
FHE-SNARK vs. SNARK-FHE: From Analysis
to Practical Verifiable Computation

Xinxuan Zhang1,2, Ruida Wang1,2, Zeyu Liu3, Binwu Xiang1,2, Yi Deng1,2 and
Xianhui Lu1,2

1 State Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, CAS

2 School of Cyber Security, University of Chinese Academy of Sciences
3 Yale University

{zhangxinxuan, wangruida, xiangbinwu, deng, luxianhui}@iie.ac.cn
zeyu.liu@yale.edu

Abstract. Verifiable Computation over encrypted data (VC) faces a
critical dilemma between two competing paradigms: SNARK-FHE (ap-
plying SNARKs to prove FHE operations) and FHE-SNARK (homomor-
phically evaluating SNARK proofs). There are two interesting questions
remain open to solving such a dilemma: 1) Are they identical in terms
of security? 2) How practically efficient can we get? This work answers
these questions through the following results:
1) We establish a formal security analysis between VC and secure two-
party computation (2PC). We investigate VC with server inputs and
show the following: a) VC with server input has an exact 1-bit security
loss compared to 2PC; b) SNARK-FHE aligns with 2PC while FHE-
SNARK naturally falls in the VC category; c) Existing FHE-SNARK
works is vulnerable in the VC with server input setting, for which we
formalize a input-dependent attack.
2) We design an FHE-friendly SNARK that is: a) 3× lower multiplica-
tive depth than FRI-based SNARKs; b) Compatible with FHE SIMD
operations. Based on this novel SNARK, we construct an FHE-SNARK
scheme that has: a) Stronger security : resistant against input-dependent
attack; b) 8× speedup: 3.6-hour proof generation for 220-gate circuits
on a single core CPU (vs. 29 hours in the state-of-the-art); c) Practical
verification: 65.3 MB proofs with 2.7 seconds verification (single core).

1 Introduction

Fully homomorphic encryption (FHE), first realized by Gentry’s breakthrough
work in 2009 [31], enables arbitrary computations on encrypted data with-
out decryption. After a decade of advancements [10,9,7,22,8,32,21,18,16], FHE
demonstrates practical efficiency for diverse applications including secure ma-
chine learning [40,48,41,38,20], private information retrieval [2,50,26,45], private
set intersection [14,13,19], and oblivious message retrieval [46,47,42].

Despite its power, a critical limitation of FHE is the lack of computation
integrity guarantees: A malicious server can arbitrarily alter computation results
without knowing any information about the data. To address this issue, Gennaro,

Gentry, and Parno [30] introduced the concept of Verifiable Computation over
encrypted data (which we denote as VC for short).4 Essentially, VC allows a
client to outsource its computation to an untrusted server while (1) protecting
the data privacy and (2) enabling the client to verify computation correctness.
While the concept was introduced, the subsequent realization of VC in the next
decade has limited capability and efficiency [30,24], making them unsuitable for
verifying FHE computations.

Recently, with the rapid development of SNARKs (Succinct Non-interactive
Arguments of Knowledge), a new method has been proposed to construct VC
specifically for FHE [25,6,4,52,28]. In particular, the server, while performing
the homomorphic computation, generates a SNARK proof demonstrating that
the computation (over the ciphertexts) has been executed correctly, which we
call SNARK-FHE, as SNARK is used outside FHE. The client can then effi-
ciently verify the proof and ascertain whether the computation was conducted
honestly. While this approach marks a significant improvement over previous
works, it is still not practical for real-world applications. For instance, a real-
world deployment by ZAMA demonstrates that generating a proof for TFHE
gate bootstrapping takes approximately 20 minutes.

More recently, a new line of work has emerged [3,27,29], introducing an alter-
native approach to building VC for FHE. Specifically, after the server obtains the
homomorphically evaluated result (encrypted under FHE), it then homomorphi-
cally generates a SNARK proof against the encrypted input and output, which
we call FHE-SNARK, since FHE is used outside SNARK. In other words, the
proof is generated against the plaintext inside FHE (instead of generated directly
over ciphertexts as above) and is therefore also computed homomorphically via
FHE. This approach is considerably more efficient. For instance, the proof time
for a 220-gate circuit costs 29 hours in [27] (0.1 second per gate compared to 20
minutes in the previous method).

While these advances are fascinating, we believe that several aspects re-
main unexplained. First, it remains unclear why these two seemingly similar
approaches—one employing SNARKs outside FHE and the other leveraging FHE
outside SNARKs—result in such a significant performance gap. An intuition is
that the more performant one is weaker than the less efficient one. Thus, this
raises our first question:

(1) Do FHE-SNARK and SNARK-FHE offer equivalent security guarantees?
Furthermore, the prior works in the second line (FHE-SNARK) seems to

provide a stepping stone towards practical VC, but there remains substantial
room for further enhancement. For example, previous works [3,27] have opted
for holography-IOP-based SNARKs using the FRI protocol. This approach in-
troduces a large multiplicative depth and is not conducive to FHE SIMD (Single
Instruction, Multiple Data) operations, both of which significantly impair the
efficiency of FHE evaluation. This leads us to our second question:

4 Note that while the concept of verifiable computation has roots in older definitions
[53], which focuses on integrity without privacy, thus does not align our objectives.

2

Model
VC VC+KS 2PC

Input Dependent attack [3.2]

Verify Oracle [24]Knowledge Soundness [3.2]

[3,27,29] [Our Work] [Sec.6] [52,54]

SNARK-FHEFHE- SNARK+Ext w/o skFHE-SNARK
Instance

1-bit Forge attack [3.3]

Fig. 1. Our result, where “KS" denotes knowledge soundness and “Ext w/o sk” stands
for extractability without secret key.

(2) Is there an approach to design an FHE-friendly SNARK? More generally,
can we develop a more efficient FHE-SNARK for verifiable computation?

1.1 Our Result

This paper addresses aforementioned questions as described in Figure.1.

More comprehensive model for verifiable computation. First, we demon-
strate that in VC with server inputs, the server can launch additional attacks
(we formalize it as input-dependent attack, where malicious servers adaptively
forge inputs based on encrypted client data) on clients despite the adherence to
VC security properties in prior works. To mitigate these potential threats, we in-
troduce a security concept (adapted from SNARK) called knowledge soundness,
which aims to ensure that the server does not abuse the clients’ inputs.

Next, through formal security reduction analysis, we establish an intrinsic
connection between VC and secure two-party computation (2PC). Our analysis
reveals that VC with knowledge soundness still has a 1-bit security loss compared
to 2PC. We clarify it by formalizing a 1-bit forge attack and propose Theorem.1
to establish that VC with strong client privacy (where the server can query the
“verify” oracle once) is equivalent to 2PC.

Having formalized these concepts, we answer the first question as follows:
FHE-SNARK is applicable for achieving VC, whereas SNARK-FHE fits natu-
rally within the 2PC model, rendering it comparatively stronger.

FHE-friendly SNARK. We first design a novel SNARK variant where the
statement and a portion of the witness are encrypted. Our construction achieves
three key improvements:
– Extractablity without secret key: It allows for the extraction of the plaintext

portion of witness without requiring the secret key, thereby preventing input-
dependent attacks in the resulting VC constructions.

– Low multiplication depth: Our construction significantly reduces the multipli-
cation depth to 4, compared to 12+ in existing schemes.

– Compatibility with FHE SIMD operations: The construction fully harnesses
FHE packing capabilities, enabling batched homomorphic evaluations.

3

During the construction of our SNARK, we develop a novel commitment scheme
for polynomials whose point-value representations may contain both ciphertexts
and plaintexts. This commitment scheme has the potential for independent ap-
plications in other areas, such as blind SNARKs [27].
Practical FHE-SNARK for verifiable computation. Based on the afore-
mentioned results, we construct a practical knowledge soundness FHE-SNARK
scheme with explicit resistance against input-dependent attack. Our FHE-SNARK
demonstrate a 8× acceleration in proof generation time compared to [27]. Specif-
ically, for arithmetic circuits with 220 gates, our implementation costs 3.6 hours
(12.3 ms/gate) to generate a computation proof on a single-core CPU. More-
over, the scheme is well-suited for multi-core processors since all operations are
parallelizable.

1.2 Technique Overview

Input dependent attack and knowledge soundness in VC. Traditional VC
frameworks exhibit critical security gaps when extended to server-assisted dual-
input scenarios. While computational soundness guarantees result correctness
under the existence of valid witness w, it fails to enforce the server’s explicit
knowledge of w. This fundamental oversight enables input-dependent attack -
a class of vulnerabilities where adversaries strategically adapt inputs based on
inferred client information, violating the input independence principle inherent
in secure 2PC.

The security inadequacy becomes evident when analyzing existing approaches
for handling server inputs. In scenarios where both parties provide inputs, two
mainstream solutions prove unsatisfactory:
– Embedded Input Setup: Embedding server’s input w into the setup algo-

rithm destroys the one-time initialization and and creates undesirable server
inputs dependency.

– Verification-Time Input Disclosure: Treating w as verification algorithm
input violates outsourceability (o(|C|) complexity requirement) by forcing
linear-time verification.
Treating server inputs as private to client avoids these drawbacks but in-

troduces new client privacy challenges, necessitating stronger security guaran-
tees. To concretize the threat, consider a bilateral auction scenario where the
client’s bid m remains encoded via VC scheme. A malicious server can compute
Enc(w′) = Enc(m+1) as its bid input, ensuring victory at a minimum cost while
generating valid proofs.

This attack generalizes to any function computable through VC.compute, en-
abling arbitrary input manipulation that preserves proof validity despite the
server lacking knowledge of the actual w′ value. The core vulnerability stems
from the server’s ability to programmatically derive its input from the client’s
encrypted data without semantic understanding. In other words, if the server has
to know its own input, it will cannot set up such input dependent attacks since
the client’s input keep hidden from the server. Therefore we put forward a new
security requirement called knowledge soundness, which requires the existence

4

z̃
1-level

Ãz, B̃z, C̃z
4-level

INTT+NTT

RS(z̃), Ãz

RS(B̃z), RS(C̃z)

2-level

RS(s̃) FRI

RS(f∗) f∗, g RS(g) RS(t) FRI

1-level

1-level

2-level 1-level 1-level2-level

Fig. 2. Multiplication-depth of prior constructions[3,27]

of extractor such that, without secret key as input, it can extract the input of
server when the server generates a valid proof. In fact, a VC with verifier-privacy
and knowledge soundness is very close to 2PC. The only gap between them is
the one bit from whether the proof is valid, when the proof is designed verifier.

SNARKs for VC instances. In modern SNARK constructions, the prover
typically encodes the witness and statement as polynomials and transforms the
problem of verifying instance correctness into checking or querying the encoded
polynomials. The prover provides oracles about these polynomials and then uses
concrete cryptographic primitives such as hash functions or polynomial commit-
ments to instantiate these oracles. Since in VC schemes, the client only sends the
encryption of its input to server, the arithmetized R1CS instance will have an
encrypted statement and a partially encrypted witness w (since w contains some
intermediate values that arise during the computation). As a result, the prover
(acted by the server) can only obtain the encoded polynomials in encrypted.

Prior approaches. Prior constructions[3,27] build upon the Fractal scheme and
replace some oracles/messages sent by the prover to the corresponding encrypted
ones. Specifically, they encoding z as a univariate encrypted polynomial z̃ such
that z̃(hi) = zi for a specific set H = {h0, · · · , hn−1}. Az, Bz, and Cz are
encoded similarly as Ãz, B̃z, C̃z. Verifying Az ◦ Bz = Cz ultimately reduces
to checking, via FRI protocol homomorphically, the encrypted Reed-Solomon
code of polynomials like s = Ãz · B̃z−C̃z

vH
and t = f∗−X·g

vH
, where vH = Πh∈H(x−

h), f∗ is a specially designed polynomial constructed from Ãz, B̃z, C̃z, and g
is a polynomial computable from f∗’s coefficients. The introduction of Reed-
Solomon code and polynomial multiplications brings extensive use of NTT. Even
equiped with 2-layer NTT, they still exhibit a substantial multiplication depth
(12 depths, as illustrated in Fig.2), significantly increaseing the cost of single
homomorphic evaluations in the underlying FHE scheme.
Our approaches. Unlike prior constructions, our scheme builds upon the “mul-
tilinear polynomial commitment + polynomial interactive oracle proof (PIOP)”
paradigm. In our construction, the prover encodes z as an encrypted multilinear
polynomial z̃ on {0, 1}log |z| (instead of a univariate polynomial). Az, Bz, and
Cz are encoded similarly as Ãz, B̃z, C̃z. Follows Spartan’s PIOP [51], verifying
Az ◦ Bz = Cz reduces to checking: 1) F (x) = Ãz · B̃z − C̃z = 0 on {0, 1}∗,
and 2) M̃z encodes Mz for M = A,B,C. The former one, multivariate F (x)’s
zero-check, reduces to a sumcheck Σx∈{0,1}∗eq(x, τ)F (x), while the latter one,
the encoding check, reduces to sumchecks ΣyM̃(τ ′, y)z̃(y) = M̃z(τ ′). Through

5

z̃ 1-level
Ãz, B̃z, C̃z

sumcheck for degree-3 polynomial eq(x, τ)F (x)

3-level

sumcheck for degree-2 polynomial M̃(τ ′, x)z̃(x)
2-level

Fig. 3. Multiplication-depth of our construction

running the well-known sumcheck[49] homomorphically, these checks reduces to
random queries to the encrypted polynomial z, avoiding NTT unlike univariate
FRI-based approaches.

However, running sumchecks homomorphically introduces significant mul-
tiplicative depth. For a n-round sumcheck proving Σxf(x) = z (for simplic-
ity, assume f is an n-variate multilinear polynomial), it computes, in round
i, evaluations f(x0, · · · , xn−i, rn−i+1, · · · , rn−1) for all x0, · · · , xn−i+1 ∈ {0, 1}
recursively and thereby introduces n multiplication depth. We reduce depth by
computing evaluations in each round via linear combinations directly on f ’s eval-
uations on {0, 1}n, costing O(n2n) instead of O(2n). Furthermore, the modified
sumcheck protocol exhibits excellent compatibility with FHE packing techniques
because the linear combinations in each round share the same scalars.

With the modified sumcheck protocol, the proof system achieves a low mul-
tiplication depth (only 4), as described in Figure.3.

However, there is still one caveat: we need to instantiate the polynomial
oracle for encrypted polynomials. Since FRI-based polynomial commitment ex-
hibits weak compatibility with packing (it requires one matrix-vector multiplica-
tion for each packed ciphertext), we build upon Ligero/Brakedown’s polynomial
commitment. In the commitment phase, the committer rewrites the encrypted
evaluations on the hypercube as a matrix and homomorphically encodes each
row using a error correcting code. The Merkle-hash of the resulting encoded ma-
trix serves as the commitment. In the evaluation phase, the prover sends random
linear combinations of the rows of the evaluation matrix and Merkle authenti-
cation paths for random columns of the encoded matrix to the verifier, who can
then verify the “well-formedness” of the commitment and evaluations using the
property of error correcting code.

This construction exhibits excellent compatibility with packing because each
row is encoded using the same encoding scheme. By packing each column of
the evaluation matrix into a single ciphertext, committing algorithm involves
only scalar multiplications, while the evaluation contains only inner-products, on
packed ciphertext. And the way to pack here is identical to the one in sumcheck;
therefore, we can further reuse the packing. We apply the Reed-Solomon code
as the underlying encoding scheme because it can be accelerated via a constant-
layer NTT algorithm while maintaining a small depth. Since in the constructions,
the prover only commits to the encrypted polynomial z̃, thereby the levels of
polynomial commitment are independent from the levels of PIOP. We choose a
3-layer NTT so that the resulting SNARK still has a multiplication-depth of 4.

6

Prevent input dependent attack. To prevent input-dependent attacks, we need
to ensure that the prover indeed knows its input to the computed circuit. How-
ever, since SNARKs are run on the (partially) encrypted witness, the traditional
knowledge soundness of SNARKs does not work here because the extractor re-
quires secret key to decrypt the prover’s messages and extract the witness. In
fact, once plaintexts and ciphertexts are mixed through homomorphic evalua-
tions, it is difficult to retrieve the plaintexts again without the secret key.

