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Abstract. In many areas of cybersecurity, we require access to Per-
sonally Identifiable Information (PII), such as names, postal addresses
and email addresses. Unfortunately, this can lead to data breaches, es-
pecially in relation to data compliance regulations such as GDPR. An
Internet Protocol (IP) address is an identifier that is assigned to a net-
worked device to enable it to communicate over networks that use IP.
Thus, in applications which are privacy-aware, we may aim to hide the
IP address while aiming to determine if the address comes from a black-
list. One solution to this is to use homomorphic encryption to match an
encrypted version of an IP address to a blacklisted network list. This
matching allows us to encrypt the IP address and match it to an en-
crypted version of a blacklist. In this paper, we use the OpenFHE library
[1] to encrypt network addresses with the BFV homomorphic encryption
scheme. In order to assess the performance overhead of BFV, we im-
plement a matching method using the OpenFHE library and compare it
against partial homomorphic schemes, including Paillier, Damgard-Jurik,
Okamoto-Uchiyama, Naccache-Stern and Benaloh. The main findings are
that the BFV method compares favourably against the partial homomor-
phic methods in most cases.

1 Introduction

Data regulations such as GPDR [2] demand greater control of Personally Identi-
fiable Information (PII). In many areas of cybersecurity, we provide linkages be-
tween entities and their associated IP address and where revealing an IP address
can often identify a person or organisation that is involved in an investigation.
With this, we could define a blacklist of networks that we need to identify if spe-
cific source IP address is included. One of the best ways to preserve privacy is
with the use of homomorphic encryption, where we can encrypt both the target
IP address and the blacklist and match them without revealing any additional
information.

Homomorphic encryption allows us to take the plaintexts m1 and m2 encrypt
them using a secret key k, and perform operations such that:

Enck(m1 ◦m2) = Enck(m1) ◦ Enck(m2)
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where ◦ could potentially be any operator, such as add, multiply, logical and, or
logical or. With symmetric key encryption, we use the same key to decrypt as we
do to encrypt. Overall, in analysing the IP matching problem, we need to either
conduct bitwise homomorphic encryption or use a homomorphic subtraction
method.

In the past, partial homomorphic methods (PHE) have been used within
privacy-aware methods for network analysis. This includes Tusa et al., who used
the Paillier method to implement privacy-aware routing [3]. These methods often
have fairly good performance levels, but they do not implement a full range
of mathematical operations and thus often fall to scale on a large-scale basis,
especially where the full range of operations is required.

This paper thus provides a new method for the usage of fully homomorphic
encryption to match IP addresses to a blacklist of network addresses without
revealing the IP address or the blacklist.

2 Fully Homomomorphic Encryption

Homomorphic encryption is a method of encryption which supports operations
over encrypted data. In 1978, Rivest, Adleman, and Dertouzos [4] were the first to
explore the possibilities of using the natural homomorphic properties of the RSA
public key encryption scheme. The RSA scheme only supports the evaluation
of arithmetic multiplication over ciphertexts [5]. RSA is an example of Partial
Homomorphic Encryption (PHE), which is a scheme that supports the evaluation
of only a single type of operation on ciphertexts. Fully Homomorphic Encryption
(FHE) can support every operation. Since Gentry defined the first FHE method
[6] in 2009, there have been four main generations of homomorphic encryption:

– 1st generation: Gentry’s method uses integers and lattices [7] including the
DGHV method.

– 2nd generation. Brakerski, Gentry and Vaikuntanathan’s (BGV) and Brak-
erski/ Fan-Vercauteren (BFV) use a Ring Learning With Errors approach
[8]. The methods are similar to each other and with only a small difference
between them.

– 3rd generation: These include DM (also known as FHEW) and CGGI (also
known as TFHE) and support the integration of Boolean circuits for small
integers.

– 4th generation: CKKS (Cheon, Kim, Kim, Song) and which uses floating-
point numbers [9].

