
Traceable Verifiable Random Functions

Dan Boneh, Aditi Partap, and Lior Rotem

Stanford University
{dabo,aditi712,lrotem}@cs.stanford.edu

Abstract. A threshold verifiable random function (threshold VRF) is a VRF where the evaluation key
is secret shared among n parties, and a quorum of t parties is needed to evaluate the VRF. Threshold
VRFs are used widely in practice in applications such as randomness beacons and deterministic wallets.
Despite their long history, the question of accountability for leaking key shares in a threshold VRF has
not been studied. Specifically, consider a set of f parties who use their key shares to create an evaluation
box E that lets anyone evaluate the VRF at any point in the domain of the VRF. When f is less than
the threshold t, this box E must also take as input t − f additional evaluation shares. Our goal is
to design a threshold VRF where there is a tracing algorithm that can trace any such box E to the
coalition of f parties that created it, using only blackbox access to E. The risk of tracing should deter
the coalition from selling such a box. Questions in this vein were previously explored in the context of
threshold decryption and secret sharing. Here we define and study traceability for a threshold VRF.
Our traceable threshold VRF is built from a VRF based on Paillier encryption. The starting point
for our tracing algorithm is the tracing technique of Boneh-Partap-Rotem (Crypto 2024) designed for
tracing leaks in the context of secret sharing. However, there are multiple technical challenges in making
this approach work, and we develop the necessary tools to overcome all these challenges. The end result
is a threshold VRF with a provably secure tracing algorithm.

1 Introduction

A verifiable random function (VRF) [39] is a pseudorandom function whose evaluations are pub-
licly verifiable: given a public verification key vk and an evaluation proof, anyone can verify that
a VRF output was correctly computed using a secret evaluation key. VRF outputs are unique, in
the sense that it is infeasible to produce valid proofs for two different VRF outputs for the same
input. Threshold VRFs [23] are a natural threshold version of this notion. In a threshold VRF,
the secret evaluation key is distributed among n parties, each holding a key share, such that any t
of the n parties can jointly evaluate the function. Threshold VRFs have recently found important
applications in blockchains, including for randomness beacons [27,15,18,22] and deterministic wal-
lets [21,41]. Several constructions of threshold VRFs have been suggested over the years (see, for
example, [37,23,24,27,22] and the references therein).

The need for accountability. A key security property missing from current threshold VRFs is ac-
countability. Specifically, in settings where a coalition of parties collude and leak a function of
their key shares, there should be a mechanism in place to identify these parties (and subsequently
penalize them). Without accountability, parties have a risk-free incentive to leak such information,
as they face no consequences for doing so. Introducing accountability would hopefully deter this
behavior by ensuring that colluding parties can be caught, thus strengthening the overall security
of the threshold VRF.

Over the years, the importance of such accountability mechanisms has been recognized by the
cryptographic community in the context of other cryptographic primitives. This realization has lead
to the development of traitor tracing schemes for public key encryption, a notion that has garnered

substantial attention from the academic community (see, for example [11,28,49,48,30,31,17,13]).
More recently, the ability to trace misbehaving parties who leak (a function) of their key shares
was extended to the setting of threshold decryption [9], and similar notions were developed for
secret sharing schemes [10,32]. Still, despite the fact the threshold VRFs have been around for over
20 years, and their increasingly prominent applications, the notion of accountability in threshold
VRFs has so far not been explored.

1.1 This Work: Traceable Threshold VRFs

In this paper, we initiate the study of accountability in threshold VRFs. Our contributions are
twofold:

– First, we formalize the requirement of accountability in threshold VRFs via the notion of trace-
able threshold VRFs. Our notion is inspired by former notions of accountability in threshold
cryptography [10,32,9] and we will elaborate on it in a second.

– Second, we present a construction of a traceable threshold VRF in the random oracle model,
that is derived from Paillier encryption [42]. This is the first threshold VRF to offer provable
accountability guarantees.

Traceable threshold VRFs. Our definition for traceable threshold VRFs is inspired by previous
works on tracing leaks in threshold cryptosystems [32,10,9]. In our model, f < t corrupted parties
collude, pull their key shares together, and sell an “evaluation box” E. This box is an algorithm that
takes in an input x to the VRF, and t− f additional evaluation shares. The box E then combines
its knowledge of the key shares of the corrupted parties and the evaluation shares it received as
input, to compute the VRF output fek(x) on x, where ek is the evaluation key sampled at setup.
At a high level, we say that the box E is “good” if, given well-formed inputs, it outputs the correct
function value with high probability. By now, modeling leaks as algorithms that break the security
of the underlying primitive is a well accepted way to capture any “useful” leakage of the secret
keys (for example, “decryption boxes” in traitor tracing schemes [19] and “reconstruction boxes”
in traceable secret sharing schemes [32,10]).

We say that a threshold VRF is traceable if any such good box E can be traced back to the
corrupted parties who contributed to it. This is formalized by requiring the existence of a tracing
algorithm, Trace. This is an efficient algorithm that gets as input a tracing key tk and interacts with
E via oracle access. At the end of this interaction Trace outputs the subset of corrupted parties.
We ask that all corrupted parties are caught, and that no honest party is implicated. The formal
definition is presented and discussed in Section 2.

A simple approach and its pitfalls. In Appendix B we present a simple generic tracing algo-
rithm. At a high level, it works as follows: say that there are f = t − 1 corruptions. The tracing
algorithm is equipped with n partial evaluation w1 = fek1(x), . . . , wn = fekn(x) for some input x,
one partial evaluation for each of the parties, where ek1, . . . , ekn are the partial keys distributed to
the parties. We also give it the true value y = fek(x) of the VRF at x. Then, the simple tracing
algorithm feeds these partial evaluations to E one at a time: If E returns y on input wi then party
i must be innocent; otherwise, the box does not have enough information to predict y. In this way,
we can exonerate all honest parties one at a time, and then we deem the remaining parties as the
corrupted parties.

Though simple, the forgoing approach suffers from two major limitations. First, it requires that
we reveal to the tracer the VRF value at the point x. Second, and more importantly, this tracing

2

algorithm only works if E is perfect. By that, we mean that E always outputs the correct value
when sufficiently-many additional evaluation shares are given as input. To see why, think of a box
E that only outputs the correct evaluation if H(fekt(x)) starts with ℓ 0s, where fekt(x) is the
additional evaluation share that E gets as input, H is a hash function, and ℓ is some small integer.
In this example, the simple tracing algorithm will end up accusing many honest parties! This is,
even though the box outputs the correct VRF evaluation often enough (namely, with probability
2−ℓ). We would like to correctly trace such a box back to the corrupted parties who created it. We
next present our Paillier-based construction, that avoids these two shortcomings.

Our construction. We present our construction in three steps. We start with a base scheme, that
already captures many of the main ideas behind our construction, but suffers from two unfavorable
security restrictions, discussed below. Then, we show how to extend the base construction to lift
these restrictions.

In Section 3 we present our base scheme. At its core, is a PRF based on Paillier encryption,
previously used in [8]. This PRF uses the fact that decrypting a random Paillier ciphertext, derived
from the VRF input, gives a pseudorandom function. Moreover, the homomorphic properties of
Paillier encryption lend themselves to efficient proofs of correct decryption, which can be used to
achieve public verifiability as needed for a VRF. First, we extend this observation to the threshold
setting, by relying on threshold variants of Paillier encryption [26,34], modifying them to fit our
needs. This gives us a threshold VRF.

Next, we augment this construction with a tracing algorithm to make it traceable. We would
like to leverage the recent work of Boneh, Partap, and Rotem [10] (BPR) who showed how to
trace leaks in Shamir secret sharing. Their tracing algorithm relies on detecting (carefully-planted)
errors in the Lagrange interpolation process underlying the reconstruction in Shamir secret sharing.
We observe that in threshold Paillier decryption, these errors are revealed in the group ZN for a
bi-prime modulus N .

Already in this base scheme, we need to overcome two main technical challenges. The first is
that the BPR tracing algorithm for Shamir relies on list-decoding for Reed-Solomon codes. The
group ZN is not an integral domain, and list decoding algorithms for Reed-Solomon codes, that are
typically defined over finite fields, do not naturally extend to it. To deal with this issue, we observe
that full-fledged list-decoding is unnecessary for tracing. We then have to look under the hood of
prominent list decoding algorithms, and use them in a way that respects the structure of ZN .

The second technical issue is that, in our definition, when the box E takes as input a VRF
input x and partial evaluations wf+1, . . . , wt, we allow E to require evaluation proofs that all of
wf+1, . . . , wt were computed correctly for the input x. This makes the definition of traceability
stronger and more realistic. However, the BPR algorithm requires feeding E with wrong partial
evaluations, for which a valid evaluation proof cannot be constructed. To get around this problem,
we encode some additional information in the tracing key. This information essentially acts as a
trapdoor to the VRF verification key, and allows the tracer to forge partial evaluations proofs for
false evaluations, overcoming this issue.

Lifting the two restrictions. The base scheme we just described only serves as a stepping stone.
It suffers from two main restrictions, which we show how to lift. First, the added information in
the tracing key has undesirable consequences; since it allows the tracer to forge evaluation proofs,
it also gives it the ability to break the uniqueness property of the VRF. In Section 4 we show how
to lift this restriction. By relying on techniques from Waters [47], we greatly limit the power of the
trapdoor the tracer is endowed with. Specifically, we show how to modify the verification and tracing

3

keys such that the tracer can only break uniqueness with respect to a very small (polynomial-size)
subset of the VRF input domain, out of exponentially many possible inputs. Moreover, this bad set
of inputs is uniformly random, so they will almost surely never come up in the above-mentioned
applications of threshold VRFs.

Second, a fact we ignored thus far is that the above base scheme is only one-time traceable.
That is, tracing is only guaranteed to work if the corrupted parties have observed no honest par-
tial evaluations before constructing the box E. This is a highly unrealistic assumption. Hence, in
Section 5, we show how to bootstrap our one-time traceable scheme into a full-fledged traceable
threshold VRF. We present two methods. The first method takes inspiration from the recent work
on bootstrapping one-time lattice-based multisignatures into many-time multisignatures [25]. The
idea is to divide time into epochs, such that in each epoch, we use a different one-time traceable
scheme. The verification key can be compressed by relying on succinct vector commitments [36,14].
This method assumes a synchronized notion of epochs among the parties, but this is often the case
in the applications of threshold VRFs [27].

The second method relies on the properties of exponential decay. We set up T instances
f1, . . . , fT of a one-time traceable VRF for some T that is super-logarithmic in the security pa-
rameter. Then, for each input x to the VRF, we use fi with probability 2−i. We decide which
function to use deterministically using a hash function, so each input x is always mapped to the
same function fi. This approach only provides a fine-grained tracing guarantee: if the corrupted
parties have observed q partial evaluations before leaking E, but E works for δ ≫ 1− 1/q fraction
of the inputs, then there should be an index i∗ ∈ [T] such that: (1) E works for fi, but (2) the
corrupted parties have not observed partial evaluations with respect to fi∗ . Hence, tracing follows
from the one-time traceability of fi∗ .

1.2 Discussion and Future Directions

Our work opens up several avenues for future work.

(1) Additional constructions. Perhaps the most natural open problem is to come up with addi-
tional constructions of traceable threshold VRFs. Specifically, it would be advantageous to have
constructions based on assumptions that are believed to be post-quantum secure. A natural start-
ing point in this context may be Regev’s lattice-based public key encryption scheme [43]. Regev
encryption exhibits some similar properties to Paillier, and so one could hope to port our techniques
to Regev encryption. This would require, however, to overcome a myriad of technical difficulties
that is unique to the lattice setting.

(2) Public-key tracing. For our constructions, the tracing key needs to be kept secret from the
adversary, because knowledge of this key can allow it to evade tracing. (Note that other security
properties including uniqueness and pseudorandomness are preserved even against adversaries with
the tracing key). This is inherent to the BPR tracing algorithm which also relies on the trac-
ing key being secret. An interesting future direction would be to build traceable threshold VRF
constructions which support public-key tracing.

(3) The f ≥ t case. In this work, we focus solely on the case where the number f of corrupted
parties is less than the threshold t. In the traceable secret sharing case [10] this is unavoidable,
since any coalition of size f ≥ t can just reconstruct and leak the secret itself, which contains no

4

information about the leaking coalition. In the VRF setting too, a coalition of size f ≥ t can leak
the VRF evaluation on a polynomial size set of prespecified inputs without being detected. However,
what if the coalition leaks an evaluation box E that takes in a single input x in the domain of the
VRF, and outputs its evaluation y = fek(x). If we assume a super-polynomial size domain, then
tracing such a box to the corrupted coalition that constructed it is a very interesting direction that
we leave for future work.

(4) An alternative view: VRFs as signatures. Another way to view our contributions is as the
introduction of a new type of accountability for threshold signatures. Typically, when discussing
accountable threshold signatures, the term refers to the ability of a signature to uniquely iden-
tify the quorum responsible for generating it (see [38,3,40,5,7,6,9] and references therein). It has
long been noted that, under certain conditions, VRFs are equivalent to the concept of unique
signatures [29,37]—signatures with the additional property that it is computationally hard to pro-
duce two distinct signatures for the same message. Building on this observation, our work can be
understood more broadly as introducing a novel form of accountability for threshold signatures,
specifically aimed at addressing the issue of leaking secret key shares. An interesting question in
this regard, is whether lifting the uniqueness requirement can result in more efficient constructions
of (non-unique) traceable threshold signatures.

2 Definitions of Traceable VRFs

In this section, we define the notion of a traceable threshold VRF.
A traceable threshold VRF is a tuple TTVRF = (FuncSamp,KeyShareGen,Eval,EvalVerify,Combine,

Verify,Trace) of PPT algorithms. The algorithms Eval,Combine,EvalVerify,Verify are the standard
algorithms of threshold VRFs, for generating partial VRF evaluations, combining partial evalua-
tions and verifying the evaluation proofs. We do restrict the presentation, however, to threshold
VRF schemes where the key generation procedure works in a certain manner. This restriction is
in line with the recent work of Boneh, Partap, and Rotem [10] on traceability in secret sharing
schemes. Specifically, we have a FuncSamp algorithm that samples a function indexed by an evalu-
ation key. This key is then secret shared among the parties via the KeyShareGen algorithm which
produces one secret share at a time. To produce the shares of all n parties, this algorithm is invoked
n times. But, many secret sharing schemes require that the n shares are correlated beyond just the
underlying secret key, to ensure correctness. For example, in Shamir secret sharing, all shares must
lie on the same degree t − 1 polynomial whose free coefficient is the evaluation key. To account
for this added correlation, we consider key share generation algorithms that take in a correlation
string ρ as an additional input. In Shamir secret sharing, for example, this ρ specifies the other
t− 1 coefficients of the said polynomial. Correctness then needs to hold for every choice of ρ, and
security is defined over a random choice of ρ.

We now formally define the syntax of traceable threshold VRF schemes:

– FuncSamp(1λ, n, t, 11/ϵ, 11/δ)→ (ek, ck, vk, tk∗, ρ) is a randomized algorithm that samples a func-
tion fek : Zλ → Yek from the function space F = {{fek}ek∈EKλ

}λ indexed by a key ek, where
EK = {EKλ}λ∈N is the space of evaluation keys. It takes in the security parameter λ, the num-
ber n of potential evaluators, a threshold t and error parameters ϵ = ϵ(λ) and δ = δ(λ). The
algorithm outputs an evaluation key ek that defines the function fek, the corresponding func-
tion verification key vk, a combiner key ck, a tracing key component tk∗ and a correlation string

5

ρ ∈ {0, 1}κ where κ = κ(λ, n, t) ∈ N. We assume that this algorithm samples the evaluation key
ek and the correlation string ρ uniformly randomly from EKλ and {0, 1}κ respectively.

– KeyShareGen(1λ, ek, n, t, ρ) → (eki, tki) is a randomized algorithm that outputs a single share
of the evaluation key eki and a tracing key component tki. The overall tracing key is tk ←
(tk∗, {tki}i∈[n]).

– Eval(eki, vk, z) → (wi, πi) is the deterministic function evaluation algorithm. It takes as input
an evaluation key share eki, the verification key vk and an input z from the function’s input
space Z and outputs an evaluation share wi and a proof share πi.

– EvalVerify(vk, z, wi, πi) → 0/1 is the deterministic share verification algorithm, that takes in
the verification key vk, an input z, a partial evaluation wi, and a proof πi. It outputs either 1,
implying acceptance, or 0, implying rejection.

– Combine(ck, wi1 , . . . , wit , πi1 , . . . , πit) → (w, π) is the deterministic combiner algorithm, that
takes in t evaluation shares wi1 , . . . , wit and their respective proof shares πi1 , . . . , πit , and outputs
a single combined evaluation w ∈ Yek and an associated proof π.

– Verify(vk, z, w, π)→ 0/1 is the deterministic verification algorithm, that takes in the verification
key vk, an input z, a VRF evaluation w, and a proof π. It outputs either 1, implying acceptance,
or 0, implying rejection.

– TraceE(tk) → I is the randomized tracing algorithm. It takes as input a tracing key tk and it
gets oracle (black-box) access to an evaluation box E. The algorithm outputs a subset I ⊆ [n]
of identities of leaking parties. The exact role of E in our definition will become apparent in a
minute.

A traceable threshold VRF should satisfy the standard notions of correctness, uniqueness, and
pseudorandomness. We also define three new security notions, called tracer pseudorandomness,
tracer uniqueness, and traceability.

Correctness. The correctness requirement for a traceable threshold VRF is the standard cor-
rectness property of threshold VRFs. That is, any t honestly-computed evaluation shares should
correctly combine to the function’s output.

Definition 1 (Correctness). Let TTVRF = (FuncSamp,KeyShareGen,Eval,Combine,EvalVerify,
Verify,Trace) be a traceable threshold VRF and let η = η(λ) be a function of the security parameter.
We say that TTVRF is η-correct if for every λ ∈ N, every input z in the input space of the function,
every n ∈ N, every ϵ, δ ∈ (0, 1], every 0 < t ≤ n, and every subset J = {i1, . . . , it} ⊆ [n] of size t,
it holds that

Pr

[
Verify(vk, z, w, π) = 1 ∧

∀j ∈ [t], EvalVerify(vk, z, wij , πij) = 1

]
≥ 1− 1/η(λ),

where (ek, ck, vk, tk∗, ρ)←$ FuncSamp(1λ, n, t, 11/ϵ, 11/δ), (ekij , tkij)←$ KeyShareGen(1λ, ek, n, t, ρ)
and (wij , πij)←$ Eval(ekij , vk, z) for j = 1, . . . , t, and (w, π)← Combine(ck, wi1 , . . . , wit , πi1 , . . . , πit).

Uniqueness. A traceable threshold VRF is said to satisfy uniqueness, if for every input z in the
input space, the verification algorithm accepts exactly one output. We define a relaxed notion called
computational uniqueness, according to which different outputs that are accepted by Verify may
exist, but they should be computationally hard to find (alongside corresponding accepting proofs).

