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Abstract. We revisit the polynomial attack to the ROS problem modulo
p from [6]. Our new algorithm achieves a polynomial time solution in
dimension ℓ ≳ 0.725 · log2 p, extending the range of dimensions for which
a polynomial attack is known beyond the previous bound of ℓ > log2 p.
We also combine our new algorithm with Wagner’s attack to improve
the general ROS attack complexity for some of the dimensions where a
polynomial solution is still not known.
We implement our polynomial attack and break the one-more unforge-
ability of blind Schnorr signatures over 256-bit elliptic curves in a few
seconds with 192 concurrent sessions.

1 Introduction

A well-known problem in modern cryptography is the Random Inhomogeneities
in an Overdetermined Solvable system of linear equations (ROS) problem. Orig-
inally studied by Schnorr [26] in the context of blind signature schemes, this
problem has gained significant attention over the years. The security of various
interactive signature schemes, such as threshold, multi, and blind signatures, has
been shown to be closely related to the ROS problem.

The ROS problem can be defined as follows:

Definition 1 (ROS problem). Given a prime number p and access to a random
oracle Hros with range in Zp, the ROS problem (in dimension ℓ) asks to find ℓ+1
vectors ρ̂i ∈ Zℓ

p for i ∈ [ℓ+ 1], and a vector c = (c1, . . . , cℓ) such that:

Hros(ρ̂i) = ⟨ρ̂i, c⟩ for all i ∈ [ℓ+ 1].

One of the first cryptanalytic approaches to this problem was given by Wag-
ner in [31]. By studying a generalization of the birthday paradox, he introduced
an algorithm that solves the ROS problem in subexponential time.

Almost twenty years later, Benhamouda, Lepoint, Loss, Orrù and Raykova
[5] gave a polynomial solution to the ROS problem that runs in polynomial time
for dimension ℓ greater than log2 p. They also combined their attack with Wag-
ner’s algorithm to improve the previous subexponential solution for dimensions
smaller than log2 p.

In this work, we revisit the polynomial attack to the ROS problem from [6].
We make the following contributions



– We give the first polynomial time solution to the ROS problem for ℓ ≳
0.725 · log2 p.

– We present an improved version of the generalized ROS attack from [6]. By
combining our new polynomial attack with Wagner’s algorithm, we outper-
form the complexity of the previous version on an additional range of cases
with dimension smaller than 0.725 · log2 p.

– Finally, we provide an implementation of our new polynomial attack that
breaks the one-more unforgeability of blind Schnorr signatures over 256-bit
elliptic curves in a few seconds with 192 concurrent sessions.

1.1 Technical Overview

Following the notation from [6], we represent the vectors ρ̂ as the coefficients of
degree-1 polynomials in Zp[x1, . . . , xℓ], mapping (ρ1, . . . , ρℓ) 7→ ρ1x1 + . . . ρℓxℓ.
Vice-versa, any degree-1 polynomial ρ can be seen as a vector in Zℓ

p by removing
its constant coefficient ρ0. We remark that computing the inner product ⟨ρ̂i, c⟩
is equivalent to the polynomial evaluation ρi(c).

Binary decomposition attack from [6]. We start by briefly recalling the
polynomial attack from [6]. This attack exploits the adversary’s flexibility in
selecting the first ℓ polynomials. Any set of ℓ polynomials of the form ρi = ρi,ixi

where ρi,i ∈ Z×
p is a valid partial solution for c with ci = ρ−1

i,i Hros(ρ̂i). The
challenge lies in finding ρ̂ℓ+1, a non-trivial linear combination of the ci values
that satisfies the hash constraint Hros(ρ̂ℓ+1).

This implies that the adversary can freely choose two sets of ℓ polynomials
{ρ0i,ixi}i∈[ℓ] and {ρ1i,ixi}i∈[ℓ] that are valid partial solutions for c0 and c1.

The adversary uses these two partial solution to construct, for each i ∈ [ℓ],
the following degree-1 polynomial:

fi(xi) :=
1

c1i − c0i
· 2i−1(xi − c0i ).

Each polynomial fi, satisfies fi(c
0
i ) = 0 and fi(c

1
i ) = 2i−1.

This setup allows the adversary to express any number z up to p as
∑

i∈[ℓ] fi(c
bi
i )

where bi are the digits from the binary decomposition of z. Specifically, the ad-
versary can express Hros(ρℓ+1) as a linear combination of the ci values, thereby
solving the ROS problem.

Benefits of a ternary decomposition. One possible approach to reduce the
number of queries is modifying this setup to support a ternary decomposition
of numbers up to p. By considering a ternary decomposition, the number of
digits would be smaller and this would allow to use less polynomials and less
dimensions to run the attack.

The adversary can freely choose three sets of ℓ polynomials {ρbi,ixi}i∈[ℓ](for
b ∈ {0, 1, 2}) that are valid partial solutions for cb(for b ∈ {0, 1, 2}).
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To replicate the property of the previous attack, the attacker would need
to find, for i ∈ [ℓ], a polynomial fi, such that fi(c

0
i ) = 0, fi(c

1
i ) = 3i−1 and

fi(c
2
i ) = 2 · 3i−1.
A naive approach could be to define fi simply as the Lagrange interpolating

polynomial of these points. The problem is that this would return a quadratic
polynomial, breaking the linearity requirement of the ROS problem.

To obtain a linear polynomial that satisfies all the needed constraints, the
adversary needs to find a constant µi for each fi such that{

µi · 3i−1(c1i − c0i ) = 1 · 3i−1 (mod p)

µi · 3i−1(c2i − c0i ) = 2 · 3i−1 (mod p)
.

However, for generic values of cbi , this system has no solution in µi.
A natural question that arises is

Is it possible to improve the attack from [6] by using decomposition in bases
greater than two?

In this paper, we answer to this question affirmatively.

Ternary decomposition attack. To partially circumvent the issues of the
naive approach, we can resort to lattice theory and solve the system in an ap-
proximate manner. By solving an easy closest vector problem, the adversary can
find a µi, for every i ∈ [⌈log3 p⌉], that satisfies the following relaxed condition:{

µi · 3i−1(c1i − c0i ) = 1 · 3i−1 + δi,1 (mod p)

µi · 3i−1(c2i − c0i ) = 2 · 3i−1 + δi,2 (mod p)
,

where δi,1 and δi,2 are small integers of magnitude approximately p1/2. For each
i ∈ [⌈log3 p⌉] the adversary can use µi to construct the following degree-1 poly-
nomials:

fi(xi) := µi · 3i−1(xi − c0i ).

With this new setup, the adversary can express any number z up to p as a
linear combination of ci values in the following two-step decomposition. First,
consider the ternary decomposition of

z =

⌈log3 p⌉∑
i=1

bi3
i−1,

and approximate the top half of the digits by substituting them with evaluations
of polynomials:

z =

⌈(log3 p)/2⌉∑
i=1

bi3
i−1 +

⌈log3 p⌉∑
i=⌈(log3 p)/2⌉+1

(
fi(c

bi
i )− δi,bi

)
.
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Next, consider the remaining half of the number with the approximation errors
to decompose

z̄ :=

⌈(log3 p)/2⌉∑
i=1

bi3
i−1 −

⌈log3 p⌉∑
i=⌈(log3 p)/2⌉+1

δi,bi .

This value, z̄, is approximately of size p1/2.
Since our construction of the fi is approximated, each time we use it, we incur

in an additional error term of size approximately p1/2. Consequently, applying
the same base-3 technique again to z̄, would not yield a full decomposition, as
it would introduce a new ¯̄z to decompose, of the same magnitude as z̄.

To complete the attack, we require an exact final step. This can be achieved
by applying the binary attack, which is exact, directly to z̄, obtaining another
linear combination of ci values. Summing the two partial decompositions results
in a full decomposition of z requiring approximately 1/2 log3 p + 1/2 log2 p ≈
0.815 log2(p) dimensions.

Base-n decomposition attack. In this paper, we further expand this setup
to support decompositions up to any base n instead of only up to base 3. Using a
larger base means saving more dimensions (logn p < log3 p) but also introducing
a larger error (δi,bi ≈ p(n−2)/(n−1)). To balance these effects, we start by using a
larger base to approximate the higher-order digits and gradually reduce the base
as the error introduced becomes comparable to the powers we are approximating.
This process continues until we reach base 2, at which point the decomposition
can be concluded with an exact final step.

Other contributions. We also revisit the generalized ROS attack. The core
idea behind the attack from [6] is to first use Wagner’s subexponential attack
to reduce the size of the target z, obtaining a shorter binary decomposition.
With fewer digits to handle, the dimension required for the polynomial binary
attack are also reduced, which makes the polynomial attack viable even when
ℓ < log2 p. In this paper, we present an updated version of this generalized
attack by combining Wagner’s technique with our new polynomial attack. This
enhancement allows for the use of higher bases in the second phase of the attack,
further improving its efficiency. (Figure 1)

Finally, we discuss several practical improvements for attacking fixed values
of p. We outline how to adapt our attack against the one-more unforgeability
of Schnorr blind signatures as a blueprint for applying the method to other
cryptographic schemes. Additionally, we present a SageMath [30] implementation
that demonstrates the polynomial-time attack against Schnorr blind signatures
with a 256-bit prime. This implementation runs in an average of 13 seconds using
192 parallel sessions. We also consider an alternative parameter set that reduces
the runtime to under 3 seconds with 194 parallel sessions.
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Fig. 1. Cost of the subexponential attack for λ = 256 and ℓ < 256.