Generally, CKKS works best for real number computations and can be ap-
plied to machine learning applications as it can implement logistic regression
methods and other statistical computations. DM (also known as FHEW) and
CGGI (also known as TFHE) are useful in the application of Boolean circuits
for small integers. BGV and BFV are generally used in applications with small
integer values.
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2.1 Public key or symmetric key

Homomorphic encryption can be implemented either with a symmetric key or
an asymmetric (public) key. With symmetric key encryption, we use the same
key to encrypt as we do to decrypt, whereas, with an asymmetric method, we
use a public key to encrypt and a private key to decrypt. In Figure 1, we use
asymmetric encryption with a public key (pk) and a private key (sk). With this,
Bob, Alice and Peggy will encrypt their data using the public key to produce
ciphertext, and then we can operate on the ciphertext using arithmetic opera-
tions. The result can then be revealed by decrypting with the associated private
key. We can also use symmetric key encryption (Figure 2), and where the data
is encrypted with a secret key, and which is then used to decrypt the data. In
this case, the data processor (Trent) should not have access to the secret key, as
they could decrypt the data from the providers.

Fig. 1. Asymmetric encryption (public key)

2.2 Homomorphic libraries

There are several homomorphic encryption libraries that support FHe, including
ones that support CUDA and GPU acceleration, but many have not been kept
up-to-date with modern methods or have only integrated one method. Over-
all, the native language libraries tend to be the most useful, as they allow the
compilation to machine code. The main languages for this are C++, Golang
and Rust, although some Python libraries exist through wrappers to C++ code.
This includes HEAAN-Python and its associated HEAAN library.

One of the first libraries which supported a range of methods are Microsoft
SEAL [10], SEAL-C# and SEAL-Python. While it supports a wide range of
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Fig. 2. Symmetric encryption

methods, including BGV/BFV and CKKS, it has lacked any real serious devel-
opment for the past few years. Wood et al. [11] define a full range of libraries.
One of the most extensive libraries is PALISADE, and which has now developed
into OpenFHE. Within OpenFHE, the main implementations are:

– Brakerski/Fan-Vercauteren (BFV) scheme for integer arithmetic.
– Brakerski-Gentry-Vaikuntanathan BGV) scheme for integer arithmetic
– Cheon-Kim-Kim-Song (CKKS) scheme for real-number arithmetic (includes

approximate bootstrapping)
– Ducas-Micciancio (DM) and Chillotti-Gama-Georgieva-Izabachene (CGGI)

schemes for Boolean circuit evaluation.

2.3 Bootstrapping

A key topic within fully homomorphic encryption is the usage of bootstrapping.
Within a learning with-errors approach, we add noise to our computations. For
a normal decryption process, we use the public key to encrypt data and then the
associated private key to decrypt it. Within the bootstrap version of homomor-
phic encryption, we use an encrypted version of the private key that operates
on the ciphertext. In this way, we remove the noise which can build up in the
computation. Figure 3 outlines that we perform and evaluation on the decryp-
tion using an encrypted version of the private key. This will remove noise in the
ciphertext, after which we can then use the actual private key to perform the
decryption.

The main bootstrapping methods are CKKS [9], DM [12]/CGGI, and BGV/BFV.
Overall, CKKS is generally the fastest bootstrapping method, while DM/CGGI
is efficient with the evaluation of arbitrary functions. These functions approx-
imate maths functions as polynomials (such as with Chebyshev approxima-
tion). BGV/BFV provides reasonable performance and is generally faster than
DM/CGGI but slower than CKKS.
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Fig. 3. Bootstrap

2.4 Plaintext slots

With many homomorphic methods, we can encrypt multiple plaintext values
into ciphertext in a single operation. This is defined as the number of plaintext
slots and is illustrated in Figure 4.

2.5 BGV and BFV

With BGV and BFV, we use a Ring Learning With Errors (LWE) method [8].
With BGV, we define a moduli (q), which constrains the range of the polynomial
coefficients. Overall, the methods use a moduli, which can be defined within
different levels. We then initially define a finite group of Zq and then make this
a ring by dividing our operations with (xn + 1) and where n − 1 is the largest
power of the coefficients. The message can then be represented in binary as:

m = an−1an−2...a0 (1)

This can be converted into a polynomial with:

m = an−1x
n−1 + an−2x

n−2 + ...+ a1x+ a0 (mod q) (2)

The coefficients of this polynomial will then be a vector. Note that for effi-
ciency, we can also encode the message with ternary (such as with -1, 0 and 1).
We then define the plaintext modulus with:

t = pr (3)

and where p is a prime number and r is a positive number. We can then
define a ciphertext modulus of q, and which should be much larger than t. To
encrypt with the private key of s, we implement:

(c0, c1) =
(q
t
.m+ a.s+ e,−a

)
mod q (4)

