
Making Protocol FSU Revocable

Kazuma Wariki1, Atsushi Fujioka1, Akira Nagai2, and Kan Yasuda2

1 Kanagawa University {r202470194te,fujioka}@jindai.jp
2 NTT Social Informatics Laboratories {akira.nagai,kan.yasuda}@ntt.com

Abstract. This paper examines whether a revocation function can be added to a protocol, protocol
FSU, which is an asymmetric pairing variant of a protocol that has been adopted as an international
standard, ISO/IEC11770-3. Protocol FSU is an identity-based authenticated-key exchange protocol
based on a mathematical problem, an asymmetric gap bilinear Diffie–Hellman (GBDH) problem.
To make protocol FSU revocable, a generic technique is applied, which converts an identity-based
encryption scheme to a revocable identity-based encryption scheme by introducing a symmetric-
key encryption scheme. In addition, to make the converted revocable identity-based authenticated-
key exchange protocol efficient, we reduce ephemeral information exchanged in the protocol, and
introduce an additional parameter to the master public-key where the secret information of the
additional parameter is not needed to include in the master secret-key.
We discuss the security of the resultant protocol, and prove that it is rid-eCK secure under the
asymmetric GBDH assumption.

Keywords: Identity-based authenticated key exchange · revocability · asymmetric gap bilinear
Diffie–Hellman assumption · protocol FSU.

1 Introduction

Key exchange is one of the most important topics in cryptography. In a key exchange
protocol, two parties exchange ephemeral information over a public channel, and then,
both parties can establish a shared key only known by them. The shared key can be used
to guarantee confidentiality and authenticity as a session key.

Authenticated-key exchange (AKE) is an evolution of key exchange. In an AKE pro-
tocol, each party has a static public-key, and the key is linked to the party’s identity by a
certificate issued by a certification authority (CA) in the public key infrastructure (PKI).
To establish a session key, a party generates a pair of ephemeral public- and secret-keys.
The party sends the ephemeral public-key to another party over a public channel, and
receives another ephemeral public-key from the peer over the public channel. Each party
can compute the same key using its own static secret-key, the own ephemeral secret-key,
the peer’s static public-key, and the peer’s ephemeral public-key. AKE can guarantee that
the session key the party computes is indeed shared with the intended party.

In a PKI-based AKE protocol, revocation is essential as its security is related to the
linkage between a party and the static public-key.

Identity-based authenticated-key exchange (IB-AKE) is a variant of AKE designed for
the identity-based setting. In an IB-AKE protocol, it is assumed that a trusted third party,
called private-key generator (PKG), exists, and each party uses identity information (such
as e-mail address or phone number) as a public key. The PKG generates a pair of master
public- and secret-keys, and computes a secret-key of a party based on the identifier of
the party.

In IB-AKE protocols, a key revocation mechanism is also necessary similar to PKI-
based AKE protocols as a party may act maliciously or may compromise the static
secret-key accidentally, thereby reducing the reliability of the system.

2

1.1 Revocable Identity-Based Authenticated-Key Exchange

The key revocation in IB-AKE was first addressed in [7], where the use of hierarchical iden-
tities, i.e., revocable hierarchical identity-based authenticated-key exchange (RHIB-AKE),
was discussed since it is not practical for the PKG to manage all users. Okano et al.
give a generic construction of a revocable hierarchical identity-based authenticated-key ex-
change (RHIB-AKE) protocol from a Revocable Hierarchical Identity-Based Encryption
(RHIBE) scheme [9, 2]. They define the rhid-eCK security, and give two instantiations of
the rhid-eCK secure RHIB-AKE protocols based on the pairing and the lattice, respec-
tively.

Later, Nakagawa et al. simplified the rhid-eCK security to the rid-eCK security, i.e.,
a security notion in the identity-based setting, and formulated revocable identity-based
authenticated-key exchange (RIB-AKE) protocol because of the protocol complexity [6].
They devised a rid-eCK secure RIB-AKE protocol that does not use pairing, to apply it
to IoT devices.

In an RIB-AKE protocol, the PKG generates a pair of master public- and secret-keys.
The PKG computes a secret-key of a party based on the identifier of the party. The PKG
manages a revocation list and its time-period.

When a revocation occurs, the PKG updates the revocation list and its time-period.
The PKG computes key update information and broadcasts over a public channel. Each
party computes a current secret-key by using the static secret-key and the key update
information.

To establish a session key, a party generates a pair of ephemeral public- and secret-
keys. The party sends the ephemeral public-key to another party over a public chan-
nel, and receives another ephemeral public-key from the peer over the public channel.
Each party can compute the same session key using its own current secret-key, the own
ephemeral secret-key, the peer’s identifier, and the peer’s ephemeral public-key.

In other words, to generate a session key, an RIB-AKE protocol uses a current secret-
key rather than a static secret-key is used in an IB-AKE protocol.

1.2 Contribution

This paper examines whether a revocation function can be added to a protocol, protocol
FSU, which is an asymmetric pairing variant of a protocol that has been adopted as
an international standard, ISO/IEC11770-3 [5]3. Protocol FSU is an IB-AKE protocol
based on a mathematical problem, an asymmetric gap bilinear Diffie–Hellman (GBDH)
problem [3].

To make protocol FSU revocable, we apply a generic technique, invented by Seo and
Emura [8], to protocol FSU. Here, the generic technique converts an identity-based encryp-
tion scheme to a revocable identity-based encryption scheme by introducing a symmetric-
key encryption scheme. A secret-key of the symmetric-key encryption scheme is generated
by the PKG, and it is included in a static secret-key of a party together with a usual static
secret-key of the identity-based encryption scheme. When the PKG updates a current

3 In [3], the protocol, proposed in [4] and adopted in [5], is named Πsym and its asymmetric pairing variant is
named Πasym . In this paper, the latter is called protocol FSU.

3

secret-key of the party, the PKG encrypts the current secret-key using the symmetric-
key encryption scheme. Each party can obtain the current secret-key by decrypting the
ciphertext from the PKG.

In addition, to make the converted RIB-AKE protocol efficient, we reduce ephemeral
information exchanged in the protocol. Each party sends two ephemeral public-keys in
protocol FSU, that is, in the converted RIB-AKE protocol, whereas each party sends a
single ephemeral public-key in the reduced protocol. Unfortunately, this resultant protocol
becomes insecure. To overcome this, we introduce an additional parameter to the master
public-key where the secret information of the additional parameter is not needed to
include in the master secret-key.

We discuss the security of the final protocol, and prove that it is rid-eCK secure under
the asymmetric GBDH assumption.

