09, 0d, 04, 01, 08, 05, 0c}
1e 8 {0b, 09, 0d, 0f, 01, 03, 05, 07}
1f 8 {00, 0b, 04, 0f, 08, 03, 0c, 07}

(1, 0)

01 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
02 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
03 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}
05 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
06 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
07 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}
09 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
0a 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
0b 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}
0d 8 {02, 17, 06, 13, 0a, 1b, 0e, 1f}
0e 8 {14, 02, 10, 06, 0a, 18, 1c, 0e}
0f 8 {15, 02, 11, 06, 0a, 19, 1d, 0e}
10 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
11 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
12 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
13 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}
14 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
15 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
16 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
17 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}
18 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
19 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
1a 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
1b 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}
1c 16 {15, 14, 02, 17, 10, 11, 06, 13, 0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
1d 8 {15, 14, 10, 11, 18, 19, 1d, 1c}
1e 8 {15, 17, 11, 13, 1b, 19, 1d, 1f}
1f 8 {14, 17, 10, 13, 1b, 18, 1c, 1f}

Table 6: 2-bit Value-Difference Distribution Table of Keccak Sbox
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(y3, y4, y
′
3, y
′
4) δin VDDT S−1(x||y) (y3, y4, y

′
3, y
′
4) δin VDDT S−1(x||y)

(0, 0, 0, 0)

00 8 {00, 0b, 16, 09, 0d, 04, 12, 0f}

(1, 1, 1, 1)

00 8 {0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
02 4 {0b, 09, 0d, 0f} 01 4 {18, 19, 1d, 1c}
04 8 {00, 0b, 16, 09, 0d, 04, 12, 0f} 02 4 {1b, 19, 1d, 1f}
06 4 {0b, 09, 0d, 0f} 03 4 {1b, 18, 1c, 1f}
09 4 {00, 09, 0d, 04} 04 8 {0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
0b 4 {00, 0b, 04, 0f} 05 4 {18, 19, 1d, 1c}
0d 4 {00, 09, 0d, 04} 06 4 {1b, 19, 1d, 1f}
0f 4 {00, 0b, 04, 0f} 07 4 {1b, 18, 1c, 1f}
12 4 {00, 16, 04, 12} 11 4 {0a, 1b, 0e, 1f}
16 4 {00, 16, 04, 12} 12 4 {0a, 18, 1c, 0e}
19 4 {0b, 16, 12, 0f} 13 4 {0a, 19, 1d, 0e}
1b 4 {16, 09, 0d, 12} 15 4 {0a, 1b, 0e, 1f}
1d 4 {0b, 16, 12, 0f} 16 4 {0a, 18, 1c, 0e}
1f 4 {16, 09, 0d, 12} 17 4 {0a, 19, 1d, 0e}

(1, 0, 0, 0)

01 4 {01, 08, 05, 0c}

(0, 1, 1, 1)

08 8 {15, 14, 02, 17, 10, 11, 06, 13}
03 4 {08, 03, 0c, 07} 09 4 {15, 14, 10, 11}
05 4 {01, 08, 05, 0c} 0a 4 {15, 17, 11, 13}
07 4 {08, 03, 0c, 07} 0b 4 {14, 17, 10, 13}
08 8 {1a, 01, 08, 03, 05, 0c, 1e, 07} 0c 8 {15, 14, 02, 17, 10, 11, 06, 13}
0a 4 {01, 03, 05, 07} 0d 4 {15, 14, 10, 11}
0c 8 {1a, 01, 08, 03, 05, 0c, 1e, 07} 0e 4 {15, 17, 11, 13}
0e 4 {01, 03, 05, 07} 0f 4 {14, 17, 10, 13}
11 4 {1a, 03, 1e, 07} 19 4 {02, 17, 06, 13}
13 4 {1a, 01, 05, 1e} 1a 4 {14, 02, 10, 06}
15 4 {1a, 03, 1e, 07} 1b 4 {15, 02, 11, 06}
17 4 {1a, 01, 05, 1e} 1d 4 {02, 17, 06, 13}
1a 4 {1a, 08, 0c, 1e} 1e 4 {14, 02, 10, 06}
1e 4 {1a, 08, 0c, 1e} 1f 4 {15, 02, 11, 06}

(0, 0, 1, 0)