To decrypt:
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Fig. 4. Slots for plaintext

m =
⌊ t
q
(c0 + c1).s

⌉
(5)

This works because:

mrecover =
⌊ t
q

(q
t
.m+ a.s+ e− a.s

)⌉
(6)

=
⌊(

m+
t

q
.e

)⌉
(7)

≈ m (8)

For two message of m1 and m2, we will get:

Enc(m1 +m2) = Enc(m1) + Enc(m2) (9)

Enc(m1.m2) = Enc(m1).Enc(m2) (10)

Noise and computation But each time we add or multiply, the error also
increases. Thus, bootstrapping is required to reduce the noise. Overall, addition
and plaintext/ciphertext multiplication is not a time-consuming task, but ci-
phertext/ciphertext multiplication is more computationally intensive. The most
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computational task is typically the bootstrapping process, and the ciphertext/-
ciphertext multiplication process adds the most noise to the process.

Parameters We thus have a parameter of the ciphertext modulus (q) and the
plaintext modulus (t). Both of these are typically to the power of 2. An example
of q is 2240 and for t is 65,537. As the value of 2q is likely to be a large number,
we typically define it as a log q value. Thus, a ciphertext modulus of 2240 will
be 240 as defined as a log q value.

Public key generation We select the private (secret) key using a random
ternary polynomial (-1, 0, and 0 coefficients) and which has the same degree as
our ring. The public key is then a pair of polynomials as:

pk1 = r.sk+ e) (mod q) (11)

pk2 = r (12)

and where r is a random polynomial value. To encrypt with the public key
(pk):

(c0, c1) =
(q
t
.m+ a.s.r+ e,−a.r

)
mod q (13)

We then decrypt with the private key (s);

m =
⌊ t
q
(c0 + c1).s

⌉
(14)

This works because:

mrecovered =
⌊ t
q

(q
t
.m+ a.s.r+ e− a.r.s.

)⌉
(15)

=
⌊(

m+
t

q
.e

)⌉
(16)

≈ m (17)

3 Partial homomorphic encryption

With partial homomorphic encryption (PHE), we can implement some form of
arithmetic operation in a homomorphic way. These methods include RSA, El-
Gamal, Paillier [13], Exponential ElGamal, Elliptic Curve ElGamal [14], Paillier
[13], Damgard-Jurik [15], Okamoto–Uchiyama [16], Benaloh [17], Naccache–Stern
[18], and Goldwasser–Micali [19]. Overall, we can use RSA and ElGamal for
multiplicative homomorphic encryption; Paillier, Exponential ElGamal, Ellip-
tic Curve ElGamal, Damgard-Jurik, Okamoto–Uchiyama, Benaloh and Nac-
cache–Stern for additive homomorphic encryption; and Goldwasser–Micali for
XOR homomorphic encryption.
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3.1 Paillier

The Paillier cryptosystem [13] is a partial homomorphic encryption (PHE) method
that can perform addition, subtraction, and scalar multiplying. Thus we get:

Enck(A+B) = Enck(A) + Enck(B) (18)

Enck(A−B) = Enck(A)− Enck(B) (19)

Enck(A.B) = A.Enck(B) (20)

If we take two values: m1 and m2, we get two encrypted values of Enc(m1)
and Enc(m2). We can then multiply the two cipher values to get Enc(m1+m2).
We can then decrypt to get m1 +m2. Along with this, we can also subtract to
Enc(m1 −m2). This is achieved by taking the inverse modulus of Enc(m2) and
multiplying it with Enc(m1). Finally, we can perform a scalar multiply to get
Enc(m1 ·m2) and which is generated from Enc(m1)m2.

First we select two large prime numbers (p and q) and compute:

N = pq (21)

PHI = (p− 1)(q − 1) (22)

λ = lcm (p− 1, q − 1) (23)

and where lcm is the least common multiple. We then select a random integer
g for:

g ∈ Z∗
nN2 (24)

We must make sure that n divides the order of g by checking the following:

µ = (L(gλ (mod n)
2
))−1 (mod N) (25)

and where L is defined as L(x) = x−1
N . The public key is (N, g) and the private

key is λ, µ).
To encrypt a message (M), we select a random r value and compute the

ciphertext of:

c = gm · rN (mod N2) (26)

and then to decrypt:

m = L(cλ (mod N)
2
) · µ (mod N) (27)

For adding and scalar multiplying, we can take two ciphers (C1 and C2), and
get:

C1 = gm1 · rN1 (mod N2) (28)

C2 = gm2 · rN2 (mod N2) (29)
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If we now multiply them, we get:

C1 · C2 = gm1 · rN1 · gm2 · rN2 (mod N2) (30)

C1 · C2 = gm1+m2 · rN1 · rN2 (mod N2) (31)

Adding two values requires the multiplication of the ciphers. Examples of
using Paillier are defined at [20].

