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The celebrated Algorand protocol solves validated byzantine agreement in a scalable manner in the synchro-

nous setting. In this paper, we study the feasibility of similar solutions in the asynchronous setting. Our main

result is an asynchronous validated byzantine agreement protocol that we call Asynchronous Algorand. As
with Algorand, it terminates in an expected constant number of rounds, and honest parties send an expected

𝑂 (𝑛 polylog 𝑛) bits, where 𝑛 is the number of parties. The protocol is resilient to a fully-asynchronous weakly-

adaptive adversary that can corrupt a near-optimal number of parties (< (1/3 − 𝜖)𝑛) and requires just a VRF

setup and secure erasures.

A key innovation in Asynchronous Algorand is a rather simple but surprisingly effective method to do

committee-based role assignment for asynchronous verifiable secret sharing in the YOSO (You Only Speak

Once) model. This method achieves near-optimal resilience and near-linear communication complexity while

relying solely on a verifiable random function (VRF) setup and secure erasures.

1 INTRODUCTION
In this paper, we study the complexity of asynchronous byzantine agreement and ask the following

question:

Under what conditions can asynchronous byzantine agreement obtain near-optimal
resilience, near-linear communication, and constant expected time?

In the synchronous setting, the breakthrough result of Algorand [16, 28] obtains byzantine agree-

ment with near-optimal resilience, near-linear communication, and constant expected time under

the following conditions:

(1) Assuming a Verifiable Random Function (VRF) setup: this is the hallmark of Algorand, the

ability to sub-sample committees in a fair manner. This requires assuming more than just a

PKI setup because allowing the adversary to choose its public and private keys may allow it

to compromise security.

(2) Weak adaptive adversary: the adversary can ask to corrupt a party at any time, and the

party becomes corrupt immediately after it completes sending all its outgoing messages or

after it listens for any incoming messages. The adversary cannot claw-back already sent

messages.

(3) Secure Erasure: Honest parties can securely erase data, such that any corruption after the

erasure cannot recover the erased data.

The main result in this paper is a new protocol, Asynchronous Algorand, that solves byzantine
agreement with near-optimal resilience, near-linear communication, and constant expected time.

Asynchronous Algorand does this under the same three conditions above, even when extended to

the asynchronous communication model.
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Theorem 1.1. Given 0 < 𝜖 < 1, a computational security parameter 𝜆, and a statistical security
parameter 𝜅 , Asynchronous Algorand solves validated byzantine agreement in an asynchronous setting.
Other than an error event that happens with probability < 2

−𝜆 + 2−𝜅 , the protocol terminates in an
expected constant number of rounds, and honest parties send an expected 𝑂 (𝑛 poly(log𝑛, 𝜆, 𝜅, 1/𝜖))
bits. The protocol is resilient to a fully-asynchronous weak-adaptive adversary that can corrupt
𝑓 < (1/3 + 𝜖)𝑛 parties, assuming idealized PKE, Signature, VRF and PVSS schemes, and assuming
secure erasures.

On fully-asynchronous weak-adaptive adversaries: in this model, the adversary can adaptively
delay the delivery of any message by any finite amount of time and can adaptively ask to corrupt

any party at any time. The adversary can make these decisions based on all the current information

they have. Once the adversary asks to corrupt a party, it becomes under the control of the adversary

once it completes sending all the messages in its outgoing message queue. Put differently, corruption

happens when the party accesses its incoming message queue.

On the requirement that the adversary is weak-adaptive: Obtaining near linear and constant

expected time is trivial against a static adversary and impossible against a strongly adaptive

adversary. The former is folklore, and the latter follows from the lower bound of [2] that extends

the classic deterministic lower bound of Dolev and Reischuck [24] (also see [18]). Moreover, we are

not aware of any near linear and constant expected time protocol against a non-weak adaptive

adversary that cannot claw back already sent messages.

On the cryptographic assumptions: Our protocol uses a standard setup for verifiable random

functions, a public-key encryption scheme, a signature scheme, and a publicly verifiable secret

sharing scheme, which we abstract as idealized objects with no errors. For a discussion of these

objects and of the error introduced by instantiations of the schemes see Section 3.3. For adaptive

security, we use a key and message non-committing encryption (KM-NCE, [30]).

On erasures: To protect against a weak-adaptive adversary corrupting a party and using its secrets
we rely on secure erasure. As detailed in Section 3.2, each time a party wants to send a message, it

first signs it along with a new public key, then erases its current signature key, and only then sends

the message to all parties.

Our contributions.

(1) This is the first near-linear, constant expected round asynchronous byzantine agreement that

obtains near-optimal corruption threshold while assuming just a VRF setup. All previous

near-optimal corruption threshold works required very complex MPC setup protocols that

are quadratic (or more) in cost.

(2) A key innovation that enables our near-optimal corruption threshold with just a VRF setup

is a new way to assign secrets to anonymous members. Roughly speaking, instead of each

nominator choosing one recipient to hold its secret (and with constant probability, this

recipient may be a malicious party - hence this approach has a non-optimal corruption

threshold), each nominator chooses a random committee of recipients (using unverifiable
randomness) and secret shares the secret among them. This reduces the error to statistically

small and thus enables a near-optimal corruption threshold. This is critical for obtaining a

near-optimal corruption threshold in our asynchronous verifiable secret-sharing protocol

(see Section 6). Previous work either obtained far from optimal corruption thresholds

or required very strong MPC-based setup assumptions that cannot be implemented in

near-linear time.

(3) Conceptually, we show how to transform the𝑂 (𝑛3)-cost asynchronous byzantine agreement

framework of [3] that is resilient to a strong adaptive adversary (that can even claw-back),
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Fig. 1. A map of our constructions.

to a 𝑂 (𝑛 polylog 𝑛)-cost asynchronous byzantine agreement that is resilient to a weak-

adaptive adversary. This transformation requires multiple new ideas and careful, non-

trivial adaptations and modification of the framework to the committee-based setting. We

believe the insights from this transformation will help obtain similar transformations for

asynchronous MPC protocols.

In addition, we believe we are the first to formally define the weak-adaptive adversary in

asynchrony, which is a very natural analog of the weak-adaptive adversary in synchrony. This

weak-adaptive adversary in synchrony is the core adversarial definition of all Algorand and YOSO

papers.

Overview of techniques. Figure 1 gives an overview of the building blocks, the cryptographic

primitives they require (outlined in Section 3), and their relationships.

The first step in our work is to define a quorum system based on VRF sampling (see Section 4).

We then show how each committee member can reliably broadcast a message (see Section 5). Using

this committee broadcast primitive, we head to the main technical challenge, which is implementing

an asynchronous verifiable secret sharing (AVSS) protocol (see Section 6).

A core challenge in verifiable secret sharing protocols against a weakly adaptive adversary is

hiding the members holding the secret shares. This is often obtained via a receiver-anonymous

communication channel abstraction [26]. Roughly speaking, we implement a virtual asynchronous
receiver-anonymous communication channel by having each member of a nominating committee:

(1) broadcast a public key, and (2) secret share the corresponding private key to an anonymous

committee sampled via unverified randomness by the nominator, who jointly comprise the virtual

anonymous party. If the nominator was corrupt, we get no guarantees about the anonymous

committee she chose (meaning that we likely get a corrupt virtual party), but if the nominator

was honest, she will almost certainly have chosen a mostly honest anonymous committee to hold

shares of the secret key, which translates to an honest virtual party. We call this part the setup

phase of the AVSS protocol (see Algorithm 5).

Once AVSS setup completes, in the AVSS share protocol, each party can wait to hear a quorum

of public keys and use them to send a publicly verifiable secret sharing (PVSS) transcript (see

Section 3) that uses these pubic keys (see Algorithm 6). Finally, during the AVSS reconstruction
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phase, the parties that hold the shares of the virtual anonymous parties’ secret keys send them,

enabling the reconstruction of all of the PVSS’s (see Algorithm 7).

Once we have AVSS, we proceed in a manner that is conceptually similar to [3] in that we use

a gather protocol (see Section 7) to collect AVSS shares that completed. Roughly speaking, the

gather protocol guarantees that there is a large common core that is a subset of the output of all

parties. We require the gather to be binding (so the adversary must fix the core before knowing the

hidden ranks) and verifiable (so that in the good event, malicious parties cannot verifiably choose a

different prosper). We note that [23, 31] also implement a gather protocol in this setting but obtain

a weaker binding gather property that is not sufficient for our needs of using it to implement a

weak coin.

We then show how we can implement a proposal election protocol. Recall that the goal of this

protocol is that with constant positive probability, in each view, a good event occurs where all

parties choose the same valid input. Conditioned on this good event, the consensus protocol will

terminate in a constant number of rounds.

At a high level, the proposal election protocol has three phases: first, parties use the committee

AVSS share protocol (and committee broadcast) to propose a value and commit to a secret rank, then

parties run a committee gather protocol. Once the gather protocol ends, parties start reconstructing

the shared secret ranks and then choose the proposal sent by the party with the highest rank in

their gather set (see Section 8).

Finally, we provide an asynchronous Byzantine agreement protocol that uses the proposal

election protocol above. We use a new variation of No-Waitin’-Hotstuff (NWH) that we call No-

Waitin’-Algorand (NWA) that is suited to the speak-once setting: each committee just listens to the

previous one (see Section 9).

2 RELATEDWORK
The related work can be divided into work in the synchronous model and the asynchronous model.

2.1 Synchronous Model
In the synchronous model, the Algorand protocol of Chen and Micali [16] introduces the use

of VRFs for efficient consensus in the presence of a weak-adaptive adversary. Their protocol is

designed so that only a few parties need to speak at a time. The adversary is unable to predict who

will be speaking (since this is determined by the evaluation of a VRF with the potential speaker’s

secret key), and so is unable to halt the system by corrupting the speaker ahead of time.

Since no one can predict who a speaker will be, it becomes hard for such a system to maintain

a secret state: A speaker must erase her secret state before sending her message since once she

speaks, the adversary will learn her identity and might corrupt her and learn her secrets. For the

secret state to be maintained, our speaker must send it to the next set of speakers (in some form).

However, in order to send a private message, one typically needs to know the recipient.

To solve this problem, Benhamouda et al. [7] extend the work of Chen and Micali by introducing

nomination: unpredictable speakers can nominate other speakers by assigning them an anonymous

public key and sending them the corresponding secret key. The anonymous public key can now

be used to communicate private messages without knowing the recipient. Since the work of

Benhamouda et al., the storage of – and computation on – secrets in such a speak-once system has

been an active area of research. YOSO (You Only Speak Once) protocols can be split into two largely

orthogonal parts: Building so-called receiver-anonymous communication channels (RACCs), and

building storage and computation on top of these RACCs.

Building RACCs There have been three approaches to building RACCs.
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(1) The first is via the nomination approach of Benhamouda et al. The upside of this

approach is that it assumes only a VRF setup. The downside of this approach is that it

requires significantly more than half of the overall participants to be honest.

(2) The second is via running a PIR protocol in MPC [27]. The upside of this approach is

that it supports a near-optimal corruption threshold, where just over half of the overall

participants are honest. The downside is that a small subset of participants has to do

work linear in the number of participants, and that an initial trusted setup, in the form

of a first few “seed” RACCs, must be assumed.

(3) The last approach is via “encryption to the future” [13]. The upside of this approach

is that it supports a near-optimal corruption threshold; the downside is that it either

uses very expensive tools (such as witness encryption), or results in ciphertexts of size

linear in the number of possible recipients.
Computing on top of RACCs Benhamouda et al. describe how to maintain a secret state:

committees of nominated parties receive shares of a secret, and can re-share those shares

to subsequent committees. Gentry et al. [26] build on top of this idea, showing how such

committees can run a secure mutliparty computation (MPC). In concurrent and independent

work, Choudhuri et al. [17] introduce the Fluid MPC model, the protocols from which natu-

rally follow YOSO design. Subsequent work improves on the initial YOSO MPC protocols,

in terms of number of rounds [32], setup [10, 32], and other efficiency metrics.

2.2 Asynchronous Model
In 2020, Cohen et al. [20, 21] obtained the first near-linear communication and constant expected

time validated asynchornous byzantine agreement. However, they assume a much less powerful

adaptive adversary called a delayed-adaptive adversary. Under this adversary, “honest party mes-

sages must be scheduled by the adversary regardless of their content, namely their VRF random

values.” This model limits the adversary to use asynchrony in essentially a non-adaptive manner.

So proposers can simply attach a random VRF value, interpreted as their rank, and with constant

probability, most honest parties see the same honest proposal as having the highest VRF rank.

In comparison, in our model, the adversary is fully adaptive in its network delays. For example,

the simple approach above fails because the adversary can adaptively delay a party’s message once

it learns that it has a winning VRF value. Moreover, the protocol of [20, 21] requires at most ≈ 𝑛/4.5
malicious parties, while our protocol can handle near optimal (1/3 − 𝜖)𝑛 malicious parties.

Also in 2020, Blum et al. [8] obtained near-linear communication and constant expected time

validated asynchronous byzantine agreement. Moreover, in this setting, they obtain the first near-

optimal resilience of up to (1/3 − 𝜖)𝑛 malicious parties. However, they require a very powerful

setup assumption that can only be instantiated via a non-scalable MPC protocol. Most critically,

they assume a blackbox use of a strong common coin (note that [25] prove that strong coins must

have an infinite execution). All known implementations of strong coin need some sort of byzantine

agreement. Implementing these common coins requires a powerful MPC that seems to require more

than quadratic message complexity. In comparison, our work requires just a plain VRF setup, and

uses just a public key encryption scheme and a PVSS scheme, and obtains near-liner communication

without any oracle assumptions.

Kamp and Nielsen [31] obtain near-optimal resilience, near-linear communication and constant

expected time, assuming a powerful setup assumption, including a threshold signature scheme

with unique signatures, and FHE for some of its schemes. In addition, like [8], their work requires

blackbox use of a strong common coin. Again, in comparison, our work requires just a plain VRF

setup, and is self-contained (no other setup or oracle assumptions).
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Damgård et al. [23] obtain near-optimal resilience and get full asynchronous MPC with a near-

linear cost per gate. They use the consensus protocol of [31], so they need a strong common coin

setup (they then use these initial coins to bootstrap more coins). Again, this strong common coin

setup assumption seems to require an expensive MPC setup protocol. In comparison, our work

focuses just on consensus and obtains it using a plain VRF setup, and in particular, does not depend

on any MPC setup assumptions.

On assuming secure erasures: Our protocol requires honest parties to be able to erase data in such

a way that if the party is later corrupted, the erased data cannot be recovered. In synchrony, the

binary agreement protocol in [2] removes the need for assuming secure erasures. Removing the

need for erasures for validated (non-binary) agreement in synchrony and, in general, for asynchrony

remains an open question.

On near-optimal resilience: It is conjectured that the optimal resilience𝑛 = 3𝑓 +1 for asynchronous
Byzantine agreement cannot be obtained with a near-linear and constant expected time protocol.

For partial progress in the synchronous model, see Rambaud’s result [34, Theorem 5].

3 PRELIMINARIES, MODEL DEFINITIONS
3.1 Adversary and network model
The network consists of 𝑛 parties, with at most 𝑓 parties being controlled by the adversary. Every

pair of parties is connected by a secure and authenticated channel, meaning that only the sender

and recipient can read the contents of messages, and parties know from whom they received each

message. The network is asynchronous, meaning that every sent message eventually arrives at its

destination, but there is no bound on how long messages can be delayed before arriving.

We consider a computationally bounded Byzantine adversary that can cause the parties it controls

to arbitrarily deviate from the protocol. The adversary is adaptive, but weak in the sense that it can

only corrupt a party at certain times: after it completes a multicast or after it listens to receive a

message. Observe that this implies that when a party that is nonfaulty starts a sub-protocol, and

the sub-protocol does not listen to new messages before sending a multicast, then it is guaranteed

to send its multicast before being corrupted. Moreover, since there is no clawback, these messages

will eventually be delivered to all recipients. Note that this is the asynchronous analogue of the

synchronous Algorand (and YOSO) weak-adaptive adversary.

We stress that the adversary is fully adaptive in its decision about network delays and when

it asks to corrupt someone. The only weakness is that corruption cannot take place until a party

starts listening to receive messages. In other words, corruption cannot take place while parties

are performing local computations (usually modeled as taking no time) or as they are sending

messages.

3.2 Sending Messages with Forward Security
We assume that every message any party sends is signed, using digital signatures (Section 3.3.3).

In our setting, we want to be able to prevent the weak-adaptive adversary from observing who

speaks, corrupting that party, and — without clawing back the message they sent — sending a

new, competing message, and delivering the competing message first.
1
We need forward security,

meaning that when an adversary corrupts a party, they cannot produce signatures that look like

they came from before the time of corruption. In order to obtain forward security, we utilize key
ratcheting. When a party sends a message, they also do the following:

(1) generate a new signature key pair;

1
Note that this is not an issue if every channel is assumed to be FIFO (first-in-first-out), where messages sent first are

guaranteed to be delivered first.
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(2) use the old signing key to sign the new verification key;

(3) erase the old signing key;

(4) include the new verification key and signature with the message they are sending.

This makes the attack described above impossible, because the adversary will no longer have

access to the old key, tied to the party’s verifiable right to send a given message.

Note that some messages also explicitly include signatures. These are additional signatures

independent of the procedure described above, but they are signed with the most up-to-date key

for any party. Technically, in order to be able to verify these signatures, parties need to make sure

they use the same public verification keys. Seeing as an adversary can send different ratcheted keys

to different parties, this could cause an issue with verification. In order to avoid this, parties can

send chains of signed public keys, to prove that they originated from the sender. The total round

complexity is constant in expectation, and thus these chains are also of constant expected length.

More generally, one could use any forward-secure signature scheme [5].

3.3 Cryptographic primitives
This work uses four cryptographic primitives: public key encryption, signature schemes, verifiable

random functions, and publicly verifiable secret sharing (PVSS). We consider these primitives

as perfectly secure against our adversary. They are used a polynomial number of times (in 𝑛) in

expectation in total. This means that the error probability introduced by the use of cryptographic

primitives can be bounded by poly(𝑛) · negl(𝜆), where 𝜆 is a cryptographic security parameter.

This modeling follows Cachin et al. [11, 12] (also see [4]). All cryptographic primitives are of size

𝑂 (𝜆) bits, except for PVSS transcripts whose size is described below.

3.3.1 Public Key Setup. The schemes described below require public key pairs (pk, sk). Tradition-
ally, each scheme is described as having its own KeyGen algorithm that can be run on the security

parameter 1
𝜆
to generate such a pair. A public key setup generates a public key pair (pk𝑖 , sk𝑖 ) for

each party 𝑖 . Every party 𝑖 learns all public keys pk
1
, . . . , pk𝑛 , and its own secret key sk𝑖 . In the

following descriptions, we omit the KeyGen algorithm from every scheme and combine them into a

single KeyGen algorithm used to generate keys for all schemes, which is used in a public key setup.

3.3.2 Public Key Encryption. A Public Key Encryption (PKE) scheme comprises two algorithms:

Enc and Dec. Using pk𝑖 , parties can encrypt the message𝑚 by running Enc(pk𝑖 ,𝑚) to produce a
ciphertext 𝑐 . Using sk𝑖 , 𝑖 can decrypt a ciphertext 𝑐 by running Dec(sk𝑖 , 𝑐) to produce a message𝑚.

A PKE scheme typically has two properties:

• Correctness: For every public key pair sk𝑖 , pk𝑖 and message𝑚, Dec(sk𝑖 , Enc(pk𝑖 ,𝑚)) =𝑚.

• CCA-security: Without the secret key, a ciphertext reveals no information about the en-

crypted message, even given a decryption oracle (unless that oracle is called precisely on

the ciphertext in question).

We use a stronger flavor of PKE, called KM-NCE (key-message non-committing encryption) [30].

KM-NCE additionally enables generating fake ciphertexts without any public key or message in

such a way that those can later be explained as an encryption of any message to any key. Fake

ciphertexts are required to look like real ones, which, in addition to implying CCA-security, also

implies that real ciphertexts are anonymous (they do not reveal the public key to which they

were encrypted). This ability to explain ciphertexts on the fly is perfectly suited for use against an

adaptive adversary, since the adversary observing a ciphertext message wouldn’t know who is the

intended recipient they should corrupt.
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Informally, KM-NCE additionally offers anonymity:
2

• Anonymity under receiver-selective opening (ANON-RSO): If a ciphertext was computed

using a key pk𝑖 , only party 𝑖 can detect this and decrypt the message, and other parties do

not learn to whom the message was encrypted.

Canetti et al. [14] give an efficient ElGamal-based KM-NCE scheme in the programmable random

oracle model.

3.3.3 Signature Schemes. . A Signature scheme comprises two algorithms: Sign and Sign_verify.
Using sk𝑖 , 𝑖 can sign the message𝑚 by running Sign(sk𝑖 ,𝑚) to produce a signature 𝜎 . Using pk𝑖 ,
parties can check the correctness of a signature 𝜎 on a message𝑚 by running Sign_verify(pk𝑖 ,𝑚, 𝜎),
outputting 1 if the signature is correct and 0 otherwise. The Signature scheme has two properties:

• Correctness: For every public key pair sk𝑖 , pk𝑖 and message𝑚, Sign_verify(pk𝑖 ,𝑚, Sign(sk𝑖 ,
𝑚)) = 1.

• Unforgeability: The adversary cannot produce a signature 𝜎 on a message 𝑚 such that

Sign_verify(pk𝑖 ,𝑚, 𝜎) = 1 if it doesn’t know sk𝑖 , unless it previously received exactly such

a signature.

3.3.4 Verifiable Random Functions. A Verifiable Random Function scheme (VRF) [33] consists of

two deterministic algorithms: VRF_evaluate and VRF_verify. A VRF is used to generate verifiable

randomness, allowing parties to generate seemingly random values and prove that they did so

correctly. Party 𝑖 can run VRF_evaluate(sk𝑖 , 𝑣𝑎𝑙) on a values 𝑣𝑎𝑙 to generate a pair 𝑟, 𝜋 . Parties can

then run VRF_verify(pk𝑖 , 𝑟 , 𝜋) to check that 𝑟 is indeed the correct output of the VRF, outputting 1

if it is and 0 otherwise. The VRF scheme has three properties:

• Correctness: For every honestly generated public key pair sk𝑖 , pk𝑖 and value 𝑣𝑎𝑙 ,VRF_verify(
pk𝑖 , 𝑣𝑎𝑙, 𝑟, 𝜋) = 1 for 𝑟, 𝜋 = VRF_evaluate(sk𝑖 , 𝑣𝑎𝑙).
• Uniqueness: If 𝑟, 𝜋 = VRF_evaluate(sk𝑖 , 𝑣𝑎𝑙) for some value 𝑣𝑎𝑙 , no adversary can generate

an 𝑟 ′, 𝜋 ′ such that 𝑟 ≠ 𝑟 ′ and VRF_verify(pk𝑖 , 𝑟 ′, 𝜋 ′) = 1.

• Pseudorandomness: From the point of view of an adversary not holding sk𝑖 , the value 𝑟
output from VRF_verify(sk𝑖 , 𝑣𝑎𝑙) looks uniform and independent of all other values.