Definition 2 (Uniqueness). Let TTVRF = (FuncSamp,KeyShareGen,Eval,Combine,EvalVerify,
Verify,Trace) be a traceable threshold VRF. We say that TTVRF has computational uniqueness

6

if for every PPT algorithm A, every λ ∈ N, every n ∈ N, every 0 < t ≤ n,every ϵ, δ ∈ (0, 1], the
function AdvuniqA,TTVRF(λ) defined below is negligible in λ:

Pr

 w0 ̸= w1 ∧
Verify(vk, z, w0, π0) = 1 ∧
Verify(vk, z, w1, π1) = 1

∣∣∣∣∣∣∣
(ek, ck, vk, tk∗, ρ)←$ FuncSamp

(
1λ, n, t,

11/ϵ, 11/δ

)
(
z, (w0, π0),
(w1, π1)

)
←$A

(
1λ, ek, ck, vk,

ρ, n, t, 11/ϵ, 11/δ

)
 .

Tracer Uniqueness. For traceable threshold VRFs, we define another notion of uniqueness called
tracer uniqueness, which means that uniqueness is maintained for a large fraction of the input
space, even against a corrupt tracer. In other words, the tracing key tk only allows the tracer to
break uniqueness for a negligible fraction of inputs. We formalize this by requiring that for any
input z∗ chosen by the adversary, the tracing key allows the adversary to break uniqueness for this
input only with negligible probability. We allow the adversary to choose z∗ adaptively – it is given
the evaluation key, combiner key, verification key and the n key shares before outputting z∗.

Definition 3. Let TTVRF = (FuncSamp,KeyShareGen,Eval,Combine,EvalVerify,Verify,Trace) be a
traceable threshold VRF. We say that TTVRF satisfies tracer uniqueness if for every PPT algo-
rithm A, every λ ∈ N, every n ∈ N, every ϵ, δ ∈ (0, 1], every 0 < t ≤ n, the function Advt−uniqA,TTVRF(λ)
defined below is negligible in λ:

Pr


w0 ̸= w1 ∧

Verify(vk, z∗, w0, π0) = 1 ∧
Verify(vk, z∗, w1, π1) = 1

∣∣∣∣∣∣∣∣∣∣

(ek, ck, vk, tk∗, ρ)←$ FuncSamp(1λ, n, t, 11/ϵ, 11/δ)
∀i ∈ [n] : (eki, tki)←$ KeyShareGen(1λ, ek, n, t, ρ)

tk← (tk∗, tk1, . . . , tkn)

(z∗, state)←$A
(

1λ, ek, ck, vk,

ρ, n, t, 11/ϵ, 11/δ

)
((w0, π0), (w1, π1))←$A(state, tk)


On the tracer uniqueness definition. An avid reader might wonder why the adversary is forced to
select the input z∗ before seeing the tracing key, in the tracer uniqueness game. This is because
of an inherent barrier to defining a stronger notion. Specifically, the tracer needs to give partial
evaluations as input to the evaluation box E. But these evaluations need to appear valid (they need
to pass verification), as otherwise the box might not work. As a result, the tracing key must allow
the tracer to break either pseudorandomness or uniqueness on certain inputs – when combined with
the leaked keys in the box, the input partial evaluations would either (a) reconstruct the correct
output, which hurts pseudorandomness, or (b) produce a different, incorrect output, which hurts
uniqueness. Nonetheless, our definition ensures that the set of inputs for which the tracer can break
uniqueness must be distributed uniformly randomly, and constitute only a negligible fraction of the
input space.

Pseudorandomness. A traceable threshold VRF should be pseudorandom in the following sense:
even an adversary that holds t− 1 evaluation keys should not be able to distinguish the function’s
output on a new input z∗ from a uniformly random value. This condition should hold, even if the
adversary can observe the partial evaluations of the function on inputs of its choice, as long as it
does not observe t secret keys (and can hence trivially predict the value of the function at z∗).
Figure 1 presents a formal definition.

Definition 4 (Pseudorandomness). A traceable threshold VRF scheme
TTVRF = (FuncSamp,KeyShareGen,Eval,Combine,EvalVerify,Verify,Trace) is said to be pseudoran-
dom if, for every PPT adversary A, the following function is negligible in λ:

7

AdvrandA,TTVRF(λ) = Pr
[
Grand
A,TTVRF(λ) = 1

]
Tracer Pseudorandomness. For traceable threshold VRFs, it makes sense to require tracer
pseudorandomness, which means that pseudorandomness is maintained even against the tracer.
We note that due to the inherent barrier listed above, the tracing key tk can allow the adversary
to break uniqueness for a certain set of inputs. Hence, we define tracer pseudorandomness as
follows: the definition is parameterized by some function S that maps tracing keys to subsets of
the inputs. Then, we allow the adversary to break pseudoranomness on inputs in a set S(tk) that is
deterministically induced by the tracing key tk, but it should not break pseudoranomness on inputs
outside this set. Figure 1 presents a formal definition.

Definition 5 (Tracer Pseudorandomness). A traceable threshold VRF scheme TTVRF = (FuncSamp,
KeyShareGen,Eval,Combine,EvalVerify,Verify,Trace) is said to be tracer-pseudorandom if, for every
PPT adversary A, the following function is negligible in λ:

Advt-randA,TTVRF(λ) = Pr
[
Gt-rand
A,TTVRF(λ) = 1

]

Games Grand
TTVRF and Gt-rand

TTVRF

1 : (st, n, t, 11/ϵ, 11/δ)← A(1λ)

2 : (ek, ck, vk, tk∗, ρ)←$ FuncSamp(1λ, n, t, 11/ϵ, 11/δ)

3 : for i = 1, . . . , n : (eki, tki)←$ KeyShareGen(1λ, ek, n, t, ρ)

4 : tk← (tk∗, tk1, . . . , tkn)

5 : (st, z∗)←$AekO(·),EvalO(·,·,·)(st, vk, ck, tk)

6 : b←$ {0, 1},m∗ ←$ Yek

7 : if b = 0 then m∗ ← fek(z
∗)

8 : b′ ←$A(st,m∗)

9 : flagrand ← (b′ = b ∧ |Qek| < t ∧ |Qeval(z∗)| = 0)

10 : return flagrand ∧ z∗ ̸∈ S(tk)

Oracle ekO(i)

1 : Qek ← Qek ∪ {i}
2 : return eki

Oracle EvalO(z, i)

1 : (wi, πi)← Eval(eki, vk, z)

2 : Qeval(z)← Qeval(z) ∪ {i}
3 : return (wi, πi)

Fig. 1. The security games Grand
TTVRF and Gt-rand

TTVRF for a traceable threshold VRF scheme TTVRF =
(FuncSamp,KeyGen,Eval,Combine,EvalVerify,Verify,Trace). The differences between the two games are highlighted
in red – in the game Gt-rand

TTVRF, (i) the adversary is given the tracing key as an additional input on line 5. Additionally,
(ii) in line 10, the adversary can win only if it breaks pseudorandomness for an input outside of S(tk), the set of
inputs for which the tracing key allows breaking uniqueness.

8

Semi-adaptive adversaries. The security games as defined in Figure 1 allow for fully-adaptive ad-
versaries, in the sense that they do not pose any restrictions on the order in which the adversary
decides on its oracle queries. Proving security against such adversaries is known to be a challenging
task, already for non-traceable threshold VRFs and signature schemes [35]. Since the problem of
fully-adaptive adversaries is not at the focus of this work, we consider semi-adaptive adversaries,
which are restricted to issuing all secret-key queries before issuing their partial evaluation queries.
This is captured by modifying the security games as follows. The game maintains a bit be denoting
whether a partial evaluation query has been issued by the adversary. On input (i), the ekO oracle
will check if be = 1; if so, it will ignore this query, returning ⊥. Otherwise, it will continue as defined
in Figure 1.

On uf-0 vs uf-1. The pseudorandomness games defined above consider uf-0 security [2] (originally
defined as low-threshold in [45]), where the adversary is not allowed to query partial evaluations
on the challenge input z∗. This definition can be naturally extended to define a stronger notion
called uf-1 security (referred to as high-threshold schemes in [45]), where such queries are permitted.
However, since achieving uf-1 security is not the primary focus of this work, we choose to consider
the uf-0 definition. Nonetheless, in Section 3, we discuss how our constructions can be proven to
be uf-1 secure, by adapting techniques from [4].

Traceability. In addition, a traceable threshold VRF should provide traceability. Suppose a coali-
tion I ⊆ [n] of parties, of size f < t, gets together and constructs an evaluation box E using their
shares. This E is an algorithm that takes in an input z along with t − f evaluation shares and
outputs the combined VRF evaluation at z. Intuitively, if this E is a “good” evaluation box, then
it should be possible to trace it back to the parties who “contributed” their shares to it. “Good”
here means that, given the necessary additional information, the box outputs the correct value of
the function with high probability for many of the inputs. This is formally defined below. As we
discussed in the introduction, tracing E back to the corrupted parties should be done given only
black-box access to it.

More formally, say that the evaluation key shared among the parties is ek∗. Then, E is a good
evaluation box if there is a large subset of inputs such that, for any z in that subset, and for random
t−f evaluation shares for z computed using secret shares of ek∗, denoted (w′1, π

′
1), . . . , (w

′
t−f , π

′
t−f),

it holds that E(z, (w′1, π
′
1), . . . , (w

′
t−f , π

′
t−f)) outputs the correct VRF evaluation at z corresponding

to ek∗ with high probability. Definition 6 below formally defines good evaluation boxes.

Definition 6 (Good evaluation boxes). Let TTVRF = (FuncSamp,
KeyShareGen,Eval,Combine,EvalVerify,Verify,Trace) be a traceable threshold VRF scheme. Let λ ∈
N, let n, t, f ∈ N such that 0 < f < t ≤ n, and let κ = κ(λ, n, t). For ϵ, δ ∈ (0, 1], an evaluation
key ek∗, a correlation string ρ ∈ {0, 1}κ, and a corresponding verification key vk, we say that an
evaluation box E is (n, t, f, ek∗, ρ, vk, ϵ, δ)-good if there exists a subset ZE ⊆ Z of size at least δ · |Z|,
such that for all z ∈ ZE,

Pr
[
E(z, (w′1, π

′
1), . . . , (w

′
t−f , π

′
t−f)) = fek∗(z)

]
≥ ϵ,

where the probability is taken over (ek′i, tk
′
i) ←$ KeyShareGen(1λ, ek∗, n, t, ρ) for i = 1, . . . t − f

and the random coins of E, and (w′i, π
′
i)← Eval(ek′i, vk, z) for all i ∈ 1, . . . , t− f .

Note that an alternate definition might consider a single parameter (equal to ϵδ) that charac-
terizes the probability that the box outputs the correct evaluation. But we define ϵ and δ separately

9

due to technical reasons which will become clearer in Section 5. Equipped with the above definition,
the traceability experiment is presented in Figure 2. We define two notions of traceability called
many-time and one-time, which differ in whether or not the adversary is allowed to see any partial
evaluations of the VRF. Looking ahead, we will start by presenting a scheme that provides trace-
ability only if the adversary does not observe partial evaluations of honest parties on any input
before constructing the box E (and is thus one-time traceable), and then we will show how to
bootstrap such a scheme into a scheme that does not have this restriction (and is thus many-time
traceable).

Games Gtrace-0
A,TTVRF,ϵ,δ(λ) and Gtrace-1

A,TTVRF,ϵ,δ(λ)

1 : (n, t, I, state)← A(1λ) // A chooses the parties I = {i1, . . . , if} ⊆ [n] to corrupt

2 : (ek∗, ck, vk, tk∗, ρ)←$ FuncSamp(1λ, n, t, 11/ϵ, 11/δ)

3 : for i = 1, . . . , n : (eki, tki)←$ KeyShareGen(1λ, ek∗, n, t, ρ)

4 : tk := (tk∗, tk1, . . . , tkn)

5 : E ←$AEvalO(·,·)(state, ck, vk, eki1 , . . . , ekif) where I = {i1, . . . , if}
6 : if E is not (n, t, f, ek∗, ρ, vk, ϵ, δ)-good then return 0

7 : (I′)←$ TraceE(·)(tk)

8 : if I = I′ then return 0, else return 1

Fig. 2. The one-time and many-time tracing experiments for a traceable threshold VRF scheme TTVRF and an
adversary A. The difference between the two experiments is highlighted in red – the adversary gets access to the
partial evaluation oracle EvalO in the many-time tracing experiment. (The oracle is as defined in Figure 1)

Definition 7 (Traceability). Let TTVRF = (FuncSamp,KeyShareGen,Eval,Combine,EvalVerify,
Verify,Trace) be a traceable threshold VRF scheme. Let ϵ = ϵ(λ) and δ = δ(λ) be functions of
the security parameter. We say that TTVRF is one-time (and many-time) traceable if for every
probabilistic polynomial time adversary A, the following function is negligible in λ for b = 0 (and
1, respectively):

Advtrace-bA,TTVRF,ϵ,δ(λ) = Pr
[
Gtrace-b
A,TTVRF,ϵ,δ(λ) = 1

]
We make the following observations about the definition:

– Adaptive adversaries: For simplicity, our definition requires that the adversary chooses the
set of corrupted parties all at once, non-adaptively. However, observe that in symmetric traceable
threshold VRF schemes, as we consider here, all shares come from the same distribution, and
hence querying for shares adaptively would give no additional power to the adversary.

– The output of E: Our definition requires that a good evaluation box E outputs the full
VRF evaluation fek(z), and not some function thereof. For example, if E outputs only a single
bit of fek(z), our definition makes no guarantees as to the ability to trace E back to the
corrupted subset. Looking ahead, our tracing algorithms will indeed rely on E outputting the
full evaluation fek(z) and not, say, its first bit. This is justified in real-world applications of
threshold VRFs, such as in blockchain consensus, where the entire VRF output is used to

10

determine the behavior of the next few blocks. In such cases, the adversary would need the
entire output of the VRF to benefit from its early knowledge of this value. Nevertheless, tracing
boxes that only output some bits (or a function) of the VRF evaluation is an important future
direction.

– Private tracing: In the tracing experiment, the adversary is not given access to the tracing
key tk. This is because, for our constructions, knowledge of this key can allow an adversary
to evade tracing. We leave the problem of constructing traceable threshold VRF schemes with
public tracing as an avenue for future work.

Extending to the random oracle (RO) model. All of the syntactic and security definitions in this
section readily extend to the random oracle model by granting all algorithms, including the adver-
sary A, oracle access to a function H chosen uniformly at random from a family H of functions.
In the correctness and security definitions (Definitions 1 to 7), all probabilities are then also taken
over the choice of H.

2.1 A Useful Fact About Good Evaluation Boxes

In this section, we introduce a slightly different notion of traceability, which we call universal
traceability. This notion is easier to work with when proving traceability of traceable threshold
VRF schemes, and — as we will shortly see — any scheme that is universally traceable is also
traceable in some formal sense. As we will argue, universal traceability also makes sense as a notion
of traceability in its own right.

Looking ahead, universal traceability says that a universally good evaluation box can be traced
back to the subset of parties who manufactured it. Informally, an evaluation box is universally good
if it correctly evaluates a VRF function corresponding to a random evaluation key êk with high
probability, when given partial evaluations derived from a random sharing of êk as input. Observe
that these partial VRF evaluations might not be correct with respect to the original verification key
vk for the VRF (which corresponds to the VRF key ek). To be able to successfully run the evaluation
box with these evaluations in-spite of this issue, we define universally good boxes only with respect
to VRFs that define a Sim(vk, z, w) algorithm, that can construct valid proofs for an evaluation
share w generated using a random share of a random key êk. We formalize this requirement below.

For a subset EK∗ ⊆ EKλ of evaluation keys, the verification key vk and an input z, we use
(w′i, π

′
i)←$ EVλ,n,t(EK∗, vk, z) to denote the process of sampling a random secret share for a random

evaluation key in this subset, and then using it to generate a partial evaluation share, and a
corresponding accepting proof using the Sim algorithm. More formally, the process: ρ ←$ {0, 1}κ,
êk←$ EK∗, (eki, ·)←$ KeyShareGen(1λ, êk, n, t, ρ), (wi, ·)← Eval(eki, vk, z) and πi ←$ Sim(vk, z, wi).
Let Γek = {EK1, EK2, . . .} be a partition of the space EKλ. For a key ek ∈ EKλ, we denote by
Γek(ek) the unique subset that contains ek. To be able to define universally good boxes, we require
that the distribution of the output of (w′i, π

′
i) ←$ EVλ,n,t(EK∗, vk, z) is indistinguishable from that

of an honestly generated evaluation share. We formalize this requirement in the definition below.

Definition 8 (Simulatable Threshold VRF). We say that a threshold VRF scheme with a Sim
algorithm (as defined above) satisfies simulatability with respect to a partition Γek of the evaluation
key space, if for every λ ∈ N, every 0 < t < n ∈ N, every ek ∈ EKλ, every ρ ∈ {0, 1}κ where
κ = κ(λ, n, t) and every vk that corresponds to ek and ρ, and for every z ∈ Zλ we have that

(w, π) ≈c (w′, π′)

11

where eki ←$ KeyShareGen(ek, n, t, ρ) and (w, π)←$ Eval(eki, z), and (w′, π′)←$ EVλ,n,t(Γek(ek), vk, z).

We formally define the notion of universally-good boxes in Definition 9 below.

Definition 9 (Universally-good evaluation boxes). Let TTVRF be a simulatable and traceable
threshold VRF scheme, as defined above. Let λ ∈ N, let n, t, f ∈ N such that 0 < f < t ≤ n, and
let κ = κ(λ, n, t). For ϵ, δ ∈ (0, 1], f key shares ek = (ek1, . . . , ekf), a subset EK∗ ⊆ EKλ, we say
that an evaluation box E is (n, t, ek, ck, vk, EK∗, ϵ, δ)-good if there exists a subset ZE ⊆ Z of size at
least δ · |Z| such that for all z ∈ ZE, the following probability is at least ϵ:

Pr

[
Combine

(
ck, sh1, . . . , shf ,

(w′
1, π

′
1), . . . , (w

′
t−f , π

′
t−f)

)
= (w, ·)

∣∣∣∣E (
z, (w′

1, π
′
1), . . . ,

(w′
t−f , π

′
t−f)

)
= w

]
where (ek, ck, vk, tk, ρ)←$ FuncSamp(1λ, n, t, 11/ϵ, 11/δ), EK∗ ← Γek(ek) , (eki, ·)←$ KeyShareGen(1λ,

ek, n, t, ρ), shi ← Eval(eki, vk, z) for all i ∈ [f], and the probability is taken over (w′i, π
′
i) ←$

EVλ,n,t(EK∗, vk, z) for i = 1, . . . , t− f and the random coins of E.

We now use the notion of universally good evaluation boxes to define universal traceability.
Figure 3 presents the formal universal traceability experiment. It is almost identical to the tracing
security experiment from Fig. 2 other than the fact that the evaluation box E is required to be
universally good with respect to Γek(ek

∗), where ek∗ is the key used to generate the secret shares
in the experiment (rather than just good with respect to the key ek∗).