1.2 Related Works

Affected schemes. Since our new attacks are improved variants of those in
[6], the set of affected schemes remains largely unchanged. These include various
blind signatures (and variants) [25,26,1,32,11], threshold signatures [10,17], and
multisignatures [28,20]. We refer to Sections 5 and 6 of [6] for a more detailed
discussion of their vulnerabilities.

After the publication of [5], many group-based schemes [24,29,7,18,21,4],
adopted countermeasures against the ROS attack. These are usually based ei-
ther on some form of delinearization in the exponent or by introducing additional
rounds.

Variants of the ROS Problem. Several variants of the ROS problem have
been introduced, including: Modified ROS [9], Generalized ROS [12], Weighted
Fractional ROS [29]. Our attack does not extend to any of these variants. Another
recent variant, the Parallel ROS, was introduced in [16] to analyze the security of
the CSI-Otter blind signature scheme [15]. While polynomial-time attacks [8,16]
exist against this variant, they leverage a small challenge space to work and are
orthogonal to our attack and to those in [6].

2 Preliminaries

In this work, we follow the same notation used in [6]. When referring to a lattice
generated by a matrix, we consider the lattice generated by the column vectors
of the matrix. With Unif [a, b], we refer to the uniform distribution on the finite

5



set {x ∈ Z | a ≤ x ≤ b}. For an integer q, we let [q] be the integer set {1, . . . , q},
and Zq be the ring of integers modulo q.

2.1 The ROS Problem

Let Pgen(1λ) be a parameter generation algorithm that given as input the secu-
rity parameter λ outputs an odd prime p of bit length λ = ⌈log2 p⌉.

Game ROSPgen,A,ℓ(λ)

p← Pgen(1λ)

((ρ̂i)i∈[ℓ+1], c)← AHros(p)

return
(
∀i ̸= j ∈ [ℓ+ 1] : ρ̂i ̸= ρ̂j ∧ ⟨ρ̂i, c⟩ = Hros(ρ̂i)

)
Fig. 2. The ROSPgen,A,ℓ(λ) game. Hros is a random oracle with image in Zp.

The ROS problem for ℓ dimensions, displayed in Fig. 2, is hard if no adversary
can solve the ROS problem in time polynomial security parameter λ, i.e.:

AdvrosPgen,A,ℓ(λ) := Pr[ROSPgen,A,ℓ(λ) = 1] = λ−ω(1).

3 Attack

Following the notation from [6], we identify the vectors ρ̂ as the coefficients of
degree-1 polynomials in Zp[x1, . . . , xℓ] by mapping (ρ1, . . . , ρℓ) 7→ ρ1x1+. . . ρℓxℓ.
Vice-versa, any degree-1 polynomial ρ can be seen as a vector in Zℓ

p by removing
its constant coefficient ρ0. We remark that performing the inner product ⟨ρ̂i, c⟩
is equivalent to the polynomial evaluation ρi(c).

3.1 From Binary to Ternary

Theorem 1. Define
B := 25/2(log3 p)

1/2.

There exists an adversary that runs in polynomial time and solves the ROS prob-
lem relative to Pgen with any dimension greater or equal to ℓ = ℓ1 + ℓ2, where

ℓ1 :=
⌈
log2

(
10B log3 p · p1/2

)⌉
,

e2 :=
⌈
log3

(
B log3 p · p1/2

)⌉
+ 2 , ℓ2 := ⌈log3(p)⌉ − e2
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Proof. First phase: Building the setup. Define:

ρ0
i := xi, ρ1

i := 2xi for i ∈ [ℓ1],

and let cbi := Hros(ρ̂
b
i )/(b+ 1), for b = 0 and b = 1.

Similarly, define:

ρ0
i := xi, ρ1

i := 2xi, ρ2
i := 3xi for ℓ1 < i ≤ ℓ,

and let cbi := Hros(ρ̂
b
i )/(b+ 1), for b = 0, b = 1 and b = 2.

If there exist i∗ ∈ [ℓ] and b ̸= b̄ such that cbi∗ = cb̄i∗ , then A stops imme-
diately and returns the ROS solution (ρ̂0

1, . . . , ρ̂
0
i∗−1, ρ̂

b
i∗ , ρ̂

b̄
i∗ , ρ̂

0
i∗+1, . . . , ρ̂

0
ℓ) and

(c01, . . . , c
0
i∗−1, c

b
i∗ , c

b̄
i∗ , c

0
i∗+1, . . . , c

0
ℓ).

Otherwise, for each ℓ1 < i ≤ ℓ, consider the lattice Li generated by(
c1i − c0i p 0
c2i − c0i 0 p

)
.

A basis for Li is (
1 0

(c2i − c0i )/(c
1
i − c0i ) p

)
.

Next, we compute w, the closest vector in Li to the target

t :=

(
3e2+i−ℓ1−1

2 · 3e2+i−ℓ1−1

)
.

In a two-dimensional lattice, the closest vector problem can be solved exactly by
expressing the target in terms of the lattice basis and rounding its coordinates
to the nearest integers. This does not impact the running time of the algorithm.

Since w ∈ Li, we know that it exists a value µ̃i ∈ Zp, such that

w = µ̃i ·
(
c1i − c0i
c2i − c0i

)
(mod p),

is close to t. Define µi := µ̃i/3
e2+i−ℓ1−1.

For each ℓ1 < i ≤ ℓ, we obtain the following equation{
µi · 3e2+i−ℓ1−1(c1i − c0i ) = 1 · 3e2+i−ℓ1−1 + δi,1 (mod p)

µi · 3e2+i−ℓ1−1(c2i − c0i ) = 2 · 3e2+i−ℓ1−1 + δi,2 (mod p)
, (1)

where δi,1 and δi,2 are two integer values due to the distance of the target from
the lattice. Since µi · 3e2+i−ℓ1−1(c0i − c0i ) = 0 · 3e2+i−ℓ1−1, we define δi,0 := 0.

Lemma 1. For each ℓ1 < i ≤ ℓ, it is true that

max
b
|δi,b|≤ Bp1/2,

with probability equal to

1− 1

4 log3 p
.
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Proof. Deferred to Section 3.3

Assuming the previous lemma, the probability of having all the δi,b for ℓ1 <
i ≤ ℓ and b ∈ {1, 2} satisfying |δi,b|≤ Bp1/2 is

ℓ2∏
i=1

(
1− 1

4 log3 p

)
≥ 1−

ℓ2∑
i=1

1

4 log3 p
≥ 3

4
.

If any of the δī,b has a bigger absolute value than Bp1/2, then we can just
repeat the construction for the index ī, until all of the deltas satisfy the condition.
Specifically,

– Sample uniformly random αb
ī

for b ∈ {0, 1, 2}.
– Define ρb

ī
:= αb

ī
xī for b ∈ {0, 1, 2}.

– Define cb
ī
:= Hros(ρ̂

b
ī )/α

b
ī

for b ∈ {0, 1, 2}.
– Construct a new lattice using the new values of cb

ī
.

– Solve another closest vector problem and obtain new δī,b for b ∈ {1, 2}.

Since the probability of obtaining a valid setup is greater than a constant,
also the expected number of resamples is constant.

For i ∈ [ℓ1], the adversary constructs the following degree-1 polynomials:

fi(xi) :=
1

c1i − c0i
2i−1(xi − c0i )

Similarly, for each ℓ1 < i ≤ ℓ, the adversary constructs the following degree-1
polynomial:

fi(xi) := µi3
e2+i−ℓ1−1(xi − c0i )

Second phase: Decomposing random numbers up to p. We now show how the
adversary can decompose a generic number z modulo p by using the polynomials
that we created.

Lemma 2. Given z a uniformly random number in Zp, it is possible to obtain
a decomposition of z as

z =

2∑
k=1

ℓ∑
i=1

fi(c
bi
i ),

where bi ∈ {0, . . . , k} for all i ∈ [ℓ] with a probability greater than 8/9.

Proof. First,

z =

e2∑
i=1

bi3
i−1 +

e2+ℓ2∑
i=e2+1

bi3
i−1

=

e2∑
i=1

bi3
i−1 +

ℓ2∑
i=1

be2+i3
e2+i−1
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=

e2∑
i=1

bi3
i−1 +

ℓ2∑
i=1

fℓ1+i(c
be2+i

ℓ1+i )−
ℓ2∑
i=1

δℓ1+i,be2+i

where bi are the digits in the ternary decomposition of z. We remark that this
partial decomposition only uses ℓ2 polynomials f .

Define z̄ := z −
∑ℓ2

i=1 fℓ1+i(c
be2+i

ℓ1+i ). We can bound z̄ from above

z̄ ≤
e2∑
i=1

bi3
i−1 +

ℓ2∑
i=1

|δℓ1+i,be2+i |≤ 3e2 + ℓ2Bp1/2 ≤ ⌈10B log3(p)p
1/2⌉ ≤ 2ℓ1 ,

We would like z̄ to also be non-negative but this is not always the case for
every starting z. We want to study when z̄ ≥ 0, or equivalently, when

e2∑
i=1

bi3
i−1 ≥

ℓ2∑
i=1

δℓ1+i,be2+i
.

The probability of this happening is really high. Looking at the worst case,
where all the deltas are equal to Bp1/2 we have that, for a uniform z, the prob-
ability of success is

Pr[Unif [0, 3e2 ] ≥ ℓ2Bp1/2] = 1− ℓ2Bp1/2

3e2
≥ 1− ℓ2Bp1/2

9 log3 p Bp1/2
≥ 8

9
.