2 Preliminaries

2.1 Mathematical Assumption

We introduce the asymmetric gap Bilinear Diffie–Hellman (GBDH) assumption [3] de-
scribed as follows: Let λ be the security parameter. Let G1, G2, and GT be cyclic groups
with generators g1, g2, and gT (= ê(g1, g2)), respectively, and ê : G1×G2 → GT be asym-
metric pairing. Here, the order of all generators is λ-bit prime q. Choose u, v, w ∈U Zq and
let U1 := gu1 , U2 := gu2 , V1 := gv1 , V2 := gv2 ,W1 := gw1 and W2 := gw2 . Now, we consider the
oracle DBDH1,1,2(·, ·, ·, ·) that on input U1, V1,W2, ê(g1, g2)

x, return 1 if uvw = x mod q
and 0 otherwise. Let S be a solver who can access this oracle, DBDH1,1,2(·, ·, ·, ·), and
who tries to compute ê(g1, g2)

uvw given U1, U2, V1, V2, W1, and W2.
For solver S, we define advantage

AdvaGBDH(S) = Pr[SDBDH1,1,2(·,·,·,·)(U1, U2, V1, V2,W1,W2) = ê(g1, g2)
uvw].

Definition 1 (asymmetric GBDH assumption). We say that the asymmetric GBDH
assumption holds if, for any probabilistic polynomial-time solver, S, AdvaGBDH(S) is neg-
ligible in security parameter λ.

2.2 Syntax of RIB-AKE

The syntax of RIB-AKE follows that described in [6]. A RIB-AKE protocol, Π, consists
of the following seven probabilistic polynomial-time (PPT) algorithms:

– ParGen(1λ, N) → (MSK ,MPK ,RL, T): The parameter generation algorithm is ex-
ecuted only once by the PKG. With the security parameter, λ, and the maximum
number of parties, N , as input, it outputs the master secret-key, MSK , the master
public-key, MPK , the initial revocation list, RL, and the time counter, T .
The master public-key, MPK , is distributed to all parties via a public channel. The
master secret-key, MSK , is the secret information of the PKG. The revocation list,
RL, is not secret information but only used by the PKG, so it does not necessarily
have to be distributed. Assume RL = ∅ and T = 0 as the initial state. (We assume to
include MPK in the input of all algorithms below.)

4

– SSKGen(MSK , ID) → ssk ID : The static secret-key generation algorithm is per-
formed by the PKG only once for each party. It takes the master secret-key, MSK ,
and the party’s identifier, ID , as input and outputs the static secret-key, ssk ID , cor-
responding to ID .
Each static secret-key is distributed to each party via a secret channel.

– Revoke(RL, T, rl): The algorithm for updating the revocation list is executed by
the PKG at certain intervals. It receives the list of newly revoked user’s identifiers, rl .
Then, it updates RL← RL∪rl . In addition, it increments the time counter T ← T+1.

– KeyUp(MSK , T,RL) → kuT : The algorithm for generating key update information
is executed by the PKG after executing Revoke. It takes the master secret-key, MSK ,
the time counter, T , and the revocation list, RL, as input and outputs the key update
information, kuT .
The key update information with the time counter, (kuT , T), is distributed to all
parties via a public channel.

– CSKGen(ID , T, ssk ID , kuT) → csk ID ,T : The current secret-key generation algorithm
is executed by each party after receiving (kuT , T). It takes ID , the time counter, T , the
static secret-key, ssk ID , and the key update information, kuT , as input and outputs
the current secret-key, csk ID ,T , or ⊥. The ⊥ means that the user has been revoked.

– EKGen(IDA, IDB, T, cskA,T) → (eskA, epkA): The ephemeral key generation algo-
rithm is executed by each party for each session. It takes as input the identifier,
IDA, of executor PA, the identifier, IDB, of communication partner PB, the time
counter, T , and the current secret-key, cskA,T , of executor PA. It outputs the ephemeral
secret/public-key pair, (eskA, epkA), of executor PA for the session.
The ephemeral public-key, epkA, is distributed to communication partner PB via a
public channel.

– SKGen(IDA, IDB, T, cskA,T , eskA, epkB) → SK : The session key generation algo-
rithm is executed by each party for each session. It takes as input the identifier, IDA,
of executor PA, the identifier, IDB, of communication partner PB, the time counter,
T , the current secret-key, cskA,T , of executor PA, the ephemeral secret-key, eskA, of
executor PA, and the ephemeral public-key, epkB, of communication partner PB. It
outputs the session key, SK .

We show the overall behavior of the RIB-AKE protocol in Fig. 1.

2.3 Session

The rid-eCK security model follows that described in [6]. An invocation of a proto-
col is called a session. A session is activated via an incoming message of the form,
(Π, I, T, IDA, IDB) or (Π,R, T, IDA, IDB), where Π is the protocol identifier, I and
R are role identifiers, T is the time counter, and IDA and IDB are user identifiers of user
PA and PB, respectively. When PA is activated with (Π, I, T, IDA, IDB), we call PA an
initiator. When PA is activated with (Π,R, T, IDA, IDB), we call PA a responder.

On activation, an initiator (resp. responder) PA returns epkA. Receiving an incoming
message (Π, I, T, IDA, IDB, epkB) (resp. (Π,R, T, IDA, IDB, epkB)) from the responder
(resp. initiator), PB, PA computes the session key, SK .

If PA is the initiator, the session identifier, sid , is (Π, I, T, IDA, IDB, epkA, ·, s) or
(Π, I, T, IDA, IDB, epkA, epkB, s) where s means that the session is the s-th initialized

5

Parameter Setting
PKG’s Computation

(MSK ,MPK ,RL, T)← ParGen(1λ, N)
PKG’s secret-key: MSK , PKG’s public-key: MPK , Revocation list: RL, Time counter: T

Distribute MPK to all users.
Static Secret-Key Distribution

PKG’s Computation for PA PKG’s Computation for PB

sskA ← SSKGen(MSK , IDA) sskB ← SSKGen(MSK , IDB)
Send sskA to PA via a secret channel. Send sskB to PB via a secret channel.

Update Information Distribution
PKG’s Computation at Certain Intervals

Update RL by Revoke(RL, T, rl), kuT ← KeyUp(MSK , T,RL)
Distribute (kuT , T) to all users.

Current Secret-Key Generation
PA’s Computation PB’s Computation

when PA receives kuT . when PB receives kuT .
cskA,T ← CSKGen(IDA, T, sskA, kuT) cskB,T ← CSKGen(IDB , T, sskB , kuT)

Current secret-key of PA: cskA,T Current secret-key of PB : cskB,T

Session Key Generation
PA’s Computation PB’s Computation

when PA makes a session with PB. when PB makes a session with PA.
(eskA, epkA)← EKGen(IDA, IDB , T, cskA,T) (eskB , epkB)← EKGen(IDB , IDA, T, cskB,T)

Ephemeral secret-key of PA: eskA Ephemeral secret-key of PB : eskB

Ephemeral public-key of PA: epkA Ephemeral public-key of PB : epkB

Send epkA to PB via a public channel. Send epkB to PA via a public channel.

PA’s Computation PB’s Computation
when PA receives epkB. when PB receives epkA.