3.2 Benaloh

In 1986, Josh (Cohen) Benaloh published on A Robust and Verifiable Crypto-
graphically Secure Election Scheme [17,21]. Within it, Josh outlined a public key
encryption method and where Bob could generate a public key and a private key.
The public key could then be used by Alice to encrypt data for Bob, and then
Bob can use the associated private key to decrypt it. It has the advantage of
supporting additive homomorphic encryption. For the Benaloh method, to gen-
erate a key pair, Bob generates p and q, and which are two large prime numbers,
which are two large distinct prime numbers. Next, he computes:

n = pq (32)

ϕ(n) = (p–1)(q–1) (33)

Bob then selects a block size (r) so that:

– r divides p− 1
– textrmgcd(r, (p− 1)/r) = 1
– textrmgcd(r, q − 1) = 1

Next Bob selects y so that:

x = yϕ(n)/r (mod n) ̸= 1 (34)

Bob’s private key is (p, q) and his public key is (y, r, n). To encrypt data for
Bob, Alice selects a message (m) and uses Bob’s public key of (y, r, n). First, she
selects a random value of u and which is between 0 and n. Alice then encrypts
with:

c = ymur (mod n) (35)

She sends this ciphertext to Bob. He will then decrypt with:

a = cϕ(n)/r (mod n) (36)
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Bob lets md = 0. If xmd (mod n) ̸= a the Bob increments md by 1. He keeps
doing this until:

xmd (mod n) = a (37)

The value of md is then the original plaintext. One of the advantages of the
Benaloh method is that we can perform additive homomorphic encryption. If we
have two messages, we multiply the ciphers together for each message:

c1 = ym1ur (mod n) (38)

c2 = ym2ur (mod n) (39)

c = c1.c2 (40)

This will give:

c = ym1+m2ur (mod n) (41)

3.3 Okamoto-Uchiyama

With the Okamoto-Uchiyama method [16,22], we can perform additive and scalar
multiply homomorphic encryption. A public/private key pair is generated as
follows:

– Generate large primes p and q and set n = p2q.
– g ∈ (Z/nZ)∗ such that gp−1 ̸= 1 mod p2.
– Let h = gn (mod n).

The public key is (n, g, h) and then the private key is (p, q). To encrypt a
message m, where m is taken to be an element in 2k−1. We then select r ∈ Z/nZ
at random. The cipher is then:

C = gmhr (mod n) (42)

Next, we define the function of: L(x) = x−1
p .

We then decrypt with:

m =
L
(
Cp−1 mod p2

)
L (gp−1 mod p2)

(mod p) (43)

3.4 Naccache–Stern

With the Naccache–Stern method [18,23], we select a large prime number (p).
We then select a value (n) and for i from 0 to n, we select the the first n prime
numbers (p0...pn−1 of which p0 is 2. We must make sure that:

https://orcid.org/0000-0003-0809-3523
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n∏
i=0

pilt; p (44)

For our secret key (s) we make sure that:

gcd(s, p− 1) = 1 (45)

To compute the public key (vi), we calculate: vi = s
√
pi (mod p) To encrypt,

we take a message ofm and then determine the message bits ofmi. We can then
cipher with the public key:

c =

n∏
i=0

vmi
i (mod p) (46)

and then to decrypt:

m =

n∑
i=0

2i

pi − 1
× (gcd(pi, c

s (mod p))− 1) (47)

3.5 Goldwasser–Micali

With public key encryption, Alice could have two possible messages (a ’0’ or
a ’1’) that she sends to Bob. If Eve knows the possible messages (a ’0’ or a
’1’), she will then cipher each one with Bob’s public key and then matches the
results against the cipher message that Alice sends. Eve can thus determine what
Alice has sent to Bob. In order to overcome this, the Goldwasser–Micali (GM)
method [24] is used as a public key algorithm that uses a probabilistic public-
key encryption scheme. In this case, we will implement an XOR homomorphic
encryption operation. For an input of 17 (10001) and 16 (10000), we will get a
result of 00001 (1).

