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Abstract
Broadcast encryption allows a user to encrypt a message to 𝑁 recipients with a ciphertext whose size scales sub-

linearly with 𝑁 . The natural security notion for broadcast encryption is adaptive security which allows an adversary

to choose the set of recipients after seeing the public parameters. Achieving adaptive security in broadcast encryption

is challenging, and in the plain model, the primary technique is the celebrated dual-systems approach, which can

be implemented over groups with bilinear maps. Unfortunately, it has been challenging to replicate the dual-systems

approach in other settings (e.g., with lattices or witness encryption). Moreover, even if we focus on pairing-based con-

structions, the dual-systems framework critically relies on decisional (and source-group) assumptions. We do not have

constructions of adaptively-secure broadcast encryption from search (or target-group) assumptions in the plain model.

Gentry and Waters (EUROCRYPT 2009) described a compiler that takes any semi-statically-secure broadcast
encryption scheme and transforms it into an adaptively-secure scheme in the random oraclemodel. While semi-static

security is easier to achieve and constructions are known fromwitness encryption as well as search (and target-group)

assumptions on pairing groups, the transformed scheme relies on random oracles. In this work, we show that using

publicly-sampleable projective PRGs, we can achieve adaptive security in the plain model. We then show how to build

publicly-sampleable projective PRGs from many standard number-theoretic assumptions (e.g., CDH, LWE, RSA).

Our compiler yields the first adaptively-secure broadcast encryption scheme from search assumptions as well

as the first such scheme from witness encryption in the plain model. We also obtain the first adaptively-secure

pairing-based scheme in the plain model with 𝑂𝜆 (𝑁 )-size public keys and 𝑂𝜆 (1)-size ciphertexts (where 𝑂𝜆 (·)
suppresses polynomial factors in the security parameter 𝜆). Previous adaptively-secure pairing-based schemes in

the plain model with 𝑂𝜆 (1)-size ciphertexts required 𝑂𝜆 (𝑁 2)-size public keys.

1 Introduction
Broadcast encryption [FN93] allows a sender to encrypt a message to an arbitrary set of recipients 𝑆 ⊆ [𝑁 ] with
the property that any recipient 𝑖 ∈ 𝑆 in the broadcast set can decrypt the encrypted message. On the other hand,

even if all users outside 𝑆 collude, they should not learn anything about the encrypted message. We say such schemes

are fully collusion resistant. Finally, the size of the encrypted broadcast should be much smaller than the number of

recipients |𝑆 |. A broadcast encryption scheme has optimal ciphertext size if the length of an encryption of a message

𝜇 is |𝜇 | + poly(𝜆, log |𝑆 |) bits, where 𝜆 is the security parameter.

In the three decades since the work of Fiat and Naor [FN93], there has been a long line of work studying the fea-

sibility of broadcast encryption. Early works [NP00, NNL01, DF02, HS02, GST04] provide combinatoric constructions

where the size of the ciphertext scales linearly with either the number of recipients or the complement of the set (i.e.,

the number of revoked users). The first fully collusion-resistant broadcast encryption scheme with short ciphertexts

for all broadcast sets was the pairing-based scheme by Boneh, Gentry, and Waters [BGW05]. Subsequently, there have

been many constructions from pairing-based assumptions [BW06, GW09, Wat09, GKSW10, CGW15, GKW18, Wee21,

KMW23], new (non-standard) lattice assumptions [BV22, Wee22, Wee24, CW24, CHW25, Wee25], combinations of

pairing-based and lattice-based assumptions [GQWW19, AY20, AWY20], multilinear maps [BS03, BW13, BWZ14],

witness encryption [GVW19, FWW23], and indistinguishability obfuscation [BZ14].
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Adaptive security. The natural security notion in broadcast encryption is adaptive security, which requires security
to hold against adversaries that can choose the broadcast set (associated with the challenge ciphertext) after seeing the
scheme parameters. Achieving adaptive security is challenging. The first construction of fully collusion-resistant broad-

cast encryption by Boneh, Gentry, and Waters [BGW05] considered a relaxed notion of selective security where the

adversary is required to declare its challenge set 𝑆 ⊆ [𝑁 ] at the beginning of the game (before seeing the scheme param-

eters). Many subsequent schemes constructing broadcast encryption from multilinear maps [BWZ14], indistinguisha-

bility obfuscation [BZ14], witness encryption [FWW23], or lattice-based assumptions [BV22, Wee22, Wee24, CW24,

Wee25] only achieve selective security (or a slight strengthening called “semi-static security” [GW09] which we discuss

below). Unlike identity-based encryption or attribute-based encryption, neither selective nor semi-static security imply

adaptive security via complexity leveraging. This is because the standard approach of having the reduction algorithm

guess the challenge set incurs a 2
𝑁
-loss in the reduction advantage. Correspondingly, this would inflate the security pa-

rameter by at least a factor of 𝑁 , in which case, the size of the ciphertext becomes linear in the total number of users 𝑁 .

The primary approach for constructing adaptively-secure broadcast encryption scheme is Waters’ dual-system

technique [Wat09], which provides a general template for realizing adaptive security for broadcast encryption (and

other advanced encryption notions such as identity-based encryption and attribute-based encryption). In this setting,

the security proof steps through a sequence of hybrid arguments where the challenge ciphertext and the secret keys

for the broadcast encryption scheme are iteratively replaced by “semi-functional” variants. Once all of the secret

keys and the challenge ciphertext are replaced by semi-functional versions, security holds unconditionally. This type

of approach is taken in [Wat09, CGW15, Wee21, KMW23] to obtain adaptively-secure broadcast encryption from

pairing-based assumptions. An earlier approach for constructing adaptively-secure broadcast encryption scheme

by Boneh and Waters [BW06] showed how to use a traitor tracing scheme to implement a “dual-system-like” proof

structure of switching out decryption keys one-by-one in the security game.

While the dual-system technique has been a successful paradigm for achieving adaptively-secure broadcast

encryption, we have been unable to adapt these techniques to the lattice-based setting (or to constructions using

witness encryption). Even if we consider pairing-based constructions, the schemes that rely on the dual-system

methodology need to make decisional assumptions in the source group. This is needed to replace the ciphertext and

secret keys with their (computationally indistinguishable) semi-functional analogs. In contrast, if we consider earlier

selectively-secure pairing-based broadcast encryption schemes like [BGW05] or semi-statically-secure schemes such

as [GW09], their security can be based on a search assumption
1
in the target group. Achieving adaptive security for

broadcast encryption from search or target-group assumptions remains open.

The Genty-Waters approach. The work of Gentry and Waters [GW09] provides an alternative route to adaptive

security. In their work, they first introduce the notion of semi-static security that is an intermediate notion between

selective and adaptive security. In semi-static security, the adversary is required to commit to a superset 𝑆∗ ⊆ [𝑁 ]
at the beginning of the game and it is not allowed to request secret keys for any index 𝑖 ∈ 𝑆∗. The adversary can

choose its challenge set 𝑆 to be any subset 𝑆 ⊆ 𝑆∗ of the committed set. While semi-static security is stronger than

selective security, it is still easier to achieve compared to adaptive security. The construction from [GW09] yields

a semi-statically-secure broadcast encryption scheme from a computational target-group assumption. Similarly,

constructions of broadcast encryption from indistinguishability obfuscation [BZ14] and witness encryption [FWW23]

naturally satisfy semi-static security. The recent work of [CHW25] also shows how to construct a semi-statically-

secure broadcast encryption scheme from succinct LWE in the random oracle model. The work of [GW09] then

describes a generic compiler that takes any semi-statically secure broadcast encryption scheme and transforms

it into an adaptively-secure scheme in the random oracle model. Thus, [GW09] provides a template for building

adaptively-secure broadcast encryption from a broader range of cryptographic assumptions (by starting from a

semi-statically-secure scheme), but has the drawback of needing to rely on random oracles.
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Construction |mpk| |sk| |ct| Assumption

[BW06]

√
𝑁

√
𝑁

√
𝑁 subgroup decision

[Wat09] 𝑁 𝑁 1 2-Lin
[GKSW10]

√
𝑁

√
𝑁 𝑁 2-Lin

[GKW18] 𝑁 2
1 1 𝑘-Lin (𝑘 ≥ 1)

[Wee21] 𝑁 1/3 𝑁 1/3 𝑁 1/3
bilateral 𝑘-Lin (𝑘 ≥ 2)

This work + [GW09, §4] 𝑁 1 1 decisional 𝑞-BDHE-sum

This work + [GW09, §3]
∗ 𝑁 2

1 1 search 𝑞-BDHE

This work + Construction 7.5 𝑁 1+𝑜 (1)
1 1 search 𝑞-SC-BDHE

This work + [FWW23] 𝑁 1 1 witness encryption + LWE

∗
The proof from [GW09] relies on the decisional 𝑞-BDHE assumption, but using hard-core predi-

cates [GL89, HLR07], security can also be reduced to the search version of the same assumption.

Table 1: Comparison to adaptively-secure broadcast encryption schemes in the plain model. We measure the size

of the master public key mpk, secret key sk, and ciphertext ct as a function of the number of users 𝑁 . We suppress

poly(𝜆, log𝑁 ) factors in all comparisons, where 𝜆 is a security parameter. For any constant 𝑘 ∈ N, the (bilateral)
𝑘-Lin assumption is a static decisional assumption over a prime-order pairing group. The parameter 𝑞 indicates

a 𝑞-type assumption where 𝑞 = poly(𝜆, 𝑁 ). The 𝑞-bilinear Diffie-Hellman exponent (𝑞-BDHE) assumption is a

𝑞-type assumption introduced in [BBG05]. The 𝑞-BDHE-sum and 𝑞-SC-BDHE refer to the sum variant (c.f., [GW09]

and Assumption C.1) and the set-consistent variants of this assumption (c.f., [GLWW24] and Assumption 7.4),

respectively. The constructions obtained in this work are through applying our compiler (Construction 5.1) to the

listed semi-statically-secure broadcast encryption scheme.

1.1 Our Results
In this work, we revisit the Gentry-Waters compiler and show how to instantiate it in the plain model. Specifically,

we show that we can replace the random oracle in the [GW09] construction with a (publicly-sampleable) projective

pseudorandom generator (PRG) [ABI
+
23] and prove adaptive security of the resulting construction in the plain model.

While our construction relies on projective PRGs, our construction has a different syntax (i.e., requires a public-

sampleability property) and relies on a different and incomparable set of security requirements than the application to

computational secret sharing considered in [ABI
+
23]; we refer to Section 2 for more details. We then show how to adapt

the ideas underlying the projective PRG constructions from [ABI
+
23] to obtain publicly-sampleable projective PRGs

from a wide array of number-theoretic assumptions: the computational Diffie-Hellman (CDH) assumption (in pairing-

free groups), the computational bilinear Diffie-Hellman (CBDH) assumption, the RSA assumption, as well as the

learning with errors (LWE) assumption. Combining our new compiler with existing constructions of semi-statically-

secure broadcast encryption, we immediately obtain several new adaptively-secure broadcast encryption schemes:

• Security based on search assumptions. Applying our compiler to the scheme from [GW09, §3], we obtain

an adaptively-secure pairing-based broadcast encryption scheme from search assumptions in the plain model.

All previous pairing-based approaches either needed decisional assumptions or random oracles.

• A lattice-based instantiation via witness encryption. Applying our compiler to the scheme from [FWW23,

§4], we obtain an adaptively-secure broadcast encryption scheme from witness encryption together with

the learning with errors (LWE) assumption. Previous schemes only achieved semi-static security. Combined

with the witness encryption schemes from lattices [Tsa22, VWW22], we obtain the first adaptively-secure

broadcast encryption from lattice assumptions in the plain model (specifically, the private-coin evasive LWE

assumption [Wee22, Tsa22]).

1
Technically, both [BGW05, GW09] prove security of their scheme using a decisional assumption in the target group, but we can replace these

with the corresponding search assumption using hard-core predicates [GL89, HLR07].

3



|crs| |pk| |sk| |ct| Security Assumption

[WQZD10], [KMW23, §A] 𝑁 𝑁 2
1 1 selective search 𝑞-BDHE∗

[FWW23, §7] + [ZZGQ23] 𝑁 2 𝑁 1 1 selective 𝑘-Lin (𝑘 ≥ 1)
†

[CW24] 𝑁 2 𝑁 1 1 selective 𝑞-succinct LWE

[BZ14] – 1 1 1 semi-static 𝑖O + one-way functions

[FWW23, §4] 1 1 1 1 semi-static witness encryption + LWE

[KMW23, §5] 𝑁 𝑁 1 1 semi-static search 𝑞-BDHE∗

[KMW23, §6] 𝑁 2 𝑁 1 1 adaptive 𝑘-Lin (𝑘 ≥ 1)

This work + [KMW23, §5] 𝑁 𝑁 1 1 adaptive search 𝑞-BDHE

This work + [FWW23] 𝑁 1 1 1 adaptive witness encryption + LWE

∗
While the analysis in [KMW23, §5, §A] proves security from the decisional 𝑞-bilinear Diffie-Hellman exponent (BDHE)

assumption, it is straightforward to modify the scheme to obtain security from the search version of the assumption (via

hard-core predicates [GL89, HLR07]).

†
The work of [FWW23] show a generic transformation from any registered attribute-based encryption (ABE)

scheme [HLWW23] to a distributed broadcast encryption scheme. Here, we consider the instantiation using a pairing-based

registered ABE scheme from the 𝑘-Lin assumption [ZZGQ23] (or alternatively, [AT24]). With 𝑞-type assumptions, we can

reduce the public parameter size to 𝑁 1+𝑜 (1)
by applying the [FWW23] compiler to the registered ABE scheme from [GLWW24].

Table 2: Comparison to distributed broadcast encryption schemes in the plain model. We measure the size of the

common reference string crs, the size of an individual user’s public key pk, and the size of the secret key sk as a function
of the number of users 𝑁 . We suppress poly(𝜆, log𝑁 ) factors in all comparisons, where 𝜆 is a security parameter.

The parameter 𝑞 indicates a 𝑞-type assumption where 𝑞 = poly(𝜆, 𝑁 ). The constructions obtained in this work are

through applying our compiler (Construction A.2) to the listed semi-statically-secure broadcast encryption scheme.

• Schemes with sub-quadratic public keys. Applying our compiler to the scheme from [GW09, §4], we obtain

a pairing-based broadcast encryption scheme in the plain model for 𝑁 users where the public key contains

𝑂 (𝑁 ) group elements, and the secret keys and ciphertext contain 𝑂 (1) group elements. Previous schemes with

constant size ciphertexts [GKW18] had a quadratic-size public key (i.e., |mpk| = 𝑂 (𝑁 2)). Our construction
with linear-size public keys relies on a decisional assumption. In this work, we also give a new construction of

a semi-statically-secure broadcast encryption scheme with a public key of nearly linear size (i.e., 𝑁 1+𝑜 (1)
) and

constant-size secret keys and ciphertexts where security is based on search assumptions. Coupled with our

compiler, this yields an adaptively-secure broadcast encryption with the same efficiency (and security based on

search assumptions).

We refer to Table 1 for a comparison of our new constructions with existing adaptively-secure broadcast encryption

schemes in the plain model.

Application to distributed broadcast encryption. Distributed broadcast encryption [WQZD10, BZ14] is a trust-

less variant of broadcast encryption where instead of a central authority generating decryption keys for individual

users, users instead sample their own public/secret key. In this model, there is a one-time setup procedure that

outputs a common reference string (CRS) that users reference when generating their keys. Anyone can encrypt to

an arbitrary set of public keys, and the resulting ciphertext must satisfy the usual succinctness requirement. The

work of [KMW23] shows that the Gentry-Waters compiler can also be used to transform a semi-statically-secure

distributed broadcast encryption scheme into an adaptively secure scheme in the random oracle model.

In this work, we show that our approach based on publicly-sampleable projective PRGs can also be used to

upgrade any semi-statically-secure distributed broadcast encryption scheme into an adaptively-secure scheme. If

we apply our construction to the recent pairing-based semi-statically-secure distributed broadcast encryption scheme

from [KMW23], we obtain the first adaptively-secure construction with linear-size public parameters (and also

the first scheme whose security only relies on search assumptions). Previous adaptively-secure schemes (in the
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plain model) required quadratic-size public parameters. Applying our compiler to [FWW23], we obtain the first

adaptively-secure distributed broadcast encryption scheme from lattice assumptions.
2
We provide a comparison to

previous constructions in Table 2.

2 Technical Overview
We first recall the syntax of a broadcast encryption scheme [FN93, BGW05]. Let 𝑁 be the number of users in the

system. Each user has a distinct index 𝑖 ∈ [𝑁 ]. Then, a broadcast encryption consists of the following algorithms:

• Setup: The setup algorithm generates the master public key mpk together with a master secret key msk (used

to generate user secret keys).

• Key generation: The key-generation algorithm takes the master secret key msk and an index 𝑖 ∈ [𝑁 ] and
outputs the secret key sk𝑖 for user 𝑖 .

• Encryption: The encryption algorithm takes the master public keympk, a set of users 𝑆 ⊆ [𝑁 ], and a message

𝜇, and outputs a ciphertext ct.

• Decryption: The decryption algorithm takes as input a ciphertext ct, the associated broadcast set 𝑆 ⊆ [𝑁 ],
and a secret key sk𝑖 for some index 𝑖 ∈ 𝑆 , and outputs a message 𝜇.

The correctness requirement says that if ct is an encryption of 𝜇 to a set 𝑆 , then decrypting ct using any key sk𝑖 for
an index 𝑖 ∈ 𝑆 should recover the message. The succinctness requirement says that the size of the ciphertext ct output
by the encryption algorithm should be sublinear in the size of the broadcast set |𝑆 |.

Security for broadcast encryption. The starting point is the Gentry-Waters compiler [GW09] that generically

transforms any semi-statically-secure broadcast encryption scheme into an adaptively-secure scheme in the random

oracle model. We recall the definitions of adaptive security and semi-static security for broadcast encryption. We

define two experiments, parameterized by a bit 𝑏 ∈ {0, 1}.

• Setup phase: The challenger runs the setup algorithm to obtain the master public key mpk and the master

secret key msk for the encryption scheme. The challenger gives mpk to the adversary.

• Query phase: The adversary can now (adaptively) request secret keys for users 𝑖 ∈ [𝑁 ]. On each query, the

challenger responds with the secret key sk𝑖 for user 𝑖 .

• Challenge phase: Once the adversary is done making key-generation queries, it specifies a challenge set

𝑆 ⊆ [𝑁 ] and a pair of challenge messages 𝜇0, 𝜇1. The requirement is that 𝑆 does not contain any index 𝑖 ∈ [𝑁 ]
for which the adversary made a key-generation query. The adversary also specifies a pair of challenge messages

𝜇0, 𝜇1. The challenger responds with an encryption of 𝜇𝑏 (where 𝑏 ∈ {0, 1}) to the set 𝑆 .

• Output phase: The adversary then output a guess 𝑏′ ∈ {0, 1}, which is the output of the experiment.

A broadcast encryption scheme is adaptively-secure if the output of the experiment when 𝑏 = 0 is computationally

indistinguishable from the output when 𝑏 = 1. Next, semi-static security corresponds to the following relaxation

on adaptive security:

• Setup phase: At the beginning of the setup phase (before seeingmpk), the adversary commits to a set 𝑆∗ ⊆ [𝑁 ].

• Query phase: The adversary is no longer allowed to issue key-generation queries for any 𝑖 ∈ 𝑆∗.

• Challenge phase: The challenge set 𝑆 must be a subset of the committed set 𝑆∗ (i.e., 𝑆 ⊆ 𝑆∗).

2
A concurrent work [CHW25] shows how to construct a semi-static distributed broadcast encryption scheme from the succinct LWE assumption

in the random oracle model. They then apply the Gentry-Waters compiler [GW09] to obtain an adaptively-secure scheme in the random oracle

model. This work gives a construction in the plain model by applying our compiler to the [FWW23] distributed broadcast encryption scheme

based on witness encryption (and LWE).
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In other words, in semi-static security, the adversary must commit to a superset of its eventual challenge set and it

is not allowed to query for any keys in the committed set. The difference between semi-static security and selective

security is the adversary does not have to commit to its exact challenge set 𝑆 during the setup phase.

The Gentry-Waters compiler. We now recall the Gentry-Waters [GW09] compiler that transforms any semi-

statically-secure broadcast encryption scheme into an adaptively-secure scheme in the random oracle model. We

start by describing a simplified version of their approach that does not use random oracles, but has long ciphertexts:

• Setup: To construct an adaptively-secure secure scheme with 𝑁 users, [GW09] instantiates the semi-statically-

secure scheme with 2𝑁 users. We index the 2𝑁 users for the semi-statically-secure scheme by a pair (𝑖, 𝑏)
where 𝑖 ∈ [𝑁 ] and 𝑏 ∈ {0, 1}. The master public key is the master public key for the underlying semi-statically

secure scheme. Let sk′
𝑖,𝑏

denote the secret keys for user (𝑖, 𝑏) for the underlying semi-statically-secure scheme.

• Key-generation: To generate a key for user 𝑖 , the key-generation algorithm samples a bit 𝑠𝑖
r← {0, 1}. The key

for user 𝑖 is the pair sk𝑖 = (𝑠𝑖 , sk′𝑖,𝑠𝑖 ).

• Encryption: To encrypt a message 𝜇 with respect to a set 𝑆 ⊆ [𝑁 ], the encryption oracle samples 𝑡𝑖
r← {0, 1}

for each 𝑖 ∈ 𝑆 . The encryption algorithm encrypts 𝜇 with respect to the set 𝑆 ′ = {(𝑖, 𝑡𝑖 ) : 𝑖 ∈ 𝑆} as well as
𝑆 ′ = {(𝑖, 1 − 𝑡𝑖 ) : 𝑖 ∈ 𝑆} using the underlying semi-statically-secure scheme and obtains ciphertext ct′

0
, ct′

1
. The

ciphertext is the triple ct =
(
{(𝑖, 𝑡𝑖 )}𝑖∈𝑆 , ct′0, ct′1

)
.

• Decryption: If 𝑖 ∈ 𝑆 , then (𝑖, 𝑠𝑖 ) ∈ 𝑆 or (𝑖, 𝑠𝑖 ) ∈ 𝑆 ′, so user 𝑖 can use sk𝑖 = (𝑠𝑖 , sk′𝑖,𝑠𝑖 ) to decrypt either ct′
0
or ct′

1

and correctness follows.

To argue security, the work of [GW09] first leverages semi-static security to switch ct′
0
from an encryption of 𝜇0 to

an encryption of 𝜇1. Then, by an analogous argument, they switch ct′
1
from an encryption of 𝜇0 to an encryption

of 𝜇1. This suffices to argue that an encryption of 𝜇0 is computationally indistinguishable from an encryption of 𝜇1.

Here, we sketch the argument for switching ct′
0
. Let A be an adversary for the adaptive security game.

• Setup phase: At the start of the game, the reduction algorithm (playing the semi-static security game) samples

𝑠𝑖
r← {0, 1} for all 𝑖 ∈ [𝑁 ] and commits to the set 𝑆∗ = {(𝑖, 1 − 𝑠𝑖 ) : 𝑖 ∈ [𝑁 ]}. The reduction algorithm forwards

the master public key for the semi-statically-secure scheme to A.

• Key-generation phase: Whenever algorithm A makes a key-generation query for an index 𝑖 ∈ [𝑁 ], the
reduction algorithm makes a key-generation query (𝑖, 𝑠𝑖 ) to the semi-static challenger and receives a key sk𝑖,𝑠𝑖 .
By construction (𝑖, 𝑠𝑖 ) ∉ 𝑆∗, so this is allowed. The reduction algorithm replies to A with sk𝑖 = (𝑠𝑖 , sk𝑖,𝑠𝑖 ).

• Challenge phase: When algorithm A makes a challenge query for a set 𝑆 ⊆ [𝑁 ] and messages 𝜇0, 𝜇1, the

reduction algorithm makes a challenge query on the set 𝑆 = {(𝑖, 1 − 𝑠𝑖 ) : 𝑖 ∈ 𝑆} ⊆ 𝑆∗ and messages 𝜇0, 𝜇1 to its

challenger and receives a ciphertext ct′
0
. Finally, the reduction defines 𝑡𝑖 := 1 − 𝑠𝑖 for all 𝑖 ∈ 𝑆 and constructs ct′

1

as in the real scheme (as an encryption of 𝜇0 for set {(𝑖, 1 − 𝑡𝑖 ) : 𝑖 ∈ 𝑆}). The reduction algorithm replies with

the ciphertext ct =
(
{(𝑖, 𝑡𝑖 )}𝑖∈𝑆 , ct′0, ct′1

)
.

By construction, the reduction algorithm is a valid semi-static adversary. Moreover, since it samples 𝑠𝑖
r← {0, 1}, the

secret keys are also perfectly distributed. It suffices to consider the distribution of the random string 𝑡 . Recall that

in the adaptive security game, the adversary cannot ask for the key for any index 𝑖 ∈ 𝑆 appearing in the challenge

set. This means the value of 𝑡𝑖 = 1 − 𝑠𝑖 is perfectly hidden from the view of the adversary, and so the distribution

of 𝑡𝑖 is independent and uniform, as required. We now highlight two important properties of this reduction:

• Two-key approach. Every user has two possible secret keys, but the key-generation algorithm only gives out

the secret key for one of them (chosen at random). In the security analysis, the reduction algorithm knows one

of the two keys for each user, which allows it to answer key-generation queries for every user. At the same

time, the challenge ciphertext is encrypted to the set of keys the reduction algorithm does not know, which is

essential for being able to invoke semi-static security.
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• Challenge ciphertext hides unused bits. In the real scheme, the bit 𝑠𝑖 ∈ {0, 1} associated with each secret

key sk𝑖 is uniform and independent. The same is true for the bits 𝑡𝑖 ∈ {0, 1} in the challenge ciphertext. In the

security analysis, the reduction algorithm samples a single string 𝑠 r← {0, 1} and uses 𝑠𝑖 for the key-generation

queries and sets 𝑡𝑖 = 1−𝑠𝑖 in the challenge ciphertext. At first glance, this may appear to violate the independence

of 𝑠𝑖 and 𝑡𝑖 . The key is that the reduction only gives out 𝑠𝑖 for 𝑖 ∉ 𝑆 and 𝑡𝑖 = 1 − 𝑠𝑖 for 𝑖 ∈ 𝑆 (because the

adversary cannot request keys for users in the challenge set). Since the adversary sees at most one of 𝑠𝑖 or

𝑡𝑖 = 1− 𝑠𝑖 for each 𝑖 ∈ [𝑁 ], the view of the adversary is correctly simulated. Thus, the reduction critically relies

on the fact that the simulated challenge ciphertext hides 𝑠𝑖 for all 𝑖 ∉ 𝑆 . This was trivial to argue for the above

construction with long ciphertexts, but will be important in our construction.

As described, the transformation yields a scheme with long ciphertexts (linear in the size of the broadcast set) because

the string 𝑡 in the ciphertext is |𝑆 | bits long. The work of [GW09] leverages the random oracle to compress 𝑡 . Namely,

the ciphertext contains a (short) seed 𝜎
r← {0, 1}𝜌 , and each bit 𝑡𝑖 is obtained by computing 𝑡𝑖 ←H(𝜎, 𝑖) whereH

is modeled as a random oracle (i.e., ct = (𝜎, ct′
0
, ct′

1
)). In the security analysis, the reduction algorithm “programs”

the random oracle to output 𝑡𝑖 = H(𝜎, 𝑖) := 1 − 𝑠𝑖 . Importantly, the values ofH(𝜎, 𝑖) for 𝑖 ∉ 𝑆 are not programmed

(they are uniform and independent of 𝑠𝑖 ). This ensures that the challenge ciphertext hides the value of 𝑠𝑖 for 𝑖 ∉ 𝑆 .

This yields a construction with short ciphertexts.

Replacing the random oracle with a PRG. The Gentry-Waters compiler relies on the random oracle to compress
an |𝑆 |-bit random string into a 𝜆-bit string. If we want to avoid the random oracle, a natural approach is to replace

it with a pseudorandom generator (PRG). For example, instead of computing 𝑡𝑖 ←H(𝑟, 𝑖), the encryption algorithm

could instead sample a seed 𝜎 ∈ {0, 1}𝜆 for a PRG, compute 𝑡 = PRG(𝜎) ∈ {0, 1}𝑛 , and then encrypt according to

the bits of 𝑡 (corresponding to indices 𝑖 ∈ 𝑆). This approach preserves correctness, so the question is security.

Consider the adaptation of the previous Gentry-Waters argument where the reduction algorithm samples

𝜎
r← {0, 1}𝜆 in the setup phase and then sets 𝑠 = PRG(𝜎). In the challenge phase, the reduction algorithm sets 𝜎 to be

the random seed in the challenge ciphertext (i.e., ct = (𝜎, ct′
0
, ct′

1
)). Since 𝜎 is a random seed, the marginal distribution

of the challenge ciphertext is correctly simulated. However, this approach does not satisfy the second requirement

described above; the challenge ciphertext no longer hides the value of 𝑠𝑖 for 𝑖 ∉ 𝑆 . Indeed, the string 𝜎 in the challenge

ciphertext completely reveals 𝑠𝑖 , and as a result, there is a clear correlation between the key-generation queries and

the challenge ciphertext (that would not exist in the real scheme). Thus, the naïve reduction strategy is not sufficient.

Projective PRGs. To implement the Gentry-Waters proof strategy, we need a way to take the PRG seed 𝜎 (that

determines the string 𝑠 = PRG(𝜎)) and constrain it to a new seed 𝜎𝑆 such that PRG(𝜎𝑆 ) agrees with 𝑆 on all indices

𝑖 ∈ 𝑆 , and moreover, the bits 𝑠𝑖 for 𝑖 ∉ 𝑆 look random even given 𝜎𝑆 . This is precisely the property satisfied by

a projective PRG [ABI
+
23], a notion recently introduced in the study of succinct computational secret sharing.

Importantly for our application to broadcast encryption, the length of the constrained seed 𝜎̂ must be sublinear in

the size of 𝑆 .3 Formally, a projective PRG with output length 𝑁 consists of three algorithms:

• Setup(1𝜆, 1𝑁 ) → (pp, 𝜎): The setup algorithm takes as input the security parameter 𝜆 and the PRG output

length 𝑁 and outputs the set of public parameters pp along with a PRG seed 𝜎 .

• Project(pp, 𝜎, 𝑆) → 𝜎̂𝑆 : The project algorithm takes the public parameters pp, the seed 𝜎 and a set 𝑆 ⊆ [𝑁 ]
and outputs a projected seed 𝜎̂𝑆 . We require that the size of the projected seed 𝜎̂𝑆 to be sublinear in |𝑆 |.

• Eval(pp, 𝜎̂𝑆 , 𝑆, 𝑖) → 𝑡𝑖 : The evaluation algorithm takes the public parameters pp, a projected seed 𝜎̂𝑆 , the

associated set 𝑆 ⊆ [𝑁 ], and an index 𝑖 ∈ 𝑆 , and outputs the bit 𝑡𝑖 ∈ {0, 1} at index 𝑖 .

For a seed 𝜎 , we define the PRG output to be the string 𝑠 = PRG(𝜎) ∈ {0, 1}𝑁 where 𝑠𝑖 = Eval(pp, 𝜎̂[𝑁 ], [𝑁 ], 𝑖) and
𝜎̂[𝑁 ] ← Project(pp, 𝜎, [𝑁 ]) is the seed projected onto the full output space [𝑁 ]. Then, we require the projective PRG
to satisfy the following properties:

3
Constrained pseudorandom functions (PRFs) [BW13] are an analog of projective PRGs for the setting of PRFs. Unlike projective PRGs, these

do not have a succinctness requirement.
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• Correctness: If we project a seed 𝜎 onto a set 𝑆 , the projected seed should evaluate to the same value as

PRG(𝜎) on all inputs 𝑖 ∈ 𝑆 . Namely, if 𝜎̂𝑆 ← Project(pp, 𝜎, 𝑆), then Eval(𝜎̂𝑆 , 𝑆, 𝑖) = Eval(𝜎̂[𝑁 ], [𝑁 ], 𝑖) for all
𝑖 ∈ 𝑆 .

• Adaptive pseudorandomness: Given a projected seed 𝜎̂𝑆 for some set 𝑆 , the bits 𝑠𝑖 for 𝑖 ∉ 𝑆 remain

pseudorandom where 𝑠 = PRG(𝜎). For our application to adaptively-secure broadcast encryption, we require

pseudorandomness to hold against an adaptive adversary that can choose the set 𝑆 after seeing arbitrary bits of

𝑠 (so long as the challenge set 𝑆 excludes such bits).

Suppose we now substitute a projective PRG for the random oracle in the Gentry-Waters construction. In the proof,

the reduction algorithm would sample a PRG seed 𝜎
r← {0, 1}𝜆 and derive the string 𝑠 ← PRG(𝜎). The challenge

ciphertext would in turn contain a seed 𝜎̂𝑆 projected to the set 𝑆 . This ensures that Eval(pp, 𝜎̂𝑆 , 𝑆, 𝑖) agrees with 𝑠𝑖
on 𝑖 ∈ 𝑆 and that 𝑠𝑖 is pseudorandom even given 𝜎̂𝑆 . This satisfies the two key requirements needed to carry out the

Gentry-Waters proof strategy without random oracles.

Publicly-sampleable projective PRGs. Substituting a projective PRG introduces a new wrinkle into our con-

struction. Namely, each ciphertext in the (transformed) broadcast encryption scheme contains a seed for a projective

PRG (constrained to 𝑆). In our current abstraction, projective PRGs are defined with respect to a set of (long) public

parameters pp, and the seed 𝜎 is tied to the choice of public parameters (this is necessary to support projection).

In these constructions, we cannot resample a seed independently of the public parameters, and since the public

parameters are long, we also cannot include a fresh set of public parameters as part of the ciphertext. Of course, we

also cannot give out the seed for the projective PRG as part of the public parameters either. Thus, it is unclear how

to support public encryption (which needs the ability to sample a constrained seed for the projective PRG). To resolve

this problem, we augment the projective PRG with an additional public sampling algorithm:

• Samp(pp, 𝑆) → 𝜎̂𝑆 : The sampling algorithm takes as input the public parameters pp and a set 𝑆 and outputs

a “simulated” seed 𝜎̃𝑆 .

Next, we require the projective PRG to satisfy a sampling indistinguishability property:

• Sampling indistinguishability: For all sets 𝑆 ⊆ [𝑁 ], the simulated seed output by the public sampling

algorithm Samp(pp, 𝑆) be computationally indistinguishable from the projected seed output by Project(pp, 𝜎, 𝑆).
In the formal distinguishing experiment, the adversary sees the public parameters pp and either a simulated

seed or a projected seed. Notably, it does not observe any output bits of the PRG.

In the construction, the (honest) encryption algorithm samples a seed using Samp(pp, 𝑆) while the reduction con-

structs it using the projection algorithm. This allows us to implement the Gentry-Waters proof strategy without

random oracles. We provide the formal definition of publicly-sampleable projective PRGs in Section 4 and our

adaptation of the Gentry-Waters compiler in Section 5. An analogous compiler can also be used to upgrade any

semi-statically-secure distributed broadcast encryption scheme [WQZD10, BZ14] into an adaptively secure distributed

broadcast encryption scheme. We describe this compiler in Appendix A.

2.1 Constructing Publicly-Sampleable Projective PRGs.
The work of [ABI

+
23] shows how to construct projective PRGs with different efficiency properties from the deci-

sional Diffie-Hellman (DDH), decisional bilinear Diffie-Hellman (DBDH), RSA, and the learning with errors (LWE)

assumptions. The existing constructions do not provide an explicit public sampling algorithm nor do they satisfy

the new security notions we consider in this work (adaptive pseudorandomness and sampling indistinguishability).

However, it is possible to extend the existing constructions to satisfy our functionality and security requirements.

We start with a quick summary of our main constructions:

• Computational Diffie-Hellman: We start by showing how to construct a publicly-sampleable projective

PRG from the computational Diffie-Hellman assumption in a pairing-free group. The scheme has quadratic-size

public parameters (measured as a function of the output length). Our construction is a direct adaptation of the
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DDH-based construction from [ABI
+
23, §3.4.1], except we introduce a secret shift to support public sampling

and also show that using hard-core predicates, we can base security on a search assumption rather than a

decisional assumption. The latter distinction is important for achieving the first adaptively-secure broadcast

encryption schemes from search assumptions.

• Computational bilinear Diffie-Hellman: Next, we show how a technique by Boyen and Waters [BW10] can

be used to reduce the public parameter size of the CDH construction from quadratic to linear when working

over a pairing group. This yields the first projective PRG from bilinear maps with linear-size public parameters;

the pairing-based construction from [ABI
+
23, §3.4.2] still requires quadratic-size public parameters.

• Learning with errors: We show how to adapt the LWE-based projective PRG from [ABI
+
23, Appendix A]

to obtain a publicly-sampleable projective PRG with linear-size public parameters. The main difference is

again introducing a secret shift to achieve the public sampling property. This scheme has linear-size public

parameters.

• RSA: Finally, we show that the RSA-based projective PRG from [ABI
+
23, §3.2] is also publicly-sampleable and

yields a publicly-sampleable projective PRG with linear-size public parameters (and can plausibly be made

constant-size; see Remark B.9).

To summarize, publicly-sampleable projective PRGs can be realized frommost standard number-theoretic assumptions.

Combined with our new compiler, this means building a semi-statically-secure broadcast encryption from any of

these assumptions immediately implies an adaptively-secure broadcast encryption scheme. We now provide a more

detailed overview of our constructions.

A construction from CDH. Our first construction is from the computational Diffie-Hellman problem where the

public parameters are quadratic in the output length of the PRG. Our construction is an adaptation of the projective

PRG scheme based on DDH from [ABI
+
23, §3.4.1]. One of the objectives in this work is to realize adaptive broadcast

encryption from search assumptions, which is the reason we focus on CDH rather than DDH. Note that the [ABI
+
23]

construction from DDH can easily be adapted to a construction from CDH (but the scheme does not support public

sampling). We work over a group G of prime order 𝑝 . Throughout, we use implicit notation to represent group

elements [EHK
+
13]: namely, for 𝑥 ∈ Z𝑝 , we write [𝑥]G := 𝑔𝑥 .

• Setup: The setup algorithm first samples random exponents 𝑎𝑖 , 𝑠𝑖
r← Z𝑝 for all 𝑖 ∈ [𝑁 ] along with a blinding

factor 𝛼
r← Z𝑝 . The public parameters consist of the group elements [𝑎𝑖 ]G, [𝑠𝑖 ]G for all 𝑖 ∈ [𝑁 ] along with the

cross-terms [𝑎𝑖𝑠 𝑗 ]G for all 𝑗 ≠ 𝑖 . The seed consists of the exponents 𝜎 = (𝛼, 𝑠1, . . . , 𝑠𝑁 ).

• Evaluation: For each 𝑖 ∈ [𝑁 ], we define the 𝑖th bit 𝑡𝑖 of the PRG output to be a hard-core predicate hc applied
to a shifted diagonal term [𝑎𝑖 (𝛼 + 𝑠𝑖 )]G: namely, 𝑡𝑖 = hc( [𝑎𝑖 (𝛼 + 𝑠𝑖 )]G).