A straightforward approach is to prove knowledge of the server’s input used
in the proof as discussed in [3]. However, this is computationally expensive as
it means to prove the computation of SNARK proof. Another simple solution is
to require the server to public a commitment of its input and view it as parts
of the statement. This can be seen as a commit-and-prove paradigm. To make
this solution practical, one has to use a commitment scheme that fitting the
structure of FHE. An optional commitment scheme is hash functions. In this
case, the prover needs to add the hash circuit into the SNARK circuit. Even
when using a SNARK-friendly hash like Poseidon, it increases by about tens of
constraints per hashed elements. It is a significant cost when the number of the
plaintext elements of the witness is relatively large compared to the circuit size.
Another option is to use a separate polynomial commitment scheme specifically
for the plaintext portion of the witness. Besides the additional cost coming from
the additional commitment, since we use a multilinear polynomial commitment,
we need to pad enough “0”s to the plaintext and ciphertext parts of the witness
to ensure they satisfy specific structures (e.g., that their lengths are the same)
for verification in most cases. This will increase the size of instance and bring
noticeable cost especially for the verification. However, we demonstrate that, by
slightly modifying our construction, we can achieve the extractability without the
secret key at virtually no additional cost. This is based on two key observations.

First, the prover directly encodes z as the evaluations of z̃ on the hypercube.
Suppose that the extractor can obtain some evaluations in plaintext; then, it can
extract the corresponding part of witness in plaintext.

Second, the Ligero/Brakedown polynomial commitment exhibits a form of
separability. Recall that, in the commitment phase, the prover rewrites the eval-
uations as a matrix and encodes its rows. This means that the evaluations in
different rows will not be mixed during encoding. If the plaintext portion con-
sists of some rows of the matrix (the structure of R1CS allows us to adjust the
order of the witness and therefore achieve this), then their encoding will also be
in plaintext. Furthermore, during the evaluation phase, the prover discloses ran-
dom columns of the encoded matrix, which also prevents the prover from using
ciphertexts to replace plaintexts (if so, the resulting codeword will consist of a
significant proportion of ciphertexts due to its error-correcting properties). We
use the list-decoding algorithm of the underlying Reed-Solomon code and the
straight-line extractor mentioned in Brakedown to achieve extraction by directly
decoding the hashed codewords extracted via the random oracle.

The combination of PIOP and the modified polynomial commitment results
in a SNARK for VC instances that satisfies a strong knowledge soundness, ad-

7

ditionally allowing for the extraction of the plaintext portion of the witness. To
complete the security proof of the resulting SNARK, we introduce several new
definitions, such as polynomials for cryptomix polynomials (where a cryptomix
polynomial is defined as one whose point-value representation consists of both
ciphertexts and plaintexts) and a new variant of knowledge soundness allowing
extraction without a secret key. These definitions not only help us to conclude
the security proof follows the “polynomial commitment + PIOP” paradigm, but
also have the potential for independent applications in other areas.

2 Preliminaries
Notions. Let λ denote the security parameter. For any positive integer m, we
denote by [m] the set {0, 1, · · · ,m − 1} and by binn(m) ∈ {0, 1}n its n-bit
binary representation (padded with leading zeros when necessary). For a vector
r = (rn−1, · · · , r0) ∈ {0, 1}n, we denote by int(r) the integer

∑
2i · ri. We use

the standard abbreviation PPT to denote probabilistic polynomial time. We
will use the terms (non-uniform) PPT algorithm and polynomial-size circuits
interchangeably. For two random ensembles X := {Xλ}λ∈N and Y := {Yλ}λ∈N,
we write X

c
≈Y to mean X and Y are indistinguishable against all polynomial-

size circuits. For any vector v = (v0, v1, · · · , vn−1) and any integer i ∈ [n], we
denote by v[i] := vi.

In this paper, we will frequently refer to the plaintext and ciphertext repre-
sentations of elements. To avoid ambiguity, we use [·]c to represent ciphertext
and [·]p to represent plaintext in the following way:

[α]c :=

{
α,

Encpk(α),

if α is a ciphertext
if α is a plaintext

[α]p :=

{
Decsk(α),

α,

if α is a ciphertext
if α is a plaintext

For anyone owning α and the public key pk (resp. the secret key sk), it can al-
ways generate [α]c (resp. [α]p) efficiently. For any matrix M := (ui,j), we denote
by [M]c the matrix ([ui,j]c), and by [M]p the matrix ([ui,j]p).

2.1 Proof Systems

Proof systems serve as a fundamental building block in this paper, ensuring
the correctness of computations. Some portions of these definitions are taken
verbatim from [12].

Definition 1 (R1CS Indexed Relation). The indexed relation RR1CS is the
set of all triples

(i,x,w) = ((F, A,B,C,m, n), x, w)
where F is a finite field, m,n ∈ N, A,B,C are m×m matrices over F with at most
n non-zero entries, and z = (w, x) is a vector in Fm such that Az ◦ Bz = Cz.
Here, ◦ denotes the Hadamard (entry-wise) product.

Definition 2 (Interactive Proof). Let Π = (Setup, I,P,V) be an interactive
protocol described as follows:
• Setup(1λ): On input a security parameter 1λ, Setup outputs a common refer-

ence string crs.

8

• I(crs, i): On input crs and the index i, the deterministic algorithm I outputs
the verifier and prover parameters (vp, pp).

• ⟨P(pp,x,w),V(vp,x)⟩: ⟨P,V⟩ is a protocol between the prover and verifier,
where the prover wants to show that (i,x;w) ∈ R and the verifier outputs a
bit indicates acceptance or not. Here we denote the output of the verifier by
0/1← ⟨P(pp,x,w),V(vp,x)⟩.
Such an interactive protocol is called a proof system for indexed relation R if

the following properties hold:
• Completeness: for all (i,x;w) ∈ R,

Pr

[
⟨P(pp,x,w),V(vp,x)⟩ = 1

∣∣∣∣∣ crs← Setup(1λ)
(vp, pp)← I(crs, i)

]
= 1

• Soundness: For every pair of unbounded adversary algorithm (A1,A2), it holds
that:

Pr

⟨A2(pp,x, st),V(vp,x)⟩ = 1 ∧ (i,x) /∈ L(R)

∣∣∣∣∣∣∣
crs← Setup(1λ)

(i,x, st)← A1(crs)

(vp, pp)← I(crs, i)

 ≤ negl(1λ)

where L(R) is the set defined as {(i,x) | ∃w s.t. (i,x,w) ∈ R}.

Furthermore, an argument system is defined similarly to a proof system, except
that it is only required to be sound against probabilistic polynomial-time ad-
versary. An interactive protocol is called public-coin if all messages sent by the
verifier are uniformly random elements from some subset of the plaintext space,
independent of the current partial transcript. If a proof (argument) system Π
involves only one message in its online phase ⟨P,V⟩, specifically, the prover sends
a proof π ← P(·) to the verifier, who then verifies the proof using V, we call it
a non-interactive proof (argument) system.

Definition 3 (Knowledge Soundness). A proof system (or argument sys-
tem) is called a proof of knowledge (or argument of knowledge, respectively) if it
satisfies the knowledge soundness defined as follows: There exists a probabilistic
polynomial time oracle machine E, called the extractor, such that for any pair of
unbounded (or probabilistic polynomial-time, respectively) adversaries (A1,A2),
the following holds:

Pr

⟨A2(pp,x, st),V(vp,x)⟩ = 1 ∧
(i,x,w) /∈ R

∣∣∣∣∣∣∣∣∣∣
crs← Setup(1λ)

(i,x, st)← A1(crs)

(vp, pp)← I(crs, i)
w← EA1,A2(crs, i,x)

 ≤ negl(1λ)

Definition 4 (Succinct Non-interactive Arguments of Knowledge). A
non-interactive argument of knowledge is considered succinct if both the verifi-
cation time and communication size are sublinear in the size of the witness.

Succinct Non-interactive Arguments of Knowledge (SNARKs) can be constructed
from various information-theoretic proof systems that give the verifier oracle
access to prover messages. These information-theoretic proof systems can be

9

compiled using various cryptographic tools, such as hash functions and polyno-
mial commitments. We now introduce two specific types of information-theoretic
proof systems: interactive oracle proofs (IOPs) and polynomial interactive oracle
proofs (PIOPs).

Interactive Oracle Proofs (IOPs). An (holographic) IOP for an indexed
relation R consists of a deterministic index algorithm I and a protocol ⟨P,V⟩
such that:
• I(i): On input the index i, the deterministic algorithm I outputs an encod-

ing, Ind(i).
• ⟨P(Ind(i),x,w),V Ind(i)(x)⟩: ⟨P,V⟩ is a public-coin protocol between the prover

and verifier, where the prover sends the first and last message, and the verifier
has only oracle access to the prover’s messages.
Furthermore, an (holographic) IOP has to satisfy the corresponding Cor-

rectness and Soundness properties, both of which are defined similarly to
those of standard proof systems, except that the verifier is given only oracle
access to the prover’s messages and Ind(i).

A holographic IOP can be compiled into a SNARK in the random oracle
model using BCS compilation [5]. Furthermore, if the holographic IOP satisfies
a special variant of soundness called round-by-round soundness (or round-by-
round knowledge soundness, respectively), then the resulting scheme satisfies
standard soundness (or knowledge soundness, respectively) in the random oracle
model. Additionally, if the holographic IOP satisfies HVZK, then the resulting
SNARK satisfies standard zero-knowledge in the random oracle model.

Polynomial Interactive Oracle Proofs (PIOPs). PIOPs is a variant of IOPs
where the oracles sent by the prover to the verifier are essentially polynomials.
More precisely, a PIOP for an indexed relation R consists of a deterministic
index algorithm I and a protocol ⟨P,V⟩ such that I(i) encodes the index i as
several polynomial functions Ind(i) and ⟨P(Ind(i),x,w),V Ind(i)(x)⟩ is a public-
coin protocol where in each round the prover can send some polynomial function
oracles to the verifier, and the verifier can query these oracles, as well as Ind(i),
at arbitrary points of its choice.

A PIOP can be compiled into an interactive argument by using a polyno-
mial commitment scheme to instantiate the polynomial oracles. Roughly, if both
of the polynomial commitment scheme and the PIOP have knowledge sound-
ness, then the resulting scheme has knowledge soundness. Additionally, if the
polynomial commitment scheme is hiding, and the EVAL protocol of the poly-
nomial commitment scheme and the PIOP are both HVZK, then the resulting
interactive argument is also HVZK.

2.2 Polynomial commitment

Polynomial commitments enable a committer to commit a polynomial and then
open the value of the polynomial at arbitrary points. In this paper, we only
consider polynomial commitments for multilinear polynomial. The definition is
shown as follows:

10

Definition 5 (Polynomial Commitment Scheme). A multilinear polyno-
mial commitment over a field F consists of four protocols (Setup,Com, deCom,Eval):
• Setup(1λ): On input the security parameter 1λ, the Setup algorithm outputs a

public parameter pp.
• Com(pp, f): On input a multilinear polynomial f ∈ F[X1, · · · , Xd] and the

public parameter pp, the Com algorithm outputs a commitment C and a de-
commitment τ .

• deCom(pp, C, τ): On input a public parameter pp, a commitment C and a de-
commitment τ , the deCom algorithm outputs the committed multilinear poly-
nomial f ∈ F[X1, · · · , Xd] or ⊥ if it believes that the decommitment is invalid.

• Eval(pp, C, z, y; f, τ): Eval is an argument system ⟨P, V ⟩ with the setup algo-
rithm Setup for the relation:

Reval = {(pp, C, z, y; f, τ) : deCom(pp, C, τ) = f ∧ f(z) = y}

A polynomial commitment scheme (Setup,Com, deCom,Eval) should satisfy the
following properties:
– Completeness: For all λ ∈ N, multilinear polynomial f ∈ F[X1, · · · , Xd] and

any z,

Pr

[
1 = Eval(pp, C, z, y; f, τ)

∣∣∣∣∣ pp← Setup(1λ),

(C; τ)← Com(pp, f), y = f(z)

]
= 1

– Computational Binding: For all λ ∈ N and any PPT adversary A,

Pr

f0 ̸= f1 ∧
f0, f1 ̸=⊥

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ),

(C, τ0, τ1)← A(pp),
f0 ← deCom(pp, C, τ0),

f1 ← deCom(pp, C, τ1)

 ≤ negl(λ)

– Knowledge Soundness: Eval is an argument of knowledge (satisfying knowl-
edge soundness) for the relation Reval.

3 Model: From Verifiable Computation to 2PC
In this section, we delve into the model formalization specifically focusing on
two-party (client-server) protocols. We begin by adapting the standard verifi-
able computation (VC) model from [30], and explore the VC model in various
scenarios, differing by whether the server possesses its own inputs. Next, we in-
troduce a type of attack, termed an input-dependent attack, to highlight the
vulnerabilities in existing security definitions. To defend against such attacks,
we propose an additional security property. Finally, we establish both the gaps
and equivalences between VC under our new security definition and 2PC.

3.1 Verifiable Computation

We adapt the definition from [30] and describe the difference and new properties
we introduce below.

11

Definition 6. (Verifiable Computation). A verifiable computation scheme
VC consists of four polynomial-time algorithms:
– (sk, pk) ← VC.Setup(1λ,C): given a circuit C, the setup algorithm outputs a

key pair (sk, pk).
– (Enc(m), st)← VC.ProbGen(pk,m): an encoding algorithm takes an input data

m and public key pk, and outputs an encoded Enc(m) and a statement st.
– (Enc(y), π)← VC.Compute(pk,Enc(m),C, w): the computation algorithm takes

the public key pk, the encoded Enc(m), circuit C and server’s input w (if have),
it outputs an encoded computing result Enc(y) and a proof π.

– y/ ⊥← VC.Verify(sk,Enc(y), st, π): given the secret key sk, the encoded result
Enc(y), statement st, and proof π, the verification algorithm returns y behind
its encoding Enc(y) if y = C(m,w) or outputs ⊥ otherwise.
We then formally define the correctness, outsourceability, and security of the

VC scheme.
Correctness. The correctness property ensures that the honest server will pass
the verification of an honest client. Specifically, the following probability is neg-
ligible.

Pr

⊥← VC.Verify(sk, Enc(y), st, π)

∣∣∣∣∣∣∣
(sk, pk)← VC.Setup(1λ,C)

(Enc(m), st)← VC.ProbGen(pk,m)

(Enc(y), π)← VC.Compute(pk, Enc(m),C, w)

Outsourceability. A VC scheme is outsourceable if the time required by the
client to run VC.ProbGen and VC.Verify and the size of π are o(|C|), where |C|
is the size of circuit C.

Security. In this paper, we categorize the security model of verifiable com-
putation into several tiers, progressing from the simplest to the most complex
scenarios. Such stratification promotes a more comprehensive understanding and
robust implementation of the concept. The tiers are as follows:
I. Client with private input, server with no input: In this scenario, all data

accessible to the server is integrated into the public circuit to be computed.
II. Client with private input, server with public input: In this scenario, the server

possesses some public data that is independent of the setup. This allows a
single setup (independent of the server’s data) to serve different data compu-
tations and verifications, enhancing flexibility and practicality.

III. Client and server both have private input: In the first two scenarios, we only
need to consider the server as the adversary. However, in the third scenario, it
is necessary to consider the client as the adversary as well, as briefly mentioned
in HELIOPOLIS [3] regarding prover privacy.

Client security: Previous work [29] captures the client security (including privacy
and integrity guarantee) of the verifiable computation scheme by defining the
following two properties.
– Client-privacy: meaning that a malicious server should not learn any informa-

tion about the client’s input. More formally, a VC scheme is verifier-private, if
for any PPT adversary A, its advantage in the following game Gclient−privacy

VC,A (λ),
defined as Advclient−privacyVC,A (λ) = Pr[Gclient−privacy

VC,A (λ)→ 1]− 1/2 = negl(λ).