3.3.5 Publicly Verifiable Secret Sharing. A Publicly Verifiable Secret Sharing (PVSS) scheme [15,

35, 36] is a secret sharing scheme that enables everyone — not just shareholders — to verify that

some secret has been shared successfully. In our setting, we need the PVSS to be non-interactive,
allowing a dealer to include all information required for sharing and reconstructing the secret in

a single transcript. Each transcript has an associated threshold 𝑑 . We will assume 𝑑 is a globally

known constant and will not include it in the description of the algorithms. A non-interactive

PVSS consists of five algorithms: PVSS, PVSS_verify, PVSS_dec, PVSS_share_verify and PVSS_rec.
Parties use the described algorithms as follows:

• Every party can generate a transcript trans for sharing a secret 𝑠 to a set of at least 𝑑 + 1
public keys keys by running PVSS(keys, 𝑠). The transcript trans is of size 𝑝𝑜𝑙𝑦 (𝜆 · |keys|).
• Parties can run PVSS_verify(keys, trans) to verify that a transcript is well-formed with

respect to keys, outputting 1 if it is well-formed, and 0 otherwise.

• Using a secret key sk𝑖 such that pk𝑖 ∈ keys, party 𝑖 can get a share of the PVSS by calling

PVSS_dec(keys, trans, sk𝑖 ) and outputting share.

2
In the work of Huang et al. [30], ANON-RSO and CCA-security are defined in a single security game. We express them

independently for clarity of exposition.
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• Shares can also be verified with respect to keys and to a specific public key pk𝑖 by running

PVSS_share_verify(keys, trans, pk𝑖 , share), which outputs 1 if share is the share associated
with pk𝑖 and 0 otherwise.

• Finally, after receiving 𝑑 + 1 verifying shares, parties can reconstruct the secret 𝑠 by calling

PVSS_rec(keys, trans, {(pk𝑖 , share𝑖 )}).
A PVSS scheme has the following properties:

• Verification Correctness: If trans = PVSS(keys, 𝑠) for some set of at least 𝑑 + 1 keys, then
PVSS_verify(keys, trans) = 1. In addition, if PVSS_verify(keys, trans) = 1 and share =

PVSS_dec(keys, trans, sk𝑖 ) for some sk𝑖 such that pk𝑖 ∈ keys, thenPVSS_share_verify(keys,
trans, pk𝑖 , share) = 1.

• Binding: If PVSS_verify(keys, trans) = 1, then there is a unique 𝑠 ≠ ⊥ that can be output

from PVSS_rec(keys, trans, shares) with any possible set of verifying shares.

• Reconstructibility: If PVSS_verify(keys, trans) = 1 and shares = {(pk𝑖 , share𝑖 )} is a set of at
least 𝑑 + 1 pairs such that for every (pk𝑖 , share𝑖 ) ∈ shares, PVSS_share_verify(keys, trans,
pk𝑖 , share𝑖 ) = 1 and pk𝑖 ∈ keys, then PVSS_rec(keys, trans, shares) outputs 𝑠 ≠ ⊥.
• Hiding: If trans = PVSS(keys, 𝑠) such that keys contains at least 𝑑+1 public keys pk𝑖 and the
adversary knows at most 𝑑 of the secret keys sk𝑖 such that pk𝑖 ∈ 𝑘𝑒𝑦𝑠 , then the adversary

can learn nothing about 𝑠 from trans.

4 SCALABLE QUORUM SYSTEM
At a high level, in this section, we build a quorum system based on VRF sampling. Just as in

Algorand, to create committees of about 𝑂 (log𝑛) members, a party is a member of a committee

if its associated VRF value is roughly < 𝑂 ( log𝑛
𝑛
). The main property we want to obtain is that

the number of nonfaulty parties is always more than (2/3) of the total number of parties in the

committee, except for some error probability of roughly 2
−𝑂 (𝜅 )

.

Note that since the adversary is adaptive, we must be careful when defining nonfaulty committee

members (see how we define𝐻𝑡𝑎𝑔). Looking ahead, this essentially allows them to send one message

via multicast.

In addition to defining a VRF committee (Definition 4.1), we also define a very simple way to

sample a committee, where a single nominator essentially chooses the committee members via

(unverified) random sampling (Definition 4.2). Looking ahead, we will use this second sampling as

an essential step in the setup phase of the AVSS.

After defining the quorum systems, we prove three properties that will be useful throughout the

next sections. These are the natural properties one would expect from a quorum system: that every

two quorums have at least one nonfualty in the intersection and that any quorum has a majority of

nonfualty parties.

On error events. Our goal is to show that the total error from using the quorum system for at most

𝑛4 different committees is at most 2
−𝜅
. Note that the choice of 𝑛4 committees is arbitrary and is

just a conservative overestimate of the fact that we use no more than 𝑂 (𝑛2 polylog 𝑛) committees.

Once we obtain these bounds, we will assume in all later parts of the paper that whenever calling

the quorum systems, no errors take place. The total error of at most 2
−𝜅

is then incorporated in the

final theorem (where we also add the computational error). Similarly to how the error stemming

from the cryptography is bounded, roughly bounding the total number of times these systems are

used by 𝑛4 means that from the union bound, the total probability of any failure in the quorum

system is bounded by 2
−𝜅
. Note that the error here is both in terms of correctness (safety violation)

and in terms of liveness (may not terminate).
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4.1 Definition
In our protocols, we require parties to be able to independently check whether they are committee

members with a given tag and to prove their membership to each other. This process should

guarantee that the committee is not too large and that a large portion of it is nonfaulty. Since

this sampling is random, parties can be “unlucky” and sample a committee that does not have

these properties. As such, a quorum committee system is parameterized by a statistical security

parameter 𝜅 , and its properties should hold with probability 1− 2−𝜅 or greater, even if we use𝑂 (𝑛4)
different tags (in fact our protocol uses much less).

We formalize a committee quorum system as follows:

Definition 4.1. A committee quorum system scheme with parameters ℎ,𝑚 consists of two algo-

rithms (get_mem, verify_mem). Parties call the get_mem algorithm with their secret key sk and a

tag 𝑡𝑎𝑔 and output a boolean flag 𝑏 indicating whether they are members and a proof 𝜋 . Parties

can verify the output of the get_mem algorithm by calling the verify_mem algorithm with a public

key pk, a boolean flag 𝑏, a proof 𝜋 and a tag 𝑡𝑎𝑔 and output either 1, indicating that 𝑏 is the correct

output from get_mem or 0 otherwise.

For any tag 𝑡𝑎𝑔, define 𝐶𝑡𝑎𝑔 to be the set of parties that are members:

𝐶𝑡𝑎𝑔 = {𝑖 | get_mem(sk𝑖 , tag) = 1, 𝜋 𝑓 𝑜𝑟 𝑠𝑜𝑚𝑒 𝜋}
and define 𝐻𝑡𝑎𝑔 to be the set of members that were nonfaulty when they checked their membership:

𝐻𝑡𝑎𝑔 = {𝑖 | 𝑖 ∈ 𝐶𝑡𝑎𝑔 and

𝑖 is nonfaulty when first calling get_mem with 𝑡𝑎𝑔}
For any 𝜅 > 1, the pair (get_mem, verify_mem) is said to be a committee quorum system with

parameters ℎ,𝑚 and 𝜅, 𝑐 if for any tag 𝑡𝑎𝑔, the following properties hold with probability at least

1 − 2−𝜅𝑐 log𝑛 .
• Liveness. |𝐻𝑡𝑎𝑔 | ≥ ℎ.

• Safety. |𝐶𝑡𝑎𝑔 | ≤ 𝑚 and ℎ > (2/3)𝑚.

• Unpredictability. An adversary that has access to all public keys and does not know sk𝑖
learns nothing about get_mem(sk𝑖 , 𝑡𝑎𝑔) unless it receives it a nonfaulty party.

• Binding. If get_mem(sk𝑖 , 𝑡𝑎𝑔) = 𝑏, 𝜋 for some 𝑏, 𝜋 , then the adversary cannot produce a

pair 𝑏′, 𝜋 ′ such that verify_mem(pk𝑖 , 𝑏′, 𝜋 ′, 𝑡𝑎𝑔) = 1 and 𝑏 ≠ 𝑏′.

In addition to parties independently checking if they are members in a committee for a given tag,

we require parties to be able to sample a committee to send messages to. This sampling process

needs to have the same liveness and safety as a committee quorum system.

Note that this committee is sampled via unverified randomness. So looking ahead, we can only

prove properties on such a committee if the sampler is nonfaulty at the time is samples.

Formally, we define a committee sampling algorithm as follows:

Definition 4.2. A committee sampling algorithm sample_committee can be called with no input,

and output a set 𝑆 ⊆ [𝑛]. Define 𝐶 = 𝑆 to be the set of all committee members and define 𝐻 to be

the set of members of 𝐶 that were nonfaulty when running sample_committee.
For any 𝜅 > 1, sample_committee is said to be a committee sampling algorithm with parameters

ℎ,𝑚 and 𝜅, 𝑐 if the following properties hold with probability at least 1 − 2−𝜅𝑐 log𝑛 .
• Liveness. |𝐻 | ≥ ℎ.

• Safety. |𝐶 | ≤ 𝑚 and ℎ > ⌈(2/3)𝑚⌉ (this also means that (3/2)ℎ > 𝑚).

Setting the parameter 𝑐 . Since in this paper we will use much fewer than 𝑛4 tags, we can conser-

vatively set 𝑐 = 4 to guarantee a total error of at most 2
−𝜅

by union bound.
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Properties. The following properties follow assuming a committee quorum system or a committee

sampling algorithm (with the sets 𝐶𝑡𝑎𝑔, 𝐻𝑡𝑎𝑔 corresponding to the sets 𝐶,𝐻 ) with parameters ℎ,𝑚,

conditioned on no error:

• Robust quorum intersection (RQI). Any two sets of ℎ members of𝐶𝑡𝑎𝑔 must have at least

one member 𝐻𝑡𝑎𝑔 in their intersection (because 2ℎ > 2⌈(2/3)𝑚⌉ ≥ (4/3)𝑚 ≥ 𝑚 + (𝑚 − ℎ)
and there are at most𝑚 − ℎ faulty parties).

• Quorum intersection (QI). Any set of ℎ members and set of ⌈ℎ/2⌉ members must have at

least one member in their intersection (because ℎ + ⌈ℎ/2⌉ ≥ (3/2)ℎ > 𝑚).

• Honest majority (HM). Any set of ℎ members of 𝐶𝑡𝑎𝑔 contains more than ⌈ℎ/2⌉ members

in 𝐻𝑡𝑎𝑔 (because at most𝑚 − ℎ < ⌈ℎ/2⌉ parties are faulty, and thus the remaining ⌈ℎ/2⌉
must be nonfaulty).

4.2 Construction
In the following construction, we assume the VRF outputs a value 𝑟 ∈ [𝑀𝐴𝑋 ] for some known value

𝑀𝐴𝑋 (typically, we expect𝑀𝐴𝑋 = 2
𝑂 (𝜆)

). In both the committee quorum system and committee

sampling algorithm, parties are simply uniformly and independently included in the committee

with probability 𝑝 =
120𝜖−2𝜅 log𝑛

𝑛
. The exact probability is chosen in order to set the statistical error

probability at 𝜅 even for 𝑛4 tags and is derived in the security analysis (see the proof of Theorem

4.3 for the coarse choice of constants - this can probably be tightened).

Algorithm 1 get_mem(sk, 𝑡𝑎𝑔)
1: 𝑟, 𝜋 ← VRF_evaluate(sk, 𝑡𝑎𝑔)
2: 𝑏 ← 0

3: if 𝑟 ≤ 120𝜖−2𝜅 log𝑛

𝑛
·𝑀𝐴𝑋 then

4: 𝑏 ← 1

5: output (𝑏, (𝑟, 𝜋))

Algorithm 2 verify_mem(pk𝑗 , 𝑏, (𝑟, 𝜋), 𝑡𝑎𝑔)

1: if 𝑏 = 1 and VRF_verify(pk𝑗 , 𝑡𝑎𝑔, 𝑟, 𝜋) = 1 then

2: if 𝑟 ≤ 120𝜖−2𝜅 log𝑛

𝑛
·𝑀𝐴𝑋 then

3: ouptut 1
4: output 0

Algorithm 3 sample_committee()
1: 𝑆 ← ∅
2: for all 𝑗 ∈ [𝑛] do
3: flip a coin 𝑏 𝑗 with probability

120𝜖−2𝜅 log𝑛

𝑛
of being 1

4: if 𝑏 𝑗 = 1 then
5: 𝑆 ← 𝑆 ∪ { 𝑗}
6: output S



12 Ittai Abraham, Eli Chouatt, Ivan Damgård, Yossi Gilad, Gilad Stern, and Sophia Yakoubov

4.3 Security Analysis
Theorem 4.3. The pair (get_mem, verify_mem) is a committee quorum system scheme.

Proof. The unpredictability and binding of the scheme directly follow from the pseudorandom-

ness and uniqueness of the VRF scheme. In the rest of the proof we analyze the sizes of 𝐻𝑡𝑎𝑔 and

𝐶𝑡𝑎𝑔 to prove the liveness and safety properties.

Assume 𝑓 < (1/3−𝜖)𝑛 with 0 < 𝜖 < 1, and thus there are more than (2/3+𝜖)𝑛 nonfaulty parties.

Each party is included in the committee if its output 𝑟 from the VRF is at most
120𝜖−2𝜅 log𝑛

𝑛
·𝑀𝐴𝑋 , and

since 𝑟 is uniformly distributed in [𝑀𝐴𝑋 ], this event occurs with probability
120𝜖−2𝜅 log𝑛

𝑛
. Letting

𝑆 be the random variable describing the size of the committee 𝐸 [𝑆] = 𝑐′𝜖−2𝜅 log𝑛 with 𝑐′ = 120.

Since there are (2/3 + 𝜖)𝑛 nonfaulty parties in the network, the expected number of nonfaulty

parties in the committee is 𝐸 [𝐻 ] = (2/3 + 𝜖)𝐸 [𝑆].
We bound the maximal committee size to be𝑚 = (1 + 𝜖/2)𝐸 [𝑆]. For a large enough constant

𝑐′ ≥ 20𝑐:

𝑃 [𝑆 ≥ 𝑚 = (1 + 𝜖/2)𝐸 [𝑆]] ≤ 𝑒−
𝜖2𝐸 [𝑆 ]

10 = 𝑒−
𝑐′𝜅 log𝑛

10 ≤ 2
−𝜅𝑐 log𝑛

Nest, we bound the minimal number of nonfaulty parties in a committee to be ℎ > ⌈(2/3)⌉𝑚.

On the one hand, this means that ℎ > (2/3)𝑚 = (2/3) (1 + 𝜖/2)𝐸 [𝑠]. On the other hand, in order to

apply measure concentration arguments on the number of faulty parties, we would like to express

ℎ as a function of the expected number of honest parties and bound the probability that it is small:

ℎ = (1 − 𝑥)𝐸 [𝐻 ] = (1 − 𝑥) (2/3 + 𝜖)𝐸 [𝑆]. Comparing the two quantities, we get:

(1 − 𝑥) (2/3 + 𝜖)𝐸 [𝑆] > (2/3) (1 + 𝜖/2)𝐸 [𝑆]
1 − 𝑥 > (2/3) (1 + 𝜖/2)/(2/3 + 𝜖)
1 − 𝑥 > (2/3) (1 + 𝜖/2)/((2 + 3𝜖)/3)

𝑥 < 1 − (2/(2 + 3𝜖)) (1 + 𝜖/2)
𝑥 < 1 − (2 + 𝜖)/(2 + 3𝜖) = 2𝜖/(2 + 3𝜖)

This means that we can set 𝑥 to be smaller than 2𝜖/(2 + 3𝜖), e.g. 𝑥 = 2𝜖/5. For a large enough
constant 𝑐′ ≥ 30𝑐:

𝑃 [𝐻 < (2/3) (1 + 𝜖/2)𝐸 [𝑆]] ≤ 𝑃 [𝐻 < (1 − 2𝜖/5) (2/3 + 𝜖)𝐸 [𝑆]]
= 𝑃 [𝐻 < (1 − 2𝜖/5)𝐸 [𝐻 ]]

≤ 𝑒−
4𝜖2𝐸 [𝐻 ]

50 = 𝑒−
4(2/3+𝜖 )𝑐′𝜅 log𝑛

50 ≤ 2
−𝜅𝑐 log𝑛

Concretely, for 𝑐 = 4 we set 𝑐′ = 120 and sample with expectation 𝐸 [𝑆] = 𝑐′𝜖−2𝜅 log𝑛. This
allows us to set𝑚 = (1 + 𝜖/2)𝐸 [𝑆] and ℎ = (1 − 𝑥) (2/3 + 𝜖)𝐸 [𝑆] > (2/3)𝑚 and assuming we use

< 𝑛4 tags obtain a total error that is less than 2
−𝜅
. □

Theorem 4.4. sample_committee is a committee sampling algorithm, with an error of at most
2
𝜅𝑐 log per tag.

Proof. The proof follows an identical probability analysis to that of Theorem 4.3. □

5 SCALABLE BROADCAST
At a high level, a committee broadcast protocol allows each committee member to run a reliable

broadcast protocol. The protocol asynchronously outputs pairs ( 𝑗,𝑚), which essentially indicate

that party 𝑗 is a committee member who broadcasted the message𝑚. Note that this is a slightly
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non-standard definition of broadcast, as usually there is one globally-known sender, and every

party simply outputs the message it sends. In our use case, parties cannot know in advance which

parties may play the role of broadcasters, as they are supposed to be anonymous until they speak

once. As such, we consider all broadcast instances simultaneously and allow parties to output pairs

( 𝑗,𝑚) whenever they see that one of the broadcasts succeeded.

The definition below is called "committee broadcast protocol", and we show that using our

scalable quorum system we can obtain a near-linear and constant time implementation of this

definition. We call such a protocol a "scalable broadcast protocol".

Looking ahead, in one use, parties will wait for at least ℎ such pairs to be output and use that set

of indices as their input to a committee gather protocol.

5.1 Definition
Definition 5.1. In a Committee Broadcast protocol, every party 𝑖 has a message𝑚𝑖 and a tag 𝑡𝑎𝑔

as input, and parties may output pairs ( 𝑗,𝑚′𝑗 ) such that 𝑗 ∈ [𝑛]. Parties also have oracle access to

(get_mem, verify_mem). A Committee Broadcast protocol has the following properties:

• Validity. If 𝑗 is nonfaulty at the time it calls the protocol and a nonfaulty party outputs

( 𝑗,𝑚′𝑗 ), then𝑚′𝑗 =𝑚 𝑗 .

• Correctness. If two nonfaulty parties output ( 𝑗,𝑚) and ( 𝑗,𝑚′), then𝑚 =𝑚′.
• Verifiability. If a nonfaulty party outputs ( 𝑗,𝑚′𝑗 ) from the Broadcast protocol with 𝑡𝑎𝑔,

then get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 .

• Liveness.
– Liveness Validity. If 𝑗 is nonfaulty at the time it calls the protocol and get_mem(

sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 , then all nonfaulty parties eventually output ( 𝑗,𝑚 𝑗 ).
– Totality. If some nonfaulty party outputs ( 𝑗,𝑚′𝑗 ) for some 𝑗 ∈ [𝑛], then all nonfaulty

parties eventually do so as well.

5.2 Construction
The protocol in Algorithm 4 is a slight variation on the standard broadcast protocol by Bracha [9].

Each party starts by checking if it is a member of the committee allowed to broadcast their message.

Every committee member then sends the message it wants to broadcast to all parties in a “val”

message. Adapting the protocol to a committee-based protocol, parties check whether they are

allowed to participate in each round of the broadcaster’s protocol. Any party who is a member of

the sender’s echo committee sends an “echo” message after hearing the “val” message. Similarly,

every party sends a “vote” message if they are members of the vote committee and they either see a

quorum of “echo” messages, or enough “vote” messages to know that at least one nonfaulty sender

sent such a message.

5.3 Security Analysis
Lemma 5.2. No two nonfaulty parties will send two conflicting votes for the same 𝑘 . That is, if

nonfaulty parties send ⟨“vote”,𝑚, 𝜋, 𝑘, 𝑡𝑎𝑔⟩ and ⟨“vote”,𝑚′, 𝜋 ′, 𝑘, 𝑡𝑎𝑔⟩, then𝑚 =𝑚′.

Proof. Suppose by contradiction that the claim does not hold and let 𝑖 and 𝑗 be the first

nonfaulty parties that send ⟨“vote”,𝑚, 𝜋, 𝑘, 𝑡𝑎𝑔⟩, and ⟨“vote”,𝑚′, 𝜋 ′, 𝑘, 𝑡𝑎𝑔⟩ respectively such that

𝑚 ≠𝑚′. Since they are the first parties that do so, when they sent their messages, they had only

received ⟨“vote”,𝑚′′, 𝜋 ′′, 𝑘, 𝑡𝑎𝑔⟩ messages from Byzantine parties. This means that at that time

they received at most ⌈ℎ/2⌉ “vote” messages for 𝑘 , as they first check that for every such received

message verify_mem(pk𝑗 , 1, 𝜋 ′′, (𝑘, “vote”, 𝑡𝑎𝑔)) = 1. Therefore, they sent their messages after

receiving ℎ “echo” messages for 𝑘 . From the robust quorum intersection property of the quorum



14 Ittai Abraham, Eli Chouatt, Ivan Damgård, Yossi Gilad, Gilad Stern, and Sophia Yakoubov

Algorithm 4 Broadcast(𝑚𝑖 , 𝑡𝑎𝑔)
// Round 1: disseminate message

1: val_member, 𝜋𝑖 ← get_mem(sk𝑖 , 𝑡𝑎𝑔)
2: if val_member = 1 then
3: sends ⟨“val”,𝑚𝑖 , 𝜋𝑖 , 𝑖, 𝑡𝑎𝑔⟩ to all parties

// Round 2: echo message
4: upon receiving a message ⟨“val”,𝑚 𝑗 , 𝜋 𝑗 , 𝑗, 𝑡𝑎𝑔⟩ from 𝑗 , do
5: echo_member, 𝜋𝑖 ← get_mem(sk𝑖 , ( 𝑗, “echo”, 𝑡𝑎𝑔))
6: if echo_member = 1 and verify_mem(pk𝑗 , 1, 𝑡𝑎𝑔) = 1 then
7: send ⟨“echo”,𝑚 𝑗 , 𝜋𝑖 , 𝑗, 𝑡𝑎𝑔⟩ to all parties

// Round 2: vote message after quorum of echoes or reliable subset of votes
8: upon receiving ⟨“echo”,𝑚𝑘 , 𝜋 𝑗 , 𝑘, 𝑡𝑎𝑔⟩ with the same 𝑚𝑘 from ℎ parties such that

verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (𝑘, “echo”, 𝑡𝑎𝑔)) = 1, do
9: vote_member, 𝜋𝑖 ← get_mem(sk𝑖 , (𝑘, “vote”, 𝑡𝑎𝑔))
10: if vote_member = 1 and 𝑖 hasn’t sent a “vote” message for 𝑘 then
11: send ⟨“vote”,𝑚𝑘 , 𝜋𝑖 , 𝑘, 𝑡𝑎𝑔⟩ to all parties

12: upon receiving ⟨“vote”,𝑚𝑘 , 𝜋 𝑗 , 𝑘, 𝑡𝑎𝑔⟩ with the same 𝑚𝑘 from ⌈ℎ/2⌉ + 1 parties such that

verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (𝑘, “vote”, 𝑡𝑎𝑔)) = 1, do
13: vote_member, 𝜋𝑖 ← get_mem(sk𝑖 , (𝑘, “vote”, 𝑡𝑎𝑔))
14: if vote_member = 1 and 𝑖 hasn’t sent a “vote” message for 𝑘 then
15: send ⟨“vote”,𝑚𝑘 , 𝜋𝑖 , 𝑘, 𝑡𝑎𝑔⟩ to all parties

16: upon receiving ⟨“vote”,𝑚𝑘 , 𝜋 𝑗 , 𝑘, 𝑡𝑎𝑔⟩ with the same 𝑚𝑘 from ℎ parties such that

verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (𝑘, “vote”, 𝑡𝑎𝑔)) = 1, do
17: output (𝑘,𝑚𝑘 )

system, the ℎ “echo” messages that 𝑖 and 𝑗 received have at least one nonfaulty sender in common,

that only sends one such message to all parties. Therefore,𝑚 =𝑚′, by contradiction. □

Theorem 5.3. The Broadcast protocol is a Committee Broadcast protocol assuming a committee
quorum system, conditioned on no errors.