01 4 {00, 09, 0d, 04}

(1, 1, 0, 1)

08 8 {0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
03 4 {00, 0b, 04, 0f} 09 4 {18, 19, 1d, 1c}
05 4 {00, 09, 0d, 04} 0a 4 {1b, 19, 1d, 1f}
07 4 {00, 0b, 04, 0f} 0b 4 {1b, 18, 1c, 1f}
08 8 {00, 0b, 16, 09, 0d, 04, 12, 0f} 0c 8 {0a, 1b, 18, 19, 1d, 1c, 0e, 1f}
0a 4 {0b, 09, 0d, 0f} 0d 4 {18, 19, 1d, 1c}
0c 8 {00, 0b, 16, 09, 0d, 04, 12, 0f} 0e 4 {1b, 19, 1d, 1f}
0e 4 {0b, 09, 0d, 0f} 0f 4 {1b, 18, 1c, 1f}
11 4 {0b, 16, 12, 0f} 19 4 {0a, 1b, 0e, 1f}
13 4 {16, 09, 0d, 12} 1a 4 {0a, 18, 1c, 0e}
15 4 {0b, 16, 12, 0f} 1b 4 {0a, 19, 1d, 0e}
17 4 {16, 09, 0d, 12} 1d 4 {0a, 1b, 0e, 1f}
1a 4 {00, 16, 04, 12} 1e 4 {0a, 18, 1c, 0e}
1e 4 {00, 16, 04, 12} 1f 4 {0a, 19, 1d, 0e}

(1, 0, 1, 0)

00 8 {1a, 01, 08, 03, 05, 0c, 1e, 07}

(0, 1, 0, 1)

00 8 {15, 14, 02, 17, 10, 11, 06, 13}
02 4 {01, 03, 05, 07} 01 4 {15, 14, 10, 11}
04 8 {1a, 01, 08, 03, 05, 0c, 1e, 07} 02 4 {15, 17, 11, 13}
06 4 {01, 03, 05, 07} 03 4 {14, 17, 10, 13}
09 4 {01, 08, 05, 0c} 04 8 {15, 14, 02, 17, 10, 11, 06, 13}
0b 4 {08, 03, 0c, 07} 05 4 {15, 14, 10, 11}
0d 4 {01, 08, 05, 0c} 06 4 {15, 17, 11, 13}
0f 4 {08, 03, 0c, 07} 07 4 {14, 17, 10, 13}
12 4 {1a, 08, 0c, 1e} 11 4 {02, 17, 06, 13}
16 4 {1a, 08, 0c, 1e} 12 4 {14, 02, 10, 06}
19 4 {1a, 03, 1e, 07} 13 4 {15, 02, 11, 06}
1b 4 {1a, 01, 05, 1e} 15 4 {02, 17, 06, 13}
1d 4 {1a, 03, 1e, 07} 16 4 {14, 02, 10, 06}
1f 4 {1a, 01, 05, 1e} 17 4 {15, 02, 11, 06}

Table 7: 4-bit Value-Difference Distribution Table of Keccak Sbox
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(y3, y4, y
′
3, y
′
4) δin VDDT S−1(x||y) (y3, y4, y

′
3, y
′
4) δin VDDT S−1(x||y)

(0, 1, 0, 0)

01 2 {17, 13}

(1, 0, 1, 1)

01 2 {1a, 1e}
02 4 {14, 02, 10, 06} 02 4 {1a, 08, 0c, 1e}
03 2 {15, 11} 03 2 {1a, 1e}
05 2 {17, 13} 05 2 {1a, 1e}
06 4 {14, 02, 10, 06} 06 4 {1a, 08, 0c, 1e}
07 2 {15, 11} 07 2 {1a, 1e}
09 2 {02, 06} 09 2 {03, 07}
0b 2 {02, 06} 0b 2 {01, 05}
0d 2 {02, 06} 0d 2 {03, 07}
0f 2 {02, 06} 0f 2 {01, 05}
10 4 {14, 02, 10, 06} 10 4 {1a, 08, 0c, 1e}
11 2 {15, 11} 11 2 {08, 0c}
13 2 {17, 13} 13 2 {08, 0c}
14 4 {14, 02, 10, 06} 14 4 {1a, 08, 0c, 1e}
15 2 {15, 11} 15 2 {08, 0c}
17 2 {17, 13} 17 2 {08, 0c}
18 4 {15, 17, 11, 13} 18 4 {01, 03, 05, 07}
19 2 {14, 10} 19 2 {01, 05}
1a 4 {15, 17, 11, 13} 1a 4 {01, 03, 05, 07}
1b 2 {14, 10} 1b 2 {03, 07}
1c 4 {15, 17, 11, 13} 1c 4 {01, 03, 05, 07}
1d 2 {14, 10} 1d 2 {01, 05}
1e 4 {15, 17, 11, 13} 1e 4 {01, 03, 05, 07}
1f 2 {14, 10} 1f 2 {03, 07}