SK ← SKGen(IDA, IDB , T, cskA,T , eskA, epkB) SK ← SKGen(IDB , IDA, T, cskB,T , eskB , epkA)
Session key shared by PA and PB : SK

Fig. 1. Behavior of an RIB-AKE protocol

one of PA. If PA is the responder, the session is identified by sid = (Π, R, T, IDA, IDB,
·, epkA, s

′) or (Π, R, T, IDA, IDB, epkB, epkA, s
′) where s′ means that the session is

the s′-th initialized one of PA. It is said that PA is the owner of session sid when the
fourth component of sid is IDA. Also, PB is said to be a peer of session sid when the fifth
component of sid is IDB. A session is completed when the session key has been computed
in that session.

The matching session of sid (= (Π, I, T, IDA, IDB, epkA, epkB, s)) is a session with
(Π, R, T, IDB, IDA, epkA, epkB, s′) and vice versa.

2.4 Adversary

An adversary, A, is modeled as a PPT Turing machine that controls all communication
between the parties, including session activation. Let Tcu and RLTcu be the time counter
and the revoke list maintained by the challenger, respectively. We model the adversary’s
capability by the following queries:

– ParGen(1λ, N): The adversary requests the PKG to generate the parameter and
obtains the master public-key, MPK .

– SSKRev(ID): The adversary obtains the static secret-key, ssk ID , of the user with
identifier ID .

6

– KeyUp(T): If T ≤ Tcu , then the adversary obtains the key update information, kuT ,
else obtains ⊥.

– CSKRev(ID , T): If T ≤ Tcu , then the adversary obtains the current secret-key,
csk ID ,T , of the user with identifier ID , else obtains ⊥.

– ESKRev(sid): The adversary obtains the ephemeral secret-key, esk , of the session
owner.

– SKRev(sid): The adversary obtains the session key if the session is completed.
– MSKRev(): The adversary obtains the master secret-key, MSK .
– EstablishUser(U, ID): The query allows the adversary to join a party as the user, P ,

with the identity, ID , and obtain the static secret-key, ssk ID . If this query establishes
a party, then we call the party dishonest. If not, we call the party honest.

– Send(message): message is given in the form (Π, I, T, IDA, IDB), (Π, R, T, IDA,
IDB), (Π, I, T, IDA, IDB, epkB), or (Π, R, T, IDA, IDB, epkB). The adversary
obtains the response from the party according to the protocol specification.

– Revoke(RL): If RLTcu ̸⊂ RL, return ⊥. Otherwise, Tcu is incremented as Tcu ←
Tcu + 1, update the revoke list as RLTcu ← RL, and return Tcu .

2.5 Freshness

Here, we give the definition of freshness [6].

Definition 2. Let sid∗ = (Π, I, T ∗, IDA, IDB, epkA, epkB, s) or (Π, R, T ∗, IDA, IDB,
epkB, epkA, s

′) be a completed session between the honest party, PA, with the identifier,
IDA, and the honest party, PB, with the identifier, IDB. When a matching session of sid∗

exists, we denote it as sid∗. We say that sid∗ is fresh if none of the following conditions
are satisfied:

1. The adversary, A, issues SKRev(sid∗), or SKRev(sid∗) if sid∗ exists.
2. sid∗ exists and adversary A makes either of the following queries:

– ESKRev(sid∗) and SSKRev(IDA) where IDA ̸∈ RLT ∗.
– ESKRev(sid∗) and SSKRev(IDB) where IDB ̸∈ RLT ∗.
– ESKRev(sid∗) and CSKRev(IDA, T

∗) where IDA ̸∈ RLT ∗.
– ESKRev(sid∗) and CSKRev(IDB, T

∗) where IDB ̸∈ RLT ∗.
3. sid∗ does not exist and adversary A makes either of the following queries:

– ESKRev(sid∗) and SSKRev(IDA) where IDA ̸∈ RLT ∗.
– SSKRev(IDB) where IDB ̸∈ RLT ∗.
– ESKRev(sid∗) and CSKRev(IDA, T

∗) where IDA ̸∈ RLT ∗.
– CSKRev(IDB, T

∗) where IDB ̸∈ RLT ∗.

Note that if the adversary, A, issues MSKRev(), we regard the adversary, A, as
having issue CSKRev(ID , T ∗), SSKRev(ID) for any user, P , identified with ID where
ID ̸∈ RL.

2.6 Security Experiment

We consider the following security game between the challenger and the adversary. First,
the adversary, A, receives an RIB-AKE protocol, Π, a master public-key, MPK , and
a set of honest parties from the challenger. The adversary, A, then arbitrarily executes
the queries, described in Section 2.4, multiple times to the challenger. Along the way, A
executes the following query only once.

7

– Test(sid∗): The session, sid∗, must be fresh. The challenger randomly selects a bit
b ∈ {0, 1} and returns the session key for sid∗ if b = 0, or a randomly generated key
if b = 1.

The game continues until the adversary, A, outputs a guess, b′. The adversary wins the
game when the test session, sid∗, is still fresh and the adversary’s guess is correct, i.e.,
b′ = b. We define the adversary’s advantage as AdvRIB-AKE

Π (A) = |2Pr(A wins) − 1|.
Then, we define the security of RIB-AKE as follows.

Definition 3 (rid-eCK security model [6]). An RIB-AKE protocol, Π, is said to be
secure in the rid-eCK model if the advantage, AdvRIB-AKE

Π (A), defined above is negligible
in λ for any PPT adversary, A.

2.7 Symmetric-Key Encryption

A symmetric-key encryption scheme, Σ, consists of the following three PPT algorithms:
Gen(1λ): The key generation algorithm is executed only once by a user. With the

security parameter, λ, as input, it outputs a secret-key, k.
Enc(m, k): The encryption key algorithm is executed by a sender. With a message,

m, and a secret-key, k, as input, it outputs a ciphertext, c.
Dec(c, k): The decryption algorithm is executed by a receiver. With a ciphertext, c,

and a secret-key, k, as input, it outputs a message, m′.
Note that the secret-key is confidential between the sender and receiver.
We require Σ to be IND-CPA secure. However, we omit to describe the definition of

the IND-CPA security. See appropriate references, e.g., [1].

3 Protocol modifiedFSUrev

First, we convert protocol FSU [3] to protocol FSUrev, which is an RIB-AKE protocol,
by applying a generic technique, invented by Seo and Emura [8].

Next, we modify protocol FSUrev to reduce the communication complexity. Note that
the modified protocol is insecure.

Finally, we construct protocol modifiedFSUrev, which is an RIB-AKE protocol, to
overcome the insecurity of the modified protocol, and discuss its security.

3.1 Protocol FSUrev

We construction an RIB-AKE protocol, FSUrev, based on protocol FSU [3].
Protocol FSUrev consists of the PPT algorithm shown below:
Let Σ = (Gen,Enc,Dec) be a symmetric encryption scheme.