• Projection: The projected seed 𝜎̂𝑆 for a set 𝑆 is 𝜎̂𝑆 := 𝛼 +∑
𝑖∈𝑆 𝑠𝑖 ∈ Z𝑝 . In combination with the terms [𝑎𝑖 ]G

and [𝑎𝑖𝑠 𝑗 ]G for 𝑗 ≠ 𝑖 in the public parameters, this suffices to compute the output bit 𝑡𝑖 = hc( [𝑎𝑖 (𝛼 + 𝑠𝑖 )]G):

𝜎̂𝑆 · [𝑎𝑖 ]G −
∑︁

𝑗∈𝑆\{𝑖 }
[𝑎𝑖𝑠 𝑗 ]G = [𝛼𝑎𝑖 ]G + [𝑠𝑖𝑎𝑖 ]G +

∑︁
𝑗∈𝑆\{𝑖 }

[𝑎𝑖𝑠 𝑗 ]G −
∑︁

𝑗∈𝑆\{𝑖 }
[𝑎𝑖𝑠 𝑗 ]G = [𝑎𝑖 (𝛼 + 𝑠𝑖 )]G.

• Public sampling: The simulated key for any set 𝑆 is a uniform random field element 𝜎̃𝑆
r← Z𝑝 .

We now check that this satisfies our security requirements:

• Adaptive pseudorandomness: Under CDH, it is easy to show that [𝑎𝑖𝑠𝑖 ]G is computationally unpredictable

given the public parameters [𝑎𝑖 ]G, [𝑠𝑖 ]G, and [𝑎𝑖𝑠 𝑗 ]G for 𝑖 ≠ 𝑗 and the projected seed 𝜎̂𝑖 = 𝛼 + ∑
𝑗∈𝑆 𝑠 𝑗 . In

particular, the reduction algorithm gets [𝑎𝑖 ]G and [𝑠𝑖 ]G from the CDH challenge and picks all other exponents

itself. Importantly, we only require unpredictability when 𝑖 ∉ 𝑆 , which allows the reduction to simulate 𝜎̂ . Since

[𝑎𝑖𝑠𝑖 ]G is computationally unpredictable, the same holds for [𝑎𝑖 (𝛼 + 𝑠𝑖 )]G. Finally, pseudorandomness follows

from the security of the hard-core predicate [GL89, HLR07] (see Theorem 3.2).
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• Sampling indistinguishability: Observe that the public parameters pp are independent of 𝛼 . Thus, over the
randomness of 𝛼

r← Z𝑝 , for any set 𝑆 , the distribution of a projected seed 𝜎̂𝑆 is a uniform random field element.

This is the same distribution as the 𝜎̃𝑆 output by the public sampling procedure.

The difference between our construction from the DDH-based construction from [ABI
+
23, §3.4.1] is the extra offset

𝛼 we introduce to support public sampling (and sampling indistinguishability) as well as the use of the hard-core

predicate to base security on CDH rather than DDH. Without the blinding factor 𝛼 , one can use the public parameters

to test whether a projected seed is consistent with the public parameters or not. Namely, to check if a projected seed

𝜎𝑆 for a set 𝑆 is a valid projected seed, one simply takes an index 𝑗 ∉ 𝑆 and checks whether [𝑎 𝑗 ]G · 𝜎𝑆 =
∑

𝑖∈𝑆 [𝑎 𝑗𝑠𝑖 ]G,
which holds whenever 𝜎𝑆 =

∑
𝑖∈𝑆 𝑠𝑖 is a valid projected seed. We provide the full details in Section 6.1.

Reducing the public parameter size using pairings. A disadvantage of the above CDH construction is the size of

the public parameters is quadratic in the output length. In the context of broadcast encryption, the PRG output length

corresponds to the number of users in the system, so using our CDH-based projective PRG to boost a semi-statically-

secure scheme to an adaptively-secure scheme would lead to a scheme with quadratic-size public parameters. A natural

question then is whether we can reduce this overhead. Here, we show that the approach of Boyen and Waters [BW10]

can be directly applied to obtain a publicly-sampleable projective PRG with a linear-size public parameters. This gives

the first projective PRG with linear-size public parameters from standard pairing assumptions. Previously, the work

of [ABI
+
23] showed how to use pairings to obtain a “reusable” projective PRG, but still with quadratic-size public

parameters. Our application does not rely on reusability, and thus, we are able to achieve significant compression.

Let 𝑒 : G × G→ G𝑇 be an efficiently-computable, non-degenerate (symmetric) bilinear map, where G and G𝑇 are

groups of prime order 𝑝 . We represent elements ofG andG𝑇 implicitly as [𝑥]G and [𝑥]G𝑇 , respectively. Boyen andWa-

ters [BW10] show how to use a bilinear map to compress [𝑎𝑖𝑠 𝑗 ]G𝑇 for all 𝑖 ≠ 𝑗 with𝑂 (𝑁 ) elements inG, while simulta-

neously ensuring that the non-cross-terms [𝑎𝑖𝑠𝑖 ]G𝑇 are hidden.
4
Very briefly, the Boyen-Waters approach is as follows:

• The public parameters contain encodings [𝑎𝑖 ]G, [𝑠𝑖 ]G, [𝑎𝑖 (𝛾𝑖 + 𝛿)]G, [𝑠𝑖 (𝛾𝑖 + 𝛿)]G for all 𝑖 ∈ [𝑁 ], where 𝛾, 𝛿 r←
Z𝑝 are random blinding factors.

• Observe now that the public parameters allow one to compute [𝛾𝑎𝑖𝑠 𝑗 ]G𝑇 for all 𝑖 ≠ 𝑗 , but not terms of the form

[𝛾𝑎𝑖𝑠𝑖 ]G𝑇 . To see this, first observe

[𝑎𝑖 ]G · [𝑠 𝑗 (𝛾 𝑗 + 𝛿)]G − [𝑠 𝑗 ]G · [𝑎𝑖 (𝛾𝑖 + 𝛿)]G = [𝛾𝑎𝑖𝑠 𝑗 ( 𝑗 − 𝑖)]G𝑇 .

When 𝑖 ≠ 𝑗 , the user can recover [𝛾𝑎𝑖𝑠 𝑗 ]G𝑇 = [𝛾𝑎𝑖𝑠 𝑗 ( 𝑗 − 𝑖)]G𝑇 · ( 𝑗 − 𝑖)−1
. However, when 𝑖 = 𝑗 , then the above

expression yields the identity element, and the user is unable to compute [𝛾𝑎𝑖𝑠𝑖 ]G𝑇 .

We obtain a publicly-sampleable projective PRG with linear-size public parameters by using the above technique

to compress the public parameters from our basic CDH construction described above (where the evaluations now

happen in the target group G𝑇 ). Hardness in turn relies on the computational bilinear Diffie-Hellman assumption (i.e.,

given random elements [𝑢]G, [𝑣]G, [𝑤]G, it is hard to compute [𝑢𝑣𝑤]G𝑇 ). We provide the full details in Section 6.2.

As noted above, our construction gives a pairing-based projective PRG with linear-size public parameters, which

improves upon the construction from [ABI
+
23] which needed quadratic-size public parameters. Note though that

the construction from [ABI
+
23] satisfies an additional reusability property that is important for their applications,

which our construction does not satisfy; our application to broadcast encryption does not need reusability.

A construction from LWE. We can also build a publicly-sampleable projective PRG from the learning with errors

(LWE) assumption [Reg05]. This construction can be viewed as a direct translation of the construction from CDH,

and follows the analogous lattice-based instantiation proposed in [ABI
+
23]. Essentially, we replace the exponents

[𝑎𝑖 ]G and [𝑠𝑖 ]G in the public parameters with random vector a𝑖 , s𝑖
r← Z𝑛𝑞 . The cross terms [𝑎𝑖𝑠 𝑗 ]G then consist of

LWE samples sT𝑗a𝑖 + 𝑒𝑖, 𝑗 , where 𝑒𝑖, 𝑗 is a small noise term. Under the plain LWE assumption, given a1, . . . , a𝑁 and

s𝑗aT
𝑖 + 𝑒𝑖, 𝑗 , the value of the (noise-free) non-cross-terms s𝑖a𝑖 are hidden. To support public sampling and sampling

4
If we did not require the non-cross-terms to be hidden, then we could simply publish encodings of [𝑎𝑖 ]G and [𝑠𝑖 ]G for all 𝑖 ∈ [𝑁 ], and use

the pairing to compute [𝑎𝑖𝑠 𝑗 ]G𝑇 := [𝑎𝑖 ]G · [𝑠 𝑗 ]G. The challenge is to reveal the cross-terms while hiding the non-cross-terms.
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indistinguishability, we again introduce a random shift to the projected key: 𝜎̂𝑆 := r+∑𝑖∈𝑆 s𝑖 , and define the evaluation
at 𝑖 to be ⌊(r + s𝑖 )Ta𝑖⌉, where ⌊·⌉ denotes the rounding operation (i.e., ⌊𝑥⌉ outputs 0 if |𝑥 | < 𝑞/4 and 1 otherwise).

This yields a construction with quadratic-size public parameters.

To obtain a scheme with linear-size public parameters, we can rely on the same technique from [ABI
+
23] based

on key-homomorphic puncturable PRFs. Namely, instead of giving our sT𝑗a𝑖 + 𝑒𝑖, 𝑗 for all 𝑗 ≠ 𝑖 , the [ABI+23] shows

that we can instead give out a “punctured key” s̃𝑗 which can be used to compute sT𝑗a𝑖 + 𝑒𝑖, 𝑗 on all 𝑖 ≠ 𝑗 . This approach

can be concretely instantiated using the Brakerski-Vaikuntanathan [BV15] key-homomorphic constrained PRF. We

provide the formal details in Section 6.3.

A construction from RSA. Finally, in Appendix B, we also show that the projective PRG scheme based on

RSA from [ABI
+
23] satisfies our public-sampleability properties essentially with only a few syntactic modifications.

However, because the security properties we need in our work do not follow as a black-box from existing definitions,

we include a formal proof of our security requirements in Appendix B.

2.2 Semi-Statically-Secure Broadcast Encryption with Short Public Parameters
As a final contribution of this work, we also show how to construct a semi-statically-secure broadcast encryption

with nearly-linear-size public parameters (i.e., public parameters of size 𝑁 1+𝑜 (1)
) and constant-size secret keys and

ciphertext from search assumptions. Previous pairing-based constructions of semi-statically-secure broadcast encryp-

tion with constant-size secret keys either needed quadratic-size public parameters [GW09, §3] or relied on decisional

assumptions [GW09, §4].
5
The starting point of our construction is the construction from [GW09, Section 3], which

has an 𝑂 (𝑁 2)-sized public key. Our construction proceeds as follows:

• Security from search assumption: The original construction [GW09, §3] relies on the decisional 𝑞-bilinear

Diffie-Hellman exponent (𝑞-BDHE) assumption. This is a target group assumption that essentially asserts

the pseudorandomness of an element 𝑍 ∈ G𝑇 in the target group. In the construction, 𝑍 is used to blind the

message. Instead of relying on the pseudorandomness of 𝑍 , we could alternatively rely on the unpredictability
of 𝑍 and blind the message using a hard-core predicate on 𝑍 (e.g., apply the Goldreich-Levin extractor to 𝑍 to

derive a pseudorandom pad [GL89, HLR07]). This in turn allows us to base security on a search assumption

rather than a decisional assumption. Note that a similar approach of replacing a decisional assumption with

a search assumption does not seem applicable to adaptively-secure constructions based on the dual-systems

methodology [Wat09, CGW15, Wee21, KMW23]. A dual-systems proof operates by changing the distribution

of the challenge ciphertext and the secret keys in the security proof, and these changes rely on decisional

assumptions in a more fundamental manner.

• Reducing the CRS size: The quadratic-size public key in [GW09, §3] is due to the fact that the master public

key contains cross terms ℎ
𝑟 𝑗
𝑖
for all 𝑖 ≠ 𝑗 ∈ [𝑁 ]. These cross terms are needed to ensure decryption. In this

setting, we are not able to rely on the earlier cross-term compression approach of [BW10], because correctness

requires that the cross terms be given out in the base group rather than the target group. However, we are

able to apply the combinatoric approaches based on progression-free sets [ET36] from [Lip12, GLWW24].

This allows us to reduce the CRS size from quadratic to nearly linear (𝑁 1+𝑜 (1)
). Specifically, the key insight in

the [GLWW24] approach (in the context of reducing the CRS size in registered ABE schemes) is to choose the

values ℎ𝑖 and 𝑟 𝑗 in a correlated manner such there are many pairs of indices (𝑖, 𝑗) ≠ (𝑘, ℓ) that share a common

cross-term (i.e., ℎ
𝑟 𝑗
𝑖
= ℎ

𝑟ℓ
𝑘
). We show in Section 7 that a similar technique can be applied to the Gentry-Waters

broadcast encryption scheme to obtain a scheme with a nearly-linear-size public key.

Combining this semi-statically-secure broadcast encryption scheme with our publicly-sampleable projective PRG from

the computational bilinear Diffie-Hellman assumption, we obtain the first adaptively-secure broadcast encryption

5
Technically, [GW09, §4] constructs an adaptively-secure identity-based broadcast encryption scheme in the random oracle model, but they note

that a variant of their construction gives a semi-statically-secure broadcast encryption scheme with linear-size public keys in the plain model.

For completeness, we provide an explicit description of this scheme in Appendix C. If we apply our compiler to this construction, we obtain

an adaptively-secure broadcast encryption with linear-size public keys in the plain model; see Table 1.
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with a nearly-linear-size public key and constant-size secret keys and ciphertexts from a search 𝑞-type assumption

on bilinear groups.

3 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. For a positive integer 𝑛 ∈ N, we write

[𝑛] := {1, . . . , 𝑛}. For positive integers 𝑎, 𝑏 ∈ N we write [𝑎, 𝑏] := {𝑎, 𝑎 + 1, . . . , 𝑏}. For a positive integer 𝑝 ∈ N,
we write Z𝑝 to denote the ring of integers modulo 𝑝 . We write poly(𝜆) to denote a fixed polynomial in 𝜆. We

write negl(𝜆) to denote a function that is negligible in 𝜆 (i.e., a function that is 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N). We say an

event occurs with overwhelming probability if the probability of its complement occurring is negligible. We say

an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. For two ensembles of

distributions D1 = {D1,𝜆}𝜆∈N and D2 = {D2,𝜆}𝜆∈N indexed by a security parameter, we say they are computationally

indistinguishable if for all efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,��
Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D1,𝜆] − Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D2,𝜆]

�� = negl(𝜆).

We say they are statistically indistinguishable if there exists a negligible function negl(·) such that for all 𝜆 ∈ N, the
statistical distance between them is negl(𝜆).

Goldreich-Levin hardcore bit. In this work, we rely on the classic Goldreich-Levin hardcore bit [GL89] to achieve

security under search assumptions. Here, we state a formulation from [HLR07] that applies to any computationally

unpredictable random variable.

Definition 3.1 (Computational Unpredictablility). Let (𝑋,𝑌 ) = {(𝑋𝜆, 𝑌𝜆)}𝜆∈N be an ensemble of joint distribu-

tions over pairs of values. We say that 𝑋 is computationally unpredictable given 𝑌 if for all efficient (and possibly

non-uniform) adversaries A, there exist a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[A(1𝜆, 𝑦) = 𝑥 : (𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆)] = negl(𝜆).

Theorem 3.2 (Goldreich-Levin [GL89, HLR07], adapted). Let (𝑋,𝑌 ) = {(𝑋𝜆, 𝑌𝜆)}𝜆∈N be an ensemble of joint distri-
butions over pairs of values, where the support of 𝑋𝜆 is {0, 1}𝜌 (𝜆) . Let hc(𝑥, 𝑟 ) := ⟨𝑥, 𝑟 ⟩ be the Goldreich-Levin extractor.
Suppose that 𝑋 is computationally unpredictable given 𝑌 . Then, for all efficient (and possibly non-uniform) adversaries
A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,����Pr

[
A(1𝜆, 𝑟 , 𝑦, hc(𝑥, 𝑟 )) = 1 :

(𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆)
𝑟

r← {0, 1}𝜌 (𝜆)
]
− Pr

[
A(1𝜆, 𝑟 , 𝑦, 𝑏) = 1 :

(𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆)
𝑟

r← {0, 1}𝜌 (𝜆) , 𝑏 r← {0, 1}

] ���� = negl(𝜆).

3.1 Broadcast Encryption
We now recall the formal definition of a broadcast encryption scheme [FN93].

Definition 3.3 (Broadcast Encryption). A broadcast encryption scheme is a tuple of efficient algorithmsΠBE = (Setup,
KeyGen, Enc,Dec) with the following syntax:

• Setup(1𝜆, 1𝑁 ) → (mpk,msk): On input the security parameter 𝜆 and the number of users𝑁 , the setup algorithm

outputs a master public key mpk and a master secret key msk.

• KeyGen(msk, 𝑖) → sk𝑖 : On input the master secret keymsk and an index 𝑖 ∈ [𝑁 ], the key-generation algorithm

outputs a secret key sk𝑖 .

• Enc(mpk, 𝑆, 𝜇) → ct: On input the master public key mpk, a set 𝑆 ⊆ [𝑁 ], and a message 𝜇 ∈ {0, 1}, the
encryption algorithm outputs a ciphertext ct.

• Dec(mpk, 𝑆, sk𝑖 , ct) → 𝜇: On input the master public key mpk, a set of recipients 𝑆 ⊆ [𝑁 ], a secret key sk𝑖 ,
and a ciphertext ct, the decryption algorithm outputs a message 𝜇 ∈ {0, 1}.
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We require that ΠBE satisfy the following properties:

• Correctness: For all 𝜆, 𝑁 ∈ N, all sets 𝑆 ⊆ [𝑁 ], all indices 𝑖 ∈ 𝑆 , all messages 𝜇 ∈ {0, 1}, all (mpk,msk) in the

support of Setup(1𝜆, 1𝑁 ), and all secret keys sk𝑖 in the support of KeyGen(msk, 𝑖), we have

Pr[Dec(mpk, 𝑆, sk𝑖 , Enc(mpk, 𝑆, 𝜇)) = 𝜇] = 1.

• Adaptive security: For a security parameter 𝜆, an adversary A, and a bit 𝛽 ∈ {0, 1}, we define the adaptive-
security experiment EXP(𝛽 )BE (1𝜆,A):

– Setup: On input the security parameter 1
𝜆
, the adversary A outputs the number of users 1

𝑁
. The

challenger computes (mpk,msk) ← Setup(1𝜆, 1𝑁 ) and gives mpk to A.

– Key-generation queries: AlgorithmA can now make (adaptive) key-generation queries. On each query,

algorithm A specifies an index 𝑖 ∈ [𝑁 ] and the challenger responds with sk𝑖 ← KeyGen(msk, 𝑖).
– Challenge query: After A finishes making evaluation queries, it outputs a set 𝑆 ⊆ [𝑁 ] \ 𝐼 , where

𝐼 ⊆ [𝑁 ] is the set of indices on which algorithm A made a key-generation query. The challenger

computes ct𝛽 ← Enc(mpk, 𝑆, 𝛽) and replies to algorithm A with ct𝛽 .

– Output: At the end of the game, algorithmA outputs a bit𝑏 ∈ {0, 1}, which is the output of the experiment.

We say that ΠBE satisfies adaptive security if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N,���Pr[EXP(0)BE (1𝜆,A) = 1] − Pr[EXP(1)BE (1𝜆,A) = 1]
��� = negl(𝜆).

• Succinctness: For all 𝜆, 𝑁 ∈ N, all key pairs (mpk,msk) in the support of Setup(1𝜆, 1𝑁 ), all sets 𝑆 ⊆ [𝑁 ], all
bits 𝜇 ∈ {0, 1}, and all ciphertexts ct in the support of Enc(pp, ct, 𝜇), it holds that |ct| ≤ 𝑜 ( |𝑆 |) · poly(𝜆, log𝑁 ).

Semi-static security. Next, we recall the notion of semi-static security for broadcast encryption introduced by

Gentry and Waters [GW09]. At a high-level, in the semi-static security game, the adversary has to pre-commit to

a set 𝑆∗ ⊆ [𝑁 ] of users. During the security game, the adversary is not allowed to make key-generation queries on

any index 𝑖 ∈ 𝑆∗. When the adversary makes its challenge query, it can specify any set 𝑆 ⊆ 𝑆∗. The main difference

between semi-static and selective security is that in selective security, the challenge query is on the committed set

𝑆∗ whereas in semi-static security, the challenge ciphertext can be encrypted to any subset of the committed set 𝑆∗.
Gentry and Waters showed how to generically compile any semi-statically-secure broadcast encryption scheme into

an adaptively secure scheme in the random oracle model. On the contrary, we do not know of any generic compiler

from a selectively-secure broadcast encryption scheme into an adaptively-secure one. We recall the definition below:

Definition 3.4 (Semi-Static Security for Broadcast Encryption [GW09]). Let ΠBE = (Setup,KeyGen, Enc,Dec) be
a broadcast encryption scheme. For a security parameter 𝜆, an adversary A, and a bit 𝛽 ∈ {0, 1}, we define the
semi-static security experiment EXP(𝛽 )SSBE (1𝜆,A) as follows:

• Setup: On input the security parameter 1
𝜆
, the adversary A outputs the number of users 1

𝑁
together with

a set 𝑆∗ ⊆ [𝑁 ]. The challenger computes (mpk,msk) ← Setup(1𝜆, 1𝑁 ) and gives mpk to A.

• Key-generation queries: Algorithm A can now make (adaptive) key-generation queries. On each query,

algorithm A specifies an index 𝑖 ∈ [𝑁 ] \ 𝑆∗ and the challenger responds with sk𝑖 ← KeyGen(msk, 𝑖).

• Challenge query: AfterA finishes making evaluation queries, it outputs a set 𝑆 ⊆ 𝑆∗. The challenger computes

ct𝛽 ← Enc(mpk, 𝑆, 𝛽) and replies to algorithm A with ct𝛽 .

• Output: At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

We say that ΠBE satisfies semi-static security if for all efficient adversariesA, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, ���Pr[EXP(0)SSBE (1𝜆,A) = 1] − Pr[EXP(1)SSBE (1𝜆,A) = 1]

��� = negl(𝜆).
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4 Publicly-Sampleable Projective PRGs
In this section, we introduce the notion of a publicly-sampleable projective pseudorandom generator. While our notion

shares a similar syntax as the notion of a projective PRG from [ABI
+
23], we require a different and incomparable

set of security requirements. A projective PRG provides a way to take a PRG seed 𝜎 and project it to a new seed 𝜎𝑆
such that the output PRG(𝜎) and PRG(𝜎𝑆 ) agree on all indices 𝑖 ∈ 𝑆 while ensuring pseudorandomness for the bits

of PRG(𝜎) at indices 𝑖 ∉ 𝑆 . Moreover, the projected seed 𝜎𝑆 should be succinct (i.e., have size poly(𝜆, log ℓ), where
ℓ is the output length of the PRG). Importantly, for our applications, we require the projective seed to be publicly
sampleable. Namely, there is an efficient sampler Samp that does not take in the original seed while still outputting a

simulated projective seed that is indistinguishable to the honest projective seed. We give the formal definition below,

and provide a more detailed comparison with the notion from [ABI
+
23] in Remark 4.2.

Definition 4.1 (Publicly-Sampleable Projective PRG). A publicly-sampleable projective PRG is a tuple of efficient

algorithms ΠpPRG = (Setup, Samp, Project, Eval) with the following syntax:

• Setup(1𝜆, 1ℓ ) → (pp, 𝜎): On input the security parameter 𝜆 and the output length ℓ ∈ N, the setup algorithm

outputs the public parameters pp and a seed 𝜎 .

• Samp(pp, 𝑆) → 𝜎𝑆 : On input the public parameters pp and a set 𝑆 ⊆ [ℓ], the public sampling algorithm outputs

a (simulated) projected seed 𝜎𝑆 .

• Project(pp, 𝜎, 𝑆) → 𝜎𝑆 : On input the public parameters pp, the seed 𝜎 , and a set 𝑆 ⊆ [ℓ], the projection

algorithm outputs a projected seed 𝜎𝑆 .

• Eval(pp, 𝜎𝑆 , 𝑆, 𝑖) → 𝑦𝑖 : On input the public parameters pp, a projected seed 𝜎𝑆 , a set 𝑆 ⊆ [ℓ], and an index 𝑖 ∈ 𝑆 ,
the evaluation algorithm outputs a bit 𝑦𝑖 ∈ {0, 1}. This algorithm is deterministic.

The publicly-sampleable projective PRG should satisfy the following properties:

• Correctness: For all 𝜆, ℓ ∈ N, all non-empty sets 𝑆 ⊆ [ℓ], and all indices 𝑖 ∈ 𝑆 ,

Pr

Eval(pp, 𝜎[ℓ ], [ℓ], 𝑖) = Eval(pp, 𝜎𝑆 , 𝑆, 𝑖) :

(pp, 𝜎) ← Setup(1𝜆, 1ℓ )
𝜎[ℓ ] ← Project(pp, 𝜎, [ℓ])
𝜎𝑆 ← Project(pp, 𝜎, 𝑆)

 = 1.

• Succinctness: There exists a polynomial poly(·) such that for all 𝜆, ℓ ∈ N, all (pp, 𝜎) in the support of

Setup(1𝜆, 1ℓ ), all sets 𝑆 ⊆ [ℓ], and all 𝜎𝑆 in the support of Samp(pp, 𝑆), it holds that |𝜎𝑆 | ≤ poly(𝜆, log ℓ).

• Sampling indistinguishability. For a security parameter 𝜆, an adversary A, and a bit 𝛽 ∈ {0, 1}, we define
the sampling-indistinguishability experiment EXP(𝛽 )samp (1𝜆,A):

– Setup: On input the security parameter 1
𝜆
, the adversary A outputs the length parameter 1

ℓ
. The

challenger computes (pp, 𝜎) r← Setup(1𝜆, 1ℓ ) and gives pp to A.

– Challenge query: Algorithm A specifies a set 𝑆 ⊆ [ℓ]. The challenger constructs the projected key 𝜎𝑆
as follows:

∗ If 𝛽 = 0, the challenger computes 𝜎𝑆 ← Samp(pp, 𝑆).
∗ If 𝛽 = 1, the challenger computes 𝜎𝑆 ← Project(pp, 𝜎, 𝑆).

The challenger gives 𝜎𝑆 to A.

– Output: At the end of the game, algorithmA outputs a bit𝑏 ∈ {0, 1}, which is the output of the experiment.

We say thatΠpPRG satisfies sampling indistinguishability if for all efficient adversariesA, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N,

| Pr[EXP(0)samp (1𝜆,A) = 1] − Pr[EXP(1)samp (1𝜆,A) = 1] | = negl(𝜆). (4.1)

We say that ΠpPRG satisfies statistical sampling indistinguishability if Eq. (4.1) holds for all adversaries A, and

that it satisfies perfect sampling indistinguishability if the negligible function in Eq. (4.1) is the identically-zero

function.
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• Adaptive pseudorandomness: For a security parameter 𝜆, an adversary A, and a bit 𝛽 ∈ {0, 1}, we define
the pseudorandomness experiment EXP(𝛽 )prg (1𝜆,A):

– Setup: On input the security parameter 1
𝜆
, the adversary A outputs the length parameter 1

ℓ
. The chal-

lenger runs (pp, 𝜎) ← Setup(1𝜆, 1ℓ ), 𝜎[ℓ ] ← Project(pp, 𝜎, [ℓ]), and samples u r← {0, 1}ℓ . The challenger
gives pp to A.

– Evaluation queries: Algorithm A can now make (adaptive) evaluation queries to the challenger. On

each evaluation query, algorithm A specifies an index 𝑖 ∈ [ℓ]. The challenger responds as follows:
∗ If 𝛽 = 0, the challenger responds with 𝑦𝑖 = Eval(pp, 𝜎[ℓ ], [ℓ], 𝑖).
∗ If 𝛽 = 1, the challenger responds with 𝑦𝑖 = 𝑢𝑖 .

– Challenge query: After A finishes making evaluation queries, the challenger computes the projected

seed 𝜎𝑆 ← Project(pp, 𝜎, [ℓ] \ 𝐼 ), where 𝐼 ⊆ [ℓ] is the set of indices on which algorithm A made an

evaluation query. The challenger then gives 𝜎𝑆 to A.

– Output: Algorithm A outputs a bit 𝑏 ∈ {0, 1} which is the output of the experiment.

The publicly-sampleable projective PRG satisfies adaptive pseudorandomness if for all efficient adversaries

A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | = negl(𝜆).

Remark 4.2 (Comparison with [ABI
+
23]). The basic syntax of Definition 4.1 as well as the correctness and succinct-

ness properties are the same as those from [ABI
+
23, Definition 3.1]. The key differences between our notion and

the previous ones are the following:

• Public sampleability: In a projective PRG, the public parameters pp and the seed 𝜎 are sampled jointly. For our

applications, we also require a public way to sample a projected seed (i.e., the Samp algorithm), and moreover,

that the publicly-sampled seed be computationally indistinguishable from the actual projected seed (even given

the public parameters). In our application to the Gentry-Waters compiler, the encryption algorithm uses the

public sampling algorithm to sample a seed when encrypting. Conversely, the reduction algorithm will prepare

the challenge ciphertext using a projected seed, and as such, it is important that the publicly-sampled seed

appears indistinguishable from a projected seed. This is a new property to this work and with the exception

of the construction from RSA, the projective PRGs in [ABI
+
23] from number-theoretic assumptions do not

support this property. Namely, in the number-theoretic constructions (i.e., based on groups, pairings, or LWE)

from [ABI
+
23], there is an efficient way to check consistency between a projected seed and the public parameters.

• Adaptive pseudorandomness: For our applications to adaptively-secure broadcast encryption, we require

our projective PRGs to satisfy an adaptive pseudorandomness notion. Namely, the adversary in the pseudoran-

domness game is allowed to make evaluation queries before it sees the projected key. In [ABI
+
23], the adversary

simply declares a challenge set 𝑆 and is then given the projected seed 𝜎𝑆 onto 𝑆 together and its goal is to

distinguish the PRG values at indices 𝑖 ∉ 𝑆 from random. The ability to adaptively choose the set 𝑆 after making

evaluation queries is essential when using projective PRGs to realize adaptive security for broadcast encryption.

At the same time, the work of [ABI
+
23] consider additional properties such as robustness, reusability, and sublinear-

size public parameters. These security notions are useful for their application to succinct computational secret sharing,

but are not relevant in our applications to broadcast encryption.

5 Semi-Static Security to Adaptive Security via Projective PRGs
In this section, we show how to use projective PRGs to generically upgrade any semi-statically-secure broadcast

encryption scheme into an adaptively-secure scheme. Our compiler follows the Gentry-Waters [GW09] strategy,

except we show that the random oracle can be instantiated with a publicly-sampleable projective PRG (Definition 4.1).

In Appendix A, we show how the same techniques can also be used to lift a semi-statically-secure distributed broadcast
encryption scheme into an adaptively-secure scheme.
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Construction 5.1 (Adaptively-Secure Broadcast Encryption). Let ΠSS = (SS.Setup, SS.KeyGen, SS.Enc, SS.Dec) be a
semi-statically-secure broadcast encryption scheme, ΠpPRG = (pPRG.Setup, pPRG.Samp, pPRG.Project, pPRG.Eval)
be a publicly-sampleable projective PRG. We construct an adaptively-secure broadcast encryption ΠBE = (Setup,
KeyGen, Enc,Dec) as follows:

• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and the number of users 𝑁 , the setup algorithm proceeds

as follows:

1. Sample a random string s r← {0, 1}𝑁 and (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ).
2. Sample (SS.mpk, SS.msk) ← SS.Setup(1𝜆, 12𝑁 ). For ease of exposition, we index the set [2𝑁 ] using a

pair (𝑖, 𝑏) ∈ [𝑁 ] × {0, 1}.
3. Output mpk = (SS.mpk, pp) and msk = (SS.msk, s).

• KeyGen(msk, 𝑖): On input the master secret key msk = (SS.msk, s), the key-generation algorithm samples

SS.sk𝑖,𝑠𝑖 ← SS.KeyGen(SS.msk, (𝑖, 𝑠𝑖 )). It outputs the secret key sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ).

• Enc(mpk, 𝑆, 𝜇): On input the master public key mpk = (SS.mpk, pp), a set of users 𝑆 ⊆ [𝑁 ], and a message

𝜇 ∈ {0, 1}, the encryption algorithm proceeds as follows:

1. Sample 𝜎𝑆 ← pPRG.Samp(pp, 𝑆).
2. For each 𝑖 ∈ 𝑆 , compute 𝑡𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖). Let 𝑆0 = {(𝑖, 𝑡𝑖 )}𝑖∈𝑆 and 𝑆1 = {(𝑖, 1 − 𝑡𝑖 )}𝑖∈𝑆 .
3. Compute ciphertexts SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 𝜇) and SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 𝜇). Output the

ciphertext ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

• Dec(mpk, sk, 𝑆, ct): On input the master public key mpk = (SS.mpk, pp), the secret key sk = ( 𝑗, 𝑏, SS.sk), a set
𝑆 ⊆ [𝑁 ], and a ciphertext ct = (SS.ct0, SS.ct1, 𝜎), the decryption algorithm proceeds as follows:

1. If 𝑗 ∉ 𝑆 , then output 0.

2. For each 𝑖 ∈ 𝑆 , compute 𝑡𝑖 = pPRG.Eval(pp, 𝜎, 𝑆, 𝑖). Let 𝑆0 = {(𝑖, 𝑡𝑖 )}𝑖∈𝑆 and 𝑆1 = {(𝑖, 1 − 𝑡𝑖 )}𝑖∈𝑆 .
3. Finally, compute and output SS.Dec(SS.mpk, SS.sk, 𝑆𝑏⊕𝑡 𝑗 , SS.ct𝑏⊕𝑡 𝑗 ).

Theorem 5.2 (Correctness). If ΠSS is correct, then Construction 5.1 is correct.

Proof. Take any 𝜆, 𝑁 ∈ N. Take any set 𝑆 ⊆ [𝑁 ] and index 𝑖 ∈ 𝑆 , any message 𝜇 ∈ {0, 1}. Let (mpk,msk) ←
Setup(1𝜆, 1𝑁 ), sk𝑖 ← KeyGen(msk, 𝑖), and ct← Enc(mpk, 𝑆, 𝜇). By construction, the following hold:

• First, mpk = (SS.mpk, pp) and msk = (SS.msk, s) where (SS.mpk, SS.msk) ← SS.Setup(1𝜆, 12𝑁 ), (pp, 𝜎) ←
pPRG.Setup(1𝜆, 1𝑁 ) and s r← {0, 1}𝑁 .

• Next sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ) where SS.sk𝑖,𝑠𝑖 ← SS.KeyGen(SS.msk, (𝑖, 𝑠𝑖 )).

• Finally, ct = (SS.ct0, SS.ct1, 𝜎𝑆 ) where SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 𝜇), SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 𝜇),
𝜎𝑆 ← pPRG.Samp(pp, 𝑆), 𝑆0 = {(𝑖, 𝑡𝑖 )}𝑖∈𝑆 , 𝑆1 = {(𝑖, 1 − 𝑡𝑖 )}𝑖∈𝑆 , and 𝑡𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖) for all 𝑖 ∈ 𝑆 .

Consider now the value of Dec(mpk, sk, 𝑆, ct). By construction, if 𝑠𝑖 = 𝑡𝑖 , then (𝑖, 𝑠𝑖 ) ∈ 𝑆0. Conversely, if 𝑠𝑖 = 1 − 𝑡𝑖 ,
then (𝑖, 𝑠𝑖 ) ∈ 𝑆1. This means (𝑖, 𝑠𝑖 ) ∈ 𝑆𝑠𝑖⊕𝑡𝑖 . By correctness of ΠSS, this means that

SS.Dec
(
SS.mpk, SS.sk𝑖,𝑠𝑖 , 𝑆𝑠𝑖⊕𝑡𝑖 , SS.ct𝑠𝑖⊕𝑡𝑖

)
= 𝜇,

and correctness follows. □

Theorem 5.3 (Adaptive Security). Suppose ΠSS satisfies semi-static security and ΠpPRG satisfies correctness, sampling
indistinguishability, and adaptive pseudorandomness. Then Construction 5.1 is adaptively secure.

Proof. Let A be an efficient adversary for the adaptive broadcast security game. We begin by defining a sequence

of hybrid experiments:
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• Hyb
0
: This is experiment EXP(0)BE from Definition 3.3:

– Setup: On input the security parameter 1
𝜆
, A outputs 1

𝑁
. The challenger responds by computing

(mpk,msk) ← Setup(1𝜆, 1𝑁 ) and gives mpk = (SS.mpk, pp) to A. Specifically, the challenger samples

s r← {0, 1}𝑁 , (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ), (SS.mpk, SS.msk) ← SS.Setup(1𝜆, 12𝑁 ).
– Key-generation queries: On each key-generation query 𝑖 ∈ [𝑁 ], the challenger responds with

sk𝑖 ← KeyGen(msk, 𝑖). In particular, sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ) where SS.sk𝑖,𝑠𝑖 ← SS.KeyGen(SS.msk, (𝑖, 𝑠𝑖 )).
– Challenge query: After A outputs a set 𝑆 ⊆ [𝑁 ] \ 𝐼 where 𝐼 ⊆ [𝑁 ] is the set of indices on which

A made a key-generation query. The challenger responds with ct ← Enc(mpk, 𝑆, 0). Specifically,

ct = (SS.ct0, SS.ct1, 𝜎𝑆 ) where SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 0), SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 0), 𝜎𝑆 ←
pPRG.Samp(pp, 𝑆), 𝑆0 = {(𝑖, 𝑡𝑖 )}𝑖∈𝑆 , 𝑆1 = {(𝑖, 1 − 𝑡𝑖 )}𝑖∈𝑆 , and 𝑡𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖) for all 𝑖 ∈ 𝑆 .

– Output: At the end of the game, algorithmA outputs a bit𝑏 ∈ {0, 1}, which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
except when constructing the challenge ciphertext, the challenger now computes

𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆).

• Hyb
2
: Same as Hyb

1
, except during setup, the challenger computes 𝜎[𝑁 ] ← pPRG.Project(pp, 𝜎, [𝑁 ]). Then,

it sets 𝑠𝑖 = pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖) for all 𝑖 ∈ [𝑁 ].

• Hyb
3
: Same as Hyb

2
except the challenger switches SS.ct1 to be an encryption of 1. Namely, the challenger

now computes SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 1).

• Hyb
4
: Same as Hyb

3
, except the challenger now samples s r← {0, 1}𝑁 during setup.

• Hyb
5
: Same as Hyb

4
, except during setup, the challenger first computes 𝜎[𝑁 ] ← pPRG.Project(pp, 𝜎, [𝑁 ]).

Then, it sets 𝑠𝑖 = 1 − pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖) for all 𝑖 ∈ [𝑁 ].

