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Abstract. We study the problem of embedded code encryption, i.e.,
encryption for binary software code for a secure microcontroller that
is stored in an insecure external memory. As every single instruction
must be decrypted before it can be executed, this scenario requires an
extremely low latency decryption. We present a formal treatment of em-
bedded code encryption security definitions, propose three constructions,
namely ACE1, ACE2 and ACE3, and analyze their security. Further,
we present ChiLow, a family of tweakable block ciphers and a related
PRF specifically designed for embedded code encryption. At the core
of ChiLow, there is ChiChi, a new family of non-linear layers of even
dimension based on the well-known χ function. Our fully unrolled hard-
ware implementation of ChiLow, using the Nangate 15nm Open Cell
Library, achieves a decryption latency of less than 280 picoseconds.

Keywords: symmetric cryptography · lightweight cryptography · mem-
ory encryption · low latency encryption

1 Introduction

In the rapidly expanding digital landscape, secure microcontrollers are a corner-
stone for ensuring security and privacy across a wide range of applications, in-
cluding payment systems, identification, and secure automotive solutions. These
microcontrollers protect our digital assets and intellectual property continuously,
defending against ever-evolving threats. Secure microcontrollers are typically
composed of a core microprocessor, peripherals dedicated to specific functions
such as communication or use of external memories, and on-chip memory. Al-
though they are functionally similar to regular chips, their manufacturing is more
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complex due to the physical countermeasures that need to be added. To keep
the production costs low, the silicon area of such secure microcontrollers should
remain reasonably small, and a natural idea to achieve this is to offload the con-
tents of memory to an external, encrypted memory. The external memory can
then be a standard component that is manufactured using regular technologies.

Microcontrollers typically use such non-volatile memory to store data and
to store software binary code. The former may comprise user information, the
internal state of a given application, or enrollment information in the case of
connected systems. It needs to be read and updated more or less regularly,
depending on the application. The latter is used to store the instructions, ad-
dresses and constants that are executed by the microcontroller. Instructions are
frequently fetched from it, but writes (during updates of the software) are rare.

In a similar context, low-power systems-on-chip (SoC) that integrate multiple
cores, memory, and peripherals for communication, graphics, and sensor inter-
actions on a single silicon die often rely on external memory. This is because
on-chip memory alone is insufficient to store graphical resources, large sensor
data, and binary code, especially as the device’s features expand over its life
cycle, as seen in applications like wearables.

Code Encryption Use Case We focus on the case where the software binary
code has been offloaded to an external memory, outside of the secure microcon-
troller, as depicted below.
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There is a strong need to keep the code confidential, not only to ensure the secu-
rity of the system (to hinder the search for exploitable software vulnerabilities)
but also to protect the intellectual properties (advanced algorithms, physical
models, etc.) in the code. To protect the code from eavesdroppers, it is stored
encrypted in the external memory. The microcontroller stores the secret key in
an area protected from physical attacks and is then able to decrypt the instruc-
tions on the fly. In order to protect the system against active attacks inserting
non-authorized code, adding integrity to the encrypted code is crucial as well.

The case of storing encrypted code in an external memory differs from the
encryption of data. Mainly, it is highly unbalanced between encryption and de-
cryption: Decryption needs to be very fast, as fast as instructions are fetched and
executed, whereas the encryption is done once at the installation of the software
and then only sporadically, during software updates. The latency of the decryp-
tion is therefore a critical aspect of the algorithm and its implementation, which
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can be assumed to be executed on a dedicated hardware circuit. In contrast, the
performance of the infrequent encryption is much less critical, and it may even
be acceptable that the entire software binary code destined for external memory
is re-encrypted even if only a portion of it needs to be updated.

Since the secure microcontroller will decrypt instructions continuously, en-
ergy consumption of the decryption circuit is another important aspect to con-
sider. This requirement can be simplified by aiming for an implementation that
has a small area, as power and energy consumption are highly correlated to the
number of gates that flip, and hence to the area.

Another aspect to discuss is granularity. The secure microcontroller must be
able to randomly access instructions in the address space. Most of the times, the
microprocessor needs to execute consecutive instructions, but rapid jumps are
possible. To avoid buffering instructions or execution stalls, a useful choice is to
opt for the encryption of 32-bit words, typically containing one or two instruc-
tions. Popular microcontrollers have a 32-bit data bus, hence the decryption
inserts itself naturally between the external memory and the microprocessor.

There is also a tension between the integrity level and overhead. Clearly,
one cannot hope for a strong authentication of each 32-bit instruction, as the
overhead of say 128-bit tag would be unacceptable, this yielding an expansion
factor of 5. Instead, a practically acceptable trade-off is to have a small expan-
sion, in the range of 8 to 16 bits per 32-bit instruction. Of course, with such a
small expansion, forgery becomes practically feasible, but this can be controlled
by making forgery attempts very costly to the adversary. For example, one can
assume that the secure microcontroller takes drastic measures in case it detects
a forgery, such as erasing the decryption key immediately.

Finally, the adversarial resources inherent to code encryption are significantly
lower than in other use cases, such as high-volume Internet-crossing secure com-
munication. Taking an example of an embedded device with a product support
lifetime of 30 years, receiving a software update no more than every month and
having a generous 32MB of code allocated in the external memory, the total
number of updates (each having a distinct value of a software version counter)
will be no more than 360 and about 232 data blocks of 32 bits processed in en-
cryption queries in total. If the version counter is mismanaged (represented as
an 8-bit integer), some of the “nonces” (composed of address-version pairs) will
be reused, but only once.

All these requirements and performance constraints are essential for the sig-
nificant use case of code encryption. As will be discussed, no solutions currently
meet all these conditions, making it an intriguing and potentially impactful re-
search challenge. It is this challenge we aim to solve in this work.

Prior Art Disk and memory encryption is a recurring challenge in applied cryp-
tography. Important examples of such technologies include IBM’s SecureBlue,
Intel’s SGX, and AMD’s SEV. Smartcards, like the ones of NXP, STMicroelec-
tronics and Infineon, perform local memory encryption in an ultra-constrained
setting, see, e.g., the OTFDEC scheme used on some STM32 chips [42]. Other ex-
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amples include the encryption and authentication of RAM on large systems [43]
and the encryption of FPGA data [45].

In many of those cases, the encryption is performed with the AES block cipher
in counter mode or with AES-XTS [37,28]. This choice is however unsuited for
our purposes, as it implements plain encryption without authentication or any
defense against chosen ciphertext attacks, has a relatively large block size and the
use of the AES block cipher does not easily yield a low-latency implementation.

On the other hand, the design of cryptographic primitives with low latency is
an active line of research. Many block ciphers have been designed with this metric
in mind, e.g., Aradi [24], Mantis [9], Prince [12], Princev2 [14], Qarma [4],
Qarmav2 [5], and Speedy [32], to name a few. The block size of these ciphers,
at least 64 bits, is however too large for our purposes, as we want to match the
bus size and avoid buffering. The BipBip block cipher [10], with its 24-bit block,
would be an exception. However, it does not meet our security requirements or
the desired block size, making it unsuitable to us.

For authentication, low-latency pseudo-random functions (PRFs) have also
been developed, see, e.g.,Gleeok [1],Koala [21],Orthros [6], and Twinkle [44].
Gleeok and Twinkle have also been used to build schemes for authenticated
encryption and pointer integrity. Again, these are oversized for our use case,
resulting in either a latency or energy penalty or – in most cases – both.

Our Contributions We present primitives and modes to solve all the above
conditions. Thus, they improve upon the state-of-the-art in several aspects.

Modeling the problem. We start by developing a syntax and security models for
code encryption in embedded systems. Our models can be seen as a formal inter-
pretation of existing, general AE notions for the semantics and particularities of
our use case. They are a basis for both the most pertinent provable analysis of
the modes as well as for an optimized design of lightweight primitives tailored
to the use case and lead to three simple constructions:

ACE1 an extension of the existing, confidentiality-only solutions, such as STMi-
croelectronics’ OTFDEC. Simple, parallelizable but not very robust.

ACE2 essentially a hardening of the above against “nonce” misuse and exploit-
ing the redundancy in plaintext space for increased integrity.

ACE3 the most robust constructions based on encrypt-then-encipher approach,
albeit less flexible than the first two, as the ciphertext expansion is not as
easy to change.

We provide a security analysis of these constructions, investigating code AE se-
curity, with possibly repeated “nonces”, resistance to repeated forgeries and the
ability to leverage plaintext space redundancy for increased integrity in Section 2.

Primitive design. While the provable considerations build the basis for our work,
we consider the primitive design to be our main contribution. We design a tweak-
able block cipher with a 32 or 40-bit block size, a 64-bit tweak and a 128-bit
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master key as well as a related PRF. Although the design adheres to a tradi-
tional SPN structure at a high level, it incorporates innovative features that
enable significant improvements in both latency and energy efficiency: a nested
key-schedule, and a new variant of χ.

In the well-established TWEAKEY framework [29] the key and the tweak are
treated as (flexible) parts of one object. In most instantiations of this frame-
work [9,30], the “tweakey” (formed by concatenating the tweak and key) is up-
dated linearly. Instead, we design a nested tweak-key schedule offering a firm
distinction between the tweak and the key. These separate objects are updated
using non-linear operations as follows: a key schedule updates the key state to
derive round keys, which are used to modify the tweak state, which in turn is
used to modify the cipher state. This approach has several advantages that are
well-suited for our application. First, the latency of all parts can easily be chosen
to be identical, well-balancing the computational load and allowing non-linear
operations also in the tweak-key schedule. Second, the later round tweaks are
strong encryption of the tweak with the master key. Thus, even if an attacker
managed to recover those round tweaks in an attack, it does not allow them to
easily deduce information on the master key or round tweaks for other values
of the tweak. Finally, this allows to precompute the round keys to reduce the
overall area of a hardware implementation.

Our round functions are based on the χ function introduced already in [16].
χ represents a family of permutations for any odd number of inputs. As another
main contribution, we present an infinite family of functions that maintain all
the excellent properties of χ, i.e., minimal latency and good cryptographic prop-
erties, and are permutations when the block size is a multiple of four. While
these properties could also be achieved by concatenating two smaller versions of
χ over roughly half the state, our family offers the advantage of stronger diffusion
and approximately twice the algebraic degree in the inverse direction compared
to this straightforward approach.

Outline We start by presenting the security models for our use case in Section 2.
A more detailed discussion is provided in the Appendices A and B due to the
page limit. In Section 3 we define our new primitives and set the security claim.
The reasoning for our choice, along with the theoretical reasoning for ChiChi
is given in Section 4, again the actual proof for its bijectivity can be found in
Appendix D. Section 6 is devoted to the implementation and the discussion of
the performance results.

Our work opens the way for several interesting questions for future work.
Those include in particular the question of how to implement our schemes in a
protected manner, as well as several theoretical questions, in Section 7.

Notations We denote by F2 the finite field with two elements and by Fn
2 the

vector space of dimension n over F2. For a finite set S let a←$ S denote sampling
a uniformly from S. We let N denote the set of all (positive) natural numbers
and N0 = N ∪ {0}. All strings are binary strings. We denote the length of a
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string X as |X| and denotes its ith leftmost bit as Xi with 0 ≤ i < |X|. X∥Y is
the concatenation of strings X and Y and ε denotes the empty string of length
0. We write X for the bitwise complement. We denote the set of all strings of
length n as {0, 1}n for n ∈ N and we let {0, 1}∗ =

⋃
n∈N0
{0, 1}n, s.t. ε ∈ {0, 1}∗.

We let Xa···b denote the bitstring Xa∥ . . . ∥Xb with 0 ≤ a ≤ b < |X| and we let
X···b and Xa··· be the short-hands when respectively a = 0 and b = |X| − 1. For
a > b ∈ N, we let (a)b denote the falling factorial a · (a− 1) · . . . · (a− b+ 1).

2 Authenticated Code Encryption

We adapt the nonce-based AE [41] syntax to the semantics of code encryption.
An authenticated code encryption (ACE) scheme Π = (K, E ,D) features deter-
ministic encryption and decryption algorithms E : K×A×N×M→ C∪{⊥} and
D : K×A×N ×C →M∪{⊥}. To achieve a constant, low latency we limit ACE
plaintexts to a fixed input length M = {0, 1}n, primarily with n = 32 for 32-
bit microcontrollers. Otherwise, an authenticated decryption of multiple 32-bit
code fragments could stall the core, if the first decrypted fragment were a jump
instruction. We consider ciphertexts C = {0, 1}n+τ with a constant expansion
(or stretch) 8 ≤ τ ≤ 16 to pair with n = 32, as higher values would lead to an
unacceptable overhead in practice. The remaining arguments are target address
A ∈ A (to retrieve the code fragment from) and an auxiliary information N ∈ N
(such as a software version counter). Typically, A = {0, 1}a and N = {0, 1}ν ,
with a = 32 (corresponding to a 32-bit address bus) and ν ≥ 8. We limit our-
selves to correct constructions, i.e., for every (K,A,N,M) ∈ K × A ×N ×M,
if E(K,A,N,M) = C then D(K,A,N,C) = M .

2.1 Security Model

While the same memory address will be re-populated with different code frag-
ments multiple times throughout a device’s lifetime (through software updates),
the combined (A,N) pair may be an effective nonce if each update has a unique
version counter assigned to N . If the version counter is mismanaged, or sim-
ply not used, (A,N)-values may repeat, but the number of times any value
repeats would still be limited to the number of updates. This is captured in our
security notion cae-a. The cae-a advantage of an adversary A against Π is
Advcae-a

Π (A ) = Pr[A cae-a-reΠ ⇒ 1] − Pr[A cae-a-idΠ ⇒ 1] with games defined
in Fig. 1. A ’s resources of interest are the number of encryption queries qe, the
number of non-trivial, adversarial decryption queries qd, the maximal number
of encryption queries done with any address-auxiliary info pair qn, and running
time t. When qn = 1, then (A,N) effectively becomes a nonce. In practice, qd
can be forced to a small value, as discussed in Section 1.