12

Gclient−privacy
VC,A (λ):

1: b
$←{0, 1}

2: (sk, pk)← VC.Setup(1λ,C)
3: (m0,m1, state)← A(PK,C)

4: (cmb , st)← VC.ProbGen(pk,mb)

5: b̂← A(cmb , state)
6: return b

?
= b̂

– Soundness: meaning that a malicious server cannot produce an invalid com-
putational result that passes verification. More formally, a VC scheme is
sound, if for any PPT adversary A, it holds that its advantage in the fol-
lowing game GSoundness

VC,A (λ), defined as AdvSoundnessVC,A (λ) := Pr[GSoundness
VC,A (λ) →

1] = negl(λ). Without loss of generality, we add the server’s input (w) to the
game GSoundness

VC,A (λ). In case I, w is empty.

GSoundness
VC,A (λ):

1: (sk, pk)← VC.Setup(1λ,C)
2: m← A(PK,C)
3: (Enc(m), st)← VC.ProbGen(pk,m)

4: Enc(y′)← A(pk,Enc(m),C)
5: if y′ ← VC.Verify(sk,Enc(y′), st, π)∧
6: ∄w s.t.C(m,w) = y′

7: return 1
8: return 0

Server security: In the three scenarios above, only the third case requires server
security: as in this case, the server has its own private input. Specifically, in
scenario III, a VC scheme needs to additionally satisfy server-privacy. Following
[3], we provide a simulation-based definition for server-privacy. This definition is
analogous to that used in 2PC, requiring that the client’s view can be simulated
by a simulator in the ideal world, or equivalently, that the simulator has one-time
oracle access to the function C(·, w)).
– Server-privacy: A VC protocol is server-private if there exists a PPT simulator
S = (S1, S2) such that for every circuit C, every input w, and every adversary
A, the following distributions are computational indistinguishable:
D1: {pk, sk, r, δy, π}λ, where (sk, pk) ← VC.Setup(1λ,C), δx ← A(pk, sk; r), r is

the randomness of A, and (δy, π)← VC.Compute(pk, δx,C, w).
D2: {pk, sk, r,SA,Ow

2 (1λ, τ, δx)}λ, where (sk, pk, τ)← S1(1λ,C), δx ← A(pk, sk; r),
r is the randomness of A, and Ow is a one-time oracle (S2 can query this
oracle for only once) that on input x, it outputs C(x,w).

Furthermore, A VC protocol is called honest-client server-private if it satisfies
the property above against a honest-client.

3.2 Input Dependent Attack and Knowledge Soundness

In this section, we discuss in more detail about how the three different scenarios
fit into the VC model. In case I, the VC definition and the soundness property
are enough to guarantee the correctness of computation.

However, in case II, things are slightly different. Due to the existence of the
server’s input, now the verified statement is changed to C(x,w) = y, where

13

w is the input from the server. To ensure correctness in this context, there are
currently two mainstream solutions: The first is to embed string w into the setup
algorithm, which can be categorized as case I. The disadvantage of this method
is that the setup phase is no longer one-time and no longer independent of the
server’s input. The second is to slightly modify the definition of VC, treating
w as an input to the verify algorithm [3]. In this situation, the verifier has to
read w entirely, which introduces additional costs in both communication and
computation, potentially making the scheme no longer outsourseable, due
to the increased Verify cost. Therefore, we deem it unreasonable to use w as an
input for the verify algorithm.

Thus, neither of these methods solves the problem well. An alternative method
is to treat w as if the client would not learn, akin to case III. This method avoids
all the complicacies of the previous two methods. We will therefore merge this
discussion with case III. However, this case then introduces new challenges to
client privacy.

Our discussion begins with the inadequacy of soundness in such cases. While
soundness ensures the correctness of computation, it only ensures the existence
of w rather than the knowledge of w. In other words, the malicious server might
complete the computation and proof without actually knowing w. This allows
the server to make harmful attacks and change the output of the computation
according to client’s input.

To illustrate this point more concretely, we first present a construction that
satisfies the previously defined soundness. Then, we introduce an attack method
we refer to as “input dependent attack”.

Strawman construction. We can easily construct a soundness verifiable com-
putation scheme using a fully homomorphic encryption scheme and a proof sys-
tem. Specifically, the client takes its input, encrypts it using the FHE key, and
sends the encrypted data to the server. The server performs the desired homo-
morphic computation on the encrypted input according to the given circuit. It
also evaluates the corresponding proof homomorphically which verifies the cor-
rectness of the circuit computation. The client decrypts the outputs using its
FHE secret key and verifies the provided proof to ensure the computation was
performed correctly.

Input-dependent attack. In this section, we introduce our attack to illustrate
why the strawman construction fails when the server has a private input. The
core idea is straightforward: since the client is unaware of the server’s input, the
server can use an arbitrary input to the circuit, which may depend on the client’s
input. Consider a bilateral auction scenario as a simple yet catastrophic example.
The client has its bid, m, and the server possesses a bid, w. The server computes
a circuit as follows: C(m,w) := m > w?1 : 0. This means the circuit outputs
1 if the client’s bid is greater and 0 otherwise. A malicious server can exploit
this by inputting w′ = Enc(m + 1) instead of the honest w. This manipulation
ensures that the server always wins. Additionally, since the proof is generated
over m,Dec(w′) homomorphically, the proof is always valid, even though the
server does not know m.

14

More generally, the server can craft a function f , and compute w′ ← f(Enc(m))
homomorphically to generate the malicious input w′. The server can then com-
pute VC.Compute(pk,Enc(m),C, f(Enc(m))), and return the result to the client.
Because w′ is a valid input, the Verify process returns 1. Clearly, this undermines
the integrity that we aim to provide, thus making the model unsuitable for such
cases. Therefore, we define knowledge soundness for VC as follows.
– Knowledge soundness: A verifiable computation system is knowledge sound if

there exists a probabilistic polynomial time oracle machine E called the ex-
tractor such that for any PPT adversary A, the following holds,

Pr

VC.Verify(sk, c, st, π) = y ̸=⊥ ∧
y ̸= C(x,w)

∣∣∣∣∣∣∣∣∣∣
(SK,PK)← VC.Setup(1λ, C)

(Enc(m), st)← VC.ProbGen(pk,m)

(c, π)← A(pk, Enc(m),C)

w ← EA((pk, Enc(m), C), (c, π))

 ≤ negl(1λ)

This knowledge soundness definition is mostly standard, adapted from SNARK,
except that the interfaces are replaced by the interfaces in VC. Essentially, it
simply requires that the server know its input in plaintext such that it cannot
perform the attack described above.

3.3 The Gap from Secure Two-Party Computation (2PC)

Interestingly, VC with private server input closely resembles Secure Two-Party
Computation (2PC). A secure 2PC protocol involves two entities jointly com-
puting a deterministic circuit C. In this paper, we focus on the scenario where
the computationally limited party, referred to as the client (C), learns the out-
put. The other party, known as the server (S), undertakes the majority of the
computational burden. In this setting, the client C has its private input m1, and
the server S has its input m2. Together, they execute a protocol to compute the
output C(m1,m2), with C ultimately obtaining C(m1,m2) upon completion of
the execution.
Relation between verifiable computation and 2PC. With the definition
clear, we are ready to discuss the relationship between verifiable computation
and 2PC. First, it is straightforward to observe that server-privacy is equivalent
to simulation security for the server. Therefore, we primarily focus on the secu-
rity of the client. We start with the following observation:

Observation I: “Client-Privacy + Knowledge Soundness” is weaker than “Sim-
ulation security for client”.

To illustrate this observation, we first present a toy construction that sat-
isfies client-privacy and knowledge soundness. The verifier uses a FHE scheme
to encrypt its input. The server then sends the ciphertext of its own input, ho-
momorphically computes the intended circuit to obtain the output ciphertext,
and homomorphically generates a SNARK proof demonstrating the correctness
of the computation. Furthermore, the server computes a proof of knowledge in
plaintext, demonstrating the knowledge of the witness used in the generation of
the previous proof. For simplicity, consider binary field. The client outputs ⊥ if

15

the verification does not pass. This toy construction possesses client privacy and
knowledge soundness in a straightforward way.
Attack I (1-bit forge attack): Now, we demonstrate the attack showing that it
does not satisfy the simulation security of 2PC.

After honestly computing the result of circuit, the malicious server encrypts
a bit 0 and uses it to replace one bit of the client’s input. The server then uses
this modified input (potentially incorrect) together with the output from the
circuit (supposedly correct, since the circuit is evaluated honestly) to generate
the remaining proofs. Consequently:
– If the modified bit of was indeed 0, then the proof will pass the verification.
– If the modified bit of was indeed 1, then the proof will not pass the verification.
Therefore, by observing whether the client aborts, the server can learn this bit
of the client’s input. More generally, the server is able to test the input of the
client against a certain value.

A further question arises: how much information can the server learn when it
knows whether client aborts the protocol? The following observation shows that,
the server can learn at most one additional bit about the client’s input through
knowledge of whether the client accepts the proof.
Observation II: Compared to 2PC, VC leakage is bounded by 1 bit.
In the following, we introduce a stronger notion of client-privacy for VC, which
guarantees the privacy of the client’s input even when the prover has access
to a one-time verification oracle, which provides one bit of information. This
definition is also presented in [24]. We then demonstrate that “client-privacy
with a verification oracle” combined with knowledge soundness is as strong as
the simulation security for the client in 2PC.
– Client-privacy with verification oracle: In the following game GS−client−privacy

VC,A (λ),
the advantage of any PPT adversary A, defined as AdvS−client−privacyVC,A (λ) =

Pr[GS−verifier−privacy
VC,A (λ) → 1] − 1/2 = negl(λ). Here, Overify represents a one-

time oracle to the Verify procedure.

GS−verifier−privacy
VC,A (λ):

1: b
$←{0, 1}

2: (sk, pk)← VC.Setup(1λ,C)
3: (m0,m1, state)← A(PK,C)

4: (cmb , st)← VC.ProbGen(pk,mb)

5: b̂← AOverify (cmb , state)
6: return b

?
= b̂

Theorem 1. A VC scheme satisfying client-privacy with verification oracle and
knowledge-soundness is also a 2PC scheme with security for client.

Due to space limitations, the security proof is deferred to Appendix B.

3.4 FHE-SNARK and SNARK-FHE

Now, we revisit the two paradigms for building Verifiable Computation (VC)
using Fully Homomorphic Encryption (FHE):

16

– SNARK-FHE (SNARK outside FHE): Use FHE to evaluate the intended cir-
cuit and then employ a SNARK to prove that the FHE computation over the
ciphertexts is performed honestly.

– FHE-SNARK (FHE outside SNARK): Use FHE to evaluate the intended
circuit and generate a homomorphic proof that the plaintext computations
within the FHE environment were performed honestly.

Difference in functionalities. A natural question is how these two approaches
differ functionally. Our discussion on the relationship between VC and succinct
two-party computation (2PC) clarifies this. SNARK-FHE can be viewed as a
form of 2PC, making it immune to attacks we previously mentioned. Specifically,
the one-bit leakage is irrelevant in SNARK-FHE: the adversarial server always
knows if a proof passes, simulating the client’s reaction accurately except with
negligible probability. This is because all proof generation inputs are known to it.
Thus, SNARK-FHE exhibits no inherent one-bit leakage, unlike FHE-SNARK.
In other words, FHE-SNARK realizes VC without strong verifier privacy, while
SNARK-FHE realizes 2PC.

Difference in efficiency. With functional differences clarified, we now briefly
compare their efficiencies. SNARK-FHE achieves a stronger primitive than FHE-
SNARK but is consequently less efficient. Such efficiency degradation due to
model differences (i.e., giving verify oracle or not) is relatively common, es-
pecially for FHE schemes (or FHE-based constructions). For example, for FHE
schemes, to allow IND-CPA-D [43] security instead of IND-CPA security (i.e., the
adversary is given oracle access to a decryption oracle that allows decryption of
only honestly-generated ciphertexts, independent of the challenging ciphertext),
recent works [11,15] have shown that we need to perform regular bootstrapping
procedures after a certain number of additions which can indeed cause orders of
magnitude efficiency loss. Some other attacks need to be fixed by using differ-
ential privacy [44] or using much more conservative parameters [15], which also
cause significant efficiency degradation.

Such situations greatly resemble our case: our strong verifier privacy indeed
provides an additional verify oracle to the adversary, and this difference, as
discussed above, is a core distinction between FHE-SNARK and SNARK-FHE.
Thus, we believe this difference is one major reason that FHE-SNARK and
SNARK-FHE may have a relatively significant gap in terms of efficiency.

Putting model aside, if we focus on the realization itself, the efficiency is
fundamentally influenced by the alignment between algebraic structures and
operations. SNARK-FHE faces a challenge in matching these components:

Algebraic Structures: The plaintext space in FHE can adopt algebraic struc-
tures such as finite fields or integer rings. Conversely, the ciphertext space typ-
ically utilizes power-of-2 cyclotomic rings, e.g., Rq with ring dimension 2048
and q being 32 or 64 bits (akin to those used in FHEW-like schemes) or larger
ones with ring dimension 32768 and q = 800 (as seen in BFV-like schemes).
In contrast, SNARK operations generally occur within a small sized prime field
such as 128-bit. So that it poses challenges for SNARK-FHE, where the use of
small prime fields to handle different ciphertext structures. However, the FHE

17

Fig. 4. SNARK-FHE vs FHE-SNARK

plaintext space can directly accommodate the prime finite fields used in SNARK
systems, enabling a more seamless and efficient alignment in FHE-SNARK.

Operations: The plaintext operations supported by FHE contain both logical
and arithmetic operations. However, ciphertext manipulations are more com-
plex, encompassing arithmetic operations alongside specialized procedures such
as modulus switching (an error management technique that discards least signif-
icant bits to control noise growth), gadget decomposition (splitting ciphertexts
into smaller components using radix decomposition), and RNS decomposition
(residue number system-based ciphertext decomposition). On the other hand, the
circuits to be proved by SNARK and its own operations are generally arithmetic.
Therefore, SNARK-FHE has to pay extra efficiency cost to prove rounding, gad-
get decomposition, etc. on FHE ciphertexts with SNARK in the outer layer.
In contract, FHE-SNARK leverages the native support of plaintext arithmetic
operations within FHE to effectively cover the required SNARK computations.

In a word, the alignment between algebraic structures and supported oper-
ations is pivotal in determining the efficiency of cryptographic schemes. While
SNARK-FHE encounters challenges due to structural and operational mismatches,
FHE-SNARK benefits from a seamless integration of FHE plaintext arithmetic
with SNARK requirements, thereby offering superior performance characteris-
tics.This explains why FHE-SNARK can be orders of magnitude faster than
SNARK-FHE, as discussed in Section 1.

4 Polynomial Commitment on Hybrid Values

In our verifiable computation, the server generates a SNARK proof for an en-
crypted instance. The prover encodes statement and witness as evaluations of
polynomials on specific sets and then uses polynomial commitment to provide
the oracle for these polynomials.

In this section, we present a polynomial commitment scheme for a multilinear
polynomial represented by its evaluations on the hypercube, where some of these
evaluations are encrypted and others are in plaintext. It fully harnesses FHE
ciphertext packing capabilities while satisfying a strong knowledge soundness
additionally allowing for extractability witiout secret key.

4.1 Definition of Polynomial Commitment on Hybrid Values

In this section, we introduce a new variant of polynomial commitments for
polynomials of which the evaluations are hybrid values (evaluations on a set

18

Sp ⊆ {0, 1}n are plaintexts, while evaluations on the remaining set {0, 1}n\Sp

are encrypted). We call such a representation a cryptomix point-value represen-
tation, or shortly, cryptomix representation, and formalize it as follows:

Definition 7 (Cryptomix Representation). Recall that a d-variate multi-
linear polynomial f is uniquely determined by its evaluations on the hypercube
{0, 1}d. We define [f]p = {f(x)}x∈{0,1}d as the plaintext point-value represen-
tation, or shortly, plaintext representation, of f . When some evaluations are
encrypted, the resulting representation [f]mix = (f(x)x ∈ Sp,Encpk(f(x))x∈Sc

)
is called a cryptomix point-value representation (or simply a cryptomix repre-
sentation), of f , where Sp ⊆ {0, 1}d and Sc = {0, 1}d\Sp. We refer to the set Sp

as the plaintext set and the set Sc as the ciphertext set.