Proof. Each property is proven individually.

Validity. Assume that 𝑖 is nonfaulty and that some nonfaulty party outputs ( 𝑗,𝑚). In that case, it

received ℎ ⟨“vote”,𝑚, 𝜋, 𝑘, 𝑡𝑎𝑔⟩ messages with verifying proofs. As shown in the proof of Lemma 5.2,

at the time the first nonfaulty party sends such a message, it received ℎ ⟨“echo”,𝑚, 𝜋, 𝑘, 𝑡𝑎𝑔⟩
messages with verifying proofs. Out of those, at least ⌈ℎ/2⌉ were sent by nonfaulty parties, that

only send such a message after receiving a ⟨“val”,𝑚, 𝜋, 𝑘, 𝑡𝑎𝑔⟩ message from 𝑘 . A nonfaulty 𝑘 only

sends such a message with𝑚 =𝑚𝑘 , as required.

Correctness. Assume by way of contradiction that two nonfaulty parties output ( 𝑗,𝑚) and
( 𝑗,𝑚′) with𝑚 ≠𝑚′ for some 𝑗 ∈ [𝑛]. Before doing so, they each received ℎ messages of the form

⟨“vote”,𝑚, 𝜋, 𝑗, 𝑡𝑎𝑔⟩ and ⟨“vote”,𝑚′, 𝜋 ′, 𝑗 ′, 𝑡𝑎𝑔⟩ with verifying proofs. From the honest majority

property of the quorum system, there is at least one nonfaulty party in each set of ℎ messages, and

thus𝑚 =𝑚′ from Lemma 5.2.

Verifiability. Assume some nonfaulty party outputs ( 𝑗,𝑚). That nonfaulty party did so after

receiving ℎ “vote” messages for 𝑗 . As shown in the proof of Correctness, the first party that sends

such a “vote” message does so after receiving ℎ “echo” message for 𝑗 with verifying proofs. From

the honest majority property of the quorum system, at least ⌈ℎ/2⌉ + 1 of these messages were sent
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by nonfaulty parties, that only send “echo” messages after receiving a ⟨“val”,𝑚, 𝜋, 𝑖, 𝑡𝑎𝑔⟩ message

from 𝑗 with verify_mem(pk𝑗 , 1, 𝑡𝑎𝑔) = 1, and thus get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 , as required.

Liveness. For the Liveness Validity property, let 𝑖 be a nonfaulty party such that get_mem(
sk𝑖 , 𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 . It starts the protocol by sending an “echo” message with𝑚𝑖 and 𝜋 to all

parties. All parties eventually receive the message and from the liveness of the quorum system, at

least ℎ nonfaulty parties 𝑗 have get_mem(sk𝑗 , (𝑖, “echo”, 𝑡𝑎𝑔)) = 1, 𝜋 𝑗 for some 𝜋 𝑗 and send “echo”

messages for 𝑖 . Similarly at least ℎ nonfaulty parties 𝑗 have get_mem(sk𝑗 , (𝑖, “vote”, 𝑡𝑎𝑔)) = 1, 𝜋 𝑗

for some 𝜋 𝑗 and send “vote” messages for 𝑖 after hearing the “echo” messages, if they haven’t done

so earlier. After receiving ℎ such “vote” messages, every nonfaulty party eventually outputs (𝑖,𝑚𝑖 ).
For the Totality property, assume some nonfaulty party outputs ( 𝑗,𝑚) for some 𝑗 ∈ [𝑛]. That

party outputs ( 𝑗,𝑚) after receiving ℎ ⟨“vote”,𝑚, 𝜋, 𝑗, 𝑡𝑎𝑔⟩ messages with verifying proofs. From

the honest majority property of the quorum system, at least ⌈ℎ/2⌉ + 1 of these messages were sent

by nonfaulty parties. Every nonfaulty party receives these messages, and from the liveness of the

quorum system, at least ℎ nonfaulty parties 𝑗 have get_mem(sk𝑗 , (𝑖, “vote”, 𝑡𝑎𝑔)) = 1. These parties

also send “vote” messages for 𝑖 after receiving the ⌈ℎ/2⌉ aforementioned messages. Note that as

proven in Lemma 5.2 and in the proof of Correctness, if parties receive ⌈ℎ/2⌉ “vote” messages for 𝑖 ,

they receive the same value𝑚, and thus all such “vote” messages sent by nonfaulty parties have

the same value. Eventually, every nonfaulty party receives those messages and outputs ( 𝑗,𝑚). □

5.4 Efficiency Analysis
Lemma 5.4. The Broadcast protocol has a total communication complexity of𝑂 ((𝜆 + ℓ)𝑛𝑚2), where

ℓ is the size of the input and𝑚 is the parameter defined in the quorum system. In addition, parties output
a tuple ( 𝑗, 𝑟 𝑗 ) in 𝑂 (1) rounds if 𝑗 is nonfaulty when calling the protocol and get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1,
and if a nonfaulty party output ( 𝑗, 𝑟 𝑗 ) every nonfaulty party outputs that tuple𝑂 (1) rounds following
that.

Proof. A nonfaulty party 𝑖 sends a “val” message if get_mem(sk𝑖 , 𝑡𝑎𝑔) = 1, 𝜋 , and from the

safety of the quorum system there are at most𝑚 such parties. In addition, every nonfaulty 𝑖 may send

an “echo” message for 𝑗 if it receives “val” message from 𝑗 and get_mem(sk𝑖 , ( 𝑗, “echo”, 𝑡𝑎𝑔)) = 1, 𝜋 .

From the safety of the quorum system, for each 𝑗 with a verifying “val” message there are at most

𝑚 parties such that get_mem(sk𝑖 , ( 𝑗, “echo”, 𝑡𝑎𝑔)) = 1, 𝜋 , for a total of𝑚2
messages. As shown in

the proof of the verifiability of the Broadcast protocol, get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 also holds if some

nonfaulty party sends a “vote” message for 𝑗 . Following a similar calculation, nonfaulty parties

send𝑚2
such messages. Each one of these messages contains a proof 𝜋 of size 𝜆, a message of size

ℓ , an index of size log𝑛 ≤ 𝜆 and two constant-sized tags, for a total of 𝑂 ((𝜆 + ℓ)𝑛𝑚2).
If 𝑗 is nonfaulty when calling the protocol and get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, it starts the protocol

by sending a “val” message. As shown in the proof of Termination, nonfaulty parties then send

“echo” messages after one round and “val” messages a round after that. After receiving those “val”

messages, in𝑂 (1) rounds, parties output ( 𝑗,𝑚 𝑗 ). In addition, as shown in the proof of Termination,

if some nonfaulty party output ( 𝑗,𝑚 𝑗 ), all nonfaulty parties receive ⌈ℎ/2⌉ + 1 “vote” messages for 𝑗

in one round, they then receive ℎ such messages after another round, and output ( 𝑗,𝑚 𝑗 ) as well. □

Assuming 𝑓 < (1/3−𝜖)𝑛 and instantiating Broadcastwith the quorum system protocol described

in Section 4, we get𝑚 = 𝑂 (𝜖−2𝜅 log𝑛), and thus the communication complexity of the Broadcast
protocol is 𝑂 ((𝜆 + ℓ)𝑛(𝜖−2𝜅 log𝑛)2).

6 SCALABLE ASYNCHRONOUS VERIFIABLE SECRET SHARING
At a high level, a committee AVSS protocol allows each member of a committee to run an AVSS

protocol by sending a PVSS via the committee broadcast protocol of the previous section. In order
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Fig. 2. A corrupt nominating committee may share its secret key to a corrupt committee, resulting in a
corrupt virtual party; an honest nominating committee member is almost guaranteed to share its key to a
mostly-honest committee, resulting in an honest virtual party.

to make sure the PVSS works well, parties first run a setup protocol. In this setup, each nominating

committee member uses the committee broadcast protocol to publish a public key and to secret share

its corresponding private key to a secret committee of its choice. This secret committee plays the

role of a virtual anonymous party. A corrupt nominator may choose an entirely corrupt committee,

resulting in a corrupt virtual anonymous party; an honest nominator is almost guaranteed to choose

a most-honest committee. See Fig. 2 for an illustration. Once the virtual parties are established,

anyone can send a PVSS to their public keys. Once parties decide to reconstruct the shared values,

each committee provides shares of the virtual anonymous party’s secret key, allowing parties to

reconstruct all nonfaulty virtual parties’ keys, and then the secret shared in any PVSS transcript.

Similarly to the broadcast protocol, the definition of the committee AVSS scheme is slightly

non-standard in the sense that there is an anonymous committee of dealers that share their secrets

simultaneously. Parties may output indices 𝑗 ∈ [𝑛] whenever they see that the committee member

𝑗 successfully shared its secret using the virtual anonymous parties’ secret keys. Parties may then

reconstruct all secrets at the same time, outputting pairs of the form ( 𝑗, 𝑟 𝑗 ), where 𝑗 is a dealer and

𝑟 𝑗 is its reconstructed secret.

Again, note that the definition is called "committee AVSS protocol," and then we can obtain a

near-linear and constant time implementation of this definition. We call such a protocol a "scalable

AVSS protocol."

6.1 Definition
Definition 6.1. A Committee Asynchronous Verifiable Secret Sharing (AVSS) scheme consists of

three protocols (Setup, Share,Rec). Parties call the Setup protocol with an input 𝑡𝑎𝑔 and complete

the call with no output. Every party 𝑖 has a secret 𝑠𝑖 and a tag 𝑡𝑎𝑔 as input to the Share protocol and
may output indices 𝑗 ∈ [𝑛]. Parties also have oracle access to (get_mem, verify_mem). Parties may

call Rec with input 𝑡𝑎𝑔 and output pairs of the form ( 𝑗, 𝑟 𝑗 ) such that 𝑗 ∈ [𝑛]. Parties may only call

the Share protocol after completing a call to the Setup protocol with the same 𝑡𝑎𝑔. Parties share

their state between calls to the three protocols with the same 𝑡𝑎𝑔. The triplet (Setup, Share,Rec) is
said to be a Committee AVSS scheme if the following properties hold:

• Correctness. Once the first nonfaulty party outputs 𝑗 ∈ [𝑛] from Share with the tag 𝑡𝑎𝑔,

there exists a value 𝑟 𝑗 such that every nonfaulty party that outputs a tuple of the form ( 𝑗, 𝑟 )
from Rec with the same 𝑡𝑎𝑔 does so with 𝑟 = 𝑟 𝑗 . Furthermore, if 𝑗 is nonfaulty at the time it

calls the Share protocol, then 𝑟 𝑗 = 𝑠 𝑗 .
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• Verifiability. If a nonfaulty party outputs 𝑗 from Share or ( 𝑗, 𝑟 ) from Rec with the tag 𝑡𝑎𝑔,

then get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 .

• Liveness.
– Setup liveness. If all nonfaulty parties participate in the Setup protocol, then they all

complete it.

– Share liveness. If all nonfaulty parties participate in the Share protocol, then they all

eventually output 𝑗 for every party 𝑗 that is nonfaulty at the time it calls the protocol

such that get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 .

– Totality. If some nonfaulty party outputs 𝑗 from Sharewith the tag 𝑡𝑎𝑔, every nonfaulty
party eventually outputs 𝑗 from Share with the same tag.

– Recover liveness. If all nonfaulty parties call the Rec protocol with 𝑡𝑎𝑔, then every

nonfaulty party that output 𝑗 from Share with the same tag eventually outputs ( 𝑗, 𝑟 𝑗 )
from Rec as well.

• Secrecy. Before the first nonfaulty party calls Rec the adversary’s view is independent of 𝑠 𝑗
for every nonfaulty 𝑗 .

6.2 Construction
The scheme consists of the Setup protocol, described in Algorithm 5, the Share protocol, described
in Algorithm 6, and the Rec protocol, described in Algorithm 7. In the Setup protocol, parties

generate a set of virtual anonymous parties with known public keys, as described above. Each

member of the “key” committee does that by sampling a public key pair, and a committee to

hold shares of the secret (forming the virtual anonymous party). The “key” committee member

then computes a secret sharing of the secret key, encrypts each share to a member of his chosen

committee, and broadcasts the public key along with the vector of encrypted shares. After seeing

at least ℎ such broadcasts, parties complete the setup.

In the Share protocol, parties check whether they are allowed to share their secret. Any party

allowed to share its secret generates a PVSS transcript with the virtual committee members’ public

keys it saw during the Setup protocol and broadcasts it to all parties. After receiving such a

broadcast, and seeing that it reports a set of enough (≥ ℎ) public keys, parties consider this sharing

successful and output the dealer’s index. Note that having at least ℎ virtual committee members

guarantees that at least ⌈ℎ/2⌉ + 1 of them are nonfaulty, allowing parties to later reconstruct the

shared secret.

Finally, in the Rec protocol any party holding a share of a virtual party’s secret key publishes

this key. After reconstructing this key for every nonfaulty virtual member, parties will be able to

reconstruct any of the secrets shared in the Share protocol.
Technical notes. In line 9 of the Rec protocol, parties interpolate points to a polynomial using

the Interpolate algorithm. The algorithm takes a set 𝑃 = {( 𝑗, 𝑦 𝑗 )} of size 𝑑 + 1 such that 𝑗 ≠ 𝑘

for every ( 𝑗, 𝑦 𝑗 ), (𝑘,𝑦𝑘 ) ∈ 𝑃 and outputs the unique polynomial 𝑝 of degree 𝑑 or less such that

∀( 𝑗, 𝑦 𝑗 ) ∈ 𝑃 𝑝 ( 𝑗) = 𝑦 𝑗 . Note that lines 2-6 of the Setup algorithm can be executed only by the

parties that are members of the (“key”, 𝑡𝑎𝑔) committee.

6.3 Security Analysis
Theorem 6.2. The triplet (Setup, Share,Rec) is a Committee AVSS scheme assuming a committee

quorum system, conditioned on no errors.

Proof. Each property is proven individually.

Correctness. Assume some nonfaulty party outputs 𝑗 ∈ [𝑛] from Share with the tag 𝑡𝑎𝑔. Before

doing so, that party outputs ( 𝑗, 𝐼 𝑗 , trans𝑗 ) from the Broadcast call with tag 𝑡𝑎𝑔, saw that for every



18 Ittai Abraham, Eli Chouatt, Ivan Damgård, Yossi Gilad, Gilad Stern, and Sophia Yakoubov

Algorithm 5 Setup(𝑡𝑎𝑔)
1: key_transcripts𝑖 ← ∅

// Create a public key pair, broadcast the public key and share the secret key to a random committee

2: 𝑆
$←− sample_committee(), (pk, sk) $←− KeyGen(1𝜆)

3: uniformly sample a polynomial 𝑝 (𝑥) ∈ F⌈ℎ/2⌉ [𝑥] of degree ⌈ℎ/2⌉ such that 𝑝 (0) = sk

4: key_trans← {Enc
(
pk𝑗 , (𝑝 ( 𝑗), Sign(sk𝑖 , ( 𝑗, 𝑝 ( 𝑗), 𝑡𝑎𝑔))

)
| 𝑗 ∈ 𝑆}

5: erase 𝑆, pk, sk, 𝑝 and any randomness used in generating these values

6: call Broadcast((pk, key_trans), (“key”, 𝑡𝑎𝑔))
// Wait to receive enough public key pairs, and then complete the setup after having ℎ

7: upon outputting ( 𝑗, pk′𝑗 , key_trans𝑗 ) from Broadcast with tag (“key”, 𝑡𝑎𝑔), do
8: if

���key_trans𝑗 ��� ≤ 𝑚 then
9: key_transcripts𝑖 ← key_transcripts𝑖 ∪ {( 𝑗, pk′𝑗 , key_trans𝑗 )}
10: if

��key_transcripts𝑖 �� = ℎ then
11: complete the protocol, but continue processing messages

Algorithm 6 Share(𝑠𝑖 , 𝑡𝑎𝑔)
1: transcripts𝑖 ← ∅

// Share 𝑠𝑖 using the keys collected during the setup

2: trans
$←− PVSS({pk′𝑗 | ( 𝑗, pk′𝑗 , key_trans𝑗 ) ∈ key_transcripts𝑖 }, 𝑠𝑖 )

3: 𝐼 ← { 𝑗 | ( 𝑗, pk′𝑗 , key_trans𝑗 ) ∈ key_transcripts𝑖 }
4: erase 𝑠𝑖 and any randomness used in generating trans, 𝐼
5: call Broadcast((𝐼 , trans), 𝑡𝑎𝑔)

// After seeing that 𝑗 shared a value with enough correct public keys, output 𝑗
6: upon outputting ( 𝑗, 𝐼 𝑗 , trans𝑗 ) from Broadcast with tag 𝑡𝑎𝑔, do
7: upon ∀𝑘 ∈ 𝐼 𝑗 ∃(𝑘, pk′𝑘 , key_trans𝑘 ) ∈ key_transcripts𝑖 , do
8: if

��𝐼 𝑗 �� ≥ ℎ and PVSS_verify({pk′
𝑘
|𝑘 ∈ 𝐼 𝑗 }, trans𝑗 ) = 1 then

9: transcripts𝑖 ← transcripts𝑖 ∪ {( 𝑗, 𝐼 𝑗 , trans𝑗 )}
10: output 𝑗 from the protocol

𝑘 ∈ 𝐼 𝑗 there exists a tuple (𝑘, pk′, key_trans𝑘 ) in its key_transcripts set, that
��𝐼 𝑗 �� ≥ ℎ and finally

that PVSS_verify({pk′
𝑘
|𝑘 ∈ 𝐼 𝑗 }, trans𝑗 ) = 1. From the binding of the PVSS scheme, there exists a

unique polynomial 𝑝 of degree ⌈ℎ/2⌉ or less such that any verifying share lies on the polynomial

𝑝 , and reconstructing the transcript using any ⌈ℎ/2⌉ + 1 such shares results in 𝑝 (0). Let 𝑟 𝑗 = 𝑝 (0)
for that polynomial. Every nonfaulty party that outputs a pair ( 𝑗, 𝑟 ′𝑗 ) reconstructs the transcript
trans′𝑗 such that it output ( 𝑗, 𝐼 ′𝑗 , trans′𝑗 ) from the Broadcast call with tag 𝑡𝑎𝑔. From the Correctness

of Broadcast, for every such output ( 𝑗, 𝐼 ′𝑗 , trans′𝑗 ) = ( 𝑗, 𝐼 𝑗 , trans𝑗 ).
Nonfaulty parties output ( 𝑗, 𝑟 ′𝑗 ) after reconstructing the transcript trans𝑗 using at least ⌈ℎ/2⌉ + 1

verifying shares and outputting 𝑟 ′𝑗 . As mentioned above, this means that 𝑟 ′𝑗 = 𝑟 𝑗 , as required.

Furthermore, if 𝑗 is nonfaulty, from the Validity of Broadcast every party outputs ( 𝑗, trans𝑗 ) from
the protocol with trans𝑗 being the transcript 𝑗 computed for sharing 𝑠 𝑗 . From the correctness of

the scheme 𝑠 𝑗 = 𝑝 (0) = 𝑟 𝑗 , as required.

Verifiability. Assume some nonfaulty party output either 𝑗 from Share or ( 𝑗, 𝑟 𝑗 ) from Rec with
tag 𝑡𝑎𝑔. Before doing so, that party output ( 𝑗, 𝐼 𝑗 , trans𝑗 ) from Broadcast with tag 𝑡𝑎𝑔 and added
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Algorithm 7 Rec(𝑡𝑎𝑔)
1: keys𝑖 ← ∅,∀𝑗 ∈ [𝑛] key_shares𝑖 [ 𝑗] ← ∅

// Reconstruct secret keys
2: upon ( 𝑗, pk′𝑗 , key_trans𝑗 ) ∈ key_transcripts𝑖 , do

// Send shares of secret keys if chosen as a share-holder
3: if ∃key_enc ∈ key_trans𝑗 𝑠 .𝑡 . Dec(sk𝑖 , key_enc) ≠ ⊥ then
4: send ⟨“rec”,Dec(sk𝑖 , key_enc), 𝑗, 𝑡𝑎𝑔⟩ to all parties

// Wait to receive enough shares of the secret keys, and then reconstruct them
5: upon receiving ⟨“rec”, 𝑦𝑘 , 𝜎𝑘 , 𝑗, 𝑡𝑎𝑔⟩ from 𝑘 , do
6: if Sign_verify(pk𝑗 , (𝑘,𝑦𝑘 , 𝑡𝑎𝑔), 𝜎𝑘 ) = 1 then
7: key_shares𝑖 [ 𝑗] ← key_shares𝑖 [ 𝑗] ∪ {(𝑘,𝑦𝑘 )}
8: if

��key_shares𝑖 [ 𝑗]�� = ⌈ℎ/2⌉ + 1 then
9: 𝑝 ← Interpolate(key_shares𝑖 [ 𝑗])
10: keys𝑖 ← keys𝑖 ∪ {( 𝑗, pk′𝑗 , 𝑝 (0))}

// After seeing a transcript of a shared value and reconstructing its keys, reconstruct the secret
11: upon transcripts𝑖 or keys𝑖 being updated, do
12: for all ( 𝑗, 𝐼 𝑗 , trans𝑗 ) ∈ transcripts𝑖 s.t. no tuple of the form ( 𝑗, 𝑠 𝑗 ) has been output do

// Attempt to use keys to get shares, check their correctness, and only consider correct shares
13: for all 𝑘 ∈ 𝐼 𝑗 s.t. ∃(𝑘, pk′𝑘 , sk

′
𝑘
) ∈ keys𝑖 do

14: share𝑘 ← PVSS_dec({pk′
𝑘
|𝑘 ∈ 𝐼 𝑗 }, trans𝑗 , sk′𝑘 )

15: if PVSS_share_verify({pk′
𝑘
|𝑘 ∈ 𝐼 𝑗 }, trans𝑗 , pk′𝑘 , share𝑘 ) = 0 then

16: share𝑘 ← ⊥
17: shares← {(pk′

𝑘
, share𝑘 ) |𝑘 ∈ 𝐼 𝑗 , (𝑘, pk′𝑘 , sk

′
𝑘
) ∈ keys𝑖 , share𝑘 ≠ ⊥}

18: if |shares| ≥ ⌈ℎ/2⌉ + 1 then
19: output ( 𝑗, PVSS_rec({pk′

𝑘
|𝑘 ∈ 𝐼 𝑗 }, trans𝑗 , shares))

that tuple to its transcripts set. From the verifiability of the Broadcast protocol, get_mem(sk𝑗 ,
𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 , as required.

Liveness. For Setup liveness, assume all nonfaulty parties participate in the Share protocol with
a given 𝑡𝑎𝑔. Every nonfaulty 𝑗 samples a set 𝑆 , a public key pair (pk′𝑗 , sk′𝑗 ), a polynomial 𝑝 (𝑥)
of degree ⌈ℎ/2⌉ such that 𝑝 (0) = sk, generates a vector key_trans of encryptions of evaluations
of 𝑝 and calls Broadcast with the input (pk′𝑗 , key_trans𝑗 ) and tag (“key”, 𝑡𝑎𝑔). From the liveness

and validity of the Broadcast protocol, every nonfaulty party outputs ( 𝑗, pk′𝑗 , key_trans𝑗 ) from the

protocol for every nonfaulty 𝑗 such that get_mem(sk𝑗 , (“key”, 𝑡𝑎𝑔)) = 1, 𝜋 for some 𝜋 , and adds this

tuple to its key_transcripts set. From the liveness of the quorum system, there are at least ℎ such

nonfaulty parties, and thus every nonfaulty party eventually has ℎ values in its key_transcripts set
and completes the Setup protocol.

