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Abstract

Although privately programmable pseudorandom functions (PPPRFs) are known to have
numerous applications, so far, the only known constructions rely on Learning with Error (LWE) or
indistinguishability obfuscation. We show how to construct a relaxed PPPRF with only one-way
functions (OWF). The resulting PPPRF satisfies 1/poly security and works for polynomially
sized input domains. Using the resulting PPPRF, we can get new results for preprocessing
Private Information Retrieval (PIR) that improve the state of the art. Specifically, we show
that relying only on OWF, we can get a 2-server preprocessing PIR with polylogarithmic
bandwidth while consuming Õλ(N

1
2+ϵ) client space and N1+ϵ server space for an arbitrarily

small constant ϵ ∈ (0, 1). In the 1-server setting, we get a preprocessing PIR from OWF that

achieves polylogarithmic online bandwidth and Õλ(N
1
2+ϵ) offline bandwidth, while preserving

the same client and server space as before. Our result, in combination with the lower bound of
Ishai, Shi, and Wichs (CRYPTO’24), establishes a tight understanding of the bandwidth and
client space tradeoff for 1-server preprocessing PIR from Minicrypt assumptions. Interestingly,
we are also the first to show non-trivial ways to combine client-side and server-side preprocessing
to get improved results for PIR.

∗Randomized Author Ordering. Bo Peng contributed to this work during a visit at CMU. Email:
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1 Introduction

A programmable pseudorandom function (PRF) [BW13,BGI14] is a PRF with an additional
programming feature: given a normal key, one can generate a programmed key such that the
evaluation of the PRF at some specified location x is forced to a particular value v, whereas
evaluations at all other locations are unchanged. A programmable PRF satisfies programming
privacy [BLW17,BKM17,CC17,PS18], if the programmed key does not leak the point x at which
the programming took place, as long as the programmed value v is randomly chosen. Such PRFs
are called Privately Programmable PRF (PPPRF) [BLW17,BKM17,CC17,PS18]. It is well-known
that if we do not need programming privacy, we can construct programmable PRFs from one-way
functions [BW13,BGI14], relying on the famous tree-based construction of Goldreich, Goldwasser,
and Micali [GGM86], and additionally specifying the point x and the value v in the programmed
key. Further, the resulting construction is simple and enjoys concrete efficiency. By contrast, if
we insist on programming privacy, to the best of our knowledge, PPPRF constructions are only
known from lattice assumptions such as Learning with Errors (LWE) [CC17,BTVW17,PS18] or
from indistinguishability obfuscation (iO) [BLW17]. Further, known constructions are complex, and
rely on layers of fully homomorphic encryption.

The programming privacy feature, however, turns out to be crucial in many applications. A
notable example is the recent line of work on client-side preprocessing Private Information Retrieval
(PIR). We now give some background on PIR and explain how PPPRFs aids the construction of
modern PIR schemes.

PIR allows a client to request entries from large, public database stored by one or more server(s),
without leaking its query to any individual server [CGKS95]. Because PIR promises many useful
applications such as private DNS [pri], private blocklist [KCG21], and private web search [HDCG+23],
the primitive has been extensively studied for several decades. Classical PIR schemes do not employ
preprocessing and require that the server store only the original database. It is well-known that in
the classical model, any PIR scheme must suffer from linear cost per query [BIM00]: informally,
if there is some location that the server need not visit during a query, it leaks that the client is
not interested in that location. Fortunately, more recent works showed that we can overcome this
linear computation barrier through either server-side preprocessing [BIM00,WY05] or client-side
preprocessing [CK20]. In server-side preprocessing, the server encodes the database and stores the
encoded version. In client-side preprocessing, each client runs some protocol with the server once
upfront to subscribe to the private query service. At the end of the preprocessing protocol, the client
stores some hint that depends on the database. The hint will facilitate the client’s future queries,
and we want the hint to be asymptotically smaller than the original database. It is desirable if after
the one-time preprocessing, we can support an unbounded number of queries — in other words, the
total number of queries is unknown at preprocessing time.

A line of recent works [CK20,SACM21,GZS24,ZPSZ24,CHK22,ZLTS23] have shown a close
connection between PPPRFs and client-side preprocessing PIR with sublinear computation per
query. Notably, Shi et al. [SACM21] showed that assuming the existence of a PPPRF, we can
get a 2-server client-preprocessing PIR with polylogarithmic bandwidth and Õλ(

√
N) client and

server computation per query, assuming Õλ(
√
N) client space, where N denotes the database size,

and Õλ(·) hides polylogarithmic terms and a polynomial dependence on the security parameter
λ. Their approach, in turn inspired by Corrigan-Gibbs and Kogan [CK20], is to use a Privately
Puncturable PRF (a slightly weaker variant of Privately Programmable PRF also known only from
LWE or iO) to construct a privately puncturable pseudorandom set (PPPS), and then use the
latter as a stepping stone towards getting PIR. Subsequent works showed that relying on PPPRF
and fully homomorphic encryption (FHE), we can extend Shi et al.’s result to the single-server
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setting [ZLTS23,LP22] while preserving the same asymptotics∗. Since the existence of PPPRF is
known from LWE or iO [BLW17,BKM17,CC17,PS18], these works [SACM21,CHK22,ZLTS23,LP22]
establish the theoretical feasibility of achieving preprocessing PIR with the aforementioned costs,
assuming either LWE or iO.

Of course, we are not satisfied with just theoretical feasibility, which prompted the community’s
effort in search of a preproccessing PIR scheme with better concrete efficiency [LP23, ZPSZ24,
MIR23,HPPY24,GZS24]. As a stepping stone towards concrete efficiency, recent works [ZPSZ24,
MIR23, HPPY24, GZS24] asked whether we can get efficient preprocessing PIR from minimal
assumptions [ZPSZ24,MIR23,HPPY24]. Specifically, rather than relying on LWE or iO, can we
get efficient preprocessing PIR with only symmetric primitives such as one-way functions (OWFs)?
This line of work culminated in the result of Ghoshal et al. [GZS24], who showed that assuming
only OWF, we can get Oλ(N

1/4) bandwidth per query in the 2-server setting, while all other
costs remain the same as Shi et al. [SACM21]. Although non-trivial, this result is not completely
satisfying since we cannot match the polylogarithmic bandwidth cost of Shi et al. [SACM21]. For
the 1-server setting, Ghoshal et al. [GZS24] showed that assuming only OWF, we can get Oλ(N

1/4)
online bandwidth and the same Oλ(N

1/2) offline bandwidth as before, while all other costs remain
the same. The subsequent work of Ishai et al. [ISW24] completed the picture by showing that
in the 1-server setting, the Oλ(N

1/2) offline bandwidth cannot be improved under O(
√
N) client

space, unless we make cryptographic assumptions that imply public-key primitives. At a very high
level, Ghoshal et al.’s approach side-steps the issue of lacking a suitable PPPRF from OWF, by
using OWF to directly construct a privately puncturable pseudorandom set that provides only list
decoding rather than unique decoding. However, the drawback is that the list decoding overhead
translates directly to the scheme’s bandwidth cost, which leaves us seemingly stuck at Oλ(N

1/4)
(online) bandwidth with the techniques.

Thus, the state of the art of preprocessing PIR begs the following questions:

• In the 2-server setting, can we match the asymptotics of Shi et al. [SACM21] but relying only on
OWF?

• In the 1-server setting, although there is a barrier for the offline bandwidth, can we further
improve the online bandwidth while preserving other costs?

Now, if we can get an efficient PPPRF from OWF, we would be able to affirmatively answer
the above questions. Unfortunately, the feasibility/infeasibility of constructing PPPRF from OWF
remains open and progress towards either upper bound or (blackbox) separation would be very
exciting. In this paper, we ask a more relaxed form of the question:

• Can we construct slightly relaxed versions of PPPRFs from OWF that are nonetheless sufficient
for constructing efficient preprocessing PIR?

1.1 Our Results and Contributions

We consider a relaxed form PPPRF. First, we restrict ourselves to PPPRFs where the input
domain is polynomial in size. Second, instead of aiming for full security, we will allow 1/poly security
failure. We show that with these relaxations, it is indeed possible to construct a reasonably efficient
PPPRF from OWF. Moreover, we show that the relaxed PPPRF is indeed sufficient for constructing

∗However, these schemes [ZLTS23,LP22], which partly build on top of the ideas of Corrigan-Gibbs et al. [CHK22],
suffer from the following caveat: they require that the server allocate Ωλ(N) space per client during the preprocessing
phase. In particular, in the unbounded query model, the preprocessing of the next batch of queries is piggybacked on
the current batch of queries, meaning that the server needs Ωλ(N) per-client space constantly.
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Table 1: Comparison: 1-server PIR with sublinear computation. N is the database size, m
denotes the number of clients, and ϵ ∈ (0, 1) is an arbitrarily small positive constant. Note∗: Our
bandwidth is (ϵλ logN)O(1/ϵ).

Scheme Assumpt. Compute
Communication Space
online offline client server

[CHK22] LWE Õλ(
√
N) Õλ(

√
N) Õλ(1) Õλ(

√
N) Õλ(m ·N)

[ZLTS23,LP22] LWE Õλ(
√
N) Õλ(1) Õλ(1) Õλ(

√
N) Õλ(m ·N)

[LMW23] Ring-LWE Oλ((logN)O( 1
ϵ
)) Õλ(1) 0 0 Oλ(N

1+ϵ)

[ZPSZ24,MIR23] OWF Õλ(
√
N) Oλ(

√
N) Oλ(

√
N) Õλ(

√
N) O(N)

[GZS24] OWF Õλ(
√
N) Oλ(N

1/4) Oλ(
√
N) Õλ(

√
N) O(N)

Ours OWF Õλ(N
1
2
+ϵ) Õλ(1)

∗ Oλ(N
1
2
+ϵ) Õλ(N

1
2
+ϵ) N1+ϵ

efficient preprocessing PIR, which allows us to affirmatively answer the above questions that are left
open by the recent PIR literature. We now elaborate on our results.

We first present our main result on weakly secure, small-domain PPPRF.

Theorem 1.1 (1/poly-secure, small-domain PPPRF). Assume the existence of OWF. Then, for
any arbitrarily small ϵ ∈ (0, 1), there exists a PPPRF with δ-programming privacy that maps ℓin-bit
inputs to ℓout-bit outputs, with the following performance where n = 2ℓin denotes the size of the input
domain:

• normal and programmed key length = (ϵλ log n)O(1/ϵ) · ℓout/δ2

• evaluation and programming time = (ϵλ log n)O(1/ϵ) · nϵ · ℓ3out/δ4.

Specifically, for δ = 1/poly(λ), the key length is upper bounded by ℓout · poly(λ, log n), and the
evaluation and programming time is bounded by ℓ3out · nϵ · poly(λ, log n).

With Theorem 1.1, we prove the following results about preprocessing PIR.

Theorem 1.2 (2-server preprocessing PIR from OWF). Assume the existence of OWF. Then, for
any arbitrarily small ϵ ∈ (0, 1), there exists a 2-server preprocessing PIR for an N-bit database,
with (ϵλ logN)O(1/ϵ) bandwidth and N1/2+ϵ(ϵλ logN)O(1/ϵ) server and client computation per query,
requiring N1/2+ϵ(ϵλ logN)O(1/ϵ) client space and N1+ϵ logO(1/ϵ)(N,λ) server space.

Simplifying the (ϵλ logN)O(1/ϵ) and logO(1/ϵ)(N,λ) factors to Õλ(1), and suppose that N is
polynomially bounded in λ, effectively our 2-server preprocessing PIR scheme enjoys Õλ(1) bandwidth

and Õλ(N
1
2
+ϵ) client and server computation per query, with Õλ(N

1
2
+ϵ) client space and N1+ϵ

server space.

Theorem 1.3 (1-server preprocessing PIR from OWF). Assume the existence of OWF. Then, for
any arbitrarily small ϵ ∈ (0, 1), there exists a 1-server preprocessing PIR for an N -bit database, with
(ϵλ logN)O(1/ϵ) online bandwidth, and N1/2+ϵ(ϵλ logN)O(1/ϵ) offline bandwidth, server and client
computation per query, requiring N1/2+ϵ(ϵλ logN)O(1/ϵ) client space and N1+ϵ logO(1/ϵ)(N,λ) server
space.

Again, simplifying the expressions, we effectively have Õλ(1) online bandwidth, Õλ(N
1
2
+ϵ) offline

bandwidth, client and server computation per query, while requiring Õλ(N
1
2
+ϵ) client space and

N1+ϵ server space.
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Table 2: Comparison: 2-server PIR with sublinear computation. The assumption PIR∗

means any assumption that implies classical single-server PIR with polylogarithmic bandwidth.

Scheme Assumpt. Compute Communication
Space

client server

[BIM00] None O(N/ϵ2 log2N) O(N1/3) 0 N1+ϵ

[WY05] None O(N/poly logN) O(N1/3) 0 poly(N)

[BIM00,WY05] None O(N1/2+ϵ) O(N1/2+ϵ) 0 poly(N)

[ISW24] None
Õ(
√
N) client

O(N1/3) Õ(N2/3) O(N)
Õ(N2/3) server

[SACM21] LWE Õλ(
√
N) Õλ(1) Õλ(

√
N) O(N)

[LP23] PIR∗ Õλ(
√
N) Õλ(1) Õλ(

√
N) O(N)

[ZPSZ24,MIR23] OWF Õλ(
√
N) Oλ(

√
N) Oλ(

√
N) O(N)

[GZS24] OWF Õλ(
√
N) Oλ(N

1/4) Õλ(
√
N) O(N)

Ours OWF Õλ(N
1
2
+ϵ) Õλ(1) Õλ(N

1
2
+ϵ) N1+ϵ

Clearly, the online bandwidth is optimal up to polylogarithmic factors. Further, restricted
to OWF, the offline bandwidth and client space tradeoff is also optimal up to N ϵ factors due to
the lower bound results of Ishai, Shi, and Wichs [ISW24]. Therefore, our result, in conjunction
with Ishai et al. [ISW24], completes our understanding of 1-server preprocessing PIR from OWF
(particularly regarding the bandwidth and client space tradeoff).

Corrigan-Gibbs et al. [CHK22] showed that the product of the client space and server computation
must be at least N , but this lower bound applies only when the server stores just the original
database. In comparison, our scheme combines both client-side and server-side preprocessing, and
the server actually stores an encoded version of the database — therefore, it is not clear whether
Corrigan-Gibbs et al. [CHK22]’s lower bound applies to our setting.

The fact that our PIR scheme combines client- and server-side preprocessing is also interesting.
Prior to our work, the literature on client-side preprocessing and server-side preprocessing relied on
disjoint techniques and it was not clear how to meaningfully combine these techniques. In this sense,
our paper can be viewed as the first to show how to combine client-side and server-side preprocessing
to get non-trivial results.