Now we provide a formal definition for polynomial commitment in which the
committer only knows a cryptomix representation of the committed polynomial.
We assume that its variable number and plaintext set are already known by both
the committer and the receiver.

Definition 8 (Polynomial Commitment on Hybrid Values). A polyno-
mial commitment for multilinear polynomials in cryptomix representation con-
sists of (Setup, Commit, deCommit, Eval) with the exception that the committer
has public key of underline encryption scheme and only the cryptomix repre-
sentation [f]mix as input while the receiver has the corresponding secret key.
Furthermore, in the evaluation protocol Eval, since the prover (also the commit-
ter) does not know the secret key, it proves for a public plaintext z and ciphertext
y∗ that the committed polynomial f satisfies f(z) = y, where y = Dec(y∗).

Besides the Completeness and Binding properties defined similarly to
standard polynomial commitments, such a commitment needs to satisfy a spe-
cial variant of knowledge soundness property defined as follows:
– Knowledge Soundness: Let Eval = ⟨P, V ⟩ and (pk, sk) be an honestly gener-

ated key pair of ENC. Then there exists two PPT oracle machines Ew/ sk, Ew/o sk,
called the extractor with secret key and the extractor without secret key, such
that for any pair of PPT adversary (A1,A2), the following holds:

Pr

⟨A2(st), V (sk)⟩(pp, pk, C, z, y

∗
, Sp) = 1 ∧

f(z) ̸= y or deCom(pp, C, τ, sk) ̸= [f]p ∧

for all x ∈ Sp, f(x) = f
∗
(x)

∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ)

(C, z, y
∗
, Sp, st)← A1(pp, pk)

([f]p, τ)← E
A1,A2
w/ sk (pp, sk, C, z, y

∗
, Sp)

{f∗
(x)}x∈Sp ← E

A1,A2
w/o sk (pp, C, z, y

∗
, Sp)

 ≤ negl(1λ)

where f is the polynomial represented by [f]p and y is the decryption of y, i.e.,
y = Decsk(y

∗).

A more detailed definition, including the description of each algorithm, is de-
ferred to Appendix C.

Remark 1. Comparison with the polynomial commitment defined in [29]. [29]
introduced the polynomial commitment scheme for hidden values, to commit
polynomials whose evaluations are pure ciphertexts. This scheme’s extractabil-
ity allows an extractor without the secret key, to extract the ciphertexts of the

19

evaluations. Specifically, a standard polynomial commitment scheme, such as one
based on FRI, can be easily transformed into a polynomial commitment scheme
for hidden values by replacing the evaluations by corresponding ciphertexts and
performing operations homomorphically. The extractor are also performed ho-
momorphically and now extracts the ciphertext. However, such a scheme cannot
be easily transformed into a polynomial commitment scheme for hybrid values,
since the verifier lacks the ability to verify that specific evaluations are indeed
in plaintext rather than ciphertext. In other words, once the plaintexts and ci-
phertexts are mixed through homomorphic evaluations, it is difficult to retrieve
the plaintexts again without the secret key.

4.2 Construction of Polynomial Commitment on Hybrid Values

In this section, we construct a polynomial commitment for cryptomix-represented
polynomials where the plaintext set satisfies a specific structure. We will show
that such a construction is sufficient for our VC scheme in the following sections.
Furthermore, when instantiated with BFV, our construction is friendly for the
packed homomorphic operations.

Our construction builds upon the multilinear version of Ligero’s polynomial
commitment scheme[1] (Brakedown scheme in [34]). Specifically, our construction
supports cryptomix-represented multilinear polynomials where their plaintext
sets Sp take the form Sp = S × {0, 1}n−d, where S ⊆ {0, 1}d and d is close
to n/2. In this case, when viewing the cryptomix representation [f]mix as a
2d × 2n−d matrix M = {ui,j}i∈[2d],j∈[2n−d] (i.e., ui,j = f(binn(i · 2n−d + j)) or
Encpk(f(binn(i · 2n−d + j))), depending on whether the corresponding value in
[f]mix is in plaintext or ciphertext), all elements in plaintext collectively form
|S| rows of the matrix. For each column of M , the remaining 2d − |S| elements
are all ciphertexts. When using an FHE scheme that supports packing, such as
BFV or BGV, one can pack these 2d−|S| ciphertexts into one (or more) packed
ciphertext(s).

Our construction is transparent, meaning it does not require any trusted
setup. The setup algorithm simply selects a random string k to serve as the
index for the hash function hk and outputs pp = k.

Commitment. To commit a polynomial with its cryptomix representation [f]mix,
we first view [f]mix as a 2d × 2n−d matrix M as described above. Let ui =
{ui,j}j∈[2n−d] be the row of M . The committer then encodes each row of M us-
ing the Reed-Solomon code scheme Encode to obtain a new matrix M̂ , as follows
(see also Fig.5):
– For row ui with elements ui,j in plaintext (i.e., bind(i) ∈ S), encode it to obtain

the corresponding row ûi of M̂ ; that is, ûi ← Encode(ui,0, · · · , ui,2n−d−1).
– For row ui with elements ui,j in ciphertext (i.e., bind(i) /∈ S), homomorphically

encode it to obtain the corresponding row ûi of M̂ ; this is denoted by ûi ←
HE.Encode(ui,0, · · · , ui,2n−d−1).

Finally, apply a Merkle-hashing to all columns of M̂ (where hash is modeled as a
random oracle in the security proof, so that the subsequent evaluation protocol

20

Fig. 5. Encoding of cryptomix representation matrix M

can be seen as an IOP protocol and can be transformed into non-interactive
protocol via the BCS transformation [5]). The resulting hash root serves as the
commitment C.

The decommitment phase is straightforward: the committer sends [f]mix, M̂ ,
and the randomness used during the commitment phase as the decommitment
τ . Upon receiving the decommitment, the receiver recomputes the Merkle-hash
of M̂ , verifies the consistency of the resulting hash root with the commitment
C, and checks that M̂ is close to the encoding of M (for each row, the distance
between [M̂]p and Encode([M]p) is less than γ/3, where γ is the minimal distance
of the underline linear code). If all checks pass, the receiver outputs f (recall
that the receiver has the secret key sk as input).

Our commitment algorithm exhibits excellent compatibility with packing. Sup-
pose that for each column j of M , all elements in ciphertext are already packed
into a single ciphertext ctj . Recall that the encoding algorithm Encode is deter-
ministic and and comprises only linear operations. Therefore, HE.Encode, which
consists solely of scalar multiplications, can be directly applied to the packed
ciphertexts (ct0, . . . , ct2n−d−1) to obtain the ciphertexts in M̂ in a packed form.
To further reduce the computation complexity, one might consider using the
fast Number Theoretic Transform (NTT) algorithm to accelerate the encoding
phase, thereby reducing the computational complexity from O(2n) to O(n2n/2)
scalar multiplications (where we assume d = n/2). However, the NTT algorithm
introduces a logarithmic multiplication depth, which significantly increases the
cost of single homomorphic evaluation of ciphertexts. Hence, we instead employ
a constant-layer NTT algorithm5 as done in [29], to achieve a balance between
the circuit depth and the number of scalar multiplications (e.g., setting the depth
to 3 results in a computational complexity of O(22n/3)).
Evaluation. The evaluation protocol consists of two phases: a testing phase
and an evaluation phase. Testing phase is used to ensure that the commitment
is “well-formed”, meaning that each row in M̂ is indeed (close to) an (encrypted)
codeword. The evaluation phase then operates on “well-formed” commitments.

5 Recall that an n-dimensional NTT algorithm consists of log(n) layers, where each
element in a layer is a linear combination of two elements from the previous layer.
To construct a k-layer NTT, one can compress 1

k
logn layers from the standard NTT

into a single layer; that is, each element in a layer is now a linear combination of n
1
k

elements from the previous layer.

21

Importantly, the testing phase only needs to be executed once and is independent
of the evaluation point.
Testing phase. Our testing phase mirrors that of Ligero’s polynomial commit-
ment scheme, with the exception that certain operations are performed homo-
morphically over FHE ciphertexts, and the verifier additionally verifies which
rows in M are in plaintext.

In this phase, the receiver begins by sending a set of random values r =
{ri}i∈[2d]. The committer computes and sends the homomorphic linearly combi-
nation of the rows {[ui]c} of [M]c with scalars {ri}, i.e., Σi∈[2d]ri[ui]c. Let {ûi}
be the rows of M̂ and {v̂i} be the columns. Assuming that their exists a row
[ûi]p of [M̂]p that is far from codewords, then, with overwhelming probability,
Σi∈[2d]ri[ûi]p is also far from the encoding of Σi∈[2d]ri[ui]p. Consequently, the
receiver selects a random set I ⊂ {0, 1}n−d of appropriate size, and the commit-
ter retrieves {v̂i}i∈I by providing the Merkle-authentication path. The receiver
checks that for each i, a) the inner production of their decryption [v̂i]p and vector
r, is consistent with the i-th element of the encoding of Σi∈[2d]ri[ui]p, and b) for
each bind(k) ∈ S, the k-th element in v̂i is in plaintext. The former check ensures
that the rows in M̂ are close to (encrypted) codewords, while the latter check
ensures that most elements in {ûi}bind(i)∈S are in plaintext, which guarantees
the knowledge of the plaintext evaluations on Sp given the decodability of the
Reed-Solomon code.

The testing phase also exhibits excellent compatibility with packing. For the
case that all ciphertexts in one column of M have been pack into a single cipher-
text, the committer can homomorphically calculate the inner product of these
packed ciphertexts and the random vector r to obtain the encrypted resulting
linear combination.

Evaluation phase. The evaluation phase closely resembles the testing phase. From
the fact that for any α = (α0, · · · , αn−1) ∈ Fn, f(α) = r1 · [M]p · r2, for r1 =
((1−α0, α0)⊗· · ·⊗(1−αd−1, αd−1) and r2 = ((1−αd, αd)⊗· · ·⊗(1−αn−1, αn−1)
where [M]p represents the matrix of the plaintext point-value representation of
f . Consequently, the receiver can choose r1 as the r used in the testing phase to
obtain [r1 ·M]c and, finally, compute f(α) itself.

The formalized construction is shown in Appendix. D, and the security proof
of following theorem is deferred to Appendix E.

Theorem 2. The scheme described above is a polynomial commitment for mul-
tilinear polynomial with cryptomix representation, as defined in Def.8.

5 SNARK for VC Instances

For the same reasons outlined in the previous section, to prevent input-dependent
attacks, our construction needs to satisfy an additional knowledge-soundness
property that allows for the extraction of plaintext elements in the witness with-
out the secret key. Furthermore, to ensure the resulting scheme is practical,

22

we fully leverage the packing capability available in FHE, thereby significantly
reducing the proving cost. We begin by formalizing the knowledge soundness
properties customed for SNARK/AoK for VC instances.

5.1 Definition of Arguments of Knowledge for Hybrid Relations

We summarize and formalize the relations that need to be proven in VC and
introduce a new notion called hybrid relations.

Definition 9 (Hybrid relation). For an indexed relation R and an FHE
scheme FHE := (KeyGen, Enc, Dec, Eval), we define the indexed hybrid relation
[R]pk, sk with respect to any (pk, sk) ∈ KeyGen:

[R]pk,sk = ((i, Sp), x, w) : (i, [x]p, w
∗) ∈ R

where Sp is the set indicating the indexes of plaintext elements. This means that
for all i ∈ Sp, w∗[i] := w[i] and for i /∈ Sp, w∗[i] := [w[i]]p. For convenience, we
call R the basic relation of [R]pk,sk.

Definition 10 (Argument of Knowledge for Hybrid Relations). Like
standard argument of knowledge (Definition 2 and 3), an argument of knowledge
for hybrid relations is also an interactive protocol Π = (Setup, I,P,V) with the
exception that, the deterministic algorithm I now additionally takes Sp as input,
and the prover P (and verifier V, respectively) algorithms additionally take pk
(and sk, respectively) as input.

Besides the Completeness, an argument of knowledge for hybrid relations
needs to satisfy a new variant of knowledge soundness which allows an addition
extractability without secret key:

Knowledge Soundness. There exist two PPT oracle machines Ew/ sk and
Ew/o sk, called the extractor with secret key and the extractor without secret
key, such that for any pair of PPT adversaries (A1,A2) and any key pairs
(pk, sk) ∈ KeyGen(1λ), the following holds:

Pr

⟨A2(pp, pk, x, st),V(vp, sk, x)⟩ = 1 ∧

(i, [x]p, w) /∈ R ∧

∃i ∈ Sp, w[i] ̸= w
∗
[i]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← Setup(1λ)

((i, Sp), x, st)← A1(pk)

(vp,pp)← I(i, Sp)

w ← EA1,A2
w/ sk (crs, i, Sp, x, sk)

w
∗ ← EA1,A2

w/o sk (crs, i, Sp, x)

≤ negl(1

λ
)

where R is the basic relation of [R]pk,sk.

5.2 Construction for SNARKs for VC instances

PIOPs are information-theoretic proof systems where the prover can optionally
send polynomial oracles to the verifier, who can then finalize verification using
these oracles. In essence, PIOPs enable provers and verifiers to reduce state-
ment verification to queries on these polynomial oracles, which are subsequently
instantiated using polynomial commitments. To construct SNARKs for hybrid
relations, we need to demonstrate how to execute PIOPs homomorphically to

23

reduce the verification of these relations to queries on cryptomix-represented
polynomials, and how to reduce the multiplication-depth while achieving great
compatibility with packing.

Before presenting a concrete construction, we first show how to run the
well-known sumcheck protocol, the core of multivariate polynomial-based PI-
OPs/SNARKs, on encrypted polynomials while maintaining low multiplication-
depth and compatibility with FHE packing.

Sumcheck on encrypted polynomials. The sumcheck protocol efficiently
proves the sum of polynomial evaluations over the hypercube. Given an n-variate,
low-degree polynomial f : Fn → F, the prover aims to prove y = Σx∈{0,1}nf(x)
for a verifier who has oracle access to f . The sumcheck protocol provides a way
for the verifier to verify the above claim via a single query to O(f).

The sumcheck protocol is an n-round interactive protocol. In the first round,
the prover sends a t-degree polynomial f∗1 (X) = Σx′∈{0,1}n−1f(x′, X) via sending
t+1 evaluations. Now, if f∗1 (0)+f∗1 (1) = y, the verifier only needs to check that
the sent f∗1 indeed equals Σx′∈{0,1}n−1f(x′, X), which is reduced to checking

y′ = f∗1 (rn−1) = Σx′∈{0,1}n−1f(x′, rn−1) = Σx′∈{0,1}n−1f1(x
′)

for a random rn−1. Now f1(x
′) := f(x′, rn−1) is a n− 1-variate polynomial. The

prover and verifier recursively run the above steps on this new sumcheck claim.
And at the end of the protocol, the verifier only needs to check a statement like
y∗ = f(r0, . . . , rn−1), which can be done via a single query to O(f).

However, when considering encrypted polynomials, the prover now can only
computes all evaluations of f in ciphertext homomorphically. In the concrete
construction, f = h(g0, g1, · · · , gm−1) for some encrypted multilinear polynomi-
als {gi}i∈[m] and public polynomial h. Now executing sumcheck homomorphi-
cally means that the prover will all evaluations of {gi} used in one round via
simple linear combinations on the evaluations obtained in the last round. This
computation method increases the multiplicative depth, raising the cost of each
homomorphic evaluation. Therefore, we compute the evaluations in each round
directly from encrypted polynomials {gi}. This approach results in a constant
multiplicative depth for the protocol, albeit at a computational cost of O(n · 2n)
instead of O(2n). In practice, this trade-off is often preferable.