When interpreted as code fragments, not all n-bit strings are valid. In an
ARM microcontroller, for example, the instruction set is a strict subset of 32-bit
strings. When strings outside of this subset are fetched by the core as putative
instructions, addresses or data, this generates a distinguished exception in the
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core. A successful forgery against the encryption scheme thus need not result
in execution of meaningful, unauthorized code. We capture this in a variant of
cae-a that additionally requires a successful forgery to land in a target plaintext

subspace M′ ⊂ {0, 1}n, with Adv
cae-a[M′]
Π (A ) = Pr[A cae-a[M′]-reΠ ⇒ 1] −

Pr[A cae-a[M′]-idΠ ⇒ 1], using the games from Fig. 1. The target plaintext set
is a parameter of the notion, as theM′ differs between MCUs (with a different
instruction set, address layout etc.). This is also useful for evaluating whether an
ACE scheme leverages code redundancy to enhance overall integrity, as well as for
assessing the likelihood of forgery targeting specific instructions by considering a
smallerM′. For example, altering a conditional jump in an authentication check
to a no-op could render that check ineffective.

Through the lens of the cae-a notions, it is impossible to separate fragile and
robust constructions, as schemes that lose all security after the first successful
forgery and those that don’t may have a similar cae-a bound, for example.
For this, we propose robust ACE notion cae-r, modelled after Robust AE by
Hoang et. al. [26]. It is based on an all-in-one indistiguishability experiment with
a random, τ -expanding injection. The adversarial advantage Advcae-r

Π (A ) =
Pr[A cae-r-reΠ ⇒ 1] − Pr[A cae-r-idΠ ⇒ 1] is defined with games in Fig. 1. A

proc initialize cae-a [M′] -reΠ

K ←$ K
oracle Enc(A,N,M)

if M /∈M′ then return ⊥
C ← E(K,A,N,M)
return C

oracle Dec(A,N,C)
M ← D(K,A,N,C)

if M /∈M′ then return ⊥
return M

proc initialize cae-r-reΠ

K ←$ K
oracle Enc(A,N,M)
return E(K,A,N,M)

oracle Dec(A,N,C)
M ← D(K,A,N,C)
return M

proc initialize cae-a [M′] -idΠ

oracle Enc(A,N,M)

if M /∈M′ then return ⊥
C ←$ {0, 1}m+τ

return C

oracle Dec(A,N,C)
return ⊥

proc initialize cae-r-idΠ

∀A ∈ A, N ∈ N : FA,N ←$ Inj(n, n+ τ)

oracle Enc(A,N,M)
return FA,N (M)

oracle Dec(A,N,C)
M ← F−1

A,N (C)

return M

Fig. 1: Security games for the cae-a (boxed lines omitted), cae-r and cae-a[M′]
(boxed lines included). Inj(n, n+ τ) is the set of all injective functions from
{0, 1}n to {0, 1}n+τ . W.l.o.g., the adversary is assumed not to make trivial
queries, e.g., a decryption of (A,N,C) with a C from an encryption of (A,N,M).
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cae-r security implies aspirational ACE security, including with targeted forgery
resistance (Theorem 1) and resistance to reforgeries (Lemma 1).

Finally, ACE schemes that are not cae-r secure may still not fully break after
the first forgery. Here, we lean on the work of Forler et. al. [22], who studied
reforgeries, requiring that forging j ciphertexts requires roughly j times the
resources (computation and oracle queries) as forging once.

Theorem 1. Let Π = (K, E ,D) be an ACE scheme withM = {0, 1}n for some
n ∈ N and M′ ⊂ M be a target plaintext set. We have for any adversary A
with resources as defined above that

Advcae-a
Π (A ) ≤ Advcae-r

Π (A ) + 2qd/2
τ + qe(qn − 1)/2n+τ .

Adv
cae-a[M′]
Π (A ) ≤ Advcae-r

Π (A ) + 2qd|M′|/2n+τ + qe(qn − 1)/2n+τ .

if (qd + qn) ≤ 2τ−1 and, for the second statement, if A asks no encryption
queries fromM\M′.

Theorem 1 is a corollary of Theorem 1 by Hoang et. al. [26], as cae-r and
cae-a are respectively variants of PRI and MRAE notions for a primitive with a
slightly different signature from AEAD; the difference in the second term is due
to a different way of characterizing adversarial resources. For the second bound,
the forgery probability is additionally multiplied by |M ′|/2n, accounting for the
need to hit the target plaintext set.

In Lemma 1, we show that whenever there are ℓ preimage-image pairs known
and q non-image elements of the domain known for a random injection, whether
learned through forward or backward queries, finding another image through
backward queries takes about 2τ/2 attempts, as long as the total number of all
queries is below 2n+τ−1.

Lemma 1. Let f ←$ Inj(n, n+ τ). For any M1, . . . ,Mℓ, C1, . . . , Cq such that
∀1 ≤ i ≤ q : f−1(Ci) = ⊥ and any C ′

1, . . . , C
′
qd

/∈ {f(M1), . . . , f(Mℓ), C1, . . . Cq}.
Let forge be the event that ∃1 ≤ i ≤ qd such that f−1(C ′

i) ̸= ⊥. We have

Pr[forge|f(M1), . . . , f(Mℓ), C1, . . . Cq] ≤ (2qd)/(2
τ )

if (q + ℓ+ qd) ≤ 2n+τ−1.

2.2 Auxiliary Definitions

Before diving into the ACE constructions, we give the necessary security defini-
tions. We measure the (in)security of a construction Π w.r.t. a security property
xxx using the resource parameterized function

Advxxx
Π (r) = max

A
{Advxxx

Π (A )},

where the maximum is taken over all adversaries A which use resources bounded
by r.
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Fig. 2: ACE constructions ACE1, ACE2, ACE3 (from left to right). Here, f is a
stream cipher, F is a “tweakable” PRF and E is a tweakable block cipher.

Let Perm(n) be the set of all permutations over n-bit strings. Let PermT (n) ⊆
{π̃ : T × {0, 1}n → {0, 1}n} be the set of all tweakable permutations, i.e. for

every π̃ ∈ PermT (n), π̃(t, ·) is a permutation for every t ∈ T . T is the set of
tweaks. We use π̃t(·) and π̃(t, ·) interchangeably. Let E : K × {0, 1}n → {0, 1}n
be a block cipher and let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable block

cipher with a non-empty, finite K ⊆ {0, 1}∗. Let D and D̃ denote the inverses of

E and Ẽ respectively. Let EK(·) = E(K, ·) and Ẽt
K(·) = Ẽ(K, t, ·). Let A be an

adversary. Then:

Adv±prp
E (A ) =Pr

[
K ←$ K : A EK ,DK ⇒ 1

]
− Pr

[
π ←$ Perm(n) : A π,π−1

⇒ 1
]

Adv±p̃rp

Ẽ
(A ) =Pr

[
K ←$ K : A ẼK ,D̃K⇒ 1

]
− Pr

[
π̃ ←$ PermT (n) : A π̃,π̃−1

⇒ 1
]
.

The adversarial resources of interest are A ’s time complexity (t), total number
of queries (q), and the maximal number of queries asked per any tweak (qt).

Let Func(X , n) be the set of all functions from X to {0, 1}n for n ∈ N.
Let F : K × X → {0, 1}n be a keyed function with a non-empty, finite K ⊆
{0, 1}∗. Let A be an adversary. Then, Advprf

F (A ) = Pr
[
K ←$ K : A FK ⇒ 1

]
−

Pr
[
f ←$ Func(X , n) : A f ⇒ 1

]
. The adversarial resources of interest are A ’s

time complexity (t) and the total number of queries (q).

2.3 Constructions

We investigate three simple and natural ACE constructions tailored for low
latency code execution in 32-bit microcontrollers. Their encryption algorithms
are depicted in Fig. 2 and their decryption algorithms follow naturally, relying
on the verification of an authentication tag, or on asserting that there is expected
redundancy for integrity check.

ACE1. Our first construction ACE1 can be seen as a natural extension of the ex-
isting confidentiality-only approaches, with an authentication tag simply added
on top of a stream cipher encryption. While ACE1 is cae-a-secure (when qn = 1)
and resistant to reforgeries (similarly as ACE2), it is broken as soon as qn > 1
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and it also succumbs to targeted forgeries. Especially the latter weakness can
be detrimental to secure embedded systems. Given a ciphertext tuple (A,N,C)
corresponding to a known plaintext M , an attacker can deterministically force
the MCU to execute an arbitrary fragment M ′ by an exhaustive search for the
tag for the core ciphertext C0···n−1⊕M ⊕M ′, reusing (A,N). With a short tag,
say τ = 8, an attacker may abuse this to bypass an authentication check (by
replacing a jump instruction with a no-op), for example. Even if the MCU drops
the memory decryption key after the first detected forgery, the attacker may
simply attack ≈ 256 devices until succeeding, for example to unlock memory
protection and extract the device software. We therefore recommend to focus on
the next two constructions.

ACE2. Our second construction, ACE2, is a hardened variant of ACE1, di-
rectly applying an n-bit TBC E to the plaintext instead of the XORing of a
keystream, lending it resistance to attacks with qn > 1 (Theorem 2). ACE2 is
parameterized with a TBC E : K × (A × N ) × {0, 1}n → {0, 1}n and a PRF
F : K × A × N × {0, 1}n → {0, 1}τ . Similarly, as ACE1, it has a parallelizable
decryption and has an easily adjustable stretch, by adopting F with a sufficiently
long output and truncating it as desired. ACE2 may be instantiated with a single
primitive (TBC), using a single secret key, if an appropriate domain separation
is ensured in the tweak. In ChiLow-(32 + τ), this is done implicitly, where a
“silent” tweak component effectively acts as a selector of disjoint tweak state
subsets used between the two calls. ACE2 is secure against reforgeries, being
an instance of Forler et al.’s “Independence of FIV and FT ”-paradigm [22]. In
addition, it also resists targeted forgeries (Theorem 2). Noting that the quan-
titative degradation terms vanish when qn = 1, ACE2 makes for a pragmatic,
well-rounded construction.

Theorem 2. Let E : K1 × (A × N ) × {0, 1}n → {0, 1}n be a tweakable block
cipher with tweak space A × N and F : K2 × A × N × {0, 1}n → {0, 1}τ be a
PRF. LetM′ ⊂ {0, 1}n be a target plaintext set. Then, for Π = ACE2[E,F], we
have

Advcae-a
Π (qe, qd, qn, t) ≤Adv±p̃rp

E (qe + qd, t
′) +Advprf

F (qe + qd, t
′′)

+
qe(qn − 1)

2n
+

qd
2τ

Adv
cae-a[M′]
Π (qe, qd, qn, t) ≤Adv±p̃rp

E (qe + qd, t
′) +Advprf

F (qe + qd, t
′′)

+
qe(qn − 1)

2n
+

2qd|M′|
2n+τ

where t′ = α(qe+qd) and t′′ = β(qe+qd) where α and β are constants dependent
on the model of computation.

The proof of Theorem 2 is a standard hybrid argument, followed by an RP-
RF switch [25] for each of E’s used tweaks and a bound on tag guessing. The
analysis of the second bound proceeds similarly, except the order of RP-RF
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switch and bounding of forgery probability is reversed, so that the additional
constraint of forgery falling inM′ can be evaluated using ACE2’s n-bit tweakable
permutation.

ACE3. Our third construction, ACE3, is a fixed-input length incarnation of the
encode-then-encipher [11] paradigm, where the plaintext block is padded with
τ zeros and then enciphered. It is parameterized by a TBC E : K × (A×N ) ×
{0, 1}n+τ → {0, 1}n+τ . ACE3 achieves the robust cae-r security, formalized in
Theorem 3; as long as the underlying TBC is unbroken, ACE3 will behave as
a random injection. ACE3 has a potential for implementation with low energy
consumption, as it only requires a single cryptographic accelerator with a slightly
wider datapath compared to two parallel primitives in ACE2. On the other hand,
ACE3 is less flexible: once E is fixed, the stretch τ can no longer be changed.

Theorem 3 ([27]). Let E : K × (A×N )× {0, 1}n+τ → {0, 1}n be a tweakable
block cipher with tweak space A×N . Then, for Π = ACE3[E, τ ], we have

Advcae-r
Π (qe, qd, qn, t) ≤ Adv±p̃rp

E (qe, qd, qn, t
′)

where t′ = α(qe + qd) with α a constant dependent on the model of computation.

3 Primitives

In this section, we set out to define primitives needed to instantiate the ACE2
and ACE3 constructions. The former instance is called ChiLow-(32+τ) and the
latter ChiLow-40. For ChiLow-(32 + τ), we define two cryptographic objects.
Unlike the ACE2 construction, we use the same key for the two objects, although
we make them act independently by absorbing different parts of the tweak state.

First, we need a tweakable block cipher Y = D32(K,T,X) that takes as input
a 128-bit key K, a 64-bit tweak T and a 32-bit input block X and that returns
a 32-bit output block Y . In the context of ACE2, D32 corresponds to E−1 and
is used to decrypt an encrypted instruction of 32 bits, hence X represents a
ciphertext while Y typically represents a plaintext.

Then, we need a pseudo-random function Z = F(K,T,X) that takes the same
inputs as D32 and returns a short output Z of τ = 8 or 16 bits. We define another
tweakable block cipher D′

32 and define F(K,T,X) as the output of D′
32(K,T,X)

truncated to its first τ bits. The use for F is to compute an authentication tag
for an encrypted instruction of 32 bits.

For ChiLow-40, we define a single object: a tweakable block cipher Y =
D40(K,T,X) that takes as input a 128-bit key K, a 64-bit tweak T and a 40-bit
input block X and that returns a 40-bit output block Y . In the context of ACE3,
the inverse block cipher D−1

40 corresponds to E and is used to encrypt a 32-bit
instruction followed by 8 bits equal to zero. The block cipher D40 is then used
to decrypt the ciphertext, and for authentication, the caller needs to check that
the last 8 bits are equal to zero.



12 Y. Belkheyar et al.

As the overall approach to building these three tweakable block ciphers, we
divide the internal state into three distinct parts and allow tweak and key ma-
terial to flow from one to the next.

1. The key state K, which is 128-bit long, and whose content depends only on
the 128-bit master key K. It is updated using the 128-bit permutations Ki,
where i is simply the round index.

2. The tweak state T, which is 64-bit long, that is initialized with the tweak T
and whose content is updated using a family of 64-bit permutations Tk in-
dexed by a 64-bit value.

3. The cipher state X (or X′), which is 32-bit long for D32 and D′
32 or 40-bit

long for D40, that is initialized with the input block X. The cipher state is
updated using a 32-bit (or 40-bit) round function Rt that uses 32 bits (or
40 bits) of the tweak state. In the context of the ACE2 construction, we
actually have two cipher states, one for D32 and one for D′

32, and each is
updated with a different part of the tweak state.