(1, 1, 0, 0)

01 2 {0a, 0e}

(0, 0, 1, 1)

01 2 {0b, 0f}
03 2 {0a, 0e} 03 2 {09, 0d}
05 2 {0a, 0e} 05 2 {0b, 0f}
07 2 {0a, 0e} 07 2 {09, 0d}
09 2 {1b, 1f} 09 2 {16, 12}
0a 4 {0a, 18, 1c, 0e} 0a 4 {00, 16, 04, 12}
0b 2 {19, 1d} 0b 2 {16, 12}
0d 2 {1b, 1f} 0d 2 {16, 12}
0e 4 {0a, 18, 1c, 0e} 0e 4 {00, 16, 04, 12}
0f 2 {19, 1d} 0f 2 {16, 12}
10 4 {1b, 19, 1d, 1f} 10 4 {0b, 09, 0d, 0f}
11 2 {18, 1c} 11 2 {09, 0d}
12 4 {1b, 19, 1d, 1f} 12 4 {0b, 09, 0d, 0f}
13 2 {18, 1c} 13 2 {0b, 0f}
14 4 {1b, 19, 1d, 1f} 14 4 {0b, 09, 0d, 0f}
15 2 {18, 1c} 15 2 {09, 0d}
16 4 {1b, 19, 1d, 1f} 16 4 {0b, 09, 0d, 0f}
17 2 {18, 1c} 17 2 {0b, 0f}
18 4 {0a, 18, 1c, 0e} 18 4 {00, 16, 04, 12}
19 2 {19, 1d} 19 2 {00, 04}
1b 2 {1b, 1f} 1b 2 {00, 04}
1c 4 {0a, 18, 1c, 0e} 1c 4 {00, 16, 04, 12}
1d 2 {19, 1d} 1d 2 {00, 04}
1f 2 {1b, 1f} 1f 2 {00, 04}

Table 8: 4-bit Value-Difference Distribution Table of Keccak Sbox
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(y3, y4, y
′
3, y
′
4) δin VDDT S−1(x||y) (y3, y4, y

′
3, y
′
4) δin VDDT S−1(x||y)

(0, 1, 1, 0)

01 2 {02, 06}

(1, 0, 0, 1)

01 2 {03, 07}
03 2 {02, 06} 03 2 {01, 05}
05 2 {02, 06} 05 2 {03, 07}
07 2 {02, 06} 07 2 {01, 05}
09 2 {17, 13} 09 2 {1a, 1e}
0a 4 {14, 02, 10, 06} 0a 4 {1a, 08, 0c, 1e}
0b 2 {15, 11} 0b 2 {1a, 1e}
0d 2 {17, 13} 0d 2 {1a, 1e}
0e 4 {14, 02, 10, 06} 0e 4 {1a, 08, 0c, 1e}
0f 2 {15, 11} 0f 2 {1a, 1e}
10 4 {15, 17, 11, 13} 10 4 {01, 03, 05, 07}
11 2 {14, 10} 11 2 {01, 05}
12 4 {15, 17, 11, 13} 12 4 {01, 03, 05, 07}
13 2 {14, 10} 13 2 {03, 07}
14 4 {15, 17, 11, 13} 14 4 {01, 03, 05, 07}
15 2 {14, 10} 15 2 {01, 05}
16 4 {15, 17, 11, 13} 16 4 {01, 03, 05, 07}
17 2 {14, 10} 17 2 {03, 07}
18 4 {14, 02, 10, 06} 18 4 {1a, 08, 0c, 1e}
19 2 {15, 11} 19 2 {08, 0c}
1b 2 {17, 13} 1b 2 {08, 0c}
1c 4 {14, 02, 10, 06} 1c 4 {1a, 08, 0c, 1e}
1d 2 {15, 11} 1d 2 {08, 0c}
1f 2 {17, 13} 1f 2 {08, 0c}