For Share liveness, assume all nonfaulty parties participate in the Share protocol with a given

𝑡𝑎𝑔 after completing a call to Setup with the same 𝑡𝑎𝑔. Every nonfaulty 𝑖 starts the Share protocol
by computing a PVSS transcript trans𝑖 with the ℎ received public keys pk′𝑗 in the Setup protocol

and a set 𝐼𝑖 of the indices of parties who broadcasted these public keys. Following that, every

nonfaulty 𝑖 calls Broadcast with the input (𝐼𝑖 , trans𝑖 ) and tag 𝑡𝑎𝑔. Similarly to above, from the

liveness and validity of the Broadcast protocol every nonfaulty party outputs (𝑖, 𝐼𝑖 , trans𝑖 ) for every
nonfaulty 𝑖 such that get_mem(sk𝑖 , 𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 . From the termination of the Broadcast
protocol, every nonfaulty party will eventually output the same ( 𝑗, pk′𝑗 , key_trans𝑗 ) values from
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the Broadcast call with tag (“key”, 𝑡𝑎𝑔) as 𝑖 did. This means that eventually, for every 𝑗 ∈ 𝐼𝑖 , every
nonfaulty party will have the tuple ( 𝑗, pk′𝑗 , trans𝑗 ) in its key_transcripts set, see that 𝑖 did indeed

choose a set 𝐼𝑖 of size ℎ and that PVSS_verify({pk′𝑗 | 𝑗 ∈ 𝐼𝑖 }, trans𝑖 ) = 1, and output 𝑖 .

For Totality, assume some nonfaulty party output 𝑗 from the protocol. This means that it

output ( 𝑗, 𝐼 𝑗 , trans𝑗 ) from the Broadcast call with tag 𝑡𝑎𝑔, saw that ∀𝑘 ∈ 𝐼 𝑗 there exists a tu-

ple (𝑘, pk′
𝑘
, key_trans𝑘 ) in its key_transcripts set, that

��𝐼 𝑗 �� ≥ ℎ and that PVSS_verify({pk′
𝑘
|𝑘 ∈

𝐼 𝑗 }, trans𝑗 ) = 1. That party adds the tuple (𝑘, pk′
𝑘
, key_trans𝑘 ) to its key_transcripts set after out-

putting it from the call to Broadcast with tag (“key”, 𝑡𝑎𝑔). From the liveness and correctness of the

Broadcast protocol, every nonfaulty party outputs the same ( 𝑗, 𝐼 𝑗 , trans𝑗 ) and (𝑘, pk′𝑘 , key_trans𝑘 )
tuples from the respective calls to Broadcast and updates their own key_transcripts sets. After that,
every nonfaulty party sees that the same conditions hold and output 𝑗 from the Share protocol.

For Recover liveness, assume all nonfaulty parties call the Rec protocol with the tag 𝑡𝑎𝑔 and that

some nonfaulty 𝑖 output 𝑗 from the Share protocol with the same tag. Since 𝑖 output 𝑗 from the Share
protocol,it added a transcript ( 𝑗, 𝐼 𝑗 , trans𝑗 ) to transcripts𝑖 after checking that for every 𝑘 ∈ 𝐼 𝑗 there
exists a tuple (𝑘, pk′

𝑘
, key_trans𝑘 ) ∈ key_transcripts𝑖 , that

��𝐼 𝑗 �� ≥ ℎ and that PVSS_verify({pk′
𝑘
|𝑘 ∈

𝐼 𝑗 }, trans𝑗 ) = 1. A tuple (𝑘, pk′
𝑘
, key_trans𝑘 ) is only added to key_trans𝑖 after outputting it from the

Broadcast protocol with tag (“key”, 𝑡𝑎𝑔) in the Setup protocol. From the termination and validity

of the Broadcast protocol, every nonfaulty party eventually outputs the same tuple and adds it to its

own key_transcripts set. In addition, from the verifiability of the protocol, get_mem(sk𝑘 , 𝑡𝑎𝑔) = 1, 𝜋

for some 𝜋 for every one of the tuples above. From the honest majority property of the quorum

system, and since

��𝐼 𝑗 �� ≥ ℎ, there are more than ⌈ℎ/2⌉ indices of nonfaulty parties in 𝐼 𝑗 . During the

Setup protocol, every such nonfaulty party 𝑘 ∈ 𝐼 𝑗 sampled a public key pair (pk, sk), a set 𝑆 of size at
most𝑚, and a polynomial 𝑝 of degree ⌈ℎ/2⌉ such that 𝑝 (0) = sk. Party 𝑘 then computed key_trans
as a set of encryptions of 𝑝 (𝑙), Sign(sk𝑘 , (𝑙, 𝑝 (𝑙), 𝑡𝑎𝑔) for every 𝑙 ∈ 𝑆 and input pk, key_trans to the

Broadcast protocol with tag (“key”, 𝑡𝑎𝑔). From the validity of the protocol, (pk′
𝑘
, key_trans𝑘 ) =

(pk, key_trans). Every nonfaulty 𝑙 ∈ 𝑆 will receive the message, be able to decrypt 𝑝 (𝑙), 𝜎𝑙 from
one of the cyphertexts in key_trans𝑘 and send ⟨“rec”, 𝑝 (𝑙), 𝜎𝑙 , 𝑘, 𝑡𝑎𝑔⟩ to all parties. Note that the

encryptions also hide the recipients of the message, and thus the adversary cannot choose to

adaptively corrupt parties in 𝑆 , meaning that from the liveness of the quorum system, there are at

least ℎ parties in 𝑆 and they remain nonfaulty until they send their “rec” message. Party 𝑖 receives

these messages, sees that the signature on (𝑙, 𝑝 (𝑙), 𝑡𝑎𝑔) verifies, and adds the tuple (𝑙, 𝑝 (𝑙)) to
key_shares𝑖 [𝑘]. In addition, the adversary cannot forge a verifying signature 𝜎 for any (𝑙 ′, 𝑦′

𝑙
, 𝑡𝑎𝑔)

that wasn’t generated by the nonfaulty party 𝑘 , and thus 𝑖 only adds pairs of the form (𝑙, 𝑝 (𝑙)) to the
key_shares𝑖 [𝑘]. After receiving ⌈ℎ/2⌉ + 1 such values, 𝑖 interpolates the shares to the polynomial 𝑝

and adds (𝑘, pk′
𝑘
, sk′

𝑘
) to keys𝑖 . From the binding and correctness of the PVSS scheme, for every

such key, 𝑖 computes a verifying share from trans𝑗 using every nonfaulty key sk′𝑘 , and adds them to

the set shares. Following that, there are at least ⌈ℎ/2⌉ + 1 such shares in shares, and thus 𝑖 performs

some local computation and outputs a tuple ( 𝑗, 𝑟 𝑗 ).
Secrecy. Assume no nonfaulty party called the Rec protocol with tag 𝑡𝑎𝑔. Throughout the Share

protocol, a nonfaulty 𝑖 may sample a set 𝑆 , generate a public key pair pk, sk, sample a polynomial 𝑝 ,

encrypt evaluations of 𝑝 to parties in 𝑆 and broadcast the encryptions. In addition, after outputting ℎ

tuples of the form ( 𝑗, pk𝑗 , key_trans𝑗 ) from the Broadcast call with tag (“key”, 𝑡𝑎𝑔), 𝑖 may generate

a PVSS transcript trans𝑖 sharing its secret 𝑠𝑖 by using ℎ of these public keys. It then inputs that

transcript to Broadcast, along with the set 𝐼𝑖 , which includes the indices of parties whose published

public keys were used. From the verifiability of theBroadcast protocol, for every ( 𝑗, pk𝑗 , key_trans𝑗 )
that 𝑖 output, get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 for some 𝜋 . From the honest majority of the quorum system,

less than ⌈ℎ/2⌉ of these parties are faulty, and thus the adversary only chose less than ⌈ℎ/2⌉ of
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the public keys used for generating trans𝑖 , and potentially knows the associated secret keys. Every

other pk𝑗 was sampled by a nonfaulty 𝑗 . As discussed above, that nonfaulty 𝑗 uniformly sampled

a set 𝑆 ⊆ [𝑛] of size 𝑚 and a polynomial 𝑝 of degree ⌈ℎ/2⌉ or less such that 𝑝 (0) = sk𝑗 , and
broadcasted a vector of encryptions to the parties in 𝑆 .

From the honest majority property of the committee sampling algorithm, less than ⌈ℎ/2⌉ of the
parties in 𝑆 are faulty. In addition, the encryptions hide who the messages were encrypted to, so

the adversary cannot adaptively choose parties to corrupt to learn their shares of sk𝑗 . Overall this
means that the adversary receives at most ⌈ℎ/2⌉ evaluations of the polynomial 𝑝 sampled by any

nonfaulty party in 𝐼𝑖 . All these evaluations are at points other than 0, and 𝑝 is uniformly sampled

from all polynomials of degree ⌈ℎ/2⌉ or less such that 𝑝 (0) = sk𝑗 . Since the adversary less than

⌈ℎ/2⌉ such evaluations, its view is independent of 𝑝 (0) = sk𝑗 , and thus it learns nothing about

sk𝑗 . In total, this means that the adversary knows less than ⌈ℎ/2⌉ secret keys corresponding to the

public keys used for generating trans𝑖 , and only learns the other public keys used, with the rest

of its view being independent of the other secret keys. From the secrecy of the PVSS scheme this

means that the adversary learns nothing about 𝑠𝑖 , as required. □

6.4 Efficiency Analysis
Lemma 6.3. The Setup and Share protocols have a total communication complexity of 𝑂 (𝜆𝑛𝑚3),

and the Rec protocol has a total communication complexity of 𝑂 (𝜆𝑛𝑚2), where𝑚 is the parameter
described in the quorum system.

Nonfaulty parties complete the Setup protocol in 𝑂 (1) rounds and output 𝑗 from the Share protocol
in𝑂 (1) rounds if 𝑗 is nonfaulty when calling the protocol and get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1. Furthermore, if
a nonfaulty party outputs 𝑗 from Share, every nonfaulty party outputs 𝑗 from Share in 𝑂 (1) rounds,
and if all parties call Rec, every nonfaulty party outputs ( 𝑗, 𝑟 𝑗 ) in 𝑂 (1) rounds for every 𝑗 that they
output from Share.

Proof. In the Setup and Share protocols, parties call the Broadcast protocol with either 𝑂 (𝑚)
encrypted values and a public key for a total of 𝑂 (𝜆𝑚) bits, or a PVSS transcript of size 𝑂 (𝜆𝑚).
In total, this costs 𝑂 ((𝜆𝑚)𝑛𝑚2) = 𝑂 (𝜆𝑛𝑚3). In the Rec protocol, every party included in a key

transcript sends a message of size 𝑂 (𝜆) to all parties. There are only𝑚 parties who successfully

broadcast their key transcript, and every party checks that the transcripts include at most 𝑚

encrypted values. This means that in total, parties send 𝑂 (𝜆𝑛𝑚2) bits.
In the beginning of the Setup protocol, every nonfaulty party calls the Broadcast protocol. Every

party outputs such a transcript for every nonfaulty party in the (“key”, 𝑡𝑎𝑔) committee in 𝑂 (1)
time. There are at least ℎ such parties, and thus every party completes the protocol in 𝑂 (1) time.

Similarly, every nonfaulty party that calls the Share protocol start by calling the Broadcast protocol.
Parties output a tuple for each such nonfaulty 𝑗 in the 𝑡𝑎𝑔 committee in 𝑂 (1) time and output 𝑗 . In

addition, if some nonfaulty party outputs 𝑗 from the Share protocol, it did so after outputs a tuple

( 𝑗,𝑚 𝑗 ) from the Broadcast call. Every nonfaulty party outputs the same value in 𝑂 (1) rounds and
outputs 𝑗 as well. Finally, if all nonfaulty parties call Rec, then all nonfaulty parties holding shares

of the secret keys send them to all parties. Parties receive these messages in 𝑂 (1) time, at which

time they can reconstruct every secret for which they previously output 𝑗 from Share.
□

Assuming 𝑓 < (1/3−𝜖)𝑛 and instantiating Broadcastwith the quorum system protocol described

in Section 4, we get𝑚 = 𝑂 (𝜖−2𝜅 log𝑛), and thus the communication complexity of the Setup and

Share protocols is𝑂 (𝜆𝑛(𝜖−2𝜅 log𝑛)3), and the complexity of the Rec protocol is𝑂 (𝜆𝑛(𝜖−2𝜅 log𝑛)2).
This entire analysis assumes the secrets are of size𝑂 (𝜆) that can be shared PVSS transcripts of size



22 Ittai Abraham, Eli Chouatt, Ivan Damgård, Yossi Gilad, Gilad Stern, and Sophia Yakoubov

𝑂 (𝜆𝑚). Secrets of size 𝑂 (𝜆ℓ) will need to be shared in transcripts of size 𝑂 (𝜆ℓ𝑚), adding a factor
of ℓ to the complexity of the Share protocol.

7 SCALABLE VERIFIABLE PARTY GATHER
At a high level, a committee-verifiable party gather protocol allows parties to run a two-round

gather protocol, where each round uses the committee broadcast protocol above. At the end of this

protocol, each party outputs a set of parties that completed their AVSS, and we are guaranteed

that there is a common core that all parties have in their outputs. Moreover, the common core is

fixed once the first nonfaulty completes its call to the gather protocol, and the output of gather is

verifiable (other parties can be convinced this output must contain the core).

Looking forward, the reason we need the gather to be verifiable, is that in the case of a good

event, where the highest rank happens to be for a proposal from a nonfualty party that belongs to

the core, we want to make it impossible for the adversary to claim that its output of the gather

does not contain this party.

7.1 Definition
A Verifiable Party Gather [1] scheme consists of two protocols Gather and Gather_Verify. Every
party 𝑖 runs theGather protocol with an input 𝑆𝑖 ⊆ [𝑛] and a tag 𝑡𝑎𝑔, and may output a set𝑋𝑖 ⊆ [𝑛].
In addition, parties have access to an asynchronous validity predicate valid. As defined in [1], a call

to the asynchronous validity predicate on a value 𝑥 may eventually terminate with the output 1,

eventually terminate with the output 0, or never terminate. Such a predicate is only said to be an

asynchronous validity predicate if the following condition holds: if some nonfaulty party outputs

𝑏 ∈ {0, 1} from valid(𝑥), then every party that calls valid(𝑥) also eventually outputs 𝑏, and never

outputs any other value. We say that valid(𝑥) = 1 for some party 𝑖 if 𝑖 would either output 1 upon

calling valid(𝑥), or has already output 1 from such a call. We will only consider asynchronous

validity predicates valid for which valid(𝑥) = 1 for at most𝑚 values 𝑥 . Finally, parties may call the

Gather_Verify protocol on a set 𝑋 ⊆ [𝑛] and a tag 𝑡𝑎𝑔 and either eventually output 1, eventually

output 0, or never terminate.

The pair (Gather,Gather_Verify) is said to be a Committee Verifiable Gather scheme if the

following properties hold assuming all nonfaulty parties start the Gather protocol with the same

𝑡𝑎𝑔 and with inputs 𝑆𝑖 such that |𝑆𝑖 | ≥ ℎ and ∀𝑗 ∈ 𝑆𝑖 valid( 𝑗) = 1:

• Binding Core: Once the first nonfaulty party outputs a value from the Gather protocol
there exists a core set 𝑋 ∗ ⊆ [𝑛] such that |𝑋 ∗ | ≥ ℎ and if a nonfaulty party outputs 𝑋𝑖 , then

𝑋 ∗ ⊆ 𝑋𝑖 .

• Termination of Output: All nonfaulty parties eventually output a gather-set.

• Completeness: For any two nonfaulty parties 𝑖, 𝑗 , if 𝑗 outputs 𝑋 𝑗 from Gather with tag

𝑡𝑎𝑔, and 𝑖 calls Gather_Verify(𝑋 𝑗 , 𝑡𝑎𝑔), 𝑖 eventually completes the call with the output 1.

• Agreement on Verification: For any two nonfaulty parties 𝑖, 𝑗 , and any set of indices

𝑋 ⊆ [𝑛], if 𝑖 outputs the value 𝑏 ∈ {0, 1} from a call to Gather_Verify(𝑋, 𝑡𝑎𝑔) and 𝑗 also

calls Gather_Verify(𝑋, 𝑡𝑎𝑔), then it also eventually outputs 𝑏.

• Includes Core: If a nonfaulty 𝑖 completes a call to Gather_Verify(𝑋, 𝑡𝑎𝑔) with the output

1, then 𝑋 ∗ ⊆ 𝑋 (with 𝑋 ∗ being the binding-core defined in the Binding Core property).

• External Validity: If a nonfaulty 𝑖 completes a call to Gather_Verify(𝑋, 𝑡𝑎𝑔) with the

output 1, then ∀𝑥 ∈ 𝑋 valid(𝑥) = 1 at that time for 𝑖 .
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7.2 Construction
The scheme consists of the Gather protocol, described in Algorithm 8 and the Gather_Verify
protocol, described in Algorithm 9. Parties start the Gather by broadcasting their inputs 𝑆𝑖 using

the committee broadcast protocol. Whenever a set 𝑆𝑖 is received, its contents are added to the

eventual output from the protocol. After receiving ℎ of these broadcasts (i.e. potentially from every

nonfaulty party in the first broadcast committee), parties broadcast the indices of parties whose

broadcasts they heard, stored in 𝑇𝑖 sets. This also indirectly informs other parties of the contents

of the broadcasts they heard, as they will eventually output the same values. After receiving ℎ

broadcasts of 𝑇𝑗 sets and waiting to hear all of the broadcasts they indicate, parties complete the

protocol, outputting the values they collected. In Lemma 7.1, we will show that any quorum of

parties who sent 𝑇𝑖 sets must have at least ⌈ℎ/2⌉ + 1 parties who included the same index 𝑖∗ in
their set. Parties wait to hear from a quorum before outputting values, and thus they must hear

from at least one of these ⌈ℎ/2⌉ + 1 parties. This also means that when verifying the output 𝑋 in

the Gather_Verify protocol, parties can simply wait to hear that it includes the 𝑇𝑖 broadcasts of a

quorum of the senders in order to know that it includes the core.

Algorithm 8 Gather(𝑆𝑖 , 𝑡𝑎𝑔)
1: 𝑅𝑖 ← ∅,𝑇𝑖 ← ∅,𝑈𝑖 ← ∅

// Round 1: Proposal of inputs
2: call Broadcast(𝑆𝑖 , (“propose”, 𝑡𝑎𝑔))

// Round 2: Aggregation of inputs to larger sets
3: upon outputting ( 𝑗, 𝑆 𝑗 ) from Broadcast with tag (“propose”, 𝑡𝑎𝑔) such that

��𝑆 𝑗 �� ≥ ℎ, do
4: upon valid(𝑘) outputting 1 for every 𝑘 ∈ 𝑆 𝑗 , do
5: 𝑅𝑖 ← 𝑅𝑖 ∪ 𝑆𝑖 , 𝑇𝑖 ← 𝑇𝑖 ∪ { 𝑗}
6: if |𝑇𝑖 | = ℎ then
7: call Broadcast(𝑇𝑖 , (“aggregate”, 𝑡𝑎𝑔))

// Round 3: Save 𝑇 sets for verification, output 𝑅 after enough were received
8: upon outputting ( 𝑗,𝑇𝑗 ) from Broadcast with tag (“aggregate”, 𝑡𝑎𝑔) such that |𝑇𝑗 | ≥ ℎ, do
9: upon 𝑇𝑗 ⊆ 𝑇𝑖 , do
10: 𝑈𝑖 ← 𝑈𝑖 ∪

{(
𝑗,
⋃

𝑘∈𝑇𝑗
𝑆𝑘

)}
11: if |𝑈𝑖 | = ℎ then
12: output 𝑅𝑖 but continue updating internal sets and sending messages

Algorithm 9 Gather_Verify(𝑋, 𝑡𝑎𝑔)
1: upon |{ 𝑗 | ∃( 𝑗,𝑉𝑗 ) ∈ 𝑈𝑖 ,𝑉𝑗 ⊆ 𝑋 }| ≥ ℎ and valid( 𝑗) outputting 1 for every 𝑗 ∈ 𝑋 , do
2: output 1 and terminate

7.3 Security Analysis
As discussed in Section 7.1, in all of the following proofs we will assume that there are at most

𝑚 indices 𝑗 ∈ [𝑛] such that valid( 𝑗) outputs 1 for any nonfaulty party. We will show that this

condition holds when using the scheme in the rest of the paper.

Lemma 7.1. Assume some nonfaulty party completed the protocol. There exists some 𝑖∗ such that this
nonfaulty party output ( 𝑗,𝑇𝑗 ) from the Broadcast protocol with tag (“aggregate”, 𝑡𝑎𝑔) with 𝑖∗ ∈ 𝑇𝑗
for at least ⌈ℎ/2⌉ + 1 parties 𝑗 ∈ [𝑛].
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Proof. Assume some nonfaulty party 𝑖 completed the protocol. Before completing the protocol,

it found that 𝑈𝑖 ≥ ℎ, and thus it had output ℎ pairs of the form ( 𝑗,𝑇𝑗 ) such that |𝑇𝑗 | ≥ ℎ and

𝑇𝑗 ⊆ 𝑇𝑖 from the Broadcast protocol with tag (“aggregate”, 𝑡𝑎𝑔). Let 𝐼 be the set of parties who
sent those broadcasts. Now assume by way of contradiction that for every index 𝑘 ∈ [𝑛], there
is no subset of 𝐽 ⊆ 𝐼 of size ⌈ℎ/2⌉ + 1 such that for every ∀𝑗 ∈ 𝐽 𝑘 ∈ 𝑇𝑗 . Note that for every

𝑗 ∈ 𝐼 , 𝑇𝑗 ⊆ 𝑇𝑖 , and 𝑖 only adds an index 𝑘 to 𝑇𝑖 after outputting (𝑘, 𝑆𝑘 ) from the Broadcast
protocol with tag (“propose”, 𝑡𝑎𝑔). From the Verifiability of the Broadcast protocol, for every such

𝑘 , get_mem(sk𝑘 , (“propose”, 𝑡𝑎𝑔)) = 1, 𝜋 for some 𝜋 . From the safety of the protocol, there are at

most𝑚 such indices, and thus there exists a set 𝑌 ⊆ [𝑛] such that |𝑌 | ≤ 𝑚 and ∀𝑗 ∈ 𝐼 𝑇𝑗 ⊆ 𝑌 . Since

there are a total of𝑚 possible values, the total number of elements in all sets is no greater than

𝑚 · ⌈ℎ/2⌉. On the other hand, there are ℎ such sets, each containing ℎ elements or more, resulting

in at least ℎ2 elements overall. Combining these two observations:

ℎ2 ≤ 𝑚 · ⌈ℎ/2⌉
From AM-GM inequality:

⌈ℎ/2⌉ ·𝑚 ≤ ( ⌈ℎ/2⌉ +𝑚
2

)2

From the safety property of definition 4.1,𝑚 < (3/2)ℎ, so ⌈ℎ/2⌉ +𝑚 < 2ℎ. Therefore,

ℎ2 ≤ ⌈ℎ/2⌉ ·𝑚 < ( 2ℎ
2

)2 = ℎ2

Which never holds for ℎ ≥ 1, reaching a contradiction. □

Lemma 7.2. Let 𝑅𝑖 (resp. 𝑇𝑖 or 𝑈𝑖 ) be the set held by a nonfaulty 𝑖 at some point in time in the
protocol. For every nonfaulty 𝑗 ∈ [𝑛], 𝑅𝑖 ⊆ 𝑅 𝑗 (resp. 𝑇𝑖 ⊆ 𝑇𝑗 or𝑈𝑖 ⊆ 𝑈 𝑗 ) eventually holds.