In a probabilist encryption method, Alice selects the plaintext (m) and a
random string (r). Next, she uses Bob’s public key to encrypt the message pair
of (m, r). If the value is random, then Eve will not be able to use the range of
messages and random values used. If Bob wants to create his public and private
keys. He first selects two random prime numbers for his private key and then
calculates N :

N = pq (48)

The values of p and q will be his private key, and N will form part of his
public key. For the second part of his public key, he determines:

a = pseudosquare(p, q) (49)
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For this, we determine if we can find, for a given value of a, which has no
solutions:

u2 ≡ a (mod p) (50)

u2 ≡ a (mod q) (51)

This means that there are no quadratic residues. Bob’s public key is (N, a)
and the private key is (p, q). The key encryption method becomes:

– Bob selects p and q.

– Bob selects a with
(

a
p

)
=

(
a
q

)
= −1. This is a Jacobi symbol calculation.

– Bob publishes N and a.

To encrypt for Bob:

– Select a bit to encrypt m ∈ 0, 1.
– Alice uses Bob’s values of N, a) to compute:
– c = r2 (mod N) if m = 0
– c = ar2 (mod N) if m = 1

Alice chooses r at random, and thus, Eve will not be able to spot the message,
as the random values will consist of all possible squares modulo N when m = 0.

Alice sends c to Bob. To decrypt, Bob then computes
(

c
p

)
and gets:

m = 0 : if

(
c

p

)
= 1 (52)

m = 1 : if

(
c

p

)
= −1 (53)

3.6 Damgard-Jurik

With the Damgard-Jurik method [15] we select two large prime numbers (p and
q) and compute:

n = pq (54)

ϕ = (p− 1)(q − 1) (55)

λ = lcmϕ (56)

and where lcm is the least common multiple. We then select a random integer
g for:

g ∈ Z∗
n2 (57)

We must make sure that n divides the order of g by checking the following:

µ = (L(gλmodn2))−1modn (58)
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and where L is defined as L(x) = x−1
n . The public key is (n, g) and the

private key is λ, µ). To encrypt a message (M), we select a random r value and
compute the ciphertext of:

c = gm · rn (mod ns+1) (59)

and then to decrypt:

m = L(cλmodn2) · µ (mod n)s (60)

If we take two ciphers (C1 and C2), we get:

C1 = gm1 · rn1 (mod n2) (61)

C2 = gm2 · rn2 (mod n2) (62)

If we now multiply them, we get:

C1 · C2 = gm1 · rn1 · gm2 · rn2 (mod n2) (63)

C1 · C2 = gm1+m2 · rn1 · rn2 (mod n2) (64)

Adding two values requires the multiplication of the ciphers. If we now divide
them, we get:

C1

C2
=

gm1 ·rn1
gm2 ·rn2

(mod n2) C1

C2
= gm1−m2 rn1

rn2
(mod n2)

Thus, subtraction is equivalent to a divide operation. For this, we perform a
modular divide operation.

4 Methodology

An IPv4 address has four main fields that are defined with integer values in the
range 0-255. An example is 12.23.45.67, and which is a 32-bit address value, and
where each of the fields is identified with an 8-bit value. The address then splits
into a network part and a host part, such as where 12.23.46.0 might identify a
network address, and 0.0.0.67 will identify the host part. Overall, we define the
network part with a subnet mask, and where bits that are set to a 1 identifies
the network part, and where we have a 0, we define the host part. We can then
vary the number of 1’s from 0 to 32. An example subnet mask where the network
part is 24 bits long is 0xffffff00, and which can be represented by 255.255.255.0.
This is often identified by the number of bits, such as 1’s in the subnet mask,
such as ’/24’. An example IP address could thus be ’192.168.0.10/24’, and where
the network part is ’192.168.0.0” and the host part of ’0.0.0.24’.
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4.1 PHE Subtraction method

Algorithm 1 defines the method used for subtractive homomorphic encryption.
In this, we convert the target IP address and the blacklisted network address to
32-bit integer values. The subnet mask then defines the network part to match.
Again, this will be an integer value, and where the 1’s identify the network part
and the 0’s will identify the host part. Overall, we are only interested in matching
the network part of the target address to the blacklisted network address. We
can then create a BFV keypair with a public key (pk) and a private key (sk). The
homomorphic public key is then used to encrypt the target IP address and also
the blacklisted address. Once encrypted, we can then perform a homomorphic
subtraction. If the network part of the target IP address and the network address
match, the result will be an encrypted value of zero. We can then decrypt the
result of the homomorphic subtraction and if we get a zero, we know that the
IP address is contained in the blacklist.