This worst-case bound is much worse than the average one. The sum of the
deltas has an expected value of zero, so we can expect the actual probability
of a successful decomposition to be much higher than 8/9. Nonetheless, for this
proof, we only need this probability to have a constant lower bound.

We can now say that with a constant probability, z̄ will be a positive number
with a binary decomposition of maximum ℓ1 digits. In this case, we can obtain
an exact decomposition of z̄ as ℓ1 polynomials by using the binary attack from
[6]. In particular, for 1 < i ≤ ℓ1

z̄ =

ℓ1∑
i=1

b̄i2
i−1 =

ℓ1∑
i=1

fi(c
b̄i
i ),

where the b̄i are the digits in the binary decomposition of z̄.

Third phase: Computing the solution. Choose any α ∈ Z×
p and define ρℓ+1 :=

α(
∑ℓ

i=1 fi). We remark that ρℓ+1 is a multivariate polynomial of total degree
1. We now apply the decomposition from Lemma 2 with z = α−1(Hros(ρ̂ℓ+1) +
ρℓ+1,0).

If the decomposition fails, we repeat this step by choosing a different α ∈ Zp.
Since z is a uniformly random value, the decomposition works with a constant
probability, and the expected number of resamples is also constant.
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After a successful decomposition of z, the adversary A outputs the solution

(ρ̂b̄1
1 , . . . , ρ̂

b̄ℓ1
ℓ1

, ρ̂
be2+1

ℓ1+1 , . . . , ρ̂
be2+ℓ2

ℓ1+ℓ2
, ρ̂ℓ+1),

and
c = (cb̄11 , . . . , c

b̄ℓ1
ℓ1

, c
be2+1

ℓ1+1 , . . . , c
be2+ℓ2

ℓ1+ℓ2
).

This is a valid solution. In fact,

– For i ∈ [ℓ1],
⟨ρ̂b̄i

i , c⟩ = (b̄i + 1) · cb̄ii = Hros(ρ̂
b̄i
i ).

– For ℓ1 < i ≤ ℓ,

⟨ρ̂be2+i−ℓ1
i , c⟩ = (be2+i−ℓ1 + 1) · cbe2+i−ℓ1

i = Hros(ρ̂
be2+i−ℓ1
i ).

– For i = ℓ+ 1,

⟨ρ̂ℓ+1, c⟩ = ρℓ+1(c)− ρℓ+1,0

= α

(
ℓ1∑
i=1

2i−1fi(c
b̄i
i ) +

ℓ2∑
i=1

3e2+i−1fℓ1+i(c
be2+i

ℓ1+i )

)
− ρℓ+1,0

= α

(
z̄ +

ℓ2∑
i=1

3e2+i−1fℓ1+i(c
be2+i

ℓ1+i )

)
− ρℓ+1,0

= αα−1(Hros(ρ̂ℓ+1) + ρℓ+1,0)− ρℓ+1,0

= Hros(ρ̂ℓ+1).

This attack works on a smaller dimension compared to the binary attack
from [6], in fact:

ℓ1 + ℓ2 = ⌈log2(10 log3(p)p1/2)⌉+ ⌈log3(p)⌉ − ⌈log3(log3(p)p1/2)⌉ − 2

≈ 1/2 log2(p) + 1/2 log3(p) (because log3(p)≪ p)

≈ 0.815 log2(p).

3.2 From Ternary to Higher Bases

Theorem 2. For any integer k ≥ 2, define

Ak := (k + 1)2 + 1, Bk := 2k3/2(logk+1 p)
1/k.

For any n ≥ 2, there exists an adversary that runs in polynomial time and
solves the ROS problem relative to Pgen with any dimension greater or equal to
ℓ = ℓ1 + ℓ2 + · · ·+ ℓn−1, where

ℓ1 :=
⌈
log2

(
A2B2 log3(p)p

1/2
)⌉

, ek :=
⌈
logk+1

(
Bk logk+1(p)p

(k−1)/k
)⌉

+ 2,

ℓk :=
⌈
logk+1

(
Ak+1Bk+1 logk+2(p)p

k/(k+1)
)⌉
− ek,

en−1 :=
⌈
logn

(
An−1Bn−1 logn(p)p

(n−2)/(n−1)
)⌉

+2 , ℓn−1 := ⌈logn(p)⌉−en−1.
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We remark that for n = 2 we obtain again the binary attack from [6], and
for n = 3 we obtain the ternary attack from Theorem 1.

Proof. To simplify the notation, when given an integer k ∈ [n − 1], we denote
I(k) :=

∑
1≤h≤k ℓh. In particular, I(1) = ℓ1 and I(n − 1) = ℓ. We also define

I(0) := 0.
First phase: Building the setup. For each k ∈ [n− 1], define:

ρb
i := (b+ 1)xi for all 0 ≤ b ≤ k, for all I(k − 1) < i ≤ I(k),

and

cbi := Hros(ρ̂
b
i )/(b+ 1) for all 0 ≤ b ≤ k, for all I(k − 1) < i ≤ I(k).

If there exist i∗ ∈ [ℓ] and b ̸= b̄ such that cbi∗ = cb̄i∗ , then A stops imme-
diately and returns the ROS solution (ρ̂0

1, . . . , ρ̂
0
i∗−1, ρ̂

b
i∗ , ρ̂

b̄
i∗ , ρ̂

0
i∗+1, . . . , ρ̂

0
ℓ) and

(c01, . . . , c
0
i∗−1, c

b
i∗ , c

b̄
i∗ , c

0
i∗+1, . . . , c

0
ℓ).

Otherwise, for every 1 < k ≤ n − 1, for I(k − 1) < i ≤ I(k), consider the
lattice Li generated by 

c1i − c0i p 0 . . . 0
c2i − c0i 0 p . . . 0

...
...

...
...

...
cki − c0i 0 0 . . . p

 .

A basis for Li is 
1 0 0 . . . 0

(c2i − c0i )/(c
1
i − c0i ) p 0 . . . 0

(c3i − c0i )/(c
1
i − c0i ) 0 p . . . 0

...
...

...
...

...
(cki − c0i )/(c

1
i − c0i ) 0 0 . . . p

 .

Next, we compute w, the closest vector in Li to the target

t :=

1 · (k + 1)ek+i−I(k−1)−1

...
k · (k + 1)ek+i−I(k−1)−1

 .

In this attack, we always consider lattices of small dimensions, specifically smaller
than a fixed value n. As a result, we can solve the closest vector problem exactly
while maintaining a polynomial running time for the attack. This can be achieved
using algorithms such as the one from [2], which runs in expected time 2k+o(k),
where k is the dimension of the lattice.

11



Since w ∈ Li, we know that it exists a value µ̃i ∈ Zp, such that

w = µ̃i ·


c1i − c0i
c2i − c0i
c3i − c0i

...
cki − c0i

 (mod p),

is close to t. Define µi := µ̃i/(k + 1)ek+i−I(k−1)−1.
For every 1 < k ≤ n − 1, for I(k − 1) < i ≤ I(k), we obtain the following

equation
µi · (k + 1)ek+i−I(k−1)−1(c1i − c0i ) = 1 · (k + 1)ek+i−I(k−1)−1 + δi,1 (mod p)

µi · (k + 1)ek+i−I(k−1)−1(c2i − c0i ) = 2 · (k + 1)ek+i−I(k−1)−1 + δi,2 (mod p)
...

µi · (k + 1)ek+i−I(k−1)−1(cki − c0i ) = k · (k + 1)ek+i−I(k−1)−1 + δi,k (mod p)

,

(2)
where δi,1, . . . , δi,k are integer values due to the distance of the target from the
lattice. Since µi · (k + 1)ek+i−I(k−1)−1(c0i − c0i ) = 0 · (k + 1)ek+i−I(k−1)−1, we
define δi,0 := 0.

Lemma 3. For all 1 < k ≤ n− 1, for each I(k − 1) < i ≤ I(k), it is true that

max
b
|δi,b|≤ Bkp

(k−1)/k,

with probability equal to 1− 1
2k+1 logk+1 p

.

Proof. Deferred to Section 3.3

Assuming the previous lemma, the probability of having all the δi,b for 1 <
k ≤ n− 1, I(k− 1) < i ≤ I(k) and b ∈ {1, . . . , k} satisfying |δi,b|≤ Bkp

(k−1)/k is

n−1∏
k=2

ℓk∏
i=1

(
1− 1

2k+1logk+1 p

)
≥ 1−

n−1∑
k=2

ℓk∑
i=1

1

2k+1 logk+1 p
≥ 1−

n−1∑
k=2

1

2k+1
=

1

2
.

If any of the δī,b has a bigger absolute value than Bkp
(k−1)/k, then we can

just repeat the construction for the index ī, until all of the deltas satisfy the
condition. Specifically,

– Sample uniformly random αb
ī

for b ∈ {0, . . . , k}.
– Define ρb

ī
:= αb

ī
xī for b ∈ {0, . . . , k}.

– Define cb
ī
:= Hros(ρ̂

b
ī )/α

b
ī

for b ∈ {0, . . . , k}.
– Construct a new lattice using the new values of cb

ī
.

– Solve another closest vector problem and obtain new δī,b for b ∈ {1, . . . , k}.

12



Since the probability of obtaining a valid setup is greater than a constant,
also the expected number of resamples is constant.