Furthermore, the construction is friendly for FHE packing as well. One can
write the cryptomix representation of gi as an 2n/2 × 2n/2 matrix M and pack
each column into a single ciphertext, as done in the polynomial commitment
construction. Remind that, in each round, the prover needs to compute:
• The evaluations of f∗i , which are the sum of Σx′∈{0,1}n−if(x′, k, r′) for k ∈
[t+ 1] and r′ ∈ Fi−1

p , where t denotes the degree of f .
This is computed from all gj(x′, k, r′), k ∈ [t + 1] and x′ ∈ {0, 1}n−i. Following
the fact that gj(r0, · · · , rn−1) := Σx0,··· ,xn−1∈{0,1}gj(x0, · · · , xn−1)·Πi∈[n](xiri+
(1− xi)(1− ri)), for any fixed x′ ∈ {0, 1}n−i, gj(x′, k, r′) equals

Σxn−i,··· ,xn−1∈{0,1}gj(x
′, xn−i, · · · , xn−1) · lxn−i,··· ,xn−1

,
a linear combination of {gj(x′, xn−i, · · · , xn−1)}xn−i,··· ,xn−1∈{0,1}, where the scalars
are independent of x′.

24

Note that for each xn/2, · · · , xn−1, we already pack {gj(x′0, · · · , x′n/2−1, xn/2,
· · · , xn−1)}x′

0,··· ,x′
n/2−1

∈{0,1} into a single ciphertext. We can perform the linear
combinations directly on packed ciphertexts (via scalar multiplications) obtain-
ing packed ciphertext results for the first n/2 layers. As for the last n/2 layers,
one can use plaintext-ciphertext multiplications to obtain the results ciphertexts
using the packed ciphertext obtained in the n/2-th layer. In our construction, we
let the sumcheck protocol terminate in the n/2-th layer, allowing the verifiers to
obtain complete descriptions of fn/2 and verify its correctness through a single
query to O(f), adding an acceptable additional cost to the verifier.

From hybrid relations to queries on cryptomix polynomials. In what
follows, for any vector x, we denote by x̃ the multilinear polynomial whose
representation satisfies x̃(i) = x[int(i)] for i ∈ {0, 1}log |x|. Furthermore, for any
n× n matrix A = {ai,j}, denote by Ã the 2 log n-variate multilinear polynomial
whose representation satisfies Ã(i, j) := aint(i),int(j) for all i, j ∈ {0, 1}logn.

Our construction build upon the well-known PIOP scheme put forward in
Spartan. Let ((i, Sp), x, w) be a hybrid relation instance. The prover provides
the oracle of cryptomix-represented polynomial z̃ with corresponding plaintext
set S′p (determined by Sp) to the verifier. And the verifier can query the oracle
to learn the encrypted evaluations.

Following the Spartan PIOP approach, and with only a negligible soundness
error, checking whether Az ◦ Bz = Cz is equivalent to checking whether the
following identity holds with the oracle access to z̃:

0 = Σx∈{0,1}seq(x, τ) · F (x)

where F (x) = Σy∈{0,1}sÃ(x, y) · z̃(y)×Σy∈{0,1}sB̃(x, y) · z̃(y)−Σy∈{0,1}sC̃(x, y) ·
z̃(y).

Remind that some elements in z are encrypted for the prover, both parties
run Spartan PIOP for above checking via a straightforward strategy: the prover
attempts to return all elements in plaintext unless it fails to do so and must sent
encrypted elements. In addition, we use the sumcheck protocol constructed for
encrypted polynomials as underline sumcheck protocol for better efficiency and
communications.

As a result, the checking is finally reduced to the queries to the oracle of
cryptomix-represented polynomial z̃ (and the oracles of plaintext polynomials
Ã, B̃, C̃, which are provided by the algorithm I). And the oracle of cryptomix-
represented polynomial can be instantiated using polynomial commitment for
cryptomix-represented polynomial (and the oracles of plaintext polynomials can
be instantiated using standard polynomial commitment and the technique pro-
vided in Spartan and Brakedown on committing sparse polynomials).

Furthermore, given the plaintext representation of [z̃]p (the plaintext part
of [z̃]mix), one can easily extract the entire witness in plaintext [w]p (the plain-
text part {w[i]}i∈[Sp] of w, respectively). Due to that running Spartan PIOP
homomorphically won’t breaks its soundness property, when the prover gener-
ates an convincing proof, the extracted witness satisfies the requirement of the
knowledge soundness.

25

Argument of knowledge for hybrid relations

Index: (i = (F, A,B,C,M,N), Sp),
Statement: x. Witness: w. FHE key pairs: (pkFHE, skFHE)

Setup(1λ): Run the setup algorithm of the polynomial commitment and output crs.

I(crs, i): Assume that the sizes of statement and witness, |x| and |w|, are
kx
√
N, kw

√
N , and that |Sp| is k′√N for some integers kx, kw, k

′. (This requirement
can always be met by padding with an appropriate number of “0”s) Choose a per-
mutation t over [n] with permutation matrix T such that when we rewrite the vector
Tz = (z[t(0)], z[t(1)], · · · , z[t(n− 1)]) as a

√
N ×

√
N matrix Mz, it satisfies that:

1. The plaintext elements of w lie in the first k′ rows of Mz;
2. The ciphertext elements of w lie in the (k′ + 1)-th row to kw-th row of Mz;
3. The elements of x lie in the (kw + 1)-th row to

√
N -th row of Mz;

Run the the Index algorithm I of Spartan’s PIOP on input i
′ =

(F, AT−1, BT−1, CT−1,M,N) and use a (standard) polynomial commitment
scheme to instantiate the polynomial oracles. This involves committing to the sparse
multilinear polynomials ÃT−1, B̃T−1, C̃T−1 using the polynomial commitment and
the techniques provided in Brakedown[34] (or Spartan[51]). Output the commitments
and S′

p = S×{0, 1}n/2 where S = {binn/2(i)|i ∈ [k′]} as the verifier key vk, and output
these three polynomials as the prover key pk.

⟨P, V ⟩ : The prover sends the commitment of cryptomix-represented polynomial z̃′

with plaintext set S′
p to the verifier, where z′ = (w′, z′) = T · (w, z). Both parties run

Spartan’s PIOP homomorphically for the hybrid R1CS instance (i′, [k′√N], x′, w′)
as described before, and when the verifier want to query z̃ and Ã,B̃,C̃, it runs the
evaluation protocols of underline polynomial commitment respectively.

Fig. 6. Argument of knowledge for hybrid relation

We provide a formalized description for the resulting PIOP for hybrid rela-
tions and its properties in Appendix F.2,F.1.

Last step to our argument of knowledge for hybrid relation. While we
have reduce the verification of VC instance to queries on cryptomix-represented
polynomials, we only provide a polynomial commitment construction for cryptomix-
represented polynomials whose plaintext set satisfy a specific structure, i.e.,
Sp = S × {0, 1}n−d for some set S and integer d close to n/2. Fortunately,
when using the R1CS relation Az ◦ Bz = Cz to arithmetize the unproven rela-
tion, the order of elements in z (containing the statement and witness) can be
adjusted via any permutation T . The R1CS relation is then modified to:

(AT−1 · Tz) ◦ (BT−1 · Tz) = CT−1 · Tz.
As a result, our construction of argument of knowledge for hybrid relation is
constructed in Figture.6.

Theorem 3. The protocol provided in Figure.6 is an argument of knowledge for
hybrid relations.

26

proof sketch. Roughly, our construction can be seen as a compilation of a vari-
ant of Spartan’s PIOP for hybrid relations and the polynomial commitment for
cryptomix-represented polynomials. The extractor first extract the representa-
tion of z̃ from the knowledge soundness of underline polynomial commitment
and then extract the witness directly from these representations. The extractor
with skFHE can extract the plaintext representation of z̃, and thereby can extract
the entire witness in plaintext; while the extractor without skFHE can only ex-
tract the plaintext part in [z̃]mix, and thereby can only extract the plaintext part
of witness. The knowledge soundness of underline polynomial commitment and
Spartan’s PIOP ensures the correctness of extracted witness. A more detailed
discussion can be find in Appendix.F. ⊓⊔
Non-interactive and Fiat-Shamir heuristic. Our construction is public coin,
enabling the use of the Fiat-Shamir heuristic [23] to transform it into a non-
interactive protocol by employing a hash function to generate challenges. In
the random oracle model, honest verifier zero-knowledge can be transformed
into standard zero-knowledge, and knowledge soundness is preserved after the
transformation (as is partial knowledge soundness). The (knowledge) soundness
error of the resulting protocol can be analyzed using the (HE version of the)
BCS transform[5,27]. Furthermore, since our construction can be viewed as an
encrypted Spartan scheme (with Ligero/Shockwave polynomial commitment), it
exhibits the same knowledge error.
Zero-knowledge. Similar to Brakedown (and Spartan), our construction can
be made zero-knowledge using standard techniques with minimal overhead[34,1,17].
There are roughly three potential sources of leakage, and we outline how to mit-
igate them to achieve zero-knowledge (and omit the details since the techniques
are standard):
– Leakage in the polynomial commitment: Both the testing and evaluation

phases can leak combinations of the witness. We can add blinding vectors
during commitment to prevent this leakage, as demonstrated in [1].

– Leakage in the PIOP protocol: The sumcheck protocol can also leak com-
binations of the witness. We can add blinding polynomials to the sumcheck
protocols to avoid this, as shown in [17].

– Leakage in the noise of encryption: Since we perform evaluations over ho-
momorphic ciphertexts, the noise might leak information about the witness.
Therefore, we require the HE scheme to support circuit privacy, meaning that
all ciphertexts of the SNARKs exposed to the verifier can be re-randomized.

Optimization. In the Spartan’s PIOP construction, one need to check that the
statement encoded in the polynomial ẑ is indeed x. However, we can accomplish
this check using the testing phase of the polynomial commitment. Recall that
our polynomial commitment first rewrites z as a matrix Mz, with x composing
several rows of Mz. It then uses the hash of the encoding of the rows as the
commitment. In the testing phase, the prover sends a random combination of
rows of Mz and demonstrates that its encoding is close to the same combination
of the encodings of the rows. Since the verifier knows the statement x itself, it can
compute the combination and check that its encoding is close to the combination

27

Verifiable Computation

VC.Setup(1λ,C): Run the setup algorithm and the deterministic algorithm I of our
SNARKs on the R1CS arithmetization of C as well as plaintext set Sp to obtain
crs and the prove/verify parameters (pp, vp). Run the key generation algorithm of
FHE encryption and get (pk, sk) ← Key.Gen(1λ). Output PK = (crs, pk, pp),SK =
(crs, sk, vp).

VC.ProbGen(PK, x): Encrypt its input c1 = Encpk(x) and output Enc(x) = Encpk(x)
and st = x.

VC.Compute(PK,Enc(m),C, y):

1. Compute the output of the circuit Encpk(out)← Evalpk(C(·, y),Encpk(x)).
2. Retrieve the witness w of R1CS hybrid relation instance from above computation

(the elements of w are either in plaintext or in ciphertext).
3. Compute the proof π for R1CS hybrid relation instance

((i, Sp), (Enc(x),Enc(out)), w) using our SNARK scheme for hybrid relations.
4. Send Encpk(out), π to the client.

VC.Verify(SK,Enc(y), st, π): Check the validness of π. If the proof is valid, output out←
Decsk(Encpk(out)). Otherwise, output ⊥.

Fig. 7. Verifiable Computation

of the corresponding encoding rows, demonstrating that these encodings are
indeed (close to) the codewords of x.
Compatibility with FHE Packing Techniques. Remind that both the un-
derlying polynomial commitment scheme and the sumcheck protocol are com-
patible with FHE packing. The resulting SNARK scheme is also compatible with
packing. Specifically, given the unpacked ciphertexts contained in the statement
and witness, the prover first computes Az,Bz,Cz (since A,B,C are sparse ma-
trices, the computation of Az,Bz,Cz only involves O(n) scalar multiplications).
Then, the prover represents z and Az,Bz,Cz as matrices, packs the ciphertexts
in each column into a single ciphertext, and runs both the underlying polynomial
commitment scheme and the sumcheck protocol with these packed ciphertexts.

6 Construction of Verifiable Computation

In this section, we demonstrate how to construct verifiable computation using
the primitives constructed in previous sections. Our construction is relatively
straightforward. The client uses FHE to encode its input, and the server leverages
the homomorphic evaluation capabilities of FHE to perform the computation and
generates a proof using our newly constructed SNARK for hybrid relations. The
formal construction is shown in Fig.6:

Theorem 4. The protocol put forward in Figure.7 is a verifiable computation
with knowledge soundness.

28

Completeness follows directly from our construction, while the knowledge
soundness follows the knowledge soundness (without the secret key) of our
SNARK scheme. And the client-privacy follows directly from the CPA security
of the FHE scheme.

Server-privacy. Our construction can also achieve server-privacy against an hon-
est client by using a zero-knowledge version of the underlying SNARK scheme
and employing circuit-private FHE, as well as re-randomizing the noise of the
encoding output. To achieve server-privacy against a malicious client, we require
the client to prove the correctness of its encoding of the input, and the key pairs
of the underlying FHE scheme can also be generated by the client if they prove
the correctness of the key generation process as well.

7 Implementation

BGV/BFV parameter. In our evaluation, we use t ≈ 250 being a prime as our
plaintext modulus. Using it, each multiplication (both plaintext and ciphertext)
incurs roughly 60 bits of noise, and the scalar multiplication incurs about 50
bits of noise. Since we need at most 5 levels of multiplications (detailed below in
“SNARKs for VC instance”), we choose Q ≈ 2420 as our ciphertext modulus (one
additional level for the evaluation key and one level for plaintext itself) with ring
dimension N = 214. This guarantees > 128-bit of computational security.
Polynomial commitment on hybrid values. For a n-variate multilinear
polynomial with its cryptomix representation satisfying our requirement, the
committing algorithm requires O(t · 2n+ n

2t) scalar multiplications when using
a t-level NTT, and the evaluation requires O(2n) scalar multiplications and
additions for proving.

When using the packing technique of FHE and packing 2n/2 ciphertexts into
a single packed ciphertext (assumes that the input has been packed already),
then the committing algorithm requires O(t ·2n

2 + n
2t) scalar multiplications when

using a t-level NTT, and the evaluation requires O(2n/2) scalar multiplications
and additions. As a comparison, the FRI-based polynomial commitment requires
at least O(2n/2) plaintext-ciphertext matrix-vector multiplications during the RS
encoding of committed polynomials.

Now, we discuss the concrete performance of our polynomial commitment.
Suppose that the variate number of committed polynomials is n = 20, the rate
of underline Reed-Solomon code is 1/4 and we adapt 3-level NTTs. In this case,
the multiplication-depth of our commitment is 3. To achieve 80-bit security, we
set the number of columns opened in testing phase and evaluation phase to be

80
log(1− λ

3N)
≈ 193. To achieve 100-bit security, we set the number to be 240. The

computation and communication costs are shown as follows:6 Note that here we also pack the results after the inner-products. For clarify, we do
not include them in the table, but esssentially, it is one rotation plus one plaintext
multiplication, which is much cheaper than a single inner-product, and we include
them in our runtime estimation.

29

security param. commit prove6 verify communication
λ = 80 216 HEsca/level+hash 211 HEinn 388HEdec+Vhash+Vremain 388(Enc+πmerkle)
λ = 100 216 HEsca/level+hash 211 HEinn 482HEdec+Vhash+Vremain 482(Enc+πmerkle)

Table 1. Performance of our polynomial commitment on hybrid values. HEsca,HEinn

and HEdec mean the cost of single scalar multiplication, plaintext-ciphertext inner-
product, and decryption on packed ciphertexts. ·/level means the homomorphic eval-
uation costs for each level (3 levels in total). Vhash denotes the cost for verifying the
Merkle-hash proofs and Vremain denotes the remaining minimal cost only consisting
several multiplications on plaintexts. Enc and πmerkle means the length of single ci-
phertext and Merkle-hash proofs.