2 Informal Technical Roadmap

2.1 Inefficient PPPRF from OWF

Inspired by the programmable distributed point function of Boyle et al. [BGIK22], we can
construct an inefficient PPPRF as follows. Suppose that the input domain of the PPPRF is
{1, . . . , n− 1} and the output domain is a single bit. We consider randomly throwing m balls into
n bins (where m = n · poly(λ)), and the parity of the load in bin x is the output of the PPPRF at x
before programming. Now, to program the evaluation of the PPPRF at x, we can just remove a
ball from bin x to flip the parity if the program bit is different from the original bit †. To actually
implement the “randomly throwing balls” and “removing a ball” operation, we can directly use

†In the case that the program value is the same as the original value, we remove a ball from a dummy bin.
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the classical GGM-based puncturable PRF construction. We sample a key sk of an underlying
puncturable PRF pPRF : {0, 1}λ × [m]→ [n] to pseudorandomly throw m balls into n bins. When
we need to remove a ball from bin x, we find a random location r such that pPRF(sk, r) = x, and
puncture the pPRF at r. Then, the resulting punctured key sk′ only contains the information of the
remaining m− 1 balls. We can directly view this sk′ as the programmed key of our PPPRF, and
the evaluation of this programmed key at x is the parity of bin x when we consider throwing those
m− 1 balls into n bins.

This construction provides some level of privacy because when we puncture the underlying pPRF
at the point r, the punctured key does not leak the pPRF’s original evaluation outcome at r, so
the adversary cannot easily tell which location has been programmed. On the other hand, the
scheme has some leakage, because after puncturing the underlying pPRF at r, the joint bin load
distribution get somewhat skewed, and the adversary can potentially glean information from this
skewed distribution. From a careful analysis, one can show that the resulting PPPRF has privacy
loss roughly

√
n/m. In other words, if we set m = n · poly(λ), we can get 1/poly′(λ)-programming

privacy.

Drawback: poor efficiency. Recall that we are using the m balls into n bins construction, and
the outputs of the PPPRF are the parities of the bin loads. Even to evaluate at a single point of
the PPPRF, one needs to actually enumerate all the m balls to count the parity. Jumping ahead, in
our PIR construction later, for every query, the client will need to perform single-point evaluation
for Õ(

√
N) different PPPRF keys where N is the database size. With the current construction,

each evaluation takes time m > n =
√
N (the input domain size of the PPPRF we need for the PIR

construction is
√
N). As a result, the client would be subject to Ω(N) computation per query.

2.2 Efficiency Upgrade: Forest-Based PPPRF

To overcome the efficiency issue, the intuitive idea is to use a tree structure similar to the
Goldreich, Goldwasser, and Micali [GGM86] PRF construction. Say the inefficient PPPRF takes
quasi-linear time (w.r.t. the input domain size) to evaluate a single point. Consider a tree of n
leaves where each internal node has a wide fan-out of γ = nϵ for some small constant ϵ < 1. Each
internal node in the tree is associated with a PPPRF key. The root’s key is sampled uniformly at
random. The key of the i-th child of an internal node is computed by evaluating the PPPRF at i
with the parent’s key. Similarly, we use the last level’s keys to derive the leaves’ values. To evaluate
the tree-based PPPRF at any point x, we only need to evaluate the keys along the path from the
root to the x-th leaf. The evaluation time is Õ(logγ n · γ) = Õ(nϵ/ϵ), which is better than directly
using the inefficient PPPRF on input domain [n] where the evaluation time is Ω(n).

To program the tree-based PPPRF at x, we program the inefficient PPPRF keys along the
path from the x-th leaf to the root. However, even if the inefficient PPPRF provides perfect
programming privacy, this construction still fails to provide programming privacy. Since a normal
key and a programmed key of the inefficient PPPRF are actually distinguishable by their key
types, an adversary can identify a path from the root to a leaf where all the associated keys are
programmed keys. This leaks the information about the programmed point.

We address this issue by 1) carefully designing the key structure associated with each node;
2) hiding the actual programmed tree among a forest of Z trees. We now provide a high-level
description of our construction.

Tree structure. Let the input domain be {0, 1, . . . , n− 1}. Each tree has n leaves and a wide
fan-out of γ = nϵ for some constant ϵ ∈ (0, 1). Each node is associated with a key tuple (msk, sk, τ)
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where msk denotes an unprogrammed PPPRF key, sk denotes a programmed PPPRF key, and
τ ∈ {0, 1} is a bit that chooses which of the two keys will be used to evaluate the key tuples of the
immediate children. Specifically, if τ = 0, we use PPPRF.Eval(msk, i) to compute the i-th child’s
key tuple where i ∈ {0, 1, . . . , γ − 1}; and if τ = 1, we use PPPRF.PEval(sk, i) instead. Henceforth,
the bit τ is also called the type of the nodes.

A tree with the root key (msk0, sk0, τ0) can only be programmed at the point x ∈ {0, 1, . . . , n−1}
if every node the path from the root to the leaf x is of the type τ = 0. Henceforth, let D = ⌈logγ n⌉ =
Θ(1/ϵ) be the depth of the tree. To program the key forcing its outcome at x to be v, let (msk0, sk0, τ0),
. . ., (mskD−1, skD−1, τD−1) be the original key tuples from the root to the leaf x. Henceforth, write
x = (x0, . . . , xD−1) in base-γ format. We start at the leaf level D − 1 and work our way backwards.
We first program mskD−1 forcing its outcome at xD−1 to be v, resulting in the programmed key
sk′D−1. We then program mskD−2 forcing its outcome at xD−2 to be (msk′D−1, sk

′
D−1, 1) where

msk′D−1 is chosen freshly at random. Suppose the resulting key is sk′D−2. Next, we program mskD−3
forcing its outcome at xD−3 to be (msk′D−2, sk

′
D−2, 1) where msk′D−2 is chosen freshly at random,

and so on. At the end, we output the new key (msk′0, sk
′
0, 1) at the root.

Forest-based PPPRF. Observe that with a single tree, if we sample a random root key, the
probability that it can be programmed at a fixed point x is roughly 1/2D = Θ(1), since the type
τ at each node is (pseudo-)random. This motivates our forest-based PPPRF construction: we
will have Z independent trees, and the PPPRF’s evaluation outcome at x is the XOR of all trees’
evaluation outcomes at x. Programming at x will be successful as long as one of the trees can
support programming at x. For programming privacy, consider that roughly Z/2D of the trees have
type 1 on the entire path leading to the leaf x. So if the underlying PPPRF tree had negligible

privacy loss, then we would get roughly
√

2D

Z = Θ
(

1√
Z

)
privacy loss with a forest of Z trees. In

our PIR application, we only need PPPRF with 1/poly log λ security, and thus we only need Z to
be polylogarithmically large. The formal description of our forest-based construction is given in
Section 6.2.

Efficiency. With a fan-out of nϵ, the tree has a constant depth of D = Θ(1/ϵ). Keep in mind
that for the underlying PPPRF, a programmed key is O(λ · log γ) times longer than its output
length ℓout. This means that in our tree construction, we suffer from a multiplicative blowup of
O(λ · log γ) with every level of the tree, and the key length at the root is ℓ0 := (λ · log γ)O(1/ϵ) · ℓout =
(ϵ · λ · log n)O(1/ϵ) · ℓout. Because of this cumulative blowup, we want to choose ϵ ∈ (0, 1) to be a
constant, such that the key length at the root ℓ0 is upper bounded by poly(λ, log n).

Finally, with the tree-based construction, the input domain at each level of the tree is only
γ = nϵ rather than n. With more careful accounting, we show in Section 6.2 that the evaluation
time for one tree is upper bounded nϵ · poly(λ, log n, ℓout). As mentioned earlier, we only need Z to
be polylogarithmically large for the PIR application we care about, so the evaluation time of the
entire forest-based PPPRF is nϵ · poly(λ, log n, ℓout).

2.3 New Definitions and Proof Techniques: Functional Programming Privacy

Proving the security of our forest-based PPPRF turns out to be tricky. The straightforward idea
— using a hybrid argument to replace the programmed keys with simulated keys one by one from
the leaf to the root — runs into a circularity issue. Recall that the standard programming privacy
requirement of PPPRF states that if we sample a random normal key, and then program it at an
adversarially specified point x to a random value r, the programmed key is indistinguishable from a
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simulated one [PS18]. If we were to do a hybrid argument and work our way backwards from leaf to
root, we immediately encounter the following problem. Let (msk0, sk0, τ0), . . ., (mskD−1, skD−1, τD−1)
be the original key tuples from the root to the leaf x = (x0, . . . , xD−1) expressed in base-γ format.
Suppose we now program mskD−1 at the point xD−1 to a random outcome. We cannot directly use
the security of the PPPRF because mskD−1 is not sampled completely at random. Further, even
though it seems like mskD−1 is pseudorandom, we cannot just replace mskD−1 with random either,
because we have not removed msk0 from the experiment yet and mskD−1 is a function of msk0.

We devise novel techniques to get around this circularity issue. Specifically, we strengthen
the security definition of the underlying PPPRF to a new notion called functional programming
privacy. In functional programming privacy, the adversary specifies a point x to be programmed at,
and a function f , and the programmed value is the function f applied to the original outcome of
the PPPRF at x. Functional programming privacy says that if f produces random outputs upon
random inputs, then the adversary cannot distinguish a programmed key from a simulated key.

We can further extend the notion to support functions f whose outputs are approximately
random upon receiving random inputs. Formally, given some efficiently computable, possibly
randomized function f : {0, 1}ℓ → {0, 1}ℓ, we say that f is δ-random-to-random, if upon receiving a
random ℓ-bit input, the output of f is δ-computationally indistinguishable from random. Given
this, we can define functional programming privacy as follows:

Definition 2.1 (Functional programming privacy of PPPRF). We say that a PPPRF with ℓin-bit
inputs and ℓout-bit outputs satisfies δ-general functional programming privacy, iff there exists a PPT
simulator Sim, such that the following experiments are (δ + δ′)-computationally indistinguishable to
any non-uniform PPT adversary A:
• RealProgPriv: A specifies x and f where f is required to be PPT and δ′-random-to-random.

Sample a random PPPRF key msk, program msk at x to be f(PPPRF.Eval(msk, x)), and return
the programmed key to A.

• IdealProgPriv: A specifies x and f where f is required to be PPT and δ′-random-to-random.
Return the simulated key generated by Sim to A.

Upgrading the underlying PPPRF to functional programming privacy. First, we need
to upgrade our underlying inefficient PPPRF to enjoy functional programming privacy. The details
are described in Section 5. At a high level, we first prove that (a slight variant of) the construction
in Section 2.1 satisfies 1/poly-functional programming privacy w.r.t. to the XOR family of functions
(Section 5.1 and appendix B.1). Next, we describe a simple upgrade such that the resulting PPPRF
satisfies 1/poly-functional programming privacy w.r.t. general functions that are approximately
random-to-random (Section 5.2 and appendix B.2).

Proving the forest-based PPPRF using functional programming privacy. The security
proof for the forest-based PPPRF consists of two main parts:

1. First, we prove a technical lemma regarding the security of a single tree (Theorem 6.1), and
the proof crucially relies on the fact that the underlying PPPRF satisfies 1/poly-functional
programming privacy (Appendix C.1). The proof relies on an inductive argument to show that
given the root key (msk0, , ), and some point x0 to program msk0 at, the value we want to
program to can be viewed as some (complex-to-state) function of Eval(msk0, x0), and moreover,
this function is approximately random-to-random.

2. Next, we prove that the Z-fold repetition provides sufficient decoy to approximately mask the
point that is being programmed (Appendix C.2).
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2.4 PIR Security Amplification

So far, we have constructed a weakly secure PPPRF for small domains. We first use the weakly
secure PPPRF to get a weakly secure PIR (for both the 1-server and 2-server settings), and then we
use a security amplification technique to boost the security failure probability to negligibly small.

2.4.1 Weakly Secure PIR from Weakly Secure PPPRF

Using ideas similar to prior works [ZPSZ24, GZS24], we can construct a suitable Privately
Programmable Pseudorandom Set (PPPS) using PPPRF. We can then use the resulting PPPS to
construct a 1-server or 2-server preprocessing PIR (Section 7.2). Specifically, we will instantiate
the forest-based PPPRF with 1/poly log λ-programming privacy. The resulting 1-server or 2-server
proceprossing PIR schemes also have 1/poly log λ-security. Moreover, each server stores only the
original database, and all other costs match the bounds stated in Theorem 1.2 and Theorem 1.3.

2.4.2 Security Amplification

We want to achieve security amplification using a similar technique as Boyle et al. [BGIK22].
However, upon a closer inspection, we found that directly using Boyle et al. [BGIK22]’s techniques
in our setting would result in an unacceptable blow up in the costs (see Theorem E.1). To fix this,
we strengthen the underlying weakly-secure PIR scheme with additional decoy queries to satisfy
a slightly stronger security notion, and then use Locally-Decodable Codes (LDC) to amplify the
security.

The idea is that by adding suitable decoy queries for each real query of the weakly-secure PIR
scheme, we can achieve the following leaky PIR scheme that provides a slighly stronger security
guarantee called strongly δ-security: for each query, with probability 1− δ, the scheme does not
disclose any information (in a computational sense); and with probability δ, some information about
the query is leaked — the precise definition is given in Appendix E.2, and the proof relies on the
hardcore lemma for computational indistinguishability [MT10].

We then use a Locally-Decodable Code (LDC) to perform security amplification, similar

to [BGIK22]. We can encode the original DB of size N into a codeword D̃B of size N1+ϵ where ϵ is an
arbitrarily small constant. Now, to learn any DB[i], we can alternatively access polylogarithmically

many locations denoted w1, . . . , wQ in the codeword D̃B, and the client can recover DB[i] from

D̃B[w1], . . . , D̃B[wQ] with the LDC decoding algorithm. Intuitively, if we use the leaky PIR scheme
for the queries, we are leaking roughly δ · Q queries. The LDC code ensures that as long as we
carefully pick the parameters, even leaking those δ · Q queries to the server will not reveal any
information about the true query index i. We finally show that we can set δ = 1/poly1 log λ,
Q = poly2 log λ and a Reed-Muller code with smoothness σ = poly3 log λ for suitable choices of
poly1, poly2, and poly3 to get a computationally secure PIR scheme with polylogarithmic overhead
in the costs.

3 Preliminaries

3.1 δ-Computational Indistinguishability

Definition 3.1 (δ-computational indistinguishability). Let δ(λ) : N→ [0, 1) be a function of λ ∈ N.
We say that two probability ensembles D1(1

λ) and D2(1
λ) indexed by the security parameter λ

are δ-computationally indistinguishable, denoted by D1
δ
≈c D2, if for any non-uniform probabilistic
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polynomial-time (PPT) distinguisher A, there exists some negligible function negl(λ) such that for
sufficiently large λ ∈ N,∣∣∣Pr[A(1λ, D1(1

λ)) = 1]− Pr[A(1λ, D2(1
λ)) = 1]

∣∣∣ ≤ δ(λ) + negl(λ).