(1, 1, 1, 0)

01 2 {1b, 1f}

(0, 0, 0, 1)

01 2 {16, 12}
02 4 {0a, 18, 1c, 0e} 02 4 {00, 16, 04, 12}
03 2 {19, 1d} 03 2 {16, 12}
05 2 {1b, 1f} 05 2 {16, 12}
06 4 {0a, 18, 1c, 0e} 06 4 {00, 16, 04, 12}
07 2 {19, 1d} 07 2 {16, 12}
09 2 {0a, 0e} 09 2 {0b, 0f}
0b 2 {0a, 0e} 0b 2 {09, 0d}
0d 2 {0a, 0e} 0d 2 {0b, 0f}
0f 2 {0a, 0e} 0f 2 {09, 0d}
10 4 {0a, 18, 1c, 0e} 10 4 {00, 16, 04, 12}
11 2 {19, 1d} 11 2 {00, 04}
13 2 {1b, 1f} 13 2 {00, 04}
14 4 {0a, 18, 1c, 0e} 14 4 {00, 16, 04, 12}
15 2 {19, 1d} 15 2 {00, 04}
17 2 {1b, 1f} 17 2 {00, 04}
18 4 {1b, 19, 1d, 1f} 18 4 {0b, 09, 0d, 0f}
19 2 {18, 1c} 19 2 {09, 0d}
1a 4 {1b, 19, 1d, 1f} 1a 4 {0b, 09, 0d, 0f}
1b 2 {18, 1c} 1b 2 {0b, 0f}
1c 4 {1b, 19, 1d, 1f} 1c 4 {0b, 09, 0d, 0f}
1d 2 {18, 1c} 1d 2 {09, 0d}
1e 4 {1b, 19, 1d, 1f} 1e 4 {0b, 09, 0d, 0f}
1f 2 {18, 1c} 1f 2 {0b, 0f}

Table 9: 4-bit Value-Difference Distribution Table of Keccak Sbox
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(y2, y3, y4, y
′
2, y
′
3, y
′
4) δin VDDT S−1(x||y)

(0, 0, 0, 0, 0, 0) 00 4 {00, 0b, 16, 09}
(0, 1, 0, 0, 0, 0) 08 3 {01, 08, 03}
(0, 0, 0, 0, 1, 0) 08 3 {00, 0b, 09}
(0, 1, 0, 0, 1, 0) 00 4 {1a, 01, 08, 03}
(0, 0, 1, 0, 0, 1) 00 4 {15, 14, 02, 17}
(0, 1, 1, 0, 0, 1) 0c 3 {1b, 18, 19}
(0, 0, 1, 0, 1, 1) 0c 3 {15, 14, 17}
(0, 1, 1, 0, 1, 1) 00 4 {0a, 1b, 18, 19}
(1, 0, 0, 0, 0, 0) 04 4 {0d, 04, 12, 0f}
(1, 1, 0, 0, 0, 0) 0c 3 {05, 0c, 07}
(1, 0, 0, 0, 1, 0) 0c 3 {0d, 04, 0f}
(1, 1, 0, 0, 1, 0) 04 4 {05, 0c, 1e, 07}
(1, 0, 1, 0, 0, 1) 04 4 {10, 11, 06, 13}
(1, 1, 1, 0, 0, 1) 08 3 {1d, 1c, 1f}
(1, 0, 1, 0, 1, 1) 08 3 {10, 11, 13}
(1, 1, 1, 0, 1, 1) 04 4 {1d, 1c, 0e, 1f}
(0, 0, 0, 1, 0, 0) 04 4 {00, 0b, 16, 09}
(0, 1, 0, 1, 0, 0) 0c 3 {01, 08, 03}
(0, 0, 0, 1, 1, 0) 0c 3 {00, 0b, 09}
(0, 1, 0, 1, 1, 0) 04 4 {1a, 01, 08, 03}
(0, 0, 1, 1, 0, 1) 04 4 {15, 14, 02, 17}
(0, 1, 1, 1, 0, 1) 08 3 {1b, 18, 19}
(0, 0, 1, 1, 1, 1) 08 3 {15, 14, 17}
(0, 1, 1, 1, 1, 1) 04 4 {0a, 1b, 18, 19}
(1, 0, 0, 1, 0, 0) 00 4 {0d, 04, 12, 0f}
(1, 1, 0, 1, 0, 0) 08 3 {05, 0c, 07}
(1, 0, 0, 1, 1, 0) 08 3 {0d, 04, 0f}
(1, 1, 0, 1, 1, 0) 00 4 {05, 0c, 1e, 07}
(1, 0, 1, 1, 0, 1) 00 4 {10, 11, 06, 13}
(1, 1, 1, 1, 0, 1) 0c 3 {1d, 1c, 1f}
(1, 0, 1, 1, 1, 1) 0c 3 {10, 11, 13}
(1, 1, 1, 1, 1, 1) 00 4 {1d, 1c, 0e, 1f}