Proof. Observe the sets 𝑅𝑖 and 𝑇𝑖 at some time in the protocol. Party 𝑖 updates 𝑅𝑖 and 𝑇𝑖 after

outputting ( 𝑗, 𝑆 𝑗 ) from Broadcast with the tag (“propose”, 𝑡𝑎𝑔) and seeing that |𝑆𝑘 | ≥ ℎ and that

valid(𝑙) outputs 1 for every 𝑙 ∈ 𝑆𝑘 . After seeing that this holds, 𝑖 adds all of 𝑆𝑘 to 𝑅𝑖 and 𝑘 to 𝑇𝑖 .

From the Totality and Correctness of the broadcast protocol, every nonfaulty party eventually

outputs the same pair from Broadcast and eventually sees that valid(𝑙) outputs 1 as well for every
𝑙 ∈ 𝑆𝑘 . At that time, 𝑗 also adds all of 𝑆𝑘 to 𝑅 𝑗 and 𝑘 to 𝑇𝑗 , meaning that 𝑅𝑖 ⊆ 𝑅 𝑗 and 𝑇𝑖 ⊆ 𝑇𝑖 .

Similarly, observe the set𝑈𝑖 at some time in the protocol. Party 𝑖 adds (𝑘,⋃𝑙∈𝑇𝑘 𝑆𝑙 ) to𝑈𝑖 after

outputting the pair (𝑘,𝑇𝑘 ) from the Broadcast call with tag (“aggregate”, 𝑡𝑎𝑔) and seeing that

|𝑇𝑘 | ≥ ℎ and that 𝑇𝑘 ⊆ 𝑇𝑖 . From the Totality and Correctness of the broadcast protocol, every

nonfaulty party 𝑗 eventually outputs the same pair from Broadcast and the same 𝑆𝑙 sets as described

above. At that time, 𝑗 also adds (𝑘,⋃𝑙∈𝑇𝑘 𝑆𝑙 ) to𝑈 𝑗 , meaning that𝑈𝑖 ⊆ 𝑈 𝑗 . □

Theorem 7.3. The pair (Gather,Gather_Verify) is a Committee Verifiable Gather scheme assuming
a committee quorum system, conditioned on no errors.

Binding Core. Assume the first nonfaulty party that completes the Gather protocol is 𝑝∗.
From Lemma 7.1, there exists some 𝑖∗ such that 𝑝∗ output at least ℎ pairs of the form (𝑘,𝑇𝑘 ) with
𝑖∗ ∈ 𝑇𝑘 from the Broadcast protocol with tag (“aggregate”, 𝑡𝑎𝑔). Party 𝑝∗ only adds a tuple (𝑘,𝑉𝑘 )
to𝑈𝑝∗ after outputting (𝑘,𝑇𝑘 ) from its call to Broadcast with tag (“aggregate”, 𝑡𝑎𝑔). Therefore for
some (𝑘,𝑉𝑘 ) ∈ 𝑈𝑝∗ , 𝑖

∗ ∈ 𝑇𝑘 . Note that 𝑇𝑘 ⊆ 𝑇𝑝∗ , so 𝑖∗ ∈ 𝑇𝑝∗ . Before adding 𝑖∗ to 𝑇𝑝∗ , 𝑝∗ output a
pair (𝑖∗, 𝑆𝑖∗ ) from the Broadcast protocol with tag (“propose”, 𝑡𝑎𝑔). Let the binding core 𝑋 ∗ be the
set 𝑆𝑖∗ . Clearly |𝑋 ∗ | ≥ ℎ because |𝑆𝑖∗ | ≥ ℎ. The fact that 𝑋 ∗ is a subset of every nonfaulty party’s

output from the protocol is a direct corollary of the Completeness and Include Core properties of

the Gather protocol, proven below.
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Termination of Output. Assume every nonfaulty party 𝑖 calls the Gather protocol with an

input 𝑆𝑖 ⊆ [𝑛] such that |𝑆𝑖 | ≥ ℎ and ∀𝑥 ∈ 𝑆𝑖 valid(𝑥) = 1 for 𝑖 . Every nonfaulty 𝑖 starts by

calling Broadcast(𝑆𝑖 , (“propose”, 𝑡𝑎𝑔)). From the liveness of the quorum system, there are at least

ℎ nonfaulty parties 𝑖 for which get_mem(sk𝑖 , (“propose”, 𝑡𝑎𝑔)) = 1, and from the Validity and

termination of the protocol, every nonfaulty party eventually outputs (𝑖, 𝑆𝑖 ) for every such 𝑖 . Every

nonfaulty party will then see that |𝑆𝑖 | ≥ ℎ for every such 𝑆𝑖 , and since valid is an asynchronous

validity predicate, eventually also see that valid(𝑥) outputs 1 for every 𝑥 ∈ 𝑆𝑖 . At that time, every

nonfaulty 𝑗 updates 𝑅 𝑗 and adds an index to 𝑇𝑗 . After adding ℎ such indices, every nonfaulty 𝑗

calls Broadcast(𝑇𝑖 , (“aggregate”, 𝑡𝑎𝑔)). Similarly to above, there are at least ℎ nonfaulty parties 𝑗 for

which get_mem(sk𝑗 , (“propose”, 𝑡𝑎𝑔)) = 1, and from the Validity and termination of the protocol,

every nonfaulty party eventually outputs ( 𝑗,𝑇𝑗 ) with
��𝑇𝑗 �� ≥ ℎ for every such 𝑗 . From Lemma 7.2,

eventually 𝑇𝑗 ⊆ 𝑇𝑘 for every nonfaulty 𝑘 . This means that every nonfaulty 𝑘 eventually adds a

tuple to𝑈𝑖 for each one of these ℎ nonfaulty parties 𝑗 , sees that |𝑈𝑖 | = ℎ, and outputs 𝑅𝑖 .

Completeness. Assume some nonfaulty party 𝑖 completes the Gather protocol and outputs a set
𝑋𝑖 . The set 𝑋𝑖 is the set 𝑅𝑖 at the time 𝑖 completed the protocol. Party 𝑖 outputs 𝑋𝑖 after outputting ℎ

pairs ( 𝑗,𝑇𝑗 ) from the Broadcast protocol with tag (“aggregate”, 𝑡𝑎𝑔), seeing that
��𝑇𝑗 �� ≥ ℎ and𝑇𝑗 ⊆ 𝑇𝑖 ,

and adding a tuple ( 𝑗,𝑉𝑗 ) to 𝑈𝑖 . From Lemma 7.2, every nonfaulty 𝑘 eventually has ( 𝑗,𝑉𝑗 ) ∈ 𝑈𝑘

for every ( 𝑗,𝑉𝑗 ) ∈ 𝑈𝑖 . This means that it is enough to show that for every one of these ℎ tuples,

𝑉𝑗 ⊆ 𝑋𝑖 . Let ( 𝑗,𝑉𝑗 ) be one such tuple, and let𝑇𝑗 be the set received in the broadcast described above.

As shown above, 𝑇𝑗 ⊆ 𝑇𝑖 at the time 𝑖 outputs 𝑋𝑖 . Let 𝑘 be some index in 𝑇𝑗 ⊆ 𝑇𝑖 . Party 𝑖 only adds

𝑘 to 𝑇𝑖 after outputting (𝑘, 𝑆𝑘 ) from the Broadcast protocol with tag (“propose”, 𝑡𝑎𝑔), and at that

time it also updates 𝑅𝑖 to be 𝑅𝑖 ∪ 𝑆𝑘 . This means that for every 𝑘 ∈ 𝑇𝑗 , 𝑆𝑘 ⊆ 𝑅𝑖 at the time 𝑖 outputs

𝑋𝑖 = 𝑅𝑖 . Since 𝑉 =
⋃

𝑘∈𝑇𝑗
𝑆𝑘 , 𝑉𝑗 ⊆ 𝑋𝑖 = 𝑅𝑖 for every ( 𝑗,𝑉𝑗 ) ∈ 𝑈𝑖 at that time, completing the proof.

Agreement on Verification. Assume that some nonfaulty party 𝑖 outputs 𝑏 ∈ {0, 1} from a

call to Gather_Verify(𝑋, 𝑡𝑎𝑔), and that all the nonfaulty parties participate in the Gather protocol.
Note that nonfaulty parties only output 1 from the protocol and thus 𝑏 = 1. At the time 𝑖 completed

the protocol, it saw that |{𝑘 |∃(𝑘,𝑉𝑘 ) ∈ 𝑈𝑖 ,𝑉𝑘 ⊆ 𝐼 }| ≥ ℎ and that valid(𝑘) output 1 for every 𝑘 ∈ 𝑋 .

From Lemma 7.2, for every nonfaulty 𝑗 , eventually𝑈𝑖 ⊆ 𝑈 𝑗 and thus

��{𝑘 |∃(𝑘,𝑉𝑘 ) ∈ 𝑈 𝑗 ,𝑉𝑘 ⊆ 𝑋
}�� ≥ ℎ

also eventually holds. In addition, since valid is an asynchronous validity predicate, valid(𝑘)
eventually output 1 for 𝑗 for every 𝑘 ∈ 𝑋 . Therefore, if 𝑗 calls Gather_Verify(𝑋, 𝑡𝑎𝑔), it eventually
outputs 1 as well.

Include Core. Assume that a nonfaulty party 𝑖 outputs 1 from its call to Gather_Verify(𝑋, 𝑡𝑎𝑔)
for some 𝑋 ⊆ [𝑛]. Party 𝑖 found that |{𝑘 |∃(𝑘,𝑉𝑘 ) ∈ 𝑈 𝑗 ,𝑉𝑘 ⊆ 𝑋 }| ≥ ℎ. As discussed above, party 𝑖

only adds ( 𝑗,𝑉𝑗 ) to 𝑈𝑖 after outputting ( 𝑗,𝑇𝑗 ) from the Broadcast call with tag (“aggregate”, 𝑡𝑎𝑔).
Let 𝑖∗ be defined as it is in Lemma 7.1 and in the Binding Core property. The party 𝑝∗ defined in the

Binding Core property output ⌈ℎ/2⌉ + 1 tuples of the form ( 𝑗,𝑇𝑗 ) with 𝑖∗ ∈ 𝑇𝑗 from the Broadcast
call with tag (“aggregate”, 𝑡𝑎𝑔). In addition, there are ℎ tuples such that ( 𝑗,𝑉𝑗 ) ∈ 𝑈𝑖 and 𝑉𝑗 ⊆ 𝑋 .

Note that for any such 𝑇𝑗 or 𝑉𝑗 , some nonfaulty party output a tuple of the form ( 𝑗,𝑇𝑗 ) from the

Broadcast call with tag (“aggregate”, 𝑡𝑎𝑔) and thus from the Verifiability of the Broadcast protocol,
get_mem(sk𝑗 , (“aggregate”, 𝑡𝑎𝑔)) = 1, 𝜋 for some 𝜋 . Therefore, from the quorum intersection

property of the quorum system, for at least one of those tuples ( 𝑗,𝑉𝑗 ), 𝑖∗ ∈ 𝑇𝑗 . By definition,

𝑉𝑗 =
⋃

𝑘∈𝑇𝑗
𝑆𝑘 , and thus 𝑋 ∗ = 𝑆𝑖∗ ⊆ 𝑉𝑗 ⊆ 𝑋 , as required.

External Validity. Assume that for some nonfaulty 𝑖 , Gather_Verify(𝑋, 𝑡𝑎𝑔) terminates with

the output 1. Before doing so, 𝑖 checks that valid( 𝑗) output 1 for every 𝑗 ∈ 𝑋 , as required.
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7.4 Efficiency Analysis
Lemma 7.4. The Gather protocol has a total communication complexity of 𝑂 ((𝜆 +𝑚 log𝑛)𝑛𝑚2)

and the Gather_Verify protocol requires no communication, where𝑚 is the parameter described in the
quorum system. and a round complexity of 𝑂 (1). Assuming that if a nonfaulty party outputs 1 from
valid(𝑥), every nonfaulty party does so in 𝑂 (1) time, the Gather protocol has a round complexity
of 𝑂 (1), and if a nonfaulty party outputs 𝑋 from Gather or 1 from Gather_Verify run on 𝑋 , every
nonfaulty party does so after 𝑂 (1) rounds.

Proof. In the Gather protocol, parties call Broadcast twice with inputs of𝑂 (𝑚) indices, each of

size 𝑂 (log𝑛). In total, this requires 𝑂 ((𝜆 +𝑚 log𝑛)𝑛𝑚2) bits to be sent. Parties only perform local

computation in the Gather_Verify protocol.

Parties output ( 𝑗, 𝑆 𝑗 ) for every nonfaulty 𝑗 in the (“propose”, 𝑡𝑎𝑔) committee. After outputting

these tuples for the ℎ nonfaulty parties in the committee, every party broadcasts its 𝑇𝑖 set. Simi-

larly, parties receive ℎ such sets in 𝑂 (1) time from the nonfaulty parties in the (“aggregate”, 𝑡𝑎𝑔)
committee. They also receive all the 𝑆𝑖 values received by other nonfaulty parties in 𝑂 (1) time and

see that valid(𝑥) = 1 for every 𝑥 ∈ 𝑆𝑖 in 𝑂 (1) time, after which they accept the received 𝑇𝑖 sets and

complete the protocol in a total of 𝑂 (1) rounds. If a nonfaulty 𝑖 output 𝑋 from Gather or 1 from
Gather_Verify on 𝑋 , it had ℎ tuples of the form ( 𝑗,𝑉𝑗 ) ∈ 𝑈𝑖 , that were added after outputting ( 𝑗,𝑇𝑗 )
from Broadcast, and saw that valid(𝑥) = 1 for every 𝑥 ∈ 𝑋 . Following similar arguments, every

nonfaulty party outputs the same values in 𝑂 (1) rounds and outputs 1 from Gather_Verify. □

Assuming 𝑓 < (1/3−𝜖)𝑛 and instantiating Broadcastwith the quorum system protocol described

in Section 4, we get𝑚 = 𝑂 (𝜖−2𝜅 log𝑛), and thus the communication complexity of the Gather
protocol is 𝑂 (𝜆𝑛(𝜖−2𝜅 log𝑛)2 + 𝑛 log𝑛(𝜖−2𝜅 log𝑛)3).

8 SCALABLE PROPOSAL ELECTION
At a high level, a proposal election scheme allows parties to propose an input so that, with constant

positive probability, all parties will output the same input. To do that, parties use the committee

broadcast to publish their inputs and the committee AVSS to commit to an unpredictable rank

from their VRF. Parties then run the committee gather protocol. Since the adversary doesn’t know

the rank of honest parties, there is a constant probability that the adversary chooses a binding

core that includes a nonfaulty proposer (who has the highest rank). Once a party completes the

committee gather protocol, it starts the protocol for the committee AVSS recover. By starting the

recover after gather, we guarantee that the binding core choices are independent of the nonfaulty

party ranks. Finally, each party waits to recover the ranks of all parties in its gather set, and outputs

the proposal sent by the party with the highest rank.

Essentially, this protocol adapts the PE protocol of [3] to the setting with a committee-based

quorum system using our committee AVSS and committee broadcast.

8.1 Definition
Definition 8.1. A Proposal Election scheme consists of two protocols PE and PE_Verify. Every

party 𝑖 calls PE with an input 𝑥𝑖 and a tag 𝑡𝑎𝑔, and may eventually output a value 𝑦𝑖 and a proof

𝜋𝑖 . Parties may call the PE_Verify protocol with an input 𝑥 and a proof 𝜋 , and either eventually

output 1, eventually output 0 or never output anything from the protocol. Parties also have access

to an external validity function valid that outputs either 1 or 0 on possible outputs, with the

assumption that valid(⊥) = 0. The protocol is modeled as having a write-once register 𝑥∗ that can
hold a possible output from the protocol. A Proposal Election scheme has the following properties

assuming all nonfaulty parties call PE with externally valid inputs and a tag 𝑡𝑎𝑔:
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• 𝛼-Binding. For any adversary strategy, with probability 𝛼 or greater, by the time the first

nonfaulty party completes its call to PE, 𝑥∗ is set to an input of a party that was nonfaulty

at the time it called the PE protocol.

• Termination of Output. All nonfaulty parties eventually output a pair (𝑦, 𝜋).
• Completeness. For any two nonfaulty parties 𝑖, 𝑗 , the output (𝑦 𝑗 , 𝜋 𝑗 ) of party 𝑗 from PE
will eventually be verified by party 𝑖 , i.e. 𝑖 eventually outputs 1 from PE_Verify(𝑦 𝑗 , 𝜋 𝑗 , 𝑡𝑎𝑔).
• Agreement on Verification. For any two nonfaulty parties 𝑖, 𝑗 , and any value 𝑥 and proof

𝜋 , if 𝑖 outputs 𝑏 ∈ {0, 1} from PE_Verify(𝑥, 𝜋, 𝑡𝑎𝑔) and 𝑗 calls PE_Verify(𝑥, 𝜋, 𝑡𝑎𝑔), then it

eventually outputs 𝑏 as well.

• Binding Verification. If 𝑥∗ ≠⊥ and 𝑖 outputs 1 from PE_Verify(𝑥, 𝜋, 𝑡𝑎𝑔), then 𝑥 = 𝑥∗.
• External Validity. If a nonfaulty 𝑖 outputs 1 from PE_Verify(𝑥, 𝜋, 𝑡𝑎𝑔), then valid(𝑥) = 1.

8.2 Construction
The scheme consists of the PE protocol, described in Algorithm 10, and the PE_Verify protocol,

described in Algorithm 12. Parties start the protocol by generating a random rank using a VRF,

along with proof that the rank was correctly computed. Parties simultaneously broadcast their

proposals and share their ranks and proofs of correct computation. After receiving many (at least ℎ)

such broadcasts and seeing their respective secret shares complete, parties call the Gather protocol
to output sets of parties who completed the first phase with a large intersection. After completing

the Gather, parties reconstruct each party’s rank, and choose the proposal of the party with the

highest valid rank. In the good event, that the maximal rank among all parties in the 𝑡𝑎𝑔 committee

belongs to a nonfaulty party, all parties output that party’s proposal. Considering the size of the

committee and the number of nonfaulty parties in the core, this event happens with probability > 1

3
.

Parties can prove that they computed the correct proposal by providing the gather-set they used.

To verify the output, parties simply check that the gather set is correct (and thus includes the core)

and that the proposal with the maximal associated rank was chosen. In the good event described

above, every verifying output must be the same proposal provided by a nonfaulty party, as every

verifying gather set includes the core, and thus that proposal’s rank will be seen as maximal.

Technical notes. In line 5 we call Share and Broadcast “at the same time” and with the same

tag, 𝑡𝑎𝑔. Formally we mean that we run just one committee broadcast with tag 𝑡𝑎𝑔 that concatenates
the content of the committee broadcast of the share protocol (see line 5 in algorithm 6) and the

committee broadcast in line 5 to one. This is done to ensure that members of the 𝑡𝑎𝑔 committee

speak only once, and thus, the weak-adaptive adversary cannot corrupt the parties after they send

one of the messages but not the other. This can be resolved in other, slightly less natural, ways.

For example, parties can include their proposal in the shared values, even though the proposal

is actually public information. However, this would be less efficient for large proposals. Another

option is defining a single “share-and-broadcast” primitive, allowing parties to send both public and

private information, having both properties of a secret sharing scheme for the private information

and the properties of a broadcast scheme for the public information.

8.3 Security Analysis
In Section 7.3, we only showed the security of the Gather protocol under the assumption that

there are at most𝑚 indices 𝑗 ∈ [𝑛] for which parties might output 1 from the validity predicate

Gather_validity. In the following lemma, we show that this assumption does indeed hold.

Lemma 8.2. For any tag 𝑡𝑎𝑔, there are at most𝑚 indices 𝑗 ∈ [𝑛] for which any nonfaulty party
ever outputs 1 from Gather_validity( 𝑗, 𝑡𝑎𝑔).
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Algorithm 10 PE(prop𝑖 , 𝑡𝑎𝑔)
1: proposals𝑖 ← ∅, ranks𝑖 ← ∅, 𝑋𝑖 ← ∅

// Set up the AVSS scheme for this session
2: call Setup(𝑡𝑎𝑔)

// Generate a rank, share it, and broadcast your proposal simultaneously, i.e. add prop𝑖 to the
broadcasted information in Share

3: upon Setup(𝑡𝑎𝑔) terminating, do
4: 𝑟𝑖 , 𝜋𝑖 ← VRF_evaluate(sk𝑖 , (“rank”, 𝑡𝑎𝑔))
5: call Share((𝑟𝑖 , 𝜋𝑖 ), 𝑡𝑎𝑔) and Broadcast(prop𝑖 , 𝑡𝑎𝑔) at the same time

// Wait for ℎ completed shares and valid broadcasts and then call Gather
6: upon outputting 𝑗 from Share and ( 𝑗, prop𝑗 ) from Broadcast with the tag 𝑡𝑎𝑔, do
7: if valid(prop𝑖 ) = 1 then
8: proposals𝑖 ← proposals𝑖 ∪ {( 𝑗, prop𝑗 )}
9: if

��proposals𝑖 �� = ℎ then
10: call Gather({𝑘 | (𝑘, prop𝑘 ) ∈ proposals𝑖 }, 𝑡𝑎𝑔) with predicate Gather_validity

// Start reconstructing all ranks after completing Gather and store them
11: upon outputting 𝑋 from Gather with the tag 𝑡𝑎𝑔, do
12: 𝑋𝑖 ← 𝑋

13: call Rec(𝑡𝑎𝑔)
14: upon outputting ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) from Rec(𝑡𝑎𝑔), do
15: ranks𝑖 ← ranks𝑖 ∪ {( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 )} ⊲ If the output is not of this form, add it to ranks𝑖 , but

consider the proof as invalid below

// After reconstructing all ranks for 𝑋𝑖 , output the proposal with the maximal valid rank
16: upon 𝑋𝑖 ≠ ∅ and having ( 𝑗, prop𝑗 ) ∈ proposals𝑖 , ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) ∈ ranks𝑖 for every 𝑗 ∈ 𝑋𝑖 , do
17: ℓ ← argmax{𝑟𝑘 |𝑘 ∈ 𝑋𝑖 𝑠 .𝑡 . VRF_verify(pk𝑘 , (“rank”, 𝑡𝑎𝑔), 𝑟𝑘 , 𝜋𝑘 ) = 1}
18: output propℓ and 𝑋𝑖 , but continue updating state

Algorithm 11 Gather_validity( 𝑗)
1: upon ∃( 𝑗, prop𝑗 ) ∈ proposals𝑖 , do
2: output 1 and terminate

Algorithm 12 PE_Verify(prop, 𝜋, 𝑡𝑎𝑔)
1: upon Gather_Verify(𝜋, 𝑡𝑎𝑔) outputting 1, do
2: upon having ( 𝑗, prop𝑗 ) ∈ proposals𝑖 , ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) ∈ ranks𝑖 for every 𝑗 ∈ 𝜋 , do
3: ℓ ← argmax{𝑟𝑘 |𝑘 ∈ 𝜋 𝑠.𝑡 . VRF_verify(pk𝑘 , (“rank”, 𝑡𝑎𝑔), 𝑟𝑘 , 𝜋𝑘 ) = 1}
4: if prop = propℓ then
5: output 1 and terminate

Proof. A nonfaulty party 𝑖 only outputs 1 fromGather_validity( 𝑗, 𝑡𝑎𝑔) if it has a tuple ( 𝑗, prop𝑗 )
in proposals𝑖 . It only adds such a tuple after outputting it from the Broadcast protocol with tag

𝑡𝑎𝑔. Nonfaulty parties only output such tuples if get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 , and from the safety of

the quorum system, there are at most𝑚 such values. □

Theorem 8.3. The pair (PE, PE_Verify) are a Proposal Election scheme with 𝛼 = 1

3
.
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Proof. Each property is proven individually.