For the special case when δ(λ) = 0, we also say that D1 and D2 are computationally indistin-
guishable, denoted D1 ≈c D2.

The following simple facts hold for δ-computational indistinguishability.

• Transitivity. Letm be polynomially bounded in λ. Givenm probability ensemblesD1, D2, . . . , Dm

such that for every i ∈ [m− 1], Di
δ
≈c Di+1, then D1 and Dm are mδ-computationally indistin-

guishable.

• Post-processing. If D1
δ
≈c D2 and f is a PPT function, then f(D1)

δ
≈c f(D2).

3.2 Building Block: Puncturable PRF

A puncturable PRF [BW13, BGI14] is a pseudorandom function (PRF) that can supports
puncturing of a normal key at a specified point, resulting in a punctured key. The punctured key
allows one to evaluate the PRF at all points except the punctured point.

A puncturable PRF consists of the following possibly randomized algorithms:

• sk← Gen(1λ, ℓin, ℓout): The key generation algorithm takes a security parameter λ, the input
length ℓin, the output length ℓout, and samples a normal PRF key denoted sk.

• y ← Eval(sk, x): The evaluation algorithm takes a normal key sk and an input x ∈ {0, 1}ℓin and
outputs the evaluation outcome y ∈ {0, 1}ℓout .

• sk′ ← Punct(sk, x): The Punct algorithm takes a normal key sk, a point x ∈ {0, 1}ℓin , and outputs
a punctured key sk′.

• PEval(sk′, x): takes in a punctured key sk′ and an input x ∈ {0, 1}ℓin , and outputs either an
evaluation outcome y ∈ {0, 1}ℓout or ⊥ indicating failure.

Correctness. We say that a puncturable PRF is correct, iff for any λ, any ℓin and ℓout, any
x ∈ {0, 1}ℓin , the following holds:

Pr

[
sk← Gen(1λ, ℓin, ℓout),
sk′ ← Punct(sk, x)

:
PEval(sk′, x) = ⊥ and

∀x′ ̸= x : PEval(sk′, x′) = Eval(sk, x′)

]
= 1

We require that PEval at the punctured point always gives ⊥; and besides the punctured point,
all other points’ evaluations are unaffected by the puncturing.

Security. We say that a puncturable PRF scheme is secure, iff it satisfies the standard pseu-
dorandomness property of an ordinary PRF, and moreover, for every ℓin(λ) and ℓout(λ) that are
polynomially bounded in λ, the following two experiments RealA(1λ, ℓin, ℓout) and IdealA(1λ, ℓin, ℓout)
are computationally indistinguishable for any non-uniform PPT adversary A:

• RealA(1λ, ℓin, ℓout): A(1λ, ℓin, ℓout) outputs x ∈ {0, 1}ℓin ; let sk ← Gen(1λ), sk′ ← Punct(sk, x),
and let y ← Eval(sk, x); output A(sk′, y).
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• IdealA(1λ, ℓin, ℓout): A(1λ, ℓin, ℓout) outputs x ∈ {0, 1}ℓin ; let sk ← Gen(1λ), sk′ ← Punct(sk, x),

and let y
$←{0, 1}ℓout ; output A(sk′, y).

Intuitively, given a key punctured at some point x, a computationally bounded adversary cannot
distinguish the original PRF’s evaluation at x from random.

Earlier works [BW13,BGI14] showed that the tree-based PRF construction from pseudorandom
generators (PRGs) [GGM86] implies a puncturable PRF construction. Specifically, a normal key
has length Oλ(1), the length of a punctured key and the runtime of the puncturing procedure is
bounded by Oλ(ℓin), and both normal evaluation Eval and punctured evaluation PEval takes time
at most Oλ(ℓin + ℓout), where Oλ(·) hides poly(λ) terms.

4 Definitions

4.1 Privately Programmable Pseudorandom Functions

Intuitively, a Privately Programmable Pseudorandom Function (PPPRF) is a PRF with an
additional programming functionality that allows one to force the PRF to output a specific value at
a specific point.

Syntax. A programmable PRF is a tuple (Gen, Eval, Prog, PEval) of possibly randomized algo-
rithms with the following syntax:

• Gen(1λ, ℓin, ℓout): given the security parameter λ, the input and output lengths ℓin and ℓout,
output a master secret key msk.

• Eval(msk, x): given the master secret key msk and an input x ∈ {0, 1}ℓin , output the evaluation
outcome v ∈ {0, 1}ℓout .

• Prog(msk, x, v): given the master secret key msk and the programming point x and the pro-
grammed value v, output a programmed key sk.

• PEval(sk, x): given a programmed key sk and an input x ∈ {0, 1}ℓin , output the evaluation
outcome v ∈ {0, 1}ℓout .

Programming correctness. The correctness definition requires that the programming procedure
Prog correctly changes the evaluation at the programmed point, without affecting anything else.
Formally, a programmable PRF satisfies correctness if for all ℓin(·) and ℓout(·), there exists a negligible
function negl(·) such that for all λ, for all x ∈ {0, 1}ℓin and v ∈ {0, 1}ℓout , we have the following:

Pr

[
msk← Gen(1λ, ℓin, ℓout),
sk← Prog(msk, x, v),

:
PEval(sk, x) = v and

∀x′ ̸= x,PEval(sk, x′) = Eval(msk, x′)

]
≥ 1− negl(λ).

Functional programming privacy. The standard security notion for privately programmable
PRFs [PS18] requires that the programmed key hides the programmed point x — note that this
cannot be achieved if we program x to some known value v, since the adversary can always test the
programmed key to see where it evaluates to v. Therefore, the standard “private programmability”
notion [PS18] requires that the programmed key hides the programmed point x, as long as we
program x to a randomly chosen value.

For technical reasons, we need a stronger notion of private programmability called functional
programming privacy. Specifically, we require that the programmed key hides the programmed
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RealProgPrivA(1λ, ℓin, ℓout):

x, f ← A(1λ, ℓin, ℓout)
msk← PPPRF.Gen(1λ, ℓin, ℓout)

v ← f(Eval(msk, x))

sk← Prog(msk, x, v)

output A(sk)

IdealProgPrivA,Sim(1λ, ℓin, ℓout):

x, f ← A(1λ, ℓin, ℓout)
sk← Sim(1λ, ℓin, ℓout)

output A(sk)

Figure 1: Security experiments for functional programming privacy, where the adversary A is
stateful.

point x when we program x to some function f of the original PRF’s outcome at x, as long as the
function f ’s output distribution is indistinguishable from random upon receiving a uniform random
input. Our formal definition below (Theorem 4.2) is more general: we not only permit the function
f to be δ away from random upon receiving a random input, but also allow for a privacy error in
the functional programming privacy notion.

Definition 4.1 (δ-random-to-random functions). Given a function f : {0, 1}k → {0, 1}k, we say
that f is δ-random-to-random, iff the following holds where Uk denotes the uniform distribution
over {0, 1}k:

f(Uk)
δ
≈c Uk

For the special case when δ = 0, we also say that f is random-to-random.
A function family F parametrized by λ and ℓout(·) that map {0, 1}ℓout(λ) to {0, 1}ℓout(λ) is said

to be δ-random-to-random, if every f ∈ F is δ-random-to-random where δ is a function of λ and
ℓout whose output range is [0, 1).

Definition 4.2 (Functional programming privacy). Let F be a δ′-random-to-random family of
PPT functions parametrized by λ and ℓout(·), which map {0, 1}ℓout(λ) to {0, 1}ℓout(λ). Let δ be
a function in λ, ℓin, and ℓout whose output range is [0, 1). We say that a programmable PRF
(Gen,Eval,Prog,PEval) satisfies δ-functional programming privacy w.r.t. F , if there exists a PPT
simulator Sim, such that for any non-uniform PPT admissible adversary A, for any ℓin and ℓout that
are polynomially bounded functions in λ,

RealProgPrivA(1λ, ℓin, ℓout)
δ+δ′

≈c IdealProgPrivA(1λ, ℓin, ℓout)

where an adversary is admissible if it outputs a function f ∈ F with probability 1.
For the special case when δ = 0, we simply say that the programmable PRF satisfies functional

programming privacy w.r.t. F .

We will specifically care about the following special cases:

• Standard private programmability. The standard private programmability notion [PS18] is
a special case of Theorem 4.2 when the family F consists of only a single function frand(·) that
simply ignores the input and samples a uniform random string from {0, 1}ℓout .

• XOR functional programming privacy. We say that a PRF satisfies δ-XOR functional
programming privacy, if it satisfies δ-functional programming privacy w.r.t. the following XOR
function family:

Fxor = {f∆(·)}∆∈{0,1}ℓout , where f∆(v) = v ⊕∆.

11



• General functional programming privacy. We say that a PRF satisfies δ-general functional
programming privacy, iff for any δ′(·), for any δ′-random-to-random family F of PPT functions,
the scheme satisfies δ-functional programming privacy w.r.t. F .

5 Inefficient, Small-Domain Privately Programmable PRF

5.1 PRF with XOR Functional Programming Privacy

Boyle et al. [BGIK22] propose an inefficient 1/poly-secure programmable distributed point
function for small domains. It is not hard to modify their construction and obtain an inefficient
1/poly-secure privately programmable PRF (PPPRF) for small domains, satisfying XOR-functional
programming privacy.

PRF with XOR functional programming privacy

Notation: let pPRF be a puncturable PRF, and let xPRF be a regular PRF. The input domain
is {0, 1, . . . , n− 2} where n = 2ℓin . Let m = poly(n) be a power of 2.

Gen(1λ, ℓin, ℓout = 1):

• let sk← pPRF.Gen(1λ, log2m, ℓin); xsk← xPRF.Gen(1λ, ℓin, 1); s
$←{0, 1, . . . , n− 1};

• output msk = (psk, xsk, s).

Eval(msk = (psk, xsk, s), x):

• for i ∈ {0, 1, . . . ,m− 1}, let wi := (pPRF.Eval(psk, i) + s) mod n;

• let Parity(x) = ⊕i∈{0,1,...,m−1}1(wi = x) where 1(·) is the indicator function;

• output Parity(x)⊕ xPRF.Eval(xsk, x),

Prog(msk = (psk, xsk, s), x, b):

• let v ← Eval(msk, x);

• let x′ = x if v ̸= b, else let x′ = n− 1; // n− 1 is the special bin

• uniformly sample r from {0, 1, . . . ,m− 1} subject to pPRF.Eval(psk, r) + s = x′ mod n;
output ⊥ if no such r exists;

• output sk = (pPRF.Punct(psk, r), xsk, s).

PEval(sk = (psk′, xsk, s), x):

• for i ∈ {0, 1, . . . ,m − 1}, let wi := (pPRF.PEval(psk′, i) + s) mod n — if
pPRF.PEval(psk′, i) = ⊥, we define wi = ⊥;

• output Parity(x)⊕ xPRF.Eval(xsk, x) where Parity(x) is defined earlier in Eval(msk, x).

Figure 2: Small-domain, 1-bit output PRF with XOR functional programming privacy.

Intuition. Suppose we want a PPPRF with input length ℓin and output length ℓout = 1. We will
assume that the input domain size n = 2ℓin is polynomially bounded in λ. As building blocks, we
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rely on a puncturable PRF denoted pPRF, and another regular PRF (used for padding) henceforth
denoted xPRF.

The PPPRF’s master secret key msk := (psk, xsk, s) consists of psk which is the secret key of
the underlying pPRF, a padding secret key denoted xsk, and a random offset s ∈ {0, 1, . . . , n− 1}.
Henceforth, we will treat the point n− 1 as a special point reserved for programming, and remove
it from the input domain. In other words, we assume that the input domain to our PPPRF is
{0, 1, . . . , n − 2} where n = 2ℓin . To evaluate the PPPRF at some point x ∈ [n − 1], we will use
the underlying pPRF to throw m = poly(n) balls into n bins numbered 0, 1, . . . , n− 1. Specifically,
for i ∈ {0, 1, . . . ,m − 1}, (pPRF.Eval(psk, i) + s) mod n decides which bin ball i lands in. The
evaluation outcome PPPRF.Eval(msk, x) at point x ∈ [n−1] is defined to be Parity(x)⊕ xPRF(xsk, x)
where Parity(x) denotes the number of balls in bin x mod 2. The padding xPRF(xsk, x) is used to
make the outcome pseudorandom. To program the master secret key msk = (sk, s) at some point
x ∈ [n− 1] to the bit b ∈ {0, 1}, we check if b is equal to the original evaluation outcome. If so, let r
be a random ball that lands in the special bin n− 1; otherwise, r be a random ball that lands in
bin x. Now, we compute psk′ ← PRF.Punct(psk, r), and output the punctured key (psk′, xsk, s).

Such a PPPRF construction suffers from two caveats:

• 1/poly-security. Programming a key at the point x slightly skews the distribution of the load of
bin x or the special bin n− 1, which gives the adversary a small advantage in the functional
programming privacy security game. In Appendix B.1, we prove that the adversary has 1/poly(n)
advantage in distinguishing a programmed key and a simulated key.

• Small domain restriction and lack of efficiency. The scheme only supports polynomially
sized input domain and is relatively inefficient because the evaluation procedure Eval and the
programming procedure Prog take Oλ(m) time. As we will show later, to achieve δ-security, we
need to set m = n/δ2.

Formal description. We give a formal description of the scheme in Figure 2. When instantiated
Goldreich, Goldwasser, and Micali [GGM86] as the underlying puncturable PRF, the resulting
scheme has the following performance:

• A normal key has size λ;

• A programmed key has size O(λ log n);

• Eval, PEval, and Prog take O(m · log n) · TPRG(λ) time where TPRG(λ) = poly(λ) is the time it
takes to evaluate a PRG that maps λ bits to 2λ bits. Theorem 5.1 below shows that to get
δ-security, we need to set m = n/δ2.

Security. In Appendix B.1, we prove the following theorem.

Theorem 5.1 (Small-domain PPPRF with XOR functional programming privacy). Suppose that
m = ω(n · log λ) and m is upper bounded by poly(n). The PPPRF construction in Figure 2 satisfies
correctness, and

√
n/m-functional programming privacy w.r.t. the family Fxor.

For the special case when the underlying pPRF is instantiated with Goldreich, Goldwasser,
and Micali [GGM86], the simulator Sim in IdealProgPriv can simply output a random string of
appropriate length, as stated in the following corollary (whose proof is in Appendix B.1).

Corollary 5.2. Suppose m = ω(n · log λ) and is upper bounded by poly(n), and the pPRF is
instantiated with Goldreich, Goldwasser, and Micali [GGM86]. Then, our PPPRF satisfies

√
n/m

functional programming privacy w.r.t. Fxor where the simulator Sim in IdealProgPriv outputs a
random string of appropriate length.
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5.2 Upgrade to General Functional Programming Privacy

To upgrade to general functional programming privacy, we consider ℓout parallel instances of the
underlying PPPRF which has 1-bit outcome and supports XOR functional programming privacy.
Further, we XOR the outcome of the PRF with a random pad (denoted pad) of ℓout bits. Due to
space constraint, we describe the algorithm in Figure 7 of Appendix B.