Games Guniv-trace-0
A,TTVRF,ϵ,δ(λ) and Guniv-trace-1

A,TTVRF,ϵ,δ(λ)

1 : (n, t, I, state)← A(1λ) // A chooses the parties I = {i1, . . . , if} ⊆ [n] to corrupt

2 : (ek∗, ck, vk, tk∗, ρ)←$ FuncSamp(1λ, n, t, 11/ϵ, 11/δ)

3 : for i = 1, . . . , n : (eki, tki)←$ KeyShareGen(1λ, ek∗, n, t, ρ)

4 : tk := (tk∗, tk1, . . . , tkn)

5 : E ←$AEvalO(·,·)(state, ck, vk, eki1 , . . . , ekif) where I = {i1, . . . , if}
6 : ek := (eki1 , . . . , ekif)

7 : if E is not (n, t, ek, ck, vk, Γek(ek
∗), ϵ, δ)-universally-good then return 0

8 : (I′)←$ TraceE(·)(tk)

9 : if I = I′ then return 0, else return 1

Fig. 3. The one-time and many-time universal tracing experiments for a traceable threshold VRF scheme TTVRF
and an adversary A. The difference from the experiments in Figure 2 is marked in blue. (The EvalO oracle is as
defined in Figure 1, and the adversary gets access to this oracle only in the many-time experiment)

Definition 10 (Universal Traceability). Let TTVRF = (FuncSamp,KeyShareGen,Eval,EvalVerify,
Combine,Verify,Trace) be a traceable threshold VRF scheme. Let ϵ = ϵ(λ) and δ = δ(λ) be functions
of the security parameter. We say that TTVRF is one-time (and many-time) universally traceable
if for every probabilistic polynomial time adversary A, the following function is negligible in λ for
b = 0 (and 1, respectively):

Advuniv-trace-bA,TTVRF,ϵ,δ(λ) = Pr
[
Guniv-trace-b
A,TTVRF,ϵ,δ(λ) = 1

]
12

We argue that Definition 10 is very reasonable. Informally, the definition says that if E is
universally good with respect to the equivalence class Γek(ek

∗) of the real evaluation key ek∗ (i.e.,
the one used to sample the real secret shares sampled by the challenger), then it should be traced
back to the corrupted subset. Intuitively, since A only sees at most t − 1 key shares, and does
not have any information about the real correlation string ρ or the real evaluation key ek∗, it is
very reasonable to consider an evaluation box E that almost always fails on Γek(ek

∗) to be a bad
reconstruction box. To make this intuition precise, we prove below that for a certain natural class
of traceable secret sharing schemes (as the ones we will construct), if a traceable threshold VRF
scheme satisfies universal traceability (Definition 10), then it also satisfies standard traceability
(Definition 7) with related parameters.

Bidirectional Threshold VRF schemes. To relate the notion of universal traceability to that
of standard traceability, we define a subclass of threshold VRF schemes, which we call bidirectional.
This is a generalization of the notion of simulatability defined in Definition 8 above.

Definition 11. Let TTVRF be a traceable threshold VRF scheme. Let γ = γ(λ), n = n(λ) and
t = t(λ) be functions of the security parameter λ ∈ N. Let Γek be a partition of the space of evaluation
keys EKλ. We say that TTVRF is (Γek, γ)-bidirectional if, for every λ ∈ N, every ϵ, δ ∈ (0, 1], every
EK∗ ∈ Γek,

SD

((
z, ek1, . . . , ekf ,

(wf+1, πf+1), . . . , (wt, πt)

)
,

(
z, ek′1, . . . , ek

′
f ,

(w′f+1, π
′
f+1), . . . , (w

′
t, π
′
t)

))
≤ γ(λ)

where z ←$ Z, ek←$ EK∗, ρ←$ {0, 1}κ and vk is a corresponding verification key and,

– ekj ←$ KeyShareGen(ek, n, t, ρ) for i = 1, . . . , t and (wi, πi)← Eval(eki, z) for i = f + 1, . . . , t.

– (w′i, π
′
i)←$ EVλ,n,t(EK∗, vk, z) for i = f+1, . . . , t and for all i in [f], ρi ←$ {0, 1}κ, êk(i) ←$ EK∗,

(ek′i, ·)←$ KeyShareGen(êk
(i)
, n, t, ρi).

Looking ahead, the proofs {πi} in our scheme will be based on the Fiat-Shamir transform in the
random oracle model. For simplicity of presentation, we do not consider the random oracle model
in the definition above, but it can easily be generalized to include the list of random oracle queries
done by the adversary, as part of the distributions.

From universal traceability to traceability. As mentioned earlier, we will now relate standard
traceability (Definition 7) to universal traceability (Definition 10) for bidirectional threshold VRF
schemes.

Lemma 1. Let TTVRF = (FuncSamp,KeyShareGen,Eval,EvalVerify,Combine,Verify,Trace) be a
traceable threshold VRF scheme that satisfies ν1-correctness and (Γek, ν2)-bidirectionality for neg-
ligible functions ν1, ν2 of the security parameter λ ∈ N and partition Γek of EKλ. Let ϵ = ϵ(λ)
and δ = δ(λ) be functions of the security parameter, and let A be an adversary. Assume that
Advtrac−bA,TTVRF,ϵ,δ(λ) ≥ 2ϵ. Then, there exists negligible functions ν = ν(·), ν ′ = ν ′(·) such that for
every λ ∈ N and every b ∈ {0, 1}, it holds that

Advuni-tracA,TTVRF,Γ,Γek,ϵ′,δ′
(λ) ≥ 1

2
· ϵ · δ · AdvtracA,TTVRF,ϵ,δ(λ)− ν(λ)

where δ′ = ϵ′ ≥ 1
2ϵ

2δ − ν ′.

The proof essentially follows the proof of [10][Lemma 1].

13

3 A One-Time Traceable VRF from Paillier Encryption

In this section, we present a one-time traceable threshold VRF based on Paillier encryption. For
ease of presentation, we start by presenting a scheme with two caveats: (1) the tracing key provides
too much information, to the point where the tracer can break the uniqueness of the VRF; and
(2) the scheme only enjoys one-time traceability. We stress, however, that this is just for the sake
of presentation, as this base scheme is quite involved already. Jumping ahead, in Section 4 we
show how to enhance this base scheme with tracer uniqueness; and in Section 5, we discuss how to
bootstrap it to achieve many-time traceability.

Our starting point: Traceable secret sharing. The starting point for our construction is the
recent work by Boneh, Partap, and Rotem [10] (BPR), who showed how to trace leaks in Shamir
threshold secret sharing [44]. At a very high level, their idea was as follows. The tracer in their
setting gets black-box access to an algorithm R that has f secret shares “hardcoded” in it. R gets
additional t− f shares as input, and it outputs the reconstruction of the combined f + (t− f) = t
shares. The BPR tracing algorithm leverages the fact that in Shamir secret sharing, each secret
share is an evaluation (x, y = h(x)) of a polynomial h, and the secret is the result of interpolating
the polynomial from these evaluations at the point 0.

Let us focus first on the case where R is a perfect reconstruction box, and it always outputs
the result of the interpolation at 0, based on the t shares. Let us further assume for simplicity that
f = t− 1, and so R takes one more share (x, y) as input. The observation of BPR is that from two
correlated queries to R, namely queries of the form (x, y) and (x, y+σ), one can obtain the Lagrange
coefficient λx of x in the interpolation of h at 0. They then observed that this coefficient depends
on the x-values of the corrupted parties; in particular, λx =

∏t−1
i=1 xi/(xi − x), where x1, . . . , xt−1

are the x-values of the corrupted parties. Then, one can think of λ−1x as the evaluation at x of
ψ(X), a low-degree polynomial, whose roots are x1, . . . , xt−1. Thus, repeating this trick t times for
different values of x allows one to interpolate the polynomial ψ, factor it to find its roots, and then
map these roots back to the corrupted parties. If R is imperfect, and may err occasionally, we may
end up with some wrong evaluations of λ−1x . In that case, BPR showed that one can rely on list
decoding for Reed-Solomon codes to find the polynomial ψ.

A first attempt. At first glance, it is very tempting to try and use the Shamir tracing algorithm
of BPR in existing constructions of threshold VRFs, in which the secret keys of the parties are
Shamir secret shares of a global secret in a finite field. Perhaps the first obvious such VRF is the
DDH-based threshold VRF [37], defined via z 7→ H(z)ek, where H is a hash function mapping
inputs to a DDH-hard cyclic group of prime order p, and ek ∈ Zp is the global function key which is
secret shared via Shamir secret sharing to derive the individual evaluation keys. Indeed, adapting
the tracing algorithm of BPR to work with a pirate evaluation box E for this VRF, we can obtain
evaluations of the form H(z)λx for many values of x. Alas, we immediately encounter a problem.
Since λx is in the exponent, we cannot rely on list-decoding — which involves non-linear operations
— to recover the ψ polynomial.

Paillier to the rescue? To circumvent the problem described above, we look at another VRF,
namely a VRF based on Paillier encryption. Boneh, Haitner, and Lindell [8] recently observed
that the function defined via z 7→ Decsk(H(z)), where Dec is the decryption algorithm for Paillier
encryption, can be proven to be a VRF. Recall that in Paillier encryption, the public key is an
RSA bi-prime modulus N = p · q and the secret key is the order ϕ(N) = (p − 1)(q − 1) of the
multiplicative group Z∗N . Plaintexts then live in ZN and ciphertexts in ZN2 . To encrypt a message

14

m ∈ ZN , one samples r ←$ ZN and computes the ciphertext ct ← (N + 1)m · rN mod N2. To
decrypt, one computes m ← LN (ctϕ(N))/ϕ(N) mod N , where LN (x) = ((x mod N2) − 1)/N .
Intuitively, decryption is done via projecting the ciphertext onto the subgroup of Z∗N2 that is
generated by (N +1) to obtain (N +1)m. Since discrete log is easy in that subgroup, this efficiently
yields m in ZN .

The reader might already notice a significant advantage of the Paillier-based VRF over the
DDH-based one: evaluations live in the additive group ZN , and not in the exponent of a dlog-hard
group! This gives hope that we can leverage this fact to force the BPR Shamir tracing algorithm [10]
to go through. However, there are major barriers that make translating this hope into a traceable
threshold VRF construction a significant challenge:

1. Unlike most DDH-hard groups, the group Z∗N2 is a group of unknown order. This makes thresh-
oldizing the Paillier-based VRF a much more cumbersome task. Still, previous works have looked
at this problem in the context of threshold decryption [26,34], and we leverage some of their
observations with the necessary adjustments.

2. The group ZN is not an integral domain, and list decoding algorithms for Reed-Solomon codes,
that are typically defined over finite fields, do not naturally extend to it.

3. We still need to make this function verifiable. Somewhat paradoxically, at the same time, we
need the tracing algorithm to be able to fool the pirate evaluation box E and feed it wrong
evaluations. This is needed in order to make our version of the BPR tracing algorithm go
through.

We now present our construction and discuss how we overcome these problems.

3.1 Our Scheme

In this section, we present the workings of our Paillier-based threshold VRF construction. In sub-
sequent sections, we will explain how we trace leaks in this VRF.

To construct a VRF from Paillier encryption, we sample an RSA modulus N = pq, where p and
q are safe primes, and set the evaluation key to be the decryption key ek = ϕ(N). To evaluate the
VRF at z ∈ {0, 1}λ, we simply hash z to the ciphertext space, and use the evaluation key to decrypt
it. More formally, let H0 : {0, 1}λ → QRN2 be a hash function 1. We restrict the ciphertexts to
the group of quadratic residues mod N2 to allow efficient proofs for partial evaluation, as we will
see later in this section. Then, we define the ciphertext corresponding to z as ctz = H0(z), and the
VRF function is the decryption of ctz.

To thresholdize the above construction, we use Shamir secret sharing over ZNϕ(N)/4 to distribute
the secret ϕ(N)/4: we sample a uniformly random polynomial h of degree t − 1, with coefficients
a0, a1, . . . , at−1 such that h(0) = β · ϕ(N)/4. Here, β is a blinding factor sampled uniformly from
ZN . Each party i ∈ [n] is uniquely associated with an evaluation point xi ∈ ZN and is given the
share (xi, h(xi)). This share can be used to partially evaluate the VRF, by raising the ciphertext ctz
to the power h(xi). Any t parties can combine their partial evaluations via Lagrange interpolation
in the exponent. More formally, let us consider an example where parties 1, 2, . . . , t want to evaluate
the VRF. Then, the Lagrange coefficient for party i is:

1 Note that the range of a hash function modeled as a random oracle cannot depend on the parameter of the scheme
N . To get around this, we can use a hash function with a very large range: H∗ : {0, 1}λ → {0, . . . , B} where
B = 2λ · 22γλ ≫ N , and γ is a parameter such that n ≤ 2γλ for all λ and n sampled as in KeyGen. Then we define
H0(z) as (H

∗(z) mod N2)2.

15

λ̂
[t]
i =

∏ xj
xj − xi

Unfortunately, these coefficients cannot be computed directly in ZNϕ(N)/4 since ϕ(N) is un-
known. Instead, we first compute ν ′[t] as follows:

ν ′[t] =
∏

i,j∈[t],i<j

(xi − xj)

Observe that we can easily compute λ
[t]
i = ν ′[t] · λ̂

[t]
i for all i ∈ [t], since ν ′[t] divides all the

pairwise difference terms in the denominator of the Lagrange coefficients. Hence, to combine partial

evaluation shares, the combiner raises the share of party i to the power λ
[t]
i . This results in d =

ct
β·ϕ(N)·ν′

[t]
/4

z . Note that this falls into the subgroup with easy discrete log! So, the VRF output can
be computed as follows:

fek(z) =
LN (d)

ν ′[t]

Lastly, the distribution of any t−1 shares is the same for any two secret keys because of perfect
secrecy of Shamir secret sharing over ZNϕ(N)/4.

To generate partial evaluation proofs, we use Chaum-Pedersen style proofs over the group of
quadratic residues QRN2 . We first use integer commitments [20] to commit to all the coefficients of
the polynomial h(X). Let v ∈ ZN2 be a uniform random element in the group of quadratic residues
QRN2 . Then, the commitment to each coefficient aj of h(X) is vaj for all j ∈ {0, . . . , t − 1}. To
prove that an evaluation share (xi, wi) is correct, we can compute v′ = vh(xi) =

∏
j∈{0,...,t−1} (v

aj)x
j
i ,

and then use a non-interactive zero-knowledge proof for the following discrete-log equality relation:

Req = {
(
(v, v′, w, w′); (y)

)
: v′ = vy ∧ w′ = wy} (1)

where w = ctz and w′ = wi. We describe an efficient proof system (Peq,Veq) for the above
relation in Appendix A.

We do need to make one modification to Shamir secret sharing over integers to support tracing,
which we now discuss.

Random evaluation points. Typically in Shamir secret sharing, each party i is deterministically
associated with its evaluation point xi. A natural choice is to set xi = i. As observed by [10], this
approach cannot allow efficient tracing as per our definition. We refer to [10] for a detailed reasoning
for the same.

To avoid this problem, we consider a variant of Shamir secret sharing, wherein each xi is sampled
uniformly at random from ZN . Since this set is large enough, this has a very small impact on the
correctness of the scheme. The benefit is that now a share (xi, h(xi)) cannot be linked to party i
without knowing the dealer’s randomness. As we will now see, this allows us to overcome the
impossibility argument sketched in [10].

3.2 Tracing perfect boxes via polynomial interpolation

To understand our tracing algorithm, let us first start with a perfect evaluation box, i.e. a box
that always outputs the correct VRF evaluation. We also make a simplifying assumption that

16

f = t − 1. In this case, the box E gets as input z ∈ Z and one partial evaluation, and outputs
the full evaluation. This output is the result of reconstructing the value h(0) in the exponent using
the t− 1 evaluations of h hardcoded in the box and the additional evaluation share given as input.
Let us denote the shares in the box as (xi, yi = h(xi)) for i = 1, . . . , t − 1. So, when given z and

(xt, ct
h(xt)
z), a perfect box E will output:

w =
LN

(∏
i∈[t] ct

λi·h(xi)
z

)
ν ′

mod N

where ν ′ is the product of pairwise differences: ν ′ =
∏

i,j∈[t],i<j(xi − xj) and λi is the Lagrange

coefficient : λi = ν ′ ·
∏

j∈[t],j ̸=i
xj

xj−xi
for all i ∈ [t].

Recall that the ciphertext ctz is a quadratic residue mod N2. Hence we can denote ctz =
(gm · rN)2 for some m ∈ ZN and r ∈ ZN2 , where g = 1 +N . Then, the above equals:

w =
LN (ct

ν′·β·ϕ(N)/4
z)

ν ′
mod N = mβϕ(N)/2 mod N (2)

Following the Shamir tracing approach in [10], we now run the box with a slightly different

input: z and (xt, ct
h(xt)
z · g). Note that this is an incorrect evaluation share, but let us assume that

the tracing key can be used to generate valid proofs for such shares. Then, with these inputs, a
perfect box must output:

w′ =
LN

(
ct

λt·h(xt)
z · gλt ·

∏
i∈[t−1] ct

λi·h(xi)
z

)
ν ′

mod N

We can simplify the above to get:

w′ =
LN

(
ct

ν′·β·ϕ(N)/4
z · gλt

)
ν ′

mod N = w +
λt
ν ′

(3)

Subtracting Eq. (2) from Eq. (3), and rearranging, we get:

(w′ − w)−1 =
∏

i∈[t−1]

xi − xt
xi

mod N (4)

We now consider the univariate polynomial p(x) =
∏

i∈[t−1]
xi−X
xi
∈ ZN [X] in the indeterminate

X. Observe that the xi values of all the corrupted parties are roots of the polynomial p. Moreover,
we can interpret Eq. (4) as an evaluation of p at the point xt we fed to E. Repeating the above with
additional t − 1 fresh xt values, would give us t evaluations of p. Since p is of degree t − 1, if the
true xi values of all the parties are given to the tracer as part of tk, the tracer can now interpolate
p at each xi and blame party i if p(xi) = 0.

Generating valid proofs for invalid shares. The algorithm above requires the tracer to be
able to feed the evaluation box E with incorrect partial evaluations. Recall that our traceability
definition mandates that whenever E takes a partial evaluation, it also takes a proof asserting its
validity (this only makes the definition stronger). So the question that remains is: how can the
tracer feed E with incorrect evaluations without being detected?

To allow the tracer to do so, we augment the verification key vk and the tracing key tk as follows.
We modify the verification key to include a random element b in a prime-order, discrete-log-hard,

17

group G generated by a generator a. We also include the discrete log of b with respect to a as
part of the tracing key. Then, instead of using the plain proofs of discrete log equality (as in Req)
describe above, we use proofs that assert that either the aforesaid discrete log equality holds, or
the prover knows the discrete log of b with respect to a. This is captured by the following relation:

R′eq =
{(

(v, v′, w, w′, a, b); (y, u)
)
:
(v′ = vy ∧ w′ = wy) ∨

b = au

}
(5)

This idea is that u = dloga(b) allows the tracer to produce a valid proof for any partial evalua-
tion. Since we use zero-knowledge proofs, this goes undetected, and the tracing algorithm described
above can go through. On the other hand, a party that does not hold the (secret) tracing key, does
not know the discrete log u = dloga(b) and hence can only prove the validity of correct partial
evaluations. We present an efficient proof system (P′eq,V

′
eq) for the relation R′eq in Appendix A.2.

For now, the augmented tracing key allows the tracer to break uniqueness for all inputs. However,
as mentioned, we get around this issue in Section 4.