We run our polynomial commitment on a FHE field, 50-bit prime field, for
80-bit and 100-bit security respectively. In the former case, to ensure the 80-bit
security, our evaluation protocol is run over the Galois degree-2 extension field of
this field. And in the latter case, our evaluation protocol is run over the Galois
degree-3 extension field of this field. Note that our commitment algorithm is
still run over the original field instead of the extension field. This is because a
Reed-Solomon code over Fp (with encoding matrix {ei,j}i,j) can be naturally
viewed as a Reed-Solomon code over Fp2 (with encoding matrix {(0, ei,j)}i,j ,
where (a, b) denotes the elements aX+b ∈ Fp2), and for any encoding Enc(m) in
Fp for m ∈ Fp, (0,Enc(m)) ∈ Fp2 is exactly the encoding in Fp2 for (0,m) ∈ Fp2 .
The estimated performance, measured on a GCP instance N4 with CPU Intel
Emerald Rapids with 16 GB RAM, is shown as follows:

security param. commit prove verify communication
λ = 80 22.6s 365s 350ms 46.8MB
λ = 100 22.6s 548s 430ms 58.1MB

Table 2. Single core performance of our polynomial commitment on hybrid values.

SNARKs for VC instance. We provide the performance of our SNARKs for
the VC instance with 220-size R1CS instance (A,B,C are 220× 220 matrixs and
for each matrix, there is 220 non-zero entries). Suppose that all the ciphertexts
of the prover’s input are all unpacked, which is the most general case in ap-
plications. The prover cost is shown as follows (we only list the operations of
FHE since the remaining parts are minimal. We require 5 levels of homomorphic
multiplication depth here since the packing consumes one addition level):
1. For Unpacked z = (w, z), compute Az,Bz,Cz, which costs 3 · 220 scalar

multiplications over unpacked ciphertexts. [level-6 → level-5]
2. Packing: for z,Az,Bz,Cz (containing 4 · 220 ciphertexts in total), pack 1000

ciphertexts into a single ciphertext, resulting 212 packed ciphertexts. [Level-5
→ level-4]

3. Sumcheck for Σxeq(x, τ)F (x): 1). [level-4 → level-3]: 15 × 213 scalar mul-
tiplications and additions. 2). [level-3 → level-2]: 212 ciphertext-ciphertext
multiplications and additions. 3). [level-2 → level-1]: 212 plaintext-ciphertext
vector multiplications and additions.

4. Sumcheck for ΣxM(r, x) · z(z): 1). [level-4 → level-3]: 15 × 211 scalar multi-
plications and additions. 2). [level-3 → level-2]: 3 × 210 plaintext-ciphertext
vector multiplications and additions.

30

5. Polynomial commitment for z̃: only 1 query [level-4 → level-1].
The communication mainly consists of 504 packed ciphertexts for 100-bit secu-
rity. The communication also consists several Merkle-hash proof, which is mini-
mal compares to the size of ciphertexts.

The verification consists of the decryptions of all received packed ciphertexts,
the verification of underline polynomial commitment on hybrid values and some
other verification contained in the standard SNARKs for plaintext instance.

Suppose that the VC instance is over a FHE-friend field, Fp, with a 50-bit
prime p. To achieve 100-bit security, our construction is over the Galois degree-3
extension field of Fp. The estimated performance, measured on a GCP instance
N4 with CPU Intel Emerald Rapids with 16 GB RAM, is shown as follows:

security param. prove verify communication
λ = 100 12934s ≈ 3.6h 2.7s 65.3MB

Table 3. Single core performance of our polynomial commitment on hybrid values.
Moreover, the implementation can be further accelerated by multi-core processors since
all operations are parallelizable.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight
sublinear arguments without a trusted setup. In: Thuraisingham, B., Evans, D.,
Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. pp. 2087–2104. ACM (2017). https://doi.org/10.1145/
3133956.3134104, https://doi.org/10.1145/3133956.3134104

2. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: 2018 IEEE Symposium on Security and Privacy.
pp. 962–979. IEEE Computer Society Press, San Francisco, CA, USA (May 21–23,
2018)

3. Aranha, D.F., Costache, A., Guimarães, A., Soria-Vazquez, E.: HELIOPOLIS: ver-
ifiable computation over homomorphically encrypted data from interactive oracle
proofs is practical. In: Chung, K., Sasaki, Y. (eds.) Advances in Cryptology -
ASIACRYPT 2024 - 30th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kolkata, India, December 9-13, 2024,
Proceedings, Part V. Lecture Notes in Computer Science, vol. 15488, pp. 302–
334. Springer (2024). https://doi.org/10.1007/978-981-96-0935-2_10, https:
//doi.org/10.1007/978-981-96-0935-2_10

4. Atapoor, S., Baghery, K., Pereira, H.V.L., Spiessens, J.: Verifiable FHE via lattice-
based snarks. IACR Commun. Cryptol. 1(1), 24 (2024). https://doi.org/10.
62056/A6KSDKP10, https://doi.org/10.62056/a6ksdkp10

5. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 9986, pp. 31–60 (2016). https://doi.org/10.
1007/978-3-662-53644-5_2, https://doi.org/10.1007/978-3-662-53644-5_2

31

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.62056/A6KSDKP10
https://doi.org/10.62056/A6KSDKP10
https://doi.org/10.62056/A6KSDKP10
https://doi.org/10.62056/A6KSDKP10
https://doi.org/10.62056/a6ksdkp10
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2

6. Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable com-
putation on encrypted data. In: Garay, J.A. (ed.) Public-Key Cryptography -
PKC 2021 - 24th IACR International Conference on Practice and Theory of Pub-
lic Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12711, pp. 528–558. Springer (2021).
https://doi.org/10.1007/978-3-030-75248-4_19, https://doi.org/10.1007/
978-3-030-75248-4_19

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Proceedings of the 32nd Annual Cryptology Conference on Ad-
vances in Cryptology — CRYPTO 2012 - Volume 7417. p. 868–886. Springer-Verlag
(2012)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS. pp. 97–106. IEEE Computer
Society Press (Oct 22–25, 2011)

10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg, Germany (Aug 14–18, 2011)

11. Checri, M., Sirdey, R., Boudguiga, A., Bultel, J.P.: On the practical cpad security
of “exact” and threshold fhe schemes and libraries. In: Advances in Cryptology –
CRYPTO 2024: 44th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2024, Proceedings, Part III. p. 3–33. Springer-Verlag,
Berlin, Heidelberg (2024)

12. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14005, pp. 499–
530. Springer (2023). https://doi.org/10.1007/978-3-031-30617-4_17, https:
//doi.org/10.1007/978-3-031-30617-4_17

13. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: Lie, D., Mannan, M., Backes, M., Wang, X.
(eds.) ACM CCS 2018. pp. 1223–1237. ACM Press, Toronto, ON, Canada (Oct 15–
19, 2018). https://doi.org/10.1145/3243734.3243836

14. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017. pp. 1243–1255. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017).
https://doi.org/10.1145/3133956.3134061

15. Cheon, J.H., Choe, H., Passelègue, A., Stehlé, D., Suvanto, E.: Attacks against
the ind-cpad security of exact fhe schemes. In: Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security. pp. 2505–2519
(2024)

16. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security. pp. 409–437. Springer (2017)

17. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its ap-
plications. Electron. Colloquium Comput. Complex. TR17-057 (2017), https:
//eccc.weizmann.ac.il/report/2017/057

32

https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://eccc.weizmann.ac.il/report/2017/057
https://eccc.weizmann.ac.il/report/2017/057

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology – ASIACRYPT 2016. pp. 3–33. Springer Berlin
Heidelberg, Berlin, Heidelberg (2016)

19. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K.,
Rosenberg, M.: Labeled PSI from homomorphic encryption with reduced com-
putation and communication. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp.
1135–1150. ACM Press, Virtual Event, Republic of Korea (Nov 15–19, 2021).
https://doi.org/10.1145/3460120.3484760

20. Dalvi, A., Jain, A., Moradiya, S., Nirmal, R., Sanghavi, J., Siddavatam, I.: Securing
neural networks using homomorphic encryption. In: 2021 International Conference
on Intelligent Technologies (CONIT). pp. 1–7 (2021). https://doi.org/10.1109/
CONIT51480.2021.9498376

21. Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015. pp. 617–640. Springer, Berlin, Heidelberg (2015)

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://ia.cr/2012/144

23. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings. Lecture Notes in Com-
puter Science, vol. 263, pp. 186–194. Springer (1986). https://doi.org/10.1007/
3-540-47721-7_12, https://doi.org/10.1007/3-540-47721-7_12

24. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on en-
crypted data. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014. pp. 844–855. ACM (2014). https://doi.org/10.1145/
2660267.2660366, https://doi.org/10.1145/2660267.2660366

25. Fiore, D., Nitulescu, A., Pointcheval, D.: Boosting verifiable computation on
encrypted data. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-
7, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111,
pp. 124–154. Springer (2020). https://doi.org/10.1007/978-3-030-45388-6_5,
https://doi.org/10.1007/978-3-030-45388-6_5

26. Fisch, B., Lazzaretti, A., Liu, Z., Papamanthou, C.: Thorpir: Single server pir
via homomorphic thorp shuffles. In: Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security. p. 1448–1462. CCS ’24,
Association for Computing Machinery, New York, NY, USA (2024)

27. Gama, M., Beni, E.H., Kang, J., Spiessens, J., Vercauteren, F.: Blind zksnarks for
private proof delegation and verifiable computation over encrypted data. IACR
Cryptol. ePrint Arch. p. 1684 (2024), https://eprint.iacr.org/2024/1684

28. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: Snarks for ring arithmetic.
J. Cryptol. 36(4), 41 (2023). https://doi.org/10.1007/S00145-023-09481-3,
https://doi.org/10.1007/s00145-023-09481-3

29. Garg, S., Goel, A., Wang, M.: How to prove statements obliviously? In: Reyzin,
L., Stebila, D. (eds.) Advances in Cryptology - CRYPTO 2024 - 44th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2024, Proceedings, Part X. Lecture Notes in Computer Science, vol. 14929, pp. 449–
487. Springer (2024). https://doi.org/10.1007/978-3-031-68403-6_14, https:
//doi.org/10.1007/978-3-031-68403-6_14

33

https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1109/CONIT51480.2021.9498376
https://doi.org/10.1109/CONIT51480.2021.9498376
https://doi.org/10.1109/CONIT51480.2021.9498376
https://doi.org/10.1109/CONIT51480.2021.9498376
https://ia.cr/2012/144
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1007/978-3-030-45388-6_5
https://doi.org/10.1007/978-3-030-45388-6_5
https://doi.org/10.1007/978-3-030-45388-6_5
https://eprint.iacr.org/2024/1684
https://doi.org/10.1007/S00145-023-09481-3
https://doi.org/10.1007/S00145-023-09481-3
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14

30. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) Advances in
Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 15-19, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6223, pp. 465–482. Springer (2010). https://doi.org/10.1007/
978-3-642-14623-7_25, https://doi.org/10.1007/978-3-642-14623-7_25

31. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 169–
178. ACM (2009). https://doi.org/10.1145/1536414.1536440, https://doi.
org/10.1145/1536414.1536440

32. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg, Germany (Aug 18–22, 2013)

33. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Ap-
plications. Cambridge University Press (2004). https://doi.org/10.1017/
CBO9780511721656, http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.
html

34. Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and field-agnostic snarks for R1CS. In: Handschuh, H., Lysyanskaya, A.
(eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual International
Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-
24, 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14082,
pp. 193–226. Springer (2023). https://doi.org/10.1007/978-3-031-38545-2_7,
https://doi.org/10.1007/978-3-031-38545-2_7

35. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999). https://doi.
org/10.1109/18.782097, https://doi.org/10.1109/18.782097

36. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic en-
cryption library. Cryptology ePrint Archive, Report 2020/1481 (2020), https:
//eprint.iacr.org/2020/1481

37. Halevi, S., Shoup, V.: Bootstrapping for HElib. Journal of Cryptology 34(1), 7
(Jan 2021)

38. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency
framework for secure neural network inference. In: Enck, W., Felt, A.P. (eds.)
USENIX Security 2018. pp. 1651–1669. USENIX Association (Aug 15–17, 2018)

39. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for
finite fields. In: ASIACRYPT 2021. p. 608–639. Springer (2021)

40. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee,
J., Yoo, D., Kim, Y.S., No, J.S.: Privacy-preserving machine learning with fully
homomorphic encryption for deep neural network. IEEE Access 10, 30039–30054
(2022). https://doi.org/10.1109/ACCESS.2022.3159694

41. Lee, J.W., Lee, E., Kim, Y.S., No, J.S.: Rotation key reduction for client-server
systems of deep neural network on fully homomorphic encryption. In: Guo, J., Ste-
infeld, R. (eds.) Advances in Cryptology – ASIACRYPT 2023. pp. 36–68. Springer
Nature Singapore, Singapore (2023)

42. Lee, K., Yeo, Y.: SophOMR: Improved oblivious message retrieval from SIMD-
aware homomorphic compression. Cryptology ePrint Archive, Paper 2024/1814
(2024), https://eprint.iacr.org/2024/1814

34

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1109/18.782097
https://doi.org/10.1109/18.782097
https://doi.org/10.1109/18.782097
https://doi.org/10.1109/18.782097
https://doi.org/10.1109/18.782097
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1109/ACCESS.2022.3159694
https://eprint.iacr.org/2024/1814

43. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 648–677. Springer (2021)

44. Li, B., Micciancio, D., Schultz-Wu, M., Sorrell, J.: Securing approximate homomor-
phic encryption using differential privacy. In: Advances in Cryptology – CRYPTO
2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15–18, 2022, Proceedings, Part I. p. 560–589. Springer-
Verlag, Berlin, Heidelberg (2022)

45. Liu, J., Li, J., Wu, D., Ren, K.: Pirana: Faster multi-query pir via constant-weight
codes. In: 2024 IEEE Symposium on Security and Privacy (SP). pp. 4315–4330.
IEEE (2024)

46. Liu, Z., Tromer, E.: Oblivious message retrieval. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 753–783. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 15–18, 2022)

47. Liu, Z., Tromer, E., Wang, Y.: Group oblivious message retrieval. In: 2024 IEEE
Symposium on Security and Privacy (SP). pp. 4367–4385 (2024)

48. jie Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging polynomial
and non-polynomial evaluations in homomorphic encryption. In: 2021 IEEE Sym-
posium on Security and Privacy. pp. 1057–1073. IEEE Computer Society Press
(May 24–27, 2021)

49. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume I. pp. 2–10. IEEE Computer
Society (1990). https://doi.org/10.1109/FSCS.1990.89518, https://doi.org/
10.1109/FSCS.1990.89518

50. Menon, S.J., Wu, D.J.: SPIRAL: Fast, high-rate single-server PIR via FHE com-
position. In: 2022 IEEE Symposium on Security and Privacy. pp. 930–947. IEEE
Computer Society Press, San Francisco, CA, USA (May 22–26, 2022)

51. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III.
Lecture Notes in Computer Science, vol. 12172, pp. 704–737. Springer (2020).
https://doi.org/10.1007/978-3-030-56877-1_25, https://doi.org/10.1007/
978-3-030-56877-1_25

52. Thibault, L.T., Walter, M.: Towards verifiable FHE in practice: Proving correct
execution of tfhe’s bootstrapping using plonky2. IACR Cryptol. ePrint Arch. p. 451
(2024), https://eprint.iacr.org/2024/451

53. Valiant, P.: Incrementally verifiable computation or proofs of knowledge im-
ply time/space efficiency. In: Canetti, R. (ed.) Theory of Cryptography, Fifth
Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-
21, 2008. Lecture Notes in Computer Science, vol. 4948, pp. 1–18. Springer
(2008). https://doi.org/10.1007/978-3-540-78524-8_1, https://doi.org/10.
1007/978-3-540-78524-8_1

54. Viand, A.: Useable Fully Homomorphic Encryption. Ph.D. thesis, ETH Zurich,
Zürich, Switzerland (2023). https://doi.org/10.3929/ETHZ-B-000613734,
https://hdl.handle.net/20.500.11850/613734

35

https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2024/451
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.3929/ETHZ-B-000613734
https://doi.org/10.3929/ETHZ-B-000613734
https://hdl.handle.net/20.500.11850/613734

A Cryptographic Primitives

In this section, we provide the formal definitions of the cryptographic primitives
used in the main body.