Theorem 5.3 (PPPRF with general functional programming privacy). Suppose the underlying
PPPRF satisfies programming correctness and δ-XOR functional programming privacy. Then, the
construction in Figure 7satisfies programming correctness and (ℓout·δ)-general functional programming
privacy. Further, the scheme achieves the following performance bounds where n = 2ℓin denotes the
input domain size:

• A normal key has size O(ℓout · λ);

• A programmed key has size O(λ · ℓout · log n);

• Eval, PEval, and Prog takes O(ℓout · n · log n/δ2) · TPRG(λ) time.

The random pad is the critical component of the upgrade. It ensures that the output at the
programming point is perfectly random, regardless of the sampled PPPRF keys. Therefore the
PPPRF keys can be sampled independently from the real output v, and v alone decides v ⊕ f(v)
which will be xor-ed at the programming point. This allows us to invoke the XOR functional
programming privacy property.

Using Theorem 5.2 as the underlying PPPRF, and setting δ̃ = ℓout · δ, we get:

Corollary 5.4 (PRF with general functional programming privacy). Assume the existence of
one-way functions. There exists a PRF that satisfies δ̃-general functional programming privacy w.r.t.
a simulator Sim that outputs a random string of appropriate length. Further, the scheme satisfies
the following performance bounds where n = 2ℓin:

• A normal key has size O(ℓout · λ);

• A programmed key has size O(λ · ℓout · log n);

• Eval, PEval, and Prog take O(n · log n · ℓ3out/δ̃2) · TPRG(λ) time.

6 Efficient Forest-Based PPPRF

One drawback of the construction in Section 5 is that programming and evaluation take
polynomial time in the input domain size. In this section, we build a new PPPRF from OWF
that has polylogarithmic programming and evaluation time. Our construction involves creating
Z PPPRF trees, where each tree has a GGM-like structure, but the underlying pseudorandom
generator (PRG) is now replaced with the inefficient PPPRF of Section 5.2. To evaluate the resulting
PPPRF at x, we simply evaluate each PPPRF tree at x, and output the XOR of all Z results.
Given a point x, each tree is programmable at x with constant probability. Therefore, to program
the PPPRF at x, we will select a random tree that is programmable at x to program.

6.1 Subroutine: PPPRF Tree
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Subroutine: PPPRFTree

Notation. Let PPPRFi be a PRF with δ-general functional programming privacy, input
length ⌈log2(γ + 1)⌉, and output length ℓi+1. Let γ be the fan-out, and D = ⌈logγ(2ℓin)⌉ be the
depth of the tree.

Gen(1λ, ℓin, ℓout): let msk0
$←{0, 1}λ, sk0

$←{0, 1}|sk0|, τ0
$←{0, 1}. Output (msk0, sk0, τ0).

Eval(msk = (msk0, sk0, τ0), x):

• Let x = x0 + x1γ + · · ·+ xD−1γ
D−1 be the base-γ represenation of x.

• For i from 0 to D − 2:

– if τ = 0, let (mski+1, ski+1, τi+1)← PPPRFi.Eval(mski, xi).

– else, let (mski+1, ski+1, τi+1)← PPPRFi.PEval(ski, xi).

• If τD−1 = 0, output PPPRFi.Eval(mskD−1, xD−1); else, output PPPRF
i.PEval(skD−1, xD−1).

Prog(msk = (msk0, sk0, τ0), x, v):

• Let x = x0 + x1γ + · · ·+ xD−1γ
D−1 be the base-γ representation of x.

• Check that under msk, the entire path to x is programmable, and abort outputting ⊥ if
the check fails. Specifically, let (msk1, sk1, τ1), · · · , (mskD−1, skD−1, τD−1) be obtained as in
Eval(msk, x). Verify that τ0 = τ1 = τ2 = . . . = τD−1 = 0.

• Let vD = v.

• For i from D − 1 downto 0:

– Let sk′i ← PPPRFi.Prog(mski, xi, vi+1), msk′i
$←{0, 1}λ

– Let vi = (msk′i, sk
′
i, 1).

• Output v0.

Figure 3: PPPRFTree subroutine.

Tree structure. The idea is to use a GGM-like, wide-fan-out tree, but using the PPPRF of
Section 5.2 as the underlying pseudorandomness generator. Henceforth let γ be the fan-out of the
tree. We will choose γ = n1/ϵ for some constant ϵ ∈ (0, 1), so the tree has constant depth O(1/ϵ).

Each node u in the tree is associated with a key tuple denoted (msku, sku, τu), where msku
denotes an unprogrammed PRF key, sku denotes a programmed PRF key, and τu ∈ {0, 1} is a bit
indicating whether the unprogrammed key msku or the programmed key sku is active. The active
key should be used to generate the key tuples for the children of u. More formally, suppose u is not
at the leaf level and let u||i be the i-th child of u, then,

• if τu = 0, then (msku||i, sku||i, τu||i) := PPPRF.Eval(msku, i);

• else (msku||i, sku||i, τu||i) := PPPRF.PEval(sku, i).

Notice that the nodes at the leaf level are no longer associated with keys, but simply just pseudo-
random bit strings of length ℓout.
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Length of keys at different levels. The keys have different lengths at the different levels.
Henceforth suppose the leaf is at level D − 1, and the root is at level 0. At the leaf level, the key
tuple is upper bounded by ℓD−1 := Cλ · ℓout · log γ for some constant C > 1. At level D − 2, we use
a PPPRF that can generate a length-ℓD−1 outcome, and thus a level-(D − 2) key tuple has length
at most ℓD−2 := (Cλ log γ)2 · ℓout. More generally, a level-(D − i) key tuple has length at most
ℓD−i := (Cλ log γ)i · ℓout. For convenience, henceforth we define ℓD := ℓout.

Construction. We describe our construction in Figure 3. We already explained the tree structure
earlier and how to expand the keys associated with all nodes in the tree. We now explain the intuition
behind programming. Let x0, . . . , xD−1 be the base-γ representation of some point x. To program
the tree-based PPPRF at some point x to the outcome v, let (msk0, sk0, τ0), . . . , (mskD−1, skD1 , τD−1)
be the key tuples associated with the nodes on the path from the root to leaf x. We first check
that the entire path to x is programmable, that is, τ0 = τ1 = . . . = τD−1 = 0 — this happens
with 1/2D probability (ignoring negligible terms) which is constant assuming ϵ is constant (recall
D = Θ(1/ϵ)). If the check fails, simply abort outputting ⊥ indicating failure. We now program the
leaf’s normal key mskD−1 at xD−1 to v, resulting in the programmed key sk′D−1. We now assign
the leaf x a new key tuple (msk′D−1, sk

′
D−1, 1) where msk′D−1 is freshly sampled. We next program

the leaf’s parent’s normal key mskD−2 at point x to the value (msk′D−1, sk
′
D−1, 1), resulting in the

programmed key sk′D−2; and we assign to the leaf’s parent a new key tuple (msk′D−2, sk
′
D−2, 1) where

msk′D−2 is freshly sampled. This goes on until we arrive at the root, and we finally output the new
key tuple at the root.

Henceforth, we use the following notation:

• T x(msk0, sk0, τ0): let (msk1, sk1, τ1), · · · , (mskD−1, skD−1, τD−1) be obtained as in Eval((msk0,
sk0, τ0),x); output (τ0, . . . , τD−1).

That is, T x(msk) outputs whether each node is programmable on the path from the root to the leaf
x. T x(msk) = 0D means that the entire path to x is programmable, and T x(msk) = 1D means that
the entire path to x is unprogrammable.

Performance. We now analyze the performance of our PPPRFTree.

• Length of normal and programmed keys. A normal key and a programmed key have the same
length, which is bounded by ℓ0 = (C · λ · log γ)D · ℓout. For γ = nϵ where ϵ ∈ (0, 1) is some
constant, the key length is bounded by (C · λ · ϵ · log n)1+1/ϵ · ℓout = (ϵ · λ · log n)O(1/ϵ) · ℓout.

• Time of Prog and Eval. The programming and evaluation time is dominated by the time
consumed at the root level, that is, O(ℓ30 · γ · log γ/δ2) · TPRG(λ). For γ = nϵ for some constant
ϵ ∈ (0, 1), the above is bounded by TPRG(λ) · (ϵ · λ · log n)O(1/ϵ) · nϵ · ℓ3out/δ2.

Security. We shall prove a technical lemma (Theorem 6.1) regarding the security of the PPPRFTree
subroutine. This technical lemma will be later used to prove our forest-based PPPRF secure. We
defer the proof to Appendix C.

Lemma 6.1 (Security of PPPRFTree). Suppose that 2D is polynomially bounded in λ, and for
all i ∈ {0, . . . , D − 1}, PPPRFi satisfies δ-general programming privacy and is instantiated with
the scheme in Theorem 5.4. Then, for any non-uniform PPT adversary A, for any ℓin(·) and
ℓout(·) that are polynomially bounded in λ, the following two experiments are 2D · log1.1 λ · (δ′ +Dδ)-
computationally indistinguishable:
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• RealA(1λ, ℓin, ℓout): A(1λ, ℓin, ℓout) outputs x ∈ {0, 1}ℓin and a PPT, δ′-random-to-random func-
tion g : {0, 1}ℓout → {0, 1}ℓout. Sample

msk← PPPRFTree.Gen(1λ, ℓin, ℓout) subject to the predicate T x(msk) = 0D, sample v
$←{0, 1}ℓout ,

and let sk← Prog(msk, x, g(v)) where v = Eval(msk, x). Output A(sk).

• IdealA(1λ, ℓin, ℓout): A(1λ, ℓin, ℓout) outputs x ∈ {0, 1}ℓin and a PPT function g : {0, 1}ℓout →
{0, 1}ℓout that is δ′-random-to-random. Let sk be a random string of appropriate length such that
T x(sk) = 1D holds. Output A(sk).

In particular, if δ′ = 0, then the two experiments are D · 2D log1.1 λ · δ-computationally indistinguish-
able.

6.2 Our Forest-Based PPPRF

Construction. We describe our forest-based PPPRF construction in Figure 4. The construction
basically creates Z number of PPPRFTrees, and uses the XOR of all of their results as the PRF
evaluation outcome. To program the PRF at some point x, we select a random PPPRFTree such
that the entire path to x is programmable, and program only that PPPRFTree.

In Appendix C.2, we shall prove the following theorem.

Theorem 6.2 (Our forest-based PPPRF). Let c > 0, and let δ0 be a function of λ, ℓin, and
ℓout whose output range is [0, 1). Suppose we choose γ = nϵ for some constant ϵ ∈ (0, 1), choose
δ < 1

D·2D+1 log1.1 λ
· δ0, and Z > 2D+2 · log2.4 λ/δ20 where D = ⌈1/ϵ⌉. Then, our forest-based PPPRF

construction satisfies δ0-XOR functional programming privacy.

Performance. If we use the parameters given in Theorem 6.2, we get a (forest-based) PPPRF with
δ0-XOR functional programming privacy with the following performance bounds where ϵ ∈ (0, 1) is
an arbitrarily small constant:

• Key length. The length of a normal key or a programmed key is (ϵ · λ · log n)O(1/ϵ) · poly log λ ·
ℓout/δ

2
0 = (ϵ · λ · log n)O(1/ϵ) · ℓout/δ20 .

• Time of Prog, Eval, and PEval. The running time of these algorithms are bounded by TPRG(λ) ·
(ϵ · λ · log n)O(1/ϵ) · nϵ · poly log λ · ℓ3out/δ40 = TPRG(λ) · (ϵ · λ · log n)O(1/ϵ) · nϵ · ℓ3out/δ40 .

7 Preprocessing Private Information Retrieval

7.1 PIR Definitions

k-server pre-processing PIR. A k-server preprocessing PIR scheme is a protocol between a
client and k servers both of which are stateful. The scheme consists of the following two sub-protocols:

1. Preproc(1λ,DB): The pre-processing protocol is run only once at the beginning. The client
receives 1λ, while each server receives 1λ and a database DB ∈ {0, 1}N as input. The client
and servers then interact, and at the end of the protocol, the client and each server stores
some state.

2. Query(x): The client receives an index x, it then interacts with the servers. At the end of the
protocol, the client outputs an answer β. The Query(x) protocol can be repeated an aribitrary
number of times after Preproc has been completed, and the client and all servers are stateful
between the invocations.
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Our forest-based PPPRF construction

Notation. Let PPPRFTree be the subroutine described in Figure 3. Let Z be the number of
PPPRFTrees.

Gen(1λ, ℓin, ℓout):

• For i ∈ [Z], let mski ← PPPRFTree.Gen(1λ, ℓin, ℓout).

• Output {msk1, · · · ,mskZ}.

Eval(msk = {msk1, · · · ,mskZ}, x): output
⊕Z

i=1 PPPRFTree.Eval(mski, x).

Prog(msk = {msk1, · · · ,mskZ}, x, v):

• Choose a random i ∈ [Z] subject to the constraint that mski is programmable for the
entire path to x. Output ⊥ if not found.

• Let v′ = v ⊕ Eval(msk, x)⊕ PPPRFTree.Eval(mski, x).

• Let ski ← PPPRFTree.Prog(mski, x, v
′).

• Output the unordered set {msk1, · · · ,mski−1, ski,mski+1, · · · ,mskZ}.

PEval(sk, x): output Eval(sk, x).

Figure 4: Our forest-based PPPRF construction.

Assumption on state and number of rounds. Note that our definition is general: it admits
both client-side preprocessing and server-side preprocessing. For the PIR schemes described in this
paper, one can assume the following:

• the Query protocol involves a single round-trip, that is, the client sends a single message in
parallel to each server, and it receives a single message in response from each server.

• each client’s state may be updated after every query, whereas the server’s state does not change
between queries. In other words, one can imagine that the server stores some encoded version of
the database after the preprocessing, and afterwards its state does not change.

Correctness. Correctness requires that for any n,Q which are polynomially bounded functions
in λ, there exists a negligible function negl(·), such that for any DB[0..N − 1] ∈ {0, 1}N , for
any x1, . . . , xQ ∈ {0, 1, . . . , N − 1}, the following experiment outputs 1 with probability at least
1− negl(λ):

• honestly execute the Preproc(1λ,DB) protocol;

• for i ∈ [Q], let βi be the client’s output in an honest executon of Query(xi);

• finally, output 1 iff for all i ∈ [Q], βi = DB[xi]; else output 0.