• Hyb
6
: Same as Hyb

5
, except the challenger switches SS.ct0 to be an encryption of 1. Namely, the challenger

now computes SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 1).

• Hyb
7
: Same as Hyb

6
except the challenger now samples s r← {0, 1}𝑁 during setup.

• Hyb
8
: Same as Hyb

7
except when constructing the challenge ciphertext, the challenger samples 𝜎𝑆 ←

pPRG.Samp(pp, 𝑆). This is experiment EXP(1)BE from Definition 3.3.

We write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb𝑖 with
adversary A (and an implicit security parameter 𝜆). We now show that the output distributions of each adjacent

pair of hybrid experiments is computationally indistinguishable.

Lemma 5.4. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb
0
(A) = 1] − Pr[Hyb

1
(A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the sampling indistinguishability game:

1. On input the security parameter 1
𝜆
, algorithm B starts running algorithmA(1𝜆). AlgorithmA outputs a length

parameter 1
𝑁
which algorithm B forwards to its challenger. The sampling indistinguishability challenger

replies with pp.

2. AlgorithmB now samples s r← {0, 1}𝑁 and (SS.mpk, SS.msk) ← SS.Setup(1𝜆, 12𝑁 ). It givesmpk = (SS.mpk, pp)
to A.

3. When algorithm A makes a key-generation query on an index 𝑖 ∈ [𝑁 ], algorithm B computes SS.sk𝑖,𝑠𝑖 ←
SS.KeyGen(SS.msk, (𝑖, 𝑠𝑖 )) and replies with sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ).

4. When algorithm A makes a challenge query for the set 𝑆 ⊆ [𝑁 ] \ 𝐼 , algorithm B forwards 𝑆 to its challenger

and receives 𝜎𝑆 .
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5. For each 𝑖 ∈ 𝑆 , algorithm B computes 𝑡𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖). It then defines 𝑆0 = {(𝑖, 𝑡𝑖 )}𝑖∈𝑆 , 𝑆1 =

{(𝑖, 1− 𝑡𝑖 )}𝑖∈𝑆 , SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 0), SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 0). The challenger responds with
ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

6. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution of EXP(0)samp (1𝜆,B) for 𝛽 ∈ {0, 1}:

• Suppose 𝛽 = 0. This means (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and 𝜎𝑆 ← pPRG.Samp(pp, 𝑆). This is the distribu-
tion in Hyb

0
, so algorithm B outputs 1 with probability Pr[Hyb

0
(A) = 1].

• Suppose 𝛽 = 1. This means (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆). This is the
distribution in Hyb

1
, so algorithm B outputs 1 with probability Pr[Hyb

1
(A) = 1].

We conclude that algorithm B breaks mode indistinguishability with non-negligible advantage 𝜀. □

Lemma 5.5. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb
1
(A) = 1] − Pr[Hyb

2
(A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the adaptive pseudorandomness game:

1. On input the security parameter 1
𝜆
, algorithm B starts running algorithmA(1𝜆). AlgorithmA outputs a length

parameter 1
𝑁
which algorithm B forwards to its challenger. The sampling indistinguishability challenger

replies with pp.

2. Algorithm B samples (SS.mpk, SS.msk) ← SS.Setup(1𝜆, 12𝑁 ) and gives mpk = (SS.mpk, pp) to A.

3. When algorithm A makes a key-generation query on an index 𝑖 ∈ [𝑁 ], algorithm B makes an evaluation

query to its challenger on 𝑖 and receives 𝑠𝑖 . It then computes SS.sk𝑖,𝑠𝑖 ← SS.KeyGen(SS.msk, (𝑖, 𝑠𝑖 )) and replies
with sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ).

4. When algorithm A makes a challenge query for the set 𝑆 ⊆ [𝑁 ] \ 𝐼 , algorithm B makes an evaluation query

on all indices [𝑁 ] \ 𝑆 . It then makes a challenge query and receives 𝜎𝑆 .

5. For each 𝑖 ∈ 𝑆 , algorithm B computes 𝑡𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖). It defines 𝑆0 = {(𝑖, 𝑡𝑖 )}𝑖∈𝑆 , 𝑆1 = {(𝑖, 1 −
𝑡𝑖 )}𝑖∈𝑆 , SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 0), SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 0). The challenger responds with

ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

6. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution EXP(𝛽 )prg (1𝜆,B). First, let 𝐼 ⊆ [𝑁 ] be the indices algorithm A makes to the key-

generation oracle, and let 𝐼B be the indices algorithm B makes to its evaluation oracle. From the requirements of

the broadcast security definition, we have that 𝑆 ⊆ [𝑁 ] \ 𝐼 , or equivalently, that 𝐼 ⊆ [𝑁 ] \ 𝑆 . By construction of B,
we have that 𝐼B = 𝐼 ∪ ([𝑁 ] \ 𝑆) = [𝑁 ] \ 𝑆 . Correspondingly, [𝑁 ] \ 𝐼B = 𝑆 . We now consider the distribution of of

EXP(𝛽 )prg (1𝜆,B) for each 𝛽 ∈ {0, 1}:

• Suppose 𝛽 = 0. In this case, the challenger samples (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and computes 𝜎[𝑁 ] ←
pPRG.Project(pp, 𝜎, [𝑁 ]). It responds to each evaluation query on 𝑖 ∈ [𝑁 ] with 𝑠𝑖 = pPRG.Eval(pp, 𝜎, [𝑁 ], 𝑖).
Since [𝑁 ] \ 𝐼B = 𝑆 , the challenger responds with 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆) in the challenge phase. This is

precisely the behavior in Hyb
2
(A), so in this case, algorithm B outputs 1 with probability Pr[Hyb

2
(A) = 1].

• Suppose 𝛽 = 0. In this case, the challenger samples (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and u r← {0, 1}𝑁 . It responds
to each evaluation query on 𝑖 ∈ [𝑁 ] with 𝑠𝑖 = 𝑢𝑖 . In the challenge phase, the challenger again responds with

𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆). This is precisely the behavior in Hyb
1
(A), so in this case, algorithm B outputs

1 with probability Pr[Hyb
1
(A) = 1].

We conclude that algorithm B breaks adaptive pseudorandomness with non-negligible advantage 𝜀. □
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Lemma 5.6. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb

2
(A) = 1] − Pr[Hyb

3
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb
2
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the semi-static security game:

1. On input the security parameter 1
𝜆
, algorithm B starts running algorithm A(1𝜆). Algorithm A outputs a

length parameter 1
𝑁
.

2. Algorithm B samples (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and computes 𝜎[𝑁 ] ← pPRG.Project(pp, 𝜎, [𝑁 ]). Then,
for each 𝑖 ∈ [𝑁 ], it computes 𝑠𝑖 = pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖).

3. Algorithm B constructs the set 𝑆∗ = {(𝑖, 1− 𝑠𝑖 )}𝑖∈[𝑁 ] . It forwards 1
2𝑁

together with the set 𝑆∗ to the semi-static

security challenger. The challenger replies with SS.mpk. Algorithm B gives mpk = (SS.mpk, pp) to A.

4. When algorithm A makes a key-generation query on an index 𝑖 ∈ [𝑁 ], algorithm B makes a key-generation

query to its challenger on (𝑖, 𝑠𝑖 ) ∈ [2𝑁 ] \ 𝑆∗ to get a key SS.sk𝑖,𝑠𝑖 . It replies to A with sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ).

5. When algorithm A makes a challenge query for a set 𝑆 ⊆ [𝑁 ], algorithm B starts by computing a pro-

jected seed 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆). Then it sets 𝑆0 = {(𝑖, 𝑠𝑖 )}𝑖∈𝑆 and 𝑆1 = {(𝑖, 1 − 𝑠𝑖 )}𝑖∈𝑆 . It computes

SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 0) and forwards 𝑆1 to the semi-static security challenger. The challenger replies

with a ciphertext SS.ct1. Algorithm B replies to A with ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

6. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which algorithm B also outputs.

By construction, algorithm B is a valid adversary for the semi-static security game. Namely, algorithm B only makes

key-generation queries on indices (𝑖, 𝑠𝑖 ) ∈ [2𝑁 ] \ 𝑆∗ and moreover, the challenge set 𝑆1 ⊆ 𝑆∗. We now analyze the

distributions of EXP(𝛽 )SSBE (1𝜆,B). We consider each component separately.

• The semi-static security challenger samples (SS.mpk, SS.msk) ← SS.Setup(1𝜆, 12𝑁 ), which coincides with the

distribution of SS.mpk in Hyb
2
and Hyb

3
.

• Next, the semi-static security challenger responds to key-generation queries by computing SS.sk𝑖,𝑠𝑖 ←
SS.KeyGen(SS.msk, (𝑖, 𝑠𝑖 )), which again coincides with the distribution in Hyb

2
and Hyb

3
.

• Next, consider the sets 𝑆0 and 𝑆1. In the reduction, algorithm B sets 𝑆0 = {(𝑖, 𝑠𝑖 )}𝑖∈𝑆 and 𝑆1 = {(𝑖, 1 − 𝑠𝑖 )}𝑖∈𝑆 ,
where 𝑠𝑖 = pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖). Since 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆), correctness of ΠpPRG means that

𝑠𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖) for all 𝑖 ∈ 𝑆 . Thus, the sets 𝑆0 and 𝑆1 are constructed exactly as in Hyb
2
and Hyb

3
.

Thus, SS.ct0 is distributed exactly according to the distribution in Hyb
2
and Hyb

3
.

• It suffices to consider the distribution of SS.ct1. When 𝛽 = 0, SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 0) and when

𝛽 = 1, SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 1). The former corresponds to the distribution in Hyb
2
while the latter

corresponds to the distribution in Hyb
3
.

We conclude that algorithm B breaks semi-static security with non-negligible advantage 𝜀. □

Lemma 5.7. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

3
(A) = 1] − Pr[Hyb

4
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma 5.5. □

Lemma 5.8. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

4
(A) = 1] − Pr[Hyb

5
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma 5.5. □

Lemma 5.9. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb

5
(A) = 1] − Pr[Hyb

6
(A) = 1] | = negl(𝜆).
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Proof. Follows by an analogous argument as the proof of Lemma 5.6. □

Lemma 5.10. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

6
(A) = 1] − Pr[Hyb

7
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma 5.5. □

Lemma 5.11. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, | Pr[Hyb

7
(A) = 1] − Pr[Hyb

8
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma 5.4. □

Adaptive security now follows by combining Lemmas 5.4 to 5.11. □

Theorem 5.12 (Succinctness). Suppose ΠSS and ΠpPRG are succinct. Then Construction 5.1 is succinct.

Proof. In Construction 5.1, a ciphertext for a set 𝑆 ⊆ [𝑁 ] consists of two ciphertexts for the semi-static broadcast

encryption scheme ΠSS as well as a projected seed 𝜎𝑆 for ΠpPRG. By succinctness of the underlying primitives, the size

of the ciphertext is 2 · 𝑜 ( |𝑆 |) · poly(𝜆, log𝑁 ) + poly(𝜆, log𝑁 ), which satisfies the required succinctness properties. □

Application to distributed broadcast encryption. As discussed in Section 2, we can adapt Construction 5.1

to upgrade any semi-statically-secure distributed broadcast encryption scheme into an adaptively secure one using

a projective PRG. We give the full details in Appendix A. Our compiler yields the first constructions of distributed

broadcast encryption in the plain model (see Table 2) from search assumptions over groups with bilinear maps as

well as from witness encryption (together with function-binding hash functions).

6 Constructing Publicly-Sampleable Projective PRGs
In the following sections, we give a variety of constructions of projective PRGs from standard number theoretic

assumptions: (1) the computational Diffie-Hellman (CDH) assumption in pairing-free groups; (2) the computational

bilinear Diffie-Hellman (CBDH) assumption in pairing groups; and (3) the learning with errors (LWE) assumption.

Our constructions follow a similar template as the number-theoretic constructions from [ABI
+
23], though we will

need to introduce additional randomization to support the additional public-sampleability requirement we require. We

refer to Remark 4.2 for further discussion of the definitional differences between our notion of a publicly-sampleable

projective PRG and the notion from [ABI
+
23]. Finally, in Appendix B, we also give a construction from RSA; this

construction is nearly identical to the RSA-based construction from [ABI
+
23].

6.1 Publicly-Sampleable Projective PRGs from CDH
In this section, we show how to construct a projective PRG from the Computational Diffie-Hellman (CDH) assumption

in pairing-free groups. Our construction is an adaptation of the projective PRG scheme from [ABI
+
23, §3.4.1]. Impor-

tantly, the original construction from [ABI
+
23] does not satisfy sampling indistinguishability since the adversary can

use the components of the public parameters to determine whether a given seed is the output of Project or the output of
Samp. Our construction introduces additional randomization (specifically, the random exponent 𝛼 in Construction 6.3)

to ensure sampling indistinguishability. Additionally, we use the Goldreich-Levin hardcore extractor to reduce the

assumption required for adaptive pseudorandomness from DDH to CDH. We begin by recalling the CDH assumption.

Definition 6.1 (Prime-Order Group Generator). A prime-order group generator PrimeGroupGen is an efficient

algorithm that takes as input the security parameter 1
𝜆
and outputs a description G = (G, 𝑝, 𝑔) of a group G with

prime-order 𝑝 = 2
Θ(𝜆)

and generator 𝑔. We require that the group operation in G be efficiently-computable, and that

each element of G can be represented by a bit-string of length at most 𝜌 = 𝜌 (𝜆).
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Notation. We will use implicit notation to represent group elements [EHK
+
13]. Specifically, let G = (G, 𝑝, 𝑔) be a

prime-order group. For a matrix A ∈ Z𝑛×𝑚𝑝 , we write [A]G to denote the matrix of group elements 𝑔A (where exponen-

tiation is defined component-wise). For matrices A,B of identical dimension and a scalar 𝑐 , we write 𝑐 · [A]G := [𝑐A]G
and [A]G + [B]G := [A + B]G. We now define the CDH problem.

Assumption 6.2 (Computational Diffie-Hellman). Let PrimeGroupGen be a prime-order group generator. The com-

putational Diffie-Hellman (CDH) assumption holds with respect to PrimeGroupGen if for all efficient (and possibly

non-uniform) adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr

[
A(1𝜆,G, [𝑣]G, [𝑤]G) = [𝑣𝑤]G :

G = (G, 𝑝, 𝑔) ← PrimeGroupGen(1𝜆)
𝑣,𝑤

r← Z𝑝 .

]
= negl(𝜆).

Construction 6.3 (Publicly-Sampleable Projective PRG fromCDH). Let 𝜆 be a security parameter. LetPrimeGroupGen
be a prime-order group generator and let 𝜌 = 𝜌 (𝜆) be a bound on the bit-length of the group elements associated

with PrimeGroupGen. Let hc : {0, 1}𝜌 × {0, 1}𝜌 → {0, 1} be the Goldreich-Levin extractor. We construct a publicly-

sampleable projective PRG ΠpPRG = (Setup, Samp, Project, Eval) as follows:

• Setup(1𝜆, 1ℓ ): On input the security parameter 𝜆 and the output length ℓ ∈ N, the setup algorithm starts by

sampling G = (G, 𝑝, 𝑔) ← PrimeGroupGen(1𝜆). It then samples 𝛼
r← Z𝑝 and a, s r← Zℓ𝑝 . It computes M ∈ Zℓ×ℓ𝑝

where𝑀𝑖, 𝑗 = 𝑠𝑖𝑎 𝑗 for all 𝑖 ≠ 𝑗 and𝑀𝑖,𝑖 = 0 for all 𝑖 ∈ [ℓ]. Finally, it samples the extractor seed r r← {0, 1}𝜌 and

outputs the public parameters pp = (G, [a]G, [M]G, r) and the seed 𝜎 = (𝛼, s).

• Samp(pp, 𝑆): On input the public parameters pp = ((G, 𝑝, 𝑔), [a]G, [M]G, r) and the target set 𝑆 ⊆ [ℓ], the
sampling algorithm samples 𝑥

r← Z𝑝 and outputs 𝜎𝑆 = 𝑥 .

• Project(pp, 𝜎, 𝑆): On input the public parameters pp = ((G, 𝑝, 𝑔), [a]G, [M]G, r), the 𝜎 = (𝛼, s), and a target set

𝑆 ⊆ [ℓ], the projection algorithm outputs the projected seed 𝜎𝑆 = 𝛼 +∑
𝑖∈𝑆 𝑠𝑖 .

• Eval(pp, 𝜎𝑆 , 𝑆, 𝑖): On input the public parameters pp = ((G, 𝑝, 𝑔), [a]G, [M]G, r), a projected seed 𝜎𝑆 ∈ Z𝑝 , the
associated set of indices 𝑆 ⊆ [ℓ], and an index 𝑖 ∈ 𝑆 , the evaluation algorithm computes

[𝑦𝑖 ]G = 𝜎𝑆 · [𝑎𝑖 ]G −
∑︁

𝑗∈𝑆\{𝑖 }
[𝑀 𝑗,𝑖 ]G,

and outputs hc( [𝑦𝑖 ]G, r).

Theorem 6.4 (Correctness). Construction 6.3 is correct.

Proof. Take any security parameter 𝜆 ∈ N, output length ℓ ∈ N, set of indices 𝑆 ⊆ [ℓ], and any index 𝑖 ∈ 𝑆 . Let

(pp, 𝜎) ← Setup(1𝜆, 1ℓ ) and 𝜎𝑆 ← Project(pp, 𝜎, 𝑆). By construction, pp = (G, [a]G, [M]G, r) and 𝜎𝑆 = 𝛼 +∑
𝑖∈𝑆 𝑠𝑖 .

Consider the value of [𝑦𝑖 ]G computed by Eval(pp, 𝜎𝑆 , 𝑆, 𝑖). By definition,

𝑦𝑖 = 𝜎𝑆 · 𝑎𝑖 −
∑︁

𝑗∈𝑆\{𝑖 }
𝑀 𝑗,𝑖 =

(
𝛼 +

∑︁
𝑗∈𝑆

𝑠 𝑗

)
𝑎𝑖 −

∑︁
𝑗∈𝑆\{𝑖 }

𝑠 𝑗𝑎𝑖 = (𝛼 + 𝑠𝑖 )𝑎𝑖 .

Next, let𝜎[ℓ ] ← Project(pp, 𝜎, [ℓ]). Then𝜎[ℓ ] = 𝛼+∑𝑖∈[ℓ ] 𝑠𝑖 . A similar calculation now show that Eval(pp, 𝜎[ℓ ], [ℓ], 𝑖) =
Eval(pp, 𝜎𝑆 , 𝑆, 𝑖). □

Theorem 6.5 (Succinctness). Construction 6.11 is succinct.

Proof. Take any (pp, 𝜎) in the support of Setup(1𝜆, 1ℓ ). For all sets 𝑆 , the projected key [𝜎𝑆 ]G output byProject(pp, 𝜎, 𝑆)
consists of a single element of Z𝑝 , which has size Θ(𝜆). In particular, the size of the projected seed is independent

of the size of the associated set 𝑆 . □

Theorem 6.6 (Sampling Indistinguishability). Construction 6.3 satisfies perfect sampling indistinguishability.
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Proof. Let A be an adversary for the sampling indistinguishability game. We first recall the experiments in the

sampling indistinguishability security definition:

• EXP(0)samp (1𝜆,A): This experiment proceeds as follows:

1. On input the security parameter 1
𝜆
, algorithm A outputs the input length 1

ℓ
.

2. The challenger samples (pp, 𝜎) ← Setup(1𝜆, 1ℓ ). Concretely, the challenger samples G = (G, 𝑝, 𝑔) ←
PrimeGroupGen(1𝜆), 𝛼 r← Z𝑝 , a, s r← Zℓ𝑝 , and r r← {0, 1}𝜌 . It computes M ∈ Zℓ×ℓ𝑝 where 𝑀𝑖, 𝑗 = 𝑠𝑖𝑎 𝑗 for

all 𝑖 ≠ 𝑗 and𝑀𝑖,𝑖 = 0 for all 𝑖 ∈ [ℓ]. The challenger gives pp = (G, [a]G, [M]G, r) to A.

3. Algorithm A outputs a set 𝑆 ⊆ [ℓ] and the challenger replies with 𝜎𝑆 ← Samp(pp, 𝑆). Specifically, the
challenger samples 𝜎𝑆

r← Z𝑝 .
4. Algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

• EXP(1)samp (1𝜆,A): Same as EXP(0)samp, except the challenger sets 𝜎𝑆 = 𝛼 +∑
𝑖∈𝑆 𝑠𝑖 .

The only difference between EXP(0)samp (1𝜆,A) and EXP(1)samp (1𝜆,A) is the distribution of 𝜎𝑆 . In EXP(1)samp, the challenger

samples 𝛼
r← Z𝑝 and the only element in the experiment that depends on 𝛼 is 𝜎𝑆 = 𝛼 +∑

𝑖∈𝑆 𝑠𝑖 . Thus, we conclude
that the distribution of 𝜎𝑆 is uniform over Z𝑝 and independent of all other quantities. This is the distribution in

EXP(0)samp. Since the two experiments are identically distributed, the theorem holds. □

Theorem 6.7 (Adaptive Pseudorandomness). If the CDH assumption holds with respect to PrimeGroupGen, then
Construction 6.3 satisfies adaptive pseudorandomness.

Proof. Before proving the theorem, we first state the following corollary of the CDH assumption (Assumption 6.2)

and Theorem 3.2. This will be useful in our security analysis.

Lemma 6.8. Suppose the CDH assumption holds with respect to PrimeGroupGen and let hc : {0, 1}𝜌 × {0, 1}𝜌 → {0, 1}
be the Goldreich-Levin extractor. Then, for all efficient (and possibly non-uniform) adversariesA, there exists a negligible
function negl(·) such that for all 𝜆 ∈ N:���Pr

[
A

(
1
𝜆, r, (G, 𝛼, [𝑣]G, [𝑤]G), hc( [(𝛼 + 𝑣)𝑤]G, r)

)
= 1

]
− Pr

[
A

(
1
𝜆, r, (G, 𝛼, [𝑣]G, [𝑤]G), 𝑏

)
= 1

] ��� = negl(𝜆),

where G = (G, 𝑝, 𝑔) ← PrimeGroupGen(1𝜆), 𝛼, 𝑣,𝑤 r← Z𝑝 , r r← {0, 1}𝜌 , and 𝑏 r← {0, 1}.

Proof. We start by defining a joint distribution (𝑋,𝑌 ) = {(𝑋𝜆, 𝑌𝜆)}𝜆∈N as follows:

• Sample G = (G, 𝑝, 𝑔) ← PrimeGroupGen(1𝜆) and exponents 𝛼, 𝑣,𝑤
r← Z𝑝 .

• Let 𝑥 = [(𝛼 + 𝑣)𝑤]G and 𝑦 = (G, 𝛼, [𝑣]G, [𝑤]G). Output the pair (𝑥,𝑦).

Next, under the CDH assumption, 𝑋 is computationally unpredictable given 𝑌 . To see this, suppose there exists an

efficient algorithm A that can predict 𝑥 given 𝑦 when (𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆) with non-negligible probability 𝜀. We use

A to construct an efficient algorithm B for the CDH problem:

• On input the CDH challenge (1𝜆,G, [𝑣]G, [𝑤]G), where G = (G, 𝑝, 𝑔), algorithm B samples 𝛼
r← Z𝑝 and sets

𝑦 = (G, 𝛼, [𝑣]G, [𝑤]G).

• Algorithm B gives 1
𝜆
and 𝑦 to algorithm A to obtain an output 𝑥 = [𝑧]G.

• Algorithm B outputs [𝑧]G − 𝛼 · [𝑤]G.

By assumption, the CDH challenger samples G ← PrimeGroupGen(1𝜆) and 𝑣,𝑤 r← Z𝑝 . Algorithm B then samples

𝛼
r← Z𝑝 , so algorithm B perfectly simulates the distribution of 𝑦 in (𝑥,𝑦) ← 𝑋𝜆 ×𝑌𝜆 , where the associated value of 𝑥

is 𝑥 = [(𝛼 + 𝑣)𝑤]G. Thus, with probability 𝜀, algorithmA outputs [𝑧]G = [(𝛼 + 𝑣)𝑤]G. In this case, 𝑧 − 𝛼𝑤 = 𝑣𝑤 and

algorithm B successfully solves the CDH problem with the same non-negligible advantage 𝜀. We conclude that under

CDH, the distribution of 𝑋 is computationally unpredictable given 𝑌 . Lemma 6.8 now follows from Theorem 3.2. □
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Proof of Theorem 6.7. We now return to the proof of Theorem 6.7. For each index 𝑖 ∈ {0} ∪ N, we define an
experiment Hyb𝑖 as follows:

• Hyb𝑖 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1
𝜆
, algorithm A outputs the length parameter 1

ℓ
. The challenger runs

(pp, 𝜎) ← Setup(1𝜆, 1ℓ ). Specifically, the challenger samples G = (G, 𝑝, 𝑔) ← PrimeGroupGen(1𝜆),
𝛼

r← Z𝑝 , a, s r← Zℓ𝑝 , r
r← {0, 1}𝜌 and constructsM ∈ Zℓ×ℓ𝑝 where 𝑀𝑖, 𝑗 = 𝑠𝑖𝑎 𝑗 for 𝑖 ≠ 𝑗 and 𝑀𝑖,𝑖 = 0 for all

𝑖 ∈ [ℓ]. It sets pp = (G, [a]G, [M]G, r) and 𝜎 = (𝛼, s). The challenger gives pp to A.

– The challenger also samples 𝜎[ℓ ] ← Project(pp, 𝜎, [ℓ]) and u r← {0, 1}ℓ . In particular 𝜎[ℓ ] = 𝛼 +∑
𝑗∈[ℓ ] 𝑠 𝑗 .

– When A makes an evaluation query on 𝑗 ∈ [ℓ], the challenger replies with Eval(pp, 𝜎[ℓ ], [ℓ], 𝑗) if 𝑗 > 𝑖

and with 𝑢 𝑗 if 𝑗 ≤ 𝑖 . In particular, when 𝑗 > 𝑖 , the challenger computes

[𝑦 𝑗 ]G = 𝜎[ℓ ] · [𝑎 𝑗 ]G −
∑︁

𝑘∈[ℓ ]\{ 𝑗 }
[𝑀𝑘,𝑗 ]G = [(𝛼 + 𝑠 𝑗 )𝑎 𝑗 ]G

and responds with hc( [𝑦 𝑗 ]G, r).
– AfterA finishes making evaluation queries, the challenger computes the seed 𝜎𝑆 ← Project(pp, 𝜎, [ℓ] \ 𝐼 )
where 𝐼 ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,

𝜎𝑆 = 𝛼 +∑
𝑗∈[ℓ ]\𝐼 𝑠 𝑗 . The challenger gives 𝜎𝑆 to A.

– At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

We write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb𝑖 with
adversary A (and an implicit security parameter 𝜆). By construction, observe that EXP(0)prg (1𝜆,A) ≡ Hyb

0
(A) and

EXP(1)prg (1𝜆,A) ≡ Hybℓ (A). For an index 𝑖 ∈ {0} ∪ N, define 𝑝𝑖 := Pr[Hyb𝑖 (A) = 1]. For each experiment, we define

E𝑖 to be the event that algorithm A makes an evaluation query on index 𝑖 . Then, for all 𝑖 ∈ {0} ∪ N, we can write

𝑝𝑖 = Pr[Hyb𝑖 (A) = 1] = Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] + Pr[Hyb𝑖 (A) = 1 ∧ ¬E𝑖 ] .

By construction, the only difference between experiments Hyb𝑖−1
and Hyb𝑖 is how the challenger responds to an

evaluation query on index 𝑖 . If the adversary does not make an evaluation query on index 𝑖 , then its view in the two

experiments is identically distributed. Thus, we have

Pr[Hyb𝑖−1
(A) = 1 ∧ ¬E𝑖 ] = Pr[Hyb𝑖 (A) = 1 ∧ ¬E𝑖 ] .

Hence, we conclude

𝑝𝑖 − 𝑝𝑖−1 = Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] . (6.1)

Suppose now that

| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀 (𝜆) (6.2)

for some non-negligible 𝜀. We use A to construct an efficient adversary B for the distinguishing problem from

Lemma 6.8:

1. On input the challenge (1𝜆, r, (G, 𝛼, [𝑣]G, [𝑤]G), 𝑏) where G = (G, 𝑝, 𝑔), algorithm B runs A on input 1
𝜆
to

obtain the output length 1
ℓ
. Algorithm B samples an index 𝑖

r← [ℓ].

2. For all 𝑗 ∈ [ℓ] \ {𝑖}, algorithm B samples 𝑎 𝑗 , 𝑠 𝑗
r← Z𝑝 and 𝑢 𝑗

r← {0, 1}. It sets [𝑎𝑖 ]G = [𝑤]G. Next, for all 𝑗 ≠ 𝑘 ,

algorithm B constructs [𝑀 𝑗,𝑘 ]G as follows:

[𝑀 𝑗,𝑘 ]G =


[𝑠 𝑗𝑎𝑘 ]G 𝑗, 𝑘 ≠ 𝑖

[𝑣]G · 𝑎𝑘 𝑗 = 𝑖, 𝑘 ≠ 𝑖

𝑠 𝑗 · [𝑤]G 𝑘 = 𝑖, 𝑗 ≠ 𝑖

Algorithm B sets pp = (G, [a]G, [M]G, r) and gives pp to A.
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3. When algorithm A makes an evaluation query on an index 𝑗 ∈ [ℓ], the challenger responds as follow.

• If 𝑗 < 𝑖 , the challenger responds with 𝑢 𝑗 .

• If 𝑗 = 𝑖 , the challenger responds with 𝑏.

• If 𝑗 > 𝑖 , the challenger responds with hc( [(𝛼 + 𝑠 𝑗 )𝑎 𝑗 ]G, r).

4. After A finishes making evaluation queries, let 𝐼 ⊆ [ℓ] be the set of indices on which algorithm A made an

evaluation query. If 𝑖 ∉ 𝐼 , then algorithm B outputs 0. Otherwise algorithm B responds with 𝜎𝑆 = 𝛼 +∑𝑗∈[ℓ ]\𝐼 𝑠 𝑗 .
Since 𝑖 ∈ 𝐼 , this means 𝑖 ∉ [ℓ] \ 𝐼 , so algorithm B knows all of the exponents 𝑠 𝑗 needed to construct 𝜎𝑆 .

5. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage ofB. Let𝑊0 be the event thatB outputs 1when the challenger sets𝑏 = hc( [(𝛼 + 𝑣)𝑤]G, r)
and𝑊1 be the event that B outputs 1 when the challenger samples 𝑏

r← {0, 1}. Suppose algorithm B samples 𝑖 = 𝑖∗

in the above reduction. By construction, the challenger for the experiment in Lemma 6.8 samples 𝛼, 𝑣,𝑤
r← Z𝑝 . Thus,

algorithm B perfectly simulates the public parameters (where 𝑣 plays the role of 𝑠𝑖∗ and𝑤 plays the role of 𝑎𝑖∗ ) and

the evaluation queries on indices 𝑗 ≠ 𝑖∗ for A. We consider the distribution of the challenge bit 𝑏.

• Suppose 𝑏 = hc( [(𝛼 + 𝑣)𝑤]G, r) = hc( [𝛼 + 𝑠𝑖∗𝑎𝑖∗ ]G, r). In this case, the responses to the evaluation queries are

distributed according to the specification in Hyb𝑖∗−1
. We consider the probability that algorithm B outputs 1 in

this case. First, if algorithmA does not make an evaluation query on index 𝑖∗, then algorithm B always outputs

0. If algorithmA does make an evaluation query on index 𝑖∗, then algorithm B perfectly simulates the challenge

according to the distribution in Hyb𝑖∗−1
, and thus, outputs 1 with probability Pr[Hyb𝑖∗−1

(A) = 1 | E𝑖∗ ]. Thus,
in this case, algorithm B outputs 1 with probability

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗−1
(A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗−1

(A) = 1 ∧ E𝑖∗ ] .

• Suppose 𝑏
r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the

specification in Hyb𝑖∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗ (A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗ (A) = 1 ∧ E𝑖∗ ] .

Finally, algorithm B samples 𝑖
r← [ℓ]. Thus

Pr[𝑊0 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ],

Pr[𝑊1 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] .

Since EXP(0)prg (1𝜆,A) ≡ Hyb
0
(A) and EXP(1)prg (1𝜆,A) ≡ Hybℓ (A), we appeal to Eqs. (6.1) and (6.2) and conclude that

| Pr[𝑊0 = 1] − Pr[𝑊1 = 1] | = 1

ℓ

���∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ]

���
=

1

ℓ

���∑︁
𝑖∈[ℓ ]

𝑝𝑖 − 𝑝𝑖−1

���
=

1

ℓ
|𝑝0 − 𝑝ℓ | =

1

ℓ
| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(𝜆). □
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6.2 Publicly-Sampleable Projective PRGs from Computational Bilinear Diffie-Hellman
A limitation of Construction 6.3 is the size of the public parameters scales quadratically with the output length of the

projective PRG. This is because the public parameters consist of a matrix of group elements [𝑠𝑖𝑎 𝑗 ]G for all 𝑖 ≠ 𝑗 ∈ [ℓ].
In this section, we show how we can use bilinear maps to compress the public parameters in this construction to

be linear in ℓ . Note that the naïve approach of simply giving out [𝑠𝑖 ]G and [𝑎 𝑗 ]G for all 𝑖, 𝑗 ∈ [ℓ] in the public

parameters and using the pairing to compute the pairwise products [𝑠𝑖𝑎 𝑗 ]G𝑇 = [𝑠𝑖 ]G · [𝑎 𝑗 ]G does not work because

this would also reveal the non-cross-terms [𝑠𝑖𝑎𝑖 ]G𝑇 . Instead, we adopt the approach from [BW10] who show how

to use bilinear maps to encode [𝑠𝑖𝑎 𝑗 ]G𝑇 for all 𝑖 ≠ 𝑗 ∈ [ℓ] using just a linear number of group elements, while

simultaneously ensuring that the non-cross-terms [𝑠𝑖𝑎𝑖 ]G𝑇 remain (computationally) hidden. We note that this also

gives the first projective PRG scheme from bilinear maps with a linear-size public parameters; the scheme based on

bilinear maps from [ABI
+
23] also had quadratic-size public parameters. We begin by recalling the computational

bilinear Diffie-Hellman assumption over (symmetric) pairing groups.

Definition 6.9 (Prime-Order Bilinear Group Generator). A (symmetric) prime-order bilinear group generator

PrimeBGroupGen is an efficient algorithm that takes as input the security parameter 1
𝜆
and outputs a description

G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) of cyclic groups G,G𝑇 with prime-order 𝑝 = 2
Θ(𝜆)

, a generator 𝑔 of G, and an efficiently-

computable non-degenerate bilinear map 𝑒 : G×G→ G𝑇 . We require that the group operation in bothG andG𝑇 to be

efficiently-computable, and that each element ofG andG𝑇 can be represented by a bit-string of length at most 𝜌 = 𝜌 (𝜆).

Notation. We also use implicit notation to represent group elements. For a symmetric-pairing group G =

(G,G𝑇 , 𝑝, 𝑔, 𝑒), we write [A]G to denote 𝑔A and [A]G𝑇 to denote 𝑒 (𝑔,𝑔)A. For matrices A,B with suitable di-

mensions and a scalar 𝑐 ∈ Z𝑝 , we write 𝑐 · [A]G := [𝑐A]G, 𝑐 · [A]G𝑇 := [𝑐A]G𝑇 , [A]G + [B]G := [A + B]G,
[A]G𝑇 + [B]G𝑇 := [A + B]G𝑇 , and [A]G · [B]G := [AB]G𝑇 .

Assumption 6.10 (Computational Bilinear Diffie-Hellman Assumption). Let PrimeBGroupGen be a prime-order

bilinear group generator. The computational bilinear Diffie-Hellman (CBDH) assumption holds with respect to

PrimeGroupGen if for all efficient (and possibly non-uniform) adversariesA, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N,

Pr

[
A(1𝜆,G, [𝑢]G, [𝑣]G, [𝑤]G) = [𝑢𝑣𝑤]G𝑇 :

G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆)
𝑢, 𝑣,𝑤

r← Z𝑝 .

]
= negl(𝜆).

Construction 6.11 (Publicly-Sampleable Projective PRG from CBDH). Let 𝜆 be a security parameter. Next, let

PrimeBGroupGen be a prime-order bilinear group generator and let 𝜌 = 𝜌 (𝜆) be a bound on the bit-length of the

group elements associated with PrimeBGroupGen. Let hc : {0, 1}𝜌 ×{0, 1}𝜌 → {0, 1} be the Goldreich-Levin extractor.

We construct a publicly-sampleable projective PRG ΠpPRG = (Setup, Samp, Project, Eval) as follows:

• Setup(1𝜆, 1ℓ ): On input the security parameter 𝜆 and the output length ℓ ∈ N, the setup algorithm starts

by sampling G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆). It then samples 𝛼,𝛾, 𝛿
r← Z𝑝 and a, s r← Zℓ𝑝 . It

computes vector c, d ∈ Zℓ𝑝 such that 𝑐𝑖 = (𝛾𝑖 + 𝛿)𝑎𝑖 , and 𝑑𝑖 = (𝛾𝑖 + 𝛿)𝑠𝑖 Finally, it samples the extractor seed

r r← {0, 1}𝜌 and outputs the public parameters pp = (G, [𝛾]G, [a]G, [s]G, [c]G, [d]G, r) and the seed 𝜎 = (𝛼, s).

• Samp(pp, 𝑆): On input the public parameters pp = ((G,G𝑇 , 𝑝, 𝑔, 𝑒), [𝛾]G, [a]G, [s]G, [c]G, [d]G, r) and the target
set 𝑆 ⊆ [ℓ], the sampling algorithm samples 𝑥

r← Z𝑝 and outputs [𝜎𝑆 ]G = 𝑥 · [𝛾]G.

• Project(pp, 𝜎, 𝑆): On input the public parameters pp = ((G,G𝑇 , 𝑝, 𝑔, 𝑒), [𝛾]G, [a]G, [s]G, [c]G, [d]G, r), the
seed 𝜎 = (𝛼, s), and a target set 𝑆 ⊆ [ℓ], the projection algorithm outputs the projected seed [𝜎𝑆 ]G =

(𝛼 +∑
𝑖∈𝑆 𝑠𝑖 ) · [𝛾]G.

• Eval(pp, [𝜎𝑆 ]G, 𝑆, 𝑖): On input the public parameters pp = ((G,G𝑇 , 𝑝, 𝑔, 𝑒), [𝛾]G, [a]G, [s]G, [c]G, [d]G, r), a seed
[𝜎𝑆 ]G ∈ G, the associated set of indices 𝑆 ⊆ [ℓ], and an index 𝑖 ∈ 𝑆 , the evaluation algorithm first computes

the cross terms [𝑀 𝑗,𝑖 ]G𝑇

[𝑀 𝑗,𝑖 ]G𝑇 = (𝑖 − 𝑗)−1 ·
(
[𝑠 𝑗 ]G · [𝑐𝑖 ]G − [𝑎𝑖 ]G · [𝑑 𝑗 ]G

)
,
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for each 𝑗 ∈ 𝑆 \ {𝑖}. Then, it computes

[𝑦𝑖 ]G𝑇 = [𝑎𝑖 ]G · [𝜎𝑆 ]G −
∑︁

𝑗∈𝑆\{𝑖 }
[𝑀 𝑗,𝑖 ]G𝑇 ,

and outputs hc( [𝑦𝑖 ]G𝑇 , r).