For I(0) < i ≤ I(1), the adversary can construct the following degree-1
polynomials:

fi(xi) :=
1

c1i − c0i
2i−1(xi − c0i ),

For 1 < k ≤ n − 1, for I(k − 1) < i ≤ I(k) the adversary can construct the
following degree-1 polynomials:

fi(xi) := µi(k + 1)ek+i−I(k−1)−1(xi − c0i ).

Second phase: Decomposing random numbers up to p. We now show how the
adversary can decompose a generic number z modulo p by using the polynomial
that we created.

Lemma 4. Given z a uniformly random number in Zp, it is possible to obtain
a decomposition of z as

z =

n−1∑
k=1

ℓk∑
i=1

fi(c
bi
i ),

where bi ∈ {0, . . . , k} for all i ∈ [ℓ] with a probability greater than 1/2.

Proof. First,

z =

en−1∑
i=1

bin
i−1 +

en−1+ℓn−1∑
i=en−1+1

bin
i−1

=

en−1∑
i=1

bin
i−1 +

ℓn−1∑
i=1

ben−1+in
en−1+i−1

=

en−1∑
i=1

bin
i−1 +

ℓn−1∑
i=1

fI(n−2)+i(c
ben−1+i

I(n−2)+i)−
ℓn−1∑
i=1

δI(n−2)+i,ben−1+i

where bi are the digits in the n-ary decomposition of z. We remark that this
partial decomposition only uses the polynomials fi for I(n− 2) < i ≤ ℓ.

Define zn−2 := z −
∑ℓn−1

i=1 fI(n−2)+i(c
ben−1+i

I(n−2)+i). We can bound zn−2 from
above

zn−2 ≤
en−1∑
i=1

bin
i−1 +

ℓn−1∑
i=1

|δI(n−2)+i,ben−1+i
|≤ nen−1 + ℓn−1Bn−1p

(n−2)/(n−1)

≤ ⌈(n2 + 1) logn(p)Bn−1p
(n−2)/(n−1)⌉ ≤ (n− 1)ℓn−2+en−2 ,

We would like zn−2 to also be non-negative but this is not always the case
for every starting z. We want to study when zn−2 ≥ 0, or equivalently when

13



en−1∑
i=1

bin
i−1 ≥

ℓn−1∑
i=1

δI(n−1)+i,ben−1+i
.

Looking at the worst case, where all the deltas are equal to Bn−1p
(n−2)/(n−1)

we have that, for a uniform z, the probability of success is

Pr [Unif [0, nen−1 ] ≥ ℓn−1Bn−1p
(n−2)/(n−1)] = 1− ℓn−1Bn−1p

(n−2)/(n−1)

nen−1

≥ 1− ℓn−1Bn−1p
(n−2)/(n−1)

n2 logn(p)Bn−1p(n−2)/(n−1)

≥ 1− 1

n2
.

Using both these bounds, we can say that, with a constant probability, zn−2

will be a positive number with a base n− 1 decomposition of maximum ℓn−2 +
en−2 digits.

At this point, we can iterate this process by considering zn−2 as the new
number to decompose with base n − 1 and the polynomials fi with I(n − 3) <
i ≤ I(n−2). From each iteration, we will obtain a new, smaller, zk and ℓk digits
bki for ek < i ≤ ek+ℓk from the decomposition in base k+1 of zk. Each iteration
has a probability of success of 1− 1

(k+1)2 .
Finally, we will be left with the last z1 that we can express exactly with its

binary decomposition, obtaining the last ℓ1 digits b1i for 0 < i ≤ ℓ1.
To simplify the notation, we refer to the starting z also as zn−1 and to the

digits that we obtain in the starting base n decomposition as bn−1
i .

We now have a decomposition of the starting z as

z =

n−1∑
k=1

ℓk∑
i=1

fI(k−1)+i

(
c
bkek+i

I(k−1)+i

)
,

where the bki are the digits obtained by considering the decomposition in base
k + 1 of zk.

We know that this decomposition works and returns a non-negative z̄ with
probability

n∏
k=2

(
1− 1

(k + 1)2

)
≥ 1−

n∑
k=3

1

k2
≥ 1−

∞∑
k=1

1

k2
+ 1 +

1

4
=

9

4
− π2

6
≈ 0.6051.

Third phase: Computing the solution. Choose any α ∈ Z×
p and define ρℓ+1 :=

α(
∑ℓ

i=1 fi). We remark that ρ is a multivariate polynomial of total degree 1. We
now apply the decomposition from Lemma 4 with z = α−1(Hros(ρ̂ℓ+1)+ρℓ+1,0).

If the decomposition fails, we repeat this step by choosing a different α ∈ Zp.
Since z is a uniformly random value, the decomposition works with a constant
probability, and the expected number of resamples is also constant.
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After a successful decomposition of z, the adversary A outputs the solution

(ρ̂
b11
1 , . . . , ρ̂

bkek+i

I(k−1)+i, . . . , ρ̂
bn−1
en−1+ℓn−1

I(n−2)+ℓn−1
, ρ̂ℓ+1),

c = (c
b11
1 , . . . , c

bkek+i

I(k−1)+i, . . . , c
bn−1
en−1+ℓn−1

I(n−2)+ℓn−1
).

This is a valid solution. In fact

– For k ∈ [n− 1] and for I(k − 1) < i ≤ I(k)

⟨ρ̂
bkek+i

I(k−1)+i, c⟩ = (bkek+i + 1)c
bkek+i

I(k−1)+i = Hros(ρ̂
bkek+i

I(k−1)+i).

– For i = ℓ+ 1,

⟨ρ̂ℓ+1, c⟩ = ρℓ+1(c)− ρℓ+1,0

= α

(
n−1∑
k=1

ℓk∑
i=1

fI(k−1)+i

(
c
bkek

+i

I(k−1)+i

))
− ρℓ+1,0

= αα−1(Hros(ρ̂ℓ+1) + ρℓ+1,0)− ρℓ+1,0

= Hros(ρ̂ℓ+1).

This attack requires less dimensions compared to the ternary attack from
Subsection 3.1. Specifically:

ℓ1 + · · ·+ ℓn−1 ≈ 1/2 log2 p+

n−2∑
k=2

(
k

k + 1
− k − 1

k

)
logk+1 p+

(
1− n− 2

n− 1

)
logn(p)

= 1/2 log2(p) + · · ·+
1

k(k + 1)
logk+1 p+ · · ·+

1

n− 1
logn p

=

(
1

2
+ · · ·+ 1

k(k + 1) log2(k + 1)
+ · · ·+ 1

(n− 1) log2 n

)
log2 p,

where an approximate lower bound for this quantity is 0.725 log2(p). Even for
small values of n we approach this bound. For instance, when n = 6, we obtain
ℓ ≈ 0.746 log2 p; for n = 8, ℓ ≈ 0.737 log2 p; for n = 16, ℓ ≈ 0.729 log2 p.

3.3 Proofs of Lemma 1 and Lemma 3

For more preliminaries on lattices, we refer to [22].

Proof (Lemma 1). Lemma 1 is simply Lemma 3 in the case k = 2.

The following proof is an adaptation of the proof of Proposition 4.6 from
[14].
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Proof (Lemma 3). In this proof, we consider i to be fixed and we study the
related lattice. Because of this, only for this proof, we refer to δi,b as δb to
simplify the notation. Also, only for this proof, the symbol ρ will be used for the
covering radius and does not represent elements in Zp like in the ROS problem.

Let L be a random lattice of the following shape

L =


1 0 0 . . . 0
a1 p 0 . . . 0
a2 0 p . . . 0

...
...

...
...

...
ak−1 0 0 . . . p

 ∈ Zk,

where the ai are uniformly random values in Zp.
By using the definition of covering radius, we have that:

Pr
[
max|δb|≤ Bkp

(k−1)/k
]
≥ Pr

[
ρ∞(L) ≤ Bkp

(k−1)/k
]
.

Changing the norm, we obtain:

Pr
[
max|δb|≤ Bkp

(k−1)/k
]
≥ Pr

[
ρ(L) ≤ 2k(logk+1 p)

1/kp(k−1)/k
]
.

Using the transference theorem:

Pr
[
max|δb|≤ Bkp

(k−1)/k
]
≥ Pr

[
λ1(L̂) ≥

p(1−k)/k

4(logk+1 p)
1/k

]
.

Equivalently

Pr
[
max|δb|≤ Bkp

(k−1)/k
]
≥ 1− Pr

[
λ1(L̂) <

p(1−k)/k

4(logk+1 p)
1/k

]
.

Define

B̄ :=
p1/k

4(logk+1 p)
1/k

,

and rewrite the final probability to compute as

1− Pr

[
λ1(L̂) <

B̄

p

]
.

The dual of the lattice L is

L̂ =
1

p


p −a1 −a2 . . . −an−1

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

 ∈ Qk,
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Let v ∈ L̂ be a vector such that ∥v∥= λ1(L̂). Since v is in L̂, there exists
s = (s1, . . . sk) ∈ Zk such that

v =
1

p

((
ps1 −

k∑
i=2

aisi

)
, s2, . . . , sk

)
.

Notice that, when ∥v∥< B̄
p it holds that ∥(s2, . . . , sk)∥< B̄. Also, the number

of vectors (s2, . . . , sk) ∈ Zk−1 of size < B̄ is at most (2B̄)k−1.
From now on, we fix coordinates s2, . . . , sk and examine the probability that

the first coordinate of v is bounded. In fact, when ∥v∥< B̄
p it holds that |ps1 −∑k

i=2 aisi|< B̄. When the values of s2, . . . , sk are fixed then s1 is determined. In
particular, s1 is selected in such a way that:

k∑
i=2

aisi ≡ k (mod p) for some k ∈ [B̄].