Security. Given some function δ(λ,N), we say that a PIR scheme is δ-secure iff for any j ∈ [k],
there exists stateless PPT algorithms QueryStateless and Sim, such that for any N which is a
polynomially bounded function in λ, for any index x ∈ {0, 1, . . . , N − 1}, QueryStateless(1λ, x,N)
is δ-computationally indistinguishable from Sim(1λ, N), and moreover, for any non-uniform PPT
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adversary A acting as the j-th server, its view in the following two experiments are computationally
indistinguishable:

• PIRRealA(1λ):

1. A(1λ) outputs DB of length N , run the Preproc(1λ, N) protocol between the honest client
and A acting as the j-th server;

2. for t = 1, 2, . . .: A outputs xt ∈ {0, 1, . . . , N − 1}, run the Query(xt) protocol between the
honest client and A acting as the j-th server;

• PIRIdealA(1λ):

1. A(1λ) outputs DB of length N , run the Preproc(1λ, N) protocol between the honest client
and A acting as the j-th server;

2. for t = 1, 2, . . .: the adversaryA outputs xt ∈ {0, 1, . . . , N−1}, send the message QueryStateless(1λ,
xt, N) to A.

In other words, we require that any individual PPT server cannot distinguish whether they
are interacting with the real client or a stateless query algorithm QueryStateless which is given
the query index; and further, the output of QueryStateless upon receiving the real queried index
is δ-computationally indistinguishable from the output of a stateless simulator Sim which is not
given the queried index. This captures the intuition that each query gives the adversary at most δ
advantage in distinguishing which index is queried. For the special case where δ = 0, we also say
that the PIR scheme satisfies full security.

7.2 Weakly Secure PIR

We show how to use a δ-secure PPPRF scheme to construct a δ-secure preprocessing PIR scheme.
In particular, we will describe a 1-server construction and a 2-server construction. Our constructions
are inspired by Piano [ZPSZ24].

Privately puncturable pseudorandom set. First, we will use the PPPRF scheme of Section 6.2
to construct a privately programmable pseudorandom set scheme denoted PPPS — henceforth
assume that N is an even power of 2:

• Gen(1λ, N): letmsk′ ← PPPRF.Gen(1λ, 12 log2N, 12 log2N), choose a random offset s ∈ {0, 1, . . . ,
√
N−

1} and output msk := (msk′, s);

• Set(msk = (msk′, s), N): for i ∈ {0, 1, . . . ,
√
N}, let ∆i = (PPPRF.Eval(msk′, i) + s) mod

√
N ;

and output the set {i ·
√
N +∆i}i∈{0,1,...,√N}.

• Member(msk = (msk′, s), N, x): to test if an index x ∈ {0, . . . , N−1} belongs to PPPS.Set(msk, N),
output 1 if PPPRF.Eval(msk′, ⌊x/

√
N⌋) = (x− s) mod

√
N ; else output 0.

• Program(msk = (msk′, s), i,∆i): to program chunk i’s offset to ∆i, let sk
′ ← PPPRF.Prog(msk′,

i, (∆i − s) mod
√
N), and output the programmed key sk := (sk′, s).

Using the PPPRF scheme of Section 6.2, the programmed key sk has the same format as an
unprogrammed key msk. Therefore, the same Set and Member algorithms can be run using a
programmed key, too.

Intuitively, imagine that we have N indices numbered 0, 1, . . . , N − 1. The above PPPS scheme
can be used to sample a pseudorandom subset of size

√
N . Specifically, we will divide the N indices
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1-server preprocessing PIR: supports
√
N queries

Run poly log λ parallel instances of the following scheme. For each query, if any instance does
not return ⊥, output that answer.

Preproc(1λ,DB):

• Client generates a pseudorandom permutation (PRP) key and sends it to the server.
Henceforth, we assume the DB has been permuted using this PRP.

• Let len := O(
√
N), and for j ∈ [len]: sample mskj ← PPPS.Gen(1λ, N).

• For each chunk i ∈ {0, 1, . . . ,
√
N − 1}, sample poly log λ random indices that belong to the

chunk. Let Ri be the set of indices for chunk i.

• Make a single streaming pass over the database:

– Hint table: for all j ∈ [len], compute and store pz := ⊕z∈Set(mski,N)DB[z].

– Replacement entries: for each chunk i ∈ {0, 1, . . . ,
√
N − 1}, each y ∈ Ri, store py := DB[y].

• Store the hint table {mskj , pj}j∈[len], and the replacement entries {y, py}y∈R0∪...∪R√
N−1

.

Query(x):

Client:

1. If x has been queried among the past up to
√
N queries, output the same answer as before

and execute Query(r) instead for a random index r that has not been queried (but ignore
its output). Else, continue with the following.

2. Find a random hint (msk∗, p∗) in the hint table such that PPPS.Member(msk∗, x) = 1. Find
the next unconsumed replacement entry (y, py) that belongs to the same chunk as x. If
either is not found, sample a random msk∗ such that PPPS.Member(msk∗, x) = 1, let p∗ = ⊥,
let y be a random index within the same chunk as x, and let py := 0.

3. Let sk← PPPS.Program(msk∗, ⌊x/
√
N⌋, y mod

√
N).

4. Send sk to server, and receive a response p.

5. Sample msk′ ← PPPS.Gen(1λ, N) subject to Member(msk′, x) = 1. Replace the consumed
hint with the broken hint (msk′,⊥).

6. If p∗ = ⊥, i.e., the hint is broken or the earlier step 2 did not find a match, then output ⊥;
else output p⊕ p∗ ⊕ py.

Server: upon receiving msk, return ⊕z∈PPPS.Set(msk,N)DB[z].

Figure 5: Single-server preprocessing PIR for bounded queries. The scheme satisfies δ-security if the
underlying PPPRF satisfies δ-XOR functional programming privacy. We can upgrade the scheme to
support unbounded queries as in [ZPSZ24].

into
√
N continguous chunks and each chunk is

√
N in size. When we sample a secret key msk, the

set generated by msk includes one index per chunk. Specifically, ∆i := (PPPRF.Eval(msk, i) + s)
mod

√
N gives the offset within the i-th chunk where i ∈ {0, 1, . . . ,

√
N−1}, i.e., the index i·

√
N+∆i

is contained in the set generated by msk.
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7.2.1 1-Server Scheme

In Figure 5, we present a 1-server preprocessing PIR scheme that supports up to
√
N queries.

We can use the same pipelining idea described in Zhou et al. [ZPSZ24] to extend the scheme to
support unbounded number of queries. The idea is that after the initial preprocessing that is done,
in every window of

√
N queries, we run the preprocessing for the next window of

√
N queries, and

the work is spread across each query. We can use known small-domain PRP constructions [HMR12]
to instantiate the PRP used to permute the database upfront. Specifically, each PRP evaluation
takes only Õλ(1) time.

Performance. We now analyze the performance of our 1-server preprocessing PIR. Our analysis ac-
counts for the cost of all poly log λ parallel instances. Henceforth, let LPPPRF := LPPPRF(λ, ℓin, ℓout, δ)
denote an upper bound on the length of a normal and programmed key and TPPPRF := TPPPRF(λ, ℓin, ℓout, δ)
denote an upper bound on the evaluation and programming cost of the underlying PPPRF.

• Space. The client space, which is dominated by the cost of storing
√
N · poly log λ keys, is

bounded by
√
N · poly log λ ·LPPPRF. The server only needs to store the database itself and thus

the server space is N .

• Preprocessing cost. During the preprocessing, the client downloads one chunk from the server at
a time, and updates all len cumulative parities in each of the poly log λ instances. In other words,
the client can compute the hint table and replacement entries for all poly log λ instances in a single
scan. Therefore, the client computation during preprocessing is bounded by poly log λ·N ·TPPPRF.
The preprocessing communication and server computation is N .

• Query cost.

– Online cost. The online cost is on the critical path of getting the answer. The online
communication cost is poly log λ · LPPPRF. The online server computation is bounded by
poly log λ ·

√
N ·TPPPRF. The online client computation is bounded by poly log λ ·

√
N ·TPPPRF

with 1− negl(λ) probability. Note that the negl(λ) failure is due to the negligible probability
that the rejection sampling (to find a key msk′ ← PPPS.Gen subject to containing the present
query) exceeds the above stated time bound.

– Offline cost. The offline cost is the cost of performing the next phase’s preprocessing amortized
across the present phase of

√
N queries. The offline bandwidth and server computation is√

N per query. The offline client computation is poly log λ ·
√
N · TPPPRF per query.

For the special case when δ = 1/poly log λ which is what we need in the security amplification
later, and using the PPPRF of Section 6.2, we have LPPPRF = (ϵλ logN)O(1/ϵ), and TPPPRF =
(ϵλ logN)O(1/ϵ) ·N ϵ ·TPRG(λ) for an arbitrary constant ϵ ∈ (0, 1). In this case, we have the following
performance:

• Space: client space =
√
N · (ϵλ logN)O(1/ϵ), server space = N ;

• Preprocessing: client computation = N1+ϵ · (ϵλ logN)O(1/ϵ) · TPRG(λ), bandwidth = N , server
computation = N ;

• Per-query cost: online bandwidth = (ϵλ logN)O(1/ϵ), online client/server computation =N
1
2
+ϵ(ϵλ logN)O(1/ϵ)·

TPRG(λ); offline bandwidth/server computation =
√
N , offline client computation =N

1
2
+ϵ(ϵλ logN)O(1/ϵ)·

TPRG(λ).
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Theorem 7.1 (δ-secure 1-server preprocessing PIR). Suppose that the underlying PPPRF satisfies
programming correctness and δ-XOR functional programming privacy. Further, suppose that the
length of the hint table len = C

√
N for a suitably large constant C > 1. Then, the 1-server

preprocessing PIR scheme in Figure 5 satisfies correctness and δ-security.

We defer the proof to Appendix D.

7.2.2 2-Server Scheme

The 2-server scheme can be obtained fairly easy by modifying the 1-server scheme. The client
directly downloads the preprocessed hint from the left server, and interacts with the right server
during the query phase. This saves the client from having to download the whole database during
preprocessing. We defer the detailed description and the theorems to Appendix D.2.

8 Security Amplification

Section 7.2 gives δ-secure preprocessing PIR schemes for the single-server and two-server settings.
In this section, we describe how to amplify the security to achieve negligible failure probability
against any polynomial-time adversary.

8.1 Additional Preliminaries

Locally decodable code. A locally decodable code (LDC) allows us to encode a string henceforth

denoted DB of N bits into a codeword D̃B, such that to query DB[i], it suffices to query Q locations

in the codeword D̃B. Moreover, we require that the Q locations queried satisfy σ-wise independence.
Standard definitions of additionally require error correction, but for our application, we will not
need the error correction property, so we omit it from the definition. Formally, an LDC over the
field Fp has the following algorithms:

• D̃B← Encode(DB): takes in a DB ∈ FN
p outputs a codeword D̃B ∈ FÑ

p .

• i1, · · · , iQ ← Query(i): outputs Q queries to the encoded database for an original query i ∈ [N ].

• w ← Decode(i1, · · · , iQ, w1, · · · , wQ): takes in Q indices i1, · · · , iQ and Q values w1, · · · , wQ ∈ Fp

and outputs the reconstructed value w.

Correctness requires that for any DB ∈ FN
q , any i ∈ {0, 1, . . . , N − 1}, the following holds with

probability 1: let D̃B← Encode(DB), let i1, . . . , iQ ← Query(i), then Decode(i1, . . . , iQ, D̃B[i1], . . .,

D̃B[iQ]) = DB[i].
An LDC is said to satisfy σ-smoothness, iff for any i ∈ {0, 1, . . . , N − 1}, any σ out of the Q

queries output by Query(i) are jointly distributed as σ independent and uniform random indices
from {0, 1, . . . , Ñ − 1}.

Theorem 8.1 (Reed-Muller code [HOWW19]). For any constant ϵ > 0, there exists a σ-smooth
LDC such that the field size p = (σ logN)O(1/ϵ), the codeword length Ñ = N1+ϵ · (σ logN)O(1/ϵ),
and the number of queries Q = (σ logN)O(1/ϵ). Further, the encoding time is Õ(Ñ) and the decoding
time is Õ(Q) where Õ(·) hides poly log(N, 1/ϵ, σ) factors.
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Security Amplification for k-server preprocessing PIR

Preproc(1λ,DB):

• Each server computes D̃B← LDC.Encode(DB).

• The client and the k servers run PIR.Preproc(1λ, D̃B).

Query(x): Client computes x1, · · · , xQ ← LDC.Query(x), and for j = 1 to Q:

• for each server i ∈ [k], the client sends to the i-th servera:

Set(PIR.Queryi(xj),PIR.Simi(1
λ, N), . . . ,PIR.Simi(1

λ, N)︸ ︷︷ ︸
d−1

)

where PIR.Queryi and PIR.Simi denote the output of the query algorithm for the i-th server,
and the simulator for the i-th server of the underlying PIR.

• each server: upon receiving a set of d queries, answer all queries in the set.

• client sets wj as the answer to the sole real query and ignores the others.

Finally, the client outputs LDC.Decode(x1, · · · , xQ, w1, · · · , wQ).

aTo send a set, simply send a random permutation of its elements.

Figure 6: Security amplification for k-server preprocessing PIR. Here, PIR denotes a k-server
preprocessing PIR scheme and LDC denotes a locally decodable code.

8.2 Security Amplification of PIR

Given a δ-secure k-server preprocessing PIR scheme, we show how to amplify the security such
that the security failure probability becomes negligibly small for any polynomial-time adversary.
The construction is shown in Theorem 8.2 with the following choice of parameters.

Parameter choices. We will use Theorem 8.1 to instantiate the underlying LDC. Fix an arbitrarily
small constant ϵ. We will choose the following parameters. Let σ = log2 λ. Let Q = (σ logN)Θ(1/ϵ).
Choose δ < σ/6Q and d > log2 λ/δ2. It is not hard to see that both Q and d are polylogarithmically
bounded.

Theorem 8.2 (PIR security amplification). Suppose we choose the parameters as above. Suppose
that the underlying PIR scheme satisfies correctness and δ-security, and that we use the LDC of
Theorem 8.1 with message length N , query length Q, and smoothness parameter σ. Then, the
construction Figure 6 is a k-server preprocessing PIR scheme that satisfies correctness and full
security.