3.3 Tracing imperfect boxes

We now describe the full tracing algorithm. Notice that the informal overview from the previous
section inherently assumed that the evaluation box E is always correct, and in particular, that all
evaluations of the polynomial p(X) are correct. To work for imperfect evaluation boxes, that output
the correct VRF evaluation only with a certain non-negligible probability, we need an additional
idea. This is because standard polynomial interpolation with erroneous evaluations might fail or
give us the wrong evaluation, which can lead to the tracer blaming honest parties or not finding
all the traitors. As observed by [10], this problem of interpolating a polynomial of bounded degree
from a set of evaluation points with errors is equivalent to the list decoding problem for Reed
Solomon codes [46,33]. Unfortunately, as mentioned earlier in this section, since our polynomial
p(X) is defined over ZN , existing list decoding algorithms that work over finite fields cannot be
used directly. We will now describe how we can modify Reed Solomon list decoding algorithms to
work for our setting.2

Let {(x′j , yj)}j∈[m] denote the partially-erroneous list of evaluations of p(X) that we get by
querying the box m times, as described in the previous section. Following Reed-Solomon list decod-
ing algorithms, we first construct a low-degree bivariate polynomial Q(x, y) such that Q(x′j , yj) = 0

for all j ∈ [m]. Then, the list of factors of Q(X,Y) of the form Y − p(j)(X) includes all polyno-
mials p(j)(X) of degree t − 1 that agree with a pre-determined fraction of the evaluation points.
Specifically, Y − p(X) must be a factor of Q(X,Y), where p(X) is the polynomial defined in the
previous section, and has all the corrupt xi values as roots. We now make a crucial observation
that, similarly to the perfect case, Q(xi, 0) must evaluate to zero for all the corrupt xi values.

Additionally, we show that with high probability, Q(xj , 0) ̸= 0 if party j is honest, and so j
will not be blamed by our tracing algorithm. To see this, first observe that Q′(X) = Q(X, 0) is a
low-degree univariate polynomial. Now there are two possibilities:

1. The fraction of roots of Q′(X) in ZN is non-negligible. In this case, it has been shown that
Q′ can be used to factor N (see, for example, Aggarwal and Maurer [1]). By the hardness of
factoring N , this can only happen with a very small probability.

2 To be clear, we show how the main ideas behind list decoding can be used for tracing over ZN . We do not, however,
present a list decoding algorithm over ZN .

18

2. The fraction of roots of Q′(X) in ZN is negligible. In this case, we observe that the x-values
{xi} of the key shares of honest parties are statistically independent from the view of the box.
Hence, the probability that the xi value for an honest party i is a root of this polynomial is
negligible as well.

So, the tracer can simply iterate over the xi values of all the parties and blame those with Q(xi, 0) =
0.

One subtlety that may arise is that Q may be of the form Q(X,Y) = Y k · Q̂(X,Y) for some
k > 0. Then, Q(X, 0) is equal to zero for all values of X. Fortunately, this is easy to fix, by simply
dividing out the largest power of Y from Q. Specifically, in the above example, we would work with
the polynomial Q̂, and now the analysis described before applies.

Figures 4, 5 and 6 formally describe our one-time traceable threshold VRF from Paillier. It
relies on a group generation algorithm GroupGen(1λ)→ (G, a, q∗) which takes as input the security
parameter and outputs a cyclic group G generated by a, with prime order q∗ > N2.

3.4 Correctness and Security

We now prove correctness, uniqueness, pseudorandomness, tracer pseudorandomness and one-time
traceability for this scheme.

Correctness. Correctness follows directly from the completeness of the proof system (P′eq,V
′
eq)

and correctness of the secret sharing scheme. Specifically, we have,

d =
∏
j∈[t]

ŵ
λj

ij
=

∏
j∈[t]

ct
h(xi)·λj
z = ctν

′·h(0)
z = ctν

′·β·ϕ(N)/4
z

Let ctz = H0(z) = (gmrN)2 for some m, r ∈ ZN . Then, we get that,

w =
LN (d)

ν ′
=
LN (g2mνβ·ϕ(N)/4)

ν ′
= mβ · ϕ(N)/2 mod N

Hence, w is indeed the correct VRF evaluation, and we get the same evaluation for all subsets
J ⊆ [n] of size t.

Uniqueness. Theorem 1 below proves uniqueness of the scheme based on special soundness of the
proof system and the hardness of discrete log in the group G (Definition 12).

Definition 12. Let GroupGen be a group generator. The discrete log assumption holds with respect
to GroupGen if, for all PPT adversaries A, the following function is negligible in λ:

AdvdlA,GroupGen(λ) := Pr[A(G, a, q∗, au) = u]

where the probability is taken over the random choice of the generator a, the random choice of
u ∈ Zq∗, and the randomness used by A.

Theorem 1. Let GroupGen be a group generator. For every PPT adversary A, there exists a PPT
adversary B such that,

AdvdlB,GroupGen(λ) ≥ (AdvuniqA,OT-P1
(λ))2 − 4/N2 − 1/q′

where N = N(λ), N = pq, p > q, q = 2q′ + 1 and q′ = q′(λ) is a function of the security
parameter.

19

One-Time Traceable threshold VRF OT-P1 without tracer uniqueness.

FuncSamp(1λ, n, t, 11/ϵ, 11/δ):

1. Sample two safe primes p, q ←$ Pλ s.t. p = 2p′ + 1 and q = 2q′ + 1 where p′, q′ are primes. Here, Pλ is the
set of all λ-bit safe primes.
Compute N = pq and ϕ(N) = (p− 1)(q − 1) = 4p′q′.
Let H0 : {0, 1}λ → QRN2 be a hash function, and let g = 1 +N ∈ ZN2 and sample v ←$QRN2 .

2. Sample β ←$ Z∗
N and sample coefficients of the polynomial to be used for Shamir secret sharing:

a1, . . . , at−1 ←$ ZNp′q′ .
Define a polynomial of degree t− 1: h(X) = p′q′β +Σi∈[t−1]ai ·Xi ∈ ZNp′q′ [X].

Compute vi ← vai for all i ∈ [t− 1], and v0 ← vp
′q′β .

3. Sample z1, . . . , zm ←$ {0, 1}λ where m = m(n, 1/ϵ, 1/δ, λ).
4. For each j ∈ [m], sample xj,1, . . . , xj,t−1, αj,1, . . . , αj,t−1 ←$ ZN . Then, compute ctj ← H0(zj), and for each

i ∈ [t− 1], wj,i ← (xj,i, ct
h(xj,i)+p′q′(αj,i−β)

j).

5. Sample a cyclic group of prime order: (G, a, q∗)←$ GroupGen(1λ) such that q∗ > N2 and sample u←$ Zq∗ .
Compute b← au.

6. Output ek← p′q′β, ρ← ({a1, . . . , at−1}), ck← (N), vk← (N, v, {vi}i∈{0,...,t−1}, a, b) and the tracing key:

tk← (N, a, b, u, {(zj , {wj,i}i∈[t−1])}j∈[m], v, {vi}i∈{0,...,t−1}).

KeyShareGen(1λ, ek, n, t, ρ):

1. Parse ρ as ({a1, . . . , at−1}). Sample x←$ ZN .
2. Compute y ← ek+Σj∈{1,...,t−1}aj · xj . Output eki ← (x, y) and tki ← x.

Eval(eki, vk, z):

1. Parse vk as (N, v, {vi}i∈{0,...,t−1}, a, b) and eki as (xi, yi). Compute ctz ← H0(z). Compute v′ ← vyi ,
w′

i ← ctyiz .
2. Output wi ← (xi, w

′
i) and πi ← P′

eq((v, v
′, ctz, w

′
i, a, b), (yi,⊥)).

Combine(ck, wi1 , . . . , wit , πi1 , . . . , πit):

1. Parse wij as (xij , ŵij) for all j ∈ [t]. Parse ck as (N).
2. Compute ν′ ←

∏
j,k∈[t],ij<ik

(xij − xik).

3. Compute the integer Lagrange coefficients for each j ∈ [t]:

λj =

(
ν′∏

k∈[t],k ̸=j(xik − xij)

)
·
∏

k∈[t],k ̸=j

xik

4. Compute d =
∏

j∈[t] ŵ
λj

ij
.

5. Output w ← LN (d)
ν′ mod N and π ← {(wij , πij)}j∈[t].

Fig. 4. The FuncSamp,KeyShareGen,Eval and Combine algorithms for our Paillier-based one-time traceable threshold
VRF scheme OT-P1.

20

EvalVerify(vk, z, wi, πi):

1. Parse vk as (N, v, {vi}i∈{0,...,t−1}, a, b) and wi as (xi, w
′
i).

2. Compute v′ ←
∏

j∈{0,...,t−1} v
x
j
i

j . Let w ← H0(z).

3. Output V′
eq((v, v

′, w, w′
i, a, b), πi).

Verify(vk, z, w, π):

1. Parse vk as (N, v, {vi}i∈{0,...,t−1}, a, b), π as {(wi, πi)}i∈J and wi as (xi, ŵi) for all i ∈ J .
2. Output 0 if |J | < t, or if, for some i ∈ J , EvalVerify(vk, z, wi, πi) = 0.
3. Output 0 if w ̸= LN (d)/ν′, where d =

∏
i∈J ŵλi

i , and the lagrange coefficients λi and ν′ are computed as
in Steps 3 and 2 of the Combine algorithm respectively. Otherwise, output 1.

Fig. 5. The EvalVerify and Verify algorithms for our Paillier-based one-time traceable threshold VRF scheme OT-P1.

TraceE(tk, f):

1. Parse tk as (N, a, b, u, {zj , {wj,i}i∈[t−1]}j∈[m], v, {vi}i∈{0,...,t−1}, {x∗
i }i∈[n]), and wj,i as (xj,i, ŵj,i) for all j ∈

[m], i ∈ [t− 1]. Let g = (1 +N) mod ZN2 .
2. For ℓ = 1, . . . ,m:

(a) For i ∈ {1, . . . , t− f}: set shi ← (xℓ,i, ŵℓ,i).
(b) Sample ηℓ ←$ ZN2/4 and set sh′

t−f ← (xℓ,t−f , ŵ
′
ℓ,t−f = ŵℓ,t−f · g2ηℓ). Let x′

ℓ ← xℓ,t−f .

(c) For i ∈ [t− f], compute vℓ,i ←
∏

j∈{0,...,t−1} v
x
j
ℓ,i

j and πℓ,i ← P′
eq((v, vℓ,i,H0(zℓ), ŵℓ,i, a, b), (⊥, u)).

(d) Compute π′
ℓ,t−f ← P′

eq((v, vℓ,t−f ,H0(zℓ), ŵ
′
ℓ,t−f , a, b), (⊥, u)).

(e) Query E on (zℓ, (sh1, π1), . . . , (sht−f , πt−f)) and (zℓ, (sh1, π1), . . . , (sht−f−1, πt−f−1), (sh
′
t−f , π

′
t−f)).

Let wℓ and w′
ℓ be E’s responses respectively.

(f) If w′
ℓ = wℓ or ηℓ = 0 or xℓ,i = xℓ,j for some i ̸= j ∈ [t− f] or if ℓ > 1 and xℓ,t−f = xi,t−f for some i < ℓ,

then terminate and output ⊥.
(g) Otherwise, let yℓ ← 2ηℓ

w′
ℓ
−wℓ
·
∏t−f−1

i=1

xℓ,i

xℓ,i−x′
ℓ
mod N .

3. Let L = {x′
ℓ, yℓ}ℓ∈[m] and let D = ⌈

√
2fm⌉. Compute a bivariate polynomial Q(x, y) ∈ ZN [X,Y] with

(1, t− 1)-weighted degree bounded by D such that Q(x′
ℓ, yℓ) = 0 for all ℓ ∈ [m].

4. Let k ∈ Z be the largest non-negative integer such that Q(x, y) divides yk, i.e., Q(x, y) = yk · Q′(x, y) for
some polynomial Q′ ∈ ZN [X,Y].

5. Let Q̂(x) = Q′(x, 0) and I = ϕ. For each i ∈ [n], if Q̂(x∗
i) = 0, then add i to I, i.e., I ← I ∪ {i}.

6. Output I.

Fig. 6. The Trace algorithm for our one-time traceable threshold VRF OT-P1.

The proof of Theorem 1 is presented in Appendix D.1.

Pseudorandomness. We prove pseudorandomness in Theorem 2 based on the semantic security
of the Paillier decryption system. We denote by AdvssB,PE(λ) the advantage of an adversary in the
semantic security game for Paillier. We refer to [12, Section 9.2.2] for a formal definition. For the
proof, we take inspiration from [26], but we make some changes to be able to handle random
evaluation points.

Theorem 2. For every PPT adversary A, there exists a PPT adversary B such that,

AdvrandA,OT-P1
(λ) ≤ qH · AdvssB,PE(λ) + 2t/q

21

where qH = qH(λ) is an upper bound on the number of random oracle queries by A, and N = pq,
p > q, where p = p(λ) and q = q(λ) are functions of the security parameter and t = t(λ) denotes
the threshold.

Theorem 2 is proved in Appendix D.2.

Achieving uf-1 security. As mentioned in Section 2, our construction can be proven to achieve uf-1
security by adapting ideas from [4]. More details can be found in Appendix C.

One-time Traceability. Theorem 3 below proves one-time universal tracing security of the above
scheme. It proves that OT-P1 is one-time traceable with respect to the following partition of the
space of evaluation keys: Γek = {{p′q′α}α∈ZN

}. We rely on the factoring assumption for the proof,
which states that it is hard for a PPT adversary to factor an RSA modulus N = pq. We denote by
AdvfactorB (λ) the advantage of an adversary B in the factoring problem, where p and q are chosen to
be λ-bit primes. We refer to [12] for a formal definition.

Theorem 3. For every PPT adversary A, for every λ,N ∈ N, for every m,D ∈ N such that
√
2fm < D < m < N , for every ϵ, δ ∈ (0, 1] such that ϵδ ≥ max

(√
4
q +

m+1+t(t−f)
N ,

√
2D
m

)
, there

exists a PPT adversary B such that

Advuniv-trace-0A,OT-P1,ϵ,δ(λ) ≤ AdvfactorB (λ) +
(n− f) · poly(λ)

N
+ e−

ϵ2δ2m
2
·(1− 1

r
)2

where r = ϵ2δ2m
2D , N = pq, where p = p(λ), q = q(λ) are large primes, and n = n(λ) and

f = f(λ) are upper bounds on the number of parties and corruptions, respectively.

The parametersm,D can be set such that the advantage of the adversary is exponentially small.
Specifically, we can set D = ⌈

√
2mf⌉ and m = ⌈32fλ

ϵ4δ4
⌉. This gives us r ≥ 2, meaning that the term

e−
ϵ2δ2m

2
·(1− 1

r
)2 is bounded by e

−ϵ2δ2m
8 . Moreover, since m > 8λ

ϵ2δ2
, this term is bounded by e−λ. The

formal proof for the above theorem can be found in Appendix D.3.

On traceability vs universal traceability. Recall that in Lemma 1, we prove that if a threshold
VRF scheme satisfies universal traceability, then it also satisfies standard traceability. Hence, by
combining Lemma 1 and Theorem 3, our scheme satisfies standard traceability.

Learning f . If the number of corruptions f is not known, the tracer can learn it by simply trying
f = t− 1, t− 2, . . . , 1 until it reaches a value that ‘works’; that is, a value of f for which the above
algorithm finds exactly f corrupted parties. We scale the number of zi values in the tracing key by
an order of t−1 to be able to use an independent set of inputs for each trial. More formally, suppose
that the real number of corruptions is f∗. For each value f > f∗ that Trace tries, outputting a subset
I of size f means outputting at least one honest party. By the analysis in the proof of Theorem 3,
the probability that it outputs such a subset is at most (n − f) · poly(λ)/N ≤ n · poly(λ)/N .
Moreover, when Trace tries f = f∗, then Theorem 3 tells us that it will fail to output the correct
subset with probability at most e−λ + AdvfactorB (λ) + n · poly(λ)/N (for the choices of parameters
discussed above). Hence, by a union bound, the probability that Trace correctly traces E back the
corrupted subset is at least 1− (e−λ + 2n2 · poly(λ)/N + AdvfactorB (λ)).

Tracer Pseudorandomness. Theorem 4 proves tracer pseudorandomness for all inputs z not
included in the tracing key. The proof follows that of Theorem 2, and is included in Appendix D.4.

22

Theorem 4. For every PPT adversary A, there exists another PPT adversary B such that,

Advt-randA,OT-P1
(λ) ≤ qH · AdvssB,PE(λ) + 2t/q

where qH = qH(λ) is an upper bound on the number of random oracle queries by A, and N = pq,
p > q, where p = p(λ) and q = q(λ) are functions of the security parameter and t = t(λ) denotes
the threshold.

4 Tracer Uniqueness

Recall that in the simplified scheme presented in the last section, the tracing key contained the
discrete log of b with respect to a, which allowed the tracer to forge proofs for arbitrary VRF
evaluations on every input z. In other words, the tracer could break uniqueness for all inputs z. As
promised, in this section we present how to modify the scheme to achieve tracer uniqueness.

As a first step, consider sampling a large number of elements b1, . . . , bµ in the group G, for some
parameter µ, and including all of them as part of the verification key. We then give the discrete log
of only b1 to the tracer. For any input z, the relation R′eq,z is defined with respect to bH(z), where

H : {0, 1}λ → [µ] is a hash function. Specifically, the prover proves either knowledge of discrete log
of bH(z) or proves discrete log equality, as in the last section. Now, the tracer can only produce valid
evaluation proofs for the subset of z values such that H(z) = 1. This is a step in the right direction,
but it still means that the tracer can break uniqueness for a 1/µ fraction of the inputs z.

To amplify tracer uniqueness, we use a technique by Waters [47], building on the above idea.
More formally, we rely on a hash function H1 : {0, 1}λ → {0, 1}µ. For an input z to the VRF, the
corresponding relation R′eq,z is defined with respect to bz :=

∏
j∈λ(bj)

H1(z)j . In other words, the
prover needs to prove either knowledge of discrete log of bz or prove discrete log equality for the
partial evaluation share. Now, we can give the tracer the discrete log of bz for only a small number
m of input values z. Namely, m can be polynomial in (n, 1/ϵ, 1/δ, λ), and in particular, it can
be set to be much smaller than µ. As we discuss below, setting the parameters correctly ensures
that the tracer can only forge proofs for a negligible fraction of the input space, while keeping
the verification key small. Figure 7 describes the FuncSamp,Eval and EvalVerify algorithms for our
one-time traceable threshold VRF OT-P2 with tracer uniqueness.

Theorem 5 below proves m-tracer uniqueness for our threshold VRF OT-P2, based on the
discrete log problem defined in Definition 12, wherein all the hash functions are modeled as a
random oracle. To provide intuition, let us use {zj}j∈[m] to refer to the m input values in the
tracing key, and z∗ to denote the input for which the adversary is able to break uniqueness, in
addition to the zi values. Then, we analyze two cases based on the hash of z∗, H1(z

∗):

– H1(z
∗) falls in the span of the m bit strings {H1(zj)}j∈[m] corresponding to the inputs in the

tracing key. In the random oracle model, H1(z
∗) is a uniform random string in {0, 1}µ. Hence,

this case only happens with probability proportional to m(q∗)m/2µ, where q∗ is the order of
the cyclic group G. As we discuss below, the parameter µ can be set so that this probability is
negligible in λ.