Algorithm 1 FHE for IP detection

1: Set IP with the address to find for an integer
2: Set Network for the blacklisted addresses as an integer
3: Set Subnetmask as the subnet of blacklist
4: Generate pk, sk for homomorphic key pair
5: IPe = Enc(IP, pk)
6: Blacklist = Network ∧ Subnetmask

7: Blackliste = Enc(Blacklist, pk)
8: Encdiff = IPe −Blackliste
9: if Encdiff = 0 then
10: Address is in the blacklist
11: else
12: Address is not in the blacklist
13: end if

4.2 Goldwasser–Micali XOR method

For the Goldwasser–Micali partial homomorphic encryption method, we can use
the XOR operation, and where we can XOR the blacklist network address with
the network address of the target IP address. This method is defined in Algorithm
2.

4.3 OpenFHE parameters

The parameters that need to be set within OpenFHE for BFV are:

– Scheme. This defines the scheme to be used. In the case of BFV, this is set
to BFVRNS SCHEME.

https://orcid.org/0000-0003-0809-3523
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Algorithm 2 FHE for IP detection

1: Set IP with the address to find for an integer
2: Set Network for the blacklisted addresses as an integer
3: Set Subnetmask as the subnet of blacklist
4: Generate pk, sk for homomorphic key pair
5: IPe = Enc(IP, pk)
6: Blacklist = Network ∧ Subnetmask

7: Blackliste = Enc(Blacklist, pk)
8: Encdiff = IPe ⊕Blackliste
9: if Encdiff = 0 then
10: Address is in the blacklist
11: else
12: Address is not in the blacklist
13: end if

– RDim. This defines the size of the lattice ring dimension. A typical value
for this is 16,384.

– MultDepth. This is the multiplication depth and is the maximum number of
sequential (cascaded) multiplications that are performed on encrypted data
before decryption fails due to excessive noise accumulation.

– PtMod. This defines the plaintext modulus, and needs to be a prime number
which is larger than the number of bits in the plaintext.

The parameter set needs to support integer values up to 32 bits. A recom-
mended setup for 41-bit resolution for the plaintext (PtMod) is set at 35,184,372,744,193,
along with the other parameters defined at [25]. The following section defines
the implementation of the method.

5 Results

The coding for fully homomorphic encryption using OpenFHE is defined in the
Coding section. The results for a t3.medium instance on AWS is given in Table
5, and which include a comparison with partial homomorphic methods using
the PHE Library [26]. The time to set up the key pair and the context for the
encryption is measured at an average of 93 ms. The greatest overhead is then the
time it takes to encrypt the values, which has an average time of around 270 ms.
The subtraction and decryption timing then comes in around 16 ms. It can be
seen that the encryption process provides the largest overhead in IP address
matching. We can see that the Benaloh and Goldwasser-Micali methods are by
far the fastest. The BFV method has a comparable performance as compared
with the PHE methods and is actually faster in the homomorphic encryption
operation than Paillier, Damgard-Jurik and Okamoto-Uchiyama. The Naccache-
Stern method also performs well, especially in the encryption and decryption
process. Overall, it is the encryption process that tends to have the greatest
overhead in processing.
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Table 1: Results for homomorphic operations for IP matching
Method Key pair (ms) Encrypt (ms) Operation and decrypt (ms)

BFV (OpenFHE) [1] 93.1 270.2 16.4
Paillier [13] 55.7 168.6 66.3
Damgard-Jurik [15] 83.6 443.5 155.2
Okamoto-Uchiyama [16] 128.9 206.9 18.0
Naccache-Stern [18] 48.2 0.2 0.6
Benaloh 6.0 0.3 0.2
Goldwasser-Micali [19] 0.3 0.5 1.6

6 Conclusion

The increasing requirements for privacy-aware cybersecurity provide opportu-
nities to encrypt data using homomorphic encryption. This paper outlines a
method that requires plaintext to support 32 bits and requires a larger plaintext
modulus than is used by default in applications. The paper has thus outlined a
method that uses the popular OpenFHE library and has fairly reasonable over-
heads in latency in creating the homomorphic encryption keys and in encrypting,
processing, and decrypting data.