Our construction requires an underlying PIR scheme with an N1+ϵ ·logO(1/ϵ)(λ,N)-sized database,
and for each query, the client makes Q · d = logO(1/ϵ)(λ,N) queries to the underlying PIR or the
PIR’s simulator algorithm. Using the above parameters and plugging in the 1-server and 2-server
schemes of Section 7.2, we get the following corollaries — specifically, we can split ϵ, and use the
parameter ϵ/2 for the underlying PIR and ϵ/2 for the amplification protocol:
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Corollary 8.3 (Fully secure 1-server preprocessing PIR). Assume the existence of one-way functions,
and let ϵ ∈ (0, 1) be an arbitrary constant. Then, there exists a fully secure 1-server preprocessing
PIR scheme that achieves the following performance:

• Space: client space = N
1
2
+ϵ · (ϵλ logN)O(1/ϵ), server space = N1+ϵ · logO(1/ϵ)(N,λ);

• Preprocessing: client computation = N1+ϵ · (ϵλ logN)O(1/ϵ) · TPRG(λ), bandwidth = server com-
putation = N1+ϵ · logO(1/ϵ)(N,λ);

• Per-query cost: online bandwidth = (ϵλ logN)O(1/ϵ), online client/server computation = N
1
2
+ϵ(ϵλ logN)O(1/ϵ)·

TPRG(λ); offline bandwidth/server computation =
√
N · logO(1/ϵ)(N,λ), offline client computation

= N
1
2
+ϵ(ϵλ logN)O(1/ϵ) · TPRG(λ).

Corollary 8.4 (Fully secure 2-server preprocessing PIR). Assume the existence of one-way functions,
and let ϵ ∈ (0, 1) be an arbitrary constant. Then, there exists a fully secure 2-server preprocessing
PIR scheme that achieves the following performance:

• Space: client space = N
1
2
+ϵ · (ϵλ logN)O(1/ϵ), server space = N1+ϵ · logO(1/ϵ)(N,λ);

• Preprocessing: client computation/bandwidth = N
1
2
+ϵ · (ϵλ logN)O(1/ϵ), left server computation

= N1+ϵ(ϵλ logN)O(1/ϵ) · TPRG(λ), right server computation = 0;

• Per-query cost (both online and offline): bandwidth = (ϵλ logN)O(1/ϵ), client/server computation

= N
1
2
+ϵ(ϵλ logN)O(1/ϵ) · TPRG(λ).
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Supplementary Materials

A Additional Related Work

We now review additional related work. Computationally secure single-server (classical) PIR
with Õ(1) bandwidth and linear computation per query can be built from various assumptions
such as LWE, ϕ-hiding, decisional composite residuosity (DCR), and linear homomorphic encryp-
tion [HHCG+22,MW22,ACLS18,CMS99,Lip09,Lip05]. The recent ground-breaking work of Lin,
Mook, and Wichs [LMW23] showed a PIR scheme with server-side preprocessing that achieves
polylogarithmic bandwidth and computation per query, consuming N1+ϵ server space. All of these
works require cryptographic primitives that imply public-key cryptography, and this is inherent
without client-side preprocessing [DCMO00]. If we are not concerned about having (super-)linear
computation per query, then it is known how to achieve No(1) bandwidth in the information-theoretic
setting due to the elegant work of Dvir and Gopi [DG16].

Some earlier works also considered preprocessing PIR but in the single-query setting (e.g.,
Theorem 11 of Corrigan-Gibbs and Kogan [CK20]). With such schemes, a separate preprocessing is
needed for every query, so the total cost per query is still high. In our work, we focus on preprocessing
PIR that supports an unbounded number of queries, so we can amortize the preprocessing cost over
the unbounded number of queries.

The line of work on Oblivious RAM (ORAM) [GO96,Gol87,SCSL11] is also related in the sense
that ORAM also provides access pattern privacy. However, with ORAM, the server needs to store
a separate copy of the (encrypted and ORAM’ed) database for each client. In some deployment
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scenarios such as Signal’s private contact discovery application [Con], they use a secure processor
on the cloud server, such that the secure processor acts as a globally unique client. This avoids the
multiplicative blowup in server space related to the number of clients.

B Deferred Proofs for Section 5

B.1 Proofs of Theorem 5.1 and Theorem 5.2

The proof of Boyle et al. [BGIK22] implies the following technical lemma.

Lemma B.1 (Technical lemma imported from Boyle et al. [BGIK22]). Suppose that m = ω(n · log λ).
Let pPRF denote a secure puncturable PRF scheme with input domain {0, . . . ,m− 1} and output
range {0, . . . , n − 1}. Then, for any x ∈ {0, . . . , n − 1}, the following probability ensembles are√

n/m-computationally indistinguishable:

• Real: Sample s
$←{0, . . . , n−1}, sk← pPRF.Gen(1λ), and choose a random r from {0, . . . ,m−1}

subject to pPRF.Eval(sk, r) + s = x mod n; let sk′ ← pPRF.Punct(sk, r), and output (sk′, s) or
⊥ if no such r is found.

• Ideal: Sample s
$←{0, . . . , n− 1}, sk← pPRF.Gen(1λ), and choose a random r

$←{0, . . . ,m− 1};
let sk′ ← pPRF.Punct(sk, r), and output (sk′, s).

Proof of Theorem 5.1. We now prove Theorem 5.1.

• Correctness. Correctness is guaranteed as long as the Prog procedure does not output ⊥.
Imagine that we are throwing m balls i ∈ {0, 1, . . . ,m− 1} into n bins, based on the outcome
(pPRF(psk, i) + s) mod n. Since the underlying pPRF satisfies pseudorandomness and by the
Chernoff bound, the probability that some bin is empty is upper bounded by negl(λ). Thus,
correctness holds with probability 1− negl(λ).

• Pseudorandomness. The proof of pseudorandomness is straightforward since the evaluation
outcome is XOR’ed with the pseudorandom padding xPRF(xsk, x).

• Functional programming privacy. In the functional programming privacy security experiment,
the adversary can choose either f0 or f1, where f b(v) = v ⊕ b. Henceforth, suppose that the
adversary chooses f0 since the proof is similar to the case of f1.

We can define the simulator Sim to sample sk′ and s just like in the Ideal game of Theo-
rem B.1. Further, Sim additionally samples a random xPRF key xsk, and outputs (sk′, xsk, s).
We now show that the real and ideal experiments RealProgPriv and IdealProgPriv are

√
n/m-

computationally indistinguishable. In the real experiment RealProgPriv, the adversary A receives
the programmed key skreal = (pPRF.Punct(sk, r), xsk, s) where r is chosen at random subject
to pPRF.Eval(sk, r) + s = n − 1 mod n. In the ideal experiment IdealProgPriv, adversary A
receives the programmed key skideal = (pPRF.Punct(sk, r), xsk, s) where r is chosen at random.
By Theorem B.1 and the post-processing lemma, the distributions skreal and skideal are

√
n/m-

computationally indistinguishable for an arbitrary x submitted by the adversary. Thus, we
conclude that RealProgPriv and IdealProgPriv are

√
n/m-computationally indistinguishable for

any non-uniform PPT A.
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Proof of Theorem 5.2. Next, we prove Theorem 5.2. Recall that Goldreich, Goldwasser, and
Micali construction [GGM86] is a tree-based PRF construction based on a pseudorandom generator
(PRG). Given a random seed s ∈ {0, 1}λ at the root, we can expand the seed with the PRG and
compute a random λ-bit key for each of the children. This process continues until we compute a
key for each node in the tree. The tree has m leaves, and the leaf level is a little special: for our
setting, the key at the leaf level has bit length log2 n (as opppsed to λ bits). Now, the resulting key
at each leaf i ∈ {0, 1, . . . ,m− 1} is the PRF’s evaluation at the point i.

A key sk−r punctured at the point r ∈ {0, 1, . . . ,m− 1} consists of

• the point r, and

• L = O(log2m) keys denoted {sk1, . . . , skL}: specifically, the keys associated with all nodes that
are sibling to the path from leaf r to the root. We use ski to denote the key at level i of the tree,
where the root is assumed to be at level 0.

Claim B.2. For any fixed r, sk−r is computationally indistinguishable from r along with L random
strings of appropriate lengths.

The above claim can be proven through a standard hybrid argument assuming the pseudo-
randomness of the PRG. In particular, let Hyb0 be the real distribution of sk−r, and let Hybi be
the following distribution: sample sk1, . . . , ski at random; sample sk′i at random, and compute
ski+1, . . . , skL honestly assuming sk′i is associated with the root of the subtree that contains the keys
ski+1, . . . , skL; and output (r, sk1, . . . , skL). Clearly, HybL is the same as the distribution specified
in Claim B.2. The pseudorandomness of PRG guarantees that any two adjacent pair of hybrids are
computationally indistinguishable through a straightforward reduction.

Given Claim B.2, Theorem 5.2 follows by the post-processing lemma of computational indistin-
guishability.
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PRF with general functional programming privacy

Notation: PPPRF is a PRF with δ-XOR functional programming privacy, and 1-bit outcome

Assume: the input domain is {0, 1, . . . , n− 2} where n = 2ℓin

Gen(1λ, ℓin, ℓout):

• For i ∈ [ℓout], let mski ← PPPRF.Gen(1λ, ℓin, 1), and let pad
$←{0, 1}ℓout .

• Output msk = (msk1, · · · ,mskℓout , pad).

Eval(msk = (msk1, · · · ,mskℓout , pad), x):

• Output (PPPRF.Eval(msk1, x)∥ · · · ∥PPPRF.Eval(mskℓout , x))⊕ pad.

Prog(msk = (msk1, · · · ,mskℓout , pad), x, v):

• For each i ∈ [ℓout], let ski ← PPPRF.Prog(mski, x, vi⊕ padi) where vi and padi denote the
i-th bit of v and pad, respectively.

• Output sk = (sk1, · · · , skℓout , pad).

PEval(sk = (sk1, · · · , skℓout , pad), x):
• Output (PPPRF.PEval(sk1, x)∥ · · · ∥PPPRF.PEval(skℓout , x))⊕ pad.

Figure 7: Small-domain PRF with general functional programming privacy.

B.2 Proofs of Theorem 5.3 and Theorem 5.4

The performance bounds and correctness are easy to see. We focus on proving functional
programming privacy. Suppose that the function family F is δ′-random-to-random. We want to
show that RealProgPriv is (δ′ + ℓout · δ)-indistinguishable from IdealProgPriv. We prove this through
a sequence of hybrid experiments.

Experiment Hyb1. We start with the following experiment Hyb1, which is identical to RealProgPriv
when we plug in our construction in Figure 7.

Experiment Hyb1

Let x, f ← A
Sample msk1, · · · ,mskℓout ← PPPRF.Gen(1λ, ℓin, 1), pad

$←{0, 1}ℓout
Let v ← (PPPRF.Eval(msk1, x)∥ · · · ∥PPPRF.Eval(mskℓout , x))⊕ pad
Let v′ ← f(v)
For each i ∈ [ℓout], let ski ← PPPRF.Prog(mski, x, v

′
i ⊕ padi)

Let sk = (sk1, . . . , skℓout, pad)
Output A(sk)

Experiment Hyb2. Hyb2 is a rewrite of Hyb1 by switching the sampling order. Recall that in Hyb1,
we sample pad andmsk, and then we compute v ← (PPPRF.Eval(msk1, x)∥ · · · ∥PPPRF.Eval(mskℓout , x))⊕
pad which is uniformly distributed. In Hyb2, we sample v and msk first and then we compute pad —
see below. Thus, Hyb2 is identically distributed as Hyb1.
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Experiment Hyb2

Let x, f ← A
Let v

$←{0, 1}ℓout
Let v′ ← f(v)
Sample msk1, · · · ,mskℓout ← PPPRF.Gen(1λ, ℓin, 1)
For each 1 ≤ i ≤ ℓout, let ski ← PPPRF.Prog(mski, x,PPPRF.Eval(mski, x)⊕ vi ⊕ v′i)
pad← (PPPRF.Eval(msk1, x)∥ · · · ∥PPPRF.Eval(mskℓout , x))⊕ v
Let sk← (sk1, · · · , skℓout , pad)
Output A(sk)

Experiment Hyb3. Recall that in Hyb2, we use the unprogrammed keys to compute pad, that
is, pad← (PPPRF.Eval(msk1, x)∥ · · · ∥PPPRF.Eval(mskℓout , x))⊕ v. In Hyb3, we instead use the pro-
grammed keys to compute pad, that is, pad← (PPPRF.PEval(sk1, x)∥ · · · ∥PPPRF.PEval(skm, x))⊕v′.

Experiment Hyb3

Let x, f ← A
Let v

$←{0, 1}ℓout
Let v′ ← f(v)
Sample msk1, · · · ,mskℓout ← PPPRF.Gen(1λ, ℓin, 1)
For each 1 ≤ i ≤ ℓout, let ski ← PPPRF.Prog(mski, x,PPPRF.Eval(mski, x)⊕ vi ⊕ v′i)
pad← (PPPRF.PEval(sk1, x)∥ · · · ∥PPPRF.PEval(skm, x))⊕ v′

Let sk← (sk1, · · · , skℓout , pad)
Output A(sk)

As long as programming correctness is satisfied, using either the unprogrammed or programmed
keys to compute pad would yield the same result. Since programming correctness is satisfied with
1− negl(λ) probability, Hyb2 and Hyb3 have negligible statistical distance.

Experiment Hyb4. In the earlier Hyb3, the experiment programs the keys such that the pro-
grammed values are equal to the original evaluation outcome XOR’ed with v ⊕ v′. In Hyb4, instead
of honestly computing the programmed keys, we generate the programmed keys using the simulator
Sim.

Experiment Hyb4

Let x, f ← A
Let v

$←{0, 1}ℓout
Let v′ ← f(v)
Sample sk1, · · · , skℓout ← Sim(1λ, ℓin, 1)
pad← (PPPRF.PEval(sk1, x)∥ · · · ∥PPPRF.PEval(skℓout , x))⊕ v′

Let sk← (sk1, · · · , skℓout , pad)
Output A(sk)

As long as f is PPT, and the underlying PPPRF satisfies δ-XOR functional programming privacy,
Hyb3 and Hyb4 are (ℓout · δ)-computationally indistinguishable. Specifically, we can go through ℓout
inner-hybrids to replace the programmed keys one by one to a simulated key. In each hybrid step,
we incur an δ loss in privacy.
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Experiment Hyb5. In Hyb4, v is only used to compute v′ and it is never used afterwards. In
Hyb5, we will directly sample v′ at random without sampling v. Since the function f(v)’s output is
δ′-indistinguishable from random upon a uniform input v, Hyb4 and Hyb5 are δ′-computationally
indistinguishable.

Experiment Hyb5

Let x, f ← A
Let v′

$←{0, 1}ℓout
Sample sk1, · · · , skℓout ← PPPRF.Sim(1λ, ℓin, 1)
pad← (PPPRF.PEval(sk1, x)∥ · · · ∥PPPRF.PEval(skℓout , x))⊕ v′

Let sk← (sk1, · · · , skℓout , pad)
Output A(sk)

Finally, it is not hard to see that Hyb5 is identically distributed as the ideal experiment
IdealProgPriv where the simulator Sim outputs sk1, . . . , skℓout sampled from the underlying PPPRF’s

simulator PPPRF.Sim(1λ, ℓin, 1) and a random pad
$←{0, 1}ℓout .

Summarizing the above, RealProgPriv is (δ′ + ℓout · δ)-indistinguishable from IdealProgPriv.

Proof of Theorem 5.4. Given the proof of Theorem 5.3 and the simulator construction, the
proof of Theorem 5.4 is straightforward due to Theorem 5.2.