Table 10: 6-bit Value-Difference Distribution Table of Keccak Sbox (VDDT ≥ 3)

50



I Preimage Attack on 3-round Xoodyak-XOF

In the following, we give a brief description of the Xoodyak hash function and
present a preimage attack on 3-round Xoodyak-XOF.

I.1 The Xoodyak Hash Function

Xoodyak is a permutation-based AEAD and hashing scheme, we focus on
Xoodyak-XOF. The Xoodyak-XOF (b = 384, c = 256, r = 128) offers an arbi-
trary output length l and the preimage resistance is min(2128, 2l). We aim to
conduct a preimage attack on Xoodyak-XOF with a 128-bit digest.

x

y

z
0 1 2 3

0

1

2

Fig. 1: Toy version of the Xoodoo state

Xoodyak is built from a fixed 384-bit permutation (called Xoodoo), whose
state (shown in Figure 1) bit denoted by A(r)[x][y][z] is located at the x-th
column, y-th row and z-th lane in the round r, where 0 ≤ x ≤ 3, 0 ≤ y ≤ 2,
0 ≤ z ≤ 31. For Xoodoo, all the coordinates are considered modulo 4 for x,
modulo 3 for y and modulo 32 for z. The permutation consists of the iteration
of a round function R = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ. Denote the internal states of the
round r as

θ :A[x][y][z]← A[x][y][z] +

2∑

y′=0

(A[x− 1][y′][z − 5] +A[x− 11][y′][z − 14]).

ρwest :A[x][0][z]← A[x][0][z], A[x][1][z]← A[x− 1][1][z], A[x][2][z]← A[x][2][z − 11].

ι :A← A+RC[ir],where RC[ir] is the round constants.
χ :A[x][y][z]← A[x][y][z] + (¬(A[x][y + 1][z])) ∧A[x][y + 2][z].

ρeast :A[x][0][z]← A[x][0][z], A[x][1][z]← A[x][1][z − 1], A[x][2][z]← A[x− 2][2][z − 8].

The addition and multiplication are in GF (2). Since we analyze the round-
reduced variant with 3 rounds, we only give the first three round constants:
0x00000058, 0x00000038, 0x000003c0 (given in hexadecimal using the little-
endian format).

51



I.2 The Attack Framework

In the attack on Xoodyak, our attack framework is fundamentally similar to
framework in the preimage attack against SHA-3. We select 3-block messages
as inputs, and the target internal difference algorithm in the backward phase is
the same as that in the forward phase, which is performed by establishing and
solving the input difference system, as shown in Figure 2. The internal differential
transition of the j-th round in the characteristic is denoted by αj−1

ι◦ρwest◦θ−−−−−−→
βj−1

χ−→ α⋆
j

ρeast−−−→ αj , where j ≥ 1. The period i of the internal differential is 16.
Next, we outline these three phases.

M0
R3

−−→ ⊕ −→ E∆ −→ [i, α0]
R−−−−−→

p=2−k1

[i, α1]
R2

−−−−−−−→
p=2−k2−k3

[i, α3] −→ ⊕ ←− [i, α′0]
(R−1)2←−−−−−−−

p=2−k′
1−k′

2

[i, α′2]
R−1

←−−−−−
p=2−k′

3

[i, α′3]←− E∆′ ←− H||C

Forward-Collecting SearchingTIDA Backward-Collecting TIDA

M1

Inconsistent Inconsistent

D′L D′R

M2

Forward Phase Collision Phase Backward Phase

Fig. 2: The framework of 3-round preimage attack

Phase I – Forward Phase. This phase includes two stages: Forward-TIDA
and Forward-Collecting Messages.