A.1 Secure Two-Party Computation

We follow the the real/ideal world paradigm as outlined in [33] to formalize the
definition of 2PC. Ideal model execution. Ideal model execution is defined as
follows.
• Input : Each party receives an input. C receives m1 and S receives m2, respec-

tively.
• Send to trusted party : C and S send their inputs to a trusted party. An honest

party always sends the received input. A malicious party may send a different
input.

• Aborting Adversaries: An adversarial party can send a message ⊥ to the
trusted party to abort the execution. Otherwise, the following steps are exe-
cuted.

• Trusted party answers client C: Upon receiving inputs m1,m2 from C and S
respectively, the trusted party sends the output out = C(m1,m2) to the client.

• Outputs: If the client C is honest, then it outputs out. The adversarial party
(C or S) outputs its entire view.

We denote the adversary participating in the above protocol to be B and the
auxiliary input to B is denoted by τ . We define IdealF2pc,B(m1,m2, τ) to be the
joint distribution over the outputs of the adversary and the honest party from
the ideal execution described above.
Real model execution. We next consider the real model, in which the protocol Π
to compute C is executed without trusted third party. In this case, at most one
of the two parties (client and server) is controlled by an adversary A. A semi-
honest adversary will execute the protocol honestly but attempt to learn the
other party’s private input. A malicious party may follow an arbitrary feasible
strategy, and in particular, may abort the execution at any time. We denote
the auxiliary input to A as τ , and define RealΠ,A(m1,m2, τ) to be the joint
distribution over the outputs of the adversary and the honest party from the
real execution.

Definition 11 (2PC Security against Semi-honest/Malicious Adver-
sary). We say Π securely computes C if for every polynomial-size semi-honest/malicious
adversary A in the real world, there exists a polynomial-size adversary B for the
ideal model, such that for any auxiliary input τ ∈ {0, 1}∗.

{RealΠ,A(m1,m2, τ)}
c
≈ {IdealF2pc,B(m1,m2, τ)}.

A.2 B/FV Leveled Homomorphic Encryption

The BFV leveled homomorphic encryption scheme is first introduced in [7] using
standard LWE assumption, and later adapted to ring LWE assumption by [22].

36

Given a polynomial ∈ Rt = Zt[X]/(XN + 1), the BFV scheme encrypts it
into a ciphertext consisting of two polynomials, where each polynomial is from a
larger cyclotomic ring RQ = ZQ[X]/(XN +1) for some Q > t. We refer t as the
plaintext modulus, Q as the ciphertext modulus, and N as the ring dimension.
t satisfies that t ≡ 1 mod 2N , where N is a power of two. 7

Plaintext encoding. In practice, instead of having a polynomial in Rt =
Zt[X]/(XN +1) to encrypt, applications usually have a vector of messages m =
(m1, . . . ,mN) ∈ ZN

t . Thus, to encrypt such input messages, BFV first encodes
it by constructing another polynomial y(X) =

∑
i∈[N] yiX

i−1 where mi = y(ζj),

ζj := ζ3
j

mod t, and ζ is the 2N -th primitive root of unity of t. Such encoding
can be done using an Inverse Number Theoretic Transformation (INTT), which
is a linear transformation represented as matrix multiplication.

Encryption and decryption. The BFV ciphertext encrypting m under sk←
D has the following format: ct = (a, b) ∈ R2

Q, which satisfies b−a·sk = ⌊Q/t⌋·y+e
where ⌊Q/t⌋ · y ∈ RQ and y is the polynomial encoded in the way above, and e
is a small error term sampled from a Gaussian distribution over RQ with some
constant standard deviation.

Symmetric key encryption can be done by simply sampling a random a and
constructing b accordingly using sk. Public key encryption can also be achieved
easily but it is not relevant to our paper so we refer the readers to prior works
(e.g., [7,22,39]) for details.

Decryption is thus calculating y′ ← ⌈(t/Q) · (b− a · sk)⌋ ∈ Rt (note that
(b−a·sk) is done overRQ), and then decodes it by applying a procedure to revert
the encoding process (which is also a linear transformation). For simplicity, we
assume BFV.Dec also embeds the decoding procedure and thus outputs plaintext
y′ ∈ ZN

t in the decoded form directly (instead of a polynomial y ∈ Rt). Similarly,
we assume BFV.Enc contains the encoding process, thus taking a plaintext y′ ∈
ZN
t . In addition, define PartialDec(sk, ct = (a, b) ∈ R2

Q) := b − a · sk ∈ RQ (i.e.,
decryption without performing the rounding to Rt).

BFV operations. BFV essentially supports addition, multiplication, rotation,
and polynomial function evaluation, satisfying the following property:
– (Addition) BFV.Dec(ct1 + ct2) = BFV.Dec(ct1) + BFV.Dec(ct2)
– (Multiplication) BFV.Dec(ct1 × ct2) = BFV.Dec(ct1)× BFV.Dec(ct2)
– (Rotation) BFV.Dec(rot(ct, j))[i] = BFV.Dec(ct)[i+ j (mod N)],∀i, j ∈ [N]
– (Polynomial evaluation) BFV.Dec(BFV.Eval(ct, f)) = f(BFV.Dec(ct)), where

f : Zt → Zt is a polynomial function. Note that this is implied by addition
and multiplication.

– (Vector-matrix multiplication) BFV.Dec(ct × A) = BFV.Dec(ct) × A, where
A ∈ ZN×D

t for any D > 0.

7 Note that this is the relationship between t,N does not need to be satisfied in
general (e.g., see [37,36] for the general encoding). However, throughout our paper,
we suppose it holds to maximize the concrete efficiency and thus introduce it this
way for simplicity.

37

All operations are operated over the entire plaintext vector m ∈ ZN
t (element-

wise). Thus, all messages need to be evaluated using the same polynomial f by
default. This is also known as the Single Instruction Multiple Data (SIMD) prop-
erty of BFV. Note that vector-matrix multiplication can be realized using scalar
multiplication (implied by addition) and rotation. All of these BFV operations
are used as blackboxes in our main constructions and we refer the readers to
[7,22,39,37,36] to see how these operations are accomplished in detail. In this
paper, we sometimes directly refer to the interfaces (e.g., Dec) for short without
the BFV prefix (e.g., BFV.Dec).

B Security proof for Theorem.1

We consider a VC scheme as a 2PC scheme where the client executes VC.ProbGen
and VC.Verify, and the server executes VC.Compute. We now construct the sim-
ulator for security as follows:

SA(1λ) :

1. After given m2 as input, run (pk, sk) ← VC.Setup(1λ) and encode a zero
string c1 = Encpk(0

|m1|).
2. Invoke the adversary A with input pk, c1,m2 and auxiliary input τ , and

obtain its output (c2, π).
3. Run the extractor of knowledge soundness, EA(π), to extract the input m∗2

of the adversary.
4. Send m∗2 to the functionality F .
5. Verify the proof π using sk, st. If the proof is invalid, the simulator sends

abort to the functionality; otherwise, it continues to the next step.
6. Output the view of adversary A.

Now we need to show that for any m1,m2, and τ ,

{RealΠ,A(m1,m2, τ)}
c
≈ {IdealF2pc,S(m1,m2, τ)}.

We now prove the security by hybrid arguments. In the following, all hybrid
experiments are further parameterized by the sender’s input m1, the receiver’s
input m2, and the auxiliary input τ .

HYD1(1
λ) is identical to Ideal except that the simulator S, in step 1, computes

c1 = Encpk(m1) using m1 instead of 0|m1|.

Since the only difference between HYD1 and Ideal is the message encoded
in c1, we have that HYD1(1

λ)
c
≈ IdealF2pc,S(m1,m2, τ) due to the client-privacy

with verification oracle of the VC scheme. It is important to note that, to re-
duce the client-privacy with verification oracle to the indistinguishability be-
tween HYD1 and Ideal, neither HYD1 nor Ideal can use the secret key sk during
their execution. Therefore, the verification in step 5 is replaced by invoking the
verification oracle.

38

Now, we demonstrate that HYD1(1
λ)

c
≈ RealΠ,A(m1,m2, τ). It is easy to find

that, the only difference between these two distributions lies in the output of
the client’s output. If the verification of π fails, the client will abort in both
experiments. If the verification of π passes, the client in HYD1(1

λ) will output
C(m1,m

∗
2) with extracted m∗2 and the client in real experiment will output the

decoding of received encoding. From the knowledge soundness of the VC scheme,
we know that both outputs are identical, which concludes the proof.

C Definition of Polynomial Commitment on Hybrid
Values

Definition 12 (Polynomial Commitment on Hybrid Values). A polyno-
mial commitment for multilinear polynomials in cryptomix representation with
respect to an encryption scheme ENC consists of four algorithms

COM = (Setup,Com, deCom,Eval) :

• Setup(1λ): On input the security parameter 1λ, the Setup algorithm outputs
a public parameter pp.
• Com(pp, pk, [f]mix): On input the public parameter pp, an encryption pub-

lic key pk, and a multilinear polynomial f in its cryptomix representation
[f]mix = ({f(x)}x∈Sp , {Encpk(f(x))}x∈Sc), the Com algorithm outputs a com-
mitment C and a decommitment τ .
• deCom(pp, C, τ, sk): On input the public parameter pp, a commitment C, a

decommitment τ , and the secret key sk, the deCom algorithm outputs the
committed multilinear polynomial f ∈ F[X1, · · · , Xd] in its plaintext repre-
sentation [f]p = {f(x)}x∈{0,1}d , or ⊥ if the decommitment is invalid.
• Eval(pp, pk, C, z, y∗, Sp; sk, f, τ): Eval is an interactive protocol

⟨P ([f]mix, τ), V (sk)⟩(pp, pk, C, z, y∗, Sp)

with the setup algorithm Setup where P wants to convince V of the followings
relation:

Reval =
{
(pp, pk, C, z, y

∗
; sk, f, τ) : deCom(pp, C, τ, sk) = [f]p ∧ y = Decsk(y

∗
) ∧ f(z) = y

}
where f is the multilinear polynomial of which plaintext representation is
[f]p.

Such a polynomial commitment COM need to satisfy the following properties:

– Completeness: For all λ ∈ N, d ∈ N, honestly generated key pair (pk, sk)
of ENC, multilinear polynomial f ∈ F[X1, · · · , Xd] with its cryptomix repre-
sentation [f]mix and plaintext set Sp, and any z ∈ Fd,

Pr

1 = Eval(pp, pk, C, z, y
∗
, Sp; sk, f, τ)

∣∣∣∣∣∣∣
pp← Setup(1λ),

(C; τ)← Com(pp, pk, [f]mix)

y = f(z), y
∗ ∈ Encpk(y)

 = 1

39

– Computational Binding: For all λ ∈ N, d ∈ N, honestly generated key
pair (pk, sk) of ENC, and any polynomial-size adversary A,

Pr

[f0]p ̸= [f1]p ∧
[f0]p, [f1]p ̸=⊥

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ),

(C, τ0, τ1)← A(pp, pk, sk),
[f0]p ← deCom(pp, C, τ0, sk),

[f1]p ← deCom(pp, C, τ1, sk)

 ≤ negl(λ)

– Knowledge Soundness: Let Eval = ⟨P, V ⟩ and (pk, sk) be an honestly
generated key pair of ENC. Then there exists two PPT oracle machines
Ew/ sk, Ew/o sk, called the extractor with secret key and the extractor without
secret key, such that for any pair of PPT adversary (A1,A2), the following
holds:

Pr

⟨A2(st), V (sk)⟩(pp, pk, C, z, y

∗
, Sp) = 1 ∧

f(z) ̸= y or deCom(pp, C, τ, sk) ̸= [f]p ∧

for all x ∈ Sp, f(x) = f
∗
(x)

∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ)

(C, z, y
∗
, Sp, st)← A1(pp, pk)

([f]p, τ)← E
A1,A2
w/ sk (pp, sk, C, z, y

∗
, Sp)

{f∗
(x)}x∈Sp ← E

A1,A2
w/o sk (pp, C, z, y

∗
, Sp)

 ≤ negl(1λ)

where f is the polynomial represented by [f]p and y is the decryption of y,
i.e., y = Decsk(y

∗).

D Formalized Construction of Polynomial Commitment
on Hybrid Values

The formalized construction of our polynomial commitment is shown in Fig.8.

E Security Proof for Theorem. 2

Completeness and Binding properties. Completeness follows directly from
our construction. Computational binding relies on the collision-resistance of the
hash function and the properties of the linear code. To open a commitment to two
distinct polynomials, an adversary has to either provide two different values, M̂
and M̂ ′, that hash to the same root, thereby breaking the collision-resistance of
the hash function, or provide two distinct matrices, M and M ′, whose encoding
matrices are both close to the same matrix [M̂]p. This would violate the relative
distance of the linear code.

Knowledge Soundness. In the analysis of knowledge soundness, we treat the
hash function as a random oracle, enabling us to view the evaluation protocol
as an IOP system. We first discuss the existence of extractor with secret key:

As discussed in [34] and existing IOP-to-succinct-argument transformation of
[5], given a prover P that convinces the argument-system verifier to accept with
non-negligible probability, there is an efficient straight-line extractor capable of
outputting IOP proof string π that “opens” the Merkle commitment sent by the
argument system prover in the commitment phase.

40

Polynomial commitment on hybrid values

Public Input: the number of variables n ∈ N in the polynomial, the plaintext set
Sp in the form of Sp = S × {0, 1}n−d where S ⊆ {0, 1}d, and the public key pk
of the FHE scheme;
Private Input for the committer: the cryptomix representation [f]mix of the poly-
nomial f ;
Private Input for the receiver: the secret key sk of the FHE.
Setup: Choose a random hash function h used for Merkle-hashing, and output
pp = h.
Commit: The committer proceeds as follows:

1. Rewrite [f]mix, a vector with 2n elements, as a 2d × 2n−d matrix M .
2. Encode each row of M using the Reed-Solomon code algorithm Encode and

obtain the encoded matrix M̂ . Specifically, rows ûi composed of plaintexts
are encoded via ûi ← Encode(ui,1, · · · , ui,2n−d); rows ûi composed of cipher-
texts are encoded via ûi ← HE.Encode(ui,1, · · · , ui,2n−d).
(a) Suppose that all ciphertexts in a column of M have been packed into a

single ciphertext ctj . Then the committer can compute all the packed
ciphertexts of the columns of M̂ via HE.Encode(ct1, · · · , ct2n−d).

(b) The committer can use constant-layer NTT algorithm to accelerate
Encode algorithm.

3. Use h to Merkle-hash the columns of M̂ . Output the hash root as the com-
mitment com of f . All randomness (if exists) used during the commitment
phase, along with [f]mix and M̂ , constitutes the decommitment τ .

Decommit: Recompute the Merkle-hash of M̂ using provided randomness and
check 1) whether the hash root is indeed com, 2) for each row, the distance
between [M̂]p and Encode([M]p) is less than γ/3, where γ is the minimal distance
of the linear code. If both checks pass, output [f]p.

41

Evaluation: The evaluation protocol consists of two phases, as follows:
Testing phase.

1. The receiver chooses and sends a random vector r ∈ F2d to the committer.
2. The committer computes and sends the linear combination of the row of [M]c with

scalars {ri}, i.e., Σi∈[2d]ri · [ui]c.
(a) Suppose that all ciphertexts in a column of M have been packed into a sin-

gle ciphertext ctj . The committer can homomorphically calculate the inner
product of these packed ciphertexts and the random vector r to obtain the
encrypted resulting linear combination.

3. The receiver decrypts the receiving vector to obtain u∗ and computes its encoding
û∗ ∈ FN . It choose a random subset I of [2N] with size Q and sends it to the
committer.

4. For each j ∈ I, the committer sends the j-th column of M̂ to the receiver, along
with the corresponding Merkle-hash proof.

5. The receiver verifies that all the Merkle-hash proofs are valid and checks that for
each column v̂j of M̂ : a) the inner product ⟨r, [v̂j]p⟩ equals the j-th element of û∗,
and b) for each k ∈ S, the k-th element in v̂j is in plaintext.