C Deferred Proofs for Section 6

C.1 Proof of Theorem 6.1

Henceforth, define the short-hand

PPPRF.FProg(msk, x, f) := PPPRF.Prog
(
msk, x, f(PPPRF.Eval(msk, x))

)
.

Further, given some x, define the following functions:

• fx,g
D (v): output g(v).

• fx,g
D−i(mskD−i, skD−i, τD−i) where i ∈ [D − 1]: output (Uλ,PPPRFD−i.FProg(mskD−i, xD−i,
fD−i+1), 1− τD−i) where xD−i is the (D − i)-th digit of the base-γ representation of x.

Using the above notation, the real experiment RealA(1λ, ℓin, ℓout) in Theorem 6.1 can be equiva-
lently rewritten as the following.

Experiment RealA(1λ, ℓin, ℓout). A(1λ, ℓin, ℓout) outputs x, g. Sample (msk0, sk0, τ0)← PPPRFTree.Gen(1λ,
ℓin, ℓout) subject to T x(msk0, sk0, τ0) = 0D. Let sk ← PPPRF0.FProg((msk0, sk0, τ0), f

x,g
1 ), let

msk′ ← (Uλ, sk, 1− τ0), and output A(msk′).
We want to show that RealA(1λ, ℓin, ℓout) is 2

D·log1.1 λ·(δ′+Dδ)-computationally indistinguishable
from IdealA(1λ, ℓin, ℓout) as long as g is δ′-random-to-random. We will prove this through a sequence
of hybrid experiments.
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Experiment Hyb0. Hyb0 is otherwise identical as Real except that if the rejection sampling
(msk0, sk0, τ0)← PPPRFTree.Gen(1λ, ℓin, ℓout) subject to T x(msk0, sk0, τ0) = 0D has not completed
in M = log1.1 λ · 2D number of tries, simply abort outputting ⊥.

Claim C.1. Suppose that PPPRF1, . . . ,PPPRFD−1 all satisfy pseudorandomness. Then, the distri-
bution T x(msk) for a random string msk of appropriate length is computationally indistinguishable
from a uniform distribution on {0, 1}Z . This implies that for any vector b ∈ {0, 1}Z , the probability
that a random msk of appropriate length satisfies T x(msk) = b is negligibly apart from 1/2D.

Proof. This can be proven through a straightforward hybrid argument, where we replace PPPRF1

to PPPRFD−1 with a random oracle one by one when evaluating the function T x(msk). Due to
the pseudorandomness of the underlying PPPRFs, the distributions of T x(msk) in adjacent pair of
hybrids are computationally distinguishable. When we have replaced all of PPPRF1 to PPPRFD−1

with random oracles, then the probability T x(msk) = b is exactly 1/2D for every b.

Due to Claim C.1, the probability that Hyb0 exhausts all M = 2D log1.1 λ tries and outputs ⊥
at the end is at most(

1− 1/2D + negl(λ)
)2D log1.1 λ ≤ (1− 1/2D+1)2

D+1· 1
2
·log1.1 λ ≤ 1/e

1
2
·log1.1 λ = negl(λ) (1)

Thus, Hyb0 and Real have only negligible statistical distance.

Experiment Hyb1. Hyb1 is just an equivalent rewrite of Real by deferring T x(msk0, sk0, τ0) = 0D

check to the very end. Specifically, Hyb1 is the following experiment: A(1λ, ℓin, ℓout) outputs x, g.
Repeat the following M times:

• sample (msk0, sk0, τ0)← PPPRFTree.Gen(1λ, ℓin, ℓout);

• let sk← PPPRF0.FProg((msk0, sk0, τ0), f
x,g
1 ), and let msk′ ← (Uλ, sk, 1− τ0),

• if T x(msk0, sk0, τ0) = 0D, return and output A(msk′).

Output ⊥.

Experiment Hyb2. In Hyb2, we change checking T
x(msk0, sk0, τ0) = 0D to checking that T x(msk′) =

1D. Specifically, Hyb2 is the following experiment: A(1λ, ℓin, ℓout) outputs x, g. Repeat the following
M times:

• sample (msk0, sk0, τ0)← PPPRFTree.Gen(1λ, ℓin, ℓout);

• let sk← PPPRF0.FProg((msk0, sk0, τ0), f
x,g
1 ), and let msk′ ← (Uλ, sk, 1− τ0),

• if T x(msk′) = 1D, return and output A(msk′).

Output ⊥.
Assuming that the underlying PPPRF schemes all satisfy programming correctness, except with

negligible probability in the random experiment Hyb2, T
x(msk0, sk0, τ0) = 0D ⇔ T x(msk′) = 1D

holds for all up to M tries. Therefore, Hyb1 and Hyb2 have negligible statistical distance.
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Experiment Hyb3. In Hyb3, we replace the sampling of the programmed key sk with a random
string of appropriate length. Specifically, Hyb3 is the following experiment: A(1λ, ℓin, ℓout) outputs
x, g. Repeat M times:

• sample (msk0, sk0, τ0)← PPPRFTree.Gen(1λ, ℓin, ℓout);

• let sk be a random string of appropriate length, and let msk′ ← (Uλ, sk, 1− τ0),

• if T x(msk′) = 1D, return and output A(msk′).

Output ⊥.

Claim C.2. Suppose that for every i ∈ {0, 1, . . . , D − 1}, PPPRFi satisfies δ-general functional
programming privacy. Then, Hyb3 is M · (δ′ +D · δ)-computationally indistinguishable from Hyb2.

Proof. By our assumption, fx,g
D = g is δ′-random-to-random. By the δ-general functional program-

ming privacy of PPPRFD−1, we have that fx,g
D−1 is (δ′ + δ)-random-to-random. Similarly, by the

δ-general functional programming privacy of PPPRFD−2, fx,g
D−2 is (δ′ + 2δ)-random-to-random. By

induction, we have that fx,g
1 is (δ′ + (D − 1)δ)-random-to-random. Finally, by the δ-general func-

tional programming privacy of PPPRF0, it holds that each sk in Hyb1 is (δ′ +D · δ)-computationally
indistinguishable from a random string of appopriate length. Because both experiments sample
at most M such sk’s, it holds that Hyb3 is M · (δ′ +D · δ)-computationally indistinguishable from
Hyb2.

Experiment Hyb4. Hyb4 is the following experiment: A(1λ, ℓin, ℓout) outputs x, g. Repeat M
times:

• sample a random string msk′ of appropriate length,

• if T x(msk′) = 1D, return and output A(msk′).

Output ⊥.
It is not hard to see that Hyb4 is an equivalent rewrite of Hyb3, since msk0 and τ0 are sampled

uniform at random in PPPRF.Gen.
Observe that the only difference between Hyb4 and Ideal is that Hyb4 limits the number of tries

to M and Ideal does not. Due to Claim C.1 and Equation (1), as long as PPPRF1, . . . ,PPPRFD−1

all satisfy pseudorandomness, the probability that Hyb4 exhausts all M tries and outputs ⊥ at the
end is negligibly small. Therefore, Hyb4 and Ideal have negligible statistical distance.

C.2 Proof of Theorem 6.2

Programming correctness is guaranteed if there exists a tree among the Z trees whose key is
denoted mski, such that T x(mski) = 1D. Due to Claim C.1, the probability that this happens is
negligibly apart from 1/2D. Given the choice of Z, it is not hard to see that the probability that
there exists such a tree is 1− negl(λ).

Henceforth, we focus on proving that our forest-based PPPRF satisfies functional programming
privacy. Our proof goes through a sequence of hybrid experiments.

Experiment RealProgPriv. Recall that in RealProgPriv, the adversaryA submits x, f∆
xor(v) = v+∆,

and the challenger samples a random msk and programs it at x to be f(v) where v = Eval(msk, x).
The resulting sk is returned to A.
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Experiment Hyb1. Hyb1 is otherwise identical to Real except that instead of sampling mski ←
PPPRFTree.Gen(1λ, ℓin, ℓout), we sample msk := {mski}i∈[Z] as follows.

First, throw Z balls into 2D bins at random. We number the bins using labels from {0, 1}D. If the
bin 0D is empty, return ⊥ to A. Else, continue with the following. For j ∈ [Z], let βj be the bin that

ball j lands in, and sample mskj ← PPPRFTree.Gen(1λ, ℓin, ℓout) subject to T x(mskj) = βj . Pick a

random ball i that lands in bin 0D. Let v′ = f(Eval(msk, x))⊕Eval(msk, x)⊕PPPRFTree.Eval(mski, x),
ski ← PPPRFTree.Prog(mski, x, v

′), and return the unordered set {msk1, . . ., mski−1, ski, mski+1,
. . ., mskZ} to A.

Claim C.3. Suppose that all the underlying PPPRFs in PPPRFTrees satisfy pseudorandomness.
Then, Hyb1 is computationally indistinguishable from Real.

Proof. Consider the following hybrid Hyb∗ that is almost identical as Hyb1 except that the balls into
bins step is not using real randomness, but using the outcomes of Z randomly sampled PPPRFTrees.
Clearly, Hyb∗ is identically distributed as Real. It suffices to show that Hyb∗ is computationally
indistinguishable from Hyb1. By Claim C.1, the distribution of the bin loads are computationally
indistinguishable whether we use true randomness or PPPRFTrees. We can build an efficient
reduction R that leverages an adverary A that can distinguish Hyb∗ from Hyb1 with non-negligible
probability to distinguish the bin load distributions when sampled using true randomness vs. using
PPPRFTrees. Basically, the reduction obtains the bin loads, and then it continues to simulate Hyb∗

for the adversary. If the rejection sampling exceeds some fixed polynomial number of tries, the
reduction simply outputs 1. Otherwise, it gives the resulting {msk1, . . ., mski−1, ski, mski+1, . . .,
mskZ} to A and outputs the same output as A. The probability that the rejection sampling exceeds
the time limit is negligibly small in Hyb1; therefore, it should also be negligibly small in Hyb∗ —
otherwise we can easily build a reduction that leverages whether the rejection sampling completes in
time to distinguish random bin loads from pseudorandom bin loads generated with PPPRFTrees. It
is not hard to show that if A has non-neligible advantage in distinguishing Hyb∗ and Hyb1, then R
can distinguish random bin loads from pseudorandom bin loads generated with PPPRFTrees with
non-negligible probability.

Experiment Hyb2. Hyb2 is otherwise identical as Hyb1 except that we now sample ski as a random
string of appropriate length subject to T x(ski) = 1D. Due to Theorem 6.1 and the fact that f∆

xor is
random-to-random, Hyb2 is D · 2D · δ · log1.1 λ-computationally indistinguishable from Hyb1.

Hyb2 can also be equivalently rewritten as the following. A outputs x, f∆
xor. Using a random

balls-into-bins experiment, sample βj for all j ∈ [Z]. If the bin 0D is empty, return ⊥ to A. Else,
continue with the following. Choose a random i such that βi = 0D, and reset βi = 1D. For each
j ∈ [Z], sample a random string mskj subject to T x(mskj) = βj . Return {mskj}j∈[Z] to A.

Experiment Hyb3. Experiment Hyb3 is almost identical to Hyb2 except that we no longer replace
βi with 1D.

Claim C.4. Hyb3 and Hyb2 have statistical distance at most O(
√
2D/Z · log1.2 λ).

Proof. It suffices to prove that the following distributions have at most O(
√

ν/m · log1.2 λ) statistical
distance:

• Throw m = poly(λ) balls into ν ≥ 2 bins: if bin 0 is empty, output ⊥; else output the vector of
bin loads.
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• Throw m = poly(λ) balls into ν ≥ 2 bins: if bin 0 is empty, output ⊥; else move one ball from
bin 0 to the last bin ν − 1, and output the vector of bin loads.

The probability of having bin loads c0, c1, . . . cν−1 after throwing m balls into ν bins is

Pr[c0, . . . , cν−1] =
m!

c0! . . . cν−1!νm

Therefore,

Pr[c0 + 1, c1, . . . , cν−2, cν−1 − 1]

Pr[c0, c1, . . . , cν−2, cν−1]
=

m!

(c0 + 1)! . . . (cν−1 − 1)!νm
· c0! . . . cν−1!ν

m

m!
=

cν−1
c0 + 1

Therefore, we have

Pr[c0 + 1, c1, . . . , cν−2, cν−1 − 1]− Pr[c0, c1, . . . , cν−2, cν−1] = Pr[c0, . . . , cν−1] ·
(

cν−1
c0 + 1

− 1

)
The statistical difference between the above two distributions is∑

c0,...,cν−1

|Pr[c0 + 1, c1, . . . , cν−2, cν−1 − 1]− Pr[c0, c1, . . . , cν−2, cν−1]|

=
∑

c0,...,cν−1

Pr[c0, . . . , cν−1] ·
∣∣∣∣ cν−1c0 + 1

− 1

∣∣∣∣
=
∑

c0,cν−1

∣∣∣∣ cν−1c0 + 1
− 1

∣∣∣∣ · ∑
c1,...,cν−2

Pr[c0, . . . , cν−1]

=
∑

c0,cν−1

∣∣∣∣ cν−1c0 + 1
− 1

∣∣∣∣ · Pr[c0, ∗, cν−1] (⋄)

By the Chernoff bound, except with negligible in λ probability, any bin’s load lies within the
range R := [m/ν −

√
m/ν log1.1 λ,m/ν +

√
m/ν log1.1 λ]. So we have

(⋄) ≤ negl(λ) +
∑

c0,cν−1∈R

∣∣∣∣ cν−1c0 + 1
− 1

∣∣∣∣ · Pr[c0, ∗, cν−1]
≤ negl(λ) +

∑
c0,cν−1∈R

O

(√
m/ν log1.1 λ

m/ν

)
· Pr[c0, ∗, cν−1]

≤ negl(λ) +O
(√

ν/m log1.1 λ
)
·

∑
c0,cν−1∈R

Pr[c0] · Pr[cν−1|c0]

≤ negl(λ) +O
(√

ν/m log1.1 λ
)
≤ O

(√
ν/m log1.2 λ

)

Claim C.5. Suppose all the underlying PPPRFs in PPPRFTree satisfy pseudorandomness. Hyb3 is
computationally indistinguishable from IdealProgPriv which simply samples Z keys of appropriate
lengths and returns them to A.

Proof. The proof is almost the same as that of Claim C.3, and additionally using the fact that the
probability that Hyb3 aborts outputting ⊥ is negligibly small.
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D Deferred Proofs for Section 7.1

D.1 Proof of Theorem 7.1

Proof. We now prove Theorem 7.1

Security. We first prove δ-security. Observe that the preprocessing just makes a streaming pass
and leaks no information. Therefore we can focus on the query phase. Using the same proof as in
Zhou et al. [ZPSZ24] and Ghoshal et al. [GZS24], we have the following claim:

Claim D.1. For every each time step t, at the end of the t-th query, the distribution of the PPPS
keys in the client’s hint table is the same as a collection of len freshly sampled PPPS keys, even
when conditioned on the adversary A’s view so far, and even when A can adaptively choose the
queries.