– H1(z
∗) is independent of all the bit strings corresponding to {zj}j∈[m]. In this case, we can

program the discrete log challenge b to be equal to bz∗ , i.e. the target with respect to which
the relation R′eq,z∗ is defined, for evaluation proofs for z∗. Next, we observe that the adversary
must have output a valid proof for an invalid partial evaluation share at input z∗, to win the

23

FuncSamp(1λ, n, t, 11/ϵ, 11/δ):

1. Run Steps 1 to 4 as in the FuncSamp algorithm in Figure 4.
2. Sample a cyclic group of prime order: (G, a, q∗)←$ GroupGen(1λ) such that q∗ > N2.
3. Let µ = µ(n, 11/ϵ, 11/δ, λ). Sample u1, . . . , uµ ←$ Zq∗ . For each j ∈ [µ], compute bj ← auj .
4. For each j ∈ [m], let sj ← H1(zj). Compute uj ← Σi∈[µ]sj,i · ui.
5. Output ek← p′q′β, ρ← {a1, . . . , at−1}, vk← (N, v, v0 ← vek, {vai}i∈[t−1], a, {bj}j∈[µ]), ck← N and

tk← (Z∗ := {zj}j∈[m], N, a, b, {(uj , {wj,k}k∈[t−1])}j∈[m], v, {vi}i∈{0,...,t−1}).

Eval(eki, vk, z):

1. Parse vk as (N, v, v0, {vi}i∈[t−1], a, {bj}j∈[µ]) and eki as (xi, yi).
2. Compute ctz ← H0(z). Set v

′ ← vyi and w′
i ← ctyiz .

3. Compute sz ← H1(z). Set b←
∏

j∈[µ] b
sz,j
j .

4. Output wi ← (xi, w
′
i) and πi ← P′

eq((v, v
′, ctz, w

′
i, a, b), (yi,⊥)).

EvalVerify(vk, z, wi, πi):

1. Parse vk as (N, v, v0, {vi}i∈[t−1], a, {(bj)}j∈[µ]) and wi as (xi, w
′
i).

2. Compute v′ ←
∏

j∈{0,...,t−1} v
x
j
i

j . Let w ← H0(z).

3. Let sz ← H1(z) and compute b←
∏

j∈[µ] b
sz,j
j .

4. Output V′
eq((v, v

′, w, w′
i, a, b), πi).

Fig. 7. The FuncSamp, Eval and EvalVerify algorithms for our one-time traceable threshold VRF OT-P2 with tracer
uniqueness. The Trace algorithm is the same as in Figure 6, with the only difference being that the tracer uses uj to
produce valid proofs for partial evaluations for zj .

uniqueness game. Using this proof and the honest evaluation proof, we can apply the knowledge
extractor for the relation R′eq,z∗ to recover the discrete logarithm of the challenge b.

The full proof can be found in Appendix D.5.

Theorem 5. For every PPT adversary A, for every µ > (m+1) log q∗, there exists a PPT adversary
B such that,

AdvdlB,GroupGen(λ) ≥
(

1

qH
·
(
1− m(q∗)m

2µ

)
· Advt-uniqA,OT-P2

(λ)

)2

− 4/N2 − 1/q′

where qH = qH(λ) is an upper bound on the number of random oracle queries by A, m =
m(n, 1/ϵ, 1/δ, λ) is the number of z values in the tracing key, q∗ = q∗(λ) is the size of the cyclic
group G, and N = pq is an RSA modulus with p = 2p+1, q = 2q′+1 where p′, q′, p, q are all prime
and p > q.

The parameter µ can be set such that the advantage of the adversary is exponentially small.
Specifically, we can set µ = λ+ (m+ 1) log q∗. Combining with the analysis in Theorem 3, we get
µ = λ+ 33ftλ log q∗

ϵ4δ4
.

5 Removing the One-Time Restriction

In this section we present two transformations that bootstrap a one-time traceable threshold VRF
to a many-time traceable threshold VRF. Recall that in a many-time traceable threshold VRF, the

24

VRF remains traceable, even if the parties constructing the evaluation box E can observe many
partial evaluations of the function before deciding on E. Note that the constructions from Sections 3
and 4 are not secure when the corrupted parties observe partial evaluations. This is because our
tracing procedure inherently relied on the fact that the corrupted parties do not know the xi-values
used as evaluation points to derive honest parties’ shares of ek. However, the partial evaluation
of party i (with respect to any function input z) includes in particular the values xi! Hence, after
observing a single partial evaluation, the corrupted parties learn xi, and can frame the ith party
as if it took part in the construction of E.

Hence, the basic idea in both of the bootstrapping methods that we will present here, is to
instantiate several copies of a one-time traceable VRF. In particular, each party will be associated
with several x values: xi,1, xi,2, Intuitively, each of our methods will use a different mechanism
to enforce that: (1) the corrupted parties will have to “embed” all of their x values in the box;
while (2) they will not get to observe all of the x values of the honest parties. This discrepancy will
allow us to still separate out the corrupted parties from the honest parties during tracing.

5.1 A Many-Time Traceable VRF in the Synchronized Model

Our first transformation is simple and efficient. It works in settings in which time can be divided
into epochs, and in each epoch, the VRF is only computed once, on a single input. These settings in-
clude, in particular, the use of threshold VRFs for multiparty randomness generation [27,15,18,22].
This modeling, and the subsequent transformation are inspired by the recent work of Fleischhacker,
Simkin, and Zhang [25], bootstrapping one-time lattice-based multisignatures to many-time mul-
tisignatures.

Synchronized Threshold VRFs. To present the transformation and argue its security, we first
need to define threshold VRFs in the synchronized model. The syntax of a synchronized threshold
VRF is the same as threshold VRFs as defined in Section 2, but for the following modifications: the
function sampling algorithm FuncSamp takes the number T ∈ N of epochs as an additional input;
and the algorithms Eval, EvalVerify, Combine, Verify, all take an epoch j ∈ [T] as an additional
input. Our security notions readily extend to this settings:

– Pseudorandomness remains the same as Definition 4, but it should hold for all T = poly(λ) and
j ∈ [T].

– The definition of uniqueness remains as in Definition 2, but should hold separately for every
epoch. That is, the adversary wins if it outputs an input z and two distinct evaluations w ̸= w′

that verify with respect to the same epoch j ∈ [T]. We call this notion synchronized uniqueness.
– Traceability: here, we make an important change in definitions. In the synchronized model, an

evaluation box E also take in an epoch j ∈ [T] as input. We say that E is good with respect
to epoch j ∈ [T], if it is good (per Definition 6) when Eval takes j as input. Now, in order
to win the traceability game (Fig. 2), an adversary A must output a box E that is good with
respect to an epoch j ∈ [T] on which A had not previously queried its partial evaluation oracle
EvalO. This can be enforced in Line 6 of the security game. We call this traceability guarantee
synchronized traceability.

The real-world implications of this revised traceability definition can be interpreted as follows. If
at some epoch j∗ ∈ [T], a coalition of corrupted parties outputs an evaluation box E then, either:

– E is good with respect to at least one future epoch j > j∗, for which partial evaluations have
not been published yet. In this case E can be traced back to the corrupted parties.

25

– E is not good with respect to any future epoch. In this case, E is benign, since it reveals nothing
about the values of the VRF that can be of interest in the future. For example, if the VRF is
used to sample shared randomness rj for every epoch j, then the box E reveals nothing about
future rjs.

The transformation. Let TTVRF = (FuncSamp,KeyShareGen,Eval,EvalVerify,Combine,Verify,Trace)
be a one-time traceable threshold VRF scheme. We will now discuss how to transform it into a
many-time traceable scheme in the synchronized model. Let T = poly(λ) be the number of epochs.
The idea is to generate key material for T epochs by invoking FuncSamp and KeyShareGen inde-
pendently for each of the T epochs.3 The result is T verification keys vk1, . . . , vkT , and each party
i ∈ [n] holding T partial evaluation keys eki,1, . . . , eki,T . In epoch j ∈ [T], the parties use {eki,j}i∈[n]
to compute the evaluation of the function, and verification is done with respect to vkj . The tracer
also holds T tracing keys tk1, . . . , tkT , one for each epoch.

One caveat of the construction as presented so far, is that the verification key vk is linear in the
number T of epochs. However, this is easy to counter using vector commitments. Suppose we have
a vector commitment scheme VC (for detailed syntax and security notions, see [36,14]). The new
verification key vk′ will be a vector commitment com to (vk1, . . . , vkT). We include (vk1, . . . , vkT)
and com as part of the combiner key ck. Then, the evaluation proof for the VRF at epoch j also
contains vkj and an opening proof for the jth entry underlying com, proving that vkj is indeed the
jth verification key.

We denote the resulting construction by SyncTTVRF. The pseudorandomness and traceability of
SyncTTVRF in the synchronized model follow directly from the pseudorandomness and traceability
of TTVRF (without synchronization). For uniqueness, we additionally have to rely on the security
of the vector commitment scheme in use. Namely, we rely on the assumption that VC satisfies
position binding: it is infeasible to come up with a commitment com, an index i, and opening proofs
of com at index i to two distinct values. The synchronized uniqueness of SyncVRF is captured by
the following theorem.

Theorem 6. Suppose TTVRF satisfies uniqueness and VC satisfies position binding. Then SyncTTVRF
satisfies synchronized uniqueness.

Proof. The uniqueness of the VRF at each epoch is guaranteed by uniqueness of the underlying
one-time traceable threshold VRF TTVRF and the position binding of the vector commitment. To
see why, suppose that an adversary manages to break uniqueness with respect to epoch j ∈ [T],
this means that it outputs an input z, two distinct evaluations w,w′, and corresponding accepting
evaluation proofs π = (vkj , πVC,j , πTTVRF) and π

′ = (vk′j , π
′
VC,j , π

′
TTVRF). In these proofs, vkj and vk′j

are the supposed TTVRF verification keys for epoch j; πVC,j and π′VC,j are the vector commitment

opening proofs, proving that respectively that vkj and vk′j are the opening to the jth entry of
com; and πTTVRF and π′TTVRF are the evaluation proofs of TTVRF for w and w′, respectively. Let
ek∗j := (ek∗1,j , . . . , ek

∗
n,j) be the vector of real evaluation keys for epoch j, and let vk∗j sampled at

key generation time.

Consider two cases:

– If vk∗j ̸= vkj or vk∗j ̸= vk′j , then assume without loss of generality that vk∗j ̸= vkj . In this case,
the adversary can be used to break the position binding of the vector commitment scheme.

3 Once T epochs are exhausted, new keys need to be sampled.

26

This is because π is an accepting evaluation proofs, which, in particular, implies that πVC,j is
an accepting opening proof for vkj with respect to com. But, vk∗j was the true jth coordinate of
the vector to which com is a commitment to. Hence, the correctness of the vector commitment
scheme stipulates that it is possible to compute a proof π∗VC,j proving that this is indeed the
case. It follows that the tuple (com, j, vkj , πVC,j , vk

∗
j , π
∗
VC,j) breaks the position binding of the

vector commitment.

– If vk∗j = vkj = vk′j , then the adversary can be used to break the uniqueness of TTVRF. Let
w∗ be the real value of the VRF on input z at epoch j, as induced by ekj , and let π∗ be the
corresponding TTVRF evaluation proof. Since w ̸= w′, it must hold that w∗ ̸= w or w∗ ̸= w′.
Assume without loss of generality that w∗ ̸= w. Then, since w∗ ̸= w and π∗ and πTTVRF and
both accepting TTVRF proofs with respect to vk∗j = vkj , the tuple (z, (w∗, π∗), (w, πTTVRF))
breaks the uniqueness of TTVRF.

5.2 The Exponential Method

Our second transformation does not assume the existence of epochs, and does not rely on a syn-
chronized model. However, as a result, in the many-time traceable threshold VRF that we end up
with, the tracing algorithm can only trace evaluation boxes E that are good with respect to almost
all inputs z. That is, E is (n, t, ek, ck, vk, C, EK∗, ϵ, δ)-good with δ > 1− negl(λ).

The idea is to initialize ζ ∈ N base VRFs ek1, . . . , ekζ sets of TTVRF keys, by invoking FuncSamp
and KeyShareGen ζ times independently. For reasons that will become apparent in a second, we
require that ζ = ω(log λ). The result is ζ verification keys vk1, . . . , vkζ , and each party i ∈ [n]
holding T partial evaluation keys eki,1, . . . , eki,ζ . The tracing key is the concatenation of the ζ
tracing keys tk1, . . . , tkζ . To decide which of the ζ base functions to use, we rely on hash function
Hmap mapping function inputs to indices in {1, . . . , ζ}. To compute the output of the function on
input z, we compute j ← Hmap(z) and compute fekj (z). We will think of Hmap as a skewed random
oracle with the following distribution: for any z ∈ Z, and for every j ∈ [ζ − 1], we require that
Pr [Hmap(z) = j] = 2−j . So that the probabilities sum to 1, we require that Pr [Hmap(z) = ζ] =
2−ζ+1.4

The crucial observation is if an adversary A issues at most a polynomial number Q = poly(λ)
of partial evaluation queries with respect to inputs z1, . . . , zQ, then with overwhelming probability
there is an index j = O(log λ) such that:

– Hmap(zi) ̸= j for all i ∈ [Q]. In particular, this means that A does not observe any partial
evaluations of the jth one-time traceable function fekj .

– At the same time, since, by assumption, E is good for 1−negl(λ) fraction of the inputs z ∈ Z, it
should, in particular, be good for 1− negl(λ) fraction of the inputs in Zj := {Hmap(z) = j}z∈Z .
This is because j = O(log λ) and thus (with overwhelming probability), a non-negligible fraction
of the inputs in Z is mapped to j by Hmap. Since E is good for Zj and Zj is sufficiently dense
within Z, it follows that E is good for a non-negligible fraction of the inputs in Z.

Taking these two points together, we get that there exists an index j ∈ [ζ] such that E is a good
box with respect to the jth function fekj , and A has not seen partial evaluations of fekj before

4 Such a function is easy to construct given a function H whose output is uniform over {0, 1}ζ . Given such a function,
define the function Hmap as follows. On input z, Hmap(z) first computes σ ← H(z) ∈ {0, 1}ζ . The output of Hmap(z)
is then the index of the first 1 in σ. If H(z) = 0ζ , then Hmap(z) = ζ.

27

outputting E. Hence, we can rely on the one-time traceability of TTVRF to trace E back to the
corrupted parties.

Backdooring Hmap. The diligent reader might have noticed a loophole in the forgoing argument.
The issue is this. Our construction of a one-time traceable threshold VRF from Sections 3 and 4
gives the tracer, as part of the tracing, values that are tied to specific function inputs (z values),
sampled at key generation. Alas, if we sample the z values included in each tk1, . . . , tkζ and the
hash function Hmap independently, then it is very likely that the following bad event occurs: for all
the z values zj,1, . . . , zj,κ included as part of tkj it holds that Hmap(zj,1) ̸= j, . . . , Hmap(zj,κ) ̸= j. In
contrast, our tracing algorithm requires that for every such zj,m, we can get E’s partial evaluation
for fekj on zj,m. However, since Hmap(zj,m) ̸= j, querying the box E on zj,m will result in E’s
evaluation with respect to a different function fekj′ .

To remedy this situation, we do not choose Hmap independently from the z values in the tracing
keys. Rather, we choose it in the following manner. Let H ′map be a hash function, modeled as a
random oracle. We require that H ′map is skewed and exhibits an exponential decay as discussed
above. We sample the tracing keys tk1, . . . , tkζ independently, according to the key generation
algorithms of TTVRF. For every j ∈ [ζ], let zj,1, . . . , zj,κ be the function inputs that are included in
tkj . Suppose that the set of all ζ ·κ function inputs in tk is pairwise distinct (this is indeed the case
with overwhelming probability in our construction). Then, we sample a function g from a family
of ζ · κ-wise independent hash functions, subject to the fact g ◦H ′map(zj,m) = j for any j ∈ [ζ] and
m ∈ [κ]. Finally, we set Hmap := g ◦H ′map.

References

1. D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring. In A. Joux, editor, EU-
ROCRYPT 2009, volume 5479 of LNCS, pages 36–53, Cologne, Germany, Apr. 26–30, 2009. Springer, Berlin,
Heidelberg, Germany.

2. M. Bellare, E. C. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. Better than advertised security for
non-interactive threshold signatures. In Y. Dodis and T. Shrimpton, editors, CRYPTO 2022, Part IV, volume
13510 of LNCS, pages 517–550, Santa Barbara, CA, USA, Aug. 15–18, 2022. Springer, Cham, Switzerland.

3. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In CCS’06,
pages 390–399. ACM, 2006.

4. M. Bellare, S. Tessaro, and C. Zhu. Stronger security for non-interactive threshold signatures: BLS and FROST.
Cryptology ePrint Archive, Report 2022/833, 2022.

5. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group
signature scheme. In Public Key Cryptography – PKC 2003, page 31–46, 2003.

6. D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. In ASIACRYPT’18,
pages 435–463, 2018.

7. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear
maps. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
416–432. Springer, 2003.

8. D. Boneh, I. Haitner, and Y. Lindell. Exponent-VRFs and their applications. Cryptology ePrint Archive, Paper
2024/397, 2024.

9. D. Boneh, A. Partap, and L. Rotem. Accountability for misbehavior in threshold decryption via threshold traitor
tracing. In L. Reyzin and D. Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 317–351,
Santa Barbara, CA, USA, Aug. 18–22, 2024. Springer, Cham, Switzerland.

10. D. Boneh, A. Partap, and L. Rotem. Traceable secret sharing: Strong security and efficient constructions. In
L. Reyzin and D. Stebila, editors, CRYPTO 2024, Part V, volume 14924 of LNCS, pages 221–256, Santa Barbara,
CA, USA, Aug. 18–22, 2024. Springer, Cham, Switzerland.

11. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with short ciphertexts and private
keys. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 573–592, St. Petersburg, Russia,
May 28 – June 1, 2006. Springer, Berlin, Heidelberg, Germany.

28

12. D. Boneh and V. Shoup. A graduate course in applied cryptography, 2023. Cryptobook.

13. D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and more from indistinguishability
obfuscation. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
480–499, Santa Barbara, CA, USA, Aug. 17–21, 2014. Springer, Berlin, Heidelberg, Germany.

14. D. Catalano and D. Fiore. Vector commitments and their applications. In K. Kurosawa and G. Hanaoka, editors,
PKC 2013, volume 7778 of LNCS, pages 55–72, Nara, Japan, Feb. 26 – Mar. 1, 2013. Springer, Berlin, Heidelberg,
Germany.

15. Chainlink vrf: On-chain verifiable randomness. link.

16. M. Chase, M. Orrù, T. Perrin, and G. Zaverucha. Proofs of discrete logarithm equality across groups. Cryptology
ePrint Archive, Report 2022/1593, 2022.

17. Y. Chen, V. Vaikuntanathan, B. Waters, H. Wee, and D. Wichs. Traitor-tracing from LWE made simple and
attribute-based. In A. Beimel and S. Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages
341–369, Panaji, India, Nov. 11–14, 2018. Springer, Cham, Switzerland.

18. K. Choi, A. Manoj, and J. Bonneau. SoK: Distributed randomness beacons. In 2023 IEEE Symposium on
Security and Privacy, pages 75–92, San Francisco, CA, USA, May 21–25, 2023. IEEE Computer Society Press.

19. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Y. Desmedt, editor, CRYPTO’94, volume 839 of LNCS,
pages 257–270, Santa Barbara, CA, USA, Aug. 21–25, 1994. Springer, Berlin, Heidelberg, Germany.

20. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups with hidden
order. In Y. Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 125–142, Queenstown, New Zealand,
Dec. 1–5, 2002. Springer, Berlin, Heidelberg, Germany.

21. P. Das, S. Faust, and J. Loss. A formal treatment of deterministic wallets. In L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, editors, ACM CCS 2019, pages 651–668, London, UK, Nov. 11–15, 2019. ACM Press.

22. S. Das, B. Pinkas, A. Tomescu, and Z. Xiang. Distributed randomness using weighted VRFs. Cryptology ePrint
Archive, Report 2024/198, 2024.

23. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In Y. Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 1–17, Miami, FL, USA, Jan. 6–8, 2003. Springer, Berlin, Heidelberg, Germany.

24. Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In S. Vaudenay, editor,
PKC 2005, volume 3386 of LNCS, pages 416–431, Les Diablerets, Switzerland, Jan. 23–26, 2005. Springer, Berlin,
Heidelberg, Germany.

25. N. Fleischhacker, M. Simkin, and Z. Zhang. Squirrel: Efficient synchronized multi-signatures from lattices. In
H. Yin, A. Stavrou, C. Cremers, and E. Shi, editors, ACM CCS 2022, pages 1109–1123, Los Angeles, CA, USA,
Nov. 7–11, 2022. ACM Press.

26. P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting or lotteries. In Y. Frankel,
editor, FC 2000, volume 1962 of LNCS, pages 90–104, Anguilla, British West Indies, Feb. 20–24, 2001. Springer,
Berlin, Heidelberg, Germany.

27. D. Galindo, J. Liu, M. Ordean, and J.-M. Wong. Fully distributed verifiable random functions and their applica-
tion to decentralised random beacons. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 88–102, 2021.

28. S. Garg, A. Kumarasubramanian, A. Sahai, and B. Waters. Building efficient fully collusion-resilient traitor
tracing and revocation schemes. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM CCS 2010,
pages 121–130, Chicago, Illinois, USA, Oct. 4–8, 2010. ACM Press.

29. S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive zero-knowledge proofs are equivalent
(extended abstract). In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 228–245, Santa Barbara,
CA, USA, Aug. 16–20, 1993. Springer, Berlin, Heidelberg, Germany.

30. J. Gong, J. Luo, and H. Wee. Traitor tracing with N1/3-size ciphertexts and O(1)-size keys from k-Lin. In
C. Hazay and M. Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 637–668, Lyon,
France, Apr. 23–27, 2023. Springer, Cham, Switzerland.

31. R. Goyal, V. Koppula, and B. Waters. Collusion resistant traitor tracing from learning with errors. In I. Di-
akonikolas, D. Kempe, and M. Henzinger, editors, 50th ACM STOC, pages 660–670, Los Angeles, CA, USA,
June 25–29, 2018. ACM Press.

32. V. Goyal, Y. Song, and A. Srinivasan. Traceable secret sharing and applications. In T. Malkin and C. Peikert,
editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 718–747, Virtual Event, Aug. 16–20, 2021.
Springer, Cham, Switzerland.

33. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric codes. In 39th
FOCS, pages 28–39, Palo Alto, CA, USA, Nov. 8–11, 1998. IEEE Computer Society Press.

29

https://toc.cryptobook.us/
https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/

34. C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft. Efficient rsa key generation and threshold paillier in the two-
party setting. In O. Dunkelman, editor, Topics in Cryptology – CT-RSA 2012, pages 313–331, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

35. B. Libert, M. Joye, and M. Yung. Born and raised distributively: fully distributed non-interactive adaptively-
secure threshold signatures with short shares. In M. M. Halldórsson and S. Dolev, editors, 33rd ACM PODC,
pages 303–312, Paris, France, July 15–18, 2014. ACM.

36. B. Libert and M. Yung. Concise mercurial vector commitments and independent zero-knowledge sets with short
proofs. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 499–517, Zurich, Switzerland, Feb. 9–11,
2010. Springer, Berlin, Heidelberg, Germany.

37. A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation. In M. Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 597–612, Santa Barbara, CA, USA, Aug. 18–22, 2002.
Springer, Berlin, Heidelberg, Germany.

38. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Extended abstract. In CCS’01, pages
245–254. ACM, 2001.

39. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th FOCS, pages 120–130, New
York, NY, USA, Oct. 17–19, 1999. IEEE Computer Society Press.

40. J. Nick, T. Ruffing, and Y. Seurin. Musig2: Simple two-round schnorr multi-signatures. In Advances in Cryptology
– CRYPTO’ 21, pages 189–221, 2021.

41. J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr multi-signatures with verifiably deterministic
nonces. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 1717–1731, Virtual Event,
USA, Nov. 9–13, 2020. ACM Press.

42. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 223–238, Prague, Czech Republic, May 2–6, 1999. Springer, Berlin,
Heidelberg, Germany.

43. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In H. N. Gabow and R. Fagin,
editors, 37th ACM STOC, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

44. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, Nov. 1979.
45. V. Shoup. Practical threshold signatures. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,

pages 207–220, Bruges, Belgium, May 14–18, 2000. Springer, Berlin, Heidelberg, Germany.
46. M. Sudan. Maximum likelihood decoding of reed solomon codes. In 37th FOCS, pages 164–172, Burlington,

Vermont, Oct. 14–16, 1996. IEEE Computer Society Press.
47. B. R. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor, EURO-

CRYPT 2005, volume 3494 of LNCS, pages 114–127, Aarhus, Denmark, May 22–26, 2005. Springer, Berlin,
Heidelberg, Germany.

48. H. Wee. Functional encryption for quadratic functions from k-lin, revisited. In R. Pass and K. Pietrzak, editors,
TCC 2020, Part I, volume 12550 of LNCS, pages 210–228, Durham, NC, USA, Nov. 16–19, 2020. Springer, Cham,
Switzerland.

49. M. Zhandry. New techniques for traitor tracing: Size N1/3 and more from pairings. In D. Micciancio and
T. Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 652–682, Santa Barbara, CA, USA,
Aug. 17–21, 2020. Springer, Cham, Switzerland.

A Evaluation Share Proofs

A.1 A Chaum-Pedersen style proof for Req

Figure 8 presents the proof system for the relation Req. It uses rejection sampling to reduce the size
of the transcript, but it may cause the prover to abort. Nevertheless, the Fiat-Shamir transform can
be applied, wherein the prover tries to run the protocol multiple times with different randomness
until it succeeds.

Theorem 7 below proves completeness, honest-verifier zero-knowledge and soundness of the proof
system. We consider a notion called no-abort honest verifier zero-knowledge, where the simulator
returns a valid transcript or ⊥, and indistinguishability needs to hold only for non aborted tran-
scripts. While this is weaker than HVZK, it is still sufficient to achieve HVZK with the Fiat-Shamir

30

Peq((v, v
′, w, w′), y) Veq(v, v

′, w, w′)

r ←$ [0, A ·R2 − 1]

v̂ ← vr, ŵ ← wr

v̂ and ŵ

e←$ [0, R− 1]

e

z ← e · y + r

abort if z ̸∈ [R2, R2 ·A− 1]

z

accept if

(1) z ∈ [R2, A ·R2 − 1]

(2) vz = (v′)e · v̂
(3) wz = (w′)e · ŵ

Fig. 8. A proof system for the relation Req. The elements in the statement v, v′, w, w′ are all in the group of quadratic
residues QRN2 , of order Np′q′, where N = pq, p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ are all prime. R is an upper
bound on the value of y. For our VRF constructions, we set R = N2/4. A is a parameter that we set to 256 to keep
the abort probability low.

transform. Additionally, for proving soundness, we make the assumption that v is a generator of
the set QRN2 , but note that a random element in QRN2 is indeed a generator with overwhelming
probability.

Theorem 7. For every A > 0, the proof system (Peq,Veq) in Fig. 8 is a na-HVZK for the relation
Req.

Proof. Completeness. In case the prover does not abort, correctness is straightforward:

vz = ve·y+r = (vy)e · vr = (v′)e · v̂

and similarly for w,w′. Next, by [16][Lemma 2], the abort probability is exactly 1/A. We set A
to be 256 so that aborting is infrequent.

no-abort Honest-verifier Zero-knowledge (na-HVZK).

We construct a simulator Simeq(v, v
′, w, w′)→ ((v̂, ŵ), e, z) that matches the distribution of an

accepting transcript between the honest prover and honest verifier, when the prover does not abort.
The analysis in [16][Lemma 2] implies that when the honest prover does not abort, the quantity z
is uniform in the set [R2, R2 ·A− 1]. Then, Simeq(v, v

′, w, w′) works as follows:
1 : e←$ [0, R− 1], z ←$ [R2, R2 ·A− 1]

2 : v̂ ← vz

(v′)e

3 : ŵ ← wz

(w′)e

Since both e and z are uniformly random in an honest transcript, the simulator above generates
exactly the required distribution.

31

Soundness. Let (v, v′, w, w′) be an instance where the relation Req does not hold. Let (v̂, ŵ, e, z)
be an accepting transcript.

Note that we assumed that v is a generator of QRN2 . This implies that:

v′ = vγ , w = vα, w′ = vβ, v̂ = vδ, ŵ = vη

for some γ, α, β, δ, η ∈ [0, pqp′q′− 1] where N = pq, p = 2p′+1, q = 2q′+1, i.e. the order of the
group QRN2 is pqp′q′.

Since this is an accepting transcript, we have that:

z = e · γ + δ mod pqp′q′

z · α = e · β + η mod pqp′q′

Multiplying the first equation by α and then subtracting from the second, we get,

e · (β − γ · α) = δα− η mod pqp′q′

If β = γ ·α mod pqp′q′, then the instance is actually in Req, which is a contradiction. Otherwise,
β−γ ·α must be non zero modulo one of the primes in the set {p, q, p′, q′}. Then, the above equation
uniquely determines e modulo one of these primes. But since e is chosen uniformly randomly by the
verifier, independent of the instance and the first message, the probability that the above equation
holds for a random e is atmost max(1/p′, 1/q′). Without loss of generality, let us assume that p > q
and hence p′ > q′. So the soundness error is bounded by 1/q′. ⊓⊔

A.2 A Chaum-Pedersen style proof for R′
eq

We construct a proof system for the relation R′eq by running an OR proof [12][§ 19.7.2] over the
proof system for Req and Schnorr’s sigma protocol [12][Fig.19.1] for proof of knowledge of discrete
log in the group G. Let (Ps(u),Vs(a, b)) denote the Schnorr proof system. Let Sims(G, a, b) be the
simulator that produces transcripts from the same distribution as an honest prover, and let Es
be the extractor which can extract the witness from two transcripts with different challenges. Let
Xeq ← (v, v′, w, w′) and Xs ← (G,H) denote the statements for the two proof systems. We use the
same challenge space [0, R− 1] for both proof systems (this is fine due to our assumption that the
order of G q is greater than N2 and R = N2/4). Additionally, we use P(1) and P(2) to denote the
first and the second steps of the prover for any proof system.

Similar to Section A, we prove no-abort honest-verifier zero-knowledge.

Theorem 8. For every A > 0, the proof system (P′eq,V
′
eq) in Fig. 9 is a na-HVZK for the relation

R′eq.

Proof. Completeness. This is implied by the completeness of (Peq,Veq) and (Ps,Vs) and the
correctness of the simulators.

na-HVZK. We construct a Simulator Sim′eq(v, v
′, w, w′, a, b) that matches the distribution of an

accepting transcript, when the prover does not abort. It works as follows:

32

P′
eq((v, v

′, w, w′, a, b), (y, u)) V′
eq(v, v

′, w, w′, a, b)

if y ̸= ⊥ then c← “eq”, d← “s”,W ← y

else c← “s”, d← “eq”,W ← u

(rd, ed, zd)←$ Simd(Xd)

rc ←$ P(1)
c (Xc,W)

req , rs

e←$ [0, R− 1]

e

ec ← e⊕ ed

zc ← P(2)
c (Xc,W, ec)

eeq , zeq , zs

Fig. 9. A proof system for the relation R′
eq.

1 : (teq, eeq, zeq)←$ Simeq(v, v
′, w, w′)

2 : (ts, es, zs)←$ Sims(a, b)

3 : e← eeq ⊕ es

4 : Output (teq, ts, e, (eeq, zeq, zs))

Since both Simeq and Sims output the same distribution as the transcript of an honest prover
when it does not abort, Sim′eq also outputs the required distribution.

Special Soundness. The following lemma proves soundness.

Lemma 2. There exists an extractor E such that, for every PPT adversary A that breaks soundness
of (P′eq,V

′
eq),

Pr[au = b : u←$ EA(v, v′, w, w′, a, b)] ≥ ϵ2 − 1/R− 1/q′

where ϵ is the probability with which A outputs an accepting transcript for the instance (v, v′, w, w′, a, b) ̸∈
R′eq, R = N2/4 is an upper bound on the value of y, and N = pq where p > q, q = 2q′ + 1 and
p = 2p′ + 1.

Proof. We construct EA as follows:

1. Run ((req, rs), st)←$A to get the first message.
2. Sample e←$ [0, R− 1]. Run A with inputs e and st to get (eeq, zeq, zs).
3. Sample e′ ←$ [0, R− 1]. Rewind A to the point right after it outputs the first message, and run

it again with inputs e′ and st to get (e′eq, z
′
eq, z

′
s).

4. Abort if V′eq((req, rs), e, (eeq, zeq, zs)) = 0 or if V′eq((req, rs), e
′, (e′eq, z

′
eq, z

′
s)) = 0 or if e = e′.

5. Otherwise, if (e ⊕ eeq) = (e′ ⊕ e′eq) then abort, else, run Es with inputs (rs, e ⊕ eeq, zs) and
(rs, e

′ ⊕ e′eq, z′s).

Let ϵ denote the probability with which A outputs an accepting transcript for the invalid
instance (v, v′, w, w′). Let Ef denote the event that the extractor does not abort on Step 4 above.
In other words, we get two accepting transcripts with different challenges e ̸= e′. Then, by the
forking lemma, we have that

33

Pr[Ef] ≥ ϵ2 − 1/R.

By total probability, we have that,

Pr[Ef] = Pr[Ef ∧ ((e⊕ eeq) = (e′ ⊕ e′eq))] + Pr[Ef ∧ ((e⊕ eeq) ̸= (e′ ⊕ e′eq))]

In the case (e⊕eeq) = (e′⊕e′eq), observe that e′eq must be equal to e⊕e′⊕eeq. Since e′ is chosen
uniformly randomly, e′eq is also uniformly random in [0, R−1]. By an analysis similar to that in the
proof of Thm 7, since the instance is not in R′eq, we have that e′eq is fixed modulo one of the primes
in {p, q, p′, q′}. The probability that a uniform random e′eq satisfies that is at most max(1/p′, 1/q′).
In other words,

Pr[Ef ∧ ((e⊕ eeq) = (e′ ⊕ e′eq))] ≤ 1/q′

where we assume that p′ > q′ without loss of generality.
Lastly, in the event Ef ∧ ((e ⊕ eeq) ̸= (e′ ⊕ e′eq)), the extractor is able to successfully extract a

valid witness for the instance (a, b) by running Es. This proves the lemma.
⊓⊔

B A Simple and Generic Tracing Algorithm

In this section we show how to support tracing for any threshold VRF scheme. More precisely,
for a given threshold VRF scheme we describe a simple tracing algorithm that can trace a perfect
evaluation box. This algorithm is adapted from [10, App. A]. The main drawback of this tracing
scheme, compared to the tracing constructions in the main body, is that this scheme can only trace
a perfect box and requires storing several VRF evaluations in the tracing key. Hence, the tracer has
pre-knowledge of the VRF evaluation at a number of points. This is undesirable if the VRF needs
to be unpredictable at all points that have not yet been evaluated by the quorum. In particular,
this traceable threshold VRF scheme does not have tracer pseudorandomness.

The tracing scheme. The basic idea is as follows. Suppose for now that the evaluation box E has
f = t − 1 evaluation keys {ekij}j∈[t−1] hardcoded in it, and it takes as input the evaluation from
one additional key ek′. The box is perfect meaning that it always produces a correct output when
given a valid input. More precisely, the following condition

E
(
z, (w′, π′)

)
= w where w = fek(z)

always holds whenever Eval(ek′, z) = (w′, π′) and ek′ is a valid key share that is not one of the keys
{ekij}j∈[t−1] in the box. The box E outputs ⊥ when it is given fewer than t distinct shares as input,
namely when (w′, π′) is derived from a key share ek′ in the set of keys {ekij}j∈[t−1] that the box
already has.

The tracing key, output by the setup algorithm, will contain some random z∗ in Zλ along with
all the evaluation shares of the VRF at this z∗. In particular, the tracing key will contain z∗ and
(wi, πi)← Eval(eki, z

∗) for all i ∈ [n]. To trace a box E, the tracer will run E on input (z∗, (wi, πi))
and get back some output w′i or ⊥ for every i ∈ [n]. Observe that if party i is honest, then a perfect
box must output a valid output, namely w′i = fek(z

∗). On the other hand, if i is corrupt, namely
i ∈ {ij}j∈[t−1], then the box cannot output a valid VRF value at the point z∗ because it does

34

not have enough evaluation shares. Therefore, the tracer exonerates all the parties i for which the
output of the box is valid, and blames all the remaining parties.

We generalize this strategy to any number of corrupted parties 1 ≤ f < t − 1 as follows. The
setup algorithm generate t − f − 1 dummy key shares {ek′j}j∈[t−f−1] by running the KeyShareGen
algorithm t− f − 1 times. Now for each i ∈ [n] the tracer runs the evaluation box on input

E
(
z∗, {Eval(ek′j , z∗)}j∈[t−f−1], Eval(eki, z∗)

)
As before, the tracer exonerates party i if the box outputs a valid evaluation.

Figure 10 presents the tracing scheme, called TTVRFF, which is derived from a threshold VRF F.
Since this tracing procedure is generic, it can be used to add traceability to any η-correct threshold
VRF scheme F, as in Definition 1, as long as η is super-poly. Correctness and pseudorandomness of
TTVRFF follow directly from that of the underlying VRF scheme F. Theorem 9 proves traceability
of TTVRFF.

FuncSamp′(1λ, n, t, 11/ϵ, 11/δ)→ (ek, ck, vk, tk∗, ρ):

1. Run (ek, ck, vk, ρ)←$ F.FuncSamp(1λ, n, t)). // Setup of the underlying VRF

2. Sample z∗ ←$ Zλ.

3. for j ∈ [t− 1]:

(a) ek′j ← F.KeyShareGen(1λ, ek, n, t, ρ) // dummy key shares

(b) (w′
j , π

′
j)← F.Eval(ek′j , z

∗)

4. Set tk∗ ←
(
z∗, {(w′

j , π
′
j)}j∈[t−1]

)
// z∗ and all t− 1 dummy evals

5. Output (ek, ck, vk, tk∗, ρ)

KeyShareGen′(1λ, ek, tk∗, n, t, ρ)→ (eki, tki):

1. eki ← F.KeyShareGen(1λ, ek, n, t, ρ) // ShareGen of the underlying VRF

2. tki ← F.Eval(eki, z
∗)

3. Output (eki, tki). // the overall tracing key tk is tk← (tk∗, tk1, . . . , tkn).

TraceE(tk, f)→ I ⊆ [n]: // E takes as input (z∗, (w1, π1), . . . , (wt−f , πt−f))

1. Parse tk as
(
z∗, {(w′

j , π
′
j)}j∈[t−1], {(wi, πi)}i∈[n]

)
. Let I ← [n].