– ParGen(1λ, N)→ (MSK ,MPK ,RL, T):
1. Generate z ∈U Zq and set Zj = gzj (∈ Gj) (j = 1, 2).
2. Output MSK = z, MPK = (Z1, Z2), RL = ∅, and T = 0.

– SSKGen(MSK , ID i)→ ssk i:
1. Set Qi||0,j = Hj(ID i||0) = g

qi||0,j
j (∈ Gj) (j = 1, 2) and set Di||0,j = Qz

i||0,j (∈ Gj)

(j = 1, 2).

8

2. Generate a secret-key, Ki, using Gen in Σ.
3. Output ssk i = (Di||0,1, Di||0,2, Ki).

Note that Di||0,1 and Di||0,2 are used as csk i,0 (= (Di||0,1, Di||0,2)), i.e., the initial
current secret-key for which no revoke has occurred yet.

– Revoke(rl)→ RL:
1. Update RL← RL ∪ rl and T ← T + 1.

– KeyUp(MSK , T,RL)→ kuT :
1. For each user, Pi, not revoked at T , set Qi||T,j = Hj(ID i||T) = g

qi||T,j

j ∈ Gj (j = 1, 2)
and set Di||T,j = Qz

i||T,j (∈ Gj) (j = 1, 2).
2. Compute Ci,1 ← Enc(Ki, Di||T,1), Ci,2 ← Enc(Ki, Di||T,2).
3. Output kuT = {(ID i, Ci,1, Ci,2) | User Pi is not revoked at time counter T .}.

– CSKGen(ssk i, kuT)→ csk i,T :
1. Decrypts Di||T,1 ← Dec(Ki, Ci,1), Di||T,2 ← Dec(Ki, Ci,2).
2. Output csk i,T = (Di||T,1, Di||T,2).

– EKGen(csk i,T)→ (esk ID , epk ID):
1. Generate xi ∈U Zq and set Xi,j = gxi

j (j = 1, 2).
2. Output esk i = xi, epk i = (Xi,1, Xi,2).

– SKGen(ID i, ID i′ , T, csk i,T , esk i, epk i′)→ SK .
1. If the algorithm is executed by an initiator (resp. responder), do as follows:
2. Parse csk i,T = (Di||T,1, Di||T,2), esk i = xi and epk i′ = (Xi′,1, Xi′,2).
3. Compute Qi′||T,2 = H2(ID i′ ||T) (resp. Qi′||T,1 = H1(ID i′ ||T)).
4. Let σ1 = ê(Di||T,1, Qi′||T,2) (resp. σ1 = ê(Qi′||T,1, Di||T,2)).
5. Let σ2 = ê(Di||T,1Z

xi
1 , Qi′||T,2Xi′,2) (resp. σ2 = ê(Qi′||T,1Xi′,1, Di||T,2Z

xi
2)).

6. Let σ3 = Xxi

i′,1 (resp. σ3 = Xxi

i′,1).
7. Let σ4 = Xxi

i′,2 (resp. σ4 = Xxi

i′,2).
8. Let ST = (Π,T, ID i, ID i′ , epk i, epk i′) (resp. ST = (Π,T, ID i′ , ID i, epk i′ , epk i)).
9. Output SK = H(ST , σ1, σ2, σ3, σ4).

3.2 Insecure Protocol

Let us modify protocol FSUrev where the initiator sends an ephemeral public-key in G1

and the responder returns an ephemeral public-key in G2 (see Fig. 2).

PA (IDA) T PB (IDB)
Z1 = gz1 , Z2 = gz2

QA||T,1 = H1(IDA||T) QB||T,1 = H1(IDB ||T)
QA||T,2 = H2(IDA||T) QB||T,2 = H2(IDB ||T)

DA||T,1 = Qz
A||T,1 DB||T,1 = Qz

B||T,1

DA||T,2 = Qz
A||T,2 DB||T,2 = Qz

B||T,2

XA,1 = gxA
1 XB,2 = gxB

2

σ1 = ê(DA||T,1, QB||T,2) σ1 = ê(QA||T,1, DB||T,2)
σ2 = ê(DA||T,1Z

xA
1 , QB||T,2XB,2) σ2 = ê(QA||T,1XA,1, DB||T,2Z

xB
2)

σ3 = ê(ZxA
1 , XB,2) σ3 = ê(XA,1, Z

xB
2)

ST = (Π,T, IDA, IDB , epkA, epkB)
SK = H(ST , σ1, σ2, σ3)

Fig. 2. Outline of the insecure protocol

9

However, this modified protocol is not rid-eCK secure as an adversary, A, who knows
the master secret-key, z, can break the protocol. In other words, A can compute the
shared values

σ1 = ê(H1(IDA||T), H2(IDB||T))z (= g
zqA||T,1qB||T,2

T)

σ2 = ê(H1(IDA||T)XA,1, H2(IDB||T)XB,2)
z (= g

z(qA||T,1+xA)(qB||T,2+xB)

T)

σ3 = ê(XA,1, XB,2)
z (= gzxAxB

T)

from the public values, IDA, IDB, XA,1, XB,2, and T .

3.3 Protocol modifiedFSUrev

To avoid the situation, we consider a further modification where the PKG generates two
master secret-keys, z and y, computes master public-keys, and erases y (see Fig. 3).

PA (IDA) T PB (IDB)
Z1 = gz1 , Z2 = gz2
Y1 = gy1 , Y2 = gy2

QA||T,1 = H1(IDA||T) QB||T,1 = H1(IDB ||T)
QA||T,2 = H2(IDA||T) QB||T,2 = H2(IDB ||T)

DA||T,1 = Qz
A||T,1 DB||T,1 = Qz

B||T,1

DA||T,2 = Qz
A||T,2 DB||T,2 = Qz

B||T,2

XA,1 = gxA
1 XB,2 = gxB

2

σ1 = ê(DA||T,1, QB||T,2) σ1 = ê(QA||T,1, DB||T,2)
σ2 = ê(DA||T,1Z

xA
1 , QB||T,2XB,2) σ2 = ê(QA||T,1XA,1, DB||T,2Z

xB
2)

σ3 = ê((Z1Y1)
xA , XB,2) σ3 = ê(XA,1, (Z2Y2)

xB)
ST = (Π,T, IDA, IDB , epkA, epkB)

SK = H(ST , σ1, σ2, σ3)

Fig. 3. Outline of protocol modifiedFSUrev

We name the resultant protocol modifiedFSUrev. A description is given below:
Let Σ = (Gen,Enc,Dec) be a symmetric encryption scheme.

– ParGen(1λ, N)→ (MSK ,MPK ,RL, T):
1. Generate z, y ∈U Zq and set Zj = gzj , Yj = gyj (∈ Gj) (j = 1, 2).
2. Output MSK = z, MPK = (Z1, Z2, Y1, Y2), RL = ∅, and T = 0.