7 Coding

The coding required for IP matching using the OpenFHE library is [27]:

#include <openfhe.h>

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

using namespace lbcrypto;

#include <sstream>

unsigned long hex2dec(string hex)

{

unsigned long result = 0;

for (int i=0; i<hex.length(); i++) {

if (hex[i]>=48 && hex[i]<=57)

{

result += (hex[i]-48)*pow(16,hex.length()-i-1);

} else if (hex[i]>=65 && hex[i]<=70) {

result += (hex[i]-55)*pow(16,hex.length( )-i-1);

} else if (hex[i]>=97 && hex[i]<=102) {

result += (hex[i]-87)*pow(16,hex.length()-i-1);

}

}

return result;

}

https://orcid.org/0000-0003-0809-3523
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// https://stackoverflow.com/questions/5328070/how-to-convert-string-to-

ip-address-and-vice-versa

uint32_t convert( const std::string& ipv4Str )

{

std::istringstream iss( ipv4Str );

uint32_t ipv4 = 0;

for( uint32_t i = 0; i < 4; ++i ) {

uint32_t part;

iss >> part;

if ( iss.fail() || part > 255 ) {

throw std::runtime_error( "Invalid␣IP␣address␣-␣Expected␣[0,␣

255]" );

}

// LSHIFT and OR all parts together with the first part as the MSB

ipv4 |= part << ( 8 * ( 3 - i ) );

// Check for delimiter except on last iteration

if ( i != 3 ) {

char delimiter;

iss >> delimiter;

if ( iss.fail() || delimiter != ’.’ ) {

throw std::runtime_error( "Invalid␣IP␣address␣-␣Expected␣

’.’␣delimiter" );

}

}

}

return ipv4;

}

int main(int argc, char* argv[]) {

uint64_t mod=35184372744193;

string ip1="2.3.4.5";

string network_address="2.3.4.7";

uint32_t subnet_mask=0xffffff00;

uint32_t ipval = convert(ip1) & subnet_mask;

uint32_t network = (convert(network_address)) & subnet_mask;

CCParams<CryptoContextBFVRNS> parameters;

parameters.SetPlaintextModulus(mod);

parameters.SetMultiplicativeDepth(0);

CryptoContext<DCRTPoly> cryptoContext = GenCryptoContext(parameters);

cryptoContext->Enable(PKE);

cryptoContext->Enable(KEYSWITCH);

cryptoContext->Enable(LEVELEDSHE);

KeyPair<DCRTPoly> keyPair;
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// Generate key pair

keyPair = cryptoContext->KeyGen();

std::vector<int64_t>xval = {1};

xval[0]=ipval;

Plaintext xplaintext = cryptoContext->MakePackedPlaintext(xval);

std::vector<int64_t> yval = {1};

yval[0]=network;

Plaintext yplaintext = cryptoContext->MakePackedPlaintext(yval);

// Encrypt values

auto ciphertext1 = cryptoContext->Encrypt(keyPair.publicKey,

xplaintext);

auto ciphertext2 = cryptoContext->Encrypt(keyPair.publicKey,

yplaintext);

// Subtract ciphertext

auto ciphertextMult = cryptoContext->EvalSub(ciphertext1, ciphertext2

);

// Decrypt result

Plaintext plaintextAddRes;

cryptoContext->Decrypt(keyPair.secretKey, ciphertextMult, &

plaintextAddRes);

std::cout << "Modulus:␣:␣" << mod<< std::endl;

std::cout << "\nIP1:␣" << xplaintext << std::endl;

std::cout << "IP2:␣" << yplaintext << std::endl;

// Output results

std::cout << "\nDifference" << std::endl;

plaintextAddRes->SetLength(1);

auto res = plaintextAddRes->GetPackedValue();

std::cout << "Subnet␣test=␣" << res[0] << std::endl;

if (res[0]==0) std::cout << "IP␣address␣is␣in␣subnet" << std::endl;

else std::cout << "IP␣address␣is␣not␣in␣the␣subnet" << std::endl;

return 0;

}
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