𝛼-Binding. Observe the time the first nonfaulty party 𝑖 completes the PE protocol. At that

time, it had 𝑋𝑖 ≠ ∅, meaning that it output 𝑋𝑖 from the Gather protocol. From the external

validity and completeness of the Gather protocol, for every 𝑗 ∈ 𝑋𝑖 , Gather_validity( 𝑗) = 1 at

that time, and thus 𝑖 output 𝑗 from Share and ( 𝑗, prop𝑗 ) from Broadcast and added ( 𝑗, prop𝑗 ) to
𝑋𝑖 . From the verifiability of the broadcast protocol get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1 for for every such 𝑗 ,

and from the safety of the quorum system, there are at most ⌈ℎ/2⌉ faulty parties for which this

holds. Note that at the time of calling the Share and Broadcast protocols, no nonfaulty party

sent a message using get_mem with this tag, and thus the adversary cannot adaptively attack

parties increasing this number. Let 𝑋 ∗ ⊆ [𝑛] be the core defined in the binding core property

of the Gather protocol. For every party 𝑗 ∈ [𝑛], let 𝑟 𝑗 , 𝜋 𝑗 = VRF_evaluate(sk𝑖 , (“rank”, 𝑡𝑎𝑔)). If
ℓ∗ = argmax{𝑟 𝑗 | 𝑗 ∈ [𝑛] 𝑠 .𝑡 . get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋} is the index of a party that was nonfaulty

when calling Broadcast and ℓ∗ ∈ 𝑋 ∗, define 𝑥∗ = propℓ∗ . Otherwise, define 𝑥
∗ = ⊥.

Note that |𝑋 ∗ | ≥ ℎ, and at most ⌈ℎ/2⌉ of the outputs ( 𝑗, prop𝑗 ) from Broadcast are of parties
that were faulty at the time they called Broadcast. Since some nonfaulty party output ( 𝑗, prop𝑗 )
for every 𝑗 ∈ 𝑋 ∗, at least ℎ − ⌈ℎ/2⌉ of the indices 𝑗 ∈ 𝑋 ∗ are of parties that were nonfaulty

when calling PE. Furthermore, from the unpredictability of the VRF, every party 𝑗 such that

get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 has the same probability of having the maximal value 𝑟 𝑗 , and since

there are at most𝑚 such parties, that probability is at least
1

𝑚
. Since the outputs of the VRF are

unpredictable, and no party reconstructed the shared 𝑟 𝑗 , 𝜋 𝑗 value, the adversary does not know the

values 𝑟 𝑗 of nonfaulty parties at the time the first nonfaulty party completes the Gather protocol,
and thus the indices of nonfaulty parties included of 𝑋 ∗ are independent of the 𝑟 𝑗 values. This
means that the probability that ℓ∗ is the index of a party that was nonfaulty when calling Broadcast
(and thus also when calling PE) and that ℓ∗ ∈ 𝑋 ∗ is at least ℎ−⌈ℎ/2⌉

𝑚
≥ 1

3
from the safety of the

quorum system.

Termination of Output. Assume all nonfaulty parties call PE with a tag 𝑡𝑎𝑔 and externally

valid inputs. Every nonfaulty party starts by calling Setup(𝑡𝑎𝑔), and from the Liveness property of

the AVSS scheme, eventually completes the call. Every nonfaulty 𝑖 then computes a rank and proof

𝑟𝑖 , 𝜋 = VRF_evaluate(sk𝑖 , (“rank”, 𝑡𝑎𝑔)), and calls Share((𝑟𝑖 , 𝜋), 𝑡𝑎𝑔) and Broadcast(prop𝑖 , 𝑡𝑎𝑔).
From the Liveness of the protocols, every nonfaulty party outputs 𝑗 from Share and ( 𝑗, prop′𝑗 ) for
every party 𝑗 that was nonfaultywhen calling the protocol such that get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1, 𝜋 . From

liveness of the quorum system, there are at least ℎ such parties. Every such nonfaulty 𝑗 inputs prop𝑗

to the Broadcast protocol and from the Validity of the Broadcast protocol, every nonfaulty party

outputs prop′𝑗 = prop𝑗 . After outputting these tuples, every nonfaulty 𝑖 sees that valid(prop𝑗 ) = 1

for every such nonfaulty 𝑗 , and add ( 𝑗, prop𝑗 ) to proposals𝑖 . After addingℎ such tuples to proposals𝑖 ,
every nonfaulty 𝑖 calls the Gather protocol with the set of indices 𝑆𝑖 = {𝑘 | (𝑘, prop𝑘 ) ∈ proposals𝑖 }.
Note that at that time there clearly is a tuple (𝑘, prop𝑘 ) ∈ proposals𝑖 for every 𝑘 ∈ 𝑆𝑖 and thus party
Gather_validity(𝑘) = 1 for 𝑖 , as required. From the Termination of Output of the Gather protocol,
every nonfaulty 𝑖 eventually outputs a set 𝑋 from Gather, stores it in 𝑋𝑖 and calls Rec(𝑡𝑎𝑔). From
the Liveness of the Rec protocol, every nonfaulty 𝑖 outputs a tuple ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) for every 𝑗 that it output

from Share(𝑡𝑎𝑔) and adds it too ranks𝑖 . In addition, from the External Validity and completeness

properties of the Gather protocol, Gather_validity( 𝑗, 𝑡𝑎𝑔) = 1 for every 𝑗 ∈ 𝑋𝑖 at that time and

thus there exists a tuple ( 𝑗, prop𝑗 ) ∈ proposals𝑖 for every such 𝑗 . Since this holds, 𝑖 performs a local

computation and outputs a value from PE, as required.
Completeness. Assume some nonfaulty party 𝑖 output prop, 𝜋 from the PE protocol with tag

𝑡𝑎𝑔 and that a nonfaulty 𝑗 calls Gather_Verify(prop, 𝜋, 𝑡𝑎𝑔). At that time, 𝑖 𝑋𝑖 ≠ ⊥ and had a

tuple ( 𝑗, prop𝑗 ) ∈ proposals𝑖 and ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) ∈ ranks𝑖 for every 𝑗 ∈ 𝑋𝑖 . It then computed ℓ =
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argmax{𝑟𝑘 |𝑘 ∈ 𝜋 𝑠.𝑡 .VRF_verify(pk𝑘 , (“rank”, 𝑡𝑎𝑔), 𝑟𝑘 , 𝜋𝑘 ) = 1}, and output prop = propℓ and
𝜋 = 𝑋𝑖 . Note that party 𝑗 only calls PE_Verify after completing the PE protocol, and it thus had

𝑋𝑖 ≠ ∅ after outputting it from Gather, and called Rec and Broadcast with the tag 𝑡𝑎𝑔. From the

Completeness property of the Gather protocol, 𝑗 eventually outputs 1 from Gather_Verify(𝜋, 𝑡𝑎𝑔).
From the Liveness and Correctness properties of the Broadcast and AVSS scheme, 𝑗 eventually

adds the same tuples to its proposals𝑗 and ranks𝑗 sets. Following that, 𝑗 performs the same local

computation and outputs 1.

Agreement on Verification. Assume some nonfaulty party 𝑖 called PE_Verify(𝑥, 𝜋, 𝑡𝑎𝑔) and
output 𝑏 ∈ {0, 1} and that some nonfaulty 𝑗 called PE_Verify(𝑥, 𝜋, 𝑡𝑎𝑔). First, note that nonfaulty
parties only output 1 from PE_Verify. Before outputting 1 from PE_Verify, 𝑖 had output 1 from

Gather_Verify(𝜋, 𝑡𝑎𝑔), had tuples (𝑘, prop𝑘 ) ∈ proposals𝑖 and (𝑘, 𝑟𝑘 , 𝜋𝑘 ) ∈ ranks𝑖 for every 𝑘 ∈ 𝜋
and saw that prop = propℓ for ℓ = argmax{𝑟𝑘 |𝑘 ∈ 𝜋 𝑠.𝑡 .VRF_verify(pk𝑘 , (“rank”, 𝑡𝑎𝑔), 𝑟𝑘 , 𝜋𝑘 ) = 1}.
Every tuple (𝑘, prop𝑘 ) is added to proposals𝑖 after outputting if from the Broadcast protocol with
the tag 𝑡𝑎𝑔 and every tuple (𝑘, 𝑟𝑘 , 𝜋𝑘 ) is added to ranks𝑖 after outputting it from the Rec protocol
the tag 𝑡𝑎𝑔. Similarly to the proof of completeness, party 𝑗 calls PE_Verify after completing the PE
protocol, and it thus completed its call to Gather, and called Rec and Broadcast with the tag 𝑡𝑎𝑔.

From the Agreement on Verification property of the Gather protocol, 𝑗 eventually outputs 1 from

Gather_Verify(𝜋, 𝑡𝑎𝑔) as well. From the Liveness and Correctness properties of the Broadcast and
AVSS scheme, 𝑗 eventually adds the same tuples to its proposals𝑗 and ranks𝑗 sets. Following that, 𝑗

performs the same local computation and outputs 1.

Binding Verification. Assume some nonfaulty party completed the PE protocol and define 𝑥∗ as
it is defined in the 𝛼-Binding property. If 𝑥∗ = ⊥, the claim trivially holds. Otherwise, 𝑥∗ was defined
to be propℓ∗ for a party ℓ∗ that was nonfaulty when calling Share and Rec, such that ℓ∗ is in the

binding core 𝑋 ∗ of the Gather protocol and ℓ∗ = argmax{𝑟 𝑗 | 𝑗 ∈ [𝑛] 𝑠 .𝑡 . get_mem(sk𝑗 , 𝑡𝑎𝑔) =
1, 𝜋} where 𝑟 𝑗 , 𝜋 𝑗 = VRF_evaluate(sk𝑗 , (“rank”, 𝑡𝑎𝑔)) for every 𝑗 ∈ [𝑛]. If a nonfaulty 𝑖 that

outputs 1 from PE_Verify(𝑥, 𝜋, 𝑡𝑎𝑔), it first saw that Gather_Verify(𝜋, 𝑡𝑎𝑔) output 1, and had a

tuple ( 𝑗, prop𝑗 ) ∈ proposals𝑖 and a tuple ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) ∈ ranks𝑖 for every 𝑗 ∈ 𝜋 . Following that, it

computed ℓ = argmax{𝑟𝑘 |𝑘 ∈ 𝜋 𝑠.𝑡 . VRF_verify(pk𝑘 , (“rank”, 𝑡𝑎𝑔), 𝑟𝑘 , 𝜋𝑘 ) = 1}, saw that 𝑥 = propℓ
and output 1. From the Includes Core property of the Gather protocol, ℓ∗ ∈ 𝑋 ∗ ⊆ 𝜋 . Since ℓ∗ was
nonfaulty when calling Share and Broadcast, from the Correctness of the AVSS scheme and from

the Validity of the Broadcast protocol, 𝑖 output (ℓ∗, propℓ∗ ) from Broadcast and (ℓ∗, 𝑟ℓ∗ , 𝜋ℓ∗ ) from
Rec. From the correctness of the VRF scheme, VRF_verify(pkℓ∗ , (“rank”, 𝑡𝑎𝑔), 𝑟ℓ∗ , 𝜋ℓ∗ ), and thus ℓ∗

was considered as one of the possible indices ℓ . In addition, from the verifiability of the Broadcast
protocol, for every ( 𝑗, prop𝑗 ) ∈ proposals𝑖 , get_mem(sk𝑗 , 𝑡𝑎𝑔) = 1 since 𝑖 output this tuple from

Broadcast. Only tuples ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) ∈ ranks𝑖 such that VRF_verify(pk𝑗 , (“rank”, 𝑡𝑎𝑔), 𝑟 𝑗 , 𝜋 𝑗 ) = 1 were

considered when computing ℓ = argmax{𝑟𝑘 |𝑘 ∈ 𝜋 𝑠.𝑡 . VRF_verify(pk𝑘 , (“rank”, 𝑡𝑎𝑔), 𝑟𝑘 , 𝜋𝑘 ) = 1},
and from the binding of the VRF scheme, 𝑟 𝑗 , 𝜋 = VRF_evaluate(sk𝑖 , (“rank”, 𝑡𝑎𝑔)) for every such

tuple. Seeing as ℓ∗ is defined as having the maximal 𝑟ℓ∗ , and as the VRF verification succeeds for ℓ∗,
ℓ∗ = ℓ . Therefore, 𝑥 = propℓ = propℓ∗ , as required.
External Validity. Assume some nonfaulty 𝑖 outputs 1 from PE_Verify(prop, 𝜋, 𝑡𝑎𝑔). Before

doing so, it saw that it had ( 𝑗, prop𝑗 ) ∈ proposals𝑖 for every 𝑗 ∈ 𝜋 and output propℓ for some

ℓ ∈ 𝜋 . Nonfaulty parties only add a tuple ( 𝑗, prop𝑗 ) to proposals after outputting that tuple from
Broadcast and seeing that valid(prop𝑗 ) = 1, and thus valid(prop) = valid(propℓ ) = 1. □

8.4 Efficiency Analysis
Lemma 8.4. The PE protocol has a total communication complexity of 𝑂 (𝜆𝑛𝑚3) and the PE_Verify

protocol requires no communication, where𝑚 is the parameter described in the quorum system and a
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round complexity of 𝑂 (1). In addition, if a nonfaulty party outputs 𝑥 from PE or 1 from PE_Verify
run on 𝑥 with proof 𝜋 , every nonfaulty party does so after 𝑂 (1) rounds.

Proof. In the PE protocol, parties call the Setup, Share and Rec protocols for a total communi-

cation complexity of 𝑂 (𝜆𝑛𝑚3). In addition, parties call the Gather protocol with a complexity of

𝑂 ((𝜆 +𝑚 log𝑛)𝑛𝑚2). Since 𝜆 > log𝑛, the total complexity is𝑂 (𝜆𝑛𝑚3). The PE_Verify consists of a

call to Gather_Verify and local computation, both of which require no communication.

Parties complete the call to Setup in 𝑂 (1) rounds, and output 𝑗 and ( 𝑗, 𝑟 𝑗 ) from Share and

Broadcast respectively for every nonfaulty 𝑗 in the 𝑡𝑎𝑔 committee in𝑂 (1) rounds. There are ℎ such

parties, and thus parties call the Gather protocol in 𝑂 (1) rounds. Parties call the Gather protocol
with the asynchronous validity predicate Gather_validity. If some nonfaulty party output 1 when

calling Gather_validity( 𝑗), then it had output 𝑗 from Share and ( 𝑗, prop) from Broadcast. Every
other nonfaulty party outputs the same values in 𝑂 (1) time, after which Gather_validity( 𝑗) also
outputs 1. In other words, the conditions in the efficiency analysis of Gather hold, and thus all

parties complete the Gather in 𝑂 (1) time. Following that, nonfaulty parties call Rec and output a

tuple ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) in𝑂 (1) time for every 𝑗 that was previously output from Share. This holds for every
𝑗 ∈ 𝑋 from the external validity of the Gather protocol, and thus parties complete the protocol in

𝑂 (1) time.

Now assume some nonfaulty party either output 𝑥 from PE or 1 from PE_Verify run on 𝑥 with

proof 𝜋 . In that case, that party output 1 from Gather_Verify when run on 𝜋 , and had tuples

( 𝑗, prop𝑗 ) and ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) in its proposals and ranks sets for every 𝑗 ∈ 𝜋 after outputting them from

Broadcast and Rec. Every nonfaulty party outputs 1 from Gather_Verify when run on 𝜋 in 𝑂 (1)
time. In addition, every nonfaulty party outputs the same values ( 𝑗, prop𝑗 ) and ( 𝑗, 𝑟 𝑗 , 𝜋 𝑗 ) from
Broadcast and Rec in 𝑂 (1) time, after which it also outputs 1. □

Assuming 𝑓 < (1/3−𝜖)𝑛 and instantiating Broadcastwith the quorum system protocol described

in Section 4, we get𝑚 = 𝑂 (𝜖−2𝜅 log𝑛), and thus the communication complexity of the PE protocol

is 𝑂 (𝜆𝑛(𝜖−2𝜅 log𝑛)3).

9 NO-WAITIN’ ALGORAND
Here we describe No-Waitin’ Algorand (NWA), which is a validated asynchronous Byzantine

agreement protocol that uses the proposal election protocol as its liveness mechanism.

At a high level, No-Waitin’ Algorand (NWA) is a view-based protocol. Each view consists of 4

rounds. In the first round, parties call the PE protocol to choose a proposal. Roughly speaking, the

protocol then has two paths: a good path and an error path. In the good path, parties send “echo”

messages in round 1, then “key” messages in round 2, then "lock" messages in round 3, and finally

“commit” messages in round 4.

Progression in the good path from round 𝑖 to round 𝑖 + 1 typically requires ℎ round 𝑖 message

that are not error messages (see Algorithms 19-21). If there is any error message, then we switch to

the error path and propagate this error messages through rounds 1 to 4.

Safety mechanism: Parties maintain the highest lock they saw for safety (Algorithm 13, line 2).

The proposal that is output from the PE contains a key certificate. The core safety check is done in

round 1 where parties check that the view of the proposed key is at least as large as the view of

their lock (Algorithm 15, line 8). To maintain safety, parties update their lock if a valid one with a

higher view is received (Algorithm 16, line 27).

Liveness mechanism inside a view: To maintain liveness in a view, nonfaulty parties in round 𝑖

always send a message (either a good message or an error message) and parties in round 𝑖 + 1 wait
for ℎ round 𝑖 messages.
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Liveness mechanism between views: To maintain liveness between views, parties update their key

if a valid one with higher view is received (Algorithm 16, line 7).

Constant expected number of views: If there no commit message is sent in views < 𝑘 , the protocol

has a constant probability to reach the commit round in view 𝑘 with no errors. This is because inside

the proposal election, with constant probability, the proposal of a nonfaulty party is unanimously

elected. In that case all parties output this proposal from PE, and no other value verifies, meaning

that no correct “equivocate” message can be sent. Since this proposer is nonfaulty, it chooses a

value with the highest key certificate it saw. This will guarantee that the core safety check will

succeed for all nonfaulty parties, and thus no correct “blame” can be sent. Once parties reach the

end of the view with no detected errors, they will commit and terminate.

On lack of explicit view change: Note that all parties update their highest key and lock certificates

in rounds 3 and 4 respectively. So parties that complete a view must have essentially “read from a

quorum”. Essentially, this means that parties essentially exchange the information traditionally

sent during a view change during the view itself.

The structure of Algorithm 15-16: in each round is logically separated into two parts. The first

part is done by all parties and does not include sending any messages, but does include any updates

to locks or keys. The second part is done by a dedicated committee and includes sending a message.

The fact that every party updates its locks and keys, regardless of whether they were committee

members in this view, guarantees that they will act correctly if they are chosen as committee

members in any subsequent view.

9.1 Definition
Definition 9.1. In a Validated Asynchronous Byzantine Agreement protocol, every party 𝑖 has an

input 𝑥𝑖 , and may output a value 𝑦𝑖 . Parties also have oracle access to an external validity function

valid that receives a value 𝑥 as input and either outputs 1, indicating that it is externally valid, or 0,

indicating that it is not. A protocol is said to be a Validated Asynchronous Byzantine Agreement

protocol if it has the following properties:

• Agreement: All nonfaulty parties that complete the protocol output the same value.

• Validity: If a nonfaulty party outputs a value, it is externally valid.

• 𝛼 − Quality: With probability at least 𝛼 , all parties output the input 𝑥𝑖 of the same party 𝑖

that was nonfaulty when it started the protocol.

• Termination: All nonfaulty parties almost-surely (i.e. with probability 1) complete the

protocol and output a value.

9.2 Construction
The NWA protocol is a view-based protocol, where each view is an attempt by all parties to pick a

leader and reach agreement. Parties start each view by calling PE, inputting their proposed values,

and each outputting the value of a random leader. Parties then proceed in four rounds. If they see

no errors, the rounds proceed as follows:

• In the first round, parties send “echo” messages, echoing the value they received from PE,
along with proofs that they are correct outputs.

• In the second round, parties send “key” messages, containing proof that they received

quorum of “echo” messages with the same value. This guarantees non-equivocation of the

“key” messages by quorum intersection.

• In the third round, parties send “lock” messages, containing proof that they received a

quorum of “key” messages with the same value. This guarantees that if some party sent

a “lock” message, it received “key” messages from a quorum of “key” committee members.
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Any party waits to hear from a quorum of “key” committee members will hear from at least

one nonfaulty party in the intersection.

Crucially, when parties hear such “key” messages, they update their keys for future use.

Intuitively, these keys will be used to “open any lock” set by nonfaulty parties, to be explained

in the next bullet.

• In the fourth round, parties send “commit” messages, containing proof that they received a

quorum of “lock” messages. This guarantees that if some party sent a “commit” message, it

received “lock” messages from a quorum of “lock” committee members. Any party waits to

hear from a quorum of “lock” committee members will hear from at least one nonfaulty

party in the intersection.

Similarly to above, when parties hear such “key” messages, they update their keys for future

use. A party with a lock generated in a given view will not be willing to echo any value from

an older view. Therefore, before committing to a value, parties guarantee that everybody

will be able to update their locks, forcing the adversary to values from this view (or later).

This means that seeing a correct “commit” messages allows parties to output the associated

value without worrying that other parties might output different values. However, setting

such locks might lead to liveness issues: parties might refuse to listen to an honest leader.

As described in the previous bullet, before setting a lock, parties make sure that every party

will be able to form a key, which means that they will propose a message from this view or

later, along with a proof.

In order to guarantee termination, parties also run a termination gadget, in which members of

a “termination” committee send every “commit” message they receive, either directly as a round

four message, or indirectly from other “termination” committee members. This boosting process

guarantees that parties can terminate after hearing ⌈ℎ/2⌉ + 1 such messages, because then every

committee member will hear this many messages and also forward them.

Parties may detect two types of error in any view: old keys or conflicting outputs from the PE.
If parties see they received an old key, they send a “blame” message, including the key and the

lock it had at the time. If parties see two conflicting outputs from the PE, they send an “equivocate”

message, including the two conflicting values. Both of these messages indicate that the view failed:

either by allowing a faulty leader to suggest a value (no nonfaulty leader would suggest an old key)

or by the PE failing (if it succeeds, it would have only one verifying value). If parties see such a

message, they propagate it throughout the rounds, replacing the “correct” round messages, i.e. the

“echo”, “key”, “lock”, or “commit” messages. Parties always wait to hear a quorum of messages in

each round before proceeding, even if they see errors, making sure that any information sent by a

quorum in the “no error” path of the protocol. Finally, in the end of the view, parties check if they

saw errors in round 4, and proceed to the next view if they do.