Note that y is erased after generating Y1 and Y2.
– SSKGen(MSK , ID i)→ ssk i:

1. Set Qi||0,j = Hj(ID i||0) = g
qi||0,j
j (∈ Gj) (j = 1, 2) and set Di||0,j = Qz

i||0,j (∈ Gj)

(j = 1, 2).
2. Generate a secret-key, Ki, as Ki ← Gen(1λ).
3. Output ssk i = (Di||0,1, Di||0,2, Ki).

Note that Di||0,1 and Di||0,2 are used as csk i,0 (= (Di||0,1, Di||0,2)), i.e., the initial
current secret-key for which no revoke has occurred yet.

– Revoke(RL, T, rl)→ RL:
1. Update RL← RL ∪ rl and T ← T + 1.

– KeyUp(MSK , T,RL)→ kuT :

10

1. For each user, Pi, not revoked at T , set Qi||T,j = Hj(ID i||T) = g
qi||T,j

j (∈ Gj)
(j = 1, 2) and set Di||T,j = Qz

i||T,j (∈ Gj) (j = 1, 2).
2. Compute Ci,1 ← Enc(Ki, Di||T,1), Ci,2 ← Enc(Ki, Di||T,2).
3. Output kuT = {(ID i, Ci,1, Ci,2) | User Pi is not revoked at time counter T .}.

– CSKGen(ID i, T, ssk i, kuT)→ csk i,T :
1. Decrypts Di||T,1 ← Dec(Ki, Ci,1), Di||T,2 ← Dec(Ki, Ci,2).
2. Output csk i,T = (Di||T,1, Di||T,2).

– EKGen(ID i, ID i′ , T, csk i,T)→ (esk i, epk i):
1. If the algorithm is executed by an initiator (resp. responder), do as follows:
2. Generate xi ∈U Zq and set Xi,1 = gxi

1 (resp. Xi,2 = gxi
2).

3. Output esk i = xi, epk i = Xi,1 (resp. esk i = xi, epk i = Xi,2).
– SKGen(ID i, ID i′ , T, csk i,T , esk i, epk i′)→ SK .

1. If the algorithm is executed by an initiator (resp. responder), do as follows:
2. Parse csk i,T = (Di||T,1, Di||T,2), esk i = xi and epk i′ = Xi′,2 (resp. epk i′ = Xi′,1).
3. Compute Qi′||T,2 = H2(ID i′ ||T) (resp. Qi′||T,1 = H1(ID i′ ||T)).
4. Let σ1 = ê(Di||T,1, Qi′||T,2) (resp. σ1 = ê(Qi′||T,1, Di||T,2)).
5. Let σ2 = ê(Di||T,1Z

xi
1 , Qi′||T,2Xi′,2) (resp. σ2 = ê(Qi′||T,1Xi′,1, Di||T,2Z

xi
2)).

6. Let σ3 = ê((Z1Y1)
xi , Xi′,2) (resp. σ3 = ê(Xi′,1, (Z2Y2)

xi)).
7. Let ST = (Π,T, ID i, ID i′ , epk i, epk i′) (resp. ST = (Π,T, ID i′ , ID i, epk i′ , epk i)).
8. Output SK = H(ST , σ1, σ2, σ3).

Two parties, PA and PB, compute the same shared values,

σ1 = g
zqA||T,1qB||T,2

T , σ2 = g
z(qA||T,1+xA)(qB||T,2+xB)

T , σ3 = g
(z+y)xAxB

T ,

and, therefore, have the same session key, SK .

3.4 Security of Protocol modifiedFSUrev

Regarding the security of protocol modifiedFSUrev, we have the following theorem.

Theorem 1. If G1, G2, and GT are cyclic groups where the asymmetric GBDH as-
sumption holds, H, H1, and H2 are random oracles, and Σ is IND-CPA secure, protocol
modifiedFSUrev is rid-eCK secure.

A detailed proof is shown in Appendix A.

4 Conclusions

We examined whether a revocation function can be added to a protocol, protocol FSU,
that has been adopted as an international standard, ISO/IEC11770-3.

To make protocol FSU revocable, a generic technique converting an identity-based
encryption scheme to a revocable identity-based encryption scheme is applied to protocol
FSU.

In addition, to make the converted RIB-AKE protocol efficient, we reduced ephemeral
information exchanged in the protocol, and introduced an additional parameter to the
master public-key where the secret information of the additional parameter is not needed
to include in the master secret-key.

We discussed the security of the resultant protocol, and proved that it is rid-eCK
secure under the asymmetric GBDH assumption.

11

Acknowledgement.

We would like to thank Koutarou Suzuki, Junichi Tomida, Taroh Sasaki, Koki Iwai, and
Takeru Kawaguchi for their valuable comments on the earlier works of this paper.

References
1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In:

IEEE FOCS ’97. pp. 394–403. IEEE Computer Society (1997)
2. Emura, K., Takayasu, A., Watanabe, Y.: Generic constructions of revocable hierarchical identity-based en-

cryption. Cryptology ePrint Archive, Report 2021/515 (2021), https://eprint.iacr.org/2021/515
3. Fujioka, A., Hoshino, F., Kobayashi, T., Suzuki, K., Ustaoglu, B., Yoneyama, K.: id-eCK secure ID-based

authenticated key exchange on symmetric and asymmetric pairing. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences 96-A(6), 1139–1155 (2013)

4. Fujioka, A., Suzuki, K., Ustaoglu, B.: Ephemeral key leakage resilient and efficient ID-AKEs that can share
identities, private and master keys. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. Lecture Notes in
Computer Science, vol. 6487, pp. 187–205. Springer (2010)

5. ISO/IEC 11770-3:2021 Information security – Key management Part 3: Mechanisms using asymmetric tech-
niques (2021)

6. Nakagawa, K., Fujioka, A., Nagai, A., Tomida, J., Xagawa, K., Yasuda, K.: Making the identity-based Diffie-
Hellman key exchange efficiently revocable. In: Aly, A., Tibouchi, M. (eds.) LATINCRYPT 2023. Lecture
Notes in Computer Science, vol. 14168, pp. 171–191. Springer (2023)

7. Okano, Y., Tomida, J., Nagai, A., Yoneyama, K., Fujioka, A., Suzuki, K.: Revocable hierarchical identity-based
authenticated key exchange. In: Park, J.H., Seo, S. (eds.) ICISC 2021. Lecture Notes in Computer Science,
vol. 13218, pp. 3–27. Springer (2021)

8. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: Security model and construction. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. Lecture Notes in Computer Science, vol. 7778, pp. 216–234.
Springer (2013)

9. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption. Theoretical Computer Science 542,
44–62 (2014)

A Security Proof of Theorem 1

We need the asymmetric GBDH assumption in the pairing groups G1, G2, and GT , with
generators of g1, g2 and gT , respectively, where the orders of all gi are q.

Let the inputs of the asymmetric GBDH problem be U1 := gu1 , U2 := gu2 , V1 := gv1 , V2 :=
gv2 ,W1 := gw1 and W2 := gw2 . Also, let S := ê(g1, g2)

uvw, the solution to the asymmetric
GBDH problem.