Since the ai are selected uniformly at random from Zp, the probability of the
last equation to hold is B̄

p . Therefore, by union bound, we have that

Pr

[
∥v∥< B̄

p

]
≤ B̄

p
· (2B̄)k−1 =

1

2p
(2B̄)k =

1

2p

p

2k logk+1 p
=

1

2k+1 logk+1 p
.

We can finally conclude

Pr
[
max|δb|≤ Bkp

(k−1)/k
]
≥ 1− 1

2k+1 logk+1 p
.

4 Generalized Attack

In [6], the authors combine their binary polynomial attack with Wagner’s subex-
ponential k-list attack to create an improved subexponential attack for the ROS
problem in dimension smaller than log2 p. They name it "Generalized ROS at-
tack". In this section, we revisit the Generalized ROS attack by adapting the
polynomial part of the attack to exploit decomposition in higher basis than
binary.

Before describing the new general attack, we need to briefly recall Wagner’s
k-list algorithm. For a full description, refer to ([6], Section 4.1).

Generalized k-list algorithm. Let ω,L be two positive integers. Define k :=
2ω. The generalized k-list algorithm algorithm takes as input ω,L and k random
oracles H1, . . . ,Hk with input in Z×

p and output in Zp.
The output of the generalized k-list algorithm is a tuple (ρ∗1, . . . , ρ

∗
k) ∈ (Z×

p )
k

such that

H1(ρ
∗
1) + · · ·+Hk(ρ

∗
k) ∈

[
−
⌊

p− 1

2(ω+1)L+1

⌋
,

⌊
p− 1

2(ω+1)L+1

⌋]
.
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For the purpose of this paper, we simply state the same conjecture used in
[6] and we compare the attack cost of the improved version of the generalized
ROS attack accordingly. For a more in-depth analysis of the failure probability
and running time of this algorithm please refer to [31,23,27,13].

Conjecture 1. (Wagner [31]) Let L, ω ≥ 0 be integers, let p be an odd prime,
and let k = 2ω. Then, Wagner’s algorithm on k lists of 2L uniformly random
elements in Zp has a constant failure probability.

In particular, when repeating this algorithm in case of failure (on fresh new
lists), the resulting algorithm outputs a solution to the k-list problem over Zp

in expected time O(2ω+L).

Theorem 3. For any integer k ≥ 2, define

Ak := (k + 1)2 + 1, Bk := 2k3/2(logk+1 p)
1/k.

Let L, ω ≥ 0 and n ≥ 2 be integers such that p > 2(ω+1)L. Define p̄ = ⌈p/2(ω+1)L⌉
and

ℓ1 :=
⌈
log2

(
A2B2 log3(p)p

1/2
)⌉

, ek :=
⌈
logk+1

(
Bk logk+1(p)p

(k−1)/k
)⌉

+ 2,

ℓk :=
⌈
logk+1

(
Ak+1Bk+1 logk+2(p)p

k/(k+1)
)⌉
− ek,

en−1 :=
⌈
logn

(
An−1Bn−1 logn(p)p

(n−2)/(n−1)
)⌉

+2 , ℓn−1 := ⌈logn(p)⌉−en−1.

Also, define d in the following way: let k̄ be the greatest integer in [n − 1]
such that (k̄ + 1)ek̄−1 ≤ p̄ and ī be the greatest integer in I(k̄ − 1) < ī ≤ I(k̄)
such that (k̄ + 1)ek̄+ī−I(k̄−1)−1 ≤ p̄, then

d := ℓ1 + · · ·+ ℓk̄ + ī.

Under Wagner’s conjecture, there exists an adversary that runs in expected
time O(2ω+L) and solves the ROS problem relative to Pgen with any dimension
greater or equal to 2ω − 1 + d.

Proof. Define k1 := 2ω − 1, k2 := d and ℓ := k1 + k2. For i ∈ [k2], we repeat the
construction from Theorem 2, and we use the same notation for I(k), with the
exception that I(k̄) = d.

First phase: Building the setup. For k ∈ [k̄], define:

ρb
i = (b+ 1)xi for all 0 ≤ b ≤ k, for all I(k − 1) < i ≤ I(k),

and let

cbi := Hros(ρ̂
b
i )/(b+ 1) for all 0 ≤ b ≤ k, for all I(k − 1) < i ≤ I(k).

If there exist i∗ ∈ [k2] and b ̸= b̄ such that cbi∗ = cb̄i∗ , then the adversary
already found a non-trivial ROS solution. Define for k2 < i ≤ ℓ, ρi := xi and
ci := Hros(ρ̂i). Then A stops and returns the ROS solution

(ρ̂0
1, . . . , ρ̂

0
i∗−1, ρ̂

b
i∗ , ρ̂

b̄
i∗ , ρ̂

0
i∗+1, . . . , ρ̂

0
k2
, ρ̂k2+1, . . . , ρ̂ℓ)
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and
c = (c01, . . . , c

0
i∗−1, c

b
i∗ , c

b̄
i∗ , c

0
i∗+1, . . . , c

0
k2
, ck2+1, . . . , cℓ).

Otherwise, for 1 < k ≤ k̄, for I(k − 1) < i ≤ I(k), follow the construction
from Theorem 2 to compute µi ∈ Zp and k integer values δi,1, . . . , δi,k solving
Equation 2.

The same probability bounds for obtaining a valid setup from Theorem 2
still apply. Therefore, this step only adds an expected polynomial overhead.

For I(0) < i ≤ I(1), the adversary now constructs the following degree-1
polynomials:

fi(xi) :=
1

c1i − c0i
2i−1(xi − c0i ),

For 1 < k ≤ k̄, for I(k−1) < i ≤ I(k) the adversary now constructs the following
degree-1 polynomials:

fi(xi) := µi(k + 1)ek+i−I(k−1)−1(xi − c0i ).

Second phase: Combining Wagner with the decomposition of a generic number
up to p̄. Define:

ρ̄ℓ+1 :=

k̄∑
k=1

I(k)∑
i=I(k−1)+1

fi + ⌊
p− 1

2(ω+1)L+1
⌋ −

ℓ∑
i=k2+1

xi.

Run (ρ∗k2+1, . . . , ρ
∗
ℓ+1) := k-list(ω,L,Hk2+1, . . . ,Hℓ+1), where the oracles are

defined as:

Hi(α) :=

{
if k2 < i ≤ ℓ : let p = αxi return α−1Hros(p̂)

if i = ℓ+ 1 : let p = αρ̄ℓ+1 return α−1Hros(p̂) + ρ̄ℓ+1,0

Similarly, define:

ρ∗
i := ρ∗i xi, y∗i := Hi(ρ

∗
i ) = (ρ∗i )

−1Hros(ρ̂
∗
i ), for k2 < i ≤ ℓ

ρ∗
ℓ+1 := ρ∗ℓ+1ρ̄ℓ+1, y∗ℓ+1 := Hℓ+1(ρ

∗
ℓ+1) = (ρ∗ℓ+1)

−1Hros(ρ̂
∗
ℓ+1) + ρ̄ℓ+1,0.

Set:

s :=

ℓ+1∑
i=k2+1

y∗i ∈
[
−⌊ p− 1

2(ω+1)L+1
⌋, ⌊ p− 1

2(ω+1)L+1
⌋
]

Consider z := s+⌊ p−1
2(ω+1)L+1 ⌋, which is non-negative and smaller than p̄. Now,

follow the decomposition technique from Lemma 4 to compute a decomposition
of z as

z =

k̄∑
k=1

i=ℓk∑
i=1

fI(k−1)+i

(
c
bkek+i

I(k−1)+i

)
.

We remark that this decomposition only requires polynomials up to fk2
because

z is smaller than p̄. In fact, recalling the definitions of k̄, ī and d, we know that
the base k̄ decomposition of z will always be zero for digits in positions greater
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than ek̄ + ī in the base k̄+1 decomposition and in all the digits greater then ek
in the k + 1 decomposition for k > k̄.

If the decomposition fails, we can change the value ρ̄ℓ+1 to rerandomize the
value of s in the following way:

– Slightly alter the setup by sampling again the lattice for one randomly chosen
index j. In the proof of Theorem 2 there is an explicit description of how to
resample a lattice.

– Since we changed µj , also fj , ρ̄ℓ+1 and Hℓ+1 are different.
– We repeat the generalized k-list algorithm with the same oracles except for

Hℓ+1, the last one.
– We try the decomposition again with the new rerandomized s.