2. Let (w∗, π∗) = F.Combine({(wi, πi)}i∈[t]).

3. For ℓ = 1, . . . , n:

(a) Query the box E as w ←$ E
(
z∗, {(w′

j , π
′
j)}j∈[t−f−1], (wℓ, πℓ)

)
.

(b) If w = w∗, then set I ← I \ {ℓ}.
4. Output I

Fig. 10. The derived traceable threshold VRF scheme TTVRFF from a threshold VRF F =
(FuncSamp,KeyShareGen,Eval,EvalVerify,Combine,Verify).

Theorem 9. Let F be a (standard, i.e., no tracing) threshold VRF scheme that is η-correct (as
in Definition 1) for some super-polynomial function η(λ). Further assume that the domain Zλ has
super-polynomial size in λ. Then for every adversary A the derived threshold VRF scheme TTVRFF
in Figure 10 satisfies

Advtrace-1A,TTVRFF,1,1
(λ) < negl(λ).

35

Proof sketch. The proof follows from the fact that the box E must be perfect. First, we argue
that the adversary can compute the evaluation of the VRF at the tracing point z∗ with at most
negligible probability. This follows from the super-polynomial size of Zλ. Since the adversary can
guess z∗ with at most negligible probability, it cannot query the VRF at z∗. Therefore, if it could
predict the VRF output at z∗ with non-negligible probability, then it could also be used to break
the pseudorandomness of F.

It follows that if E is given fewer than t − f evaluation shares from honest parties, then it
cannot output the VRF value at z∗. Conversely, because E is perfect, whenever it is given t − f
valid evaluation shares from honest parties, it must output the VRF value at z∗.

Now, by the η-correctness property of F it follows that the evaluation shares {(w′j , π′j)}j∈[t−1]
in the tracing key are all valid evaluation shares from honest parties. From this it follows that the
tracing algorithm in Figure 10 will identify the correct set of corrupt parties. ⊓⊔

C Proving uf-1 security for OT-P1

In this section, we discuss how our OT-P1 construction can be proven to achieve uf-1 security.
Following [4], we define a new (stronger) assumption in Definition 13. This is the DCR analog of
the Vector-CDH assumption defined in [4].

To prove uf-1 pseudorandomness, the proof of Theorem 2 can be modified to rely on this new
assumption. Specifically, we first consider t different events, based on the number ℓ of partial
evaluation queries that the pseudorandomness adversary makes on the challenge input. By a simple
averaging argument, we know that there must exist a value ℓ∗ ∈ [t−1]∪{0}, such that the adversary
makes exactly ℓ∗ partial evaluation queries, and wins the pseudorandomness game with only a factor
of 1/t loss in the advantage. We can then construct an adversary B that breaks the ℓ∗-Vector-DCR
assumption using this adversary A. B gets as input the modulus N , along with v̂, v̂0, {v̂i}i∈[ℓ∗] and
a challenge “ciphertext” c and m∗. It samples x1, . . . , xt−1 as in the original proof, but only samples
t− ℓ∗ − 1 yi values, since these are enough to respond to the secret key queries of A. In essence, v̂i
can be thought to replace v̂yi in the original proof. Then, B computes ν as in the proof, and sets
v0, v to be v̂ν0 and v̂ν respectively. It computes all the vi terms in a similar manner as in the original
proof, but uses v̂i in place of v̂yi for i ∈ [ℓ∗]. Next, when answering H0 queries, it sets the hash of
the challenge input ẑ to be the challenge ciphertext c. Additionally, for any other z ̸= ẑ, it sets the
hash to be v̂r·ν for some r which is uniformly randomly sampled from N2/4. Note that these hash
responses are statistically indistinguishable from a uniform random distribution. To answer partial
evaluation queries on ẑ for some i ∈ [n], it simply queries the Eval of its challenger with α vector
containing lagrange coefficients, to compute interpolation in the exponent. Lastly, B sends m∗ to
A. This allows B to simulate the game to A with negligible statistical distance from the real uf-1
game. It can simply send A’s output to its challenger. It can be seen that B will be able to break
the ℓ∗-Vector-DCR assumption with non-negligible advantage if A breaks uf-1 pseudorandomness.

Definition 13 (The ℓ-Vector-DCR assumption). We say that the ℓ-vector-DCR assumption
is hard if, for all PPT adversaries A, the following function is negligible in λ:

Advv-dcr,ℓA (λ) =

∣∣∣∣Pr[Gv-dcr,ℓ
A (λ) = 1]− 1

2

∣∣∣∣
where the game Gv-dcr,ℓ

A is as defined in Figure 11.

36

Game Gv-dcr,ℓ

1 : p, q ←$ Pλ

2 : p′ := (p− 1)/2, q′ := (q − 1)/2, N := pq, g := 1 +N ∈ ZN2

3 : m,β, r ←$ ZN , v̂ ←$QRN2 , b←$ {0, 1}
4 : ∀ i ∈ [ℓ], yi ←$ ZNp′q′ , v̂i := v̂yi

5 : c := (gmrN)2, v̂0 := v̂p
′q′β , θ := (p′q′β) mod N

6 : if b = 0 then m∗ ←$ ZN

7 : else m∗ ← mθ mod N

8 : V := ϕ

9 : b′ ←$AEval(·)(N, v̂, v̂0, {v̂i}i∈[ℓ], c,m
∗)

10 : return b = b′ ∧ (1, 0, . . . , 0) ̸∈ span(V) w.r.t ZNp′q′

Oracle Eval(α):

1 : V ← V ∪ {α}

2 : c′ ← cα0·p′q′β+Σi∈[t]αiyi

3 : return c′

Fig. 11. The security game Gv-dcr,ℓ

D Postponed Proofs

D.1 Proof of Uniqueness for OT-P1, Theorem 1

Proof. We construct a discrete log algorithm B. It gets as input a group description (G, a, q∗) along
with a random element in the group b from its challenger.

We will first construct an algorithm A′ which invokes A and plays the role of challenger to A
in the uniqueness game, as follows:

– Run all the steps of the FuncSamp algorithm, except for Step 5 to get ek, ρ, ck, tk as in Step 6.
Set vk← (N, v, {vi}i∈{0,...,t−1}, a, b).

– Run A with inputs (1λ, ek, ck, vk, ρ, n, t, 11/ϵ, 11/δ).
– Let E be the event that A outputs (z, (w0, π0), (w1, π1)) and wins the uniqueness game. Let
ctz ← H0(z).

– Parse π0 as {((xi,0, wi,0), πi,0)}i∈J and π1 as {((xi,1, wi,1), πi,1)}i∈J ′

– For any i ∈ J , if wi,0 ̸= ct
h(xi,0)
z , then output

((v, vh(xi,0), ctz, wi,0, a, b), πi,0).

Otherwise, for any i ∈ J ′, if wi,1 ̸= ct
h(xi,1)
z , then output

((v, vh(xi,1), ctz, wi,1, a, b), πi,1).

– Otherwise, abort.

Let Ea denote the event that A′ aborts.

37

Claim.

Pr[E] = Pr[E ∧ (Ea)]

Proof. By total probability, we have that,

Pr[E] = Pr[E ∧ (Ea)] + Pr[E ∧ (Ea)]

If A′ aborts, this implies that all the partial evaluation shares are correct for both w0 and w1.
This means that,

w0 =
LN

(∏
i∈J w

λi
i,0

)
ν ′0

(6)

=
LN

(∏
i∈J ct

λj ·h(xi,0)
z

)
ν ′0

(7)

=
LN

(
ct

ν′0·h(0)
z

)
ν ′0

(8)

=2m · h(0) (9)

where ν ′0 =
∏

j,k∈[t],j<k(xij −xik) and ctz = (gmrN)2 for some m, r ∈ ZN . Similarly, we get that
w1 = 2m · h(0). This contradicts the fact that in the event E, A wins the uniqueness game, since
w0 = w1. This proves the claim.

We now have a PPT algorithm A′ that breaks the soundness of the proof system. Hence, B can
simply run the extractor E constructed in the proof of Lemma 2 to extract the discrete log of b
with respect to a, and return that to the challenger. This proves the theorem. ⊓⊔

D.2 Proof of Pseudorandomness for OT-P1, Theorem 2

Proof. We construct B that takes part in the semantic security game for Paillier decryption. It
takes as input pk = N from its challenger and simulates the game Grand

OT-P1
to A as follows:

– Receive (n, t, 11/ϵ, 11/δ) from A.
– Sample x1, . . . , xt−1 ←$ ZN and y1, . . . , yt−1 ←$ ZN2/4. Compute ν =

∏
j∈[t−1] xj ·

∏
j,k∈[t−1],j<k(xj−

xk).

– Define h to be the polynomial in ZN2/4[X] of degree t− 1 such that h(xi) = yi for all i ∈ [t− 1],
and h(0) = βϕ(N)/4 for some β. Note that h(0) is unknown to B.

– Sample θ, α, r ←$ Z∗N . Let g = 1 + N ∈ ZN2 . Compute v̂ ← (gα · rN)2 and set v ← v̂ν . Here,
θ = (βp′q′) mod N , where β, p′, q′ are all unknown to B.

– Sample a cyclic group of prime order: (G, a, q∗) ←$ GroupGen(1λ) such that q∗ > N2. Sample
u←$ Zq∗ and set b← au.

– Compute v0 ← (1 + 2ανθN) mod N2.

38

– Consider the Vandermonde matrix V ∈ Z(t−1)×(t−1) over {x1, . . . , xt−1}:
x1 x21 . . . xt−11

x2 x22 . . . xt−12

.

xt−1 x
2
t−1 . . . x

t−1
t−1


Observe that det(V) = ν. Let W be a matrix such that V −1 = 1

νW . Then, B computes the
verification key elements vi using W as follows:

vi ←
v̂Σj∈[t−1](W i,j ·yj)

(1 + 2αθN)Σj∈[t−1]W i,j

for all i ∈ [t− 1]. Next, Send (vk← (N, v, {vi}i∈{0,...,t−1}, a, b), ck← N) to A.
– Sample messages m0,m1 ←$ ZN and send them to the challenger. Receive a ciphertext c.

– Let C ← ϕ denote the set of corrupt parties. Let qH denote an upper bound on the number
of random oracle queries issued by A. B guesses the query corresponding to A’s final output,
by sampling i∗ ←$ [qH]. Let e ← 0 denote the number of hash queries so far, and let ẑ ← ⊥.
We define a mapM : {0, 1}λ → ZN × ZN to store auxiliary information about random oracle
responses. Let I : [n] → ZN be a map that stores the x value for each party in [n], and let
J : [n]→ ZN2/4 be a map to store the corresponding y values for parties in [n]. Let H ← ⊥ be
a set tracking all the honest parties for which A has queried partial evaluation queries.

– Reply to the oracle queries as follows:

• H0(z). Set e ← e + 1. If e = i∗, then set ẑ ← z and output c2. Otherwise, if z ∈ M,
then let (m, r) :=M[z]. Output (gmrN)2ν . Otherwise, sample m ←$ ZN and r ←$ ZN , set
M[z]← (m, r) and return (gmrN)2ν .

• ekO(i). Add i to the set of corrupt parties: C ← C ∪ {i}. Let ji ← |C|. Abort if ji > t − 1.
Otherwise, set I[i]← xji , J [i]← yji and output (xji , yji).

• EvalO(z, i). We assume without loss of generality that A always queries H0(z) before issuing
a partial evaluation query for z. Additionally, recall that we are only considering a semi-
adaptive adversary, meaning that all the ekO queries must be done before A calls the EvalO
oracle. B proceeds as follows.

∗ If ẑ ̸= ⊥ and z = ẑ then abort.
∗ Otherwise, if i ∈ C or i ∈ H, then simply return H0(z)

J [i].
∗ Else, if |C ∪H| < (t−1), then, set H ← H∪{i}, I[i]← x|C∪H| and J [i]← y|C∪H|. Return

H0(z)
J [i].

∗ Otherwise, let (m, r) =M[z]. Let y = gm ·rN . Next, if i ∈ I, then set x← I[i], otherwise
sample x ←$ ZN and set I[i] ← x. Compute the evaluation share dz,i = H0(z)

h(x)

using Lagrange interpolation in the exponent. More formally, first compute Lagrange
coefficients in Z:

λ0 = ν ·
∏

i∈[t−1]

(xi − x)
xi

, λi =
νx

xi
·

∏
j∈[t−1],j ̸=i

(xj − x)
(xj − xi)

∀ i ∈ [t− 1]

Then, compute the partial evaluation as follows:

dz,i ← y2Σi∈[t−1]λiyi · (1 + 2Nmθλ0).

39

Let v′ ←
∏

j∈{0,1,...,t−1} v
xj

j and compute the evaluation proof πz,i ←$ P′eq((v, v
′,H0(z), dz,i, a, b)

, (⊥, u)). Output ((x, dz,i), πz,i).

Eventually, A outputs z∗. B aborts if z∗ ̸= ẑ. Otherwise, B sends 2m0θ to A. Let b′ denote A’s
final response. B outputs b′.

First, we argue that if B does not abort, then the game simulated by B is statistically indis-
tinguishable from that of the real pseudorandomness game. Specifically, the {xi} values and h(0)
are identically distributed, and each yi value is sampled from ZN2/4, which has statistical distance
≤ 1/p+ 1/q ≤ 2/q from uniform in ZNp′q′ . Additionally, since ν is co-prime with Np′q′ with over-
whelming probability (otherwise we can factor N), the verification key and the oracle responses are
also identically distributed as in the real game. Lastly, if the bit b sampled by B’s challenger is 0,
then B has sent the correct VRF output with respect to z∗, otherwise, it is a random value, since
m0 was sampled randomly. Hence, B’s simulation of the pseudorandomness game is statistically
indistinguishable from the real game.

Next, observe that, if A wins the pseudorandomness game, and if B does not abort, then, B
wins its semantic security game. This is because the challenge ciphertext c was planted as the hash
of z∗.

Let Ea denote the event that B aborts. Since B only aborts if it incorrectly guesses i∗, we have
that Pr[Ea] = 1/qH . This proves the theorem.

D.3 Proof of One-time Universal traceability for OT-P1

Proof (of Theorem 3). Let A be an adversary taking part in the universal tracing experiment
Guniv-trac-0

OT-P1,ϵ,δ
. Let G denote the event in which A outputs an evaluation box E that is (n, t, ek, ck, vk,

Γek(ek), ϵ, δ)-good, where n and t are chosen by A at the beginning of the experiment, and ek, ck, vk
are as generated by the challenger, and ek = (eki1 , . . . , ekif) are the key shares given to A by the
challenger. Conditioned on ¬G, the output of the experiment is 0 with probability 1, and so we
condition the rest of the analysis on G. Let us denote ekij = (x∗j , y

∗
j) for all j ∈ [f], and let I be

the set of parties corrupted by A, i.e. {x∗j}j∈[|I|] = {xi}i∈I .
For ℓ = 1, . . . ,m, let Eℓ,η be the event that ηℓ = 0. For ℓ ∈ [m] and j ∈ {2, . . . , t− f}, let Eℓ,O,j

be the event that xℓ,j = xℓ,i for some i ∈ [j − 1]. For ℓ ∈ [m], let E∗ℓ denote the event that xℓ,j = x∗i
for some i ∈ [f] and some j ∈ [t− f]. Lastly, let E′ℓ be the event that x′ℓ = x′i for some 0 < i < ℓ.

Let Eℓ,1 be the event that

(wℓ, ·) = Combine

(
ck, (sh∗ℓ,1, π

∗
ℓ,1), . . . , (sh

∗
ℓ,f , π

∗
ℓ,f),

(shℓ,1, πℓ,1), . . . , (shℓ,t−f , πℓ,t−f)

)
where (sh∗ℓ,j , π

∗
ℓ,j) ← Eval(ekij , vk, zℓ) and sh∗ℓ,j = (x∗j , w

∗
j) for all j ∈ [f]. Similarly, let Eℓ,2 be

the event that

(w′ℓ, ·) = Combine

(
ck, (sh∗ℓ,1, π

∗
ℓ,1), . . . , (sh

∗
ℓ,f , π

∗
ℓ,f),

(shℓ,1, πℓ,1), . . . , (shℓ,t−f−1, πℓ,t−f−1), (sh
′
ℓ,t−f , π

′
ℓ,t−f).

)

Then, in the event Eℓ,1 ∧ Eℓ,2 ∧ ¬Eℓ,η ∧ ¬E∗ℓ ∧ ¬E′ℓ
∧

j∈{2,...,t−f}(¬Eℓ,O,j), we have that:

40

wℓ =
1

ν ′
LN

∏
j∈[f]

(w∗j)
λ∗
ℓ,j ·

∏
i∈[t−f]

w
λℓ,i

ℓ,i


=

1

ν ′
LN

∏
j∈[f]

(w∗j)
λ∗
ℓ,j ·

∏
i∈[t−f]

(c
h(xℓ,i)+p′q′αℓ,i
z)λℓ,i


=

1

ν ′
LN

(
cν

′h(0)
z · cΣi∈[t−f]λℓ,ip

′q′αℓ,i
z

)
(10)

where cz = H0(z), ν
′ =

∏
i,j∈[f],i<j(x

∗
i − x∗j) ·

∏
i,j∈[t−f],i<j(xℓ,i − xℓ,j) ·

∏
i∈[f],j∈[t−f](x

∗
i − xℓ,j),

λ∗ℓ,j = ν ′ ·
∏

i∈[f]\{j}
x∗
i

x∗
i−x∗

j
·
∏

i∈[t−f]
xℓ,i

xℓ,i−x∗
j
and λℓ,i = ν ′ ·

∏
i∈[f]

x∗
i

x∗
i−xℓ,i

·
∏

j∈[t−f]\{i}
xℓ,j

xℓ,j−xℓ,i
. Addi-

tionally,

w′ℓ =
1

ν ′
LN

∏
j∈[f]

(w∗j)
λ∗
ℓ,j ·

∏
i∈[t−f−1]

w
λℓ,i

ℓ,i · (w
′
ℓ,t−f)

λℓ,t−f


=

1

ν ′
LN

∏
j∈[f]

(w∗j)
λ∗
ℓ,j ·

∏
i∈[t−f]

(c
h(xℓ,i)+p′q′αℓ,i
z)λℓ,i · (g2ηℓ)λℓ,t−f


=

1

ν ′
LN

(
cν

′h(0)
z · cΣi∈[t−f]λℓ,ip

′q′αℓ,i
z · g2ηℓλℓ,t−f

)
(11)

Let us say that cz = (gmrN)2 for some m, r ∈ ZN . This means that the element inside LN is in
the subgroup with easy discrete log, for both Eqns 10 and 11. Hence, we can subtract the two and
get the following:

w′ℓ − wℓ =
1

ν ′
LN (g2ηℓλℓ,t−f)

= 2ηℓ
∏
j∈[f]

x∗j
x∗j − x′ℓ

·
∏

i∈[t−f−1]

xℓ,i
xℓ,i − x′ℓ

Let us define a polynomial p∗(X) =
∏

j∈[f]
x∗
j−X
x∗
j

. Then, the above equation implies that yℓ as

computed in the ℓth iteration in the Trace algorithm, is the correct evaluation of p∗(X) at X = x′ℓ.
Hence, for each ℓ ∈ [m], we get a correct evaluation of p∗(X) at a unique point x′ℓ, in the event
Eℓ,1 ∧ Eℓ,2 ∧ ¬Eℓ,η ∧ ¬E∗ℓ ∧ ¬E′ℓ

∧
j∈{2,...,t−f}(¬Eℓ,O,j). We will now compute the probability of this

event.
We have that, for all ℓ ∈ [m], Pr[Eℓ,η] = 1/N . Next, since each of the xℓ,i values are sampled

uniformly randomly, we get that Pr[Eℓ,O,j] ≤ (j − 1)/N for all j ∈ [t− f], Pr[E∗ℓ] ≤ f(t− f)/N and
Pr[E′ℓ] ≤ (ℓ− 1)/N ≤ m/N .