Assume that a PPT adversary, A, exists that breaks the rid-eCK security of our
RIB-AKE protocol. We construct the asymmetric GBDH solver, S, that simulates the
protocol’s environment using the DBDH oracle and can solve the asymmetric GBDH
problem with non-negligible probability. A is said to be successful with non-negligible
probability if A wins the distinguishing game with probability 1

2
+ f(λ), where f(λ) is

non-negligible, and event M denotes that A is successful.
Let the test session be sid∗ = (Π, I, T, IDA, IDB, epkA, epkB, t) or (Π, R, T, IDB,

IDA, epkA, epkB, t
′), which is a completed session between honest users, PA and PB, where

user PA is the initiator and user PB is the responder of the test session, sid∗. Let H∗ be the
event that adversary A queries (ST , σ1, σ2, σ3) to H. Let H∗ be the complement of event
H∗. Since H is a random oracle, adversary A cannot obtain any information about the
test session key from the session keys of non-matching sessions. Hence, Pr(M ∧H∗) ≤ 1

2

and Pr(M) = Pr(M ∧H∗)+Pr(M ∧H∗) ≤ Pr(M ∧H∗)+ 1
2
, whence f(λ) ≤ Pr(M ∧H∗).

Henceforth, the event M ∧H∗ is denoted by M∗.

12

Assume that adversary A succeeds in an environment with nu (≤ N) users and acti-
vates at most ns sessions within a user.

Note that Y1 and Y2 may be revealed to A however the secret value of them, y, is not
as y is erased after computation of Y1 and Y2.

Before going into the details of the proof, one expression is defined. We say that a
shared value is correctly formed w.r.t. the static and ephemeral public-keys in a session
when the shared value can be computed from the static and the ephemeral public-keys
together with their secret-keys. Note that the correctness of σi can be checked with
procedure Check described later.

Hereafter, we consider the following eight cases, which reflect the restrictions in fresh-
ness’ definition in Section 2.5. See Table 1 for which keys are leaked to the adversary:

– Case 1: The owner and the peer of session sid∗, PA and PB, are non-revoked. The
matching session, sid∗, exists.
(a) A queries SSKRev(ID∗

i) and CSKRev(ID∗
i , T

∗) for i = A,B (MSKRev is also
possible.)

(b) A makes queries SSKRev(ID∗
A), CSKRev(ID∗

A, T
∗), and ESKRev(sid∗).

(c) A makes queries SSKRev(ID∗
B), CSKRev(ID∗

B, T
∗), and ESKRev(sid∗).

(d) A queries ESKRev(sid∗) and ESKRev(sid∗).
– Case 2: The owner and the peer of session sid∗, PA and PB, are non-revoked. The

matching session, sid∗, does not exist.
(a) A queries SSKRev(ID∗

A) and CSKRev(ID∗
B, T

∗).
(b) A issues ESKRev(sid∗).

– Case 3: The peer of the session sid∗ is revoked. The matching session sid∗ does not
exist.
(a) A makes queries SSKRev(ID∗

A), CSKRev(ID∗
A, T

∗), and SSKRev(ID∗
B).

(b) A queries ESKRev(sid∗) and SSKRev(ID∗
B).

Here, users PA and PB are the initiator and responder of the test session sid∗, respec-
tively. Table 1 classifies events, named E1a, E1b, E1c, E1d, E2a, E2b, E3a, and E3b. In these
tables, “ok” means that the secret-key is not revealed. “r” means that the secret-key may
be revealed. “n” means that no matching session exists or the peer of the session, sid∗, is
revoked. The “instance embedding” row shows how the simulator embeds an instance of
the asymmetric GBDH problem.

Since the classification covers all possible events, at least one event Ee ∧M∗ in the
tables occurs with non-negligible probability if event M∗ occurs with non-negligible proba-
bility. Thus, the asymmetric GBDH problem can be solved with non-negligible probability,
which means the proposed protocol is secure under the asymmetric GBDH assumption.
We investigate each of these events in the following.

Event E1a ∧M∗. S generate MSK (= (z, y) ∈U Z2
q) and define MPK := (Z1, Z2, Y1, Y2)

(= (gz1, g
z
2, U1, U2)) First, S guesses the test session, sid∗, owned by two users, PA and PB.

S selects PA and PB from nu users. S guesses the test session with probability 1/n2
un

2
s,

i.e., the test session is the t-th session initialized by Send query as the initiator and
owned by PA, and the matching session of the test session is the t′-th session initialized
by Send query as the responder and owned by peer PB. S sets the ephemeral public-key

13

Table 1. Classification of events.

MSK sskA cskA eskA sskB cskB eskB instance embedding
E1a r r r ok r r ok Y1 := U1, Y2 := U2, XA,1 := V1, XB,2 := W2

E1b ok r r ok ok ok r Z1 := U1, Z2 := U2, XA,1 := V1, QB||T,2 := W2

E1c ok ok ok r r r ok Z1 := U1, Z2 := U2, QA||T,1 := V1, XB,2 := W2

E1d ok ok ok r ok ok r Z1 := U1, Z2 := U2, QA||T,1 := V1, QB||T,2 := W2

E2a ok r r ok ok ok n Z1 := U1, Z2 := U2, XA,1 := V1, QB||T,2 := W2

E2b ok ok ok r ok ok n Z1 := U1, Z2 := U2, QA||T,1 := V1, QB||T,2 := W2

E3a ok r r ok r n n Z1 := U1, Z2 := U2, XA,1 := V1, QB||T,2 := W2

E3b ok ok ok r r n n Z1 := U1, Z2 := U2, QA||T,1 := V1, QB||T,2 := W2

“ok” means that the secret-key is not revealed. “r” means that the secret-key may be
revealed. “n” means that no matching session exists or the peer of the session sid∗ is
revoked. The “instance embedding” row shows how the simulator embeds an instance of
the asymmetric GBDH problem.

of t-th session of user PA as epk ∗
A := V1. S sets the ephemeral public-key of t′-th session

of user PB as epk ∗
B := W2.

Note that esk ∗
A (= v) and esk ∗

B (= w) cannot be calculated; however, they are not
asked in event E1a.
S activates adversary A on this set of users and awaits the actions of A.
S maintains a list, LH , that contains queries and answers of H oracle, and a list, LS,

that contains queries and answers of SKRev. S maintains a list, LSSK , that contains
identifies and static secret-keys. S simulates oracle queries as follows:

1. Send(Π, I, T, ID i, ID i′): If i = A, i′ = B, and it is the t-th initialized session of A, i.e.,
the test session, records (Π, I, T, IDA, IDB, epk

∗
A, ·, ∗, t) in list LSend, and returns

V1. Otherwise, S computes epk i, esk i honestly, records (Π, I, T, ID i, ID i′ , epk i, ·,
esk i, s) in list LSend when it is the s-th initialized session of Pi, and returns epk i.