3.1 Key Schedule

The key schedule uses a 128-bit state K(i) that is initialized with the master key,
so that K(0) = K. Then, the state is updated with the round function K[i] that
depends on the round number, that is, K(i+1) = K[i](K(i)).

The round function K[i] is composed of three steps: the addition of a round
constant c(i), the non-linear mapping χχ128 and the linear mapping L128:

K(i+1) = K[i](K(i)) = L128(χχ128(K
(i) ⊕ c(i))).

The round constants c(i) potentially affect bits 96 till 127 and are defined in
Eq. (2). We give the linear and non-linear mappings in Sections 3.5 and 3.6.

3.2 Tweak Schedule

The tweak schedule uses a 64-bit state T(i) that is initialized with the input
tweak and whitened with key material, namely, T(0) = T ⊕ K0...63. Then, the
state is updated with the round function T [K(i+1)] that depends on the key

schedule state. Specifically, we update the state as T(i+1) = T [K(i+1)](T(i)).
The round function is composed of three steps: the non-linear mapping χχ64,

the linear mapping L64 and the addition of the round key. The first 64 bits of
the key schedule state are added bitwise to the tweak schedule state, giving

T(i+1) = T [K(i+1)](T(i)) = L64(χχ64(T
(i)))⊕ K

(i+1)
0...63.

The last round is composed only of the linear mapping, namely,

T(rnd) = T (T(rnd−1)) = L64(T
(rnd−1)).
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Fig. 3: A full ChiLow-(32+τ) decryption and tag computation. Wires represent
32-bit values. Here, Ki denotes the bits K32i...32i+31, and similarly for T.

3.3 Data Path in ChiLow-(32 + τ )

In the ACE2 construction, the data path uses a 32-bit state X(i) that is initialized
with the input block and whitened with key material, namely, X(0) = X⊕K64...95

(for D32) and X′(0) = X ⊕K96...127 (for D′
32). Then, the state is updated with

the round function R[T(i+1)] (for D32) or R′[T(i+1)] (for D′
32) that depends on

the tweak state. For the last round, only the non-linear mapping is applied. In
more detail, the round function for D32 is as follows:

X(i+1) = R[T(i+1)](X(i)) = L32(χχ32(X
(i)))⊕ T

(i+1)
0...31 for i ≤ rnd− 2,

X(rnd) = R[T(rnd)](X(rnd−1)) = χχ32(X
(rnd−1))⊕ T

(rnd)
0...31.

The output block Y is X(rnd).

The round function ofD′
32 is very similar to that ofD32, but it uses a different

linear mapping and takes a different part of the tweak state:

X′(i+1) = R′[T(i+1)](X′(i)) = L′
32(χχ32(X

′(i)))⊕ T
(i+1)
32...63 for i ≤ rnd− 2,

X′(rnd) = R′[T(rnd)](X′(rnd−1)) = χχ32(X
′(rnd−1))⊕ T

(rnd)
32...63.

The output Z is obtained by truncating X′(rnd) to the first τ bits, Z = X
′(rnd)
0...τ−1.

We depict this in Fig. 3. We also give an algorithmic description in Algorithm 1.



14 Y. Belkheyar et al.

3.4 Data Path in ChiLow-40

In ChiLow-40, the data path uses a 40-bit state X(i) and 40-bit mappings.
It is initialized with the input block and whitened with key material, namely,
X(0) = X ⊕K64...103. For the rest, D40 is very similar to D32 or D′

32:

X(i+1) = R[T(i+1)](X(i)) = L40(χχ40(X
(i)))⊕ T

(i+1)
0...39 for i ≤ rnd− 2,

X(rnd) = R[T(rnd)](X(rnd−1)) = χχ40(X
(rnd−1))⊕ T

(rnd)
0...39.

The output block Y is X(rnd) and is expected to contain the 32-bit instruction
followed by 8 bits equal to zero.

For completeness, we also give an algorithmic description in Algorithm 2.

3.5 Low-Latency Linear Mappings

The linear mappings L128, L64, L40, L32 and L′
32 all have the same structure.

Let y = L(x) with x, y ∈ F128 or 64 or 40 or 32
2 . Then,

yi = xαi+β0
+ xαi+β1

+ xαi+β2
,

where the indices must be computed modulo the vector size. The values of α
and βjs are given in Table 1.

3.6 Low-Latency Non-Linear Mapping

For m even and n = 2m, we define χχn : Fn
2 → Fn

2 , x 7→ y by

yi =



xi + xi+1xi+2 i < m− 3 or m < i < n− 2

xm + xm−2x0 i = m− 3

xm−1 + x0x1 i = m− 2

xm−3 + xmxm+1 i = m− 1

xm−2 + xm+1xm+2 i = m

xn−2 + xn−1xm−1 i = n− 2

xn−1 + xm−1xm i = n− 1.

(1)

Table 1: Offsets for the linear maps.

Linear Map α β0 β1 β2

L32 11 5 9 12
L′

32 11 1 26 30
L40 17 1 9 30
L64 3 1 26 50
L128 17 7 11 14
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3.7 Security Claim

For ChiLow-(32 + τ), we claim the tweakable strong pseudo-random permuta-
tion (±p̃rp) security of the underlying block cipher D32 and the pseudo-random
function (prf) security ofD′

32 truncated to τ bits (denoted ⌊D′
32⌋τ ). Furthermore,

since these two functions are used with the same key in our ACE instances, we
claim their joint security in this scenario. Our claims hold as long as the number
of queries with the same tweak (qt) and the total number of queries (q) respect
the limits below.

Claim 1 If keyed with a uniformly distributed secret key of 128 bits, and if
qt ≤ 28 and q ≤ 240, we claim that D32 and D′

32 satisfy

Adv±p̃rp
D32

(t, q, qt) ≤
t

2128

Adv±prf
⌊D′

32⌋τ
(t, q, qt) ≤

t

2128
+ fStam(n, τ, qt)

Adv±p̃rp,prf
D32,⌊D′

32⌋τ
(t, q, qt) ≤

t

2128
+ fStam(n, τ, qt),

where the adversarial resources are the time complexity (t), the total number of
queries (q), and the maximal number of queries asked per any tweak (qt), where

Adv±p̃rp,prf

Ẽ,F
(A ) = Pr

[
K ←$ K : A ẼK ,Ẽ−1

K ,FK⇒ 1
]

− Pr
[
π̃ ←$ PermT (n), f ←$ Func(T × {0, 1}n, τ) : A π̃,π̃−1,f⇒ 1

]
and where

fStam(n, τ, qt) =
1

2

√
(2τ − 1)qt(qt − 1)

(2n − 1)(2n − qt + 1)
.

Here, fStam(n, τ, qt) gives an upper bound on the advantage of distinguishing,
in qt queries, an n-bit permutation truncated to τ bits from a random function.
The formula is due to Stam [23] and satisfies fStam(n, τ, qt) = 0 if qt ≤ 1 and
fStam(n, τ, qt) ≤ qt/2

n−τ/2 if qt ≤ 3
42

n.
Under Claim 1 and Theorem 2, ChiLow-(32+τ) is an instantiation of ACE2

achieving cae-a security up to the following advantage

Advcae-a
ChiLow-(32 + τ)(qe, qd, qn, t) ≤

t

2128
+ fStam(32, τ, qd + qn) +

qe(qn − 1)

232
+

qd
2τ

,

where qe is the number of encryption queries, qd is the number of forgery at-
tempts, such that qe + qd ≤ 240, qn + qd ≤ 28 is the maximum number of en-
cryptions under the same (A,N) value, and t is the time complexity expressed
in executions of ChiLow-(32 + τ). Concretely, this bound implies the following
limits. A single key can be used to encrypt up to 4 TB of data in total, which
should suffice for all firmware updates during the lifetime of an embedded sys-
tem. If the software encryption is done properly, that is, if the version counter
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N is incremented every time a new binary object is encrypted, we have qn = 1
and the third term vanishes. For example, if the code encryption key is dropped
after 4 failed decryptions, each version counter could be used up to 64 times
and the scheme would hold up, albeit with a degraded security level. The second
term vanishes too if there are no forgery attempts and stays small compared to
qd
2τ otherwise. Hence, security is not guaranteed only if the adversary can do an
exhaustive key search or if the number of forgery attempts comes close to 2τ .

We proceed similarly for ChiLow-40, although here the situation is simpler
as we have a single tweakable block cipher.

Claim 2 If keyed with a uniformly distributed secret key of 128 bits, and if
qt ≤ 28 and q ≤ 240, we claim that D40 satisfies

Adv±p̃rp
D40

(t, q, qt) ≤
t

2128
,

where the adversarial resources are as in Claim 1.

Under Claim 2, Theorem 1 and Theorem 3, ChiLow-40 is an instantiation
of ACE3 achieving cae-r and cae-a security up to the following advantages

Advcae-r
ChiLow-40(qe, qd, qn, t) ≤

t

2128
,

Advcae-a
ChiLow-40(qe, qd, qn, t) ≤

t

2128
+

qe(qn − 1)

240
+

qd
27

.

In the last expression, the first term represents the exhaustive key search,
while the second and third terms are generic terms coming from Theorem 1.
The limits are similar to those above, with the added value that ChiLow-40
supports the more robust security notion.

4 Design Rationale

4.1 Low-Latency Encryption Design Space

As pointed out in [31,12], the ultimate goal of a low-latency cryptographic prim-
itive is to encrypt a block of data in a single clock cycle of a hardware imple-
mentation with a frequency as high as possible.

The first and most common approach for this was and, in some cases, still
is an SPN structure with a cryptographically strong S-box of small dimension
featuring a low latency hardware implementation; then combining it with a linear
layer which locally is (almost) MDS. This approach is the foundation of some
strong designs, such as Prince [12] and Qarma [4]. It usually also offers a low-
latency decryption which can be taken as an advantage in several applications.
However, in some recent designs, it is shown that if we are not restricted with
low-latency in both directions, we can use more conceptual approaches to build
ciphers with even lower latency. In Speedy [32] and in [40], it is explained how
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to build low-latency S-boxes of larger dimensions from a gate-level perspective,
while providing good-enough cryptographic properties. Furthermore,Koala [21]
achieves a low-latency design by applying functions of very large dimensions that
cryptographically are not so strong in the forward direction but are very strong
in the backward direction. As explained in the following, we combine these recent
approaches for designing ChiLow.

4.2 The Nested Tweak-Key Schedule

Our block cipher and PRF support input sizes of 32 or 40 bits, while the tweak
is 64-bit long and the master key has 128 bits. Absorbing all 192 bits into a 32-
or 40-bit state would require at least 5 rounds, and an attacker could potentially
guess three 32- or 40-bit blocks, allowing them to peel off at least 3 rounds. At
the same time, ensuring a low latency forces us to use as few rounds as possible,
both for the state update function itself as well as for processing the tweak and
key. As a result, our design must meet the following constraints:

1. The latency of all paths must be equally low: the round function in the data
path, tweak and key schedules must all have an almost equal and low latency;

2. Hard to exploit key guesses: the knowledge of some subkeys should not allow
an attacker to easily recover information about the master key;

3. Fast diffusion: each bit of the state must depend (non-linearly) on the full
input (plaintext, tweak and key) as quickly as possible; and

4. Even faster backward diffusion: since our low-latency constraint only applies
in one direction, we focus on components with an extremely complex and
high diffusion inverse.

To address the above requirements, we propose a nested construction inspired
by the concept of encrypting the tweak with the master key. The state is divided
into three components: the cipher state, the tweak state, and the key state. Each
is updated using similar high-diffusion, low-latency non-linear round functions.
The cipher state receives “subkeys” from the tweak state, while the tweak state
gets its “subkeys” from the key state. As a consequence of this approach, an
attacker trying to attack the cipher would need to guess either the material
coming out of the tweak state or from the key state as discussed below.

The subkeys coming out from the tweak state into the cipher state are easy
to exploit as they allow to directly peel off (partial) rounds of the encryption,
but the information they provide has a complex relationship with the master key
due to the fast diffusion in both the tweak state and the key state. Furthermore,
each of these guesses is only relevant to a specific tweak, for which an attacker
can only make a small number of queries.

The subkeys coming out of the key state are the same for all tweaks, and are
more directly related to the master key. On the other hand, they enter the tweak
state which is itself highly dependent on the master key. As a consequence, when
looking at the last rounds, they will not facilitate the recovery of information
about the tweak state bits.
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The use of components with complex, high-degree, high-diffusion inverses
means that the propagation of information or differential trails backwards can
only yield useful data for one round.

4.3 The Non-Linear Layer

Our goal is to build a non-linear bijective function with minimal latency com-
plexity where the latency complexity of a function is the minimum possible
gate depth complexity of its implementation based on 2-bit NAND, 2-bit NOR and
INV gates without counting the INV gates in the circuit paths [39, Section 3].
At the same time, we aim for non-trivial cryptographic properties. In [39], it
is shown that there are very few non-linear and balanced functions with mini-
mal latency complexity. Indeed, up to the extended bit-permutation equivalence,
there is only one non-linear balanced function with latency complexity 2, namely
f(x0, x1, x2) = x0x2+x1x2 which can be seen as a multiplexer with x2 being the
selector for choosing one of x0 and x1 as the output. However, using only this
Boolean function (and any other of its equivalent functions) as the coordinates of
the bijective vectorial Boolean function, it is not possible to build any bijection
with non-trivial linearity; i.e., for such a bijective mapping, there are always lin-
ear approximations with correlation ±1 between the input and the output bits
of the bijective vectorial Boolean function. Therefore, to build a non-linear layer
with our criteria, a latency complexity of at least 3 is necessary.

As reported in [39], up to the extended bit-permutation equivalence, there
are 2, 6, 8 and 3 Boolean functions with (full dependence on) 3, 4, 5 and 6
variables which have latency complexity 3. For further improvements of the la-
tency, it is necessary to keep the fan-out of the gate in the previous layer low.
In other words, the circuit of the non-linear layer should use each input variable
as little as possible. With respect to this criterion, from the aforementioned 19
balanced Boolean functions with latency complexity 3, the one with represen-
tation f(x0, x1, x2) = x0x1 + x2 is the most suitable one: for each coordinate,
only 3 inputs variables are involved, and in the circuit for each coordinate each
variable is used only once. This suggests that it is possible to build a non-linear
layer where each input bit is used only three times in the entire circuit of the
non-linear layer. Indeed, the well-known χ functions, introduced by Daemen [16]
and defined as follows, is a widely used example for this. For instance, χ5 is
used in Keccak, χ257 in Subterranean and Koala, and χ3 in several block
ciphers such as 3-Way.