Algorithm 13 NWA(𝑣𝑎𝑙𝑖 )
1: echo_view𝑖 ← 0, echo_val𝑖 ←⊥, 𝜋echo

𝑖 ← ∅
2: key_view𝑖 ← 0, key_val𝑖 ← 𝑣𝑎𝑙𝑖 , 𝜋

key
𝑖
← ∅

3: lock_view𝑖 ← 0, lock_val𝑖 ←⊥, 𝜋 lock
𝑖 ← ∅

4: 𝑣𝑖𝑒𝑤𝑖 ← 1

5: continually run Termination_Gadget()
6: while party 𝑖 does not terminate do
7: delay any message with view > 𝑣𝑖𝑒𝑤𝑖

8: call process_view(𝑣𝑖𝑒𝑤𝑖 )
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Algorithm 14 Termination_Gadget()
1: term_count𝑖 ← 0

2: upon receiving the first ⟨“round 4”, “commit”,𝑚, 𝑣𝑖𝑒𝑤⟩ from j, do
3: if verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“commit”, 𝑣𝑖𝑒𝑤)) = 1 then
4: if message_correct(⊥, (“commit”,𝑚), 𝑣𝑖𝑒𝑤,⊥) = 1 then
5: val_member, 𝜋𝑖 ← get_mem(sk𝑖 , “termination”)
6: if val_member = 1 and 𝑖 didn’t send a “termination” message yet then
7: sends ⟨“termination”,𝑚, 𝑣𝑖𝑒𝑤, 𝜋𝑖⟩ to all parties

8: upon receiving the first⟨“termination”,𝑚, 𝑣𝑖𝑒𝑤⟩ from 𝑗 , do
9: if verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“termination”)) = 1 then
10: if message_correct(⊥, (“commit”,𝑚), 𝑣𝑖𝑒𝑤,⊥) = 1 then
11: val_member, 𝜋𝑖 ← get_mem(sk𝑖 , “termination”)
12: if val_member = 1 and 𝑖 didn’t send a “termination” message yet then
13: sends ⟨“termination”,𝑚, 𝑣𝑖𝑒𝑤, 𝜋𝑖⟩ to all parties

14: term_count𝑖 ← term_count + 1
15: if term_count𝑖 = ⌈ℎ/2⌉ + 1 then
16: output commit_val and terminate

The echo_correct checks that an echo message is valid relative to the PE validity.

The key_correct checks that a key certificate is valid by checking it has ℎ valid echo messages

with the same value from valid members.

The lock_correct checks that a lock certificate is valid by checking it has ℎ valid key certificates

with the same value from valid members.

The commit_correct checks that a commit certificate is valid by checking it has ℎ valid lock

certificates with the same value from valid members.

10 SECURITY ANALYSIS
This lemma says that if there is a commit certificate in view 𝑘 then and key certificate from this

view and onwards must be with the same value.

Lemma 10.1. If there exits a view 𝑘 , value 𝑣 , proof 𝜋 for which commit_correct(𝑘, 𝑝, 𝜋) = 1 then
there cannot be a key with value 𝑣 ′ ≠ 𝑣 , view 𝑘 ′ ≥ 𝑘 , and proof 𝜋 ′ such that key_correct(pk′, 𝑘 ′, 𝑣 ′, 𝜋 ′,
𝜎 ′) = 1 for some pk′, 𝜎 ′.

Proof. In this proof we will use the shorthand terms key certificate, lock certificate, commit

certificate to indicate the existence of a proof of the key, lock, commit that returns 1 on the

key_correct, lock_correct, commit_correct, respectively.
We prove a stronger statement by induction on 𝑘 ′: if the conditions of the lemma hold, then any

nonfaulty member that ends view ≥ 𝑘 will have a lock certificate for value 𝑣 and view ≥ 𝑘 .

For 𝑘 ′ = 𝑘 : Suppose by contradiction that there exist two keys with valid proofs with different

values in the same view 𝑘 . From the quorum system robust quorum intersection property, at least

one nonfaulty party’s signature was used two 𝜋key
values, meaning that a nonfaulty party has sent

two echo messages with different values in the same view. This is a contradiction.

For the second part, observe that from the quorum system honest majority property, there are at

least ⌈ℎ/2⌉ + 1 nonfaulty members that send a lock certificate for this value in view 𝑘 . So from the

quorum intersection of the quorum system, all nonfaulty parties wait for ℎ round 3 messages, will

see at least one lock certificate and will update their lock. This concludes the base case.
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Algorithm 15 process_view(𝑣𝑖𝑒𝑤) //part 1
1: 𝑟𝑜𝑢𝑛𝑑𝑖 ← 1

2: delay every message with 𝑟𝑜𝑢𝑛𝑑 > 𝑟𝑜𝑢𝑛𝑑𝑖
3: r1_msgs← ∅, r2_msgs← ∅, r3_msgs← ∅, r4_msgs

// round 1: echo round
4: call PE((key_view𝑖 , key_val𝑖 , 𝜋

key
𝑖
), 𝑣𝑖𝑒𝑤)

5: upon outputting (𝑘, 𝑘𝑣, 𝜋𝑘𝑒𝑦), 𝜋PE
from PE with tag 𝑣𝑖𝑒𝑤 , do

6: is_r1_mem, 𝜋𝑖 ← get_mem(sk𝑖 , (“round 1”, 𝑣𝑖𝑒𝑤))
7: if is_r1_mem = 1 then ⊲ send round 1 messages if in committee

8: if 𝑣𝑖𝑒𝑤 > 𝑘 ≥ lock_view𝑖 then
9: 𝜎 ← Sign(sk𝑖 , ((“echo”, 𝑣𝑖𝑒𝑤), 𝑘𝑣))
10: send ⟨“round 1”, “echo”, (𝑘, 𝑘𝑣, 𝜋𝑘𝑒𝑦), 𝜋PE, 𝜎, 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩ to all parties

11: else send ⟨“round 1”, “blame”, (𝑘, 𝑘𝑣, 𝜋), 𝜋PE, (lock_view𝑖 , lock_val𝑖 , 𝜋 lock
𝑖 ), 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩

12: 𝑟𝑜𝑢𝑛𝑑𝑖 ← 𝑟𝑜𝑢𝑛𝑑𝑖 + 1
// round 2: key round

13: upon receiving the first ⟨“round 1”,𝑚, 𝜋 𝑗 , 𝑣𝑖𝑒𝑤⟩ message from 𝑗 , do
14: if verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“round 2”, 𝑣𝑖𝑒𝑤)) = 1 then
15: if message_correct(pk𝑗 ,𝑚, (“round 1”, 𝑣𝑖𝑒𝑤)) = 1 then
16: if 𝑚 = (“echo”, 𝑘, 𝑘𝑣, 𝜋𝑘𝑒𝑦, 𝜋PE𝜎) then
17: if echo_view𝑖 < 𝑣𝑖𝑒𝑤 then
18: echo_view𝑖 ← 𝑣𝑖𝑒𝑤 , echo_val𝑖 ← 𝑘𝑣, 𝜋echo

𝑖 ← (𝑘, 𝑘𝑣, 𝜋𝑘𝑒𝑦, 𝜋PE)
19: if echo_val𝑖 ≠ 𝑘𝑣 then
20: r1_msgs𝑖 ← r1_msgs𝑖∪{(“error”, (“equivocate”, ((𝑘, 𝑘𝑣, 𝜋𝑘𝑒𝑦, 𝜋PE), 𝜋echo

𝑖 )))}
21: else r1_msgs𝑖 ← r1_msgs𝑖 ∪ {( 𝑗, 𝜎, 𝜋 𝑗 )}
22: else
23: r1_msgs𝑖 ← r1_msgs𝑖 ∪ {( 𝑗, 𝜎, 𝜋 𝑗 )}
24: upon

��r1_msgs𝑖
�� = ℎ, do ⊲ process round 1 messages, send round 2 messages if in committee

25: is_r2_mem, 𝜋𝑖 ← get_mem(sk𝑖 , (“round 2”, 𝑣𝑖𝑒𝑤))
26: if is_r2_mem = 1 then
27: if ∃(“error”,𝑚) ∈ r2_msgs𝑖 then
28: send ⟨“round 2”,𝑚, 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩ to all parties

29: else
30: 𝜎 ← Sign(pk𝑖 , (“key”, 𝑣𝑖𝑒𝑤), echo_val𝑖 ))
31: send ⟨“round 2”, “key”, (echo_view𝑖 , echo_val𝑖 , r1_msgs), 𝜎, 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩ to all parties

32: 𝑟𝑜𝑢𝑛𝑑𝑖 ← 𝑟𝑜𝑢𝑛𝑑𝑖 + 1

Suppose this holds for all 𝑘 ′′ such that 𝑘 ≤ 𝑘 ′′ < 𝑘 ′, and let’s prove for view 𝑘 ′. From the second

part of the induction hypothesis, all nonfaulty members of the round 1 committee of view 𝑘 ′ will
have a lock for value 𝑣 with a view of at least 𝑘 . Hence any proposal with a key certificate with a

view less than 𝑘 will be rejected via blame messages by all nonfaulty parties (and will not obtain

the ℎ signatures needed for a key certificate). The only proposal that can be accepted must have a

key certificate that is at least of view 𝑘 . So by the first part of the induction hypothesis, this key

certificate must have a value of 𝑣 , and if this view generates a lock certificate, it must also have

the value 𝑣 as well (because lock certificate values must come from key certificate values). This

concludes the proof. □
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Algorithm 16 process_view(𝑣𝑖𝑒𝑤) // part 2
// round 3: lock round

1: upon receiving the first ⟨“round 2”,𝑚, 𝜋 𝑗 , 𝑣𝑖𝑒𝑤⟩ message from 𝑗 , do
2: if verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“round 2”, 𝑣𝑖𝑒𝑤)) = 1 then
3: if message_correct(pk𝑗 ,𝑚, (“round 2”, 𝑣𝑖𝑒𝑤)) = 1 then
4: if 𝑚 = (“key”, 𝑘, 𝑘𝑣, 𝜋, 𝜎) then
5: r2_msgs← r2_msgs ∪ {( 𝑗, 𝜎, 𝜋 𝑗 )}
6: if key_view𝑖 < 𝑘 then
7: key_view𝑖 ← 𝑘 , key_val𝑖 ← 𝑘𝑣 , 𝜋

key
𝑖
← 𝜋

8: else
9: r2_msgs𝑖 ← r2_msgs𝑖 ∪ {(“error”,𝑚)}
10: upon

��r2_msgs𝑖
�� = ℎ, do ⊲ process round 2 messages, send round 3 messages if in committee

11: is_r3_mem, 𝜋𝑖 ← get_mem(sk𝑖 , (“round 3”, 𝑣𝑖𝑒𝑤))
12: if is_r3_mem = 1 then
13: if ∃(“error”,𝑚) ∈ r2_msgs𝑖 then
14: send ⟨“round 3”,𝑚, 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩ to all parties

15: else
16: 𝜎 ← Sign(pk𝑖 , (“lock”, 𝑣𝑖𝑒𝑤), lock_val))
17: send ⟨“round 3”, “lock”, (key_view𝑖 , key_val𝑖 , r2_msgs𝑖 ), 𝜎, 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩ to all parties

18: 𝑟𝑜𝑢𝑛𝑑𝑖 ← 𝑟𝑜𝑢𝑛𝑑𝑖 + 1
// round 4: commit round

19: upon receiving the first ⟨“round 3”,𝑚, 𝜋 𝑗 , 𝑣𝑖𝑒𝑤⟩ message from 𝑗 , do
20: if verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“round 3”, 𝑣𝑖𝑒𝑤)) = 1 then
21: if message_correct(pk𝑗 ,𝑚, (“round 3”, 𝑣𝑖𝑒𝑤)) = 1 then
22: if 𝑚 = (“lock”, 𝑙, 𝑙𝑣, 𝜋, 𝜎) then
23: r3_msgs𝑖 ← r3_msgs𝑖 ∪ {( 𝑗, 𝜎, 𝜋 𝑗 )}
24: if lock_view𝑖 < 𝑙 then
25: lock_view𝑖 ← 𝑙 , lock_val𝑖 ← 𝑙𝑣 , 𝜋 lock

𝑖 ← 𝜋

26: else
27: r3_msgs← r3_msgs𝑖 ∪ {(“error”,𝑚)}
28: upon |r3_msgs| = ℎ, do ⊲ process round 3 messages, send round 4 messages if in committee

29: is_r3_mem, 𝜋𝑖 ← get_mem(sk𝑖 , (“round 3”, 𝑣𝑖𝑒𝑤))
30: if is_r3_mem = 1 then
31: if ∃(“error”,𝑚, 𝜋, 𝑗) ∈ “round 3” then
32: send ⟨“round 4”,𝑚, 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩ to all parties

33: 𝑣𝑖𝑒𝑤𝑖 ← 𝑣𝑖𝑒𝑤𝑖 + 1, 𝑟𝑜𝑢𝑛𝑑𝑖 ← 1

34: else
35: 𝜎 ← Sign(pk𝑖 , (“commit”, 𝑣𝑖𝑒𝑤), commit_val))
36: send ⟨“round 4”, “commit”, (lock_view, lock_val, r3_msgs), 𝜎, 𝜋𝑖 , 𝑣𝑖𝑒𝑤⟩ to all parties
37: upon receiving the first ⟨“round 4”, 𝑒𝑟𝑟𝑜𝑟_𝑡𝑎𝑔,𝑚, 𝜋 𝑗 , 𝑣𝑖𝑒𝑤⟩ message from 𝑗 , do
38: if verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“round 4”, 𝑣𝑖𝑒𝑤)) = 1 then
39: if message_correct(pk𝑗 , (𝑒𝑟𝑟𝑜𝑟_𝑡𝑎𝑔,𝑚), (“round 4”, 𝑣𝑖𝑒𝑤)) = 1 then
40: 𝑣𝑖𝑒𝑤𝑖 ← 𝑣𝑖𝑒𝑤𝑖 + 1
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Algorithm 17 message_correct(pk,𝑚, 𝑣𝑖𝑒𝑤)
1: if 𝑚 = (“echo”, 𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, 𝜎) then
2: upon echo_correct(pk, 𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, 𝜎, 𝑣𝑖𝑒𝑤)) outputting 1, do ⊲ this check is interactive

3: output 1
4: if 𝑚 = (“key”, (key_view, key_val, 𝜋key), 𝜎) then
5: output key_correct(pk, key_view, key_val, 𝜋key, 𝜎)
6: if 𝑚 = (“lock”, (lock_view, lock_val, 𝜋 lock), 𝜎) then
7: output lock_correct(pk, lock_view, lock_val, 𝜋 lock, 𝜎)
8: if 𝑚 = (“commit”, (commit_view, commit_val, 𝜋 commit), 𝜎) then
9: output commit_correct(pk, commit_view, commit_val, 𝜋 commit, 𝜎)
10: if 𝑚 = (“blame”, 𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, (lock_view, lock_val, 𝜋 lock)) then
11: upon blame_correct(𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, lock_view, lock_val, 𝜋 lock) outputting 1, do ⊲ this check

is interactive

12: output 1
13: if 𝑚 = (“equivocate”, 𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡1, 𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡2) then
14: upon equivocate_correct(𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡1, 𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡2, 𝑣𝑖𝑒𝑤) outputting 1, do ⊲ this check is

interactive

15: output 1
16: output 0

Algorithm 18 echo_correct(pk, 𝑘, 𝑘𝑣, 𝜋𝑘𝑒𝑦, 𝜋PE𝜎, 𝑣𝑖𝑒𝑤)
1: if Sign_verify(pk, ((“echo”, 𝑣𝑖𝑒𝑤), 𝑣𝑎𝑙), 𝜎) = 1 then
2: upon PE_Verify((𝑘, 𝑘𝑣, 𝜋key), 𝜋PE, 𝑣𝑖𝑒𝑤) outputting 1, do
3: output 1
4: output 0

Algorithm 19 key_correct(pk, key_view, key_val, 𝜋key, 𝜎)
if Sign_verify(pk, ((“key”, key_view), key_val), 𝜎) = 1 then

if |𝜋key | ≥ ℎ and ∀( 𝑗, 𝜎 𝑗 , 𝜋 𝑗 ) ∈ 𝜋key verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“round 1”, key_view)) = 1 ∧
Sign_verify(pk𝑗 , ((“echo”, key_view), key_val), 𝜎) = 1 then

output 1
output 0

Algorithm 20 lock_correct(pk, lock_view, lock_val, 𝜋 lock, 𝜎)
1: if Sign_verify(pk, ((“lock”, lock_view), lock_val), 𝜎) = 1 then
2: if |𝜋 lock | ≥ ℎ and ∀( 𝑗, 𝜎 𝑗 , 𝜋 𝑗 ) ∈ 𝜋 lock verify_mem(pk𝑘 , 1, 𝜋𝑘 , (“round 2”, lock_view)) =

1 ∧ Sign_verify(pk𝑗 , ((“key”, lock_view), lock_val), 𝜎 𝑗 ) = 1 then
3: output 1
4: output 0
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Algorithm 21 commit_correct(commit_view, commit_val, 𝜋 commit)
1: if |𝜋 commit | ≥ ℎ and ∀( 𝑗, 𝜎 𝑗 , 𝜋 𝑗 ) ∈ 𝜋 commit verify_mem(pk𝑗 , 1, 𝜋 𝑗 , (“round 3”, 𝑣𝑖𝑒𝑤)) = 1 ∧

Sign_verify(pk𝑗 , ((“lock”, commit_view), commit_val), 𝜎 𝑗 ) = 1 then
2: output 1
3: output 0

Algorithm 22 blame_correct(𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, lock_view, lock_val, 𝜋 lock)
1: if 𝑣𝑖𝑒𝑤 ≤ key_view ∨ key_view < lock_view then
2: if |𝜋 lock | ≥ ℎ and ∀( 𝑗, 𝜎 𝑗 , 𝜋 𝑗 ) ∈ 𝜋 lock verify_mem(pk𝑘 , 1, 𝜋𝑘 , (“round 2”, lock_view)) =

1 ∧ Sign_verify(pk𝑗 , ((“key”, lock_view), lock_val), 𝜎 𝑗 ) = 1 then
3: upon PE_Verify(𝑝𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑣𝑖𝑒𝑤) terminating with output 1, do
4: output 1
5: output 0

Algorithm 23 equivocate_correct(key_view
1
, key_val

1
, 𝜋

key
1

, 𝜋PE
1
, key_view

2
, key_val

2
, 𝜋

key
2

, 𝜋PE
2
,

𝑣𝑖𝑒𝑤)

1: if ((key_view
1
, key_val

1
, 𝜋

key
1
) ≠ (key_view

2
, key_val

2
, 𝜋

key
2
)) then

2: upon outputting 1 from PE_Verify((key_view
1
, key_val

1
, 𝜋

key
1
), 𝜋1, 𝑣𝑖𝑒𝑤) and PE_Verify(

(key_view
2
, key_val

2
, 𝜋

key
2
), 𝜋2, 𝑣𝑖𝑒𝑤), do

3: output 1
4: output 0

The next lemma simple states that nonfaulty parties’ messages are correct.

Lemma 10.2. If a nonfaulty party 𝑖 sends a message ⟨“round”,𝑚, 𝜋, 𝑣𝑖𝑒𝑤⟩, then
message_correct(pk𝑖 ,𝑚, (“round”, 𝑣𝑖𝑒𝑤)) = 1.

Proof. We will show that every message sent by a nonfaulty party 𝑖 satisfies message_correct.
A nonfaulty party signs each message it sends using its secret key sk𝑖 . By the correctness of the

signature scheme, Sign_verify(pk𝑖 , 𝜋,𝑚) always returns true for messages signed by a nonfaulty

party. If 𝑖 sends an “echo” message, it does so using the output of PE. By the Completeness property

of PE, the PE_Verify algorithm eventually terminates with output 1, and message_correct returns
true for this message. If 𝑖 sends a “key” message, it does so after receiving ℎcorrect “echo” messages

from distinct parties in the “round 1” committee, both containing signatures on the same value.

Therefore,message_correct returns true for the “key” message. The same argument applies to “lock”

and “commit” messages, with respect to “key”, “commit”, and committees “round 2” and “round 3”.

If 𝑖 sends a “blame” message in “round 1”, it uses the output of PE along with its lock field. By the

Completeness property of PE, PE_Verify eventually outputs 1, and 𝑖 updates its key/lock fields

according to valid messages. Therefore, message_correct returns true for the “blame” message. If

𝑖 sends an “equivocate” message in “round 2”, it does so based on two correct “echo” messages

with conflicting values. By the Completeness property of PE, PE_Verify eventually terminates with

output 1 for both messages, and thus message_correct returns true for the “equivocate” message.

These messages are forwarded messages that 𝑖 has already validated. The “termination” messages

are also forwarded “commit” messages. Finally, if 𝑖 forwards a message𝑚 from party 𝑗 in round
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(“round”, 𝑣𝑖𝑒𝑤), it only does so ifmessage_correct(pk𝑗 ,𝑚, (“round”− 1, 𝑣𝑖𝑒𝑤)) = 1. Therefore, any

forwarded message also satisfies message_correct.
□

In the next lemmas, we prove statements about the liveness of the protocol. We start by defining

what it means for parties to “reach” or “be in” a view.

Definition 10.3. A nonfaulty party is said to reach view 𝑘 if at any point its local field 𝑣𝑖𝑒𝑤𝑖 is

updated to 𝑘 . Similarly, a nonfaulty party is said to be in view 𝑘 if its local field 𝑣𝑖𝑒𝑤𝑖 equals 𝑘 at

that time.

We then prove in that parties terminate if they reach the end of a view with no errors, or if some

other party terminates. In addition, we prove that parties don’t get stuck in a view, that is, they

either proceed to the next view or terminate, and that if the “good event” of the PE protocol takes

place, parties don’t proceed to the next view. Combining these two statements, since parties don’t

proceed to the next view if the “good event” takes place, they must terminate instead.

Lemma 10.4. If one nonfaulty party in the “commit” committee for 𝑣𝑖𝑒𝑤 sends a “commit” message,
all nonfaulty parties eventually terminate. In addition, if some nonfaulty party completes the protocol,
every nonfaulty party eventually does.

Proof. Suppose a nonfaulty party in the “commit” committee for 𝑣𝑖𝑒𝑤 has sent a commit certifi-

cate in a “commit” message. From Lemma 10.2, the commit certificate is correct. Every nonfaulty

party receives the “commit” message, and all the nonfaulty parties in the (global) “termination”

committee will eventually send a “termination” message with that commit certificate to all the other

parties. From the liveness of the quorum system, there are at least ℎ ≥ ⌈ℎ/2⌉ +1 nonfaulty members

in the “termination” committee, and thus every party terminates. Furthermore, no nonfaulty party

in “termination” committee terminates before sending termination message, since they terminate

after receiving several “termination” messages, but send a message after receiving at least one

such message. In addition, if some nonfaulty party completes the protocol, it received ⌈ℎ/2⌉ + 1
“termination” messages from members of the “termination” committee. From the safety of the

quorum system, there are fewer than ⌈ℎ/2⌉ faulty senders in the committee, and thus at least one

of these messages was sent by a nonfaulty sender. Every party receives this message, including all

members of the “termination” committee, who then send a “termination” message if they haven’t

already done so. As before, at least ⌈ℎ/2⌉ + 1 members of the “termination” committee send such

messages, meaning every party terminates. □

Lemma 10.5. If in view 𝑣𝑖𝑒𝑤 , the binding value 𝑥∗, as defined in the 𝛼 − 𝐵𝑖𝑑𝑖𝑛𝑔 property of the PE,
is the input of some party that was nonfaulty when calling PE, then no nonfaulty party reaches view
𝑣𝑖𝑒𝑤 + 1.

Proof. Suppose the binding value is indeed the input of some party that acted in a nonfaulty

manner. From the Binding Verification property and Completeness property of PE, every nonfaulty

party outputs (key_view𝑖 , key_val𝑖 , 𝜋
key
𝑖
) with a proof 𝜋PE

for the same nonfaulty party 𝑖 , and

(key_view𝑖 , key_val𝑖 , 𝜋
key
𝑖
) is the only tuple such that for a nonfaulty party 𝑗 outputs 1 from

PE_Verify with the tag 𝑣𝑖𝑒𝑤 .