2. Send(Π,R, T, ID i, ID i′): If i = B, i′ = A, and it is the t′-th initialized session of B,
i.e., the test session, i.e.„ S records (Π, R, T, IDB, IDA, epk

∗
B, ·, ∗, t′) in list LSend,

and returns W2. Otherwise, S computes epk i, esk i honestly, records (Π, R, T, ID i,
ID i′ , epk i, ·, esk i, s

′) in list LSend when it is the s′-th initialized session of Pi, and
returns epk i.

3. Send(Π, I, T, ID i, ID i′ , epk i′): If it is the response corresponding to (Π, I, T, ID i,
ID i′ , epk i, ·, esk i, s), S records (Π, I, T, ID i, ID i′ , epk i, epk i′ esk i, s) as completed
in list LSend. Otherwise, S returns an error.

4. Send(Π,R, T, ID i, ID i′ , epk i′): If it is the response corresponding to (Π, R, T, ID i,
ID i′ , ·, epk i, esk i, s

′), S records (Π, R, T, ID i, ID i′ , epk i′ , epk i esk i, s
′) as completed

in list LSend. Otherwise, S returns an error.
5. H(ST , σ1, σ2, σ3):

(a) If (ST , σ1, σ2, σ3) is recorded in list LH , then S returns the value, SK , recorded in
list LH .

(b) Else if there exists a session, (Π, I, T, ID i, ID i′ , epk i, epk i′ , s) or (Π, R, ID i′ ,
ID i, epk i, epk i′ , s

′), recorded in list LS where σ1, σ2, and σ3 are correctly formed
w.r.t. the static and ephemeral public-keys in the session, and the session is the
test session, i.e., i = A, i′ = B, and s = t or s′ = t′, then S computes the answer
of the asymmetric GBDH instance by procedure Extract described below, and is
successful by outputting the answer.

14

(c) Else if there exists a session, (Π, I, T, ID i, ID i′ , epk i, epk i′ , s) or (Π, R, ID i′ ,
ID i, epk i, epk i′ , s

′), recorded in list LS where σ1, σ2, and σ3 are correctly formed
w.r.t. the static and ephemeral public-keys in the session, and the session is not
the test session, then S returns the value, SK , recorded in list LS and records SK
and (ST , σ1, σ2, σ3) in list LH .

(d) Otherwise, S returns a random value, SK , and records SK and (ST , σ1, σ2, σ3) in
list LH .

6. SKRev((Π, I, T, ID i, ID i′ , epk i, epk i′ , s) or (Π,R, T, ID i′ , ID i, epk i, epk i′ , s
′):

(a) If (Π, I, T, ID i, ID i′ , epk i, epk i′ esk i, s) or (Π, R, T, ID i′ , ID i, epk i, epk i′ esk i′ ,
s′) is not recorded in LSend, S returns an error.

(b) Else if (Π, I, T, ID i, ID i′ , epk i, epk i′ , s) or (Π, R, T, ID i′ , ID i, epk i, epk i′ , s
′)

(= sid)) is recorded in list LS, then S returns the value, SK , recorded in list LS.
(c) Else if there exists (ST , σ1, σ2, σ3) recorded in list LH where σ1, σ2, and σ3 are

correctly formed w.r.t. the static and ephemeral public-keys in the session, then S
returns the value, SK , recorded in list LH and records sid and SK in list LS.

(d) Otherwise, S returns a random value, SK , and records sid and SK in list LS.

7. ESKRev((Π, I, T, ID i, ID i′ , epk i, epk i′ , s) or (Π,R, T, ID i′ , ID i, epk i, epk i′ , s
′): If (Π,

I, T, ID i, ID i′ , epk i, epk i′ , s) or (Π, R, T, ID i′ , ID i, epk i, epk i′ , s
′) (= sid) is the

test session, i.e., i = A, i′ = B, epk i = V1, epk i′ = W2, and s = t or s′ = t′, then S
aborts with failure. Otherwise, S picks esk i in list LSend, and returns it.

8. SSKRev(ID i): If (ID i, Di,1, Di,2, Ki) is recorded in list LSSK , S returns Di,1, Di,2,
and Ki. Else if (ID i, qi,j, Qi,j) is recorded in list LHj

(j = 1, 2), S sets Di,j = Qz
i,j

(∈ Gj) (j = 1, 2), chooses a secret-key, Ki, of Σ, records (ID i, Di,1, Di,2, Ki) in LSSK ,
and returns Di,1, Di,2, and Ki. Otherwise, S sets Qi,j = Hj(ID i) (= g

qi,j
j) (∈ Gj)

(j = 1, 2), sets Di,j = Qz
i,j (∈ Gj) (j = 1, 2), chooses a secret-key, Ki, of Σ, records

(ID i, Di,1, Di,2, Ki) in LSSK , records (ID i, qi,j, Qi,j) in list LHj
(j = 1, 2), and returns

Di,1, Di,2, and Ki.
9. KeyUp(T): If T > Tcu where Tcu is the current time counter which S manages, S

returns ⊥. Else if (T, kuT) is recorded in list LKU , S returns kuT .
Otherwise, S returns kuT as follows:
– S sets kuT = ∅.
– For each user, Pi, not revoked at T , S sets Qi||T,j = Hj(ID i||T) = g

qi||T,j

j (∈ Gj)
(j = 1, 2) and sets Di||T,j = Qz

i||T,j (∈ Gj) (j = 1, 2).
– If (ID i, Di,1, Di,2, Ki) is recorded in list LSSK , S computes Ci,1 ← Enc(Ki, Di||T,1),

Ci,2 ← Enc(Ki, Di||T,2), and adds (ID i, Ci,1, Ci,2) to kuT .
– Else if (ID i, qi,j, Qi,j) is recorded in list LHj

(j = 1, 2), S sets Di,j = Qz
i,j (∈

Gj) (j = 1, 2), chooses a secret-key, Ki, of Σ, and records (ID i, Di,1, Di,2, Ki)
in LSSK . S computes Ci,1 ← Enc(Ki, Di||T,1), Ci,2 ← Enc(Ki, Di||T,2), and adds
(ID i, Ci,1, Ci,2) to kuT .

– Otherwise, S sets Qi,j = Hj(ID i) = g
qi,j
j (∈ Gj) (j = 1, 2), sets Di,j = Qz

i,j

(∈ Gj) (j = 1, 2), chooses a secret-key, Ki, of Σ, records (ID i, Di,1, Di,2, Ki) in
LSSK , and records (ID i, qi,j, Qi,j) in list LHj

(j = 1, 2), and S computes Ci,1 ←
Enc(Ki, Di||T,1), Ci,2 ← Enc(Ki, Di||T,2), and adds (ID i, Ci,1, Ci,2) to kuT .

– Finally, S adds (T, kuT) to LKU and returns kuT .