Definition 1. For n being an integer, χn : Fn
2 → Fn

2 is defined by yi = xi +
xi+1xi+2 where the indices are taken modulo n.

However, χn is bijective if and only if n is odd. Therefore, we cannot use it
directly to design our primitives as we need non-linear layers of size 32, 40, 64,
and 128. To solve this problem, we could use two concatenated χ functions.
For m even, χm−1 in parallel with χm+1 gives a non-linear layer of input size
n = 2m. Thereby, the inverse of the non-linear layer can be separated into two
sub-functions of dimension m− 1 and m+ 1 and each coordinate in the inverse
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direction will be dependent on m−1 or m+1 variables with an algebraic degree
of either m

2 or m
2 + 1.

For our non-linear layers, we set out to improve over this. More precisely, we
aim for a non-linear layer with the same nice cryptographic and implementation
properties in the forward direction but with better (non-linear) diffusion and a
higher algebraic degree in the inverse direction. Thereby, we restrict ourselves
to coordinate functions of the form yi = xR(i) + (xP (i) + ai)(xQ(i) + bi) where
P , Q and R are permutations of Zn and each ai and bi are Boolean constants.
This ensures that each input variable will be used exactly three times.

To make the search for such a mapping with the aforementioned criteria
as fast as possible, we omit redundant parts of the search. For instance, any
permutation on the index of variables or any constant addition in the input or
output of the function will end up with the same results. Hence, we fix that each
ai = 1. Furthermore, we ensure that the indices of the variables in the quadratic
terms form ordered cycles. That is, for one cycle we have the quadratic terms
x0x1, x1x2, . . . , xn−2xn−1, xn−1x0. For two cycles, we have the quadratic terms
x0x1, x1x2, . . . , xm−3xm−2, xm−2x0;xm−1xm, xmxm+1, . . . , xn−2xn−1, xn−1xm−1

for some integer m with 3 ≤ m < n/2.

In the case of a single cycle for the quadratic terms, for any choice of the
permutation R and constants bi, it is not possible to build a bijective function.
The reason for this is that there will be a component function that is bent, and
thus in particular not balanced. As being bent is invariant under adding linear
functions, this cannot be compensated by xoring other inputs.

Therefore, we take the non-linear layer whose quadratic terms corresponds to
two cycles, together with a constraint to split as equally as possible. Thereby, the
function for the non-linear layer will be extended affine equivalent to χm−1∥χm+1.
Consequently, this means that the linearity and differential uniformity of our
non-linear layer stays the same as that of χm−1∥χm+1.

For n ∈ {8, 12, 16}, we exhaustively search through all permutation R and
constants bi to find non-linear bijections. Out of the many options (even after
reducing up to the extended bit permutation equivalence), we chose the one
already given in Eq. (1) as we could extend the pattern for these three small
dimensions and show that the bijectivity is extendable to higher dimensions. We
give another definition in Definition 2 that is based on χ. Metaphorically, we see
our new non-linear layer as an intertwined version of two parallel χ functions,
hence the name ChiChi or χχ.

Definition 2. For m even and n = 2m, we define χχn : Fn
2 → Fn

2 as

χχn(x) =

(
χm−1(x0, x1, . . . , xm−2)

χm+1(xm−1, xm, . . . , x2m−1)

)
+ λ(x)
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where the i-th coordinate of λ is given by

λi(x) =



xm + xm−3 if i = m− 3

xm−1 + xm−2 if i = m− 2

xm−3 + xm + xm−1 if i = m− 1

xm + xm−2 if i = m

0 otherwise.

Theorem 4. For m even, χχ2m is a bijection.

Proof. Given y = χχ2m(x), we give explicit formulas for xm, xm + xm−3, xm−1,
and xm−2 as functions of the yi variables in Lemmas 3 to 6 in Appendix D.
Hence, given y, we can compute λ(x) and consequently, invert the χχ2m function
since both χm−1 and χm+1 are invertible. ⊓⊔

Given the formula for xm as a function of the variables yi, we can present a
lower bound on the algebraic degree of the inverse of χχ2m.

Corollary 1. The inverse of χχ2m has an algebraic degree of at least m.

Proof. We give an explicit formula for xm in Lemma 3. The algebraic normal
form of xm must contain exactly one monomial of degree m, namely

ym−4

(∏m
2 −2

k=1 y2k−1

)
ym−2

(∏m
2

k=1 y2k+m−1

)
. ⊓⊔

Regarding the algebraic degree of the other components, we can give essentially
the same argument for the ones that we give explicitly in Appendix D. Below,
we conjecture that the same actually holds for every non-trivial component of
the inverse of χχ2m. This is based on our verification for dimensions up to n = 32
for n a multiple of 4.

Conjecture 1. Let m be an even integer. Every non-trivial component of the
inverse of χχ2m has algebraic degree m.

4.4 The Linear Layer

The linear layer plays a crucial role in achieving diffusion by ensuring that each
input bit influences many output bits across the ciphertext. To meet this ob-
jective, we carefully select linear layers with strong diffusion properties. Addi-
tionally, we prioritize having a low latency: by ensuring that each output bit is
the sum of three input bits, we can compute the linear layer and the round key
addition with an XOR depth of two.

More precisely, all our linear layers Ln : Fn
2 7→ Fn

2 , with x mapping to y, are
such that for every index i with 0 ≤ i < n:

yi = xα0i+β0 + xα1i+β1 + xα2i+β2 ,

where indices are taken modulo n. In other words, each output bit depends
on three input bits, where the indices of input bits are selected with an affine
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function AL in Zn that maps i to the tuple (α0i+ β0, α1i+ β1, α2i+ β2), with
1 ≤ αj , βj ≤ n and each αj being an odd integer. However, the search space for
such linear layers is huge. To reduce the search space, we impose the following:

– We fix α0 = α1 = α2 = α. Indeed, in our experiments for n = 32, we found
that searches without such a restriction do not yield better results.

– We fix β0 < β1 < β2, since the order of the tuples does not matter.

With these restrictions in place, the selection of AL is done in two steps. First,
we search for α and βi values that ensure good diffusion properties. Specifically,
after a certain number of iterations of Rn = Ln ◦ χχn, each output bit should
depend on all n input bits – a property known as full diffusion. This property was
checked using a symbolic evaluation of the rounds, and then checking whether
each output bit is a function of all the input bits.

The number of iterations required for full diffusion varies with the value of n.
We then select Ln candidates that have the fastest diffusion, i.e., the number of
rounds needed for full diffusion is the lowest. As it turns out, we need only two
rounds for n = 32, three rounds for n ∈ {40, 64}, and four rounds for n = 128.

Then, in the second step, we go through the remaining candidates from the
previous step and select the ones that performs the best across 3 and 4 rounds
in terms of differential probabilities and linear correlations.

4.5 The Round Constants

In order to prevent slide attacks, we simply add some round constants in the
master key path. To make sure that the Hamming weights of their differences are
not too low, we combine a counter with a single bit that is shifted for each round.
An additional bit which is set for ChiLow-40 provides domain separation. In
the end, the round constant used in round i is

c
(i)
96...127 = i⊕ (1≪ (i+ 4))⊕ (b≪ 31) , (2)

where ≪ denotes a left shift, and b ∈ {0, 1} is set to 1 only for ChiLow-40.

5 Security Analysis

In this section, we provide details on the security analysis of ChiLow. For this,
we take advantage of the existing analyses on the designs with similar structures.

From the provided analyses below, we deduce that 8-round ChiLow is secure
under the given security model (which in particular implies restrictions on the
data complexity).

5.1 Differential and Linear Distinguishers

Since χχ is extended affine equivalent to two parallel χ functions, we can use all
the knowledge on the differential and linear transitions over this mapping. For
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Table 2: The max DP (in − log2(·)) of a single trail for case (X) that the data
path of each primitive and the tweak schedule alone (left), and for case (X+ T)
that considers the related-tweak trails with input difference only in the tweak
state (center), and the maximum square correlation (in − log2(·)) of a single trail
for case (X) that the data path of each primitive alone (right).

Round (X) (X+ T) (X)
D32 D′

32 D40 T D32 D′
32 D40 D32 D40

1 2 2 2 2 2 2 2 2 2
2 8 8 7 8 8 8 8 8 8
3 19 18 19 22 33 33 34 14 16

Table 3: The max DP for the (X + T) case (in − log2(·)) of differentials con-
sidering clustering. For each number of round and each case, we report on the
maximum DP of single trail following the differential (P), the clustering effect
(CE) observed and differential probability (DP).

Round D32 D′
32 D40

P CE DP P CE DP P CE DP

1 2 – 2 2 – 2 2 – 2
2 8 2 6 8 2 6 8 2 6
3 33 8 26 33 8 26 34 4 30

this purpose, we use and modify the properties from [34] and [35] to evaluate
the resistance of ChiLow against differential and linear cryptanalysis.

We use the Mixed Integer Linear Programming (MILP) code from [21] that
was used for the differential and linear security analysis of Koala, and modify
it for a single χχ function. We then use it to model the propagation of differential
and linear trails over several rounds of ChiLow. More detail can be found in E.

To take the security model specific to our use cases into account, we model
and report on different type of trails, including differential trails for a single path
(X) (without considering the differences in the tweak/key addition) in Table 2
(left), and related-tweak differential trails where there is an input difference only
in the tweak state (X+ T) in Table 2 (right). We also report on the exact trails
for (X+T) in E.3. Note that due to the restriction on the number of queries that
an adversary can request for the same tweak and Section 2, we do not consider
the trails with non-zero differences in both the tweak state and the cipher state.

Clustering Effect We analyze the clustering effect on the differential probabil-
ity for our constructionsChiLow-(32+τ) andChiLow-40. To identify clustering
effects, we reuse the model designed to find the single trail with the maximum
differential probability and leverage a feature, namely the PoolSearchMode-based



ChiLow and ChiChi 23

Table 4: The bit differences are shown after each operation of a 3-round differ-
ential trail of ChiLow-(32 + τ).

Data Path Tweak Path

∆in ................................ ...............................................................1

χχ ................................ ...............................................................1

L32 ................................ ..........................................1....1.......1........

⊕ ................................

χχ ................................ ..........................................1....1.....1.1........

L32 ................................ .1.....1.1........1....1.......1...1....1.......1.........1.1..1

⊕ .1.....1.1........1....1.......1

χχ .1...1.1.1....1...1...11.....1.1 .1...111.1......111..1.1......1..111..1.1......11.......111.1.1.

L32 1.11.......111.11.11...11.11.1.1 1..1.......11..11..1...11.11.1.111...1....1...1.11.......1111..1

⊕ ..1..........1....1.............

solution finding approach10 of the Gurobi solver that allows us to search not only
for the optimal solution but also for a set of the top t solutions, where t is a
parameter we can define. Once we have this set of t best single trails, we fix
the input and output differences and rerun the solver, incorporating these as
constraints to search for the top l solutions under the new conditions. For each
input-output difference pair, this process yields a distribution of trails according
to the maximum differential probabilities. From this distribution, we can com-
pute the clustering effect for the given differential. Wherever possible, we also
validate our results through experimental verification.

We begin by examining the clustering effect on ChiLow-(32 + τ), where a
strong clustering effect is evident as shown in Table 3. For instance, the best dif-
ferential probability observed for 3 rounds of ChiLow-(32+τ) is 2−33. However,
when clustering is considered, the probability increases to 2−26. The main rea-
son behind this is that, during each round, the lower 32 bits of the 64-bit tweak
state are used in D32, and the upper 32 bits in D′

32. Therefore, the differences
in the upper 32 bits of the tweak do not affect the data path. For example, if no
active bits are present in the lower 32-bit of the tweak state during the first two
rounds, the difference propagation in the first two rounds of D32 occurs with
probability 1 – a free differential propagation. Such a trail is shown in Table 4.
Furthermore, multiple trails can arise from a given input tweak difference, that
only affect the upper part of the tweak state, which is the primary source of
the clustering effect. However, despite this clustering effect, considering the data
limit due to the construction, the maximum differential probability of any trail
for ChiLow-(32 + τ) is sufficiently low when we consider more than 4 rounds.

We also analyze the clustering effect on ChiLow-40. Its clustering effect is
lower than that in ChiLow-(32+ τ) as it takes more bits from the tweak state.

We also analyze the security of ChiLow-(32 + τ) and ChiLow-40 against
linear cryptanalysis. To model the linear propagation trough χχ we choose a lazy
approach, leading to possible false positive results. This allows us to use a few
equations and obtain a rather simple and efficient model. As for the differential

10 https://www.gurobi.com/documentation/current/refman/poolsearchmode.html

https://www.gurobi.com/documentation/current/refman/poolsearchmode.html
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trail, we report in Table 2, the maximum square correlation found for a single
trail, for the data path of each primitive.

Multiple-Tweak Differential Attack In their analysis of SCARF [13], Boura et
al. carefully studied the differentials with probability close to the natural bound.
More precisely, they accurately computed the bias ϵ of differentials of probability
1/(2n − 1) + ϵ where n is the block size. Distinguishing a random permutation
for which ϵ = 0 requires around ϵ−22n pairs when ϵ is much lower than p.
Unfortunately it was not possible to compute the bias as they did in SCARF since
the block sizes of our primitives is too large. Instead we experimentally searched
for differentials for the function D32 used in ChiLow-(32 + τ) with only one
active bit at the input. We encrypted 240 pairs for each position of the active
bit and looked at the best differentials for 5 rounds. We were unable to observe
anything that would permit to distinguish D32 from a random permutation.
Thus, according to the restriction we set on the amount of data that can be
encrypted under the same master key, we claim that our construction is secure
against this type of attack.

5.2 Attacks Based on the ANF

While very efficient, χ and χχ functions are only of degree 2 and thus it is im-
portant to carefully analyze the resistance of our construction against algebraic
attacks. The primitives relying on the χ function as the source of non-linearity
most often involve a large number of rounds to compensate for its low algebraic
degree while we only use 8 rounds.