We will start by proving that no nonfaulty party can receive a correct blame message. Suppose

by way of contradiction that there is a party 𝑗 with a correct lock certificate such that lock_view𝑗 >

key_view𝑖 and lock_val𝑗 ≠ key_val𝑖 . Then at the lock round of lock_view𝑗 , party 𝑗 has received

ℎ correct keys from members of the “round 2” committee of view lock_view𝑗 . From the robust

quorum intersection property of the quorum system, all nonfaulty parties receive “key” messages
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from at least ⌈ℎ/2⌉ of the parties above. From the safety of the quorum system, at least one of these

parties is nonfaulty. After receiving such a message, every nonfaulty party updates its key_view
to lock_view𝑗 . Since every nonfaulty party inputs its key fields PE, and key_view only increases,

we can conclude that key_view𝑖 ≥ lock_view𝑗 , by contradiction. Then, no party can send a correct

blame message, concluding that no nonfaulty party can read a correct blame message. Furthermore,

PE_Verify only outputs 1 for (key_view𝑖 , key_val𝑖 , 𝜋
key
𝑖
), so no party can send a correct “equivocate”

message with two different verifying tuples. Since a nonfaulty party reaches view 𝑣𝑖𝑒𝑤 + 1 only
after reading at least one correct error message in round 4, we can conclude that no nonfaulty

party reaches view 𝑣𝑖𝑒𝑤 + 1. □

Lemma 10.6. If all nonfaulty parties reach 𝑣𝑖𝑒𝑤 and no nonfaulty terminates in 𝑣𝑖𝑒𝑤 , then all
nonfaulty parties reach 𝑣𝑖𝑒𝑤 + 1.

Proof. Assume all nonfaulty parties reach 𝑣𝑖𝑒𝑤 , and observe the rounds of 𝑣𝑖𝑒𝑤 . For round 1,

all nonfaulty parties participate in the protocol and from termination property of the PE algorithm

output some value. Suppose that all nonfaulty parties have reached round 𝑘 (for 𝑘 in {1, 2, 3}) and
let’s prove that all of them reach round 𝑘 + 1. From the liveness of the quorum system, there are at

least ℎ nonfaulty parties in the round 𝑘 committee who send “round 𝑘" messages. From Lemma 10.2,

every nonfaulty party will eventually receive ℎ correct messages from those nonfaulty committee

members and continue to the next round. Similarly, since all parties reach round 4, all nonfaulty

parties in the round 4 committee send a “round 4” message. Assume by way of contradiction that

no nonfaulty party terminates during 𝑣𝑖𝑒𝑤 , and that some nonfaulty party 𝑖 did not proceed to the

next 𝑣𝑖𝑒𝑤 . All nonfaulty parties eventually receive the “round 4” messages sent by the nonfaulty

committee members, including the nonfaulty 𝑖 that stayed in 𝑣𝑖𝑒𝑤 . Since it did not proceed, the

messages sent were not error messages, but “commit” messages. All nonfaulty parties eventually

hear these messages as well, including the nonfaulty members of the “termination” committee.

These parties then send “termination” messages, and from the liveness of the quorum system, there

are at least ℎ > ⌈ℎ/2⌉ such parties. After receiving these messages, 𝑖 terminates, while still in view

𝑣𝑖𝑒𝑤 , by contradiction. □

Theorem 10.7. The NWA protocol is a Validated Asynchronous Byzantine Agreement protocol with
𝛼 = 1

3
, conditioned on no errors.

Proof. Each property is proven individually.

Agreement. Assume, for the sake of contradiction, that two nonfaulty parties 𝑖 and 𝑗 decide on

different values 𝑣 and 𝑣 ′, respectively, where 𝑣 ≠ 𝑣 ′. So there must be two commit certificates, with

values 𝑣 and 𝑣 ′ and views 𝑘, 𝑘 ′. Assume without loss of generality that 𝑘 ≤ 𝑘 ′. If there is a commit

certificate for 𝑣 ′ with view 𝑘 ′, then there must be a key certificate for 𝑣 ′ with view 𝑘 ′. We can now

apply lemma Lemma 10.1 to obtain a contradiction.

Validity. If some nonfaulty party 𝑖 outputs a value 𝑣 , it first receives a verifying “commit”

message. This message contains at least ℎ signatures provided in “lock” messages, with at least one

of them provided by a nonfaulty party. That nonfaulty party saw at least ℎ signatures provided

in “key” messages before sending a “lock” message. Similarly, at least one of these parties was

nonfaulty and sent the message after receiving at least ℎ signatures provided in “echo” messages.

Finally, one of these messages was sent by a nonfaulty party who first checked that PE_Verify
output 1 on a tuple including that value 𝑣 . From the external validity of PE, valid(𝑣) = 1.

𝛼 − Quality. With probability
1

3
, the binding event of the PE protocol takes place in the first

view. In that case, no party proceeds to the second view from Lemma 10.6, and as shown in the

termination property, all parties terminate in this view. In this view, only the input 𝑥∗ provided by

a nonfaulty party can be verified in PE_Verify, and thus all verifying “echo” messages must contain
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𝑥∗. This means that nonfaulty parties only send “echo” messages with that input. Every verifying

“key” message must contain at least one nonfaulty party’s signature on its value, and thus only “key”

messages whose value is 𝑥∗ will verify. Following similar logic, only “lock” and “commit” messages

whose value is 𝑥∗ will verify. Finally, before terminating, parties receive “termination” messages

with a correct “commit” message, and output 𝑥∗. In other words, all nonfaulty parties output the

input of a nonfaulty party with probability 𝛼 = 1

3
or greater.

Termination. From Lemma 10.4, if a nonfaulty party terminates, eventually all nonfaulty parties

do. Therefore, it is enough to show that at least one nonfaulty party completes the protocol. In

each view, there is a probability of at least
1

3
that the binding event of the PE takes place, in which

case no nonfaulty party continues to the next view. Since there is an independent
1

3
probability

of the binding event taking place in each view, the probability that the event does not take place

decreases exponentially with the number of views, approaching 0 as the number of views grows.

In other words, the probability that the binding event takes place in some view is 1. Let 𝑣𝑖𝑒𝑤 be the

minimal view for which this happens. If some party terminates before reaching 𝑣𝑖𝑒𝑤 , we are done.

Otherwise, using Lemma 10.6 𝑣𝑖𝑒𝑤 − 1 times, all parties reach 𝑣𝑖𝑒𝑤 . Then, seeing as no nonfaulty

party proceeds to 𝑣𝑖𝑒𝑤 + 1, from Lemma 10.6, some nonfaulty party terminated, and thus we are

also done. □

10.1 Efficiency Analysis
Lemma 10.8. The NWA protocol has an expected communication complexity of 𝑂 (𝜆𝑛𝑚3) and 𝑂 (1)

round complexity, where𝑚 is the parameter described in the quorum system.

Proof. As discussed in the termination property, the binding event of PE takes place in each

view with an independent probability of
1

3
or greater. This means that the expected number of views

until this takes place is at most 3. Each view consists of a single call to PE and a constant number of

rounds in which members of a single committee send a message to all parties. From the safety of the

quorum system, there are at most𝑚 parties in each such committee. Each such message consists

of 𝑂 (𝑚) cryptographic elements or indices of size 𝑂 (𝜆). Therefore, parties send 𝑂 (𝜆𝑛𝑚2) bits in
total in these messages. In addition, the PE protocol has a communication complexity of 𝑂 (𝜆𝑛𝑚3),
meaning that the total complexity is 𝑂 (𝜆𝑛𝑚3). Each view consists of a single call to PE and an

additional constant number of rounds. The PE protocol requires a constant number of rounds, so

in total the protocol requires a constant number of rounds. □

Assuming 𝑓 < (1/3−𝜖)𝑛 and instantiating Broadcastwith the quorum system protocol described

in Section 4, we get𝑚 = 𝑂 (𝜖−2𝜅 log𝑛), and thus the communication complexity of the PE protocol

is 𝑂 (𝜆𝑛(𝜖−2𝜅 log𝑛)3).
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A IMPLICATIONS FOR SYNCHRONOUS YOSO MPC
The techniques used in this paper have exciting implications for the synchronous setting with a

weak adaptive adversary, often referred to as the YOSO setting. Specifically, the same VRF-based

role assignment approach resulting in a committee of committees works in synchrony. This leads to

the first end-to-end synchronous YOSO MPC (excluding constructions based on general-purpose

witness-encryption) with sublinear communication assuming only a VRF setup with (near) optimal

resilience.

In this appendix, we give a high-level overview of our synchronous YOSO MPC construction.

Like in almost all YOSO MPC literature, we separate the problem of assigning roles to parties (in

such a way that the role can receive secret messages while the party playing it remains anonymous),

and using those roles to compute.

Informally, during our role assignment, each nominator 𝑁𝑖 randomly chooses a sub-committee
𝐻𝑖,1, . . . , 𝐻𝑖,𝑛 , so that we end up with a committee of sub-committees. When 𝑁𝑖 is corrupt, we have

to assume that all of 𝐻𝑖,1, . . . , 𝐻𝑖,𝑛 will be as well. When 𝑁𝑖 is honest, since 𝐻𝑖,1, . . . , 𝐻𝑖,𝑛 are chosen

randomly, we have the guarantee that a majority of them are honest.

While we do not have an honest majority among all of {𝐻𝑖, 𝑗 }𝑖, 𝑗∈[1,...,𝑛] , we do have an honest

majority among a majority of subcommittees. This is enough to build an MPC with guaranteed

output delivery: we nest a threshold linear secret sharing scheme in order to obtain a linear secret

sharing scheme for our committee-of-committees access structure, and then run MPC on top of

that scheme. (Note that, while a majority of a majority of sub-committees is not itself a majority,

our result does not contradict the lower bound of Cleve [19] because it uses a 𝑄2 access structure:

it is impossible to have two disjoint qualified sets under this access structure.)

Using similar techniques also leads to the first end-to-end asynchronous YOSO MPC with

sublinear communication assuming only a VRF setup with (near) optimal resilience.

A.1 Role Assignment
Let 𝑛 be a number large enough s.t. when 𝑛 parties are sampled at random, at least half are honest

with overwhelming probability. We want to assign roles to which secret messages can be sent, or,

in other words, form a secret-holding committee. We can do this as follows:

(1) 𝑛 nominators self-elect using a VRF-based Algorand-style cryptographic sortition. As in the

work of Benhamouda et. al [7], the nominators cannot form a secret-holding committee

directly, since someone who might want to send them a secret has no way to do so (without

relying on e.g. witness encryption).

(2) Each nominator 𝑁𝑖 does the following:

(a) Chooses 𝑛 parties 𝐻𝑖,1, . . . , 𝐻𝑖, 𝑗 to serve on the secret-holding committee. (This is in

contrast to the work of Benhamouda et. al, where each nominator chooses only a single

party.)

(b) For each 𝑗 ∈ [1, . . . , 𝑛]:
(i) Samples a public key encryption key-pair (ek𝑖, 𝑗 , dk𝑖, 𝑗 ).
(ii) Encrypts dk𝑖, 𝑗 to 𝐻𝑖, 𝑗 using key-message non-committing encryption (KMNCE),

as done by Canetti et. al [14, Section 7]. (KMNCE is necessary for adaptive security.

It automatically provides anonymity.) Let 𝑐𝑖, 𝑗 denote the resulting ciphertext.

(c) Erases all of its secret state.

(d) Broadcasts {(ek𝑖, 𝑗 , 𝑐𝑖, 𝑗 )} 𝑗∈[1,...,𝑛] .
This realizes the role assignment functionality FRA from Canetti et. al [14]. Since the construction

is exactly like theirs (except for the fact that each nominator chooses multiple holders), the proof

follows as a direct extension of theirs.
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FRA only provides secure point-to-point communication to roles. In order to run MPC, we often

need to verify the validity of private messages sent to roles, and their relationship to one another.

(E.g., it could be important to verify that private messages sent to roles comprise a consistent

sharing of a secret.) In order to accommodate this, our role assignment protocol can be extended

in the natural way to realize the stronger functionality FVeSPa (for verifiable state propagation)
of Kolby et. al [32], which supports the verification of arbitrary statements about messages sent

and received. This can be achieved in the classic way of including non-interactive zero-knowledge

proofs (NIZKs) with the messages. (Note that it may seem that this requires a CRS; however, we

could instead leverage multi-string NIZKs [29], which rely on a set of random strings most of which

are generated correctly. A single self-electing committee could set these strings up for us.) For the

rest of this section, we always use FVeSPa to verifiably send private messages to roles.

A.2 NSS: Nested Secret Sharing
A key observation is that any linear secret sharing scheme, such as Shamir, can be nested. Indeed,

this is exploited during degree reduction in BGW, where shares are re-shared.

A.2.1 Building Block: Linear Secret Sharing. Let LSS = (Share,Rec) be a linear secret sharing

scheme.

LSS.Share(𝑥, 𝑛, 𝑡) → (𝑠1, . . . , 𝑠𝑛) produces 𝑛 shares, and

LSS.Rec({𝑠𝑖 }𝑖∈𝑅) → 𝑥 ′ uses a qualified subset of those shares (of size at least 𝑡 ) to recover the

secret by taking a linear function. Let 𝜆 (𝑅,𝑖 ) be the reconstruction coefficient for the 𝑖’th

share when used with qualified reconstruction set 𝑅, so that∑︁
𝑖∈𝑅

𝜆 (𝑅,𝑖 )𝑠𝑖 = 𝑥 .

(For e.g. additive sharing, the only valid 𝑅 is [1, . . . , 𝑛], and 𝜆 (𝑅,𝑖 ) = 1 for every 𝑖 . For Shamir

sharing, 𝜆 (𝑅,𝑖 ) are the Lagrange coefficents.)

A.2.2 Building Nested Secret Sharing. We can nest a linear secret sharing scheme LSS, resulting in

a secret sharing scheme NSS for an access structure over a committee of 𝑛 size-𝑛 sub-committees,

where any set of at least 𝑡 members of at least 𝑡 sub-committees is qualified.

For simplicity of notation, we will write 𝑅 to denote a reconstruction set for NSS (where 𝑅

contains tuples of the form (𝑖, 𝑗)). We will write 𝑅𝑖 to denote { 𝑗} (𝑖, 𝑗 ) ∈𝑅 , and 𝑅′ to denote {𝑖} |𝑅𝑖 | ≥𝑡 .
𝑅 is qualified if |𝑅′ | ≥ 𝑡 .

The reconstruction coefficients for NSS are

𝜆NSS
𝑅,(𝑖, 𝑗 ) =

{
𝜆LSS(𝑅′,𝑖 )𝜆

LSS
(𝑅𝑖 , 𝑗 ) if 𝑖 ∈ 𝑅′,

0 otherwise.

NSS.Share(𝑥, 𝑛, 𝑡):
(1) (𝑠1, . . . , 𝑠𝑛) ← LSS.Share(𝑥, 𝑛, 𝑡).
(2) For 𝑖 ∈ [1, . . . , 𝑛], (𝑠𝑖,1, . . . , 𝑠𝑖,𝑛) ← LSS.Share(𝑠𝑖 , 𝑛, 𝑡).
(3) Return {𝑠𝑖, 𝑗 }𝑖, 𝑗∈[1,...,𝑛] .

NSS.Rec({𝑠𝑖, 𝑗 } (𝑖, 𝑗 ) ∈𝑅): return

∑
(𝑖, 𝑗 ) ∈𝑅 𝜆

NSS
𝑅,(𝑖, 𝑗 )𝑠𝑖, 𝑗 .

Correctness holds since∑︁
(𝑖, 𝑗 ) ∈𝑅

𝜆NSS
𝑅,(𝑖, 𝑗 )𝑠𝑖, 𝑗 =

∑︁
𝑖∈𝑅′

∑︁
𝑗∈𝑅𝑖

𝜆LSS(𝑅′,𝑖 )𝜆
LSS
(𝑅𝑖 , 𝑗 )𝑠𝑖, 𝑗 =

∑︁
𝑖∈𝑅′

𝜆LSS(𝑅′,𝑖 )

∑︁
𝑗∈𝑅𝑖

𝜆LSS(𝑅𝑖 , 𝑗 )𝑠𝑖, 𝑗 .
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By the correctness of the LSS, this equals ∑︁
𝑖∈𝑅′

𝜆LSS(𝑅′,𝑖 )𝑠𝑖 .

Applying correctness of the LSS once again, we get 𝑥 .

Privacy holds for NSS since if a set 𝑅 of shares is unqualified, then for more than 𝑛 − 𝑡 indices
𝑖 , privacy of 𝑠𝑖 follows by the privacy of the LSS. Applying privacy of the LSS once again, we get

privacy of the secret.

A.3 NSS to Committees of Sub-Committees
In order to verifiably NSS-share a secret 𝑥 to a committee of sub-committees 𝐶1, . . . ,𝐶𝑛 , the dealer

runs {𝑠𝑖, 𝑗 }𝑖, 𝑗∈[1,...,𝑛] ← NSS.Share(𝑥), and calls FVeSPa to privately and verifiably send each share

𝑠𝑖, 𝑗 to the 𝑗th member of 𝐶𝑖 .

A.3.1 Passing a Sharing to the Next Committee. Now, say that a committee of sub-committees

𝐶 = (𝐶1, . . . ,𝐶𝑛) holds an NSS-sharing of 𝑥 , and wishes to pass this sharing to another committee

of sub-committees 𝐶′ = (𝐶′
1
, . . . ,𝐶′𝑛).

(1) Role 𝐻𝑖, 𝑗 on sub-committee 𝐶𝑖 with share 𝑠𝑖, 𝑗 simply NSS-shares 𝑠𝑖, 𝑗 to 𝐶′ as described
in Section A.3.1. Let 𝑠𝑖, 𝑗,𝑘,𝑙 be the share sent by 𝐻𝑖, 𝑗 on sub-committee 𝐶 to 𝐻 ′

𝑘,𝑙
on sub-

committee 𝐶′. Let 𝑅 be the set of indices (𝑖, 𝑗) such that role 𝐻𝑖, 𝑗 successfully completed

this step.

(2) Role 𝐻 ′
𝑘,𝑙

on sub-committee 𝐶′
𝑘
computes share 𝑠′

𝑘,𝑙
=
∑
(𝑖, 𝑗 ) ∈𝑅 𝜆 (𝑅,(𝑖, 𝑗 ) )𝑠𝑖, 𝑗,𝑘,𝑙 .

Correctness can be argued in much the same way as in Section A.2.2:∑︁
(𝑘,𝑙 ) ∈𝑅′

𝜆 (𝑅′,(𝑘,𝑙 ) )𝑠
′
𝑘,𝑙

=
∑︁
(𝑘,𝑙 ) ∈𝑅′

𝜆 (𝑅′,(𝑘,𝑙 ) )
( ∑︁
(𝑖, 𝑗 ) ∈𝑅

𝜆 (𝑅,(𝑖, 𝑗 ) )𝑠𝑖, 𝑗,𝑘,𝑙
)
=

∑︁
(𝑖, 𝑗 ) ∈𝑅

𝜆 (𝑅,(𝑖, 𝑗 ) )
( ∑︁
(𝑘,𝑙 ) ∈𝑅′

𝜆 (𝑅′,(𝑘,𝑙 ) )𝑠𝑖, 𝑗,𝑘,𝑙
)

By correctness of the NSS, this equals ∑︁
(𝑖, 𝑗 ) ∈𝑅

𝜆 (𝑅,(𝑖, 𝑗 ) )𝑠𝑖, 𝑗 .

Applying correctness of the NSS once again, we get 𝑥 .

A.4 MPC
Now that we have a linear secret sharing scheme NSS for our committee-of-committees access

structure, we can use NSS to run an MPC. Broadly speaking, there are two promising approaches

to this: BGW [6] and CDN [22].

A.4.1 BGW. One natural thing to do is to use the linearity of NSS to run BGW-style computation

[6]. Each input is NSS-shared to the current committee-of-committees. To add two values, the

committee members perform addition locally. To multiply two values, several approaches may be

used.

One might hope that committee members could multiply their shares locally as well. However,

this results in the degrees of both layers of Shamir sharing doubling. Since only half of the outer

Shamir shares belong to mostly-honest sub-committees, this is not something we will be able to

recover from.

Instead, we follow the template of Kolby et. al [32] (which they call YOSO-LHSS). First, we
use Beaver triples to turn more of the computation linear; then, we use a linearly homomorphic

encryption scheme in order to turn the local linear computation into public computation on

ciphertexts. Up until now, we assumed that within FVeSPa, each committee member proved, in



Asynchronous Algorand: Reaching Agreement with Near Linear Communication and Constant Expected Time 47

zero knowledge, that its outgoing messages were correctly computed as a function of its incoming

messages and some local randomness. By substituting local computation with public computation

on ciphertexts, we reduce this burden of proof.

To generate Beaver triples, we leverage additional committees (which can be self-elected and

have an dishonest majority), as done by Gentry et. al [26]. Each Beaver triple consists ofNSS-shared
values 𝑎, 𝑏 and 𝑐 s.t. 𝑐 = 𝑎𝑏. The current committee-of-committees gets shares of 𝑎 and 𝑏, and

the next committee-of-committees gets shares of 𝑎 and 𝑐 . Then, to multiply NSS-shared values

𝑥 and 𝑦, current committee members locally compute shares of 𝜖 = 𝑥 + 𝑎 and 𝛿 = 𝑦 + 𝑏 and

broadcast those shares, allowing public reconstruction of 𝜖 and 𝛿 . At the same time, the current

committee members pass on 𝑦 to the next committee, as describe in Section A.3.1. We observe that

𝜖𝑦 − 𝛿𝑎 + 𝑐 = (𝑥 + 𝑎)𝑦 − (𝑦 + 𝑏)𝑎 + 𝑐 = 𝑥𝑦 + 𝑎𝑦 − 𝑎𝑦 − 𝑎𝑏 + 𝑎𝑏 = 𝑥𝑦; so, the next committee can

locally compute shares of 𝑧 = 𝑥𝑦 as a linear function of 𝑦, 𝑎 and 𝑐 .

With the use of Beaver triples, committee members only reshare, open, and perform linear

operations on shares. By using linearly homomorphic encryption (e.g. an El-Gamal-style variant

of Paillier) for communication to committee members, we enable the homomorphic evaluation

of linear combination of shares, relaxing the need for committee members to prove that they

performed such linear operations correctly.

A.4.2 CDN. An alternative approach is computing over threshold linearly homomorphic encryp-

tion, as introduced by Cramer, Damgård and Nielsen [22] and made YOSO by Gentry et. al [26]. In
these constructions, a single public-secret key pair is associated with the system. Inputs to the com-

putation are encrypted to the public key, and the corresponding secret key is secret-shared. (In our

case, the secret key is NSS-shared among a committee-of-committees.) As in the previous approach,

addition is done locally, and multiplication is done with the help of Beaver triples (generated by a

few self-elected dishonest-majority committees).

The advantage of using the CDN approach is that values encrypted to the system public key are

implicitly passed from one committee-of-committees to the next, as the decryption key is re-shared.

While the BGW approach requires 𝑙 re-sharings in order to keep 𝑙 values “alive”, the CDN approach

requires only one.

An apparent dis-advantage of using CDN is that the secret key for a linearly homomorphic

encryption scheme is an exponent-value in a group of unknown order, and thus needs to be secret

shared over the integers. The YOSO CDN construction of Gentry et. al involved a growth in share

size with every re-sharing; however, this was fixed in the recent work of Damgård et. al [23].
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