15

10. CSKRev(ID , T): If T > Tcu or ID ∈ RL, S returns ⊥. Else if (T, kuT) is recorded in
list LKU , S computes Di||T,1 ← Dec(Ki, Ci,1), Di||T,2 ← Dec(Ki, Ci,2), sets csk i,T =
(Di||T,1, Di||T,2), and returns csk i,T . Otherwise, S generates kuT as Step 9, sets csk i,T =
(Di||T,1, Di||T,2), and returns csk i,T .

11. MSKRev(): S returns z.
12. Test(sid): If sid is not t-th session of PA, then S aborts with failure. Otherwise, S

responds to the query faithfully.
13. If A outputs a guess, S aborts with failure.
14. Hj(ID i) (j = 1, 2): If (ID i, qi,j, Qi,j) is recorded in list LHj

, then S returns hash value
Qi,j. Otherwise, S selects random qi,j, sets Qi,j = Ht(ID i) = gqi,j , records (ID i, qi,j,
Qi,j) in list LHj

, and returns Qi,j.

Extract. This procedure computes the answer to the asymmetric GBDH instance as
follows: σ′

3 = σ3/ê(XA,1, XB,2)
z = gyxAxB

T = guvwT

Check. This procedure checks whether the shared secrets are correctly formed w.r.t. the
static and ephemeral public-keys, and can consistently simulate SKRev and H queries.
More precisely, in the simulation of the H(ST , σ1, σ2, σ3) query, solver S needs to check
that the shared secrets, σ1, σ2, and σ3, are correctly formed, and if so, S returns session
key SK being consistent with the previously answered SKRev(Π, I, T, IDA, IDB, epkA,
epkB, s) and SKRev(Π, R, T, IDB, IDA, epkA, epkB, s

′) queries. The solver, S, can
check if shared secrets, σ1, σ2, and σ3, are correctly formed w.r.t. the static and ephemeral
public-keys by asking DBDH1,1,2 oracle as

DBDH1,1,2(Z1, QA||T,1, QB||T,2, σ1) = 1,

DBDH1,1,2(Z1, QA||T,1XA,1, QB||T,2XB,2, σ2) = 1,

DBDH1,1,2(Z1Y1, XA,1, XB,2, σ3) = 1,

and this implies that σ1, σ2, and σ3 are correctly formed.
Notice that, in other cases in Table 1, the solver, S, can check whether shared secrets,

σ1, σ2, and σ3, are correctly formed or not with the same procedure.

Analysis. The simulation of the environment for adversary A is perfect except with
negligible probability. The probability that adversary A selects the session, where PA is
initiator, PB is responder, XA,1 is V1, and XB,2 is W2 as the test session, sid∗, is at least

1
n2
un

2
s
. Suppose this is indeed the case, solver S does not abort in Step 12.

Suppose event E1a occurs, solver S does not abort in Steps 7.
Suppose event M∗ occurs, adversary A queries correctly formed σ1, σ2, and σ3 to H.

Therefore, solver S is successful as described in Step 5c since σ1, σ2, and σ3 are correctly
formed, and does not abort as in Step 13.

Hence, solver S is successful with probability Pr(S) ≥ p1a
n2
un

2
s
, where p1a is probability

that E1a ∧M∗ occurs.

Event E1b ∧M∗. The reduction to the asymmetric GBDH assumption is similar to event
E1a ∧M∗ except for the following points:
S sets Z1 = U1, Z2 = U2, XA,1 = V1, and QB||T,2 = W2. S obtains the solution

g
zxAqB||T,2

T as σ2 · (ê(XA,1, Z2)
xB)−1 · (ê(Z1, QB||T,2XB,2)

qA||T,1)−1 = g
zxAqB||T,2

T .

16

S is successful with probability Pr(S) ≥ p1b
n2
uns

, where p1b is probability that E1b ∧M∗

occurs.

Event E1c ∧M∗. The reduction to the asymmetric GBDH assumption is similar to event
E1a ∧M∗ except for the following points:
S sets Z1 = U1, Z2 = U2, QA||T,1 = V1, and XB,2 = W2. S obtains the solution

g
zqA||T,2xB

T as σ2 · (ê(QA||T,1, Z2)
qB||T,2)−1 · (ê(Z1, QB||T,2XB,2)

xA)−1 = g
zqA||T,2xB

T .
S is successful with probability Pr(S) ≥ p1c

n2
uns

, where p1c is probability that E1c ∧M∗

occurs.

Event E1d ∧M∗. The reduction to the asymmetric GBDH assumption is similar to event
E1a ∧M∗ except for the following points:
S sets Z1 = U1, Z2 = U2, QA||T,1 = V1, and QB||T,2 = W2. S obtains the solution

g
zqA||T,1qB||T,2

T as outputting σ1.
S is successful with probability Pr(S) ≥ p1d

n2
u
, where p1d is probability that E1d ∧M∗

occurs.

Event E2a ∧M∗. The reduction to the asymmetric GBDH assumption is similar to event
E1a ∧M∗ except for the following points:
S sets Z1 = U1, Z2 = U2, XA,1 = V1, and QB||T,2 = W2. S obtains the solution

g
zxAqB||T,2

T as σ2 · (σ3 · (ê(XA,1, XB,2)
y)−1) · (ê(Z1, QB||T,2XB,2)

qA||T,1)−1 = g
zxAqB||T,2

T .
S is successful with probability Pr(S) ≥ p2a

n2
uns

, where p2a is probability that E2a ∧M∗

occurs.

Event E2b ∧M∗. The reduction to the asymmetric GBDH assumption is similar to event
E1a ∧M∗ except for the following points:
S sets Z1 = U1, Z2 = U2, QA||T,1 = V1, and QB||T,2 = W2. S obtains the solution

g
zqA||T,1qB||T,2

T as outputting σ1.
S is successful with probability Pr(S) ≥ p2b

n2
u
, where p2b is probability that E2b ∧M∗

occurs.

Event E3a ∧M∗. The reduction to the asymmetric GBDH assumption is similar to event
E1a ∧M∗ except for the following points:
S sets Z1 = U1, Z2 = U2, XA,1 = V1, and QB||T,2 = W2. S obtains the solution

g
zxAqB||T,2

T as σ2 · (σ3 · (ê(XA,1, XB,2)
y)−1) · (ê(Z1, QB||T,2XB,2)

qA||T,1)−1 = g
zxAqB||T,2

T .
S is successful with probability Pr(S) ≥ p3a

n2
uns

, where p3a is probability that E3a ∧M∗

occurs.

Event E3b ∧M∗. The reduction to the asymmetric GBDH assumption is similar to event
E1a ∧M∗ except for the following points:
S sets Z1 = U1, Z2 = U2, QA||T,1 = V1, and QB||T,2 = W2. S obtains the solution

g
zqA||T,1qB||T,2

T as outputting σ1.
S is successful with probability Pr(S) ≥ p3b

n2
u
, where p3b is probability that E3b ∧M∗

occurs.