The main question is to determine the algebraic degree of the D32(K,T,X)
function. We experimentally verified by computing the ANF representation of
the output for random values of (K,T ) that every monomial of degree 31 in
variables from X does appear in the representation. More precisely, given u
of hamming weight 31, we can write the i-th coordinate of D32(K,T,X) as
pu,i(K,T,X)Xu ⊕ qu,i(K,T,X) where pu,i and qu,i both are polynomials and
such that Xu does not divide any monomial of qu,i. We prove that the 32×32 =
256 polynomials pu,i are non-zero and linearly independent after 6 rounds. This
ensures that there is no integral distinguisher on more than 5 rounds of the
cipher in the single-key single-tweak model.

To study the algebraic resistance of our primitive in the related-tweak set-
ting, we used division property without unknown subsets, to track the biggest
monomials involving both tweak and key variables. However, there are too many
division trails to computationally prove that there is no integral distinguisher
on more than 6 rounds in the single-key multiple-tweaks model. Still, regarding
the limitations we have on the number of messages and tweaks that can be en-
crypted under the same key, we claim that 8 rounds are fully secure against any
algebraic and integral attack in the single key model.
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5.3 Meet-in-the-Middle Attacks

The meet-in-the-middle (MITM) attack has proven to be a powerful technique,
leading to numerous successful attacks on both block ciphers and hash func-
tions [18,8,19]. Recent works have applied the MITM technique to preimage
attacks on Keccak and Ascon [38,20], both of which utilize the non-linear χ
operation in their designs. As ChiLow employs variants of the χ operation, we
try to mount MITM key-recovery attacks on it.

The fundamental principle of the MITM key-recovery attack involves par-
titioning the key state into two independent parts (under certain constrains).
By conducting exhaustive searches for the key, we can match the results from
these two parts. As shown in Fig. 4, the attack can be visualized by a coloring
scheme for the bits in the state: computations involving blue bits are indepen-
dent of those involving red bits. The gray bits remain constant, while the white
bits are unknown in the computation based on either the red or blue bits. Im-
portantly, the yellow bits represent linear combinations of the bits in red and
blue. Although their values are unknown on each side, they can still facilitate
matching (the blue and red bits satisfy some linear equations) during the attack.
Before applying the round functions to the states, we impose some constraints
on certain bits of the states such that the specified coloring scheme is fulfilled.
For example, according to Fig. 4, the 30th bit in first row of K1 turns from red
to gray (see K†), which means there is a (non-linear) constraint on the red key
bits such that the 30th bit in the first row is fixed to a constant. The number of
constraints should be less than the number of bits with same color in the initial
state, otherwise there might be a overdetermined system on key bits that leads
to a contradiction. To enhance our approach, we utilize an automated search
method and have developed an SAT-based search tool specifically for MITM
attacks on ChiLow. Through our investigations, for ChiLow-(32+ τ), we have
identified a 4-round key-recovery attack that operates with 2-bit advantage (Fig.
6) and a 3-round attack with 22-bit advantage (Fig. 4, Alg. 3). In the 3-round
attack (Alg. 3), we compute ChiLow-(32 + τ) about 2103 times in line 5-18
and 2102 times in line 16-25, the total time complexity is 22+104 = 2106, and
the memory complexity is 2103. Similarly, the total time complexity of 4-round
attack is 2126. For ChiLow-40, we have identified a 4-round key-recovery attack
that operates with 2-bit advantage (Fig. 8) and a 3-round attack with 22-bit
advantage (Fig. 7). The time complexities of the two attacks are 2126 and 2106

respectively. We note that these attacks might not be optimal since our tool did
not exhausted the search space. We provide more details for mounting a MITM
key-recovery attack on ChiLow-(32 + τ) in Appendix F.

6 Hardware Evaluation

We focus on the performance evaluation of the decryption functionality, as en-
cryption can be performed offline and thus its performance is less critical.

To achieve low latency, we implemented our schemes in a fully unrolled cir-
cuit, i.e., by replicating and chaining the round function logic. This allows us
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Fig. 4: MITM key-recovery attack on 3-round ChiLow-(32 + τ).

to evaluate the whole decryption in a single clock cycle. We implemented two
variants for each scheme, one that includes the key schedule and one that does
not. In the latter case, the round keys are precomputed and given as input to
the circuit. Note that by construction, only 64 bits of each round key are used to
update the tweak, therefore the number of key bits given as input is (9× 64 =)
576 for ChiLow-(32 + τ) and (8× 64 + 40 =) 552 for ChiLow-40.

We compare the performance of ChiLow with other low-latency designs. To
the best of our knowledge, there are no low-latency schemes that target code
encryption specifically or that have a block size suitable for our use case. First,
we compare with the tweakable block cipher Scarf, whose block size is only
10 bits, resulting in very small area and power consumption. Then, we consider
the block cipher Prince as well as the tweakable block cipher Qarmav1-64,
both working on a 64-bit cipher state. For Qarmav1, we consider r = 5 and
σ0, which is the configuration recommended for Pointer Authentication Code
(PAC) or Memory Integrity Applications (MIA). We do not include Princev2
and Qarmav2 in the comparison, as their latency and area are almost the same
as the original designs. Additionally, we consider the low-latency PRFOrthros.
We do not include the PRF Gleeok since Orthros outperforms it in both area
and latency. However, the authors of Gleeok also propose an AE scheme based
on it that targets memory encryption. It composes the counter (CTR) mode with
two independent instances of the Inner Product (IP) hashing, which makes use
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of multiplications over F2s . We consider the smallest variant, called Gleeok-
128-IP64, where two multipliers over F264 are used. Note that during decryption,
the PRF cores and the multipliers work independently, with the critical path
given by the PRF component. For Prince, Orthros, and Gleeok-128-IP64,
we made use of the HDL code publicly available at [7,2].

Methodology. All ciphers are implemented as fully combinational circuits.The
RTL codes are synthesized using Synopsys Design Compiler version V-2023.12
and the Nangate 15nm open cell library. We ask the compiler to constrain the
delay between input/output ports to progressively lower values until the tool
cannot produce a circuit satisfying the constraint. We ran post-synthesis sim-
ulation at a frequency of 10MHz, and collected the switching activity of each
gate of the circuit. Finally, we obtained the average power consumption using
Synopsys Prime Time version V-2023-12, using the back annotated switching
activity and we derived energy consumption from it.

Results. Experimental results are given in Table 5. We include performance
figures only for ChiLow-(32 + 16), as the difference with ChiLow-(32 + 8) is
negligible. Area figures do not take into account the cost of storing the round
keys in registers, as all ciphers are implemented as fully combinational circuits.
For the Nangate 15nm library, the cost of storing 128, 240, and 256 bits of key
is 163.58µm2, 306.71µm2, and 327.16µm2, respectively. When ChiLow-(32+ τ)
and ChiLow-40 are implemented without the key schedule circuit, the cost of
storing the precomputed key material is 705.43µm2 and 736.10µm2, respectively.
Precomputing the round keys for ChiLow reduces the total area cost without
impacting the latency, making this approach ideal when area is a critical aspect.

To demonstrate the full potential of the selected ciphers, power and energy
costs are evaluated using a fixed key, as in our use case the decryption key will
rarely change, reducing the switching activity of the key-schedule circuits. The
experimental results show how ChiLow outperforms the other ciphers in terms
of latency, power and energy cost. The only exception is Scarf, which however
has a block size of only 10 bits. In terms of area, Prince, Qarma and Scarf
achieve in general better results. However, ChiLow provides also authentication
which these ciphers do not. Gleeok-128-IP64 offers authentication, but the use
of large finite field multipliers results in a high area cost and as a consequence
in high power and energy.

The hardware evaluation confirms that, compared to other solutions,ChiLow
is more suitable for on-the-fly code decryption and authentication, as it achieves
at the same time low latency, low power and low energy.

7 Conclusion and Future Work

In this work, we modeled the real-world problem of code encryption and pre-
sented a practical solution with strong performance and innovative design ideas.
We feel that our solution is a significant and sound step forward, that also trig-
gers several directions for future research. Concerning our new non-linear layer
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Table 5: Comparison results for the Nangate 15nm OCL at a clock frequency of
10 MHz. The key is fixed according to the application. * refers to the implemen-
tation without the key schedule.

Cipher Type Key/Tweak/Block Area Latency Power Energy
[bits/bits/bits] [µm2] [GE] [ps] [mW] [pJ]

ChiLow-(32 + 16) TBC+PRF 128/64/32 3417.93 17384.49 302.03 0.2444 24.44
3581.85 18218.25 282.73 0.2521 25.21

ChiLow-40 TBC 128/64/40 3043.49 15480.00 299.21 0.2103 21.03
3205.20 16302,50 278.31 0.1997 19.97

ChiLow-(32 + 16) * TBC+PRF 128/64/32 2004.17 10193.75 301.78 0.2252 22.52
2104.20 10702.50 285.84 0.2178 21.78

ChiLow-40* TBC 128/64/40 1639.86 8340.75 298.80 0.1832 18.32
1734.33 8821.25 280.60 0.1710 17.10

Scarf TBC 240/48/10 968,88 4928,00 297,89 0.0896 8.96
986,73 5018,75 248,91 0.0749 7.49

1096,48 5577,00 216,80 0.0793 7.93

Prince BC 128/-/64 1798.96 9150.00 450.00 0.2955 29.55
2090.39 10632.25 400.00 0.3267 32.67
2450.08 12461.75 374.04 0.3433 34.33

Qarmav1-64 TBC 128/64/64 1912.21 9726.00 537.39 0.7025 70.25
(r = 5) 1963.03 9984.50 450.00 0.6010 60.10

2652.09 13489.25 378.30 0.8172 81.72

Orthros PRF 128/-/128 5850.42 29756.75 448.99 0.9791 97.90
6123.31 31144.75 398.99 0.7400 74.00
7372.26 37497.25 354.79 0.8144 81.40

Gleeok-128-IP64 AE 256/-/128 23489.35 119473.01 450.00 4.3000 430.00
23703.80 120563.76 400.00 4.0440 404.40
24616.70 125207.01 382.99 4.1930 419.30

ChiChi, we see three clear paths to continue: proving Conjecture 1 to assess
its resistance against integral attacks; constructing a similar family for even di-
mensions not divisible by four; exploring its potential for other applications.
Concerning ChiLow, but also ChiChi, a challenge is adding side-channel pro-
tections. While most of the approaches for masking ciphers based on χ are valid
also for our primitives, doing so within one clock-cycle remains an open prob-
lem, not only for our designs but in general. While the TWEAKEY framework [29]
already provides a nice solution, we expect that studying our nested tweak-key
schedule in a more general setup and deriving its properties might turn it into an
alternative for combining tweak and key. Finally, as for any new design, we en-
courage more cryptanalysis on the primitives, especially making use of the small
block size to develop a potentially improved version of the recently published
attack on Scarf [13].
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Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol.
13143, pp. 114–137. Springer, Cham (Dec 2021). https://doi.org/10.1007/

978-3-030-92518-5_6

16. Daemen, J.: Cipher and hash function design, strategies based on linear and differ-
ential cryptanalysis, PhD Thesis. K.U.Leuven (1995), http://jda.noekeon.org/

17. Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subter-
ranean 2.0 cipher suite. IACR Trans. Symmetric Cryptol. 2020(S1), 262–
294 (2020). https://doi.org/10.13154/TOSC.V2020.IS1.262-294, https://doi.
org/10.13154/tosc.v2020.iS1.262-294

18. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977). https://doi.org/10.
1109/C-M.1977.217750, https://doi.org/10.1109/C-M.1977.217750

19. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle at-
tacks revisited: Key-recovery, collision, and preimage attacks. In: Malkin, T., Peik-
ert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 12827, pp. 278–
308. Springer (2021). https://doi.org/10.1007/978-3-030-84252-9_10, https:
//doi.org/10.1007/978-3-030-84252-9_10

20. Dong, X., Zhao, B., Qin, L., Hou, Q., Zhang, S., Wang, X.: Generic mitm attack
frameworks on sponge constructions. In: Reyzin, L., Stebila, D. (eds.) Advances in
Cryptology - CRYPTO 2024 - 44th Annual International Cryptology Conference,

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.46586/tches.v2023.i1.326-368
https://doi.org/10.46586/tches.v2023.i1.326-368
https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://eprint.iacr.org/2024/1408
https://eprint.iacr.org/2024/1408
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-92518-5_6
https://doi.org/10.1007/978-3-030-92518-5_6
https://doi.org/10.1007/978-3-030-92518-5_6
https://doi.org/10.1007/978-3-030-92518-5_6
http://jda.noekeon.org/
https://doi.org/10.13154/TOSC.V2020.IS1.262-294
https://doi.org/10.13154/TOSC.V2020.IS1.262-294
https://doi.org/10.13154/tosc.v2020.iS1.262-294
https://doi.org/10.13154/tosc.v2020.iS1.262-294
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1007/978-3-030-84252-9\_10
https://doi.org/10.1007/978-3-030-84252-9_10
https://doi.org/10.1007/978-3-030-84252-9_10
https://doi.org/10.1007/978-3-030-84252-9_10


ChiLow and ChiChi 31

Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part IV. Lecture Notes
in Computer Science, vol. 14923, pp. 3–37. Springer (2024). https://doi.org/10.
1007/978-3-031-68385-5_1, https://doi.org/10.1007/978-3-031-68385-5_1

21. Eliasi, P.A., Belkheyar, Y., Daemen, J., Ghosh, S., Kuijsters, D., Mehrdad, A.,
Mella, S., Rasoolzadeh, S., Van Assche, G.: Koala: A low-latency pseudorandom
function. In: Selected Areas in Cryptography (2024)

22. Forler, C., List, E., Lucks, S., Wenzel, J.: Reforgeability of authenticated en-
cryption schemes. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 17, Part II. LNCS,
vol. 10343, pp. 19–37. Springer, Cham (Jul 2017). https://doi.org/10.1007/

978-3-319-59870-3_2

23. Gilboa, S., Gueron, S., Morris, B.: How many queries are needed to distinguish
a truncated random permutation from a random function? Journal of Cryptology
31(1), 162–171 (Jan 2018). https://doi.org/10.1007/s00145-017-9253-0

24. Greene, P., Motley, M., Weeks, B.: ARADI and LLAMA: Low-latency cryptogra-
phy for memory encryption. Cryptology ePrint Archive, Report 2024/1240 (2024),
https://eprint.iacr.org/2024/1240

25. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 370–389. Springer, Berlin,
Heidelberg (Aug 1998). https://doi.org/10.1007/BFb0055742

26. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 15–44. Springer, Berlin, Heidelberg (Apr 2015). https:
//doi.org/10.1007/978-3-662-46800-5_2

27. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 493–517. Springer,
Berlin, Heidelberg (Aug 2015). https://doi.org/10.1007/978-3-662-47989-6_
24

28. IEEE: Standard for cryptographic protection of data on block-oriented storage
devices. IEEE Std 1619-2018 (Revision of IEEE Std 1619-2007) (2019)

29. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 274–288. Springer, Berlin, Heidelberg (Dec 2014). https://doi.
org/10.1007/978-3-662-45608-8_15

30. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: The deoxys AEAD family.
Journal of Cryptology 34(3), 31 (Jul 2021). https://doi.org/10.1007/

s00145-021-09397-w
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A More Details on the Constructions

ACE1. ACE1 is parameterized with an n-bit PRF f (used as a stream cipher)
and a τ -bit PRF F. Being a pragmatic instance of the Encrypt-then-MAC (EtM)
generic composition [36], it allows the plaintext decryption and tag verification
to be parallelized. ACE1 may be instantiated with a single primitive (PRF or a
TBC) using a single secret key, provided a domain separation bit is reserved in
the tweak.