Theorem 6.12 (Correctness). Construction 6.11 is correct.

Proof. Take any security parameter 𝜆 ∈ N, output length ℓ ∈ N, set of indices 𝑆 ⊆ [ℓ], and index 𝑖 ∈ 𝑆 . Take any
(pp, 𝜎) in the support of Setup(1𝜆, 1ℓ ). Let [𝜎𝑆 ]G ← Project(pp, 𝜎, 𝑆). By construction,

pp = (G, [𝛾]G, [a]G, [s]G, [c]G, [d]G, r) and [𝜎𝑆 ]G =

(
𝛼 +

∑︁
𝑖∈𝑆

𝑠𝑖

)
· [𝛾]G.

Consider the value of𝑀 𝑗,𝑖 and𝑦𝑖 computed by Eval(pp, [𝜎𝑆 ]G, 𝑆, 𝑖). By construction, for all 𝑖 ∈ [ℓ], the Setup algorithm
sets 𝑐𝑖 = (𝛾𝑖 + 𝛿)𝑎𝑖 and 𝑑𝑖 = (𝛾𝑖 + 𝛿)𝑠𝑖 . By definition, for all 𝑗 ∈ 𝑆 \ {𝑖}, we now have

𝑀 𝑗,𝑖 = (𝑖 − 𝑗)−1 (𝑠 𝑗𝑐𝑖 − 𝑎𝑖𝑑 𝑗 ) = (𝑖 − 𝑗)−1 ((𝛾𝑖 + 𝛿)𝑠 𝑗𝑎𝑖 − (𝛾 𝑗 + 𝛿)𝑎𝑖𝑠 𝑗 ) = 𝛾𝑠 𝑗𝑎𝑖 .

Next, 𝜎𝑆 = 𝛾 (𝛼 +∑
𝑗∈𝑆 𝑠 𝑗 ). Hence, for all 𝑖 ∈ 𝑆 ,

𝑦𝑖 = 𝜎𝑆 · 𝑎𝑖 −
∑︁

𝑗∈𝑆\{𝑖 }
𝑀 𝑗,𝑖 =

(
𝛼 +

∑︁
𝑗∈𝑆

𝑠 𝑗

)
𝛾𝑎𝑖 −

∑︁
𝑗∈𝑆\{𝑖 }

𝛾𝑠 𝑗𝑎𝑖 = 𝛾 (𝛼 + 𝑠𝑖 )𝑎𝑖 .

In particular, the value of 𝑦𝑖 for 𝑖 ∈ 𝑆 is independent of the choice of set 𝑆 . We conclude that Eval(pp, [𝜎[ℓ ]]G, [ℓ], 𝑖) =
Eval(pp, [𝜎𝑆 ]G, 𝑆, 𝑖), where [𝜎[ℓ ]]G ← Project(pp, 𝜎, [ℓ]) and correctness holds. □

Theorem 6.13 (Succinctness). Construction 6.11 is succinct.

Proof. Take any (pp, 𝜎) in the support of Setup(1𝜆, 1ℓ ). For all sets 𝑆 , the projected key [𝜎𝑆 ]G output byProject(pp, 𝜎, 𝑆)
consists of a single element of G, which has size 𝜌 (𝜆) = poly(𝜆). In particular, the size of the projected seed is

independent of the size of the associated set 𝑆 . □

Theorem 6.14 (Sampling Indistinguishability). Construction 6.11 satisfies perfect sampling indistinguishability.

Proof. Let A be an adversary for the sampling indistinguishability game. We first recall the experiments in the

sampling indistinguishability security definition:

• EXP(0)samp (1𝜆,A): This experiment proceeds as follows:

1. On input the security parameter 1
𝜆
, algorithm A outputs the input length 1

ℓ
.

2. The challenger samples (pp, 𝜎) ← Setup(1𝜆, 1ℓ ). Concretely, the challenger samplesG = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ←
PrimeBGroupGen(1𝜆),𝛼,𝛾, 𝛿 r← Z𝑝 , a, s

r← Zℓ𝑝 , and r r← {0, 1}𝜌 . It computes c, d ∈ Zℓ𝑝 such that

𝑐𝑖 = (𝛾𝑖 + 𝛿)𝑎𝑖 , 𝑑𝑖 = (𝛾𝑖 + 𝛿)𝑠𝑖 . The challenger gives pp = (G, [𝛾]G, [a]G, [s]G, [c]G, [d]G, r) to A.

3. Algorithm A outputs a set 𝑆 ⊆ [ℓ] and the challenger replies with [𝜎𝑆 ]G ← Samp(pp, 𝑆). Specifically,
the challenger samples 𝑥

r← Z𝑝 and sets [𝜎𝑆 ]G = 𝑥 · [𝛾]G.
4. Algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

• EXP(1)samp (1𝜆,A): Same as EXP(0)samp, except the challenger sets [𝜎𝑆 ]G = (𝛼 +∑
𝑖∈𝑆 𝑠𝑖 ) · [𝛾]G.

The only difference between EXP(0)samp (1𝜆,A) and EXP(1)samp (1𝜆,A) is the distribution of [𝜎𝑆 ]G. In EXP(1)samp, the chal-

lenger samples 𝛼
r← Z𝑝 and the only element in the experiment that depends on 𝛼 is [𝜎𝑆 ]G = (𝛼 +∑𝑖∈𝑆 𝑠𝑖 ) · [𝛾]G. Thus,

the distribution of the multiplicative term (𝛼 +∑
𝑖∈𝑆 𝑠𝑖 ) is uniform over Z𝑝 and independent of all other quantities.

This is the distribution of 𝑥 in EXP(0)samp. Since the two experiments are identically distributed, the theorem holds. □
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Theorem 6.15 (Adaptive Pseudorandomness). If the CBDH assumption holds with respect to PrimeBGroupGen, then
Construction 6.11 satisfies adaptive pseudorandomness.

Proof. The proof structure is very similar to the proof of Theorem 6.7. We first state the following corollary of the

CBDH assumption (Assumption 6.10) and Theorem 3.2.

Lemma 6.16. Suppose the CBDH assumption holds with respect to PrimeBGroupGen and let hc : {0, 1}𝜌 × {0, 1}𝜌 →
{0, 1} be the Goldreich-Levin extractor. Then, for all efficient (and possibly non-uniform) adversaries A, there exists a
negligible function negl(·) such that for all 𝜆 ∈ N:��

Pr

[
A

(
1
𝜆, r, chal, hc( [(𝛼 + 𝑢)𝑣𝑤]G𝑇 , r)

)
= 1

]
− Pr

[
A

(
1
𝜆, r, chal, 𝑏

)
= 1

] �� = negl(𝜆),

where G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆), 𝛼,𝑢, 𝑣,𝑤 r← Z𝑝 , r
r← {0, 1}𝜌 , 𝑏 r← {0, 1}, and chal =

(G, 𝛼, [𝑢]G, [𝑣]G, [𝑤]G)

Proof. We start by defining a joint distribution (𝑋,𝑌 ) = {(𝑋𝜆, 𝑌𝜆)}𝜆∈N as follows:

• Sample G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆) and exponents 𝛼,𝑢, 𝑣,𝑤
r← Z𝑝 .

• Let 𝑥 = [(𝛼 + 𝑢)𝑣𝑤]G𝑇 and 𝑦 = (G, 𝛼, [𝑢]G, [𝑣]G, [𝑤]G). Output the pair (𝑥,𝑦).

Next, under the CBDH assumption, 𝑋 is computationally unpredictable given 𝑌 . To see this, suppose there exists

an efficient algorithm A that can predict 𝑥 given 𝑦 when (𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆) with non-negligible probability 𝜀. We

use A to construct an efficient algorithm B for the CBDH problem:

• On input the CBDH challenge (1𝜆,G, [𝑢]G, [𝑣]G, [𝑤]G), where G = (G,G𝑇 , 𝑝, 𝑔, 𝑒), algorithm B samples

𝛼
r← Z𝑝 and sets 𝑦 = (G, 𝛼, [𝑢]G, [𝑣]G, [𝑤]G).

• Algorithm B gives 1
𝜆
and 𝑦 to algorithm A to obtain an output 𝑥 = [𝑧]G𝑇 .

• Algorithm B outputs [𝑧]G𝑇 − 𝛼 · [𝑣]G · [𝑤]G.

By assumption, the CBDH challenger samples G ← PrimeBGroupGen(1𝜆) and 𝑢, 𝑣,𝑤 r← Z𝑝 . Algorithm B then

samples 𝛼
r← Z𝑝 , so algorithm B perfectly simulates the distribution of 𝑦 in (𝑥,𝑦) ← 𝑋𝜆 × 𝑌𝜆 , where the associated

value of 𝑥 is 𝑥 = [(𝛼 + 𝑢)𝑣𝑤]G𝑇 . Thus, with probability 𝜀, algorithm A outputs [𝑧]G𝑇 = [(𝛼 + 𝑢)𝑣𝑤]G𝑇 . In this case,

𝑧 − 𝛼𝑣𝑤 = 𝑢𝑣𝑤 and algorithm B successfully solves the CBDH problem with the same non-negligible advantage

𝜀. We conclude that under CBDH, the distribution of 𝑋 is computationally unpredictable given 𝑌 . Lemma 6.8 now

follows from Theorem 3.2. □

Proof of Theorem 6.15. We now return to the proof of Theorem 6.15. For each index 𝑖 ∈ {0} ∪ N, we define an
experiment Hyb𝑖 as follows:

• Hyb𝑖 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1
𝜆
, algorithm A outputs the length parameter 1

ℓ
. The challenger

runs (pp, 𝜎) ← Setup(1𝜆, 1ℓ ). Specifically, it samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆),
𝛼,𝛾, 𝛿

r← Z𝑝 , a, s r← Zℓ𝑝 , r
r← {0, 1}𝜌 and computes c, d ∈ Zℓ𝑝 such that 𝑐𝑖 = (𝛾𝑖 + 𝛿)𝑎𝑖 , 𝑑𝑖 = (𝛾𝑖 + 𝛿)𝑠𝑖 . It

sets pp = (G, [𝛾]G, [a]G, [s]G, [c]G, [d]G, r) and 𝜎 = (𝛼, s). The challenger gives pp to A.

– The challenger also samples [𝜎[ℓ ]]G ← Project(pp, 𝜎, [ℓ]) and t r← {0, 1}ℓ . In particular [𝜎[ℓ ]]G =

(𝛼 +∑
𝑗∈[ℓ ] 𝑠 𝑗 ) · [𝛾]G.

– WhenA makes an evaluation query on 𝑗 ∈ [ℓ], the challenger replies with Eval(pp, [𝜎[ℓ ]]G, [ℓ], 𝑗) if 𝑗 > 𝑖

and with 𝑡 𝑗 if 𝑗 ≤ 𝑖 . In particular, when 𝑗 > 𝑖 , the challenger computes 𝑦 𝑗 = 𝛾 (𝛼 + 𝑠 𝑗 )𝑎 𝑗 and responds

with hc( [𝑦 𝑗 ]G𝑇 , r).
– AfterA finishes making evaluation queries, the challenger computes the seed [𝜎𝑆 ]G ← Project(pp, 𝜎, [ℓ] \

𝐼 ) where 𝐼 ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,

[𝜎𝑆 ]G = (𝛼 +∑
𝑗∈[ℓ ]\𝐼 𝑠 𝑗 ) · [𝛾]G. The challenger gives [𝜎𝑆 ]G to A.
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– At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

We again write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb𝑖
with adversaryA. Following the same argument in the proof of Theorem 6.7, we again have EXP(0)prg (1𝜆,A) ≡ Hyb

0
(A)

and EXP(1)prg (1𝜆,A) ≡ Hybℓ (A), and that for all indices 𝑖 ∈ {0} ∪ N,

Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] = Pr[Hyb𝑖 (A) = 1] − Pr[Hyb𝑖−1

(A) = 1], (6.3)

where E𝑖 is the event that algorithm A makes an evaluation query on index 𝑖 . Suppose now that

| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀 (𝜆) (6.4)

for some non-negligible 𝜀. We use A to construct an efficient adversary B for the distinguishing problem from

Lemma 6.16:

1. On input the challenge (1𝜆, r, (G, 𝛼, [𝑢]G, [𝑣]G, [𝑤]G), 𝑏) where G = (G,G𝑇 , 𝑝, 𝑔, 𝑒), algorithm B runs A on

input 1
𝜆
to obtain the output length 1

ℓ
. Algorithm B samples an index 𝑖

r← [ℓ].

2. For all 𝑗 ∈ [ℓ] \ {𝑖}, algorithm B samples 𝑎 𝑗 , 𝑠 𝑗
r← Z𝑝 and 𝑡 𝑗

r← {0, 1}. It sets [𝑠𝑖 ]G = [𝑢]G, [𝑎𝑖 ]G = [𝑣]G, [𝛾]G =

[𝑤]G. It also samples 𝛿∗ r← Z𝑝 and (implicitly) sets 𝛿 := 𝛿∗ − 𝛾𝑖 . It then computes vector [c]G, [d]G as follows

• If 𝑗 ≠ 𝑖 , it sets

[𝑐 𝑗 ]G = [𝛿∗𝑎 𝑗 ]G + ( 𝑗 − 𝑖) · 𝑎 𝑗 · [𝑤]G,
[𝑑 𝑗 ]G = [𝛿∗𝑠 𝑗 ]G + ( 𝑗 − 𝑖) · 𝑠 𝑗 · [𝑤]G.

• If 𝑗 = 𝑖 , it sets [𝑐𝑖 ]G = 𝛿∗ · [𝑣]G and [𝑑𝑖 ]G = 𝛿∗ · [𝑢]G.

Algorithm B sets pp = (G, [𝛾]G, [a]G, [s]G, [c]G, [d]G, r) and gives pp to A.

3. When algorithm A makes an evaluation query on an index 𝑗 ∈ [ℓ], the challenger responds as follow.

• If 𝑗 < 𝑖 , the challenger responds with 𝑡 𝑗 .

• If 𝑗 = 𝑖 , the challenger responds with 𝑏.

• If 𝑗 > 𝑖 , the challenger responds with hc((𝛼 + 𝑠 𝑗 )𝑎 𝑗 · [1]G · [𝑤]G, r).

4. AfterA finishes making evaluation queries, let 𝐼 ⊆ [ℓ] be the set of indices onwhich algorithmA made an evalu-

ation query. If 𝑖 ∉ 𝐼 , then algorithmB outputs 0. Otherwise algorithmB responds with [𝜎𝑆 ]G = (𝛼+∑𝑗∈[ℓ ]\𝐼 𝑠 𝑗 ) ·
[𝛾]G. Since 𝑖 ∈ 𝐼 , this means 𝑖 ∉ [ℓ] \ 𝐼 , so algorithm B knows all of the exponents 𝑠 𝑗 needed to construct [𝜎𝑆 ]G.

5. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage of B. Let𝑊0 be the event that B outputs 1 when 𝑏 = hc( [(𝛼 + 𝑢)𝑣𝑤]G𝑇 , r) and𝑊1

be the event that B outputs 1 when 𝑏
r← {0, 1}. Suppose algorithm B samples 𝑖 = 𝑖∗ in the above reduction. By

construction, the challenger for the experiment in Lemma 6.16 samples 𝛼,𝑢, 𝑣,𝑤
r← Z𝑝 . First, we argue that algorithm

B perfectly simulates the public parameters (where 𝑢 plays the role of 𝑠𝑖∗ , 𝑣 plays the role of 𝑎𝑖∗ , and 𝑤 plays the

role of 𝛾 ) and the evaluation queries on indices 𝑗 ≠ 𝑖∗ for A:

• Since the challenger samples 𝑢, 𝑣,𝑤
r← Z𝑝 , the distributions of 𝑠𝑖∗ = 𝑢, 𝑎𝑖∗ = 𝑣 , and 𝛾 = 𝑤 are distributed exactly

as in Hyb𝑖∗−1
and Hyb𝑖∗ . We conclude that the distribution of G, [𝛾]G, [a]G, [s]G, r in the public parameters

are distributed exactly as in Hyb𝑖∗−1
and Hyb𝑖∗ .

28



• Consider now the distribution of c and d. Let 𝛿 = 𝛿∗ − 𝛾𝑖 . Since algorithm B samples 𝛿∗ r← Z𝑝 , the distribution
of 𝛿 is uniform over Z𝑝 . Now, for 𝑗 ≠ 𝑖 , we have

𝑐 𝑗 = 𝛿∗𝑎 𝑗 + ( 𝑗 − 𝑖)𝑎 𝑗𝑤 = 𝛿∗𝑎 𝑗 + ( 𝑗 − 𝑖)𝑎 𝑗𝛾 = 𝛿𝑎 𝑗 + 𝛾 𝑗𝑎 𝑗 = (𝛾 𝑗 + 𝛿)𝑎 𝑗 ,
𝑑 𝑗 = 𝛿∗𝑠 𝑗 + ( 𝑗 − 𝑖)𝑠 𝑗𝑤 = 𝛿∗𝑠 𝑗 + ( 𝑗 − 𝑖)𝑠 𝑗𝛾 = 𝛿𝑠 𝑗 + 𝛾 𝑗𝑠 𝑗 = (𝛾 𝑗 + 𝛿)𝑠 𝑗 ,

which matches the specification in Hyb𝑖∗−1
and Hyb𝑖∗ . Similarly, for 𝑐𝑖 and 𝑑𝑖 , we have

𝑐𝑖 = 𝛿∗𝑣 = 𝛿∗𝑎𝑖 = (𝛾𝑖 + 𝛿)𝑎𝑖 ,
𝑑𝑖 = 𝛿∗𝑢 = 𝛿∗𝑠𝑖 = (𝛾𝑖 + 𝛿)𝑠𝑖 ,

which again matches the specification in Hyb𝑖∗−1
and Hyb𝑖∗ .

• Finally, the evaluation queries on indices 𝑗 ≠ 𝑖∗ are answered exactly according to the specification of Hyb𝑖∗−1

and Hyb𝑖∗ . Specifically, when 𝑗 > 𝑖∗, the challenger responds with the hard-core predicate on

(𝛼 + 𝑠 𝑗 )𝑎 𝑗 · [1]G · [𝑤]G = [𝛾 (𝛼 + 𝑠 𝑗 )𝑎 𝑗 ]G𝑇 ,

which is precisely the behavior in Hyb𝑖∗−1
and Hyb𝑖∗ .

We consider the distribution of the challenge bit 𝑏.

• Suppose 𝑏 = hc( [(𝛼 + 𝑢)𝑣𝑤]G𝑇 , r) = hc( [𝛾 (𝛼 + 𝑠𝑖∗ )𝑎𝑖∗ ]G𝑇 , r). In this case, the responses to the evaluation

queries are distributed according to the specification in Hyb𝑖∗−1
. We consider the probability that algorithm

B outputs 1 in this case. First, if algorithm A does not make an evaluation query on index 𝑖∗, then algo-

rithm B always outputs 0. If algorithm A does make an evaluation query on index 𝑖∗, then algorithm B
perfectly simulates the challenge according to the distribution in Hyb𝑖∗−1

, and thus, outputs 1 with probability

Pr[Hyb𝑖∗−1
(A) = 1 | E𝑖∗ ]. Thus, in this case, algorithm B outputs 1 with probability

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗−1
(A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗−1

(A) = 1 ∧ E𝑖∗ ] .

• Suppose 𝑏
r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the

specification in Hyb𝑖∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗ (A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗ (A) = 1 ∧ E𝑖∗ ] .

Finally, algorithm B samples 𝑖
r← [ℓ]. Thus

Pr[𝑊0 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ]

Pr[𝑊1 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] .

Since EXP(0)prg (1𝜆,A) ≡ Hyb
0
(A) and EXP(1)prg (1𝜆,A) ≡ Hybℓ (A), we appeal to Eqs. (6.3) and (6.4) and conclude that

| Pr[𝑊0 = 1] − Pr[𝑊1 = 1] | = 1

ℓ

���∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ]

���
=

1

ℓ

���∑︁
𝑖∈[ℓ ]

𝑝𝑖 − 𝑝𝑖−1

���
=

1

ℓ
|𝑝0 − 𝑝ℓ | =

1

ℓ
| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(𝜆). □
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6.3 Publicly-Sampleable Projective PRGs from LWE
In this section, we show how to construct a publicly-sampleable projective PRG from LWE. Our construction is

essentially a translation of our construction from CDH (Section 6.1) to the LWE setting. Our construction has a

similar structure as the projective PRG from LWE in [ABI
+
23], except we introduce an additional blinding term to

support public sampling and sampling indistinguishability (similar to the modification made in the context of our

CDH construction). We now give the full construction and security analysis.

Lattice preliminaries. We start by recalling some basic facts about lattice-based cryptography. Throughout this

section, we associate elements 𝑦 ∈ Z𝑞 with its integer representative in the interval (−𝑞/2, 𝑞/2] ∩ Z. For positive
integers 𝑛, 𝑞 ∈ N, we define G = I𝑛 ⊗ gT ∈ Z𝑛×𝑚′𝑞 to be the gadget matrix [MP12] where I𝑛 is the identity matrix of

dimension 𝑛, gT = [1, 2, . . . , 2⌈log𝑞⌉−1], and𝑚′ = 𝑛⌈log𝑞⌉. When𝑚 ≥ 𝑚′, we write G ∈ Z𝑛×𝑚𝑞 to denote the “padded

gadget matrix” [I𝑛 ⊗ gT | 0𝑛×(𝑚−𝑚′ ) ]. The inverse function G−1
: Z𝑛𝑞 → Z𝑚

′
𝑞 expands each entry 𝑥 ∈ Z𝑞 into a column

of size ⌈log𝑞⌉ corresponding to the bits in the binary representation of 𝑥 . Similarly, when G ∈ Z𝑛×𝑚𝑞 is a padded

gadget matrix with dimension𝑚 ≥ 𝑚′, we extend the output of G−1
: Z𝑛𝑞 → Z𝑚𝑞 by zero-padding each column. By

construction, for all t ∈ Z𝑛𝑞 , it follows that G · G−1 (t) = t mod 𝑞. For a matrix V we write ∥V∥ = max𝑖, 𝑗

��𝑉𝑖, 𝑗 ��. For an
element 𝑦 ∈ Z𝑞 , we define the rounding function ⌊𝑦⌉ : Z𝑞 → {0, 1} to be

⌊𝑦⌉ =
{

0 |𝑦 | ≤ 𝑞/4
1 otherwise.

For functions 𝑓 = 𝑓 (𝜆), 𝑔 = 𝑔(𝜆), we write 𝑓 ≤ 𝑂 (𝑔) if there exists a function 𝑔′ (𝜆) ∈ 𝑂 (𝑔(𝜆)) such that for all 𝜆 ∈ N,
𝑓 (𝜆) ≤ 𝑔′ (𝜆). We define 𝑓 ≥ 𝑂 (𝑔) analogously. We write 𝐷Z,𝜒 to denote the discrete Gaussian distribution over Z
with width parameter 𝜒 > 0. Finally, we use the following standard Gaussian tail bound:

Lemma 6.17 (Gaussian Tail Bound [MP12, Lemma 2.6]). For all 𝜒 > 0 and all 𝜆 ∈ N,

Pr[|𝑥 | >
√
𝜆𝜒 : 𝑥 ← 𝐷Z,𝜒 ] ≤ 2

−𝜆 .

Truncated discrete Gaussian. We use 𝐷̄Z,𝜒,𝐵 to denote the truncated discrete Gaussian distribution defined by

the following sampling procedure:

• Sample 𝑥 ← 𝐷Z,𝜒 .

• If |𝑥 | ≤ 𝐵, output 𝑥 . Otherwise, output 0.

In this work, we will write 𝐷̄Z,𝜒 to denote 𝐷̄Z,𝜒,
√
𝜆𝜒
. By Lemma 6.17, the truncated discrete Gaussian distribution 𝐷̄Z,𝜒

is statistically close to the discrete Gaussian distribution 𝐷Z,𝜒 .

Homomorphic evaluation. Similar to [ABI
+
23], our projective PRG will rely on the lattice-based pseudorandom

function (PRF) by Brakerski and Vaikuntanathan [BV15]. We first recall the lattice homomorphic evaluation procedure

from [GSW13, BGG
+
14]

Theorem 6.18 (Homomorphic Encodings [GSW13, BGG
+
14]). Let 𝜆 be a security parameter and 𝑛 = 𝑛(𝜆), 𝑞 = 𝑞(𝜆)

be lattice parameters. Let ℓ = ℓ (𝜆) be an input length. Take any𝑚 ≥ 𝑛 ⌈log𝑞⌉ and let F = {F𝜆}𝜆∈N be a family of
functions 𝑓 : {0, 1}ℓ → {0, 1} that can be computed by a Boolean circuit of depth at most 𝑑 = 𝑑 (𝜆). Then, there exists
a pair of efficient and deterministic algorithms (EvalF, EvalFX) with the following properties:

• EvalF(A, 𝑓 ) → A𝑓 : On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 and a function 𝑓 ∈ F , the input-independent evaluation
algorithm outputs a matrix A𝑓 ∈ Z𝑛×𝑚𝑞 .

• EvalFX(A, 𝑓 , x) → HA,𝑓 ,x: On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 , a function 𝑓 ∈ F , and an input x ∈ {0, 1}ℓ , the
input-dependent evaluation algorithm outputs a matrix HA,𝑓 ,x ∈ Zℓ𝑚×𝑚𝑞 .
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Moreover, for all security parameters 𝜆 ∈ N, matrices A ∈ Z𝑛×ℓ𝑚𝑞 , all functions 𝑓 ∈ F , and all inputs x ∈ {0, 1}ℓ , the
matrices A𝑓 = EvalF(A, 𝑓 ) and HA,𝑓 ,x = EvalFX(A, 𝑓 , x) satisfy the following properties:

• ∥HA,𝑓 ,x∥ ≤ (𝑛 log𝑞)𝑂 (𝑑 ) .

• (A − xT ⊗ G) · HA,𝑓 ,x = A𝑓 − 𝑓 (x) · G.

Learning with errors. We now recall the learning with errors (LWE) assumption [Reg05]:

Assumption 6.19 (Learning with Errors [Reg05]). Let 𝜆 be a security parameter, and 𝑛 = 𝑛(𝜆),𝑚 =𝑚(𝜆), 𝑞 = 𝑞(𝜆),
and 𝜒 = 𝜒 (𝜆) be lattice parameters. We say the learning with errors problem LWE𝑛,𝑚,𝑞,𝜒 holds if for all efficient

adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,����Pr

[
A(A, sTA + eT) = 1 :

A r← Z𝑛×𝑚𝑞

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒

]
− Pr

[
A(A, uT) = 1 :

A r← Z𝑛×𝑚𝑞

u r← Z𝑚𝑞

] ���� = negl(𝜆).

The Brakerski-Vaikuntanathan constrained PRF. We now describe the key-homomorphic constrained PRF

by Brakerski and Vaikuntanathan [BV15] for the special case of puncturing constraints.

Theorem 6.20 (Key-Homomorphic Puncturable PRF [BV15, adapted]). Let 𝜆 be a security parameter and ℓ be an input
length. Let 𝑛,𝑚,𝑞, 𝜒, 𝜒 be parameters (which are functions of 𝜆, ℓ) and suppose𝑚 ≥ 𝑛 ⌈log𝑞⌉. For every x ∈ {0, 1}ℓ , let
𝛿x : {0, 1}ℓ → {0, 1} be the indicator function

𝛿x (y) :=

{
1 x = y
0 x ≠ y.

For a (public) matrix A ∈ Z𝑛×ℓ𝑚𝑞 , vector d ∈ Z𝑛𝑞 , and inputs x, y ∈ {0, 1}ℓ , define

Ay = EvalF(A, 𝛿y) and HA,y,x = EvalFX(A, 𝛿y, x).

Then, the following properties hold:

• Correctness. For all y ≠ x, (A − xT ⊗ G) · HA,y,xG−1 (d) = AyG−1 (d). In addition, ∥HA,u,x∥ ≤ 𝑚𝑂 (log ℓ ) .

• Punctured pseudorandomness. For a security parameter 𝜆 ∈ N, an adversary A, and a bit 𝛽 ∈ {0, 1}, we
define the punctured pseudorandomness experiment EXP(𝛽 )PPRF (1𝜆,A) as follows:

– On input the security parameter 1
𝜆 , the adversary A outputs a point x ∈ {0, 1}ℓ .

– The challenger samples the public parameters A r← Z𝑛×ℓ𝑚𝑞 and d r← Z𝑛𝑞 , a PRF key s r← Z𝑛𝑞 , and error terms
e← 𝐷ℓ𝑚

Z,𝜒 , 𝑒 ← 𝐷Z,𝜒 , and sets cx = sT (A − xT ⊗ G) + eT, 𝑡0 = sTAxG−1 (d) + 𝑒 , and 𝑡1 r← Z𝑞 . The challenger
gives (A, d, cx, 𝑡𝛽 ) to the adversary.

– The adversary outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

Suppose 𝜒 ≥ 𝜆𝜔 (1) · 𝜒𝑚𝑂 (log ℓ ) ℓ log ℓ . Then, under the LWE𝑛,𝑚̂,𝑞,𝜒 assumption with 𝑚̂ = poly(𝑛, log𝑞), for all
efficient adversaries A, there exist a negligible function negl(·) such that for all 𝜆 ∈ N,���Pr[EXP(0)PPRF (1𝜆,A)] − Pr[EXP(1)PPRF (1𝜆,A)]

��� = negl(𝜆).

Construction 6.21 (Publicly-Sampleable Projective PRG from LWE). Let 𝜆 be a security parameter and ℓ be an output

length parameter. Let 𝑛,𝑚,𝑞, 𝜒, 𝜒, 𝐵 be scheme parameters (which are functions of 𝜆 and ℓ) and suppose𝑚 ≥ 𝑛 ⌈log𝑞⌉
and 𝑞 > 4𝐵 + 2. For each integer 𝑖 ∈ [ℓ], we associate with it a unique canonical vector u𝑖 ∈ {0, 1}ℓ

′
where ℓ ′ = ⌈log ℓ⌉;

for example, we can take u𝑖 to be the binary representation of 𝑖 − 1. We now construct a projective PRG as follows:
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• Setup(1𝜆, 1ℓ ) → (pp, 𝜎): On input the security parameter 𝜆 and the output length ℓ ∈ N, the setup algorithm

sets ℓ ′ = ⌈log ℓ⌉. Then, it samples public components A r← Z𝑛×ℓ ′𝑚𝑞 and d r← Z𝑛𝑞 . Next, the algorithm samples

r, s1, . . . , sℓ
r← Z𝑛𝑞 . Then it defines the set

NR𝑞,𝐵 := Z𝑞 \
(
[⌊𝑞/4⌋ − 𝐵, ⌊𝑞/4⌋ + 𝐵] ∪ [− ⌊𝑞/4⌋ − 𝐵,− ⌊𝑞/4⌋ + 𝐵]

)
.

The setNR𝑞,𝐵 contains all elements of Z𝑞 that are not contained in a rounding boundary: that is, for all𝑦 ∈ NR𝑞,𝐵
and all 𝑒 ∈ Z where |𝑒 | ≤ 𝐵, it holds that ⌊𝑦 + 𝑒⌉ = ⌊𝑦⌉. Note that this set is non-empty as long as 𝑞 > 4𝐵 + 2.

The setup algorithm now samples 𝑦𝑖
r← NR𝑞,𝐵 for all 𝑖 ∈ [ℓ]. Finally, for each 𝑖 ∈ [ℓ], the setup algorithm

samples e𝑖 ← 𝐷̄ℓ ′𝑚
Z,𝜒 and 𝑒𝑖 ← 𝐷̄Z,𝜒 . It then computes A𝑖 = EvalF(A, 𝛿u𝑖 ) and

c𝑖 = sT𝑖 (A − uT
𝑖 ⊗ G) + eT𝑖 and 𝑧𝑖 = (r + s𝑖 )TA𝑖G−1 (d) + 𝑒𝑖 + 𝑦𝑖 .

The algorithm outputs

pp =
(
A, d, {c𝑖 , 𝑧𝑖 }𝑖∈[ℓ ]

)
and 𝜎 = (r, s1, . . . , sℓ ).

• Samp(pp, 𝑆) → 𝜎𝑆 : On input the public parameters pp = (A, d, {c𝑖 , 𝑧𝑖 }𝑖∈[ℓ ]) and a target set 𝑆 , the sampling

algorithm samples a random vector k r← Z𝑛𝑞 and outputs 𝜎𝑆 = k.

• Project(pp, 𝜎, 𝑆) → 𝜎𝑆 : On input the public parameters pp = (A, d, {c𝑖 , 𝑧𝑖 }𝑖∈[ℓ ]), the seed 𝜎 = (r, s1, . . . , sℓ ), and
a target set 𝑆 ⊆ [ℓ], the projection algorithm computes and outputs 𝜎𝑆 = r +∑

𝑖∈𝑆 s𝑖 .

• Eval(pp, 𝜎, 𝑆, 𝑖): On input the public parameters pp = (A, d, {c𝑖 , 𝑧𝑖 }𝑖∈[ℓ ]), the projected seed 𝜎 = k, the as-

sociated set of indices 𝑆 ⊆ [ℓ], and an index 𝑖 ∈ 𝑆 , the evaluation algorithm computes A𝑖 = EvalF(A, 𝛿u𝑖 ),
HA,𝑖, 𝑗 = EvalFX(A, 𝛿u𝑖 , u𝑗 ), and

𝑦′𝑖 = 𝑧𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
cT𝑗HA,𝑖, 𝑗G−1 (d) − kTA𝑖G−1 (d).

It outputs

⌊
𝑦′𝑖

⌉
.

Theorem 6.22 (Correctness). Suppose 𝐵 ≥
√
𝜆𝜒 +

√
𝜆𝜒𝑚𝑂 (log log ℓ ) ℓ log ℓ . Then, Construction 6.21 is correct.

Proof. Take any security parameter 𝜆 ∈ N, output length ℓ ∈ N, any set of indices 𝑆 ⊆ [ℓ], and index 𝑖 ∈ 𝑆 .

Let (pp, 𝜎) ← Setup(1𝜆, 1ℓ ) and 𝜎𝑆 ← Project(pp, 𝜎, 𝑆). Then pp = (A, d, {c𝑖 , 𝑧𝑖 }𝑖∈[ℓ ]), 𝜎 = (r, s1, . . . , sℓ ) and
𝜎𝑆 = r +∑

𝑖∈𝑆 s𝑖 . By construction, c𝑖 = sT𝑖 (A − uT
𝑖 ⊗ G) + eT𝑖 , 𝑧𝑖 = (r + s𝑖 )TA𝑖G−1 (d) + 𝑒𝑖 + 𝑦𝑖 , and A𝑖 = Eval(A, 𝛿u𝑖 ).

Consider 𝑦𝑖 = Eval(pp, 𝜎𝑆 , 𝑆, 𝑖). Since e𝑖 and 𝑒𝑖 is sampled from the truncated discrete Gaussian distributions 𝐷̄ℓ ′𝑚
Z,𝜒

and 𝐷̄Z,𝜒 , we have ∥e𝑖 ∥ ≤
√
𝜆𝜒 and |𝑒𝑖 | ≤

√
𝜆𝜒 . From Theorem 6.20, we have for all 𝑗 ∈ 𝑆 \ {𝑖},

cT𝑗HA,𝑖, 𝑗G−1 (d) = (sT𝑗 (A − uT
𝑗 ⊗ G) + eT𝑗 ) · HA,𝑖, 𝑗G−1 (d) = sT𝑗A𝑖G−1 (d) + 𝑒∗𝑗 ,

where

|𝑒∗𝑗 | = |eT𝑗HA,𝑖, 𝑗G−1 (d) | ≤ ∥e𝑗 ∥ · ℓ ′𝑚𝑂 (log log ℓ ) ≤ ℓ ′𝑚𝑂 (log log ℓ ) 𝜒
√
𝜆.

The evaluation algorithm computes

𝑦′𝑖 = 𝑧𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
cT𝑗HA,𝑖, 𝑗G−1 (d) − kTA𝑖G−1 (d)

= (r + s𝑖 )TA𝑖G−1 (d) + 𝑒𝑖 + 𝑦𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
cT𝑗HA,𝑖, 𝑗G−1 (d) − rTA𝑖G−1 (d) −

∑︁
𝑗∈𝑆

sT𝑗A𝑖G−1 (d)

= 𝑦𝑖 + 𝑒𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
𝑒∗𝑗 .
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Next, ������𝑒𝑖 + ∑︁
𝑗∈𝑆\{𝑖 }

𝑒∗𝑗

������ ≤ √𝜆𝜒 + |𝑆 | · ℓ ′𝑚𝑂 (log log ℓ ) 𝜒
√
𝜆.

Taking 𝐵 ≥
√
𝜆𝜒 + ℓ ⌈log ℓ⌉𝑚𝑂 (log log ℓ )√𝜆𝜒 and using the fact that 𝑦′𝑖 ∈ NR𝑞,𝐵 , we conclude that

⌊
𝑦′𝑖

⌉
= ⌊𝑦𝑖⌉. Finally,

this holds for all 𝑖 ∈ 𝑆 , independent of the choice of 𝑆 . Correctness holds. □

Theorem 6.23 (Succinctness). Suppose 𝑛 log𝑞 = poly(𝜆, log ℓ). Then, Construction 6.21 is succinct.

Proof. The projected key 𝜎𝑆 is a vector in Z𝑛𝑞 , which can be described by 𝑛 log𝑞 bits. □

Theorem 6.24 (Sampling Indistinguishability). Suppose 𝑞 > ℓ𝐵 · 𝜆𝜔 (1) . Then, Construction 6.21 satisfies statistical
sampling indistinguishability.

Proof. LetA be an adversary for the sampling indistinguishability game. We define a sequence of hybrid experiments:

• Hyb
0
: This is experiment EXP(0)samp (1𝜆,A). Namely, afterA outputs the input length 1

ℓ
, the challenger provides

pp = (A, d, {c𝑖 , 𝑧𝑖 }𝑖∈[ℓ ]) to the adversary, where cT𝑖 = sT𝑖 (A − uT
𝑖 ⊗ G) + eT𝑖 , 𝑧𝑖 = (r + s𝑖 )TA𝑖G−1 (d) + 𝑒𝑖 + 𝑦𝑖 ,

A𝑖 = EvalF(A, 𝛿u𝑖 ), and 𝑦𝑖
r← NR𝑞,𝐵 . Algorithm A then outputs a set 𝑆 ⊆ [ℓ] and the challenger replies with

𝜎𝑆
r← Z𝑛𝑞 . Algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
except the challenger samples 𝑦𝑖

r← Z𝑞 for all 𝑖 ∈ [ℓ].

• Hyb
2
: Same as Hyb

1
except the challenger samples 𝑧𝑖

r← Z𝑞 for all 𝑖 ∈ [ℓ]. In this experiment, the distribution

of each 𝑧𝑖 is independent of r.