• Forward-TIDA stage: For the target internal difference α1, we establish the
input difference system E∆ and filter out the first blocks M0 that make E∆

consistent. After that, select α0 from the solution space of each E∆ that can
be legally propagated to α1.

• Forward-Collecting Messages stage: Solve the differential transition systems
Eβ0→α⋆

1
to get the second block M1 passing the first round. Then, compute

the messages after 3 rounds functions from the subspaces and filter out the
states where the truncated internal difference is α3 to store in the set D′L.

Phase II – Backward Phase. This phase includes Backward-TIDA stage and
Backward-Collecting Messages stage.

• Backward-TIDA stage: In this stage, we start with the 128 bits digest H to
be recovered and first append a random 256 bits suffix C to H, padding it
to 384 bits, denoted by H = H||C. For the target internal difference α′2, we
establish the input difference system E∆′ , and filter out the random suffix
C that make E∆′ . After that, select α′3 from the solution space of each E∆′

that can be legally propagated to α′2.
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• Backward-Collecting Messages stage: Solve the differential transition systems
Eβ′

2←α′⋆
3

to get the state H||C passing the last round. Then continue to
calculate backward and collect the states with truncated internal difference
α′0 and store them in the set D′R.

Phase III – Collision Phase. This phase only includes the searching stage.

• Searching stage: Using hash table techniques, perform an exhaustive search
in D′L and D′R until two states with the same capacity value belonging to
different sets are found. Finally, modify the third block M2 to complete the
matching of the entire state.

I.3 Results

For 3-round Xoodyak-XOF, we utilize the internal differential characteristic given
in Section G. The transition condition numbers are (k1, k2, k3, k

′
1, k
′
2, k
′
3) =

(116, 0, 8, 6, 28, 72). The scales of the sets D′L and D′R in the collision phase
satisfy 2n1+n2 = 2128.

Forward Phase. According to the DDT of Xoodoo’s 3-bit Sbox, any non-
zero output difference has 4 possible input differences, and these input differ-
ences form a 2-dimensional affine space. Therefore, we use the solution space
corresponding to a linear equation to characterize the active Sbox in the TIDA
stage. For α⋆

1, there are 58 active Sboxes and 6 non-active Sboxes. During the
Forward-TIDA stage, for the input difference system E∆, each active Sbox pro-
vides 1 linear equation, and each non-active Sbox provides 3 linear equations.
Thus the system E∆ contains 76 equations, of which the inner part contains
29 equations. Therefore, the complexity of TIDA is 229. The solution space of
each consistent system E∆ contains 217 input differences. Since the differen-
tial transition condition number corresponding to each non-zero input difference
of Xoodoo’s Sbox is 2, the differential transition condition number of the first
round is k1 = 58 · 2 = 116. When the input difference is determined, the de-
gree of freedom of the second block message M1 is r/2 = 64, which can only
meet 64 differential transition conditions. To meet the remaining 52 conditions,
an average of 252 input differences are required. Therefore, to obtain a message
(M0||M1) that passes the first round of internal differential characteristics, an
average of 252−17 = 235 TIDA runs are required, with a complexity of 264.

In the collecting messages stage, to store 2n1 states in the set D′L, 2n1+k2+k3

messages passing the first round are required. The total complexity of the forward
phase is given by T1 = 264+n1+k2+k3 .

Backward Phase. One property of Xoodoo’s Sbox is that its inverse function
is equal to itself, so the way to construct the input difference system E∆′ in the
Backward-TIDA stage is the same as in the Forward-TIDA stage, and we obtain
the state H||C that can pass the last round of internal differential characteristics
by changing the value of the suffix C of the digest H. Since the degree of freedom
of the suffix C is 256, it can be demonstrated that the complexity of the TIDA
stage in the backward phase is not the dominant factor, and there are enough
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degrees of freedom to meet the 72 differential transition conditions in the last
round. The total complexity of the backward phase is T2 = 2n2+k′

1+k′
2 .

Complexity. The total complexity T = T1+T2 = 264+n1+k2+k3+2n2+k′
1+k′

2 .
We take (n1, n2) = (45, 83), in which case the complexity T takes the minimum
value 2118.
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