If qn = 1, ACE1 is cae-a secure, see Theorem 5. Care must be taken with
small n. For example, implementing the stream cipher f(K,A,N) = E(K,N,A)
with a short-tweak tweakable block cipher E [15], where presumably shorter
input N is passed as a tweak and the larger address A is passed as the message
input, the term Advprf

f (qe, t) ≈ Advp̃rp
E (qe, t) + q2e/2

n+1 can lead to practical
attacks with qe ≈ 2n [33] (256 kB when n = 32). Instead, a beyond-birthday
secure tweakable block cipher counter mode variant ought to be used, e.g., with
entire (A,N) in the tweak [3].

algorithm ACE1.E(K,N,A,M)
Parse K1,K2 ← K
C̄ ←M ⊕ f(K1, A∥N)
T ← F(K2, A∥N,C)
return C̄∥T

algorithm ACE2.E(K,N,A,M)
Parse K1,K2 ← K
C̄ ← E(K1, A∥N,M)
T ← F(K2, A∥N,C)
return C̄∥T

algorithm ACE3.E(K,N,A,M)
M̄ ←M∥0τ
C ← E(K,A∥N,M)
return C

algorithm ACE1.D(K,N,A,C)
Parse K1,K2 ← K
Set C ← C0···n−1, T ← Cn···n+τ−1

if F(K2, A||N,C) ̸= T then
return ⊥

M ← C ⊕ f(K1, A∥N)
return M

algorithm ACE2.D(K,N,A,C)
Parse K1,K2 ← K
Set C ← C0···n−1, T ← Cn···n+τ−1

if F(K2, A||N,C) ̸= T then
return ⊥

M ← E−1(K1, A∥N,C)
return M

algorithm ACE3.D(K,N,A,C)
M̄ ← E−1(K,A∥N,C)
if M̄n···n+τ−1 ̸= 0τ then

return ⊥
return M̄0···n−1

Fig. 5: Definition of ACE1, ACE2, ACE3. Here, f is a stream cipher, F is a
”tweakable” PRF, E is a tweakable block cipher and 0τ denotes a string of τ
zero bits.
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Theorem 5. Let f : K1×A×N → {0, 1}n and F : K2×A×N×{0, 1}n → {0, 1}τ
be two PRFs. Then, for Π = ACE1[f,F], we have

Advcae-a
Π (qe, qd, qn, t) ≤ Advprf

f (qe+qd, qn+qd, t
′)+Advprf

F (qe+qd, qn+qd, t
′′)+

qd
2τ

if qn = 1, where t′ = α(qe+ qd) and t′′ = β(qe+ qd) where α and β are constants
dependent on the model of computation.

The proof of Theorem 5 is a standard hybrid argument followed by a bound on
tag-guessing.

Due to the use of stream cipher encryption, ACE1 is not secure if qn > 1,
allowing a difference of code fragments to be recovered when (A,N)-pairs repeat.
More formally, asking encryption of arbitrary (A,N,M) and (A,N,M ′) and
checking whether the resulting ciphertexts satisfy C···n−1 ⊕ C ′···n−1 = M ⊕M ′

constitutes an effective distinguisher.
One might hope limiting qn = 1 would allow ACE1 to achieve cae-r security.

However, asking for an encryption of (A,N,M) to obtain C∥T , and then query-
ing decryption queries with a varying ciphertext and tag until some (A,N,C ′)
yields M ′ and checking if C···n−1 ⊕ C ′···n−1 = M ⊕ M ′ is again an effective
distinguisher. This means that the confidentiality of ACE1 is fully broken af-
ter the first forgery. However, ACE1 is secure against reforgeries because ACE1
embodies the “Independence of FIV and FT ”-paradigm of Forler et. al. [22].

Finally, ACE1 does not resist to targeted forgeries. Given a ciphertext tuple
(A,N,C) corresponding to a known plaintext M , an attacker can determinis-
tically force the MCU to execute an arbitrary fragment M ′ by an exhaustive
search for the tag of C0···n−1 ⊕M ⊕M ′ with the same (A,N). With a short
tag, say τ = 8, an attacker may abuse this to bypass an authentication, for
example. Even if the MCU drops the memory decryption key after the first de-
tected forgery, the attacker may simply attack ≈ 256 devices until succeeding,
for example to unlock memory protection and extract the device software.

ACE2. ACE2 cannot achieve a non-trivial cae-r bound. As the number of de-
cryption queries qd approaches 2τ , an effective cae-r distinguisher is to search
for a tag for some fixed values of A,N,C···n, and conclude we interact with
cae-r-id if and only if the exhaustive tag search fails to yield a forgery. For
ACE2, the probability of the latter is 0 (a correct tag always exists), while for a
random injection (fixed by (A,N)), the probability is (2n+τ − 2τ )2τ /(2

n+τ )2τ =
(2τ (2n − 1))2τ /(2

n+τ )2τ , which is close to 1. The cae-a security of ACE2 is
formalized in Theorem 2.

B Deferred Proofs

Proof (Theorem 1). The analysis is inspired by Theorem 1 by Hoang et. al. [26].
We observe that Pr[A cae-r-reΠ ⇒ 1] = Pr[A cae-a-reΠ ⇒ 1] and then bound
|Pr[A cae-r-idΠ ⇒ 1] − Pr[A cae-a-idΠ ⇒ 1]| through a sequence of hybrid
games from cae-a-idΠ to cae-r-idΠ . In the first transition, the probability
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of bad event accounting for possible ciphertext collisions in encryption queries
of cae-a-idΠ is upper bounded. Letting p being the number of unique (A,N)
pairs in encryption queries and si being the number of encryption queries made
with the ith unique (A,N) pair, the bad event probability is upper-bounded as∑p

i=1 si(si−1)/2n+τ ≤ qe(qn−1)/2n+τ as si ≤ qn and
∑p

i=1 si = qe. In the sec-
ond transition, the probability of the bad event of a cae-r-idΠ returning other
than ⊥ is upper-bounded as

qd∑
i=1

2n/(2n+τ −qn+ i) ≤
qd∑
i=1

1/(2τ −(qn+qd)/2
n) ≤ qd/(2

τ −(qd+qn)) ≤ 2qd/2
τ

because the are at most 2n valid images of the underlying random injection in the
ith decryption query made with an (A,N) pair, out of at least (2n+τ − qn + i)
elements of the co-domain not yet probed by either encryption or decryption
queries. The last inequality is due to the assumption (qd + qn) ≤ 2τ−1.

The proof of the second inequality proceeds similarly as the above, except in
the second transition, the probability of the bad event of a cae-r-idΠ returning
other than ⊥ is now upper-bounded as

qd∑
i=1

|M′|
2n+τ − qn + i

≤
qd∑
i=1

|M′|
2n
· 1

(2τ − (qn + qd)/2n)
≤ 2qd|M′|/2n+τ

because there are at most |M′| images of the random injection that are valid
and correspond to an element ofM′ in the ith decryption query made with an
(A,N) pair, out of at least (2n+τ − qn + i) elements of the co-domain not yet
probed by either encryption or decryption queries, again using the assumption
(qd + qn) ≤ 2τ−1. ⊓⊔

Proof (Lemma 1). We have Pr[forge|f(M1), . . . , f(Mℓ), C1, . . . Cq] ≤
∑qd

i=1 2
n/(2n+τ−

q − ℓ − qd) ≤ 2 · qd2n/2n+τ = 2qd/2
τ . This is because when testing any one of

the strings C ′
i, there are at least (2n−τ − q − ℓ − qd) elements of {0, 1}n+τ for

which it is not yet known whether they are images of f or not and there are
never more than 2n real images. ⊓⊔

Proof (Theorem 5). We start by replacing first f and then F by true random
functions φ ←$ Func(A×N , n) and Φ ←$ Func(A×N × {0, 1}n, τ). We thus

haveAdvcae-a
ACE1[f,F](qe, qd, qn, t) ≤ Advprf

f (qe+qd, qn+qd, t
′)+Advprf

F (qe+qd, qn+

qd, t
′′) + Advcae-a

ACE1[φ,Φ](qe, qd, qn) by a standard hybrid argument. For the con-
struction Π ′ = ACE1[φ,Φ], the encryption oracles of the games cae-a-reΠ′ and
cae-a-idΠ′ produce identical distributions, so the only way to distinguish the
games is a successful forgery in cae-a-reΠ′ . This corresponds to guessing a fresh
τ -bit image of a random function, which happens with probability no greater
than qd/2

τ . ⊓⊔

Proof (Theorem 2). The proof starts by replacing E and F by π ←$ PermA×N (n)
and Φ ←$ Func(A×N × {0, 1}n, τ), which yields Advcae-a

ACE2[E,F](qe, qd, qn, t) ≤
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Adv±p̃rp
E (qe+qd, t

′)+Advprf
F (qe+qd, t

′′)+Advcae-a
ACE2[π,Φ](qe, qd, qn) by a standard

hybrid argument. The analysis of Advcae-a
ACE2[π,Φ](qe, qd, qn) starts by replacing π

by a collection of random functions φ with the same signature, which means an
RP-RF switch for every unique (A,N) pair that appears in encryption queries.
With p being the number of such unique pairs and si being the number of
encryption queries made with the ith unique (A,N) pair, the resulting change
in advantage is upper-bounded as

∑p
i=1 si(si− 1)/2n ≤ qe(qn− 1)/2n as si ≤ qn

and
∑p

i=1 si = qe. Then, the only way to distinguish ACE2[φ,Φ] is through
a successful forgery, which happens with probability no greater than qd/2

τ , Φ
being a random function.

The proof of the cae-a[M′] bound proceeds similarly as the above, except
that we first account for the probability of a forgery against Π ′ = ACE2[π, Φ]
and only then replace π with a collection of random functions φ. Formally, this is
done through an introduction of a hybrid game G that is identical to cae-r-re,
except that its decryption oracle always rejects. We have |Pr[A cae-a-reΠ′ ⇒
1]− Pr[A cae-a-idΠ′ ⇒ 1]| ≤ |Pr[A cae-r-reΠ′ ⇒ 1]− Pr[A G ⇒ 1]|+ |Pr[A G ⇒
1] − Pr[A cae-a-idΠ′ ⇒ 1]|. In the first transition, a successful forgery (A,N,C)
with C̄ = C0···n−1 and T = Cn···n+τ−1 must have a valid tag T and additionally,
the preimage π−1(A,N, C̄) must fall inM′. The probability of the former is no
more than 1/2−τ . The probability of the latter is no more than |M′|/(2n−qn) ≤
2|M′|/2n, as prior to a forgery, there are at least (2n − qn) elements of {0, 1}n
whose preimage under π(A,N, ·) is not yet known and using qn ≤ 2n−1. The
analysis of the second transition, replacemnt of π with φ, is the same as for the
cae-a analysis. ⊓⊔

C Algorithmic Descriptions and Test Vectors for ChiLow

The complete algorithmic descriptions of ChiLow-(32 + τ) and ChiLow-40
can be found in Algorithm 1 and Algorithm 2, respectively. The test vectors
of ChiLow-(32 + τ) and ChiLow-40 in hexadecimal format, along with the
intermediate values after each round, are provided in Table 6 and Table 7, re-
spectively.
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Algorithm 1: ChiLow-(32 + τ) Decryption

Data: 128-bit key K, 64-bit tweak T, 32-bit ciphertext C, τ -bit GTag, number
of rounds rnd

Result: 32-bit plaintext P or ⊥

1 X← C⊕ K64···95 ▷ whitening cipher state
2 X’← C⊕ K96···127 ▷ whitening tag state
3 T← T⊕ K0···63 ▷ whitening tweak state

4 for i = 0 to rnd− 2 do

5 K96···127 ← K96···126 ⊕ c(i) ▷ adding round constant

6 X← χχ32(X) ▷ the non-linear layer
7 X′ ← χχ32(X

′)
8 T← χχ64(T)
9 K← χχ128(K)

10 X← L32(X) ▷ the linear layer
11 X′ ← L′

32(X
′)

12 T← L64(T)
13 K← L128(K)

14 X← X⊕ T0···31 ▷ interaction from tweak state to cipher state
15 X′ ← X′ ⊕ T32···63 ▷ interaction from tweak state to tag state
16 T← T⊕ K0···63 ▷ interaction from key state to tweak state

17 X← χχ32(X) ▷ the last round
18 X′ ← χχ32(X

′)
19 T← L64(T)
20 P← X⊕ T0···31
21 Tag← (X′ ⊕ T32···63)0···τ−1

22 if Tag = GTag then
23 return P ▷ authentication

24 return ⊥

Table 6: Test vector of ChiLow-(32 + τ) in hexadecimal.
X X’ T K

Input 0x01234567 0x0011223344556677 0xFEDCBA98765432107766554433221100

Whitening 0x77777777 0xFFFFFFFF 0x7777777777777777 0xFEDCBA98765432107766554433221100

Round 0 0x28EAF2BE 0xCC444CCC 0x8A31D5C4C3D916A3 0x80863D49277069D7398262F7F0EA3580