• Hyb
3
: Same as Hyb

2
except the challenger sets 𝜎𝑆 = r +∑

𝑖∈𝑆 s𝑖 .

• Hyb
4
: Same as Hyb

3
except the challenger samples 𝑧𝑖 = (r + s𝑖 )Ta𝑖 + 𝑒𝑖 + 𝑦𝑖 for all 𝑖 ∈ [ℓ].

• Hyb
5
: Same asHyb

4
except the challenger samples𝑦𝑖

r← NR𝑞,𝐵 for all 𝑖 ∈ [ℓ]. This is experiment EXP(1)samp (1𝜆,A).

We write Hyb𝑖 (A) to denote the random variable corresponding to an output of an execution of Hyb𝑖 with adversary

A. We now show that each pair of adjacent distributions is statistically indistinguishable.

• The only difference between Hyb
0
(A) and Hyb

1
(A) is the distribution of 𝑦𝑖 . The statistical distance between

the uniform distribution over Z𝑞 and NR𝑞,𝐵 is (4𝐵 + 2)/𝑞. Thus, the statistical distance between the tuple

(𝑦1, . . . , 𝑦ℓ ) in the two experiments is at most ℓ (4𝐵 + 2)/𝑞 = negl(𝜆).

• The only difference between Hyb
1
(A) and Hyb

2
(A) is the distribution of 𝑧𝑖 . In Hyb

1
, the challenger samples

𝑦𝑖
r← Z𝑞 and the only element in the experiment that depends on𝑦𝑖 is 𝑧𝑖 . Thus, we conclude that the distribution

of 𝑧𝑖 is uniform over Z𝑞 and independent of all other quantities. This is identical to the distribution in Hyb
2
.

• The only difference between Hyb
2
(A) and Hyb

3
(A) is the distribution of 𝜎𝑆 . In Hyb

3
, the challenger samples

r r← Z𝑛𝑞 , and the only element in the experiment that depends on r is 𝜎𝑆 . Thus, we conclude that the distribution
of 𝜎𝑆 is uniform over Z𝑝 and independent of all other quantities. This is the distribution in Hyb

2
.

• Hyb
3
(A) and Hyb

4
(A) are identically distributed by the same argument used to argue that Hyb

1
(A) and

Hyb
2
(A) are identically distributed.

• Hyb
4
(A) andHyb

5
(A) are statistically close by the same argument used to argue statistical indistinguishability

of Hyb
1
(A) and Hyb

2
(A).

Since each pair of adjacent distributions has negligible statistical distance, the theorem holds. □

Theorem 6.25 (Adaptive Pseudorandomness). Suppose 𝑛 log𝑞 = poly(𝜆, ℓ), 𝜒 ≥ 𝜆𝜔 (1) · 𝜒𝑚𝑂 (log log ℓ ) ℓ log ℓ , 𝐵 ≥√
𝜆𝜒 +

√
𝜆𝜒𝑚𝑂 (log log ℓ ) ℓ log ℓ , and 𝑞 > 𝜆𝜔 (1) + 4𝐵. Then, under the LWE𝑛,𝑚̂,𝑞,𝜒 for 𝑚̂ = poly(𝑛, log𝑞). Then, Construc-

tion 6.21 satisfies adaptive pseudorandomness.
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Proof. The proof follows a similar structure as that of Theorem 6.7. We first state a corollary of the pseudorandomness

property from Theorem 6.20, which is tailored to our construction.

Lemma 6.26. For a security parameter 𝜆, an adversary A and a bit 𝛽 ∈ {0, 1}, we define the following distinguishing
game EXP(𝛽 ) (1𝜆,A):

• On input the security parameter 1
𝜆 , the adversary A chooses an output length 1

ℓ and an index 𝑖 ∈ [ℓ].

• The challenger computes ℓ ′ = ⌈log ℓ⌉ and samples a set of public parameters using a similar procedure as that of
the Setup algorithm in Construction 6.21. Specifically, the challenger proceeds as follows:

– Sample A r← Z𝑛×ℓ ′𝑚𝑞 and d r← Z𝑛𝑞 .

– Sample r, s r← Z𝑛𝑞 , e← 𝐷̄ℓ ′𝑚
Z,𝜒 , 𝑒 ← 𝐷̄Z,𝜒 , and 𝑦

r← NR𝑞,𝐵 .

– Compute A𝑖 = EvalF(A, 𝛿u𝑖 ), c = sT (A − uT
𝑖 ⊗ G) + eT, and 𝑧 = (r + s)TA𝑖G−1 (d) + 𝑒 + 𝑦.

Finally, the challenger computes 𝑏0 = ⌊𝑦⌉, 𝑏1

r← {0, 1}, and gives (A, d, r, c, 𝑧, 𝑏𝛽 ) to the adversary.

• The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Suppose 𝜒 ≥ 𝜆𝜔 (1) · 𝜒𝑚𝑂 (log log ℓ ) ℓ log ℓ and 𝑛 log𝑞 = poly(𝜆). Then, under the LWE𝑛,𝑚̂,𝑞,𝜒 assumption with 𝑚̂ =

poly(𝑛, log𝑞), for all efficient adversaries A, there exist a negligible function negl(·), such that for all 𝜆 ∈ N,���Pr[EXP(0) (1𝜆,A)] − Pr[EXP(1) (1𝜆,A)]
��� ≤ negl(𝜆).

Proof. Let A be an efficient distinguisher for EXP(0) and EXP(1) . We define a sequence of hybrid experiments:

• Hyb
0
: This is experiment EXP(0) , where the challenger sets 𝑏 = ⌊𝑦⌉.

• Hyb
1
: Same as Hyb

0
except the challenger samples e← 𝐷ℓ ′𝑚

Z,𝜒 and 𝑒 ← 𝐷Z,𝜒 . In particular, the errors e and 𝑒
are sampled from the discrete Gaussian distribution rather than the truncated discrete Gaussian distribution.

• Hyb
2
: Same as Hyb

1
except the challenger samples 𝑧

r← Z𝑞 .

• Hyb
3
: Same as Hyb

2
except the challenger samples 𝑏

r← {0, 1}.

• Hyb
4
: Same as Hyb

3
except the challenger samples 𝑧 = (r + s)TA𝑖G−1 (d) + 𝑒 + 𝑦.

• Hyb
5
: Same as Hyb

4
except the challenger samples e← 𝐷̄ℓ ′𝑚

Z,𝜒 and 𝑒 ← 𝐷̄Z,𝜒 . Specifically, the errors e and 𝑒
are now sampled from the truncated discrete Gaussian distribution. This is experiment EXP(1) .

We write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb𝑖 with
adversary A (and an implicit security parameter 𝜆). We now show that the output distributions of each adjacent

pair of hybrid experiments is indistinguishable.

• The only difference between Hyb
0
(A) and Hyb

1
(A) is the distribution of e and 𝑒 . By Lemma 6.17, the distribu-

tions 𝐷Z,𝜒 and 𝐷̄Z,𝜒 are statistically close to 𝐷Z,𝜒 and 𝐷̄Z,𝜒 . Therefore Hyb0
(A) and Hyb

1
(A) are statistically

indistinguishable (since𝑚 = poly(𝑛 log𝑞) = poly(𝜆) and ℓ = poly(𝜆) by the efficiency requirement of A).

• We appeal to Theorem 6.20. Specifically, when 𝜒 > 𝜆𝜔 (1) · 𝜒𝑚𝑂 (log log ℓ ) ℓ log ℓ and the LWE𝑛,𝑚̂,𝑞,𝜒 assumption

holds, the punctured pseudorandomness property of Theorem 6.20 holds. Suppose now that | Pr[Hyb
1
(A) =

1] − Pr[Hyb
2
(A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an efficient adversary B that

breaks the punctured pseudorandomness property from Theorem 6.20.

– On input the security parameter 1
𝜆
, algorithm B runs A(1𝜆) to obtain 1

ℓ
and 𝑖 ∈ [ℓ].

– Algorithm B sets ℓ ′ = ⌈log ℓ⌉ and gives 1
ℓ ′
and u𝑖 ∈ {0, 1}ℓ

′
to the challenger. The challenger replies with

(A, d, c, 𝑡).
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– Algorithm B samples a vector r r← Z𝑛𝑞 and a scalar 𝑦
r← NR𝑞,𝐵 . It computes A𝑖 = EvalF(A, 𝛿u𝑖 ) and

𝑧 = rTA𝑖G−1 (d) + 𝑡 + 𝑦. It send (A, d, r, c, 𝑧, 𝑡) to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.

By construction, the challenger samples A r← Z𝑛×ℓ ′𝑚𝑞 , d r← Z𝑛𝑞 and c = sT (A − uT
𝑖 ⊗ G) + eT, exactly as in the

punctured pseudorandomness experiment. When 𝑡 = sTA𝑖G−1 (d) + 𝑒 , then algorithm B perfectly simulates

Hyb
1
. On the other hand, when 𝑡

r← Z𝑝 , the distribution of 𝑧 = rTA𝑖G−1 (d) + 𝑡 + 𝑦 also uniformly random

since no other element in the experiment depends on 𝑡 . Therefore B perfectly simulates Hyb
2
when 𝑡

r← Z𝑝 .
Hence B breaks the pseudorandomness property of Theorem 6.20 with the same non-negligible probability

𝜀, which is a contradiction.

• The only difference between Hyb
2
(A) and Hyb

3
(A) is the distribution of 𝑏. In Hyb

2
, the challenger sets

𝑏 = ⌊𝑦⌉ where 𝑦 ← NR𝑞,𝐵 . By construction of NR𝑞,𝐵 , this means,����Pr[⌊𝑦⌉ = 1 : 𝑦
r← NR𝑞,𝐵] −

1

2

���� = 𝑂 (1)
|NR𝑞,𝐵 |

= negl(𝜆),

since |NR𝑞,𝐵 | ≥ 𝑞 − (4𝐵 + 2) = 𝜆𝜔 (1) . Thus, the marginal distribution of 𝑏 ∈ {0, 1} in Hyb
2
is statistically close

to uniform. Finally, the only variable in Hyb
2
that depends on 𝑦 is 𝑏. We conclude that Hyb

2
(A) and Hyb

3
(A)

are statistically indistinguishable.

• Hyb
3
(A) and Hyb

4
(A) are computationally indistinguishable by the same argument used to argue indistin-

guishability of Hyb
1
(A) and Hyb

2
(A).

• Hyb
4
(A) and Hyb

5
(A) are statistically indistinguishable by the same argument used to argue indistinguisha-

bility of Hyb
0
(A) and Hyb

1
(A). □

Proof of Theorem 6.25. We now return to the proof of Theorem 6.25. The proof follows a similar strategy as the

proof of Theorem 6.7. For each index 𝑖 ∈ {0} ∪ N, we define an experiment Hyb𝑖 as follows:

• Hyb𝑖 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1
𝜆
, algorithmA outputs 1

ℓ
. The challenger runs (pp, 𝜎) ← Setup(1𝜆, 1ℓ ).

Specifically, the challenger samples A r← Z𝑛×ℓ
′𝑚

𝑞 , d r← Z𝑛𝑞 , r, s1, . . . , sℓ
r← Z𝑛𝑞 , 𝑦1, . . . , 𝑦ℓ

r← NR𝑞,𝐵 ,
e1, . . . , eℓ ← 𝐷̄ℓ ′𝑚

Z,𝜒 and 𝑒1, . . . , 𝑒ℓ ← 𝐷̄Z,𝜒 . Then, it computes cT𝑖 = sT𝑖 (A − uT
𝑖 ⊗ G) + eT𝑖 , A𝑖 = EvalF(A, 𝛿u𝑖 ),

and 𝑧𝑖 = (r + s𝑖 )TA𝑖G−1 (d) + 𝑒𝑖 + 𝑦𝑖 for all 𝑖 ∈ [ℓ]. The challenger gives pp = (A, d, {c𝑖 , 𝑧𝑖 }𝑖∈[ℓ ]) to A.

– Next, the challenger computes 𝜎[ℓ ] ← Project(pp, 𝜎, [ℓ]) and samples t r← {0, 1}ℓ . In particular 𝜎[ℓ ] =
r +∑

𝑗∈[ℓ ] s𝑗 .

– When A makes an evaluation query on 𝑗 ∈ [ℓ], the challenger replies with Eval(pp, 𝜎[ℓ ], [ℓ], 𝑗) if 𝑗 > 𝑖

and with 𝑡 𝑗 if 𝑗 ≤ 𝑖 . In particular, when 𝑗 > 𝑖 , the challenger computes A𝑗 = EvalF(A, 𝛿u𝑗
) and

𝑦′𝑗 = 𝑧 𝑗 +
∑︁

𝑘∈[ℓ ]\{ 𝑗 }
cT
𝑘
· HA, 𝑗,𝑘G−1 (d) − 𝜎T

[ℓ ]A𝑗G−1 (d)

and responds with ⌊𝑦′𝑗 ⌉.
– AfterA finishes making evaluation queries, the challenger computes the seed 𝜎𝑆 ← Project(pp, 𝜎, [ℓ] \ 𝐼 )
where 𝐼 ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,

𝜎𝑆 = r +∑
𝑗∈[ℓ ]\𝐼 s𝑗 . The challenger gives 𝜎𝑆 to A.

– At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.
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We write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb𝑖 with
adversary A. By construction, observe that EXP(0)prg (1𝜆,A) ≡ Hyb

0
(A) and EXP(1)prg (1𝜆,A) ≡ Hybℓ (A). Following

the same argument in the proof of Theorem 6.7, for all indices 𝑖 ∈ {0} ∪ N,

Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] = Pr[Hyb𝑖 (A) = 1] − Pr[Hyb𝑖−1

(A) = 1], (6.5)

where E𝑖 is the event that algorithm A makes an evaluation query on index 𝑖 . Suppose now that

| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀 (𝜆) (6.6)

for some non-negligible 𝜀. We use A to construct an efficient adversary B for the distinguishing problem from

Lemma 6.26:

1. On input the security parameter 1
𝜆
, algorithm B runs A(1𝜆) to obtain the output length 1

ℓ
. Algorithm B

samples a random index 𝑖
r← [ℓ] and send (1ℓ , 𝑖) to the challenger to receive (A, d, r, c, 𝑧, 𝑏).

2. For all 𝑗 ∈ [ℓ] \ {𝑖}, algorithm B samples s𝑗
r← Z𝑛𝑞 , 𝑡 𝑗

r← {0, 1}, 𝑦 𝑗
r← NR𝑞,𝐵 , e𝑗 ← 𝐷̄ℓ ′𝑚

Z,𝜒 , 𝑒 𝑗 ← 𝐷̄Z,𝜒 and

computes cT𝑗 = sT𝑗 (A − uT
𝑗 ⊗ G) + eT𝑗 , A𝑗 = EvalF(A, 𝛿u𝑗

), and 𝑧 𝑗 = (r + s𝑗 )TA𝑗G−1 (d) + 𝑒 𝑗 +𝑦 𝑗 . Algorithm B also

sets c𝑖 = c, 𝑧𝑖 = 𝑧. Algorithm B gives pp = (A, d, {c𝑗 , 𝑧 𝑗 } 𝑗∈[ℓ ]) to A.

3. When algorithm A makes an evaluation query on an index 𝑗 ∈ [ℓ], the challenger responds as follow.

• If 𝑗 < 𝑖 , the challenger responds with 𝑡 𝑗 .

• If 𝑗 = 𝑖 , the challenger responds with 𝑏.

• If 𝑗 > 𝑖 , the challenger responds with
⌊
𝑦 𝑗

⌉
.

4. After A finishes making evaluation queries, let 𝐼 ⊆ [ℓ] be the set of indices on which algorithm A made an

evaluation query. If 𝑖 ∉ 𝐼 , then algorithm B outputs 0. Otherwise algorithm B responds with 𝜎𝑆 = r+∑𝑗∈[ℓ ]\𝐼 s𝑗 .
Since 𝑖 ∈ 𝐼 , this means 𝑖 ∉ [ℓ] \ 𝐼 , so algorithm B knows all of the s𝑗 needed to construct 𝜎𝑆 .

5. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage of B. By construction, c = sT (A − uT
𝑖 ⊗ G) + eT and 𝑧 = (r + s)TA𝑖G−1 (d) + 𝑒 + 𝑦. In

the following analysis, let

𝜎[ℓ ] = r + s +
∑︁

𝑘∈[ℓ ]\{𝑖 }
s𝑘 .

Note that algorithm B does not (and cannot) compute 𝜎[ℓ ] ; however, it will be useful in our analysis below. Let𝑊0 be

the event that B outputs 1 when the challenger sets 𝑏 = ⌊𝑦⌉ and𝑊1 be the event that B outputs 1 when the challenger

samples 𝑏
r← {0, 1}. Suppose algorithm B samples 𝑖 = 𝑖∗ in the above reduction. Then, the following holds:

• By definition, algorithmB perfectly simulates the public parameters pp for algorithmA as well as the evaluation

queries for all 𝑗 < 𝑖∗ according to the specification in hybrid Hyb𝑖∗−1
and Hyb𝑖∗ .

• Consider the evaluation queries for 𝑗 > 𝑖∗

• In Hyb𝑖∗−1
and Hyb𝑖∗ , the challenger would first compute A𝑗 = EvalF(A, 𝛿u𝑗

) and

𝑦′𝑗 = 𝑧 𝑗 +
∑︁

𝑘∈[ℓ ]\{ 𝑗 }
cT
𝑘
HA, 𝑗,𝑘G−1 (d) − 𝜎T

[ℓ ]A𝑗G−1 (d).

By the same analysis as in the proof of Theorem 6.22, ⌊𝑦′𝑗 ⌉ =
⌊
𝑦 𝑗

⌉
, and we conclude that algorithm B perfectly

simulates the evaluation queries for 𝑗 > 𝑖∗ according to the specification of Hyb𝑖∗−1
and Hyb𝑖∗ .
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Next, we consider the distribution of the challenge bit 𝑏:

• Suppose 𝑏 = ⌊𝑦⌉. By the same argument as in the proof of Theorem 6.22, we have

⌊𝑦⌉ =
𝑧 +

∑︁
𝑘∈[ℓ ]\{𝑖 }

cT
𝑘
HA,𝑖,𝑘G−1 (d) − 𝜎T

[ℓ ]A𝑖G−1 (d)
 .

In this case, the response to an evaluation query on index 𝑖 is distributed according to the specification in

Hyb𝑖∗−1
. We consider the probability that algorithm B outputs 1 in this case. First, if algorithm A does not

make an evaluation query on index 𝑖∗, then algorithm B always outputs 0. If algorithm A does make an

evaluation query on index 𝑖∗, then algorithm B perfectly simulates an execution of Hyb𝑖∗−1
, and thus, outputs

1 with probability Pr[Hyb𝑖∗−1
(A) = 1 | E𝑖∗ ]. Thus, in this case, algorithm B outputs 1 with probability

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗−1
(A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗−1

(A) = 1 ∧ E𝑖∗ ] .

• Suppose 𝑏
r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the

specification in Hyb𝑖∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗ (A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗ (A) = 1 ∧ E𝑖∗ ] .

Finally, algorithm B samples 𝑖
r← [ℓ]. Thus

Pr[𝑊0 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ],

Pr[𝑊1 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] .

Since EXP(0)prg (1𝜆,A) ≡ Hyb
0
(A) and EXP(1)prg (1𝜆,A) ≡ Hybℓ (A), we appeal to Eqs. (6.5) and (6.6) and conclude that

| Pr[𝑊0 = 1] − Pr[𝑊1 = 1] | = 1

ℓ

���∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ]

���
=

1

ℓ

���∑︁
𝑖∈[ℓ ]

𝑝𝑖 − 𝑝𝑖−1

���
=

1

ℓ
|𝑝0 − 𝑝ℓ | =

1

ℓ
| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(𝜆). □

Parameter instantiations. We now show how to instantiate the parameters for Construction 6.21 to satisfy the

requirements in Theorems 6.22 to 6.25. Let 𝜆 be a security parameter and ℓ be the output length. We instantiate the

lattice parameters as follows:

• We set the lattice dimension to be 𝑛 = (𝜆 log ℓ)1/𝜀 for some small constant 𝜀 ∈ (0, 1). In the following, we will

assume log𝑞 = 𝑂̃ (𝜆 log ℓ), where 𝑂̃ (·) suppresses poly(log 𝜆, log log ℓ) factors. Next, we set𝑚 = 𝑂 (𝑛 log𝑞) =
poly(𝜆, log ℓ).

• We set 𝜒 = poly(𝜆). We set 𝜒 = 2
𝜆 · 𝜒𝑚𝑂 (log log ℓ ) ℓ log ℓ = 2

𝑂̃ (𝜆 log ℓ )
. We set 𝐵 = 2

√
𝜆𝜒 = 2

𝑂̃ (𝜆 log ℓ )

• Finally, we set 𝑞 = 2
𝜆 ·ℓ𝐵 = 2

𝑂̃ (𝜆 log ℓ ) = 2
𝑂̃ (𝑛𝜀 )

so that the LWE𝑛,𝑚̂,𝑞,𝜒 assumption holds where 𝑚̂ = poly(𝑛, log𝑞).

This yields a projective PRG from polynomial hardness of LWE with a sub-exponential modulus-to-noise ratio.
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7 Nearly-Linear Semi-Static Broadcast Encryption from Bilinear Maps
In this section, we show how to construct a semi-statically secure broadcast encryption with a nearly-linear-size public

key from a search assumption (in the target group). The construction combines ideas from the semi-static broadcast

encryption scheme from [GW09, §3.1] with the recent cross-term-compression technique from [GLWW24]. Security

relies on the search version of the set-consistent bilinear Diffie-Hellman exponent assumption from [GLWW24,

Assumption 4.2]. We first recall the notion of a progression-free and double-free set as well as the set-consistent

bilinear Diffie Hellman exponent assumption [GLWW24].

Progression-free sets. A progression-free set [ET36] is a set of natural numbers that does not contain any arith-

metic progressions of length 3. Similar to the applications from [GLWW24], we also require the set system to be

double-free, which means the set does not contain any integer which is twice that of another integer. The work

of [GLWW24] describes a simple way to convert any progression-free set into a progression-free and double-free

set. We provide the formal definitions below:

Definition 7.1 (Progression-Free Set [ET36]). A set D ⊂ N is progression-free if for all 𝑖, 𝑗, 𝑘 ∈ D where 𝑖 ≠ 𝑗 , it

follows that 𝑖 + 𝑗 ≠ 2 · 𝑘 .

Definition 7.2 (Double-Free Set [GLWW24]). A set D ⊂ N is double-free if for all 𝑖, 𝑗 ∈ D, it holds that 𝑖 ≠ 2 · 𝑗 .

Lemma 7.3 (Progression-Free and Double-Free Sets [Beh46, Elk10, GLWW24]). There exists a family of progression-
free and double-free sets {D𝑛}𝑛∈N where |D𝑛 | = 𝑛 and max(D𝑛) = 𝑛1+𝑜 (1) . Moreover, there exists an explicit and efficient
algorithm that takes as input 1

𝑛 and outputs D𝑛 .

Set-consistent bilinear Diffie-Hellman exponent assumption. We prove security from a search version of

the set-consistent bilinear Diffie-Hellman exponent assumption from [GLWW24]. While [GLWW24, Assumption 4.2]

formulates the assumption as a decisional assumption in the target group, for our applications, it suffices to use the

search version of the assumption. The formulation in [GLWW24] gives out some additional group elements compared

to our formulation. We exclude these additional elements to simplify the statement of the assumption as they are

not needed for our construction. We now give the formal statement of the assumption:

Assumption 7.4 (Search Set-Consistent Bilinear Diffie-Hellman Exponent [GLWW24, Assumption 4.2, adapted]). Let
PrimeBGroupGen be a prime-order bilinear group generator. For a security parameter 𝜆 and an adversaryA, we define

the search computational 𝑞-set-consistent bilinear Diffie-Hellman exponent experiment 𝑞-SC-BDHE(1𝜆,A) as follow:

• On input the security parameter 1
𝜆
, the adversary A outputs a parameter 1

𝑞
and two sets 𝑆0, 𝑆1 ⊆ [2𝑞].

• The challenger samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆) and random exponents 𝑎, 𝑡
r← Z𝑝 . The

challenger gives (G, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0
, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1

, [𝑎𝑞]G𝑇 ) to the adversary.

• The adversary outputs a group element [𝑍 ]G𝑇 ∈ G𝑇 . The experiment outputs 1 if [𝑍 ]G𝑇 = [𝑡 · 𝑎𝑞]G𝑇 and

outputs 0 otherwise.

We say an adversary is admissible if it outputs a triple (𝑞, 𝑆0, 𝑆1) where for every 𝑠0 ∈ 𝑆0 ∪ {0} and 𝑠1 ∈ 𝑆1 ∪ {0}, it
holds that 𝑠0 + 𝑠1 ≠ 𝑞. We say the search 𝑞-set-consistent bilinear Diffie-Hellman exponent assumption holds with

respect to PrimeBGroupGen if for every efficient and admissible adversaryA, there exist a negligible function negl(·)
such that for all 𝜆 ∈ N,

Pr[𝑞-SC-BDHE(1𝜆,A) = 1] = negl(𝜆).

Semi-static broadcast encryption. We now give our construction of a semi-static broadcast encryption scheme

from the search set-consistent bilinear Diffie-Hellman exponent assumption. As noted before, our construction can

be viewed as a combination of the semi-static broadcast encryption scheme from [GW09, §3.1] with the cross-term

compression techniques based on progression-free sets from [GLWW24]. At a high level, our construction replaces

the cross-terms ℎ
𝑟𝑖
𝑗
in the [GW09] construction with ℎ 𝑗 = [𝛽𝑎𝑑 𝑗 ]G and 𝑟𝑖 = 𝑎𝑑𝑖 , where the exponents 𝑑𝑖 are drawn
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from a progression free set D𝑁 . This way, there are many pairs of indices (𝑖, 𝑗) that share a common cross-term

ℎ
𝑟𝑖
𝑗
= [𝛽𝑎𝑑𝑖+𝑑 𝑗 ]G (e.g., every 𝑖, 𝑗 with a common value of 𝑑𝑖 + 𝑑 𝑗 share a cross term). At the same time, the non-cross-

terms terms ℎ
𝑟𝑖
𝑖
= [𝛽𝑎2𝑑𝑖 ]G remain hidden by the progression-free structure of D𝑁 . We give the construction below:

Construction 7.5 (Semi-Static Broadcast Encryption). Let PrimeBGroupGen be a prime-order bilinear group gen-

erator and let 𝜌 = 𝜌 (𝜆) be a bound on the bit-length of the group elements associated with PrimeBGroupGen. Let
hc : {0, 1}𝜌 × {0, 1}𝜌 → {0, 1} be the Goldreich-Levin hardcore extractor. Let {D𝑛}𝑛∈N be the efficiently-computable

family of progression-free and double-free sets from Lemma 7.3. We construct a broadcast encryption scheme

ΠBE = (Setup,KeyGen, Enc,Dec) as follows:
• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and the number of parties 𝑁 , the setup algorithm sam-

ples a prime-order pairing group G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆) and sets D = D𝑁 to be a

progression-free and double-free set of size 𝑁 . It then computes the set E of all distinct pairwise sums

E = {𝑑𝑖 + 𝑑 𝑗 | 𝑖, 𝑗 ∈ [𝑁 ] : 𝑖 ≠ 𝑗}.

Let |E | = 𝑀 and denote the distinct elements of E by 𝑒1, 𝑒2, . . . , 𝑒𝑀 ∈ E. We define a canonical function

𝑓 : [𝑁 ] × [𝑁 ] → [𝑀] where 𝑒𝑓 (𝑖, 𝑗 ) = 𝑑𝑖 + 𝑑 𝑗 for all 𝑖 ≠ 𝑗 . Finally, the setup algorithm samples random

exponents 𝛼, 𝛽, 𝑎, 𝑡
r← Z𝑝 and compute vectors u = (𝑎𝑑1 , . . . , 𝑎𝑑𝑁 ), v = (𝑎𝑒1 , . . . , 𝑎𝑒𝑀 ). Finally, the algorithm

samples the extractor seed r r← {0, 1}𝜌 and outputs

mpk = (G,D, [𝛽]G, [u]G, [𝛽u]G, [𝛽v]G, [𝛼]G𝑇 , r) and msk = (G, 𝛼, 𝛽, u).

• KeyGen(msk, 𝑖): On input the master secret key msk = (G, 𝛼, 𝛽, u) and an index 𝑖 ∈ [𝑁 ], the key-generation
algorithm outputs the secret key sk𝑖 = (𝑖, [𝛼 − 𝛽𝑢2

𝑖 ]G).

• Enc(mpk, 𝑆, 𝜇): On input the master public keympk = (G,D, [𝛽]G, [u]G, [𝛽u]G, [𝛽v]G, [𝛼]G𝑇 , r), a set 𝑆 ⊆ [𝑁 ],
and a message 𝜇 ∈ {0, 1}, the encryption algorithm samples a random 𝑡

r← Z𝑝 and computes

𝐶1 = hc(𝑡 · [𝛼]G𝑇 , r) ⊕ 𝜇, [𝐶2]G𝑇 = [𝑡]G, [𝐶3]G𝑇 = 𝑡 ·
∑︁
𝑖∈𝑆
[𝛽𝑢𝑖 ]G .

The encryption algorithm outputs the ciphertext ct = (𝐶1, [𝐶2]G𝑇 , [𝐶3]G𝑇 ).

• Dec(mpk, 𝑆, sk, ct): On input the master public key mpk = (G,D, [𝛽]G, [u]G, [𝛽u]G, [𝛽v]G, [𝛼]G𝑇 , r), a set

𝑆 ⊆ [𝑁 ], a secret key sk = (𝑖, [𝛾]G) and a ciphertext ct = (𝐶1, [𝐶2]G, [𝐶3]G), the decryption algorithm computes

[𝑍 ]G𝑇 = [𝐶2]G · [𝛾]G + [𝐶3]G · [𝑢𝑖 ]G −
∑︁

𝑗∈𝑆\{𝑖 }
[𝐶2]G · [𝛽𝑣 𝑓 (𝑖, 𝑗 ) ]G.

Then it outputs 𝜇 = 𝐶1 ⊕ hc( [𝑍 ]G𝑇 , r).
Theorem 7.6 (Correctness). Construction 7.5 is correct.

Proof. Take any 𝜆, 𝑁 ∈ N any set 𝑆 ⊆ [𝑁 ], any index 𝑖 ∈ 𝑆 , and any message 𝜇 ∈ {0, 1}. Take any (mpk,msk) ←
Setup(1𝜆, 1𝑁 ), any secret key sk𝑖 ← KeyGen(msk, 𝑖), and any ct← Enc(mpk, 𝑆, 𝜇). By construction,

mpk = (G,D, [𝛽]G, [u]G, [𝛽u]G, [𝛽v]G, [𝛼]G𝑇 , r) and msk = (G, 𝛼, 𝛽, u),

sk𝑖 = (𝑖, [𝛾]G) where 𝛾 = 𝛼 − 𝛽𝑢2

𝑖 , and ct = (𝐶1, [𝐶2]G, [𝐶3]G). By construction of Setup, 𝑢𝑖 = 𝑎𝑑𝑖 and 𝑣𝑖 = 𝑎𝑒𝑖 . Since

𝑒𝑓 (𝑖, 𝑗 ) = 𝑑𝑖 + 𝑑 𝑗 , this means 𝑣 𝑓 (𝑖, 𝑗 ) = 𝑎𝑑𝑖+𝑑 𝑗 = 𝑢𝑖𝑢 𝑗 . Now, by construction of Setup, KeyGen, and Enc, we can write

𝑍 = 𝐶2 · 𝛾 +𝐶3 · 𝑢𝑖 −
∑︁

𝑗∈𝑆\{𝑖 }
𝐶2 · 𝛽𝑣 𝑓 (𝑖, 𝑗 )

= 𝑡 (𝛼 − 𝛽𝑢2

𝑖 ) + 𝑡
∑︁
𝑗∈𝑆

𝛽𝑢 𝑗𝑢𝑖 −
∑︁

𝑗∈𝑆\{𝑖 }
𝛽𝑡𝑣 𝑓 (𝑖, 𝑗 )

= 𝑡𝛼 +
∑︁
𝑗∈𝑆

𝑡𝛽𝑢𝑖𝑢 𝑗 − 𝑡𝛽𝑢2

𝑖 −
∑︁

𝑗∈𝑆\{𝑖 }
𝑡𝛽𝑢𝑖𝑢 𝑗

= 𝑡𝛼 .
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In particular, this means

𝐶1 ⊕ hc( [𝑍 ]G𝑇 , r) = hc( [𝑡𝛼]G𝑇 , r) ⊕ 𝜇 ⊕ hc( [𝑍 ]G𝑇 , r) = 𝜇,

and correctness holds. □

Theorem 7.7 (Semi-Static Security). Suppose the search set-consistent bilinear Diffie-Hellman exponent assumption
holds with respect to PrimeBGroupGen. Then Construction 7.5 is semi-statically secure (Definition 3.4).

Proof. We first state a corollary of the search set-consistent bilinear Diffie-Hellman exponent assumption (Assump-

tion 7.4) and Theorem 3.2.

Lemma 7.8. Let PrimeBGroupGen be a prime-order bilinear group generator and let hc : {0, 1}𝜌 × {0, 1}𝜌 → {0, 1}
be the Goldreich-Levin extractor. For a security parameter 𝜆 and an adversary A, define the following distinguishing
game EXP(𝛽 ) (1𝜆,A), which can be viewed as a decisional version of the 𝑞-SC-BDHE game:

• On input the security parameter 1
𝜆 , the adversary A outputs a parameter 1

𝑞 and two sets 𝑆0, 𝑆1 ⊆ [2𝑞].

• The challenger samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆) and random exponents 𝑠, 𝑎, 𝑡 r← Z𝑝 . Addi-
tionally, the challenger samples extractor seed r r← {0, 1}𝜌 and computes bits 𝑏0 = hc( [𝑠𝑡𝑎𝑞]G𝑇 , r) and 𝑏1

r← {0, 1}.
The challenger provides (G, 𝑠, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0

, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1
, [𝑎𝑞]G𝑇 , r, 𝑏𝛽 ) to the adversary.

• The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Similar to the𝑞-SC-BDHE game, we say an adversary is admissible if it outputs a triple (𝑞, 𝑆0, 𝑆1) where for every 𝑠0 ∈ 𝑆0∪
{0} and 𝑠1 ∈ 𝑆1∪{0}, it holds that 𝑠0+𝑠1 ≠ 𝑞. Suppose the𝑞-SC-BDHE assumption holds with respect to PrimeBGroupGen.
Then, for all efficient and admissible adversaries A, there exist a negligible function negl(·) such that for all 𝜆 ∈ N,���Pr[EXP(0) (1𝜆,A) = 1] − Pr[EXP(1) (1𝜆,A) = 1]

��� = negl(𝜆).

Proof. Suppose there exists an efficient and admissible adversary A such that

| Pr[EXP(0) (1𝜆,A) = 1] − Pr[EXP(1) (1𝜆,A) = 1] | = 𝜀 (𝜆)

for some non-negligible 𝜀. For simplicity, we decompose A into two algorithms A = (A0,A1), where A0 takes as

input 1
𝜆
and outputs (1𝑞, 𝑆0, 𝑆1) along with a private state st, andA1 takes as input the private state st along with the

challenger’s response and outputs the bit 𝑏′. We now define a joint distribution (𝑋,𝑌 ) = {(𝑋𝜆, 𝑌𝜆)}𝜆∈N as follows:

• RunA0 (1𝜆) to obtain a triple (1𝑞, 𝑆0, 𝑆1) and private state st. Then, sample a bilinear groupG = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ←
PrimeBGroupGen(1𝜆) along with exponents 𝑠, 𝑎, 𝑡

r← Z𝑝 .

• Let 𝑥 = [𝑠𝑡𝑎𝑞]G𝑇 and 𝑦 = (st,G, 𝑠, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0
, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1

). Output the pair (𝑥,𝑦).

We now show that under the 𝑞-SC-BDHE assumption, 𝑋 is computationally unpredictable given 𝑌 . Suppose there

exist an efficient algorithm A′ that can predict 𝑥 given 𝑦 with some non-negligible probability 𝜀′. We use A′ to
construct an efficient algorithm B for the 𝑞-SC-BDHE problem:

• On input the security parameter 1
𝜆
, algorithm B first runs A0 (1𝜆) to obtain a triple (1𝑞, 𝑆0, 𝑆1) and state st.

It forwards (1𝑞, 𝑆0, 𝑆1) to the 𝑞-SC-BDHE challenger.

• On receiving the 𝑞-SC-BDHE challenge (G, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0
, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1

, [𝑎𝑞]G𝑇 ), algorithm B samples

𝑠
r← Z𝑝 and set 𝑦 = (st,G, 𝑠, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0

, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1
, [𝑎𝑞]G𝑇 ).

• Algorithm B runs A′ (1𝜆, 𝑦) and obtains an output 𝑥 = [𝑧]G𝑇 .

• Algorithm B outputs 𝑠−1 · [𝑧]G𝑇 .

40



By construction, algorithm B perfectly simulates the distribution of 𝑦 in (𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆), where 𝑥 = [𝑠𝑡𝑎𝑞]G𝑇 . Thus,
with probability 𝜀′, algorithmA′ outputs [𝑧]G𝑇 = [𝑠𝑡𝑎𝑞]G𝑇 . In this case, algorithm B outputs 𝑠−1 · [𝑠𝑡𝑎𝑞]G𝑇 = [𝑡𝑎𝑞]G,
successfully solving the 𝑞-SC-BDHE challenge. Finally, B is admissible as long asA is admissible. This contradicts the

𝑞-SC-BDHE assumption. We conclude that under the 𝑞-SC-BDHE assumption, 𝑋 is computationally unpredictable

given 𝑌 . The lemma now follows by Theorem 3.2:

• Since𝑋 is computationally unpredictable given𝑌 , Theorem 3.2 now states that the distributions (1𝜆, r, hc(𝑥, r), 𝑦)
and (1𝜆, r, 𝑏,𝑦) are computationally indistinguishable when r r← {0, 1}𝜌 , (𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆), and 𝑏 r← {0, 1}.

• If algorithm A distinguishes EXP(0) and EXP(1) with advantage 𝜀, then we can use A1 to construct a distin-

guisher for the distributions (1𝜆, r, hc(𝑥, r), 𝑦) and (1𝜆, r, 𝑏,𝑦) as follows:

– On input (1𝜆, r, 𝑏,𝑦) where 𝑦 = (st,G, 𝑠, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0
, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1

, [𝑎𝑞]G𝑇 ), compute and output

A1 (st,G, 𝑠, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0
, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1

, [𝑎𝑞]G𝑇 , r, 𝑏).