Evaluation phase. Suppose the receiver wants to query f(α) with point α =
(α0, · · · , αn−1) ∈ Fn, the receiver proceeds as follows:

1. The receiver computes r1 = ((1 − α0, α0) ⊗ (1 − α1, α1) ⊗ · · · ⊗ (1 − αd−1, αd−1)
and r2 = ((1− αd, αd)⊗ · · · ⊗ (1− αn−1, αn−1). The receiver runs a testing phase
with the committer, except that r is set to r1. If the testing phase fails, abort;
otherwise, continue.

2. Suppose u∗ is the vector obtained in step 3 of above testing phase, the receiver
computes f(α) = ⟨r2, u∗⟩.

Fig. 8. Polynomial commitment on hybrid values

42

Recall that the encoding matrix M̂ is Merkle hashed in our construction.
Therefore, π contains both the encoding matrix M̂ and the randomness used for
hashing. Consequently, if each row of [M̂]p is sufficiently close to a codeword, the
extractor can decode them to obtain [M]p, and subsequently recover [f]p. We
will demonstrate the following: 1) for each row of [M̂]p, there exists a codeword
such that the distance between them is less than γ/3 (in other words, the matrix
M̂ , along with the decoded matrix M and the randomness, constitutes a valid
decommitment), 2) [M]p represents a polynomial f that satisfies f(z) = y, and 3)
for a suitable linear code with relative distance γ, an efficient decoder algorithm
exists.

For any vector u, we denote by u[j] the j-th elements of u. To prove that the
rows of [M̂]p are close to codewords, we introduce a lemma proved in Ligero:

Lemma 1 (Lemma 4.5 in [1]). Let L be a Reed-Solomon code [N, k, γ] with
minimal distance γ = N − k + 1 and e be a positive integer such that e < γ/3.
Then for a set of vectors {ûi}i∈[m], ûi ∈ FN and supposing û′i be the closest
codeword in L to ûi, if the size of ∆ := {j ∈ [n]|∃i ∈ [m] s.t. û′i[j] ̸= ûi[j]} is
lager than e, then for a random û∗ in the span of {ûi}i∈[m], we have

Pr[d(û∗, L) ≤ e] ≤ γ/|F|

Using this lemma, we have that:

Lemma 2. If the prover passes all the checks in the texting phase with proba-
bility at least γ/|F| + (1 − γ

3·N)Q, then there exists a sequence of m codewords
c0, · · · , cm−1 in L such that the size of ∆ := {j ∈ [n]|∃i ∈ [m] s.t.ci[j] ̸= ûi[j]}
is less than γ/3, where ûi is the i-th row of extracted encoding metrix M̂ .

Proof. Assume that there exists a row û′ of the extracted encoding matrix M̂
such that d(c′, [û′]p) ≥ γ/3 where c′ is its closest codeword in L. Then at least
one of the following two cases happens:

– Case I. Given randomness {ri}i∈[2d] chosen by the receiver, d(Σi∈2dri ·
[ûi]p, L) < γ/3.

– Case II.Given randomness {ri}i∈[2d] chosen by the receiver, d(Σi∈2dri ·
[ûi]p, L) ≥ γ/3.

Setting e to be the maximal integer less than γ/3, then from the assumption
we have that the size of ∆ := {j ∈ [n]|∃i ∈ [m] s.t. ui[j] ̸= ûi[j]} is lager than e.
From Lemma.1, the probability that Case I happens is no more than γ/|F|.

In Case II, for a random j ∈ [N], the probability that the j-th position of
Σi∈2dri · [ûi]p is consistent with Encode(u∗) is no more than (1− γ

3N). Since the
receiver choose the subset I with size Q, the probability that the prove passes
the testing phase is less than (1− γ

3·N)Q in this case.
Therefore, the total probability that the prover passes the testing phase is

less than γ/|F|+ (1− γ
3·N)Q, arriving at a contradiction.

43

Now, suppose there exists such a sequence of m codewords c0, · · · , cm−1 in
L described in above lemma, and {ui} are their decodings. In the evaluation
phase, if the prover can convince the verifier with at least (1− 2γ

3·N)Q, then the
extracted polynomial f satisfies f(z) = y. Otherwise, suppose that f(z) ̸= y,
it must be that Σir

′
i · ui ̸= u∗, where r′i is the vector sent by the receiver, and

u∗ is the decoding of the vector sent by the committer. From the properties of
linear code and the fact that d(Σir

′
i · [ûi]p, Σir

′
ici) < λ/3, we have that d(Σir

′
i ·

[ûi]p,Encode(u
∗)) ≥ 2λ/3. Therefore, the probability that the committer passes

the evaluation phase is less than (1− 2γ
3·N)Q, arriving at a contradiction.

Finally, we need to ensure that, given a vector û satisfying d(û, L) < γ/3,
there exists an efficient decoder that decodes it and obtains u with the closest
encoding to û. According to the well-known list decoding algorithm put forward
by Guruswami and Sudan[35], for a Reed-Solomon code L[N, k, γ], there exists
an efficient algorithm that can list all messages m such that d(Encode(m), û) ≤ e
as long as e ≤ N−

√
kN . In other words, to achieve our decoding, we only require

that N−k+1
3 ≤ N −

√
kN . It means N ≥ k, which is already satisfied by Reed-

Solomon code.
In summary, there exists an efficient extractor that, giving the secret key of

encryption, can extract the committed polynomial f . Specifically, this is achieved
by extracting M̂ from the RO oracle, decrypting it to obtain [M̂]p, and then
decoding it to obtain [M]p, the plaintext representation of f . The knowledge
soundness error is γ/|F|+ (1− γ

3N)Q + (1− 2γ
3N)Q.

The extractability without the secret key is proved as follows: The construction of
this extractor without secret key is essentially the same as the above extractor.
The only difference is that this extractor does not have the secret key and there-
fore cannot decrypt M̂ . Fortunately, in our construction, rows ûi of M̂ , where
bind(i) ∈ S, should be composed of solely plaintexts. Therefore, the extractor
without secret key can still decode them and obtain the evaluations of f on the
set Sp.

Although an adversary might insert ciphertexts into {ûi}bind(i)∈S to break the
decoding, the receiver checks in step 5 of the testing phase that the corresponding
elements of {ûi}bind(i)∈S are indeed plaintexts. Therefore, we can modify above
analysis by replacing any ciphertexts in {ûi}bind(i)∈S with a special plaintext
symbols ⊥, and the analysis remains valid. Consequently, the extractor can de-
code the modified ûi (which are now all in plaintexts) to obtain the evaluations
of f on the set Sp without the secret key. In other words, it means that there
are enough valid plaintexts in {ûi}bind(i)∈S for decoding.

F PIOP for hybrid relations

F.1 Definition of PIOP for hybrid relations

Similar to standard PIOP system, we formalize the variant of PIOP for hybrid
relations as follows:

44

Definition 13 (PIOP for hybrid relations). A PIOP system Π for hybrid
relations [R]pk,sk consists of the following algorithms:
– I(1λ, i, Sp): I is a deterministic algorithm that on input i, Sp, outputs an

encoding polynomial f and a public parameter pp containing several sets, pp =
{Spj
}j.

– ⟨P, V ⟩ is an interactive protocols where the prover P (and verifier V, respec-
tively) algorithms additionally take pk (and sk, respectively) as input and:
• The prover algorithm P returns a message as follows

P (f, {[fj]mix}j , tr′, x, w)

in round i, where {[fj]mix}j is the set of polynomials with cryptomix repre-
sentation contained in current transcript and their plaintext sets are exactly
Spj

, and tr′ is the remaining part of the current transcript. Furthermore,
the returned message might contain several polynomials represented by their
cryptomix representation [fj]mix.

• The verifier algorithm, V , returns

V Op(f),Omix({[fj]mix,Spj
}j)(pp, tr′, x)

in round i. Here Op(f) is the polynomial oracle that, on query y, outputs
z = f(y), and Omix({[fj]mix, Spj}j) is the cryptomix polynomial oracle that,
on query y, if the plaintext set of [fj]mix is indeed Spj , it outputs [z]c where
z = fj(y) and fj is the polynomial represented by [fj]mix; otherwise, it
outputs ⊥.

Besides the Completeness, we require such a PIOP system to satisfy the knowl-
edge soundness property defined similar to Definition.10, where the extractor
(and partial extractor, respectively) have the ability to invoke and rewind the
adversary, and obtain the plaintext representation of fj (the plaintext part of
[fj]mix, respective) sent by the adversary.

A PIOP for hybrid relations can be public-coin, similar to a PIOP. This means
that: a) all messages sent by the verifier are random strings (with the proper
length); and b) all queries to the polynomials depend only on the messages sent
by the verifier, which implies that the prover knows these queries.

Similar to the standard PIOP compilation, which demonstrates that by re-
placing the polynomial oracle with polynomial commitments, one can obtain
an interactive argument of knowledge without oracles, we have a similar com-
pilation for PIOP for hybrid relations and polynomial commitment on hybrid
values. Specifically, for each oracle of a polynomial with cryptomix representa-
tion, we replace it with a polynomial commitment for hybrid values. That is, for
every polynomial with cryptomix representation sent by the prover in the PIOP
for hybrid relations, the prover sends a commitment to that polynomial (with
cryptomix representation) to the verifier instead. Whenever the verifier wants to
query the polynomial, the verifier and prover execute the evaluation protocol of
the underlying polynomial commitment scheme. If the verifier fails to obtain an
evaluation (means that the evaluation protocol outputs ⊥), it aborts directly.

45

Theorem 5 (PIOP Compilation for Hybrid Relations). If the polyno-
mial commitment on hybrid values has knowledge soundness property, and the
PIOP protocol for hybrid relations is also knowledge sound, then the result of
the compiler is a secure (non-oracle) argument with knowledge soundness de-
fined above.

Proof (Proof sketch). We can construct the extractor for the resulting argument
using the extractors from the PIOP and the polynomial commitment scheme
directly. Specifically, each time the prover sends a commitment of a polynomial
with cryptomix representation, we use the extractor of the polynomial commit-
ment to extract the polynomial and send the polynomial and polynomial oracle
instead. Now, an adversary for the resulting argument becomes an adversary for
the underlying PIOP system for hybrid relations, and we can use the extractor
of the PIOP to extract the witness. Suppose that the adversary convinces the
verifier; the extractability ensures that queries to a polynomial are consistent
with the extracted polynomials. Therefore, the new adversary can convince the
verifier of the PIOP for hybrid relations with the same (or even higher) proba-
bility, except for a negligible difference. Consequently, the extractor of the PIOP
will extract a witness that satisfies the relation. The extractability without secret
key can be proved similarly except that the extractor of polynomial commitment
only extracts the plaintext part and the polynomial oracle are now constructed
using the adversary.

F.2 construction of PIOP for hybrid relations

The resulting PIOP for hybrid relations in Section 5.2 is formalized as follows:

Theorem 6. The construction in Figure.9 is a secure PIOP system for hybrid
relations.

Proof (Proof sketch). We begin with a concise proof demonstrating knowledge
soundness with secret key. The extractor E executes the adversary to obtain the
cryptomix representation of ẑ. It then employs the secret key to extract all ele-
ments in z and directly outputs the witness w contained within z. The correctness
of w stems from the soundness of the (encrypted) Spartan PIOP protocol: Ob-
serve that the check Az ◦ Bz = Cz is equivalent to verifying “for all x ∈ {0, 1}d,
F (x) = Σy∈{0,1}sÃ(x, y) · z̃(y)×Σy∈{0,1}sB̃(x, y) · z̃(y)−Σy∈{0,1}sC̃(x, y) · z̃(y) =
0”. The Spartan protocol can be viewed as a PIOP scheme tailored for this rela-
tion w.r.t. the polynomial oracle of z̃. Since our construction can be interpreted as
an encrypted variant of Spartan, its soundness mirrors that of Spartan. Specif-
ically, given the secret key, any prover capable of breaking our PIOP can be
transformed into a prover that breaks the standard Spartan PIOP by decrypt-
ing all messages sent by the prover. Consequently, the witness extracted using
the secret key from a valid adversary is correct.

Extractability without secret key follows directly from above extraction. Note
that, in Spartan’s PIOP scheme, the witnesses are encoded in the representation

46

PIOP for hybrid relations based on Spartan

Index: (i = (F, A,B,C,M,N), Sp),
Statement: x. Witness: w.

Setup(1λ, i, Sp): Run the setup algorithm of Spartan to encode A,B,C as poly-
nomials Ã, B̃, C̃ and output these polynomial oracles. (We need to use the same
techniques in Spartan or Brakedown to handle these three sparse polynomials.
Due to that all A,B,C are in plaintext, we skip it here.) Additionally, setup al-
gorithm also outputs a set S′p that indicates the plaintext set of the polynomial
z̃ for z = (x,w). Note that S′p is determined by Sp and is independent of the
specific values of z.

⟨P, V ⟩ :

1. Let z = (w, x). The prover sends the polynomial oracle of z̃ with cryptomix
representation to the verifier.

2. Denote by

F (x) = Σy∈{0,1}nÃ(x, y)·z̃(y)×Σy∈{0,1}nB̃(x, y)·z̃(y)−Σy∈{0,1}nC̃(x, y)·z̃(y),

the prover computes Az,Bz,Cz to obtain the cryptomix representa-
tion of polynomials Σy∈{0,1}nÃ(x, y) · z̃(y) and Σy∈{0,1}nB̃(x, y) · z̃(y),
Σy∈{0,1}nC̃(x, y) · z̃(y). We denote by these three polynomials as z̃A, z̃B , z̃C .
Now we have that F (x) = z̃A(x)× z̃B(x)− z̃C(x). The verifier chooses ran-
domness τ and sends it to the prover.

3. The prover and verifier runs the sumcheck protocol on hybrid values for the
following identity:

0 = Σx∈{0,1}neq(x, τ)F (x)

4. Above sumcheck will reduce the check to the following three equalities:

Σy∈{0,1}nÃ(rx, y)·z̃(y) = [z1]p, Σy∈{0,1}nB̃(rx, y)·z̃(y) = [z2]p, Σy∈{0,1}nC̃(rx, y)·z̃(y) = [z3]p

The verifier chooses and sends three randomness r1, r2, r3 and both prover
and verifier runs the following sumcheck on hybrid values

Σy∈{0,1}n(r1Ã(rx, y)+r2B̃(rx, y)+r3C̃(rx, y))·z̃(y) = r1[z1]p+r2[z2]p+r3[z3]p

5. Above sumcheck will reduce the checking to the following queries:

Ã(rx, ry) = zA, B̃(rx, ry) = zB , C̃(rx, ry) = zC , z̃(ry) = z′

all of them can be achieved by verifier through the polynomial oracle.
6. The verifier checks that the public input is consistent with the witness, that

is, z̃(0n−log |io|, r∗) = ĩo(r∗) for a random r∗ ∈ Flog |x|.

Fig. 9. PIOP for hybrid relations47

of the polynomial z̃, and its plaintext portion is exactly the plaintext part of the
witness. Therefore, the extractor can directly output these elements, and the
soundness of Spartan ensures that the extracted elements are identical to the
corresponding part of the witness extracted by the extractor with the secret key.

48

	Abstract
	Introduction
	Our Result
	Technique Overview

	Preliminaries
	Proof Systems
	Polynomial commitment

	Model: From Verifiable Computation to 2PC
	Verifiable Computation
	Input Dependent Attack and Knowledge Soundness
	The Gap from Secure Two-Party Computation (2PC)
	FHE-SNARK and SNARK-FHE

	Polynomial Commitment on Hybrid Values
	Definition of Polynomial Commitment on Hybrid Values
	Construction of Polynomial Commitment on Hybrid Values

	SNARK for VC Instances
	Definition of Arguments of Knowledge for Hybrid Relations
	Construction for SNARKs for VC instances

	Construction of Verifiable Computation
	Implementation
	References
	Cryptographic Primitives
	Secure Two-Party Computation
	B/FV Leveled Homomorphic Encryption

	Security proof for Theorem.1
	Definition of Polynomial Commitment on Hybrid Values
	Formalized Construction of Polynomial Commitment on Hybrid Values
	Security Proof for Theorem. 2
	PIOP for hybrid relations
	Definition of PIOP for hybrid relations
	construction of PIOP for hybrid relations