Round 1 0x74C91B66 0x82D61EF2 0xE7D3C7CC8E2128C3 0xBA1137AD4E9540169B62135092FAF499

Round 2 0x0CB760FD 0x9F9EC860 0x2F1334F1CE208EF1 0x4660767CD7CD20EEAFCADEB29D06F484

Round 3 0x941BE07F 0x2A6B6FEC 0x07F94B5D8D2AE616 0x54357497D3625CF971F8FE86980DE74E

Round 4 0x537CCC17 0x329FD83B 0x057CD8A34158650C 0x38A9B2E9D3433275E0202F68DC296C2A

Round 5 0x0A710EDE 0xB56E008C 0x173795E888B71A95 0x861B7DCBF0A1F4CC9DF37134EDCE1460

Round 6 0x4AD82C9B 0x3D3A188F 0xA20CA67F46A99234 0x01234D7253D8186C3C17BB32A6ECF192

Round 7 0x2E75D127 0x0FBC7E64 0x33C4C4CB763F749E 0x01234D7253D8186C3C17BB32A6ECF192
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Algorithm 2: ChiLow-40 Decryption

Data: 128-bit key K, 64-bit tweak T, 40-bit ciphertext C, number of rounds
rnd

Result: 32-bit plaintext P or ⊥

1 X← C⊕ K64···103 ▷ whitening cipher state
2 T← T⊕ K0···63 ▷ whitening tweak state

3 for i = 0 to rnd− 2 do

4 K96···127 ← K96···126 ⊕ c(i) ▷ adding round constant

5 X← χχ40(X) ▷ the non-linear layer
6 T← χχ64(T)
7 K← χχ128(K)

8 X← L40(X) ▷ the linear layer
9 T← L64(T)

10 K← L128(K)

11 X← X⊕ T0···39 ▷ interaction from tweak state to cipher state
12 T← T⊕ K0···63 ▷ interaction from key state to tweak state

13 X← χχ40(X) ▷ the last round
14 T← L64(T)
15 X← X⊕ T0···39
16 P← X0...31

17 Tag← X32...39

18 if Tag = 08 then
19 return P ▷ authentication

20 return ⊥

Table 7: Test vector of ChiLow-40 in hexadecimal.
Round X T K

Input 0x317C83E4A7 0x0011223344556677 0xFEDCBA98765432107766554433221100

Whitening 0xA90AD7D6B7 0x7777777777777777 0xFEDCBA98765432107766554433221100

Round 0 0xDFBD12AE8A 0x8A21D5C4C3D916A3 0x81863D4B277069D7399262F7F0EA3580

Round 1 0x791D013E2A 0xEB4BCF84EC3329C2 0x335137BD6F9144549FF21358B0AAF499

Round 2 0xC746DFAA6C 0xB58F74ADF0D402F6 0xDA502A4666796686877DDA74A49F8CD4

Round 3 0x367A387031 0x388188393672AFDB 0x978C2DD89FE41AF5E3D1D0FDA206B258

Round 4 0x9C441248D5 0x6C2AE03090DDD441 0x0E76D7859536F033756F425E3DD27CEF

Round 5 0xBDA31753FF 0x01AC33739BE14EAE 0xFF7E2DD4055C0351A626C0A79B1A8A29

Round 6 0xAE828033F8 0xB22148B5EA79366C 0x46413C9DEA941772F2BB69807E27E0D2

Round 7 0x0090545706 0x55952186B27460FC 0x46413C9DEA941772F2BB69807E27E0D2
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D Proof of Theorem 4: Invertivibility of ChiChi

Before we study each formula, we proof a helpful lemma.

Lemma 2. For y = χm(x), l ∈ {0, 1} and l ≤ j ≤ i− l, we have

y2i−l

i−l∏
k=j

y2k−1+l = y2i−l

i−l∏
k=j

x2k−1+l.

Proof. We proof the statement by induction over j. For the base case, consider
j = i− l. The statement clearly holds as

y2i−ly2(i−l)−1+l = y2i−ly2i−1−l

= (x2i−l + x2i+1−lx2i+2−l)(x2i−1−l + x2i−lx2i+1−l)

= x2i−lx2i−1−l + x2i+1−lx2i+2−lx2i−1−l

= (x2i−l + x2i+1−lx2i+2−l)x2i−1−l

= y2i−lx2i−1−l = y2i−lx2(i−l)−1+l.

Now, for the step j → j − 1, where l < j ≤ i, we have

y2i−l

i−l∏
k=j−1

y2k−1+l =

y2i−l

i−l∏
k=j

y2k−1+l

 y2j−3+l

=

y2i−l

i−l∏
k=j

x2k−1+l

 (x2j−3+l + x2j−2+lx2j−1+l)

= y2i−l

i−l∏
k=j−1

x2k−1+l.

⊓⊔

Lemma 3. Formula for computing xm. For m even and y = χχ2m(x), we have

xm = ym−3+

m
2 −2∑
i=0

y2i

i∏
k=1

y2k−1

·
ym +

m
2 −1∑
i=1

y2i+m

i∏
k=1

y2k+m−1

+ ym−2

m
2∏

k=1

y2k+m−1

 .

Proof. The proof is straightforward, in the sense that we plugin the definition of
the yi and then simplify the terms. Recall that ym−3 = xm+xm−2x0. Hence, we
show that the product simplifies to xm−2x0. For this, we show that the left-hand
factor equals

x0 + x1xm−2

m
2 −2∏
k=1

x2k+1
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and the right-hand factor equals

xm−2 + x0x1

m
2∏

k=1

y2k+m−1.

Then, the product of those two clearly evaluates to x0xm−2 and hence cancels
the same term in the definition of ym−3 leaving only xm, as desired.

The left-hand factor. As we are considering index values of y which are smaller
than m − 3, we do not need to consider the linear feed-forward. Hence, we can
apply Lemma 2 and plugin in the definition of the yi = xi + xi+1xi+2 to get

m
2 −2∑
i=0

y2i

i∏
k=1

y2k−1 =

m
2 −2∑
i=0

y2i

i∏
k=1

x2k−1

=

m
2 −2∑
i=0

(x2i + x2i+1x2i+2)

i∏
k=1

x2k−1.

Now, simple reordering yields

m
2 −2∑
i=0

y2i

i∏
k=1

y2k−1 =

m
2 −2∑
i=0

(
x2i

i∏
k=1

x2k−1 + x2i+1x2i+2

i∏
k=1

x2k−1

)

=

m
2 −2∑
i=0

(
x2i

i∏
k=1

x2k−1 + x2i+2

i+1∏
k=1

x2k−1

)
.

This is a telescope sum, i.e., the right-hand side of the i-th summand cancels the
left-hand side of the (i+ 1)-th sumand such that we are left with only the left-
hand side of the first and the right-hand side of the last summand respectively.
In other words,

m
2 −2∑
i=0

y2i

i∏
k=1

y2k−1 = x0 + xm−2

m
2 −1∏
k=1

x2k−1 = x0 + x1xm−2

m
2 −2∏
k=1

x2k+1

which constitutes the desired form.

The right-hand factor. Recall that for the right-hand factor we want to show
that

ym+

m
2 −1∑
i=1

y2i+m

i∏
k=1

y2k+m−1

+ym−2

m
2∏

k=1

y2k+m−1
!
= xm−2+x0x1

m
2∏

k=1

y2k+m−1.

First, we move the last summand of the middle sum out of the sum. Thereby, all
the indexes use in the remaining sum do not require any special attention and
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we can apply exatcly the same techniques as for the left-hand factor. Hence,

ym +

m
2 −1∑
i=1

y2i+m

i∏
k=1

y2k+m−1

+ ym−2

m
2∏

k=1

y2k+m−1

= ym +

m
2 −2∑
i=1

y2i+m

i∏
k=1

y2k+m−1

+ y2m−2

m
2 −1∏
k=1

y2k+m−1 + ym−2

m
2∏

k=1

y2k+m−1

= ym +

m
2 −2∑
i=1

y2i+m

i∏
k=1

x2k+m−1

+ y2m−2

m
2 −1∏
k=1

y2k+m−1 + ym−2

m
2∏

k=1

y2k+m−1

= ym +

xm+1xm+2 + x2m−2

m
2 −1∏
k=1

x2k+m−1

+ y2m−2

m
2 −1∏
k=1

y2k+m−1 + ym−2

m
2∏

k=1

y2k+m−1.

Next, consider the relevant special cases of the definition of y = χχ2m(x), namely

ym−3 = xm + xm−2x0

ym−2 = xm−1 + x0x1

ym = xm−2 + xm+1xm+2

y2m−2 = x2m−2 + x2m−1xm−1

y2m−1 = x2m−1 + xm−1xm.

Plugging in ym, then y2m−2 and finally ym−2 yields

xm−2 + x2m−2

m
2 −1∏
k=1

x2k+m−1 + y2m−2

m
2 −1∏
k=1

y2k+m−1 + ym−2

m
2∏

k=1

y2k+m−1

= xm−2 + x2m−1xm−1

m
2 −1∏
k=1

y2k+m−1 + ym−2

m
2∏

k=1

y2k+m−1

= xm−2 + xm−1

m
2∏

k=1

y2k+m−1 + ym−2

m
2∏

k=1

y2k+m−1

= xm−2 + x0x1

m
2∏

k=1

y2k+m−1

which is the desired form. This concludes the correctness proof of the formula
for xm. ⊓⊔
Lemma 4. Formula for computing xm + xm−3. For m even and y = χχ2m(x),
we have

xm+xm−3 = ym−1+

ym−3 + ym

m
2 −2∑
i=0

y2i

i∏
k=1

y2k−1

·
 m∑

i=m
2 +1

y2i−1

i−1∏
k=m

2 +1

y2k

 .
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Proof. As ym−1 = xm−3 + xm + xmxm+1, we have to show that the product
equals xmxm+1. For this, we show that the left-hand factor equals

xm + xm+1xm+2

x0 + x1xm−2

m
2 −2∏
k=1

x2k+1


and the right-hand factor equals

xm+1 + xmxm+2

m∏
k=m

2 +2

x2k.

Then, the product clearly evaluates to xmxm+1.

The left-hand factor. From the proof of Lemma 3, we already know that
m
2 −2∑
i=0

y2i

i∏
k=1

y2k−1 = x0 + x1xm−2

m
2 −2∏
k=1

x2k+1.

Multiplying this with ym = xm−2 + xm+1xm+2 gives

xm−2x0 + xm+1xm+2

x0 + x1xm−2

m
2 −2∏
k=1

x2k+1


as the term containing xm−2xm−2 vanishes. Finally, we add ym−3 = xm+xm−2x0

and, as xm−2x0 is canceled, are left with

xm + xm+1xm+2

x0 + x1xm−2

m
2 −2∏
k=1

x2k+1


which is the desired form.

The right-hand factor. For the right-hand factor

m∑
i=m

2 +1

y2i−1

i−1∏
k=m

2 +1

y2k,

observe that all y are from the output of χm+1. Thus, we first substitute x′
i =

xi+(m−1) and likewise y′i = yi+(m−1). With this, we have

m∑
i=m

2 +1

y2i−1

i−1∏
k=m

2 +1

y2k =

m∑
i=m

2 +1

y′2i−1−(m−1)

i−1∏
k=m

2 +1

y′2k−(m−1)

=

m∑
i=m

2 +1

y′2(i−m
2 )

i−1∏
k=m

2 +1

y′2(k−m
2 )+1

=

m
2∑

i=1

y′2i

i−1∏
k=1

y′2k+1 =

m
2∑

i=1

y′2i

i∏
k=2

y′2k−1.
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Now, by Lemma 2, we can simply replace y′ by x′ in the product. Then, we again
get a telescope sum and finally the desired form by reversing the substitution.
That is,

m∑
i=m

2 +1

y2i−1

i−1∏
k=m

2 +1

y2k =

m
2∑

i=1

y′2i

i∏
k=2

x′
2k−1

=

m
2∑

i=1

(
x′
2i

i∏
k=2

x′
2k−1 + x′

2i

i+1∏
k=2

x′
2k−1

)

= x′
2 + x′

m+2

m
2 +1∏
k=2

x′
2k−1 = x′

2 + x′
1

m
2 +1∏
k=2

x′
2k−1

= xm+1 + xm

m
2 +1∏
k=2

x2k−1+(m−1)

= xm+1 + xm

m
2 +1∏
k=2

x2(k−1+m
2 )

= xm+1 + xm

m∏
k=m

2 +1

x2k

= xm+1 + xmxm+2

m∏
k=m

2 +2

x2k.

⊓⊔

Lemma 5. Formula for computing xm−1. For m even and y = χχ2m(x), we
have

xm−1 = ym−2 +

m
2 −2∑
i=1

y2i−1

i−1∏
k=0

y2k


+

ym−1 +

ym+1 +

m∑
i=m

2 +2

y2i−1

i−1∏
k=m

2 +1

y2k

 ym−3

 m
2 −2∏
k=0

y2k.

Proof. As ym−2 = xm−1 + x0x1, we show that the rest of the sum evaluates
to x0x1. To do so, we again apply Lemma 2 to the second summand and then
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simplify the telescope sum. That is,

m
2 −2∑
i=1

y2i−1

i−1∏
k=0

y2k =

m
2 −2∑
i=1

y2i−1

i−1∏
k=0

x2k

=

m
2 −2∑
i=1

(
x2i−1

i−1∏
k=0

x2k + x2i+1

i∏
k=0

x2k

)

= x0x1 + xm−3

m
2 −2∏
k=0

x2k.

Hence, we have to show that the third summand evaluates to xm−3

∏m
2 −2

k=0 x2k.
For the inner part of the third summand, using the same techniques as before
and slightly abusing notation such that x2m = xm−1 and x2m+1 = xm, we have

m∑
i=m

2 +2

y2i−1

i−1∏
k=m

2 +1

y2k =

m∑
i=m

2 +2

y2i−1

i−1∏
k=m

2 +1

x2k

=

m∑
i=m

2 +2

x2i−1

i−1∏
k=m

2 +1

x2k + x2i+1

i∏
k=m

2 +1

x2k


= xm+2xm+3 + x2m+1

m∏
k=m

2 +1

x2k

= xm+2xm+3 + xm−1xm

m−1∏
k=m

2 +1

x2k.