When 𝑏 = hc(𝑥, r), this process perfectly simulates an execution of EXP(0) for A1 and when 𝑏
r← {0, 1}, this

perfectly simulates an execution of EXP(1) forA1. Thus, this algorithm distinguishes between (1𝜆, r, hc(𝑥, r), 𝑦)
and (1𝜆, r, 𝑏,𝑦) with non-negligible advantage 𝜀, which is a contradiction. □

Proof of Theorem 7.7. We now return to the proof of Theorem 7.7. We first define a hybrid experiment EXP(rand)SSBE ,

which is almost identical to EXP(𝜈 )SSBE, but in the challenge query, after computing ct = (𝐶1, [𝐶2]G, [𝐶3]G) ←
Enc(mpk, 𝑆, 𝜇), replace 𝐶1 with 𝐶′

1

r← {0, 1} and output ct′ = (𝐶′
1
, [𝐶2]G, [𝐶3]G). Suppose there exist 𝜈 ∈ {0, 1}

and an efficient adversary A where���Pr[EXP(𝜈 )SSBE (1𝜆,A) = 1] − Pr[EXP(rand)SSBE (1𝜆,A) = 1]
��� = 𝜀 (𝜆).

for some non-negligible 𝜀. We useA to construct an efficient adversaryB for the distinguishing problem fromLemma 7.8.

• On input the security parameter 1
𝜆
, run A(1𝜆) to obtain the number of user 1

𝑁
and a set 𝑆∗ ⊆ [𝑁 ].

• Let D = D𝑁 be the progression-free and double-free set of size 𝑁 and let E = {𝑑𝑖 + 𝑑 𝑗 | 𝑖, 𝑗 ∈ [𝑁 ] : 𝑖 ≠ 𝑗}
be the set of pairwise sums. Let 𝑓 : [𝑁 ] × [𝑁 ] → [𝑀] be the canonical function where 𝑒𝑓 (𝑖, 𝑗 ) = 𝑑𝑖 + 𝑑 𝑗 for all

𝑖 ≠ 𝑗 . Let 𝑑max = max(D) and set 𝑞 = 4𝑑max + 2.

• Let C = {2𝑑𝑖 − 𝑑 𝑗 : 𝑖 ∈ [𝑁 ] \ 𝑆∗, 𝑗 ∈ 𝑆∗} and define

𝑆0 = [2𝑞] \ (C ∪ {𝑞})
𝑆1 = {𝑞 − 𝑐 : 𝑐 ∈ C} ∪ [𝑞 + 1, 2𝑞] .

Algorithm B gives (1𝑞, 𝑆0, 𝑆1) to the challenger and receives (G, 𝑠, [𝑡]G, {[𝑎 𝑗 ]G} 𝑗∈𝑆0
, {[𝑡 · 𝑎 𝑗 ]G} 𝑗∈𝑆1

, [𝑎𝑞]G𝑇 , r, 𝑏).

• Algorithm B samples 𝑠′ r← Z𝑝 and implicitly set 𝛼 = 𝑠𝑎𝑞 and 𝛽 = 𝑠′𝑎𝑞+1 +∑
𝑖∈[𝑁 \𝑆∗ ] 𝑠𝑎

𝑞−2𝑑𝑖
. It then computes

– [𝛼]G𝑇 = 𝑠 · [𝑎𝑞]G𝑇 ;
– [𝛽]G = 𝑠′ · [𝑎𝑞+1]G +

∑
𝑗∈[𝑁 ]\𝑆∗ 𝑠 · [𝑎𝑞−2𝑑 𝑗 ]G;

– for all 𝑖 ∈ [𝑁 ], [𝑢𝑖 ]G = [𝑎𝑑𝑖 ]G and [𝛽𝑢𝑖 ]G = 𝑠′ · [𝑎𝑞+1+𝑑𝑖 ]G +
∑

𝑗∈[𝑁 ]\𝑆∗ 𝑠 · [𝑎𝑞−2𝑑 𝑗+𝑑𝑖 ]G;
– for all 𝑖 ∈ [𝑀], [𝛽𝑣𝑖 ]G = 𝑠′ · [𝑎𝑞+1+𝑒𝑖 ]G +

∑
𝑗∈[𝑁 ]\𝑆∗ 𝑠 · [𝑎𝑞−2𝑑 𝑗+𝑒𝑖 ]G.

Algorithm B responds to A with mpk = (G,D, [𝛽]G, [u]G, [𝛽u]G, [𝛽v]G, [𝛼]G𝑇 , r).

• For each key-generation query 𝑖 ∈ [𝑁 ] \ 𝑆∗ from A, the algorithm B computes

[𝛾𝑖 ]G = −𝑠′ · [𝑎𝑞+1+2𝑑𝑖 ]G −
∑︁

𝑗∈[𝑁 ]\(𝑆∗∪{𝑖 })
𝑠 · [𝑎𝑞−2𝑑 𝑗+2𝑑𝑖 ]G (7.1)

and sends sk𝑖 = [𝛾𝑖 ]G to A.
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• When A makes a challenge query 𝑆 ⊆ 𝑆∗, algorithm B sets

𝐶1 = 𝑏 ⊕ 𝜈, [𝐶2]G = [𝑡]G, [𝐶3]G =
∑︁
𝑘∈𝑆

©­«𝑠′ · [𝑡𝑎𝑞+1+𝑑𝑘 ]G +
∑︁

𝑗∈[𝑁 ]\𝑆∗
𝑠 · [𝑡𝑎𝑞−2𝑑 𝑗+𝑑𝑘 ]Gª®¬ (7.2)

and replies to A with ct = (𝐶1, [𝐶2]G, [𝐶3]G).

• At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} which algorithm B also outputs.

We first argue that B is an admissible algorithm.

• Since D is double free, 0 ∉ C. Thus, by definition 𝑞 ∉ 𝑆0, 𝑞 ∉ 𝑆1.

• Furthermore, for all 𝑦 ∈ 𝑆1 ∩ [𝑞 − 1], 𝑦 is of the form 𝑦 = 𝑞 − 𝑐 for some 𝑐 ∈ C. By definition of 𝑆0, 𝑐 ∉ 𝑆0.

Hence, there does not exist 𝑠0 ∈ 𝑆0 and 𝑠1 ∈ 𝑆1 where 𝑞 = 𝑠0 + 𝑠1.

We conclude that B is admissible. Now we show that B correctly simulates either EXP(rand)SSBE or EXP(𝜈 )SSBE.

• Algorithm B sets 𝛼 = 𝑠𝑎𝑞 and 𝛽 = 𝑠′𝑎𝑞+1 + ∑
𝑗∈[𝑁 ]\𝑆∗ 𝑠𝑎

𝑞−2𝑑 𝑗
. Since the challenger samples 𝑠

r← Z𝑝 and

algorithm B samples 𝑠′ r← Z𝑝 , both 𝛼 and 𝛽 are independently uniform in Z𝑝 as long as 𝑎𝑞, 𝑎𝑞+1 ≠ 0. Since the

challenger samples 𝑎
r← Z𝑝 , with probability at least 1 − (𝑞 + 1)/𝑝 , it will be the case that 𝑎𝑞 and 𝑎𝑞+1 are both

non-zero. Finally, 𝑞 = poly(𝑁 ) = poly(𝜆), so with overwhelming probability over the choice of 𝑎, the values

of 𝛼, 𝛽 are distributed as in EXP(rand)SSBE and EXP(𝛽 )SSBE.

• We now consider each component of the master public key and show that they can be constructed from

components in the challenge and that they are correctly distributed. First, by definition max(C) ≤ 2𝑑max < 𝑞/2.
Thus [𝑞/2, 𝑞 − 1] ∪ [𝑞 + 1, 2𝑞] ⊆ 𝑆0. We now consider each component in the master public key:

– First, we argue that algorithm B can compute [𝛽]G from the elements in the challenge. First, 𝑞 − 2𝑑𝑖 ∈ 𝑆0

for all 𝑖 ∈ [𝑁 ] because 𝑑𝑖 ∈ N and 𝑞 − 2𝑑𝑖 > 𝑞/2. We also have 𝑞 + 1 ∈ 𝑆0. Therefore all of the components

[𝑎𝑞−2𝑑𝑖 ]G and [𝑎𝑞+1]G are included in the challenge so algorithm B can successfully construct [𝛽]G.
As argued previously, the distribution of 𝛽 is uniform over Z𝑝 with overwhelming probability because

algorithm B samples 𝑠′ r← Z𝑝 .
– Consider the elements [𝑢𝑖 ]G. We first show that 𝑑𝑖 ∉ C which means 𝑑𝑖 ∈ 𝑆0. Suppose that 𝑑𝑖 ∈ C. This

means 𝑑𝑖 = 2𝑑 𝑗 − 𝑑𝑘 for some 𝑗 ≠ 𝑘 . We consider a few sub-cases:

∗ If 𝑑𝑖 ≠ 𝑑 𝑗 , 𝑑𝑘 , then 𝑑𝑖 + 𝑑𝑘 = 2𝑑 𝑗 , which contradicts the assumption that D is progression-free.

∗ If 𝑑𝑖 = 𝑑 𝑗 , then 𝑑 𝑗 = 𝑑𝑘 which is a contradiction since 𝑗 ≠ 𝑘 and the elements of D are distinct.

∗ If 𝑑𝑖 = 𝑑𝑘 , then again we have 𝑑 𝑗 = 𝑑𝑘 , which contradicts the requirement 𝑗 ≠ 𝑘 .

We conclude that 𝑑𝑖 ∉ C, which means 𝑑𝑖 ∈ 𝑆0. Thus, algorithm B correctly simulates [𝑢𝑖 ]G for all 𝑖 ∈ [𝑁 ].
– Consider the elements [𝛽𝑢𝑖 ]G. First, for all 𝑗 ≠ 𝑖 , we have 𝑞 − 2𝑑 𝑗 + 𝑑𝑖 > 𝑞 − 2𝑑max > 𝑞/2. Moreover,

𝑞−2𝑑 𝑗 +𝑑𝑖 ≠ 𝑞 sinceD is double-free. This means 𝑞−2𝑑 𝑗 +𝑑𝑖 ∈ 𝑆0. We also have 𝑞+1+𝑑𝑖 ∈ [𝑞+1, 2𝑞] ⊂ 𝑆0.

Thus, algorithm B simulates these terms exactly as in EXP(rand)SSBE and EXP(𝜈 )SSBE.

– Finally, consider [𝛽𝑣𝑖 ]G. First, for all 𝑗 ≠ 𝑖 , 𝑞−2𝑑 𝑗 +𝑒𝑖 > 𝑞−2𝑑max > 𝑞/2. Now, we show that 𝑞−2𝑑 𝑗 +𝑒𝑖 ≠ 𝑞.

By construction 𝑒𝑖 = 𝑑𝑖1 + 𝑑𝑖2 for some distinct 𝑖1, 𝑖2 ∈ [𝑁 ]. We consider several possibilities:

∗ Suppose 𝑗 ≠ 𝑖1, 𝑖2. In this case, if 𝑞−2𝑑 𝑗 +𝑒𝑖 = 𝑞, then 𝑑𝑖1 +𝑑𝑖2 = 2𝑑 𝑗 , which contradicts the assumption

that D is progression-free.

∗ Suppose 𝑗 = 𝑖1 or 𝑗 = 𝑖2. In this case, if 𝑞 − 2𝑑 𝑗 + 𝑒𝑖 = 𝑞, then 𝑑𝑖1 = 𝑑𝑖2 , which contradicts the fact that

𝑖1 and 𝑖2 are distinct indices.

We conclude that 𝑞 − 2𝑑 𝑗 + 𝑒𝑖 > 𝑞/2 and 𝑞 − 2𝑑 𝑗 + 𝑒𝑖 ≠ 𝑞. In this case, 𝑞 − 2𝑑 𝑗 + 𝑒𝑖 ∈ 𝑆0, so algorithm B
correctly simulates these terms exactly as in EXP(rand)SSBE and EXP(𝜈 )SSBE.
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We conclude that all of the components in the master public key are constructed according to the specification

of EXP(rand)SSBE and EXP(𝜈 )SSBE.

• Next, consider the key-generation queries. First, we argue that algorithmB can compute Eq. (7.1) using the terms

from the challenge. Consider Eq. (7.1) for some index 𝑖 ∈ [𝑁 ]\𝑆∗. First, 𝑞−2𝑑 𝑗 +2𝑑𝑖 > 𝑞−2𝑑max > 𝑞/2. Moreover,

when 𝑗 ≠ 𝑖 , we have that 𝑞−2𝑑 𝑗 +2𝑑𝑖 ≠ 𝑞, so this means 𝑞−2𝑑 𝑗 +2𝑑𝑖 ∈ 𝑆0. Similarly, 𝑞+1+2𝑑𝑖 ∈ [𝑞+1, 2𝑞] ⊂ 𝑆0.

Thus, algorithm B is able to compute [𝛾𝑖 ]G from the challenge components. Furthermore, from Eq. (7.1) and

using the fact that 𝑖 ∉ 𝑆∗, we can write

𝛾𝑖 = −𝑠′𝑎𝑞+1+2𝑑𝑖 −
∑︁

𝑗∈[𝑁 ]\(𝑆∗∪{𝑖 })
𝑠𝑎𝑞−2𝑑 𝑗+2𝑑𝑖

= 𝑠𝑎𝑞 − 𝑠′𝑎𝑞+1+2𝑑𝑖 −
∑︁

𝑗∈[𝑁 ]\𝑆∗
𝑠𝑎𝑞−2𝑑 𝑗+2𝑑𝑖

= 𝑠𝑎𝑞 − ©­«𝑠′𝑎𝑞+1 +
∑︁

𝑗∈[𝑁 ]\𝑆∗
𝑠𝑎𝑞−2𝑑 𝑗

ª®¬𝑎2𝑑𝑖 = 𝛼 − 𝛽𝑢2

𝑖 .

We conclude that algorithm B simulates the secret keys exactly as in EXP(rand)SSBE and EXP(𝜈 )SSBE.

• Finally, consider the challenge ciphertext. As usual, we start by showing that algorithm B can compute

Eq. (7.2) using the terms from the challenge. Observe that for all 𝑘 ∈ 𝑆 ⊆ 𝑆∗ and all 𝑗 ∈ [𝑁 ] \ 𝑆∗, we have
that 2𝑑 𝑗 − 𝑑𝑘 ∈ C by construction. Thus 𝑞 − 2𝑑 𝑗 + 𝑑𝑘 ∈ 𝑆1. We also have 𝑞 + 1 + 2𝑑𝑘 ∈ [𝑞 + 1, 2𝑞] ⊂ 𝑆1.

Hence B receives all [𝑡𝑎𝑞−2𝑑 𝑗+𝑑𝑘 ]G and [𝑡𝑎𝑞+1+𝑑𝑘 ]G from the challenge and can simulate 𝐶3 as described. Since

the challenger samples 𝑡
r← Z𝑝 , the distribution of 𝐶2 is exactly as in EXP(rand)SSBE and EXP(𝜈 )SSBE. Consider the

distribution of 𝐶3. By definition, we have

𝐶3 =
∑︁
𝑘∈𝑆

©­«𝑠′ · 𝑡𝑎𝑞+1+𝑑𝑘 +
∑︁

𝑗∈[𝑁 ]\𝑆∗
𝑠𝑡𝑎𝑞−2𝑑 𝑗+𝑑𝑘 ª®¬

=
∑︁
𝑘∈𝑆

𝑡𝑎𝑑𝑘
©­«𝑠′𝑎𝑞+1 +

∑︁
𝑗∈[𝑁 ]\𝑆∗

𝑠𝑎𝑞−2𝑑 𝑗
ª®¬

=
∑︁
𝑘∈𝑆

𝑡𝑎𝑑𝑘 𝛽 = 𝑡
∑︁
𝑘∈𝑆

𝛽𝑢𝑘 ,

which is exactly the distribution in EXP(rand)SSBE and EXP(𝜈 )SSBE. Finally, consider the distribution of 𝐶1:

– If 𝑏 = hc( [𝑠𝑡𝑎𝑞]G𝑇 , r) = hc( [𝑡𝛼]G𝑇 , r), then 𝐶1 = 𝑏 ⊕ 𝜈 , which is the distribution of 𝐶1 in EXP(𝜈 )SSBE.

– If 𝑏
r← {0, 1}, 𝐶1 = 𝑏 ⊕ 𝜈 is uniformly random, which is the distribution in EXP(rand)SSBE .

Thus, depending on the distribution of 𝑏 (and with overwhelming probability over the choice of the challenge), algo-

rithm B either simulates an execution of EXP(𝜈 )SSBE or EXP
(rand)
SSBE . Thus, we conclude that B succeeds in distinguishing

the distributions in Lemma 7.8 with advantage 𝜀 (𝜆) −negl(𝜆). As argued above, algorithm B is also admissible, which

concludes the proof of semi-static security. □

Instantiations. Instantiating the double-free and progression-free set family in Construction 7.5 with Lemma 7.3,

we obtain a semi-statically-secure broadcast encryption scheme where the public parameters contain 𝑁 1+𝑜 (1)
group

elements and the secret keys and ciphertexts contain a constant number of group elements. Security follows from

a search assumption. We summarize the instantiation below:

Corollary 7.9 (Semi-Statically-Secure Broadcast Encryption Scheme). Let 𝑁 be the number of users. Under the search
set-consistent bilinear Diffie-Hellman exponent assumption, there exists a semi-statically-secure broadcast encryption
where the public keys contain 𝑁 1+𝑜 (1) group elements, the secret keys contain one group element, and the ciphertexts
contain two group elements.
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A Distributed Broadcast Encryption
In this section, we give the definition of distributed broadcast encryption along with the semi-static to adaptive

transformation for distributed broadcast encryption schemes. The construction is almost identical to the construction

for centralized broadcast encryption given in Construction 5.1. We start by recalling the definition of distributed

broadcast encryption.

Definition A.1 (Distributed Broadcast Encryption [BZ14, KMW23]). A distributed broadcast encryption scheme

is a tuple of efficient algorithms (Setup,KeyGen, IsValid, Enc,Dec) with the following syntax:

• Setup(1𝜆, 1𝑁 ) → pp: On input the security parameter 𝜆 and the number of users 𝑁 , the setup algorithm outputs

the public parameters pp.

• KeyGen(pp, 𝑖) → (pk𝑖 , sk𝑖 ): On input the public parameters pp and an index 𝑖 ∈ [𝑁 ], the key-generation
algorithm outputs a public key and a secret key (pk𝑖 , sk𝑖 ).
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• IsValid(pp, 𝑖, pk𝑖 ) → 𝑏: On input the public parameters pp, an index 𝑖 ∈ [𝑁 ], and a public key pk𝑖 , the
validity-checking algorithm outputs a bit 𝑏 ∈ {0, 1}.

• Enc(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , 𝜇) → ct: On input the public parameters pp, a collection of public keys pk𝑖 and a message

𝜇 ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• Dec(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , ct, ( 𝑗, sk𝑗 )) → 𝜇: On input the public parameters pp, a collection of public keys pk𝑖 , a
ciphertext ct, and a secret key sk𝑗 for an index 𝑗 , the decryption algorithm outputs a message 𝜇 ∈ {0, 1}.

We require that (Setup,KeyGen, IsValid, Enc,Dec) satisfy the following properties:

• Correctness: For all 𝜆, 𝑁 ∈ N, 𝑖 ∈ [𝑁 ], all 𝑆 ⊆ [𝑁 ] such that 𝑖 ∈ 𝑆 , all pp in the support of Setup(1𝜆, 1𝑁 ), all
(pk𝑖 , sk𝑖 ) in the support of KeyGen(pp, 𝑖), all {pk𝑗 } 𝑗∈𝑆\{𝑖 } such that IsValid(pp, 𝑗, pk𝑗 ) = 1 for all 𝑗 ∈ 𝑆 \ {𝑖},
and all 𝜇 ∈ {0, 1}, we have

Pr[Dec(pp, {( 𝑗, pk𝑘 )} 𝑗∈𝑆 , ct, (𝑖, sk𝑖 )) = 𝜇 : ct← Enc(pp, {( 𝑗, pk𝑗 )}𝑖∈𝑆 , 𝜇)] = 1.

• Verifiable keys: For all 𝜆, 𝑁 ∈ N, and all indices 𝑖 ∈ [𝑁 ], it holds that

Pr

[
IsValid(pp, 𝑖, pk𝑖 ) = 1 :

pp← Setup(1𝜆, 1𝑁 )
(pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖)

]
= 1.

• Succinctness: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑁 ∈ N, all subsets 𝑆 ⊆ [𝑁 ], all
public parameters pp in the support of Setup(1𝜆1

𝑁 ), all key-pairs (pk𝑖 , sk𝑖 ) in the support of KeyGen(pp, 𝑖)
for 𝑖 ∈ 𝑆 , all messages 𝜇 ∈ {0, 1}, and all ciphertexts ct in the support of Enc(pp, {pk𝑖 }𝑖∈𝑆 , 𝜇, 𝑆), it holds that
|ct| ≤ 𝑜 ( |𝑆 |) · poly(𝜆, log𝑁 ).

We also define adaptive security and semi-static security as follows:

• Adaptive security: For a security parameter 𝜆, an adversary A, and a bit 𝛽 ∈ {0, 1}, we define the adaptive
security experiment EXP(𝛽 )DBE (1𝜆,A):

– Setup: On input the security parameter 1
𝜆
, the adversary outputs the number of users 1

𝑁
. The challenger

samples pp← Setup(1𝜆, 1𝑁 ) and sends pp to A. The challenger also initializes two (initially empty) sets

Q and C to keep track of the set of identities on which A makes a key-generation query and the set of

identities on which A makes a corruption query, respectively.

– Query phase: The adversary A can (adaptively) make the following queries.

∗ Key generation queries: On input index 𝑖 ∈ [𝑁 ], if 𝑖 ∈ Q, the query is invalid and the challenger

responds with ⊥. Otherwise, the challenger samples (pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖), sends pk𝑖 to A,

and add 𝑖 to Q.
∗ Key corruption queries: On input index 𝑖 ∈ [𝑁 ], if 𝑖 ∉ Q \C, the query is invalid and the challenger
responds with ⊥. Otherwise the challenger responds with sk𝑖 and add 𝑖 to C.

– Challenge query: AfterA finishes making evaluation queries, it sends a set 𝑆 ⊆ Q \ C to the challenger.

The challenger then computes ct𝛽 ← Enc(pp, {pk𝑖 }𝑖∈𝑆 , 𝛽) and sends ct𝛽 to A.

– Output: At the end of the game, A outputs 𝑏 ∈ {0, 1}, which is the output of the experiment.

We say that ΠDBE satisfies adaptive security if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N,���Pr[EXP(0)DBE (1𝜆,A) = 1] − Pr[EXP(1)DBE (1𝜆,A) = 1]
��� = negl(𝜆).

• Semi-static security: For a security parameter 𝜆, an adversaryA, and a bit 𝛽 ∈ {0, 1}, we define the semi-static

security experiment EXP(𝛽 )SSDBE (1𝜆,A):
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– Setup: On input the security parameter 1
𝜆
, the adversary outputs the number of users 1

𝑁
, along with

a set 𝑆∗. The challenger samples pp← Setup(1𝜆, 1𝑁 ) and sends pp to A. Next, the challenger samples

(pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖) for all 𝑖 ∈ 𝑆∗ and sends {pk𝑖 }𝑖∈𝑆∗ to A.

– Challenge query: The adversary A sends a set 𝑆 ⊆ 𝑆∗ to the challenger. The challenger computes

ct𝛽 ← Enc(pp, {pk𝑖 }𝑖∈𝑆 , 𝛽) and sends ct𝛽 to A.

– Output: At the end of the game, A outputs 𝑏 ∈ {0, 1}, which is the output of the experiment.

We say that ΠDBE satisfies semi-static security if for all efficient adversariesA, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N,���Pr[EXP(0)SSDBE (1𝜆,A) = 1] − Pr[EXP(1)SSDBE (1𝜆,A) = 1]
��� = negl(𝜆).

Semi-static to adaptive security. Wenow showhow to use publicly-sampleable projective PRGs to generically com-

pile any semi-statically-secure distributed broadcast encryption scheme into an adaptively-secure one. Our approach is

an adaptation of Construction 5.1 to the setting of distributed broadcast encryption. Previously, [KMW23] showed how

to apply the Gentry-Waters compiler [GW09] to achieve an analogous transformation in the random oraclemodel. Our

approach is the plain-model analog where we replace the random oracle with a publicly-sampleable projective PRG.

ConstructionA.2 (Adaptively-SecureDistributed Broadcast Encryption). LetΠSS = (SS.Setup, SS.KeyGen, SS.IsValid,
SS.Enc, SS.Dec) be a semi-statically-secure distributed broadcast encryption scheme. Let ΠpPRG = (pPRG.Setup,
pPRG.Samp, pPRG.Project, pPRG.Eval) be a publicly-sampleable projective PRG. We construct an adaptively-secure

broadcast encryption ΠDBE = (Setup,KeyGen, IsValid, Enc,Dec) as follows:

• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and the number of users ℓ , the setup algorithm proceeds as

follows:

1. Samples (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ).
2. Sample SS.pp← SS.Setup(1𝜆, 12𝑁 ). For ease of exposition, we index the set [2𝑁 ] using a pair (𝑖, 𝑏) ∈
[ℓ] × {0, 1}.

3. Output pp = (SS.pp, pPRG.pp).

• KeyGen(pp, 𝑖): On input the public parameters pp = (SS.pp, pPRG.pp), the key-generation algorithm samples

(SS.pk(𝑖,0) , SS.sk(𝑖,0) ) ← SS.KeyGen(SS.pp, (𝑖, 0)) and (SS.pk(𝑖,1) , SS.sk(𝑖,1) ) ← SS.KeyGen(SS.pp, (𝑖, 1)). It
then samples a random bit 𝑠𝑖

r← {0, 1} and output key pair pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ), sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk(𝑖,𝑠𝑖 ) ).

• IsValid(pp, 𝑖, pk𝑖 ): On input the public parameters pp = (SS.pp, pPRG.pp), an index 𝑖 ∈ [𝑁 ], and a public key

pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ) the validity-checking algorithm output 1 if SS.IsValid(SS.pp, (𝑖, 0), SS.pk(𝑖,0) ) = 1

and SS.IsValid(SS.pp, (𝑖, 1), SS.pk(𝑖,1) ) = 1. The algorithm outputs 0 otherwise.

• Enc(pp, {𝑖, pk𝑖 }𝑖∈𝑆 , 𝜇): On input the public parameters pp = (SS.pp, pPRG.pp), and a set 𝑆 ⊆ [𝑁 ] of public
keys pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ), and a message 𝜇 ∈ {0, 1}, the encryption algorithm proceeds as follows:

1. Sample 𝜎𝑆 ← pPRG.Samp(pp, 𝑆).
2. For each 𝑖 ∈ 𝑆 , compute 𝑡𝑖 = pPRG.Eval(pPRG.pp, 𝜎𝑆 , 𝑆, 𝑖).
3. Compute ciphertexts

SS.ct0 ← SS.Enc(SS.mpk, {(𝑖, 𝑡𝑖 ), SS.pk(𝑖,𝑡𝑖 ) }𝑖∈𝑆 , 𝜇),
SS.ct1 ← SS.Enc(SS.mpk, {(𝑖, 1 − 𝑡𝑖 ), SS.pk(𝑖,1−𝑡𝑖 ) }𝑖∈𝑆 , 𝜇).

Output the ciphertext ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

• Dec(pp, {𝑖, pk𝑖 }𝑖∈𝑆 , ct, ( 𝑗, sk𝑗 )): On input the public parameters pp = (SS.pp, pPRG.pp), a set 𝑆 ⊆ [𝑁 ] of
public keys pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ), the secret key sk𝑗 = (𝑠 𝑗 , SS.sk( 𝑗,𝑠 𝑗 ) ) for some 𝑗 ∈ 𝑆 , and a ciphertext

ct = (SS.ct0, SS.ct1, 𝜎), the decryption algorithm proceeds as follows:
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1. For each 𝑖 ∈ 𝑆 , compute 𝑡𝑖 = pPRG.Eval(pPRG.pp, 𝜎, 𝑆, 𝑖). Let 𝑏 = 𝑡 𝑗 ⊕ 𝑠 𝑗 .
2. Finally, compute and output SS.Dec(SS.pp, {(𝑖, 𝑡𝑖 ⊕ 𝑏), SS.pk(𝑖,𝑡𝑖⊕𝑏 ) }𝑖∈𝑆 , SS.sk( 𝑗,𝑠 𝑗 ) , SS.ct𝑏).

Theorem A.3 (Correctness). If ΠSS is correct, then Construction A.2 is correct.

Proof. Take any 𝜆, 𝑁 ∈ N. Take any set 𝑆 ⊆ [𝑁 ] and index 𝑖 ∈ 𝑆 , any message 𝜇 ∈ {0, 1}. Let (mpk,msk) ←
Setup(1𝜆, 1𝑁 ), sk𝑖 ← KeyGen(msk, 𝑖), and ct← Enc(mpk, 𝑆, 𝜇). By construction, the following hold:

• First, pp = (SS.mpk, pPRG.pp), where SS.pp← SS.Setup(1𝜆, 12𝑁 ) and (pPRG.pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ).

• Next, pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ), sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk(𝑖,𝑠𝑖 ) ) where 𝑠𝑖
r← {0, 1} and

(SS.pk(𝑖,0) , SS.sk(𝑖,0) ) ← SS.KeyGen(SS.pp, (𝑖, 0))
(SS.pk(𝑖,1) , SS.sk(𝑖,1) ) ← SS.KeyGen(SS.pp, (𝑖, 1)) .

• Finally, ct = (SS.ct0, SS.ct1, 𝜎𝑆 ), where

𝜎𝑆 ← pPRG.Samp(pPRG.pp, 𝑆)
∀𝑖 ∈ 𝑆 : 𝑡𝑖 = pPRG.Eval(pPRG.pp, 𝜎𝑆 , 𝑆, 𝑖)

SS.ct0 ← SS.Enc(SS.mpk, {(𝑖, 𝑡𝑖 )SS.pk(𝑖,𝑡𝑖 ) }𝑖∈𝑆 , 𝜇)
SS.ct1 ← SS.Enc(SS.mpk, {(𝑖, 1 − 𝑡𝑖 ), SS.pk(𝑖,1−𝑡𝑖 ) }𝑖∈𝑆 , 𝜇).

Consider now the value of Dec(pp, {𝑖, pk𝑖 }𝑖∈𝑆 , ct, ( 𝑗, sk𝑗 )). By construction, ( 𝑗, 𝑡 𝑗 ⊕ 𝑏) = ( 𝑗, 𝑡 𝑗 ⊕ (𝑡 𝑗 ⊕ 𝑠 𝑗 )) = ( 𝑗, 𝑠 𝑗 ).
Hence by the correctness of ΠSS, this means that with probability 1,

𝜇 = SS.Dec(SS.pp, {(𝑖, 𝑡𝑖 ⊕ 𝑏), SS.pk(𝑖,𝑡𝑖⊕𝑏 ) }𝑖∈𝑆 , SS.sk( 𝑗,𝑠 𝑗 ) , SS.ct𝑏),

and correctness follows. □

Theorem A.4 (Verifiable Keys). If ΠSS has verifiable keys, then so does Construction A.2.

Proof. By construction, the public key in ΠDBE consists of two public keys of ΠSS. The property now follows by the

verifiable keys property of the underlying scheme:

Pr

[
IsValid(pp, 𝑖, pk𝑖 ) = 1 :

pp← Setup(1𝜆, 1𝑁 )
(pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖)

]
= Pr


SS.IsValid(SS.pp, (𝑖, 0), SS.pk(𝑖,0) ) = 1

and SS.IsValid(SS.pp, (𝑖, 1), SS.pk(𝑖,1) ) = 1

:

SS.pp← SS.Setup(1𝜆, 12𝑁 )
(SS.pk𝑖,0, SS.sk𝑖,0) ← SSKeyGen(SS.pp, (𝑖, 0))
(SS.pk𝑖,1, SS.sk𝑖,0) ← SSKeyGen(SS.pp, (𝑖, 1))

 = 1.

The claim follows. □

Theorem A.5 (Adaptive Security). Suppose ΠSS satisfies semi-static security and ΠpPRG satisfies correctness, sampling
indistinguishability, and adaptive pseudorandomness. Then Construction A.2 is adaptively secure.

Proof. Let A be an efficient adversary for the adaptive broadcast security game. We begin by defining a sequence

of hybrid experiments:

• Hyb
0
: This is the adaptive experiment EXP(0)DBE from Definition A.1:

– Setup: On input the security parameter 1
𝜆
, algorithm A outputs the number of slots 1

𝑁
. The challenger

responds by computing pp ← Setup(1𝜆, 1𝑁 ) and gives pp = (SS.pp, pPRG.pp) to A. Specifically, the

challenger samples (pPRG.pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ), SS.pp ← SS.Setup(1𝜆, 12𝑁 ). The challenger
also initializes sets Q and C to keep track of key-generation queries and corruption queries, respectively.

49



– Query phase: The challenger handles queries as follows:

∗ Key-generation queries: On input index 𝑖 ∈ [𝑁 ], the challenger sends ⊥ to A if 𝑖 ∈ Q. Otherwise,
the challenger samples (pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖), sends pk𝑖 to A, and adds 𝑖 to Q. In particular,

pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ), sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk(𝑖,𝑠𝑖 ) ) where 𝑠𝑖
r← {0, 1} and

(SS.pk(𝑖,0) , SS.sk(𝑖,0) ) ← SS.KeyGen(SS.pp, (𝑖, 0))
(SS.pk(𝑖,1) , SS.sk(𝑖,1) ) ← SS.KeyGen(SS.pp, (𝑖, 1)) .

∗ Key-corruption queries: On input index 𝑖 ∈ [𝑁 ], the challenger sends ⊥ to A if 𝑖 ∉ Q \ C.
Otherwise the challenger sends sk𝑖 to A and add 𝑖 to C.

– Challenge query: After A outputs 𝑆 ⊆ Q \ C, the challenger responds with ct← Enc(pp, {𝑖, pk𝑖 }𝑖∈𝑆 , 0).
Specifically, the challenger first computes 𝑡𝑖 = pPRG.Eval(pPRG.pp, 𝜎𝑆 , 𝑆, 𝑖) for all 𝑖 ∈ 𝑆 and set ciphertext

ct = (SS.ct0, SS.ct1, 𝜎𝑆 ) where

SS.ct0 ← SS.Enc(SS.mpk, {(𝑖, 𝑡𝑖 )SS.pk(𝑖,𝑡𝑖 ) }𝑖∈𝑆 , 0)
SS.ct1 ← SS.Enc(SS.mpk, {(𝑖, 1 − 𝑡𝑖 ), SS.pk(𝑖,1−𝑡𝑖 ) }𝑖∈𝑆 , 0).

– Output: At the end of the game, algorithmA outputs a bit𝑏 ∈ {0, 1}, which is the output of the experiment.

• Hyb
1
; Same as Hyb

0
except the challenger samples s = (𝑠1, . . . , 𝑠𝑁 ) r← {0, 1}𝑁 in the setup phase. Furthermore,

it delays the computation of sk𝑖 to the key-corruption queries. In particular, when responding to key-generation

queries, the challenger samples the key pairs (SS.pk(𝑖,0) , SS.sk(𝑖,0) ), (SS.pk(𝑖,1) , SS.sk(𝑖,1) ) exactly as inHyb0
and

replies with pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ). It also stores (SS.sk(𝑖,0) , SS.sk(𝑖,0) ). IfA later makes a key-corruption

query on index 𝑖 , then the challenger samples 𝑠𝑖
r← {0, 1} and replies with sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk(𝑖,𝑠𝑖 ) ) Note that in

this hybrid, the challenger’s behavior in a key-generation query does not depend on the bit 𝑠𝑖 .

• Hyb
2
: Same as Hyb

1
except when constructing the challenge ciphertext, the challenger now computes

𝜎𝑆 ← pPRG.Project(pPRG.pp, 𝜎, 𝑆).

• Hyb
3
: Same as Hyb

2
, except during setup, the challenger computes 𝜎[𝑁 ] ← pPRG.Project(pp, 𝜎, [𝑁 ]), and on

each key-corruption query, the challenger sets 𝑠𝑖 = pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖).

• Hyb
4
: Same as Hyb

3
except the challenger switches SS.ct1 to be an encryption of 1. Namely, the challenger

now computes SS.ct1 ← SS.Enc(SS.mpk, 𝑆1, 1).

• Hyb
5
: Same as Hyb

4
, except on every key-corruption query, the challenger samples 𝑠𝑖

r← {0, 1}.

• Hyb
6
: Same as Hyb

5
, except during setup, the challenger first computes 𝜎[𝑁 ] ← pPRG.Project(pp, 𝜎, [𝑁 ]), and

on every key-corruption query, the challenger sets 𝑠𝑖 = 1 − pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖).

• Hyb
7
: Same as Hyb

6
, except the challenger switches SS.ct0 to be an encryption of 1. Namely, the challenger

now computes SS.ct0 ← SS.Enc(SS.mpk, 𝑆0, 1).

• Hyb
8
: Same as Hyb

7
except the challenger now samples s r← {0, 1}𝑁 during the setup phase.

• Hyb
9
: Same as Hyb

8
except when constructing the challenge ciphertext, the challenger samples 𝜎𝑆 ←

pPRG.Samp(pp, 𝑆).

• Hyb
10
: Same as Hyb

9
except the challenger now samples 𝑠𝑖 in key-generation queries. In particular, when

responding to a key-generation query, the challenger samples (SS.pk(𝑖,0) , SS.sk(𝑖,0) ), (SS.pk(𝑖,1) , SS.sk(𝑖,1) ) as
in Hyb

9
. Then, it samples 𝑠𝑖

r← {0, 1} and sets pk𝑖 = (SS.pk(𝑖,0) , SS.pk(𝑖,1) ), sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk(𝑖,𝑠𝑖 ) ). This is
experiment EXP(1)DBE from Definition A.1.
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We write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb𝑖 with
adversary A (and an implicit security parameter 𝜆). We now show that the output distributions of each adjacent

pair of hybrid experiments is computationally indistinguishable.

Lemma A.6. For all 𝜆 ∈ N, Pr[Hyb
0
(A) = 1] = Pr[Hyb

1
(A) = 1].

Proof. Note that in Hyb
0
, the bit 𝑠𝑖 is never revealed to the adversary A unless it makes a key corruption query on

index 𝑖 . Therefore the view of A is identical in both hybrids and the lemma follows. □

Lemma A.7. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb
1
(A) = 1] − Pr[Hyb

2
(A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the sampling indistinguishability game:

1. On input the security parameter 1
𝜆
, algorithm B starts running algorithmA(1𝜆). AlgorithmA outputs a length

parameter 1
𝑁
which algorithm B forwards to its challenger. The sampling indistinguishability challenger

replies with pPRG.pp.

2. Algorithm B samples s r← {0, 1}𝑁 , SS.pp← SS.Setup(1𝜆, 12𝑁 ) and gives pp = (SS.pp, pPRG.pp) to A.

3. Algorithm B implements all of the key-generation and key-corruption queries from A using the challenger

specification of Hyb
1
.

4. When algorithm A makes a challenge query for the set 𝑆 ⊆ Q \ C, algorithm B forwards 𝑆 to its challenger

and receives 𝜎𝑆 .