As we showed in Theorem 2, this decomposition works with a constant prob-
ability, so the expected number of attempts is also constant and the expected
complexity remains O(2ω+L).3

Third phase: Computing the solution. Define:

ρ̂i :=

{
ρ̂
bkek+i

I(k−1)+i for k ∈ [k̄], for I(k − 1) < i ≤ I(k)

ρ̂∗
i for k2 < i ≤ ℓ+ 1

and:

ci :=

{
c
bkek+i

I(k−1)+i for k ∈ [k̄], for I(k − 1) < i ≤ I(k)

y∗i for k2 < i ≤ ℓ+ 1

A outputs (ρ̂1, . . . , ρ̂ℓ+1) and c = (c1, . . . , cℓ). We have indeed that for i ∈ [ℓ]:

⟨ρ̂i, c⟩ =

{
(bkek+i + 1)c

bkek+i

I(k−1)+i = Hros(ρ̂
bkek+i

I(k−1)+i) for k ∈ [k̄], for I(k − 1) < i ≤ I(k)

ρ∗i y
∗
i = Hros(ρ̂

∗
i ) for k2 < i ≤ ℓ

For the case ℓ+ 1:

⟨ρ̂ℓ+1, c⟩ = ρ∗
ℓ+1(c)− ρ∗ℓ+1,0

= ρ∗ℓ+1

(
n−1∑
k=1

ℓk∑
i=1

fI(k−1)+i(c)− ⌊
p− 1

2(ω+1)L+1
⌋ −

ℓ∑
i=k2+1

y∗i − ρ̄ℓ+1,0

)

= ρ∗ℓ+1

(
s−

ℓ∑
i=k2+1

y∗i − ρ̄ℓ+1,0

)
= ρ∗ℓ+1(y

∗
ℓ+1 − ρ̄ℓ+1,0) = Hros(ρ̂ℓ+1).

3 Also, repeating the generalized k-list algorithm when only changing one oracle can
be done with an expected complexity of only O(2L) by storing the co-path of the
leaf that needs to be resampled.
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5 Implementing the Attack

In this section, we explore practical improvements for implementing the attack.
We then explain how to apply the attack from Theorem 2 to Schnorr blind
signatures. Finally, we execute the improved attack against a 256-bits prime,
breaking the one-more unforgeability of the blind signature with 192 parallel
open sessions.

5.1 Fine-Tuning

When proving the attack in Theorem 1 and Theorem 2, we made some adjust-
ments to ensure the attack scales asymptotically for arbitrarily large values of p.
However, when attacking the ROS problem with fixed parameters, the attack can
be fine-tuned by making targeted trade-offs between the probability of successful
decomposition and the number of dimensions ℓ.

Choosing the values of ek. One key adjustment is in the definition of ek,
where we always add 2 outside the logarithm:

ek =
⌈
logk+1

(
Bk logk+1(p)p

(k−1)/k
)⌉

+ 2

Increasing ek raises the probability of a successful decomposition of z, ensuring
that no intermediate zk is negative. In Theorem 2, the decomposition succeeds
with a probability greater than 3/5, independent of n. When attacking fixed
values of p, one can compute the probability of success when adding only 1 or 0
to ek, reducing the dimension while slightly increasing the expected number of
failed decompositions. For example, when adding only 1 to ek, the probability
of the decomposition being successful in the worst-case bound is still

n∏
k=3

(1− 1

k
) =

2

n
.

A further refinement involves adjusting the logk+1 p factor inside the outer
logarithm. In the proof, we multiply Bkp

(k−1)/k for a factor of at least ℓk to
achieve a lower bound on the next zk. Thus, we can replace logk+1 p with a
lower value as long as it stays above ℓk. However, since ℓk depends on ek, we
need to be careful to check the new ℓk.

In practice, this factor can be reduced even further. The proof relies on worst-
case bounds for zk, but since the δi,b terms have a random sign, their sum is
unlikely to reach the worst case. This allows for additional reductions in the
inner factor, reducing again the number of dimensions.

Solving the CVP approximately. In the attack descriptions from Section 3,
we consider algorithms that solve the closest vector problem (CVP) exactly when
dealing with Equation 1 and Equation 2. This approach returns the smallest
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values for δi,b, increasing the success probability of the decomposition phase.
However, it is also possible to solve the CVP approximately. While this reduces
the running time of the setup phase, it slightly increases the probability of a
failed decomposition. One approach is to first reduce the lattice basis using the
LLL algorithm ([19], with δ = 0.99) followed by Babai’s nearest plane algorithm
([3]). Both algorithms have polynomial complexity in the lattice dimension.

Digit-by-digit decomposition. In the attacks described in Theorem 1 and in
Theorem 2, decomposition is performed base-by-base:

1. The adversary considers all digits bn−1
i in the base n decomposition of z in

the positions between en−1 + 1 and en−1 + ℓn−1.
2. Each digit bn−1

en−1+i · nen−1+i−1 is approximated using fI(n−2)+i.
3. The value zn−2 is then defined as the remaining part of z (digits up to

position en−1) minus the sum of all the approximation errors.

An alternative method is the digit-by-digit decomposition, where:

1. The adversary first considers the top-position digit bn−1
en−1+ℓn−1

in the base n
decomposition of z.

2. This digit bn−1
en−1+ℓn−1

nen−1+ℓn−1−1 is approximated using fI(n−2)+ℓn−1
.

3. The value z̄ is defined as the remaining part of z (all the other digits except
the top one) minus the approximation error.

4. The adversary then considers the base n decomposition of z̄.
5. Steps 1-4 are repeated for each digit down to position en−1, obtaining zn−2.

With this alternative approach, the total approximation error after decomposing
all the digits in a base is generally smaller. This is because recomputing the base k
decomposition after each digit incorporates errors from previous steps, partially
reducing accumulated error by effectively adjusting with appropriate powers of
n.

Changing the order of the lattices. When using the base-by-base decompo-
sition, each of the lattices associated to a basis contributes equally to the error
in the next partial zk−1. The total added error will be −

∑ℓk
i=1 δI(k−1)+i,bkek+i

where each lattice contributes one of the deltas.
In contrast, with the digit-by-digit decomposition, lattices corresponding to

higher digits within the same basis have less influence on the total error in the
next zk−1. For example, assume that the lattice associated to the digit in the top
position (ek + ℓk) introduces a big error δ̄ that risks causing our decomposition
to fail. This error can be partially corrected by the digit-by-digit decomposition
in the following digits within the same base. On the other hand, if this big error
is introduced by the lattice in the last position (ek) it will not benefit from the
digit-by-digit decomposition and will cause our decomposition to fail.

Note that this is not a drawback of the digit-by-digit technique. In the base-
by-base decomposition, a big error at any position can cause failure, whereas, in
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the digit-by-digit approach, this risk is limited to lower-position lattices. Choos-
ing values of ei in a conservative way (as in Theorem 1 and Theorem 2) helps
control the probability of a failing decomposition already in the base-by-base
technique. However, the digit-by-digit technique allows for a more aggressive
choice of dimensions by maintaining the overall error added in the next zk−1

lower.
Since lattices in higher positions have a smaller impact on the final error,

we can increase the probability of successful decomposition by reordering the
lattices with "lower quality" to higher positions.

Consider the case where we solve the CVP approximately in the first phase
by first performing lattice reduction with LLL and then applying Babai’s near-
est plane algorithm. After applying LLL, we obtain a new basis (b1, . . . , bk)
for the lattice. By examining the Gram-Schmidt orthogonalization of this basis
(b∗1, . . . , b

∗
k), we can estimate the lattice’s ability to approximate vectors. In fact,

it is known that

d(w,L)2 ≤ 1

4

k∑
j=1

∥b∗j∥2,

so by looking at the quantity on the right-hand side, we can classify the "qual-
ity" of the lattices Li. Now, assume there is a position ī (close to ek) where
1
4

∑k
j=1∥b∗j∥2 is large. In this case, we want to place this "low-quality" lat-

tice in position ek + ℓk, instead. This is done by swapping ρb
ī

with ρb
ek+ℓk

for
b ∈ {0, . . . , k}, which also swaps the corresponding values cb

ī
and cbek+ℓk

. As a
result, the two lattices remain the same, we do not need to repeat the LLL lattice
reduction, and we only need to swap their targets in the closest vector problem.

While this construction does not swap the values of the δi,b, we can expect
the new δī,b after the swap to be smaller than before.

5.2 Schnorr Blind Signatures

We briefly recall the Schnorr blind signature algorithm. For a full description,
refer to [26].

The public parameters (G, p,G) are generated at the start of the algorithm,
where: G is a group of prime order p, p is a prime of bit length λ and G is a
generator for G. We use additive notation for the group law.

The server selects a secret key x uniformly at random from Zp and publishes
the public key X := xG. The protocol follows the steps outlined in Figure 3,
producing a signature (R, s) ∈ G × Zp satisfying sG − cX = R, where c :=
H(R,m).

First phase: Building the setup. Following the construction from Theorem 2,
we construct a probabilistic polynomial-time adversary A that is able to break
the one-more unforgeability of the scheme. At the start, given the public param-
eters, the adversary first selects n ≥ 2 and computes the values ℓ1, . . . , ℓn−1 and
e1, . . . , en−1 as defined in Theorem 2.
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User(X,m) Server(x)

r̄ ←$ Zp

R̄ := r̄G

R̄

α, β ←$ Zp

R := R̄+ αG+ βX

c := H(R,m)

c̄ := c+ β

c̄

s̄ := c̄x+ r̄

s̄

check s̄G
?
= c̄X + R̄

s := s̄+ α

return (R, s)

Fig. 3. The signing protocol of Schnorr blind signatures [26].

Now, A initiates ℓ sessions, receiving from the server (R̄1, . . . , R̄ℓ) ∈ Gℓ. A
then selects ℓ + 1 arbitrary messages mi with i ∈ [ℓ + 1]. For each k ∈ [n − 1],
the adversary samples k + 2 blinding factors uniformly at random

(α0
i , . . . , α

k
i , βi)←$ Zk+2

p for all I(k − 1) < i ≤ I(k).

Then, for each k ∈ [n− 1], define:

Rb
i := R̄i + αb

iG+ βiX for all 0 ≤ b ≤ k, for all I(k − 1) < i ≤ I(k),

and

cbi := Hros(R
b
i ,mi) for all 0 ≤ b ≤ k, for all I(k − 1) < i ≤ I(k).