Next, we add ym+1 = xm+1 + xm+2xm+3 to get

xm+1 + xm−1xm

m−1∏
k=m

2 +1

x2k.

Now, we multiply with ym−3 = xm + xm−2x0 and get

xmxm+1 + x0xm−2

xm+1 + xm−1xm

m−1∏
k=m

2 +1

x2k

 .

Then, we add ym−1 = xm−3 + xm + xmxm+1. For this, first observe that

xmxm+1 + xm + xmxm+1 = xm(xm+1 + 1 + xm+1) = 0

and hence we are left with

xm−3 + x0xm−2

xm+1 + xm−1xm

m−1∏
k=m

2 +1

x2k

 .
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Finally, we multiply with
∏m

2 −2

k=0 y2k. For the second summand, we get a telescope
product, i.e.,

x0(x0 + x1x2)(x2 + x3x4) · . . . · (xm−4 + xm−3xm−2)xm−2 = 0

and hence we are only left with

xm−3

m
2 −2∏
k=0

y2k.

With the same technique as given in the proof of Lemma 2, we can swith y to x
and obtain

xm−3

m
2 −2∏
k=0

x2k.

This concludes the proof as this is exactly the term we wanted to obtain. ⊓⊔

Lemma 6. Formula for computing xm−2. For m even and y = χχ2m(x), we
have

xm−2 = ym +

 m−1∑
i=m

2 +1

y2i

i∏
k=m

2 +1

y2k−1


+

ym−2 +

m
2 −1∑
i=1

y2i−1

i−1∏
k=0

y2k

+ ym−1

m
2 −2∏
k=0

y2k

 m∏
k=m

2 +1

y2k−1.

Proof. We have ym = xm−2+xm+1xm+2 and for the second summand, with the
same techniques as before, we get

m−1∑
i=m

2 +1

y2i

i∏
k=m

2 +1

y2k−1 =

m−1∑
i=m

2 +1

y2i

i∏
k=m

2 +1

x2k−1

=
m−1∑

i=m
2 +1

x2i

i∏
k=m

2 +1

x2k−1 + x2i+2

i+1∏
k=m

2 +1

x2k−1


= xm+1xm+2 + x2m

m∏
k=m

2 +1

x2k−1

= xm+1xm+2 + xm−1

m∏
k=m

2 +1

x2k−1

and hence have to show that the third summand evaluates to

xm−1

m∏
k=m

2 +1

x2k−1.
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For the third summand, we first move the summand with index i = m
2 − 1 out

such that we can apply Lemma 2. That is,

m
2 −2∑
i=1

y2i−1

i−1∏
k=0

y2k =

m
2 −2∑
i=1

y2i−1

i−1∏
k=0

x2k

=

m
2 −2∑
i=1

(
x2i−1

i−1∏
k=0

x2k + x2i+1

i∏
k=0

x2k

)

= x0x1 + xm−3

m
2 −2∏
k=0

x2k.

For the moved term, we have

ym−3

m
2 −2∏
k=0

y2k = (xm + xm−2x0)

m
2 −2∏
k=0

(x2k + x2k+1x2k+2)

which again contains a telescope product and hence simplifies to

xm

m
2 −2∏
k=0

y2k.

Adding the two terms above and ym−2 = xm−1 + x0x1 yields

xm−1 + xm−3

m
2 −2∏
k=0

x2k + xm

m
2 −2∏
k=

y2k.

Next, we add the term

ym−1

m
2 −2∏
k=0

y2k

where ym−1 = xm−3 + xm + xmxm+1. Therefore, the terms with the leading xm

cancel and we can apply the same technique as in Lemma 2 to see that the terms
with the leading xm−3 also cancels. Hence, we get

xm−1 + xmxm+1

m
2 −2∏
k=0

y2k.

Finally, we multiply with
∏m

k=m
2 +1 y2k−1. By once again applying the techniques

from Lemma 2 and on the other hand using that the telescope product vanishes,
we obtain

xm−1

m∏
k=m

2 +1

x2k−1

which is as desired and hence concludes the proof. ⊓⊔
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E Differential Trails

E.1 Differential Properties of χχ

Extended affine equivalence of χ variants. As we use variants of two concatenated
χ functions as non-linear mapping in our different round functions, we would
like to use all the properties of χ. As any variant of χχ where the linear part
is changed is affine equivalent to two concatenated χ, differential probability
and squared linear correlation over χχ correspond to the multiplication of the
differential probability or squared linear correlation for each χ.

Therefore, we can use the properties from [34] and [35] to compute differential
probability and linear correlation and model efficiently differential and linear
properties of ChiLow in MILP.

E.2 MILP Modeling for Differential Trails

Due to the nature of the non-linear layer χχ, we made bit-wise modeling of the
cipher. For the linear layer, the model consists of 8 equations per bit to model the
3-bit XOR and later improve to get rid of the dummy variable. For the non-linear
layer, the modeling requires a bit more attention. We first model the propagation
through the AND with one equation representing the only impossible transition
from two input (x) to one output bit (y):

xi + xi+1 − yi ≥ 0 .

Doing so, we consider local propagation only for each output bit, however, this
is not enough as some impossible transition can happen when we look at two
output bits depending on three input bits. This case can be excluded with the
following equations:

xi − xi+1 + xi+2 + yi − yi+1 < 3

xi − xi+1 + xi+2 − yi + yi+1 < 3

Then we can model the linear part of χχ using 4 equations for almost all positions,
and 8 for the one where the output is the sum of three bits.

This modeling works for χ applied in big circles as in Subterranean [17] or
Koala [21], but in the case of ChiLow, the division of the state into two χ-like
functions leads to considering impossible transitions where the input of one of
the concatenated χ is (almost) fully non-zero, and the output of the same χ is
fully zero. Those transitions are also possible in the case of Subterranean or
Koala, however, the solver will never consider such solutions as the differential
probability of such input difference would be 2−257 and therefore never lead to a
trail with a low differential probability. In the case of ChiLow, such transitions
are considered as the differential probability of such input would be close to
2

n
2 . Such transition only occurred when there are no two consecutive input bits

with a zero difference and more specifically when the number of non-zero input
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differences is equal to m− 1 where m is the size of χ. We experimentally verify
that the following equation allows to remove all such transitions:

m∑
i=0

yi −
m∑
i=0

xi ≥ m+ 2

E.3 Differential Trails

In the following tables, we show examples of differential trails for one, two, and
three rounds for ChiLow-(32+ τ) and ChiLow-40 with differential probability
following the result from 2. We show differences after each operation.

Table 8: 1-round differential trail of ChiLow-(32 + τ).
Data Path Tweak Path

∆in ................................ ...........................................................1....

χχ ................................ ...........................................................1....

L32 ................................ ...1.......1..................................................1.

⊕ ...1.......1....................

Table 9: 2-round differential trail of ChiLow-(32 + τ).
Data Path Tweak Path

∆in ................................ .......................................1........................

χχ ................................ .......................................1........................

L32 ................................ ..................................1....1.......1................

⊕ ................................

χχ ................................ ..................................1....1.......1................

L32 ................................ .......1...1....1.......1.........1....1.......1..........1....1

⊕ .......1...1....1.......1.......

Table 10: 3-round differential trail of ChiLow-(32 + τ).
Data Path Tweak Path

∆in ................................ ...............................................................1

χχ ................................ ...............................................................1

L32 ................................ ..........................................1....1.......1........

⊕ ................................

χχ ................................ ..........................................1....1.....1.1........

L32 ................................ .1.....1.1........1....1.......1...1....1.......1.........1.1..1

⊕ .1.....1.1........1....1.......1

χχ .1...1.1.1....1...1...11.....1.1 .1...111.1......111..1.1......1..111..1.1......11.......111.1.1.

L32 1.11.......111.11.11...11.11.1.1 1..1.......11..11..1...11.11.1.111...1....1...1.11.......1111..1

⊕ ..1..........1....1.............

Table 11: 1-round differential trail of ChiLow-40.
Data Path Tweak Path

∆in ........................................ .................................................1..............

χχ ........................................ .................................................1..............

L32 ........................................ ................1....1.......1..................................

⊕ ................1....1.......1..........
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Table 12: 2-round differential trail of ChiLow-40.
Data Path Tweak Path

∆in ........................................ ...........1....................................................

χχ ........................................ ...........1....................................................

L32 ........................................ ..............................................1....1.......1....

⊕ ........................................

χχ ........................................ ..............................................1....1.......1....

L32 ........................................ ...1.......1...1....1.......1.........1....1.......1..........1.

⊕ ...1.......1...1....1.......1.........1.

Table 13: 3-round differential trail of ChiLow-40.
Data Path Tweak Path

∆in ........................................ .....1..........................................................

χχ ........................................ .....1..........................................................

L32 ........................................ ............................................1....1.......1......

⊕ ........................................

χχ ........................................ ............................................1....1.......1......

L32 ........................................ ......1.........1....1.......1..........1....1.......1...1....1.

⊕ ......1.........1....1.......1..........

χχ ......1.........1..1.1.......1.......... .....11.......111....1.........1........1....1.......1..11....1.

L32 ....11.11.1....1..1..1.1.......1..1.11.. .11.11...11.11.1............... 1.1.....11...11.1....11...1...1.1

⊕ .11....111..11....1..1.1.........11.11.1

F Details of Our MITM Attack

The procedure for mounting a MITM key-recovery attack on ChiLow-(32 + τ)
is as follows:

1. Identify the bits fixed to constants and assign proper values to them.
2. Identify the key bits that are to be exhausted. Classify them into bits in blue

and red.
3. In the computation of red bits, we assume that the blue bits are unknown

and compute the internal state values based on the gray and red bits. This
step is repeated for all the possible values of the red bits, and we store the
corresponding computed information.

4. Compute blue bits in a similar manner.
5. Find matches between the store information obtained at Step 3 and Step 4.

Check the matched keys using 4 pairs of plaintext-ciphertext.

For the 3-round attack, we capture this procedure in Algorithm 3.
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Fig. 6: MITM key-recovery attack on 4-round ChiLow-(32 + τ).
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Algorithm 3: MITM key-recovery attack on 3-round ChiLow-(32+τ).

Data: {(Mi, T i, Ci), i ∈ {0, 1, 2, 3}}
Result: K

1 In Fig. 4, we have 29 non-linear equations on in

K1:{fred
0 (K1) = cred0 , . . . , fred

28 (K1) = cred28 }, 24 non-linear equations on in

T⊕
1 :{fred

29 (T⊕
1 ) = cred29 , . . . , fred

52 (T⊕
1 ) = cred52 }, and 17 non-linear equations on in

X⊕
2 :{fred

53 (X⊕
2 ) = cred53 , . . . , fred

69 (X⊕
2 ) = cred69 };

2 In Fig. 4, we have 2 non-linear equations on in

K1:{fblue
0 (K1) = cblue

0 , fblue
1 (K1) = cblue

1 } and 6 non-linear equations on in

T⊕
1 :{fblue

2 (T⊕
1 ) = cblue

2 , . . . , fblue
7 (T⊕

1 ) = cblue
7 };

3 Let X0 = M0 and T0 = T 0;

4 for the 2 gray bits K0[95, 127] ∈ F2
2 do

5 for the 95 red bits K0[0 − 94] ∈ F115
2 do

6 for the 8 constants cblue
0 ∥ . . . ∥cblue

7 ∈ F8
2 do

7 Use K0[95, 127] to derive and in K1;

8 Use T and K1 to derive and in T⊕
1 ;

9 We get 29 non-linear equations on K1:{f0(K1) = cred0 , . . . , f28(K1) = cred28 };
10 We get 24 non-linear equations on

T⊕
1 :{f29(T⊕

1 ) = cred29 , . . . , f52(T
⊕
1 ) = cred52 };

11 Use K†
1 to derive and in K2;

12 Use T †
1 and K2 to derive and in T⊕

2 ;

13 Use X, T , T1 and T2 to derive and in X⊕
2 ;

14 We get 17 non-linear equations on

X⊕
2 :{f53(X⊕

2 ) = cred53 , . . . , f69(X
⊕
2 ) = cred69 };

15 Use T †
2 to derive and in T3;

16 Use X†
2 and T3 to derive and in X⊕

3 ;

17 Store the value of K0[0 − 94] in Lred[X
⊕
3 [0 − 3, 6 − 9, 11 − 14, 16, 17, 19 −

22, 24, 25, 29, 30]∥cred0 ∥ . . . ∥cred69 ∥cblue
0 ∥ . . . ∥cblue

7 ];

18 for the 31 blue bits K0[96 − 126] ∈ F31
2 do

19 for the 70 constants c0∥ . . . ∥c69 ∈ F69
2 do

20 Use K0[95, 127] to derive and in K1;

21 Use T and K1 to derive in T⊕
1 ;

22 We get 2 non-linear equations on K1:{fblue
0 (K1) = cblue

0 , fblue
1 (K1) = cblue

1 };
23 We get 6 non-linear equations on

T⊕
1 :{fblue

2 (T⊕
1 ) = cblue

2 , . . . , fblue
7 (T⊕

1 ) = cblue
7 };

24 Use K†
1 to derive in K2;

25 Use T †
1 and K2 to derive in T⊕

2 ;

26 Use T2 to derive in X†
2 ;

27 Use X†
2 and T3 to derive in X⊕

3 ;
28 for the K0[0 − 94] in

Lred[(X
⊕
3 [0 − 3, 6 − 9, 11 − 14, 16, 17, 19 − 22, 24, 25, 29, 30] ⊕ M0[0 − 3, 6 −

9, 11 − 14, 16, 17, 19 − 22, 24, 25, 29, 30])∥cred0 ∥ . . . ∥cred69 ∥cblue
0 ∥ . . . ∥cblue

7 ] do
29 Use gray bits K0[95, 127], blue bits K0[96 − 126], and red bits

K0[0 − 94] to derive a key candidate K;
30 Use at most 4 plaintext-ciphertext pairs to check if there is a full match;

31 if DK(T,C0) ̸= M0 then
32 continue;

33 if DK(T,C1) ̸= M1 then
34 continue;

35 if DK(T,C2) ̸= M2 then
36 continue;

37 if DK(T,C3) = M3 then
38 return K;
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Fig. 7: MITM key-recovery attack on 3-round ChiLow-40.
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Fig. 8: MITM key-recovery attack on 4-round ChiLow-40.


	ChiLow and ChiChi: New Constructions for Code Encryption