5. For each 𝑖 ∈ 𝑆 , algorithm B computes 𝑡𝑖 = pPRG.Eval(pPRG.pp, 𝜎𝑆 , 𝑆, 𝑖). It then sets

SS.ct0 ← SS.Enc(SS.mpk, {(𝑖, 𝑡𝑖 ), SS.pk(𝑖,𝑡𝑖 ) }𝑖∈𝑆 , 0)
SS.ct1 ← SS.Enc(SS.mpk, {(𝑖, 1 − 𝑡𝑖 ), SS.pk(𝑖,1−𝑡𝑖 ) }𝑖∈𝑆 , 0).

The challenger responds with ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

6. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution of EXP(0)samp (1𝜆,B) for 𝛽 ∈ {0, 1}:

• Suppose 𝛽 = 0. This means (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and 𝜎𝑆 ← pPRG.Samp(pp, 𝑆). This is the distribu-
tion in Hyb

1
, so algorithm B outputs 1 with probability Pr[Hyb

1
(A) = 1].

• Suppose 𝛽 = 1. This means (pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆). This is the
distribution in Hyb

2
, so algorithm B outputs 1 with probability Pr[Hyb

2
(A) = 1].

We conclude that algorithm B breaks mode indistinguishability with non-negligible advantage 𝜀. □

Lemma A.8. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

2
(A) = 1] − Pr[Hyb

3
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb
2
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the adaptive pseudorandomness game:

1. On input the security parameter 1
𝜆
, algorithm B starts running algorithmA(1𝜆). AlgorithmA outputs a length

parameter 1
𝑁
which algorithm B forwards to its challenger. The sampling indistinguishability challenger

replies with pPRG.pp.

2. Algorithm B samples SS.pp← SS.Setup(1𝜆, 12𝑁 ) and gives pp = (SS.mpk, pPRG.pp) to A.
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3. When algorithm A makes a key-corruption query on an index 𝑖 ∈ Q \ C, algorithm B makes an evaluation

query to its challenger on 𝑖 and receives 𝑠𝑖 . It then returns sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk(𝑖,𝑠𝑖 ) ). Algorithm B implements

all key-generation queries using the challenger specification of Hyb
2
.

4. When algorithm A makes a challenge query for the set 𝑆 ⊆ Q \ S, algorithm B makes an evaluation query

on all indices [𝑁 ] \ 𝑆 . It then makes a challenge query and receives 𝜎𝑆 .

5. For each 𝑖 ∈ 𝑆 , algorithm B computes 𝑡𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖). It then sets

SS.ct0 ← SS.Enc(SS.mpk, {(𝑖, 𝑡𝑖 ), SS.pk(𝑖,𝑡𝑖 ) }𝑖∈𝑆 , 0)
SS.ct1 ← SS.Enc(SS.mpk, {(𝑖, 1 − 𝑡𝑖 ), SS.pk(𝑖,1−𝑡𝑖 ) }𝑖∈𝑆 , 0).

The challenger responds with ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

6. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution EXP(𝛽 )prg (1𝜆,B). First, let 𝐼 ⊆ [𝑁 ] be the indices algorithm B makes to its evaluation

oracle. First, from the requirements of the distributed broadcast security definition, we have that 𝑆 ⊆ Q \ C. This
means C ⊆ Q \ 𝑆 ⊆ [𝑁 ] \ 𝑆 . Then by construction of B, we have that 𝐼 = C ∪ ([𝑁 ] \ 𝑆) = [𝑁 ] \ 𝑆 . Correspondingly,
[𝑁 ] \ 𝐼 = 𝑆 . We now consider the distribution of of EXP(𝛽 )prg (1𝜆,B) for each 𝛽 ∈ {0, 1}:

• Suppose 𝛽 = 0. In this case, the challenger samples (pPRG.pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and computes 𝜎[𝑁 ] ←
pPRG.Project(pp, 𝜎, [𝑁 ]). It responds to each evaluation query on 𝑖 ∈ [𝑁 ] with 𝑠𝑖 = pPRG.Eval(pp, 𝜎, [𝑁 ], 𝑖).
Since [𝑁 ] \ 𝐼B = 𝑆 , the challenger responds with 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆) in the challenge phase. This is

precisely the behavior in Hyb
3
(A), so in this case, algorithm B outputs 1 with probability Pr[Hyb

3
(A) = 1].

• Suppose 𝛽 = 1. In this case, the challenger samples (pPRG.pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and u r← {0, 1}𝑁 . It
responds to each evaluation query on 𝑖 ∈ [𝑁 ] with 𝑠𝑖 = 𝑢𝑖 . In the challenge phase, the challenger again responds

with 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆). This is precisely the behavior in Hyb
2
(A), so in this case, algorithm B

outputs 1 with probability Pr[Hyb
2
(A) = 1].

We conclude that algorithm B breaks adaptive pseudorandomness with non-negligible advantage 𝜀. □

Lemma A.9. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb

3
(A) = 1] − Pr[Hyb

4
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb
3
(A) = 1] − Pr[Hyb

4
(A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the semi-static security game:

1. On input the security parameter 1
𝜆
, algorithm B starts running algorithm A(1𝜆). Algorithm A outputs a

length parameter 1
𝑁
. Algorithm B then initializes two (empty) sets Q and C.

2. Algorithm B samples (pPRG.pp, 𝜎) ← pPRG.Setup(1𝜆, 1𝑁 ) and 𝜎[𝑁 ] ← pPRG.Project(pPRG.pp, 𝜎, [𝑁 ]).
Then, for each 𝑖 ∈ [𝑁 ], it computes 𝑠𝑖 = pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖).

3. Algorithm B constructs the set 𝑆∗ = {(𝑖, 1− 𝑠𝑖 )}𝑖∈[𝑁 ] . It forwards 1
2𝑁

together with the set 𝑆∗ to the semi-static

security challenger. The challenger replies with SS.pp and a collection of public keys {SS.pk(𝑖,1−𝑠𝑖 ) }𝑖∈[𝑁 ] .
Algorithm B gives pp = (SS.pp, pPRG.pp) to A.

4. When algorithm A makes a key-generation query on an index 𝑖 ∈ [𝑁 ], algorithm B replies with ⊥ if 𝑖 ∈ Q.
Otherwise, it samples

(SS.pk𝑖,𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ) ← KeyGen(SS.pp, (𝑖, 𝑠𝑖 ))

and replies with pk𝑖 = (SS.pk𝑖,0, SS.pk𝑖,1). Algorithm B then adds 𝑖 to Q.

5. When algorithmA makes a key-corruption query on an index 𝑖 ∈ [𝑁 ], algorithm B replies with ⊥ if 𝑖 ∉ Q \ C.
Otherwise, it replies with sk𝑖 = (𝑖, 𝑠𝑖 , SS.sk𝑖,𝑠𝑖 ) and adds 𝑖 to C.
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6. When algorithm A makes a challenge query for a set 𝑆 ⊆ [𝑁 ], algorithm B starts by computing a pro-

jected seed 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆). Then it sets 𝑆0 = {(𝑖, 𝑠𝑖 )}𝑖∈𝑆 and 𝑆1 = {(𝑖, 1 − 𝑠𝑖 )}𝑖∈𝑆 . It computes

SS.ct0 ← SS.Enc(SS.pp, (𝑖, 𝑠𝑖 ), SS.pk𝑖,𝑠𝑖 (𝑖,𝑠𝑖 ) ∈𝑆0

, 0) and forwards 𝑆1 to the semi-static security challenger. The

challenger replies with a ciphertext SS.ct1. Algorithm B replies to A with ct = (SS.ct0, SS.ct1, 𝜎𝑆 ).

7. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which algorithm B also outputs.

By construction, algorithm B is a valid adversary for the semi-static security game. Specifically, the challenge set 𝑆1

always satisfies 𝑆1 ⊆ 𝑆∗. We now analyze the distributions of EXP(𝛽 )SSBE (1𝜆,B). We consider each component separately.

• The semi-static security challenger samples SS.pp← SS.Setup(1𝜆, 12𝑁 ), which coincides with the distribution

of SS.pp in Hyb
3
and Hyb

4
. In addition, the challenger samples the public keys as (SS.pk𝑖,1−𝑠𝑖 , SS.sk𝑖,1−𝑠𝑖 ) ←

SS.KeyGen(SS.pp, (𝑖, 𝑠𝑖 )). This also coincides with the distribution in Hyb
3
and Hyb

4
.

• Next, consider the sets 𝑆0 and 𝑆1. In the reduction, algorithm B uses public key sets {pk(𝑖,𝑠𝑖 ) }𝑖∈𝑆 for SS.ct0 and
{pk(𝑖,1−𝑠𝑖 ) }𝑖∈𝑆 for SS.ct1, where 𝑠𝑖 = pPRG.Eval(pp, 𝜎[𝑁 ], [𝑁 ], 𝑖). Since 𝜎𝑆 ← pPRG.Project(pp, 𝜎, 𝑆), correct-
ness of ΠpPRG means that 𝑠𝑖 = pPRG.Eval(pp, 𝜎𝑆 , 𝑆, 𝑖) for all 𝑖 ∈ 𝑆 . Thus, the public key sets are constructed

exactly as in Hyb
3
and Hyb

4
. Thus, SS.ct0 is distributed exactly according to the distribution in Hyb

3
and Hyb

4
.

• It suffices to consider the distribution of SS.ct1. When 𝛽 = 0, SS.ct1 ← SS.Enc(SS.pp, {pk(𝑖,1−𝑠𝑖 ) }𝑖∈𝑆 , 0) and
when 𝛽 = 1, SS.ct1 ← SS.Enc(SS.pp, {pk(𝑖,1−𝑠𝑖 ) }𝑖∈𝑆 , 1). The former corresponds to the distribution in Hyb

3

while the latter corresponds to the distribution in Hyb
4
.

We conclude that algorithm B breaks semi-static security with non-negligible advantage 𝜀. □

Lemma A.10. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

4
(A) = 1] − Pr[Hyb

5
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma A.8. □

Lemma A.11. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

5
(A) = 1] − Pr[Hyb

6
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma A.8. □

Lemma A.12. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb

6
(A) = 1] − Pr[Hyb

7
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma A.9. □

Lemma A.13. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb

7
(A) = 1] − Pr[Hyb

8
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma A.8. □

Lemma A.14. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, | Pr[Hyb

8
(A) = 1] − Pr[Hyb

9
(A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Lemma A.7. □

Lemma A.15. For all 𝜆 ∈ N, | Pr[Hyb
9
(A) = 1] − Pr[Hyb

10
(A) = 1] | = 0.

Proof. Follows by an analogous argument as the proof of Lemma A.6. □

Adaptive security now follows by combining Lemmas A.6 to A.15. □

Theorem A.16 (Succinctness). Suppose ΠSS and ΠpPRG are succinct. Then Construction A.2 is succinct.
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Proof. In Construction A.2, a ciphertext for a set 𝑆 ⊆ [𝑁 ] consists of two ciphertexts for the semi-static distributed

broadcast encryption scheme ΠSS as well as a projected seed 𝜎𝑆 for ΠpPRG. By succinctness of the underlying prim-

itives, the size of the ciphertext is 2 · 𝑜 ( |𝑆 |) · poly(𝜆, log𝑁 ) + poly(𝜆, log𝑁 ), which satisfies the required succinctness

properties. □

B Publicly-Sampleable Projective PRGs from RSA
In this section, we recall the projective PRG scheme from [ABI

+
23, §3.2] based on the RSA assumption [RSA78].

In the following, we write Primes𝜆 ⊂ N to denote the set of 𝜆-bit primes. Similar to [ABI
+
23], we state the RSA

assumption with respect to prime exponents (as opposed to random exponents over Z∗
𝜑 (𝑁 ) ). Since the density of primes

is Θ(1/log𝑁 ), the standard RSA assumption implies the variant with prime exponents. We define this as follows:

Definition B.1 (Composite Modulus Sampler). Let 𝜆 be a security parameter. A composite-modulus sampler is an

efficient algorithm SampleN that takes as input the security parameter 1
𝜆
and outputs (𝑁, 𝑝, 𝑞) where 𝑁 = 𝑝𝑞 and

𝑝, 𝑞 ∈ Primes𝜆 are distinct 𝜆-bit primes.

Assumption B.2 (RSA with Prime Exponents). Let SampleN be a composite-modulus sampler. We say the RSA

assumption with prime exponents holds with respect to SampleN if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N,

Pr

[
A(1𝜆, 𝑁 , 𝑒,𝑢𝑒 mod 𝑁 ) = 𝑢 :

(𝑁, 𝑝, 𝑞) ← SampleN(1𝜆)
𝑒

r← Z∗
𝜑 (𝑁 ) ∩ Primes𝜆 , 𝑢

r← Z∗
𝑁

]
= negl(𝜆).

Publicly-sampleable projective PRG from RSA. We now show how to construct a publicly-sampleable projec-

tive PRGs from the RSA assumption. The construction is nearly identical with the one from [ABI
+
23, §3.2], except we

introduce an explicit public sampling algorithm. We then prove that the construction satisfies the security properties

from Definition 4.1. As discussed in Definition 4.1, our security properties do not follow as a consequence of the

security properties considered in [ABI
+
23] which is why we include the full analysis here.

Construction B.3 (Projective PRG from RSA). Let SampleN be a composite-modulus sampler. Let hc : {0, 1}2𝜆 ×
{0, 1}2𝜆 → {0, 1} be the Goldreich-Levin extractor. We construct a publicly-sampleable projective PRG ΠpPRG =

(Setup, Samp, Project, Eval) as follows:
• Setup(1𝜆, 1ℓ ) → (pp, 𝜎): On input the security parameter 𝜆 and the output length ℓ ∈ N, the setup algorithm

starts by sampling (𝑁, 𝑝, 𝑞) ← SampleN(1𝜆). It then samples 𝑥
r← Z∗

𝑁
, extractor randomness r r← {0, 1}2𝜆 ,

and primes 𝑒1, . . . , 𝑒ℓ
r← Z∗

𝜑 (𝑁 ) ∩ Primes𝜆 . It outputs the public parameters pp = (𝑁, 𝑒1, . . . , 𝑒ℓ , r) and the seed

𝜎 = (𝑥, 𝜑 (𝑁 )).

• Samp(pp, 𝑆) → 𝜎𝑆 : On input the parameter pp = (𝑁, 𝑒1, . . . , 𝑒ℓ , r) and a target set 𝑆 ⊆ [ℓ], the sampling

algorithm samples a random element 𝑦
r← Z∗

𝑁
and output the simulated projected seed 𝜎𝑆 = 𝑦.

• Project(pp, 𝜎, 𝑆) → 𝜎𝑆 : On input the public parameters pp = (𝑁, 𝑒1, . . . , 𝑒ℓ , r), the key 𝜎 = (𝑥, 𝜑 (𝑁 )), and a tar-

get set 𝑆 ⊆ [ℓ], the projection algorithm computes 𝑥𝑆 = 𝑥
∏

𝑗 ∈ [ℓ ]\𝑆 𝑒 𝑗 mod 𝑁 . It outputs the projected seed 𝜎𝑆 = 𝑥𝑆 .

• Eval(pp, 𝜎, 𝑆, 𝑖): On input the public parameters pp = (𝑁, 𝑒1, . . . , 𝑒ℓ , r), a projected seed 𝜎 = 𝑥𝑆 , the associated

set of indices 𝑆 ⊆ [ℓ], and an index 𝑖 ∈ 𝑆 , the evaluation algorithm computes 𝑥𝑖 = 𝑥
∏

𝑗 ∈𝑆\{𝑖} 𝑒 𝑗 mod 𝑁 and

outputs hc(𝑥𝑖 , r).
Theorem B.4 (Correctness). Construction B.3 is correct.

Proof. Take any security parameter 𝜆 ∈ N, output length ℓ ∈ N, set of indices 𝑆 ⊆ [ℓ], and index 𝑖 ∈ 𝑆 . Let

(pp, 𝜎) ← Setup(1𝜆, 1ℓ ) and 𝜎𝑆 ← Project(pp, 𝜎, 𝑆). By construction, this means pp = (𝑁, 𝑒1, . . . , 𝑒ℓ , r) and
𝜎 = 𝑥 ∈ Z∗

𝑁
. Now, observe that 𝜎𝑆 = 𝑥𝑆 = 𝑥

∏
𝑗 ∈ [ℓ ]\𝑆 𝑒 𝑗 mod 𝑁 , therefore in Eval(pp, 𝜎𝑆 , 𝑆, 𝑖),

𝑥𝑖 = 𝑥

∏
𝑗 ∈𝑆\{𝑖} 𝑒 𝑗

𝑆
= 𝑥

∏
𝑗 ∈ [ℓ ]\{𝑖} 𝑒 𝑗 ,

which is a fixed value independent of the choice of 𝑆 . Therefore, Eval(pp, 𝜎𝑆 , 𝑆, 𝑖) = Eval(pp, 𝜎[ℓ ], [ℓ], 𝑖). □
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Theorem B.5 (Succinctness). Construction B.3 is succinct.

Proof. A projected seed is a single element of Z𝑁 , which can be described by at most 2𝜆 bits. □

Theorem B.6 (Sampling Indistinguishability). Construction B.3 satisfies perfect sampling indistinguishability.

Proof. Since 𝑒𝑖 ∈ Z∗𝜑 (𝑁 ) , for all sets 𝑆 ⊆ [ℓ], the mapping 𝑥 ↦→ 𝑥𝑆 = 𝑥
∏

𝑗 ∈ [ℓ ]\𝑆 𝑒 𝑗 is a permutation over Z∗
𝑁
. There-

fore, for all 𝑆 , the distribution of 𝜎𝑆 = 𝑥𝑆 for random sampled 𝑥
r← Z∗

𝑁
is identical to a random 𝑦

r← Z∗
𝑁
. Hence

EXP(0)samp ≡ EXP(1)samp and that Construction B.3 satisfies perfect sampling indistinguishability. □

Theorem B.7 (Adaptive Pseudorandomness). If the RSA assumption with prime exponents hold, then Construction B.3
satisfies adaptive pseudorandomness.

Proof. Before proving the theorem, we first state the following corollary of the RSA assumption (Assumption B.2)

and Theorem 3.2. This will be useful in our security analysis.

Lemma B.8. Let hc : {0, 1}2𝜆 × {0, 1}2𝜆 → {0, 1} be the Goldreich-Levin extractor. For a security parameter 𝜆 and an
adversary A, define the following distinguishing game EXP(𝛽 ) (1𝜆,A):

• On input the security parameter 1
𝜆 , the adversary outputs a length parameter 1

ℓ and an index 𝑖 ∈ [ℓ].

• The challenger samples (𝑁, 𝑝, 𝑞) ← SampleN(1𝜆), 𝑢 r← Z∗
𝑁
, extractor randomness r r← {0, 1}2𝜆 , and ran-

dom primes 𝑒1, . . . , 𝑒ℓ
r← Primes𝜆 . Additionally, the challenger computes bits 𝑏0 = hc(𝑢

∏
𝑗≠𝑖 𝑒 𝑗 mod 𝑁, r) and

𝑏1

r← {0, 1}. The challenger gives (𝑁,𝑢𝑒𝑖 , 𝑒1, . . . , 𝑒ℓ , r, 𝑏𝛽 ) to the adversary.

• The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Suppose the RSA assumption holds. Then, for all efficient adversaries A, there exist a negligible function negl(·) such
that for all 𝜆 ∈ N, ���Pr[EXP(0) (1𝜆,A) = 1] − Pr[EXP(1) (1𝜆,A) = 1]

��� = negl(𝜆).

Proof. Suppose there exists some efficient adversary A where

| Pr[EXP(0) (1𝜆,A) = 1] − Pr[EXP(1) (1𝜆,A) = 1] | = 𝜀 (𝜆)

for some non-negligible 𝜀. For simplicity, we split A into two algorithm A = (A0,A1), where A0 takes as input

1
𝜆
and outputs a pair (1ℓ , 𝑖) along with a private state st, and A1 takes as input the private state st along with the

challenger’s response and outputs the bit 𝑏′. We now define a joint distribution (𝑋,𝑌 ) = {(𝑋𝜆, 𝑌𝜆)}𝜆∈N as follows:

• RunA0 (1𝜆) to receive a pair (1ℓ , 𝑖) and private state st. Sample (𝑁, 𝑝, 𝑞) ← SampleN(1𝜆),𝑢 r← Z∗
𝑁
, r r← {0, 1}2𝜆 ,

and 𝑒1, . . . , 𝑒ℓ
r← Primes𝜆 .

• Let 𝑥 = 𝑢
∏

𝑗≠𝑖 𝑒 𝑗 and 𝑦 = (st, 𝑖, 𝑁 ,𝑢𝑒𝑖 , 𝑒1, . . . , 𝑒ℓ ). Output the pair (𝑥,𝑦).

We now show that under the RSA assumption, 𝑋 is computationally unpredictable given 𝑌 . Suppose there exist an

efficient algorithm A′ that can predict 𝑥 given 𝑦 with some non-negligible probability 𝜀′. We construct an efficient

algorithm B for the RSA problem:

• On input (1𝜆, 𝑁 , 𝑒, 𝑣), where (𝑁, 𝑝, 𝑞) ← SampleN(1𝜆), 𝑒 r← Z∗
𝜑 (𝑁 ) ∩ Primes𝜆 , 𝑣 = 𝑢𝑒 mod 𝑁 , and 𝑢

r← Z∗
𝑁
,

algorithm B starts running A0 (1𝜆) to receive a pair (1ℓ , 𝑖) and state st. For each 𝑖 ∈ [ℓ] \ {𝑖}, it samples

𝑒𝑖
r← Primes𝜆 . It sets 𝑒𝑖 = 𝑒 . Finally, it sets 𝑦 = (st, 𝑖, 𝑁 , 𝑣, 𝑒1, . . . , 𝑒ℓ )

• AlgorithmB runsA′ (1𝜆, 𝑦) to obtain 𝑥 . It then computes the Bezout coefficients 𝛼, 𝛽 ∈ Zwhere 𝛼 ∏
𝑗≠𝑖 𝑒 𝑗 +𝛽𝑒 =

1, which exists and are efficiently computable as long as gcd(𝑒 𝑗 , 𝑒) = 1 for all 𝑗 ≠ 𝑖 . The algorithm B aborts

if the coefficients do not exist.

• Algorithm B outputs 𝑥𝛼 · 𝑣𝛽 .
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The advantage of B can be analyzed as follows:

• With overwhelming probability, a random prime 𝑒𝑖
r← Primes𝜆 will satisfy gcd(𝑒𝑖 , 𝜑 (𝑁 )) = 1, so the uniform

distribution over Primes𝜆 and Z∗
𝜑 (𝑁 ) ∩ Primes𝜆 is statistically indistinguishable. In this case, algorithm B

correctly simulates the distribution of 𝑦 in (𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆).

• By assumption, with probability 𝜀′ − negl(𝜆), algorithm A′ outputs 𝑥 = 𝑢
∏

𝑗≠𝑖 𝑒 𝑗 .

• With overwhelming probability over the choice of 𝑒 𝑗
r← Primes𝜆 , it holds that 𝑒 𝑗 ≠ 𝑒 . Since 𝑒1, . . . , 𝑒ℓ , 𝑒 are all

prime, this means gcd(𝑒 𝑗 , 𝑒) = 1 for all 𝑗 ≠ 𝑖 , and correspondingly, that gcd(∏𝑗≠𝑖 𝑒 𝑗 , 𝑒) = 1. Thus, with over-

whelming probability over the choice of 𝑒1, . . . , 𝑒ℓ , 𝑒 , algorithm B successfully computes the Bezout coefficients

𝛼, 𝛽 .

• If 𝑥 = 𝑢
∏

𝑗≠𝑖 𝑒 𝑗 and the Bezout coefficients exist, algorithm B outputs 𝑥𝛼 · 𝑣𝛽 = 𝑢𝛼 ·
∏

𝑗≠𝑖 𝑒 𝑗 · 𝑢𝛽𝑒 = 𝑢, which is the

solution to the RSA challenge.

Therefore the advantage ofB is 𝜀′−negl(𝜆), which is non-negligible. Therefore, under the RSA assumption with prime

exponents, we conclude that 𝑋 is computationally unpredictable given 𝑌 . The lemma now follows from Theorem 3.2:

• Since𝑋 is computationally unpredictable given𝑌 , Theorem 3.2 now states that the distributions (1𝜆, r, hc(𝑥, r), 𝑦)
and (1𝜆, r, 𝑏,𝑦) are computationally indistinguishable when r r← {0, 1}2𝜆 , (𝑥,𝑦) ← (𝑋𝜆, 𝑌𝜆) and 𝑏 r← {0, 1}.

• If algorithm A distinguishes EXP(0) and EXP(1) with advantage 𝜀, then we can use A1 to construct a distin-

guisher for the distributions (1𝜆, r, hc(𝑥, r), 𝑦) and (1𝜆, r, 𝑏,𝑦) as follows:

– On input (1𝜆, r, 𝑏,𝑦) where 𝑦 = (st, 𝑖, 𝑁 , 𝑣, 𝑒1, . . . , 𝑒ℓ ), compute and output A1 (st, 𝑁 , 𝑣, 𝑒1, . . . , 𝑒ℓ , r, 𝑏).

When 𝑏 = hc(𝑥, r), this process perfectly simulates an execution of EXP(0) for A1 and when 𝑏
r← {0, 1}, this

perfectly simulates an execution of EXP(1) forA1. Thus, this algorithm distinguishes between (1𝜆, r, hc(𝑥, r), 𝑦)
and (1𝜆, r, 𝑏,𝑦) with non-negligible advantage 𝜀. □

Proof of Theorem B.7. We now return to the proof of Theorem B.7. The proof follows a similar strategy as the

proof of Theorem 6.7. For each index 𝑖 ∈ {0} ∪ N, we define an experiment Hyb𝑖 as follows:

• Hyb𝑖 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1
𝜆
, algorithm A outputs the length parameter 1

ℓ
. The challenger

runs (pp, 𝜎) ← Setup(1𝜆, 1ℓ ). Specifically, the challenger samples (𝑁, 𝑝, 𝑞) ← SampleN(1𝜆), 𝑥 r← Z∗
𝑁
,

r r← {0, 1}2𝜆 , and 𝑒1, . . . , 𝑒ℓ
r← Z∗

𝜑 (𝑁 ) ∩ Primes𝜆 . It sets pp = (𝑁, 𝑒1, . . . , 𝑒ℓ , r) and 𝜎 = 𝑥 . The challenger

gives pp to A.

– The challenger samples 𝜎[ℓ ] ← Project(pp, 𝜎, [ℓ]) and t r← {0, 1}ℓ . In particular 𝜎[ℓ ] = 𝑥 .

– When A makes an evaluation query on 𝑗 ∈ [ℓ], the challenger replies with Eval(pp, 𝜎[ℓ ], [ℓ], 𝑗) if 𝑗 > 𝑖

and with 𝑡 𝑗 if 𝑗 ≤ 𝑖 . In particular, when 𝑗 > 𝑖 , the challenger computes 𝑥 𝑗 = 𝑥
∏

𝑘∈ [ℓ ]\{ 𝑗 } 𝑒𝑘 mod 𝑁 and

responds with hc(𝑥 𝑗 , r).
– AfterA finishes making evaluation queries, the challenger computes the seed 𝜎𝑆 ← Project(pp, 𝜎, [ℓ] \ 𝐼 )
where 𝐼 ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,

𝜎𝑆 = 𝑥
∏

𝑗 ∈ [ℓ ]\𝑆 𝑒 𝑗 mod 𝑁 . The challenger gives 𝜎𝑆 to A.

– At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

We write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb𝑖 with
adversary A (and an implicit security parameter 𝜆). By construction, observe that EXP(0)prg (1𝜆,A) ≡ Hyb

0
(A) and

EXP(1)prg (1𝜆,A) ≡ Hybℓ (A). Following the same argument in the proof of Theorem 6.7, for all indices 𝑖 ∈ {0} ∪ N,

Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] = Pr[Hyb𝑖 (A) = 1] − Pr[Hyb𝑖−1

(A) = 1], (B.1)
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where E𝑖 is the event that algorithm A makes an evaluation query on index 𝑖 . Suppose now that

| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀 (𝜆) (B.2)

for some non-negligible 𝜀. We use A to construct an efficient adversary B for the distinguishing problem from

Lemma B.8:

1. On input the security parameter 1
𝜆
, algorithm B runs A(1𝜆) to obtain the output length 1

ℓ
. Algorithm B

samples a random index 𝑖
r← [ℓ] and sends (1ℓ , 𝑖) to the challenger.

2. The challenger responds with (𝑁, 𝑣, 𝑒1, . . . , 𝑒ℓ , r, 𝑏), where 𝑣 = 𝑢𝑒𝑖 and 𝑢
r← Z∗

𝑁
. Algorithm B sets pp =

(𝑁, 𝑒1, . . . , 𝑒ℓ , r) and gives pp to A. Algorithm B also samples t r← {0, 1}ℓ .

3. When algorithm A makes an evaluation query on an index 𝑗 ∈ [ℓ], the challenger responds as follows:

• If 𝑗 < 𝑖 , the challenger responds with 𝑡 𝑗 .

• If 𝑗 = 𝑖 , the challenger responds with 𝑏.

• If 𝑗 > 𝑖 , the challenger computes 𝑥 𝑗 = 𝑣
∏

𝑘∈ [ℓ ]\{𝑖,𝑗 } 𝑒𝑘 mod 𝑁 and responds with hc(𝑥 𝑗 , r).

4. After A finishes making evaluation queries, let 𝐼 ⊆ [ℓ] be the set of indices on which algorithm A made an

evaluation query. If 𝑖 ∉ 𝐼 , then algorithm B outputs 0. Otherwise algorithm B responds with 𝜎𝑆 = 𝑣
∏

𝑗 ∈𝐼\{𝑖} 𝑒 𝑗 .

5. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage of B. Let𝑊0 be the event that B outputs 1 when the challenger sets 𝑏 = hc(𝑢
∏

𝑗≠𝑖 𝑒 𝑗 , r)
and𝑊1 be the event that B outputs 1 when the challenger samples 𝑏

r← {0, 1}. Suppose algorithm B samples 𝑖 = 𝑖∗ in
the above reduction. By construction, the challenger for the experiment in Lemma B.8 samples 𝑁,𝑢, 𝑒1, . . . , 𝑒ℓ as in the

normal setup algorithm, except it samples the exponents 𝑒𝑖
r← Primes𝜆 instead of 𝑒𝑖

r← Z∗
𝜑 (𝑁 ) ∩ Primes𝜆 . However,

with overwhelming probability over the choice of 𝑒𝑖
r← Primes𝜆 , it holds that gcd(𝑒𝑖 , 𝜑 (𝑁 )) = 1, so these two

distributions are statistically close. Correspondingly, the public parameters simulated by algorithm B are statistically

close to the distribution of public parameters in EXP(0)prg and EXP(1)prg. By construction, algorithm B also simulates the

evaluation queries for 𝑗 > 𝑖 and the projected seed exactly as in EXP(0)prg and EXP(1)prg, where the challenger’s secret

𝑢 plays the role of 𝑥 in the reduction. We consider the distribution of the challenge bit 𝑏.

• Suppose 𝑏 = hc(𝑢
∏

𝑗≠𝑖 𝑒 𝑗 , r). In this case, the responses to the evaluation queries are distributed according to the

specification in Hyb𝑖∗−1
. We consider the probability that algorithm B outputs 1 in this case. First, if algorithm

A does not make an evaluation query on index 𝑖∗, then algorithm B always outputs 0. If algorithm A does

make an evaluation query on index 𝑖∗, then algorithm B perfectly simulates the challenge according to the

distribution in Hyb𝑖∗−1
, and thus, outputs 1 with probability Pr[Hyb𝑖∗−1

(A) = 1 | E𝑖∗ ]. Thus, in this case,

algorithm B outputs 1 with probability

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗−1
(A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗−1

(A) = 1 ∧ E𝑖∗ ] .

• Suppose 𝑏
r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the

specification in Hyb𝑖∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 𝑖 = 𝑖∗] = Pr[Hyb𝑖∗ (A) = 1 | E𝑖∗ ] · Pr[E𝑖∗ ] = Pr[Hyb𝑖∗ (A) = 1 ∧ E𝑖∗ ] .

Finally, algorithm B samples 𝑖
r← [ℓ]. Thus

Pr[𝑊0 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ],

Pr[𝑊1 = 1] = 1

ℓ

∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ] .
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Since EXP(0)prg (1𝜆,A) ≡ Hyb
0
(A) and EXP(1)prg (1𝜆,A) ≡ Hybℓ (A), we appeal to Eqs. (6.1) and (6.2) and conclude that

| Pr[𝑊0 = 1] − Pr[𝑊1 = 1] | = 1

ℓ

���∑︁
𝑖∈[ℓ ]

Pr[Hyb𝑖−1
(A) = 1 ∧ E𝑖 ] − Pr[Hyb𝑖 (A) = 1 ∧ E𝑖 ]

���
=

1

ℓ

���∑︁
𝑖∈[ℓ ]

𝑝𝑖 − 𝑝𝑖−1

���
=

1

ℓ
|𝑝0 − 𝑝ℓ | =

1

ℓ
| Pr[EXP(0)prg (1𝜆,A) = 1] − Pr[EXP(1)prg (1𝜆,A) = 1] | ≥ 𝜀

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(𝜆). □

Remark B.9 (Reducing the Public Parameter Size). The public parameters in Construction B.3 scale linearly with

the output length (since it includes the description of the exponents 𝑒1, . . . , 𝑒ℓ ). The work of [ABI
+
23] describes an

approach to replace the description of (𝑒1, . . . , 𝑒ℓ ) with a succinct seed of size poly(𝜆, log ℓ). The idea is to generate

the primes in a pseudorandom manner and replace the tuple (𝑒1, . . . , 𝑒ℓ ) with a short seed 𝜌 that can be expanded into

a sequence of primes. Moreover, to facilitate the security proof, there is a procedure that allows “programming” the

seed to output a specific prime at a particular index 𝑖 ∈ [ℓ]. We refer to [ABI
+
23, §3.2.1] for details on this approach.

C The Gentry-Waters Semi-Static Broadcast Encryption Scheme
Gentry andWaters [GW09] previously showed how to construct a semi-statically-secure broadcast encryption scheme

with linear-size public parameters (and constant-size secret keys and ciphertexts) from the decisional 𝑞-bilinear

Diffie-Hellman exponent sum assumption. Their work describes the construction as a special case of an adaptively-

secure identity-based broadcast encryption scheme in the random oracle model. For completeness, we include a

self-contained description of a simplified version of their construction specialized to the setting of vanilla broadcast

encryption with semi-static security in the plainmodel. Then, using our publicly-sampleable projective PRGs (say from

the computational bilinear Diffie-Hellman assumption), we obtain an adaptively-secure broadcast encryption scheme

in the plain model with linear-size public keys (and constant-size secret keys and ciphertexts). We start by introducing

the decisional 𝑞-BDHE sum problem that they rely on for security. For simplicity, we give a game-based formulation.

Assumption C.1 (Decision 𝑞-BDHE Sum). Let PrimeBGroupGen be a prime-order bilinear group generator. For

a security parameter 𝜆, a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the 𝑞-bilinear Diffie-Hellman exponent sum

experiment 𝑞-BDHES(𝑏 ) (1𝜆,A) as follow:

• On input the security parameter 1
𝜆
, the adversary A outputs a tuple (𝑆,𝑚), where 𝑆 ⊂ Z,𝑚 ∈ Z.

• The challenger samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆) and a random exponent 𝑎
r← Z𝑝 . The

challenger computes [𝑍0]G𝑇 = [𝑎𝑚]G𝑇 and [𝑍1]G𝑇
r← G𝑇 , and gives (G, {[𝑎𝑖 ]G}𝑖∈𝑆 , [𝑍𝑏]G𝑇 ) to the adversary.

• The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say the adversary A is admissible if it outputs a tuple (𝑆,𝑚) where for every 𝑠0, 𝑠1 ∈ 𝑆 ∪ {0} it holds that
𝑠0 +𝑠1 ≠𝑚. We say the decision 𝑞-BDHE sum assumption holds with respect to PrimeBGroupGen if for every efficient

and admissible adversary A, there exist a negligible function negl(·) such that for all 𝜆 ∈ N,���Pr[𝑞-BDHES(0) (1𝜆,A) = 1] − Pr[𝑞-BDHES(1) (1𝜆,A) = 1]
��� = negl(𝜆).

Construction C.2 ([GW09, §4, adapted]). Let PrimeBGroupGen be a prime-order bilinear group generator. The

broadcast encryption scheme ΠBE = (Setup,KeyGen, Enc,Dec) is constructed as follows:

• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and the number of parties 𝑁 , the setup algorithm sam-

ples a prime-order pairing group G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeBGroupGen(1𝜆) and random exponents

𝑎,𝑢, 𝑣, 𝛽,𝛾, 𝑟1, . . . , 𝑟𝑁
r← Z𝑝 . If 𝑎 ∈ [𝑁 ], then the setup algorithm outputsmpk = msk = ⊥. Otherwise, it outputs

mpk = ({[𝑢𝑎 𝑗 ]G} 𝑗∈[0,𝑁−2], {[𝑣𝑎𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G}𝑘∈[0,𝑁 ], [𝛾𝛽𝑣]G, [𝛾𝛽𝑣𝑎]G),
msk = (𝑎,𝑢, 𝑣, 𝛽,𝛾, 𝑟1, . . . , 𝑟𝑛).
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• KeyGen(msk, 𝑖): On input the master secret key msk and an index 𝑖 ∈ [𝑁 ], if msk = ⊥, then output ⊥. Oth-
erwise, parse msk = (𝑎,𝑢, 𝑣, 𝛽,𝛾, 𝑟1, . . . , 𝑟𝑛) and compute [𝑠𝑖 ]G = [𝛽𝑢 · 𝛾−𝑟𝑖

𝑎−𝑖 ]G. Output sk𝑖 = (𝑖, 𝑟𝑖 , [𝑠𝑖 ]G). Note
that by construction of Setup, if msk ≠ ⊥, then 𝑎 ∉ [𝑁 ] so (𝑎 − 𝑖)−1

is well-defined.