Recall that E is (n, t, ek, ck, vk, Γek(ek), ϵ, δ)-universally-good. Next, observe that each evalu-
ation shℓ,i is based on a random key share of a secret key αℓ,ip

′q′ ∈ EK∗ = Γek(p
′q′β) where

α ∈ ZN , using the polynomial h(X) + p′q′(αℓ,i − β). Additionally, the proofs πℓ,i are also dis-
tributed identically to honest proofs. Hence, Pr[Eℓ,1] ≥ ϵ · δ. And for Eℓ,2, sh

′
ℓ,t−f is uniformly

41

random in QRN2 , and hence is identically distributed to a valid evaluation share. This implies that
Pr[Eℓ,2] is also ≥ ϵ · δ. We now compute the joint probability. Let us denote the tuple of random
variables (z, {(xℓ,j , ŵℓ,j , πℓ,j)}j∈[t−f−1], x′ℓ) as W ∈ W = {0, 1}λ × (ZN × QRN2 ×Π)t−f−1 × ZN ,
where Π is the space of partial evaluation proofs. Then,

Pr[Eℓ,1∧Eℓ,2] ≥ Pr w, ŵℓ,t−f , πℓ,t−f ,
ηℓ ←$ ZNp′q′ , π

′
ℓ,t−f


[Eℓ,1 ∧ Eℓ,2]− 2/q (12)

≥ Σw∈W Pr[W = w] · Pr
ŵℓ,t−f , πℓ,t−f ,

ηℓ, π
′
ℓ,t−f

[Eℓ,1 ∧ Eℓ,2|W = w]− 2/q

≥ Σw∈W Pr[W = w] · Pr
ŵℓ,t−f ,
πℓ,t−f

[Eℓ,1|W = w] · Pr ŵℓ,t−f , ηℓ,
πℓ,t−f


[Eℓ,2|W = w]− 2/q (13)

≥ Σw∈W Pr[W = w] ·
(

Pr
ŵℓ,t−f ,πℓ,t−f

[Eℓ,1|W = w]

)2

− 2

q

≥ Ew

[(
Pr

ŵℓ,t−f ,πℓ,t−f

[Eℓ,1|W = w]

)2
]
− 2

q

≥
(
Ew

[
Pr

ŵℓ,t−f ,πℓ,t−f

[Eℓ,1|W = w]

])2

− 2

q
(14)

≥ ϵ2δ2 − 2

q

Eqn 12 follows from the fact that ηℓ sampled randomly from ZN2/4 has statistical distance
≤ 2/q to a uniform random distribution in ZNp′q′ . Eqn 13 follows from the fact that the events Eℓ,1

and Eℓ,2 are independent conditioned on w if ηℓ is sampled uniformly randomly in ZNp′q′ . Eq. 14
follows from Jensen’s inequality.

By combining the above and applying union bound, we get that,

Pr[Eℓ,1 ∧ Eℓ,2 ∧ ¬Eℓ,η ∧ ¬E∗ℓ ∧ ¬E′ℓ
∧

j∈{2,...,t−f}

(¬Eℓ,O,j)]

≥ Pr[Eℓ,1 ∧ Eℓ,2]− Pr

Eℓ,η ∨ E∗ℓ ∨ E′ℓ
∨

j∈{2,...,t−f}

Eℓ,O,j


≥ ϵ2δ2 − 2

q
− 1/N − f(t− f)/N −m/N − (t− f)2/N

≥ ϵ2δ2/2

The last equation follows from our assumption that ϵδ ≥
√

4
q +

m+1+t(t−f)
N .

Let us define an indicator random variable Zℓ = 1[Eℓ,1∧Eℓ,2∧¬Eℓ,η∧¬E∗ℓ∧¬E′ℓ
∧

j∈{2,...,t−f}(¬Eℓ,O,j)],

which is 1 if and only if we get a correct evaluation of p∗(X) at a unique point x′ℓ. Since all the
shares are sampled independently for each ℓ ∈ [m], we get that Pr[Zℓ = 1] = E [Zℓ] ≥ ϵ2δ2/2.

Let Z = Σℓ∈[m]Zℓ. By the Chernoff bound, we have that for every ζ > 0,

Pr[Z ≤ (1− ζ) · ϵ2δ2m/2] ≤ e−
ϵ2δ2mζ2

4

42

Let Ez be the event that Z > D. Then, since m = 2 · D · r/(ϵ2δ2), we can set ζ = 1 − 1/r to

get that Pr[Ez] is at least 1− e−
ϵ2δ2m

2
·(1− 1

r
)2 . Hence, with this probability, the bivariate polynomial

Q(X,Y) will have as factors Y − q(X), for all degree f polynomials q(X) that agree with at least
D evaluations out of the list L, including the polynomial p∗(X). Additionally, we claim that with
high probability, Q̂(xi) ̸= 0 for all honest parties i ∈ [n]. More formally, let ρQ̂ denote the number

of unique roots of the polynomial Q̂[X] ∈ ZN [X]. By total probability,

Pr[Ez ∧Guniv-trace-0
A,TTVRF,ϵ,δ(λ) = 1] = Pr[Ez ∧Guniv-trace-0

A,TTVRF,ϵ,δ(λ) = 1 ∧ ρQ̂ = superpoly(λ)]

+ Pr[Ez ∧Guniv-trace-0
A,TTVRF,ϵ,δ(λ) = 1 ∧ ρQ̂ = poly(λ)]

Aggarwal and Maurer [1] prove that given a polynomial with poly(λ) degree, with non-negligible
root density in ZN , it can be used to factor N . This means that we can construct an adversary B
using A (with techniques similar to those in the proof of Theorem 2) such that,

AdvfactorB (λ) ≥ Pr[Ez ∧Guniv-trace-0
A,TTVRF,ϵ,δ(λ) = 1 ∧ ρQ̂ = superpoly(λ)]

On the other hand, in the event Guniv-trace-0
A,TTVRF,ϵ,δ(λ) = 1 ∧ ρQ̂ = poly(λ), Q̂ has a polynomial

number of roots. Then, observe that the x-values of key shares of honest parties, i.e. {xi}i ̸∈I are
statistically independent from both the view of A and the shares sampled by the Trace algorithm.
Hence, the probability that an honest party’s xi value is a root of Q̂(X) is bounded by poly(λ)/N .
This means that,

Pr[Ez ∧Guniv-trace-0
A,TTVRF,ϵ,δ(λ) = 1 ∧ ρQ̂ = poly(λ)] ≤ (n− f) · poly(λ)

N

Combining the above, we get that,

Advuniv−trace−0A,TTVRF,ϵ,δ (λ) = Pr[Ez ∧Guniv-trace-0
A,TTVRF,ϵ,δ(λ) = 1] + Pr[¬Ez ∧Guniv-trace-0

A,TTVRF,ϵ,δ(λ) = 1]

≤ AdvfactorB (λ) +
(n− f) · poly(λ)

N
+ e−

ϵ2δ2m
2
·(1− 1

r
)2

D.4 Proof of Tracer pseudorandomness for OT-P1

Proof. The proof essentially follows the proof of Theorem 2. We construct B in the same way, but
simulate the tracing key tk as follows:

– Sample z1, . . . , zm ←$ {0, 1}λ where m = m(n, 1/ϵ, 1/δ, λ).
– For each j ∈ [m], sample xj,1, . . . , xj,t−1, θj,1, . . . , θj,t−1 ←$ ZN .
– For each j ∈ [m], sample mj , rj ←$ ZN . Compute y∗j ← gmjrj

N and setM[zj]← (mj , rj).
– For every j ∈ [m] and every i ∈ [t− 1], compute Lagrange coefficients as follows:

λj,i0 = ν ·
∏

k∈[t−1]

xk − xj,i
xk

, λj,ik =
νxj,i
xk
·

∏
ℓ∈[t−1],ℓ ̸=k

xℓ − xj,i
xℓ − xk

Then, compute wj,i ← (y∗j)
2Σk∈[t−1]λ

j,i
k yk · (1 + 2Nmjλ0θj,i).

43

– Send tk = (N, a, b, u, {(zj , {wj,i}i∈[t−1])}j∈[m], v, {vi}i∈{0,...,t−1}) to A, along with vk and ck.

We also modify how B responds to the random oracle queries by A. Let e ← 0 denote the
number of H0 queries so far, and let ẑ ← ⊥.

– H0(z) : Set e← e+ 1. If e = i∗, and if z = zi for some i ∈ [m], then abort; otherwise, set ẑ ← z
and output c2 (where c is the challenge ciphertext received from). If e ̸= i∗, then, if z ∈ M,
then let (m, r) ← M[z], output (gmrN)2ν ; otherwise, sample m, r ←$ ZN , set M[z] ← (m, r)
and output (gmrN)2ν .

B responds to ek and EvalO queries in the same way as in the proof of Theorem 2.
Eventually, A outputs z∗. B aborts if z∗ ̸= ẑ. Otherwise, B sends 2θm0 to A. Let b′ denote A’s

response. B outputs b′.
As argued in the Theorem 2, if B does not abort, then the game simulated by B is statistically

indistinguishable from that of the real tracer pseudorandomness game. Additionally, the tracing
key is identically distributed to that in the real game.

Next, observe that if A wins the tracer pseudorandomness game, and if B does not abort, then
B also wins its security game. Let Ea denote the event that B aborts. Since it only aborts if it
incorrectly guesses i∗, we have that Pr[Ea] = 1/qH . This proves the theorem. ⊓⊔

D.5 Proof of Tracer uniqueness for OT-P2

Proof (of Theorem 5). Consider an adversary B playing in the discrete log game. It gets as input
a group description (G, a, q∗) along with a random element in the group b from its challenger.

We will first construct an algorithm A′ which invokes A and plays the role of challenger to A
in the tracer uniqueness game, as follows:

– Run Steps 1 to 4 as in the FuncSamp algorithm in Figure 4. Let µ = µ(n, 11/ϵ, 11/δ, λ).
– Sample µ-bit vectors s1, . . . , sm, s

∗ ←$ {0, 1}µ. Abort if the set of vectors s1, . . . , sm, s
∗ is not

linearly independent.
– Otherwise, for all i ∈ [µ], let ei denote a bit vector such that ei,i = 1 and it is zero at all other

positions. The span of the vectors s1, . . . , sm, s
∗ can only contain upto m + 1 vectors out of

{ei}i∈[µ]. Without loss of generality, let us assume that the vectors e1, . . . , eµ−m−1 are not in
the span.

– Sample u1, . . . , um ←$ Zq∗ and sample b1, . . . , bµ−(m+1) ←$ G. Consider the following matrix
S ∈ {0, 1}µ×µ: 

e1
.
.

eµ−m−1
s1
.
.
sm
s∗


By the arguments above, the matrix S is of rank µ. Let R ∈ Zµ×µ

q∗ be the inverse of S in Zq∗ .
Then, compute bi for all i ∈ {µ−m, . . . , µ} as follows:

44

bi ←

 ∏
j∈[µ−m−1]

b
Ri,j

j

 · aΣj∈[m]uj ·Ri,µ−m−1+j · bRi,µ

– Send ek, ck, ρ, vk← (N, v, v0 ← vek, {vai}i∈[t−1], a, {bj}j∈[µ]) to A.
– Let qH denote an upper bound on the number of H1 random oracle queries by A. Sample
i∗ ←$ [qH] : this is A’s guess for the random oracle query corresponding to the input z∗ for
which A will forge a proof.

– Define maps H1 : {0, 1}λ → {0, 1}µ and H0 : {0, 1}λ → QRN2 to keep track of responses to H1

and H0 random oracle queries respectively. Let c← 0 be a counter for the number of H1 oracle
queries so far. Let ẑ ← ⊥. A responds to the oracle queries as follows:

• H1(z). Set c← c+1. If c = i∗ and if z ̸= zi for any i ∈ [m], then set ẑ ← z and output s∗. If
c = i∗ but z = zi for some i ∈ [m] then abort. Otherwise, if z = zi for some i ∈ [m], output
si. Lastly, if z ∈ H1, then output H1(z); if not, sample a random bit string s←$ {0, 1}λ, set
H1(z)← s and output s.

• H0(z). If z ∈ H0, then output H0(z). Otherwise, sample c ←$ QRN2 , set H0(z) ← c and
output c.

– At some point, A sends the input z∗. A′ responds with the tracing key tk← (Z∗ := {zj}j∈[m],
N, a, b, {(uj , {wj,k}k∈[t−1])}j∈[m], v, {vi}i∈{0,...,t−1}).

– Eventually, A outputs (w0, π0), (w1, π1). We assume without loss of generality that A queries
the random oracle H1 on z∗ before sending the output. A′ aborts if z∗ ̸= ẑ. Then, similar to
Claim D.1, we know that there must be some partial evaluation proof π∗ in either π0 or π1
which is valid, but for a false statement (v, v′,H0(ẑ), w, a, b

∗), i.e. for an incorrect partial eval-
uation share for ẑ. A′ simply outputs the following tuple corresponding to the false statement:
((v, v′,H0(ẑ), w, a, b

∗), π∗).

Observe that if A′ does not abort, then, the element b∗ ∈ G output by A′ is equal to b. This is

because we programmed H1(ẑ) = s∗, and by construction,
∏

i∈[µ] b
s∗i
i is equal to b. Hence, we have

constructed a PPT algorithm A′ that breaks the soundness of the proof system for a statement
containing (a, b). Now, B simply runs the extractor E constructed in the proof of Lemma 2 to
extract the discrete log of b with respect to a, and returns that to its challenger.

Let p̂ denote the probability that A′ successfully outputs a valid proof for an invalid statement
containing (a, b). By Lemma 2, we have that

AdvdlB,GroupGen(λ) ≥ p̂2 − 4/N2 − 1/q′

Let us now compute p̂. Let Ea denote the event that A′ aborts. Note that if A′ does not abort,
and if A wins the uniqueness game, then A′ successfully outputs a valid proof. This means that,

p̂ ≥ Pr[Gt-uniq
A,OT-P2,ϵ,δ

(λ) = 1 ∧ ¬Ea]

≥ Pr[Gt-uniq
A,OT-P2,ϵ,δ

(λ) = 1] · Pr[¬Ea|Gt-uniq
A,OT-P2,ϵ,δ

(λ) = 1]

Lastly, observe that A′ aborts if either (a) it incorrectly guesses i∗, which only happens with
probability 1− 1/qH in the event that A wins its uniqueness game, or (b) the vectors s1, . . . , sm, s

∗

45

are not linearly independent. This happens with probability ≤ m(q∗)m

2µ . Combining the above equa-
tions, we get,

p̂ ≥ Advt−uniqA,OT-P2,ϵ,δ
(λ) · (1/qH) ·

(
1− m(q∗)m

2µ

)
This proves the theorem. ⊓⊔

D.6 Proof of Theorem 6

The uniqueness of the VRF at each epoch is guaranteed by uniqueness of the underlying one-time
traceable threshold VRF TTVRF and the position binding of the vector commitment. To see why,
suppose that an adversary manages to break uniqueness with respect to epoch j ∈ [T], this means
that it outputs an input z, two distinct evaluations w,w′, and corresponding accepting evaluation
proofs π = (vkj , πVC,j , πTTVRF) and π′ = (vk′j , π

′
VC,j , π

′
TTVRF). In these proofs, vkj and vk′j are

the supposed TTVRF verification keys for epoch j; πVC,j and π′VC,j are the vector commitment

opening proofs, proving that respectively that vkj and vk′j are the opening to the jth entry of
com; and πTTVRF and π′TTVRF are the evaluation proofs of TTVRF for w and w′, respectively. Let
ek∗j := (ek∗1,j , . . . , ek

∗
n,j) be the vector of real evaluation keys for epoch j, and let vk∗j sampled at

key generation time.
Consider two cases:

– If vk∗j ̸= vkj or vk∗j ̸= vk′j , then assume without loss of generality that vk∗j ̸= vkj . In this case,
the adversary can be used to break the position binding of the vector commitment scheme.
This is because π is an accepting evaluation proof, which, in particular, implies that πVC,j is an
accepting opening proof for vkj with respect to com. But, vk∗j was the true jth coordinate of
the vector to which com is a commitment to. Hence, the correctness of the vector commitment
scheme stipulates that it is possible to compute a proof π∗VC,j proving that this is indeed the
case. It follows that the tuple (com, j, vkj , πVC,j , vk

∗
j , π
∗
VC,j) breaks the position binding of the

vector commitment.
– If vk∗j = vkj = vk′j , then the adversary can be used to break the uniqueness of TTVRF. Let
w∗ be the real value of the VRF on input z at epoch j, as induced by ekj , and let π∗ be the
corresponding TTVRF evaluation proof. Since w ̸= w′, it must hold that w∗ ̸= w or w∗ ̸= w′.
Assume without loss of generality that w∗ ̸= w. Then, since w∗ ̸= w and π∗ and πTTVRF and
both accepting TTVRF proofs with respect to vk∗j = vkj , the tuple (z, (w∗, π∗), (w, πTTVRF))
breaks the uniqueness of TTVRF.

46

	Traceable Verifiable Random Functions
	Introduction
	This Work: Traceable Threshold VRFs
	Discussion and Future Directions

	Definitions of Traceable VRFs
	A Useful Fact About Good Evaluation Boxes

	A One-Time Traceable VRF from Paillier Encryption
	Our Scheme
	Tracing perfect boxes via polynomial interpolation
	Tracing imperfect boxes
	Correctness and Security

	Tracer Uniqueness
	Removing the One-Time Restriction
	A Many-Time Traceable VRF in the Synchronized Model
	The Exponential Method

	Evaluation Share Proofs
	A Chaum-Pedersen style proof for Req
	A Chaum-Pedersen style proof for R'eq

	A Simple and Generic Tracing Algorithm
	Proving uf-1 security for OT-P1
	Postponed Proofs
	Proof of Uniqueness for OT-P1, Theorem 1
	Proof of Pseudorandomness for OT-P1, Theorem 2
	Proof of One-time Universal traceability for OT-P1
	Proof of Tracer pseudorandomness for OT-P1
	Proof of Tracer uniqueness for OT-P2
	Proof of Theorem 6