If there exist i∗ ∈ [ℓ] and b ̸= b̄ such that cbi∗ = cb̄i∗ , then the adversary
can immediately forge a signature as follows. First, for i ̸= i∗ the adversary
replies to the i-th open session by sending c0i + βi and receiving si. For the i∗-
th session the adversary sends cbi∗ + βi∗ and receives si∗ . Then, for i ̸= i∗ the
adversary outputs the signatures (R0

i , si + α0
i ). Finally, the adversary produces

two additional signatures (Rb
i∗ , si∗ + αb

i∗) and (Rb̄
i∗ , si∗ + αb̄

i∗).
Otherwise, if no collision occurs among the cbi values, the adversary proceeds

as follows. For every ℓ1 < i ≤ ℓ compute the µi ∈ Zp and the δi,b that solve
Equation 2, following the construction outlined in Theorem 2. Similarly, for all
i ∈ [ℓ], define the degree-1 polynomials fi = ρixi + ρi,0 as in Theorem 2.
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Second phase: Decomposing random numbers up to p. Choose any α ∈ Z×
p

and set ρℓ+1 := α(
∑ℓ

i=1 fi). Define Rℓ+1 := ρℓ+1(R̄1, . . . , R̄ℓ) − ρℓ+1,0, where
ρℓ+1,0 is the constant coefficient of ρℓ+1. Equivalently, Rℓ+1 can be seen as∑ℓ

i=1(f(R̄i)− ρi,0) and as ⟨(ρ1, . . . , ρℓ), (R̄1, . . . , R̄ℓ)⟩.
Next, define cℓ+1 := α−1H(Rℓ+1,mℓ+1). Now, perform the decomposition

described in Lemma 4 using the initial value z = cℓ+1−
∑ℓ

i=1 ρiβi+ρℓ+1,0. This
returns a decomposition of z as

z =

n−1∑
k=1

ℓk∑
i=1

fI(k−1)+i

(
c
bkek+i

I(k−1)+i

)
,

where the bki are the digits obtained from the base k + 1 representation of the
partial zk in the decomposition.

If the decomposition fails, we repeat this step by choosing a different α ∈ Zp.
Since z is a uniformly random value, the decomposition works with a constant
probability, and the expected number of resamples is also constant.

Third phase: Forging the signatures. Let

c̄ := (c
b11
1 + β1, . . . , c

bkek+i

I(k−1)+i + βI(k−1)+i, . . . , c
bn−1
en−1+ℓn−1

I(n−2)+ℓn−1
+ βI(n−2)+ℓn−1

).

For i ∈ [ℓ], reply to the i-th open session by sending c̄i to the server and receive
s̄i.

For each k ∈ [n− 1] output the following ℓk signatures:

(Ri, si) = (R̄i + α
bkek+i

i G+ βiX , s̄i + α
bkek+i

i ) for all I(k − 1) < i ≤ I(k).

Finally, output the ℓ+ 1-th signature

(Rℓ+1, sℓ+1) = (

ℓ∑
i=1

ρiR̄i,

ℓ∑
i=1

ρis̄i).

The first ℓ signatures are valid, because, for each k ∈ [n− 1] and I(k − 1) <
i ≤ I(k), we have:

Ri = R̄i + α
bkek+i−I(k−1)

i G+ βiX.

Substituting R̄i = s̄iG− c̄
bkek+i−I(k−1)

i X, we obtain:

Ri = s̄iG− c̄
bkek+i−I(k−1)

i X + α
bkek+i−I(k−1)

i G+ βiX.

Rearranging terms:

Ri = (s̄i + α
bkek+i−I(k−1)

i )G+ (βi − c̄
bkek+i−I(k−1)

i )X.

Since si = s̄i+α
bkek+i−I(k−1)

i and c
bkek+i−I(k−1)

i = c̄
bkek+i−I(k−1)

i −βi, it follows that:

Ri = siG− c
bkek+i−I(k−1)

i X.
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Similarly, the ℓ+ 1-th signature is also valid:

Rℓ+1 =

ℓ∑
i=1

ρiR̄i =

ℓ∑
i=1

ρi(s̄iG− c̄iX) = sℓ+1G− cℓ+1X,

where the last equality comes from:

ℓ∑
i=1

ρic̄i =

n−1∑
k=1

ℓk∑
i=1

ρI(k−1)+ic
bkek+i

I(k−1)+i +

ℓ∑
i=1

ρiβi

=

n−1∑
k=1

ℓk∑
i=1

(fI(k−1)+i(c
bkek+i

I(k−1)+i)− ρI(k−1)+i,0) +

ℓ∑
i=1

ρiβi

= z − ρℓ+1,0 +
ℓ∑

i=1

ρiβi = cℓ+1.

5.3 Executing the Attack

We execute our attack against the one-more unforgeability of the Schnorr blind
signature scheme from Section 5.2, using a 256-bit prime. The implementation,
written in SageMath [30], can be found in Appendix A.

To evaluate the attack’s effectiveness, we run it multiple times, resetting
the setup phase for each attempt. In the second phase, we limit the number
of decomposition attempts to 100. If we reach this limit without a successful
decomposition, we consider the attack unsuccessful. Notably, this is not a "hard
fail" against the one-more unforgeability. A failed attempt only means that the
decomposition phase might never succeed because we are not actively resampling
lattices of "low quality" to have a faster timing. Since we do not close any session
with the server in a failed attempt, we can simply resample all lattices from
scratch without opening new sessions and achieve a successful forge anyway.

We test two versions of the attack. In the first, we use more conservative
parameter choices and achieve a successful attack at dimension ℓ = 194. In the
second, we adopt a more aggressive parameter selection, lowering the required
dimension to ℓ = 192.

First parameter choice. For the conservative parameter choice, we use the
following settings:

– We choose n = 7 and we set the extra digits added to the ek values to be
zero.

– We perform a digit-by-digit decomposition without lattice reordering.
– We reduce the factor inside the outer logarithm to 1

100 logk+1 p.

Specifically, the concrete parameters are:

ℓ1 = 130, ℓ2 = 27, ℓ3 = 11, ℓ4 = 7, ℓ5 = 3, ℓ6 = 16
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e2 = 82, e3 = 86, e4 = 83, e5 = 80, e6 = 76

ℓ = ℓ1 + · · ·+ ℓ6 = 194

Out of 2000 repetitions, the attack never failed and each repetition took
less than 3 seconds. In Figure 4, we show the distribution of the number of
rerandomizations in the decomposition phase.

1 2 3 4 5 6 7-20 Fail

967

470

252

144

84
35 48

0

Attempted decompositions

Fr
eq

ue
nc

e

Fig. 4. Attack against the one-more unforgeability of Schnorr Blind Signature for p of
256 and ℓ = 194.

Second parameter choice. For the aggressive choice we consider the following
setting

– We choose n = 8 and we set the extra digits added to the ek values to be
zero.

– We perform a digit-by-digit decomposition with lattice reordering.
– We reduce the factor inside the outer logarithm to 1

500 logk+1 p.

Specifically, the concrete parameters are:

ℓ1 = 127, ℓ2 = 28, ℓ3 = 11, ℓ4 = 6, ℓ5 = 4, ℓ6 = 3, ℓ7 = 13

e2 = 80, e3 = 85, e4 = 82, e5 = 79, e6 = 76, e7 = 73

ℓ = ℓ1 + · · ·+ ℓ7 = 192

Out of 1000 repetitions, the attack failed with a probability of 10% and each
repetition took on average 13 seconds. In Figure 5, we show the distribution of
the number of rerandomizations in the decomposition phase.
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Fig. 5. Attack against the one-more unforgeability of Schnorr Blind Signature for p of
256 and ℓ = 192.

Modifying slightly the values of ek and ℓk is possible to be even more aggres-
sive and to reduce ℓ by some more dimensions. However, this strongly depends on
the quality of the random lattices that are sampled. This causes the probability
of successful attempts to degrade really quickly.

6 Conclusions

In this paper, we revisited the ROS problem and improved the existing cryptan-
alytic techniques. Our main contribution is a new polynomial-time attack that
reduces the required dimension to approximately 0.725 log2 p. We achieved this
by revisiting and enhancing the polynomial attack from [6], which previously
required a dimension greater than log2 p.

Furthermore, we presented an enhanced version of the generalized ROS attack
by combining Wagner’s algorithm with our new polynomial method. This hybrid
approach improves the previous subexponential attack complexity for some of
the dimensions where a polynomial solution is not yet known.