• Enc(mpk, 𝑆, 𝜇): On input the master public key mpk a set 𝑆 ⊆ [𝑁 ], and a message 𝜇 ∈ {0, 1}, the encryption
algorithm simply outputs ct = 𝜇 if mpk = ⊥. Otherwise, it parses

mpk = ({[𝑢𝑎 𝑗 ]G} 𝑗∈[0,𝑁−2], {[𝑣𝑎𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G}𝑘∈[0,𝑁 ], [𝛾𝛽𝑣]G, [𝛾𝛽𝑣𝑎]G),

samples a random 𝑡
r← Z𝑝 and computes the degree-𝑁 polynomial 𝑃 defined by

𝑃 (𝑥) =
(∏
𝑘∈𝑆
(𝑥 − 𝑘)

)
· ©­«

∏
𝑘∈[𝑁 ]\𝑆

(𝑥 − 𝑘 − 𝑁 )ª®¬ . (C.1)

Let 𝑝0, . . . , 𝑝𝑁 be the coefficients of 𝑃 (𝑥). Namely, write 𝑃 (𝑥) = ∑𝑁
𝑘=0

𝑝𝑘𝑥
𝑘
. The encryption algorithm then

computes

[𝐶1]G =

𝑁∑︁
𝑘=0

(𝑝𝑘𝑡 · [𝑣𝑎𝑘 ]G) = [𝑡𝑣𝑃 (𝑎)]G,

[𝐶2]G = 𝑡 · [𝛾𝛽𝑣]G = [𝑡𝛾𝛽𝑣]G,
[𝐶3]G = 𝑡 · [𝛽𝑣]G = [𝑡𝛽𝑣]G,
[𝐶4]G𝑇 = 𝑡 · [𝑢𝑎𝑁−2]G · [𝛽𝑣𝑎]G = [𝑡𝛽𝑢𝑣𝑎𝑁−1]G𝑇 ,
[𝐶5]G𝑇 = 𝑡 · [𝑢𝑎𝑁−2]G · [𝛾𝛽𝑣𝑎]G + [𝜇]G𝑇 = [𝑡𝛾𝛽𝑢𝑣𝑎𝑁−1 + 𝜇]G𝑇 ,

and outputs ct = ( [𝐶1]G, [𝐶2]G, [𝐶3]G, [𝐶4]G𝑇 , [𝐶5]G𝑇 )

• Dec(mpk, 𝑆, sk, ct): On input the master public key mpk a set 𝑆 ⊆ [𝑁 ], a secret key sk = (𝑖, 𝑟𝑖 , [𝑠𝑖 ]G) and a

ciphertext ct, the decryption algorithm outputs ct if mpk = ⊥. Otherwise, it parses

mpk = ({[𝑢𝑎 𝑗 ]G} 𝑗∈[0,𝑁−2], {[𝑣𝑎𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G}𝑘∈[0,𝑁 ], [𝛾𝛽𝑣]G, [𝛾𝛽𝑣𝑎]G)

and ct = ( [𝐶1]G, [𝐶2]G, [𝐶3]G, [𝐶4]G𝑇 , [𝐶5]G𝑇 ). Then, it outputs 0 if 𝑖 ∉ 𝑆 . Otherwise, the decryption algorithm

computes the degree-(𝑁 − 1) polynomial 𝑃 ′𝑖 (𝑥) = 𝑃 (𝑥)/(𝑥 − 𝑖), where 𝑃 (𝑥) is the polynomial from Eq. (C.1).

In particular,

𝑃 ′𝑖 (𝑥) =
©­«

∏
𝑘∈𝑆\{𝑖 }

(𝑥 − 𝑘)ª®¬ · ©­«
∏

𝑘∈[𝑁 ]\𝑆
(𝑥 − 𝑘 − 𝑁 )ª®¬ . (C.2)

Let 𝑝′
0
, . . . , 𝑝′

𝑁−1
be the coefficients of 𝑃 ′𝑖 . Namely, 𝑃 ′𝑖 (𝑥) =

∑𝑁−1

𝑘=0
𝑝′
𝑘
𝑥𝑘 . Note that 𝑝′

𝑁−1
= 1. The algorithm then

computes

[𝐶6]G𝑇 = [𝑠𝑖 ]G · [𝐶1]G −
(
𝑁−2∑︁
𝑗=0

𝑝′𝑗 [𝑢𝑎 𝑗 ]G

)
· ( [𝐶2]G − 𝑟𝑖 [𝐶3]G),

[𝜇′]G𝑇 = [𝐶5]G𝑇 − [𝐶6]G𝑇 − 𝑟𝑖 · [𝐶4]G𝑇 .

The algorithm outputs 1 if [𝜇′]G𝑇 = [1]G𝑇 and 0 otherwise.

Theorem C.3 (Correctness [GW09, adapted]). Construction C.2 is correct.

Proof. Take any 𝜆 ∈ N and any polynomial function 𝑁 = poly(𝜆). Let (mpk,msk) ← Setup(1𝜆, 1𝑁 ). First, ifmpk = ⊥,
then correctness holds trivially (in this case, the encryption algorithm simply outputs the message in the clear and

the decryption algorithm simply outputs the ciphertext). Suppose that mpk ≠ ⊥. Then, we can write

mpk = ({[𝑢𝑎 𝑗 ]G} 𝑗∈[0,𝑁−2], {[𝑣𝑎𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G}𝑘∈[0,𝑁 ], [𝛾𝛽𝑣]G, [𝛾𝛽𝑣𝑎]G),
msk = (𝑎,𝑢, 𝑣, 𝛽,𝛾, 𝑟1, . . . , 𝑟𝑛).
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where 𝑎,𝑢, 𝑣, 𝛽,𝛾, 𝑟1, . . . , 𝑟𝑁
r← Z𝑝 and 𝑎 ∉ [𝑁 ]. Take any set 𝑆 ⊆ [𝑁 ], any index 𝑖 ∈ 𝑆 , and any message 𝜇 ∈ {0, 1}.

Suppose sk𝑖 is in the support of KeyGen(msk, 𝑖). Then, we can write sk𝑖 = (𝑖, 𝑟𝑖 , [𝑠𝑖 ]G) where 𝑠𝑖 = 𝛽𝑢 · 𝛾−𝑟𝑖
𝑎−𝑖 . Take any

ciphertext ct = ( [𝐶1]G, [𝐶2]G, [𝐶3]G, [𝐶4]G𝑇 , [𝐶5]G𝑇 ) in the support of Enc(mpk, 𝑆, 𝜇). Let 𝑡 ∈ Z𝑝 be the encryption

randomness. Consider the behavior of Dec(mpk, 𝑆, sk𝑖 , ct). By definition, we have

[𝑠𝑖 ]G · [𝐶1]G =

[
𝛽𝑢 · 𝛾 − 𝑟𝑖

𝑎 − 𝑖

]
G
· [𝑡𝑣𝑃 (𝑎)]G =

[
𝑡𝛽 (𝛾 − 𝑟𝑖 )𝑢𝑣

𝑃 (𝑎)
𝑎 − 𝑖

]
G𝑇

= [𝑡𝛽 (𝛾 − 𝑟𝑖 )𝑢𝑣𝑃 ′𝑖 (𝑎)]G𝑇 ,

where 𝑃 ′𝑖 (𝑥) = 𝑃 (𝑥)/(𝑥 − 𝑖) is the polynomial from Eq. (C.2). Since 𝑝′
𝑁−1

= 1, we can write

𝑃 ′𝑖 (𝑥) = 𝑥𝑁−1 +
𝑁−2∑︁
𝑘=0

𝑝′
𝑘
𝑥𝑘 .

This means

𝑁−2∑︁
𝑗=0

𝑝′𝑗 [𝑢𝑎 𝑗 ]G · ( [𝐶2]G − 𝑟𝑖 [𝐶3]G) = [𝑢 (𝑃 ′𝑖 (𝑎) − 𝑎𝑁−1)]G · [𝑡 (𝛾 − 𝑟𝑖 )𝛽𝑣]G

= [𝑡𝛽 (𝛾 − 𝑟𝑖 )𝑢𝑣𝑃 ′𝑖 (𝑎)]G𝑇 − [𝑡𝛽 (𝛾 − 𝑟𝑖 )𝑢𝑣𝑎𝑁−1]G𝑇 .

Therefore,

[𝐶6]G𝑇 = [𝑠𝑖 ]G · [𝐶1]G −
(
𝑁−2∑︁
𝑗=0

𝑝′𝑗 [𝑢𝑎 𝑗 ]G

)
· ( [𝐶2]G − 𝑟𝑖 [𝐶3]G)

= [𝑡𝛽 (𝛾 − 𝑟𝑖 )𝑢𝑣𝑎𝑁−1]G𝑇
= [𝑡𝛽𝛾𝑢𝑣𝑎𝑁−1]G𝑇 − 𝑟𝑖 [𝑡𝛽𝑢𝑣𝑎𝑁−1]G𝑇
= [𝐶5]G𝑇 − 𝑟𝑖 [𝐶4]G𝑇 − [𝜇]G𝑇 .

Thus [𝜇′]G𝑇 = [𝐶5]G𝑇 − [𝐶6]G𝑇 − 𝑟𝑖 · [𝐶4]G𝑇 = [𝜇]G𝑇 and correctness holds. □

Theorem C.4 (Semi-Static Security [GW09, adapted]). Assuming the decision 𝑞-BDHE sum problem (Assumption C.1)
is hard with respect to PrimeBGroupGen, Construction C.2 is semi-statically secure.

Proof. In the following, for any polynomial 𝑃 (𝑥), we write 𝑃 |𝑖 to denote the coefficient of 𝑥𝑖 in 𝑃 . The proof uses

the following lemma from [GW09, §B], which we state below:

Lemma C.5 ([GW09, Lemma B.1]). Let 𝑃1, 𝑃2 ∈ Z𝑝 [𝑥] be polynomials of degree 𝑑1, 𝑑2, respectively. Suppose more-
over that 𝑃1 and 𝑃2 do not share any common factors. Let 𝑑3 = 𝑑1 + 𝑑2 − 1 and 𝑖 ∈ [𝑑1, 𝑑3]. Then, there exists an
efficiently-computable polynomial 𝑄 of degree 𝑑3 such that

• 𝑃1𝑄 |𝑖 = 1;

• ∀𝑗 ∈ [𝑑1, 𝑑3] \ {𝑖}, 𝑃1𝑄 | 𝑗 = 0; and

• ∀𝑗 ∈ [𝑑2, 𝑑3], 𝑃2𝑄 | 𝑗 = 0.

Proof of TheoremC.4. Suppose there exists an efficient adversaryA that breaks semi-static security (Definition 3.4)

of Construction C.2 with non-negligible advantage 𝜀:���Pr[EXP(0)SSBE (1𝜆,A) = 1] − Pr[EXP(1)SSBE (1𝜆,A) = 1]
��� = 𝜀 (𝜆).

We use A to construct an efficient adversary B for the decision 𝑞-BDHE sum problem (Assumption C.1) as follows:
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• On input the security parameter 1
𝜆
, algorithm B runs A(1𝜆) to receive the number of users 1

𝑁
and the set

𝑆∗. Algorithm B also samples a random bit 𝜇
r← {0, 1}, which serves as the challenge bit of the simulated

semi-static experiment.

• Algorithm B sets𝑚 = 12𝑁 − 1 and

𝑆0 = [0, 𝑁 − 2] ∪ [3𝑁, 5𝑁 − 1] ∪ [6𝑁, 7𝑁 − 1] ∪ [9𝑁, 11𝑁 ] ∪ [12𝑁, 14𝑁 + 1] .

Algorithm B submits (𝑆0,𝑚) to the 𝑞-BDHES challenger to receive the challenge (G, {[𝑎𝑖 ]G}𝑖∈𝑆0
, [𝑍 ]G𝑇 ) where

G = (G,G𝑇 , 𝑝, 𝑔, 𝑒).

• Algorithm B samples 𝑢0, 𝑣0, 𝛽0

r← Z𝑝 and (implicitly) sets 𝑢 = 𝑢0, 𝑣 = 𝑣0𝑎
9𝑁

, 𝛽 = 𝛽0𝑎
3𝑁

.

• Algorithm B samples 𝑧
r← Z𝑝 and 𝑟𝑖

r← Z𝑝 for all 𝑖 ∉ 𝑆∗. It samples a random polynomial Γ(𝑥) = ∑
2𝑁
𝑗=0

𝛾 𝑗𝑥
𝑗

of degree 2𝑁 such that Γ(𝑖) = 𝑟𝑖 for all 𝑖 ∉ 𝑆∗ and Γ(𝑖) = 𝑧 for all 𝑖 ∈ 𝑆∗ ∪ [𝑁 + 1, 2𝑁 ]. It implicitly programs

𝛾 = Γ(𝑎). Since Γ has degree 2𝑁 , and algorithm B only constrains the value of Γ on the points in [2𝑁 ], the
value of 𝛾 = Γ(𝑎) is uniform over Z𝑝 and independent of 𝑧 and 𝑟𝑖 for 𝑖 ∉ 𝑆∗ so long as 𝑎 ∉ [2𝑁 ].

• Algorithm B now computes the master public key as follows:

– for all 𝑗 ∈ [0, 𝑁 − 2], [𝑢𝑎 𝑗 ]G = 𝑢0 [𝑎 𝑗 ]G;
– for all 𝑘 ∈ [0, 𝑁 ], [𝑣𝑎𝑘 ]G = 𝑣0 [𝑎9𝑁+𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G = 𝛽0𝑣0 [𝑎12𝑁+𝑘 ]G;
– [𝛾𝛽𝑣]G = 𝛽0𝑣0 [Γ(𝑎)𝑎12𝑁 ]G = 𝛽0𝑣0

∑
2𝑁
𝑗=0

𝛾 𝑗 [𝑎12𝑁+𝑗 ]G; and

– [𝛾𝛽𝑣𝑎]G = 𝛽0𝑣0

∑
2𝑁
𝑗=0

𝛾 𝑗 [𝑎12𝑁+𝑗+1]G.

Algorithm B sends mpk = ({[𝑢𝑎 𝑗 ]G} 𝑗∈[0,𝑁−2], {[𝑣𝑎𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G}𝑘∈[0,𝑁 ], [𝛾𝛽𝑣]G, [𝛾𝛽𝑣𝑎]G) to A.

• Whenever A makes a key-generation query on an index 𝑖 ∈ [𝑁 ] \ 𝑆∗, algorithm B computes the polynomial

Γ′𝑖 (𝑥) =
Γ (𝑥 )−𝑟𝑖
𝑥−𝑖 . Since 𝑖 ∉ 𝑆∗, Γ(𝑖) = 𝑟𝑖 , so 𝑖 is a root of the polynomial Γ(𝑥) − 𝑟𝑖 . This means (𝑥 − 𝑖) is a factor

of Γ(𝑥) − 𝑟𝑖 , so we can express Γ′𝑖 as a polynomial of degree 2𝑁 − 1. Algorithm B writes Γ′𝑖 (𝑥) =
∑

2𝑁−1

𝑗=0
𝛾 ′𝑗𝑥

𝑗

and simulates the secret key by computing

[𝑠𝑖 ]G =

[
𝛽𝑢 · 𝛾 − 𝑟𝑖

𝑎 − 𝑖

]
G
=

[
𝛽𝑢 · Γ(𝑎) − 𝑟𝑖

𝑎 − 𝑖

]
G

= [𝛽𝑢 · Γ′𝑖 (𝑎)]G = 𝛽0𝑢0

2𝑁−1∑︁
𝑗=0

𝛾 ′𝑗 [𝑎3𝑁+𝑗 ]G

Algorithm B gives sk𝑖 = (𝑖, 𝑟𝑖 , [𝑠𝑖 ]G) to A.

• After algorithm A finishes making its key-generation queries, it submits a set 𝑆 ⊆ 𝑆∗ to B. Algorithm B
computes the degree-𝑁 polynomial

𝑃 (𝑥) =
(∏
𝑘∈𝑆
(𝑥 − 𝑘)

)
· ©­«

∏
𝑘∈[𝑁 ]\𝑆

(𝑥 − 𝑘 − 𝑁 )ª®¬ .
As usual, let 𝑝0, . . . , 𝑝𝑁 be the coefficients of 𝑃 (𝑥). Namely, write 𝑃 (𝑥) = ∑𝑁

𝑘=0
𝑝𝑘𝑥

𝑘
. Invoking Lemma C.5 with

(𝑃1, 𝑃2, 𝑖) = (Γ, 𝑃, 2𝑁 ), algorithm B computes the polynomial 𝑇0 =
∑

3𝑁−1

𝑘=0
𝑡𝑘𝑥

𝑘
of degree 3𝑁 − 1 such that

Γ𝑇0 |2𝑁 = 1

Γ𝑇0 | 𝑗 = 0 ∀𝑗 ∈ [2𝑁 + 1, 3𝑁 − 1]
𝑃𝑇0 | 𝑗 = 0 ∀𝑗 ∈ [𝑁, 3𝑁 − 1] .

(C.3)

It then samples 𝜏
r← Z𝑝 and implicitly programs 𝑡 = 𝜏 + 𝑧 · 𝑎−3𝑁𝑇0 (𝑎).
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• Algorithm B simulates the challenge ciphertext components as follows:

[𝐶1]G = [𝑡𝑣𝑃 (𝑎)]G = 𝑣0𝜏 [𝑎9𝑁𝑃 (𝑎)]G + 𝑣0𝑧 [𝑎6𝑁𝑇0 (𝑎)𝑃 (𝑎)]G
[𝐶2]G = [𝑡𝛾𝛽𝑣]G = 𝑣0𝛽0𝜏 [𝑎12𝑁 Γ(𝑎)]G + 𝑧𝑣0𝛽0 [𝑎9𝑁𝑇0 (𝑎)Γ(𝑎)]G
[𝐶3]G = [𝑡𝛽𝑣]G = 𝑣0𝛽0𝜏 [𝑎12𝑁 ]G + 𝑧𝑣0𝛽0 [𝑎9𝑁𝑇0 (𝑎)]G
[𝐶4]G𝑇 = 𝑢0𝑣0𝛽0𝜏 [𝑎13𝑁−1]G𝑇 + 𝑧𝑢0𝑣0𝛽0 [𝑎10𝑁−1 (𝑇0 (𝑎) − 𝑧−1𝑎2𝑁 )]G𝑇 + 𝑢0𝑣0𝛽0 [𝑍 ]G𝑇
[𝐶5]G𝑇 = 𝑢0𝑣0𝛽0𝜏 [𝑎13𝑁−1Γ(𝑎)]G𝑇 + 𝑧𝑢0𝑣0𝛽0 [𝑎10𝑁−1 (𝑇0 (𝑎)Γ(𝑎) − 𝑎2𝑁 )]G𝑇 + 𝑧𝑢0𝑣0𝛽0 [𝑍 ]G𝑇 + [𝜇]G𝑇 .

Algorithm B gives ct = ( [𝐶1]G, [𝐶2]G, [𝐶3]G, [𝐶4]G𝑇 , [𝐶5]G𝑇 ) to A. Below, we will show how B can compute

each of these terms from the corresponding terms in the challenge.

• At the end of the experiment, algorithm A outputs a bit 𝜇′. Algorithm B outputs 0 if 𝜇 = 𝜇′ and outputs 1

otherwise.

Efficiency analysis of B. First, we show that B is efficient. In particular, we show that algorithm B is able to

efficiently compute each term shown in the above reduction using the group elements from the 𝑞-BDHES challenge

(G, {[𝑎𝑖 ]G}𝑖∈𝑆0
, [𝑍 ]G𝑇 ). Recall that

𝑆0 = [0, 𝑁 − 2] ∪ [3𝑁, 5𝑁 − 1] ∪ [6𝑁, 7𝑁 − 1] ∪ [9𝑁, 11𝑁 ] ∪ [12𝑁, 14𝑁 + 1] .

In the following analysis, we assume that 𝑎 ∉ [2𝑁 ]. Since the challenger samples 𝑎
r← Z𝑝 and 𝑁 = poly(𝜆), this

holds with overwhelming probability over the choice of 𝑎. We consider each component individually:

• The master public key mpk is efficiently computable since [0, 𝑁 − 2] (for [𝑢𝑎 𝑗 ]G), [9𝑁, 10𝑁 ] (for [𝑣𝑎𝑘 ]G),
[12𝑁, 13𝑁 ] (for [𝛽𝑣𝑎𝑘 ]G), and [12𝑁, 14𝑁 + 1] (for [𝛾𝛽𝑣]G and [𝛾𝛽𝑣𝑎]G) are all subsets of 𝑆0.

• Next, the key-generation queries only require [𝑎𝑖 ] for 𝑖 ∈ [3𝑁, 5𝑁 − 1] ⊂ 𝑆0.

• To argue that the challenge ciphertext ct is efficiently computable, we first affirm that the hypothesis of

Lemma C.5 is satisfied:

– By construction, the roots of the polynomial 𝑃 are at the points 𝑥 where either 𝑥 ∈ 𝑆 or 𝑥 = 𝑁 + 𝑘 for

some 𝑘 ∈ [𝑁 ] \ 𝑆 .
– Since 𝑆 ⊆ 𝑆∗, we conclude that all of the roots of 𝑃 are contained in the set 𝑆∗∪[𝑁 +1, 2𝑁 ]. By construction,

the polynomial Γ has value 𝑧 on every 𝑥 ∈ 𝑆∗ ∪ [𝑁 + 1, 2𝑁 ]. Since the reduction algorithm samples

𝑧
r← Z𝑝 , with overwhelming probability 𝑧 ≠ 0, which means Γ does not have roots at 𝑥 ∈ 𝑆∗ ∪ [𝑁 + 1, 2𝑁 ].

Then, the following two properties hold:

– With overwhelming probability over the choice of 𝑧, Γ and 𝑃 do not share any common factors. Lemma C.5

now guarantees the existence of the polynomial𝑇0 of degree 3𝑁 −1 that satisfies the properties in Eq. (C.3).

– Second, the polynomial (𝑧−1Γ(𝑥) − 1) has roots on all 𝑥 ∈ 𝑆∗ ∪ [𝑁 + 1, 2𝑁 ]. Since all of the roots of 𝑃
are contained in this interval, this means 𝑃 divides the polynomial (𝑧−1Γ − 1). Equivalently, there exists
a polynomial 𝑄 (𝑥) of degree at most 𝑁 where 𝑃 (𝑥) ·𝑄 (𝑥) = 𝑧−1 · Γ(𝑥) − 1.

From Eq. (C.3), we have 𝑃𝑇0 | 𝑗 = 0 for all 𝑗 ∈ [𝑁, 3𝑁 − 1]. Since 𝑄 has degree at most 𝑁 , this means

∀𝑗 ∈ [2𝑁, 3𝑁 − 1] : 𝑃𝑄𝑇0 | 𝑗 = 0 =⇒ (𝑧−1Γ − 1)𝑇0 | 𝑗 = 𝑧−1Γ𝑇0 | 𝑗 −𝑇0 | 𝑗 = 0. (C.4)

Again by Eq. (C.3), we know that Γ𝑇0 |2𝑁 = 1, and that for all 𝑗 ∈ [2𝑁 + 1, 3𝑁 − 1], Γ𝑇0 | 𝑗 = 0. Combining with

Eq. (C.4), we have

𝑇0 |2𝑁 = 𝑧−1Γ𝑇0 |2𝑁 = 𝑧−1

𝑇0 | 𝑗 = 𝑧−1Γ𝑇0 | 𝑗 = 0 ∀𝑗 ∈ [2𝑁 + 1, 3𝑁 − 1] .
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Finally, since𝑇0 is a polynomial with degree at most 3𝑁 −1, this means that𝑇0 has degree exactly 2𝑁 and leading

coefficient 𝑧−1
. Moreover, we note that the reduction algorithm knows the coefficients of the polynomials 𝑃, Γ,𝑇0

as well as the exponents𝑢0, 𝑣0, 𝛽0, 𝑧, 𝜏 ∈ Z𝑝 . We now consider each of the components in the challenge ciphertext:

– To compute [𝐶1]G, the reduction needs to compute [𝑎9𝑁𝑃 (𝑎)]G and [𝑎6𝑁𝑇0 (𝑎)𝑃 (𝑎)]G:
∗ Since 𝑃 has degree at most 𝑁 , the reduction can compute [𝑎9𝑁𝑃 (𝑎)]G using [𝑎𝑖 ]G for 𝑖 ∈ [9𝑁, 10𝑁 ] ⊂
𝑆0.

∗ From Eq. (C.3), 𝑃𝑇0 | 𝑗 = 0 for all 𝑗 ∈ [𝑁, 3𝑁 − 1]. Moreover, 𝑃𝑇0 has degree at most 3𝑁 . Thus, the

reduction can compute [𝑎6𝑁𝑇0 (𝑎)𝑃 (𝑎)]G using [𝑎𝑖 ]G for 𝑖 ∈ [6𝑁, 7𝑁 − 1] ∪ {9𝑁 } ⊆ 𝑆0.

– To compute [𝐶2]G, the reduction needs to compute [𝑎12𝑁 Γ(𝑎)]G and [𝑎9𝑁𝑇0 (𝑎)Γ(𝑎)]G:
∗ Since Γ has degree atmost 2𝑁 , the reduction can compute [𝑎12𝑁 Γ(𝑎)]G using [𝑎𝑖 ]G for 𝑖 ∈ [12𝑁, 14𝑁 ] ⊂
𝑆0.

∗ By Eq. (C.3), Γ𝑇0 | 𝑗 = 0 for all 𝑗 ∈ [2𝑁 + 1, 3𝑁 − 1]. Moreover Γ𝑇0 has degree at most 4𝑁 . This means

the reduction can compute [𝑎9𝑁𝑇0 (𝑎)Γ(𝑎)]G using [𝑎𝑖 ]G for 𝑖 ∈ [9𝑁, 11𝑁 ] ∪ [12𝑁, 13𝑁 ] ⊆ 𝑆0.

– To compute [𝐶3]G, the reduction needs to first compute [𝑎12𝑁 ]G, which is given out since 12𝑁 ∈ 𝑆0.

Then it needs to compute [𝑎9𝑁𝑇0 (𝑎)]G. Since 𝑇0 has degree 2𝑁 , the reduction can do so using [𝑎𝑖 ]G for

𝑖 ∈ [9𝑁, 11𝑁 ] ⊆ 𝑆0.

– To compute [𝐶4]G𝑇 , the reduction needs to compute [𝑎13𝑁−1]G𝑇 and [𝑎10𝑁−1 (𝑇0 (𝑎) − 𝑧−1𝑎2𝑁 )]G𝑇 :
∗ First, it computes [𝑎13𝑁−1]G𝑇 = [𝑎13𝑁−1]G · [1]G. Note that 13𝑁 − 1 ∈ 𝑆0.

∗ Consider [𝑎10𝑁−1 (𝑇0 (𝑎) − 𝑧−1𝑎2𝑁 )]G𝑇 . From above, we argued that 𝑇0 has degree 2𝑁 with leading

coefficient 𝑧−1
. This means 𝑇0 (𝑎) − 𝑧−1𝑎2𝑁

is a polynomial of degree 2𝑁 − 1. Thus, the reduction

needs to be able to compute [𝑎𝑖 ]G𝑇 for 𝑖 ∈ [10𝑁 − 1, 12𝑁 − 2]. For each 𝑖 ∈ [10𝑁 − 1, 12𝑁 − 2], the
reduction can compute

[𝑎𝑖 ]G𝑇 = [𝑎7𝑁−1]G · [𝑎𝑖−7𝑁+1]G.

Now 7𝑁 − 1 ∈ 𝑆0 and moreover, when 𝑖 ∈ [10𝑁 − 1, 12𝑁 − 2], we have 𝑖 − 7𝑁 + 1 ∈ [3𝑁, 5𝑁 − 1] ⊂ 𝑆0.

– To compute [𝐶5]G𝑇 , the reduction needs to compute [𝑎13𝑁−1Γ(𝑎)]G𝑇 and [𝑎10𝑁−1 (𝑇0 (𝑎)Γ(𝑎) − 𝑎2𝑁 )]G𝑇 :
∗ Since Γ has degree at most 2𝑁 , to compute [𝑎13𝑁−1Γ(𝑎)]G𝑇 , it suffices to be able to compute [𝑎𝑖 ]G𝑇
for 𝑖 ∈ [13𝑁 − 1, 15𝑁 − 1]. For each 𝑖 ∈ [13𝑁 − 1, 15𝑁 − 1], the reduction can compute

[𝑎𝑖 ]G𝑇 = [𝑎4𝑁−1]G · [𝑎𝑖−4𝑁+1]G,

which is feasible since 4𝑁 − 1 ∈ 𝑆0 and likewise, 𝑖 − 4𝑁 + 1 ∈ [9𝑁, 11𝑁 ] ⊂ 𝑆0.

∗ By Eq. (C.3), Γ𝑇0 | 𝑗 = 0 for all 𝑗 ∈ [2𝑁 + 1, 3𝑁 − 1] and Γ𝑇0 |2𝑁 = 1. This means (𝑇0 (𝑎)Γ(𝑎) −
𝑎2𝑁 ) | 𝑗 = 0 for all 𝑗 ∈ [2𝑁, 3𝑁 − 1]. In addition, the degree of 𝑇0Γ is at most 4𝑁 . Thus, to

compute [𝑎10𝑁−1 (𝑇0 (𝑎)Γ(𝑎) − 𝑎2𝑁 )]G𝑇 , it suffices that the reduction can compute [𝑎𝑖 ]G𝑇 for all

𝑖 ∈ [10𝑁 −1, 12𝑁 −2] ∪ [13𝑁 −1, 14𝑁 −1]. First, for 𝑖 ∈ [10𝑁 −1, 12𝑁 −2], the reduction can compute

[𝑎𝑖 ]G𝑇 = [𝑎7𝑁−1]G · [𝑎𝑖−7𝑁+1]G,

which is feasible since 7𝑁 − 1 ∈ 𝑆0 and 𝑖 − 7𝑁 + 1 ∈ [3𝑁, 5𝑁 − 1] ⊂ 𝑆0. For 𝑖 ∈ [13𝑁 − 1, 14𝑁 − 1],
the reduction can compute

[𝑎𝑖 ]G𝑇 = [𝑎10𝑁−1]G · [𝑎𝑖−10𝑁+1]G,

which is feasible since 10𝑁 − 1 ∈ 𝑆0 and 𝑖 − 10𝑁 + 1 ∈ [3𝑁, 4𝑁 ] ⊂ 𝑆0.

We conclude that algorithm B can efficiently construct the listed group elements from the elements given out in the

challenge.
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Advantage analysis of B. It suffices now to compute the advantage of B. First, by inspection, there does not exist

𝑠, 𝑠′ ∈ 𝑆0 ∪ {0} such that 𝑠 + 𝑠′ = 12𝑁 − 1, so algorithm B is admissible. As in the correctness analysis, we assume

that 𝑎 ∉ [2𝑁 ]. Since the challenger samples 𝑎
r← Z𝑝 and 𝑁 = poly(𝜆) while 𝑝 = 2

Ω (𝜆)
, this property holds with

overwhelming probability. We now consider two possibilities depending on the distribution of the challenge [𝑍 ]G𝑇 :
• Suppose [𝑍 ]G𝑇 = [𝑎𝑚]G𝑇 = [𝑎12𝑁−1]G𝑇 . In this case, we claim that with overwhelming probability, algorithm

B simulates the semi-static security experiment 𝑞-BDHES(𝜇 ) , where 𝜇 is the random (message) bit sampled

by B at the start of its execution. We analyze the distribution of the master public key mpk, the responses sk𝑖
to the key-generation queries, and the challenge ciphertext ct:

– Computation of mpk. First, the 𝑞-BDHES challenger samples 𝑎
r← Z𝑝 . Since the reduction algorithm

samples𝑢0, 𝑣0, 𝛽0

r← Z𝑝 , as long as 𝑎 ≠ 0, the distributions of𝑢 = 𝑢0, 𝑣 = 𝑣0𝑎
9𝑁 , 𝛽 = 𝛽0𝑎

3𝑁
are independent

and uniformly random. Furthermore, since Γ is a random 2𝑁 -degree polynomial with 2𝑁 fixed points,

the evaluation outcome 𝛾 = Γ(𝑎) at any point 𝑎 ∉ [2𝑁 ] is uniformly random. Thus as long as 𝑎 ∉ [2𝑁 ],
the master public key

mpk = ({[𝑢𝑎 𝑗 ]G} 𝑗∈[0,𝑁−2], {[𝑣𝑎𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G}𝑘∈[0,𝑁 ], [𝛾𝛽𝑣]G, [𝛾𝛽𝑣𝑎]G).

constructed by B is distributed exactly according to the specification of the semi-static experiment. As

argued above, 𝑎 ∉ [2𝑁 ] with overwhelming probability over the choice of 𝑎.

– Computation of sk𝑖 . For each index 𝑖 ∈ [𝑁 ] \ 𝑆∗, algorithm B sampled 𝑟𝑖
r← Z𝑝 , which is distributed

exactly according to the specification of the semi-static experiment. Since algorithm B constructs [𝑠𝑖 ]G
to satisfy [𝑠𝑖 ]G = [𝛽𝑢 · 𝛾−𝑟𝑖

𝑎−𝑖 ]G, we conclude that the secret keys sk𝑖 are also distributed as specified in

the semi-static experiment.

– Computation of ct. First, the reduction algorithm implicitly defines 𝑡 = 𝜏 + 𝑧 · 𝑎−3𝑁𝑇0 (𝑎) where 𝜏 r← Z𝑝 .
Since 𝜏 is uniform, the same holds for 𝑡 . Now, if [𝑍 ]G𝑇 = [𝑎12𝑁−1]G𝑇 , the challenge ciphertext B computes

can be written as follows:

[𝐶1]G = [𝑡𝑣𝑃 (𝑎)]G
[𝐶2]G = [𝑡𝛾𝛽𝑣]G
[𝐶3]G = [𝑡𝛽𝑣]G
[𝐶4]G𝑇 = 𝑢0𝑣0𝛽0𝜏 [𝑎13𝑁−1]G𝑇 + 𝑧𝑢0𝑣0𝛽0 [𝑎10𝑁−1 (𝑇0 (𝑎) − 𝑧−1𝑎2𝑁 )]G𝑇 + 𝑢0𝑣0𝛽0 [𝑍 ]G𝑇

= [𝑢𝑣𝛽𝜏𝑎𝑁−1]G𝑇 + [𝑢𝑣𝛽 (𝑧𝑎−2𝑁−1𝑇0 (𝑎) − 𝑎−1)]G𝑇 + [𝑢𝑣𝛽𝑎−1]G𝑇
= [𝑢𝑣𝛽𝑎𝑁−1 (𝜏 + 𝑧𝑎−3𝑁𝑇0 (𝑎))]G𝑇
= [𝑢𝑣𝛽𝑎𝑁−1𝑡]G𝑇

[𝐶5]G𝑇 = 𝑢0𝑣0𝛽0𝜏 [𝑎13𝑁−1Γ(𝑎)]G𝑇 + 𝑧𝑢0𝑣0𝛽0 [𝑎10𝑁−1 (𝑇0 (𝑎)Γ(𝑎) − 𝑎2𝑁 )]G𝑇 + 𝑧𝑢0𝑣0𝛽0 [𝑍 ]G𝑇 + [𝜇]G𝑇
= [𝑢𝑣𝛽𝜏𝛾𝑎𝑁−1]G𝑇 + [𝑢𝑣𝛽𝑧 (𝑎−2𝑁−1𝑇0 (𝑎)𝛾 − 𝑎−1)]G𝑇 + [𝑢𝑣𝛽𝑧𝑎−1]G𝑇 + [𝜇]G𝑇
= [𝑢𝑣𝛽𝛾𝑎𝑁−1 (𝜏 + 𝑧𝑎−3𝑁𝑇0 (𝑎)) + 𝜇]G𝑇
= [𝑢𝑣𝛽𝛾𝑎𝑁−1𝑡 + 𝜇]G𝑇 ,

which is distributed exactly as in the real semi-static experiment.

Thus, with overwhelming probability over the choice of 𝑎, we have

Pr[𝑞-BDHES(0) (1𝜆,B) = 1] = 1

2

Pr[EXP(0)SSBE (1𝜆,A) = 0] + 1

2

Pr[EXP(1)SSBE (1𝜆,A) = 1] + 𝜈 (𝜆)

=
1

2

− 1

2

(
Pr[EXP(0)SSBE (1𝜆,A) = 1] − Pr[EXP(1)SSBE (1𝜆,A) = 1]

)
+ 𝜈 (𝜆),

where |𝜈 (𝜆) | ≤ negl(𝜆). We conclude that����Pr[𝑞-BDHES(0) (1𝜆,B) = 1] − 1

2

���� ≥ 𝜀 (𝜆)
2

− negl(𝜆). (C.5)
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• Suppose [𝑍 ]G𝑇
r← G𝑇 . Then, we can equivalently write [𝑍 ]G𝑇 = [𝑎12𝑁−1

1 + 𝛿]G𝑇 where 𝛿
r← Z𝑝 . By the same

analysis as in the previous case, conditioned on 𝑎 ∉ [2𝑁 ], the components constructed by algorithm B are

distributed as follows:

mpk =
(
{[𝑢𝑎 𝑗 ]G} 𝑗∈[0,𝑁−2], {[𝑣𝑎𝑘 ]G, [𝛽𝑣𝑎𝑘 ]G}𝑘∈[0,𝑁 ], [𝛾𝛽𝑣]G, [𝛾𝛽𝑣𝑎]G

)
,

sk𝑖 =
(
𝑖, 𝑟𝑖 ,

[
𝛽𝑢 · 𝛾 − 𝑟𝑖

𝑎 − 𝑖

]
G

)
,

and the challenge ciphertext components ct = ( [𝐶1]G, [𝐶2]G, [𝐶3]G, [𝐶4]G𝑇 , [𝐶5]G𝑇 ) are distributed as follows:

[𝐶1]G = [𝑡𝑣𝑃 (𝑎)]G
[𝐶2]G = [𝑡𝛾𝛽𝑣]G
[𝐶3]G = [𝑡𝛽𝑣]G,
[𝐶4]G𝑇 = [𝑢𝑣𝛽𝑎𝑁−1𝑡]G𝑇 + [𝑢0𝑣0𝛽0𝛿]G𝑇
[𝐶5]G𝑇 = [𝑢𝑣𝛽𝛾𝑎𝑁−1𝑡]G𝑇 + [𝑧𝑢0𝑣0𝛽0𝛿 + 𝜇]G𝑇 .

Now as long as 𝑎 ∉ [2𝑁 ], the values of 𝑢, 𝑣, 𝛽, {𝑟𝑖 }𝑖∉𝑆∗ , 𝛾, 𝑡 are independent of 𝑧. Specifically, when 𝑎 ∉ [2𝑁 ],
the value of 𝛾 = Γ(𝑎) is uniform and independent over Z𝑝 (because Γ is a polynomial of degree 2𝑁 that is

constrained on only 2𝑁 points). Similarly, the value of 𝑡 is blinded by 𝜏
r← Z𝑝 , which is sampled independently

of all of the other parameters. Thus, as long as 𝑢0, 𝑣0, 𝛽0 ≠ 0 (which holds with overwhelming probability), the

distribution of 𝑧𝑢0𝑣0𝛽0𝛿 remains uniform over Z𝑝 even given all of the other components (including 𝑢0𝑣0𝛽0𝛿).

In particular, this means that the distribution of [𝐶5]G𝑇 is statistically close to uniform over G𝑇 (independent

of the message 𝜇). Correspondingly, this means����Pr[𝑞-BDHES(1) (1𝜆,B) = 1] − 1

2

���� = negl(𝜆). (C.6)

Combining Eqs. (C.5) and (C.6), we have���Pr[𝑞-BDHES(0) (1𝜆,B) = 1] − Pr[𝑞-BDHES(1) (1𝜆,B) = 1]
���

≥
���Pr[𝑞-BDHES(0) (1𝜆,B) = 1] − 1/2

��� − ���Pr[𝑞-BDHES(1) (1𝜆,B) = 1] − 1/2
���

≥ 𝜀 (𝜆)
2

− negl(𝜆),

which is non-negligible. Thus B breaks the 𝑞-BDHES assumption, and the theorem holds. □
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