Our implementation in SageMath confirms the practicality of these attacks,
successfully breaking the one-more unforgeability of Schnorr blind signatures
over 256-bit primes in just a few seconds with 192 parallel sessions. These results
underscore the evolving landscape of cryptanalysis and highlight the necessity
for continued improvements and countermeasures in cryptographic schemes.
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Supplementary Material

A Implementation

1 import ha sh l ib
2 from sage . modules . free_module_integer import I n t e g e rLa t t i c e
3
4 # pub l i c parameters : sec256k1
5 q = 0 x f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f e f f f f f c 2 f
6 Zq = GF(q )
7 E = El l i p t i cCurve (Zq , [ 0 , 7 ] )
8 G = E(0 x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798

, 0 x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08f fb10d4b8
)

9 E. set_order (0
x f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f e b a a e d c e 6 a f 4 8 a 0 3 b b f d 2 5 e 8 c d 0 3 6 4 1 4 1 ∗
0x1 )

10 p= G. order ( )
11 Zp = GF(p)
12
13 de f random_oracle (R,m) :
14 to_hash=s t r (G. xy ( ) [ 0 ] )+s t r (X. xy ( ) [ 0 ] )+s t r (R. xy ( ) [ 0 ] )+m
15 hash=hash l i b . sha512 ( to_hash . encode ( ) ) . d i g e s t ( )
16 re turn Zp( i n t . from_bytes ( hash , " big " ) )
17
18 de f v e r i f y ( message , s i gna tu r e ) :
19 R, s=s i gna tu r e
20 c=random_oracle (R, message )
21 a s s e r t G∗ s==X∗c+R, " v e r i f i c a t i o n equat ion f a i l s "
22 re turn True
23
24 de f inner_product ( c o e f f i c i e n t s , va lues ) :
25 re turn sum(y∗x f o r x , y in z ip ( c o e f f i c i e n t s , va lues ) )
26
27 de f scale_to_Zp ( vec ) :
28 a s s e r t a l l ( [ gcd (p , e l . denominator ( ) )==1 f o r e l in vec ] )
29 re turn vec tor (Zp , [ Zp( e l . numerator ( ) ) /Zp( e l . denominator ( ) ) f o r e l in

vec ] )
30
31 de f pows_gen ( n = 7 , group_bit_len=256 , ex t ra_d ig i t s=2 ) :
32 max_number = 2^group_bit_len
33 a s s e r t n>=2
34 pows=[ ]
35 k = n−1
36 whi le k>=1:
37 #B = 2 ∗ k^(2/3) ∗ log (p , k+1)^(1/k ) Theorem 2 Bound
38 B = 1/500
39
40 max_k = c e i l ( l og ( max_number , k+1) )
41 i f k==1: e_k = 0
42 e l s e : e_k = c e i l ( l og ( B ∗ log (p , k+1) ∗ p^((k−1)/k ) , k+1) ) +

ext ra_d ig i t s
43
44 pows = [ ( k+1, i ) f o r i in range (e_k ,max_k) ] + pows
45 max_number = (k+1)^e_k
46 k−=1
47 re turn pows
48
49 de f mult ibase ( input_number , pows ) :
50 temp_number = ZZ( input_number )
51 d i g i t s =[ ]
52 f o r base in pows [ : : − 1 ] :
53 d i g i t s =[ temp_number// base ] +d i g i t s
54 temp_number = temp_number % base
55 a s s e r t inner_product ( d i g i t s , pows ) == input_number
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56 re turn d i g i t s
57
58 #adversary : attack parameters s e l e c t i o n
59 max_basis = 7
60 ext_dig = 0
61 factored_pows=pows_gen (n=max_basis+1, group_bit_len=c e i l ( l og (p , 2 ) ) ,

ex t ra_d ig i t s=ext_dig )
62
63 pows_bases = [ i f o r i , j in factored_pows ]
64 pows= [ i ^ j f o r i , j in factored_pows ]
65 e l l = len ( pows )
66 e_k = [ min ( [ factored_pows [ i ] [ 1 ] i f factored_pows [ i ] [0]==k e l s e 1000 f o r

i in range ( e l l ) ] ) f o r k in range (2 , max_basis+2) ]
67 I_k = [ min ( [ i i f factored_pows [ i ] [0]==k e l s e 1000 f o r i in range ( e l l ) ] )

f o r k in range (2 , max_basis+2) ] + [ e l l ]
68
69 #se rv e r : gen pub key
70 x = Zp . random_element ( )
71 X = G ∗ x
72
73 #se rv e r : generate commitments
74 r =[Zp . random_element ( ) f o r _ in range ( e l l ) ]
75 R =[G∗r_i f o r r_i in r ]
76
77 #adversary : generate cha l l e ng e s
78 messages = [ f "messages { i }" f o r i in range ( e l l ) ] + [ " forged_message" ]
79
80 alpha = [ [ Zp . random_element ( ) f o r _ in range ( pows_bases [ i ] ) ] f o r i in

range ( e l l ) ]
81 beta = [ Zp . random_element ( ) f o r i in range ( e l l ) ]
82 blinded_R = [ [ R[ i ]+G∗alpha_i_b+beta [ i ] ∗X f o r alpha_i_b in alpha [ i ] ] f o r

i in range ( e l l ) ]
83 c = [ [ random_oracle ( blinded_R_i_b , messages [ i ] ) f o r blinded_R_i_b in

blinded_R [ i ] ] f o r i in range ( e l l ) ]
84
85 q i = [ [ c_i_b − c [ i ] [ 0 ] f o r c_i_b in c [ i ] [ 1 : ] ] f o r i in range ( e l l ) ]
86 M = [ block_matrix ( [ [ Matrix (ZZ , q i [ i ] ) ] , [ p∗matrix . i d e n t i t y ( pows_bases [ i

]−1) ] ] ) f o r i in range ( e l l ) ]
87
88 # adversary : e s t imate qua l i t y o f l a t t i c e s
89 GSO_M =[ M[ i ] . gram_schmidt ( ) f o r i in range ( e l l ) ]
90 qua l i t y =[ sum( [ norm( b_star )^2 f o r b_star in GSO_M[ i ] ] ) f o r i in range (

e l l ) ]
91 rank ings = [ ]
92 f o r k in range (max_basis ) :
93 k_rankings = qua l i t y [ I_k [ k ] : I_k [ k+1] ]
94 rank ings += [ so r t ed ( k_rankings ) . index (x ) + I_k [ k ] f o r x in

k_rankings ]
95
96 # adversary : r eo rde r l a t t i c e s
97 messages = [ messages [ i ] f o r i in rank ings ] + [ messages [ −1 ] ]
98 R = [R[ i ] f o r i in rank ings ]
99 alpha = [ alpha [ i ] f o r i in rank ings ]

100 beta = [ beta [ i ] f o r i in rank ings ]
101 blinded_R = [ blinded_R [ i ] f o r i in rank ings ]
102 c = [ c [ i ] f o r i in rank ings ]
103 q i = [ q i [ i ] f o r i in rank ings ]
104 M = [M[ i ] f o r i in rank ings ]
105
106 c l o s e s t_vec t o r s = [ I n t e g e rLa t t i c e (M[ i ] ) . babai ( [ j ∗pows [ i ] f o r j in range

(1 , pows_bases [ i ] ) ] ) f o r i in range ( e l l ) ]
107 mu = [ ( 1/Zp(pows [ i ] ) ) ∗ scale_to_Zp (M[ i ] . s o l v e_ l e f t ( c l o s e s t_ve c t o r s [ i ] ) )

[ 0 ] f o r i in range ( e l l ) ]
108
109
110 #adversary : decomposit ion o f z
111 attempts=0
112 whi le True :
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113 attempts+=1
114
115 extra_alpha = Zp . random_element ( )
116 R_forge= extra_alpha∗ inner_product ( [ i ∗ j f o r i , j in z ip (pows ,mu) ] ,R)
117 c_to_decompose = random_oracle (R_forge , messages [ e l l ] )
118
119 NUM_to_decompose = extra_alpha^(−1)∗c_to_decompose + sum ( [ pows [ i ] ∗mu

[ i ] ∗ (−c [ i ] [ 0 ] ) f o r i in range ( e l l ) ] ) − inner_product ( beta , [ pows [ i
] ∗mu[ i ] f o r i in range ( e l l ) ] )

120
121 d i g i t s =[0]∗ e l l
122
123 f o r i in range ( e l l ) [ : : − 1 ] :
124 cu r r en t_d ig i t s = mult ibase (NUM_to_decompose , pows )
125 i f i != e l l −1 and cur r en t_d ig i t s [ i +1] != 0 : break
126 new_digit=cur r en t_d ig i t s [ i ]
127 d i g i t s [ i ]=new_digit
128 i f new_digit>pows_bases [ i ] : break
129 i f new_digit !=0: NUM_to_decompose −= pows [ i ] ∗mu[ i ] ∗ q i [ i ] [

new_digit −1]
130 i f NUM_to_decompose <0: break
131 i f NUM_to_decompose==0: break
132 i f attempts >98: break
133 i f attempts >98: p r in t ( "Decomposition f a i l e d , need to resample the

l a t t i c e s " )
134 e l s e :
135 #adversary : sends c to the s e r v e r
136 blinded_c = [ c [ i ] [ b ] + beta [ i ] f o r ( i , b ) in enumerate ( d i g i t s ) ]
137 blinded_c = [ blinded_c [ rank ings . index ( i ) ] f o r i in range ( e l l ) ]
138
139 #se rv e r : generate the re sponse s
140 s = [ blinded_c [ i ] ∗ x + r [ i ] f o r i in range ( e l l ) ]
141
142 #attacke r : generated the fo rged s i gna tu r e s
143 s = [ s [ i ] f o r i in rank ings ]
144 f o rged_s ignature s = [ ( blinded_R [ i ] [ d i g i t s [ i ] ] , s [ i ] + alpha [ i ] [

d i g i t s [ i ] ] ) f o r i in range ( e l l ) ]
145 f o rged_s ignature s += [ ( R_forge , extra_alpha∗ inner_product ( [ i ∗ j f o r

i , j in z ip (pows ,mu) ] , s ) ) ]
146
147 pr in t ( a l l ( [ v e r i f y ( messages [ i ] , f o rged_s ignature s [ i ] ) f o r i in range (

e l l +1) ] ) )
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