Therefore, the adversary’s view is identically distributed as if it is interacting with a client
running the following stateless algorithm QueryStateless(1λ, x,N): upon receiving query x, sample
a PPPS key msk subject to PPPS.Member(msk, x) = 1, call sk ← PPPS.Program(msk, x, r) where

r
$←{0, 1, . . . ,

√
N−1}, and send sk to the server. To show δ-security of the PIR scheme, we construct

the following simulator Sim(1λ, N): sample a random PPPS key msk, and output msk. It suffices to
show that for any x, the outputs of QueryStateless(1λ, x,N) and Sim(1λ, N) are δ-computationally
indistinguishable. We can prove this through a sequence of hybrid experiments. Henceforth let
chunk(x) = ⌊x/

√
N⌋.

QueryStateless(1λ, x,N). Expanding QueryStateless(1λ, x,N), it outputs the following distribution:
sample s at random, sample a PPPRF key msk′ subject to PPPRF.Eval(msk′, chunk(x)) + s = x
mod

√
N , let sk′ ← PPPRF.Prog(msk′, chunk(x), r) for a random r, output (sk′, s).

Experiment Hyb1(1
λ, x,N). Sample a PPPRF keymsk′, sample s subject to PPPRF.Eval(msk′, chunk(x))+

s = x mod
√
N , let sk′ ← PPPRF.Prog(msk′, chunk(x), r) for a random r, output (sk′, s).

Claim D.2. If the PPPRF satisfies pseudorandomness, then Hyb1(1
λ, x,N) is computationally

indistinguishable from QueryStateless(1λ, x,N) for any x.

Proof. Hyb1 is identically distributed as: sample msk at random, let d = PPPRF.Eval(msk, chunk(x)),
sample s such that s+ d = x mod

√
N , sample msk′ subject to PPPRF.Eval(msk′, chunk(x)) = d,

and output (msk′, s). QueryStateless(1λ, x,N) is identically distributed as the same experiment but
d is sampled at random instead. Note that we can have both experiments abort if the rejection
sampling does not complete within a fixed polynomial amount of time, and this only incurs negligible
statistical distance. Now, the two experiments (with the abort modification) are computationally
indistinguishable due to the pseudorandomness of the PPPRF.

Experiment Hyb2(1
λ, x,N). Sample a PPPRF keymsk′, sample s subject to PPPRF.Eval(msk′, chunk(x))+

s = x mod
√
N , let

sk′ ← PPPRF.Prog(msk′, chunk(x),PPPRF.Eval(msk′, chunk(x)) + ∆)

for a random ∆, output (sk′, s). It is not hard to see that Hyb2 is identically distributed as Hyb1.

37



Experiment Hyb3(1
λ, x,N). Sample a PPPRF key msk′, let sk′ ← PPPRF.Prog(msk′, chunk(x),

PPPRF.Eval(msk′, chunk(x)) +∆) for a random ∆, sample s subject to PPPRF.Eval(sk′, chunk(x)) +
∆ + s = x mod

√
N , output (sk′, s). It is not hard to see that as long as the PPPRF satisfies

programming correctness, then Hyb3 and Hyb2 has negligible statistical distance.

Experiment Hyb4(1
λ, x,N). Sample a simulated key sk′ using PPPRF.Sim, sample s subject

to PPPRF.Eval(sk′, chunk(x)) + ∆ + s = x mod
√
N , output (sk′, s). If PPPRF satisfies δ-XOR

programming privacy, then Hyb4 and Hyb3 are δ-computationally indistinguishable through a
straightforward reduction.

Finally, notice that Hyb4 is identically distributed as the output of our simulator Sim(1λ, N)
described earlier since ∆ is random.

Correctness. We next prove correctness. Correctness error can come from two bad events: 1) if
no matched hint is found in step 2 or the matched hint is broken; and 2) if the replacement entries
are depleted for the chunk of interest. It suffices to show that for each of the poly log λ instances,
for any fixed time step t, the probability that some bad event happens is constant.

We begin by bounding the first type of error. Fix an arbitrary time step t and an arbitrary query
xt that is distinct from all previous queries. Henceforth, let Γt denote the hint table right before
time step t. Due to Claim D.1, all the queries made before the t-th time step must be independent of
the PPPS keys in Γt. For each PPPS key in Γt, the probability that it fits a fixed query in the past
is at most 1/

√
N where the probability comes from the distribution of the PPPS key. Therefore,

the probability that it does not fit any query in the past is at most p1 = (1− 1/
√
N)
√
N ≈ 1/e. If

the PPPS key does not fit any past query, it cannot be broken. The probability that there does
not exist a hint in Γt that contains xt is p2 = (1 − 1/

√
N)len ≈ 1/eC . Therefore, the probability

that for a single instance, the probability of no matched hint or matching a broken hint is at most
p1 + p2 ≈ 1/e+ 1/eC .

We next bound the second type of error. Here we need to use the fact that the database is
permuted using a PRP upfront. Henceforth, we may assume that the PRP is replaced with a truly
random permutation and this can cause only negligible difference in the error probability. Because of
the random permutation, it suffices to bound the probability that among

√
N random and distinct

indices, strictly more than poly log λ of them fall within the same chunk as xt, This probability is
negligibly small in λ due to standard tail bounds for the hypergeometric distribution.

D.2 Description of the two server PIR scheme

The 2-server scheme is a variant of the 1-server scheme. The only difference is that during
preprocessing, instead of using a streaming pass to download the hint table and the replacement
entries, the client contacts the left server to download the relevant information; and all the interactions
during the query phase are with the right server. Specifically, during preprocessing, the client
directly sends the {mskj}j∈[len] keys to the left server, and for each key mskj , the left server returns
the parity of the database entries that belong to PPPS.Set(mskj , N). Further, the client sends the
indices of the replacement entries to the left server, and get back the database entries at those
indices.

Performance. We now analyze the performance of our 2-server preprocessing PIR. Again, we use
LPPPRF := LPPPRF(λ, ℓin, ℓout, δ) denote an upper bound on the length of a normal and programmed
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key and TPPPRF := TPPPRF(λ, ℓin, ℓout, δ) denote an upper bound on the evaluation and programming
cost of the underlying PPPRF scheme.

• Space. Like the 1-server scheme, the client space is bounded by
√
N · poly log λ · LPPPRF, and

each server’s space requirement is N .

• Preprocessing cost. The preprocessing communication and client computation is bounded by
poly log λ ·

√
N · LPPPRF. The left server’s preprocessing computation is bounded by poly log λ ·

N · TPPPRF. The right server is not involved in the preprocessing and has no cost.

• Query cost. We analyze the query cost of the unbounded scheme where we perform next
phase’s preprocessing in the current phase of

√
N queries. For each query, the client’s online

computation is bounded by poly log λ·
√
N ·TPPPRF except with negl(λ) probability, and the online

communication is poly log λ · LPPPRF. The client’s offline computation and communication is
bounded by poly log λ·LPPPRF. Both servers’ computation are bounded by poly log λ·

√
N ·TPPPRF

per query.

For the special case when δ = 1/poly log λ which is what we need in the security amplification
later, and using the PPPRF scheme of Section 6.2, we have the following performance:

• Space: client space =
√
N · (ϵλ logN)O(1/ϵ), server space = N ;

• Preprocessing: client computation/bandwidth =
√
N · (ϵλ logN)O(1/ϵ), left server computation =

N1+ϵ(ϵλ logN)O(1/ϵ) · TPRG(λ), right server computation = 0;

• Per-query cost (both online and offline): bandwidth = (ϵλ logN)O(1/ϵ), client/server computation

= N
1
2
+ϵ(ϵλ logN)O(1/ϵ) · TPRG(λ).

E Proofs of Security Amplification

We now provide the detailed proof of our security amplification.

Remark E.1 (Comparison with the security amplification of [BGIK22]). Boyle et al. [BGIK22]
propose a similar security amplification for distributed programmable point functions but without
the d-fold decoys. In the first version of their paper dated August 15, 2022, they only upgrade from
δ-indistinguishability to Nδ-strong-indistinguishability (see their Lemma 3), which would result in
PIR with unacceptable poly(N) cost. In the second version of their paper dated April 16, 2023,
they got rid of this N -factor blowup, but a careful inspection of their proof suggests that the proof
is incomplete. In particular, without the N-factor blowup, their proof only works if the hardcores
for PIR.Query(0), PIR.Query(1), . . ., PIR.Query(N − 1) are the same, which is not true in general.
With some non-trivial changes to their proof, it might be possible to fix this issue by directly proving
that their underlying distributed point function satisfies strong δ-indistinguishability. In our paper,
instead of directly proving that our underlying PPPRF satisfies strong δ-indistinguishability, we go
through the d-fold decoy upgrade, giving a stronger and more general amplification theorem which
may be of independent interest.

E.1 Additional Preliminaries

Hardcore lemma for computational indistinguishability. Mauer and Tessaro [MT10] proved
the following hardcore lemma for computational indistinguishability. Slightly informally, this
hardcore theorem says for any two ensemblesD1 andD2 that are δ-computationally indistinguishable,
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there is a hardcore of size roughly 1− δ, such that no efficient adversary can effectively distinguish
D1 and D2 sampled conditioned on being in this hardcore.

Theorem E.2 (Hardcore lemma for computational indistinguishability). Let ℓ1(·) and ℓ2(·) be
polynomially bounded functions in λ. Let D1(1

λ, ·), D2(1
λ, ·) : {0, 1}ℓ1(λ) → {0, 1}ℓ2(λ) be two

ensembles parametrized by λ. Suppose that there exists some δ(λ) such that for all non-uniform
PPT adversaries A, for sufficiently large λ,∣∣∣∣∣ Pr

r
$←{0,1}ℓ1(λ)

[A(1λ, D1(1
λ, r)) = 1]− Pr

r
$←{0,1}ℓ1(λ)

[A(1λ, D2(1
λ, r)) = 1]

∣∣∣∣∣ ≤ δ(λ)

Then, there exists a hardcore HC(λ) ⊆ {0, 1}ℓ1(λ) whose size |HC(λ)| ≥ (1− δ(λ)) · 2ℓ1(λ), and for
any non-uniform PPT adversary A′, there exists a negligible function negl(·), such that for every λ,∣∣∣∣∣ Pr

r
$←HC(λ)

[A′(1λ, D1(1
λ, r)) = 1]− Pr

r
$←HC(λ)

[A′(1λ, D2(1
λ, r)) = 1]

∣∣∣∣∣ ≤ negl(λ)

E.2 Strong Computational Indistinguishability and Technical Lemma

As a stepping stone in the proof of our security amplification theorem, we will work with a
strengthened notion of δ-computational indistinguishability defined below.

Definition E.3 (Strong δ-computational indistinguishability). We say that the ensemble X(1λ) is
strongly δ-computationally indistinguishable from Y (1λ) if there exists Z(1λ) such that X(1λ) is
computationally indistinguishable from Z(1λ), and moreover, Z(1λ) can be equivalently rewritten
as: with probability 1− δ, output a random sample from Y (1λ); else output a random sample from
any residual distribution.

Note that unlike δ-computational indistinguishability which is a symmetric notion, strong
δ-computational indistinguishability is not symmetric.

The following technical lemma will be useful later in our security amplification construction and
proof.

Lemma E.4 (Technical lemma). Let ℓ(·) be a polynomially bounded function. Suppose {r $←{0, 1}ℓ(λ) :
D(1λ, r)} and {r $←{0, 1}ℓ(λ) : D′(1λ, r)} are δ-computationally indistinguishable where δ ≥ 1/λC

for some constant C. Then, for (1 − 1.1δ)d > log2 λ, the following ensemble X ′(1λ) is strongly(
2δ + log λ√

d

)
- computationally indistinguishable from X(1λ):

• X(1λ): sample r1, . . . , rd
$←{0, 1}ℓ(λ) and output

Set(D(1λ, r1), D(1λ, r2), . . . , D(1λ, rd)︸ ︷︷ ︸
d

);

• X ′(1λ): sample r1, . . . , rd
$←{0, 1}ℓ(λ), and output

Set(D(1λ, r1), . . . , D(1λ, rd−1)︸ ︷︷ ︸
d−1

, D′(1λ, rd)).

Proof. We prove the lemma through a sequence of hybrid experiments. Let HC denote the hardcore
for distribution D(1λ, r) and D(1λ, r′) according to Theorem E.2. Henceforth let p = |HC|/2ℓ. First,
the distribution X ′(1λ) can be rewritten as the following experiment Hyb′:
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Experiment Hyb′. In Hyb′, we sample a random copy r to embed the special instance D′, and
for each i ∈ [d], we sample a random βi to decide whether the i-th copy should be sampled subject
to the hardcore or not:

1. For i ∈ [d], sample βi
$←Bernoulli(p).

2. For i ∈ [d], if βi = 1, sample ri
$←HC; else sample ri

$←{0, 1}ℓ\HC.
3. Output Set(D(1λ, r1), . . . , D(1λ, ri−1), D

′(1λ, ri), D(1λ, ri+1), . . . , D(1λ, rd)).

Experment Hyb1. In Hyb1 we revere the order of steps 1 and 2 in Hyb′. As a result, the
experiment becomes equivalent to first sampling a binomial random variable h deciding how many
copies will be sampled subject to the hardcore, and then sampling a bit β with probability h/d that
decides whether the special D′ copy should be sampled subject to the hardcore:

1. Sample h
$←Binomial(d, p), sample β

$←Bernoulli(h/d).

2. If β = 1, then sample h copies of D subject to HC, sample d− h− 1 copies of D subject to the
complement of HC, and sample 1 copy of D′ subject to HC. Output the unordered set of the
sampled values.

Else, if β = 0, sample h copies of D subject to HC, and sample d− h− 1 copies of D subject to
the complement of HC, and sample 1 copy of D′ subject to the complement of HC. Output the
unordered set of the sampled values.

Experment Hyb2. In Hyb2, if β = 1, we replace the sampling from D′ subject to HC with sampling
from D subject to HC:

1. Sample h
$←Binomial(d, p), sample β

$←Bernoulli(h/d).

2. If β = 1, then sample h copies of D subject to HC, and sample d− h copies of D subject to the
complement of HC. Output the unordered set of the sampled values.

Else, if β = 0, sample h copies of D subject to HC, and sample d− h− 1 copies of D subject to
the complement of HC, and sample 1 copy of D′ subject to the complement of HC. Output the
unordered set of the sampled values.

Due to Theorem E.2, Hyb2 is computationally indistinguishable from Hyb1. Moreover, we know that
p = |HC|/2ℓ ≥ 1− 1.1δ, and E[h] = p · d ≥ (1− 1.1δ)d. Henceforth, let µ = p · d. By the Chernoff
bound, except with negl(λ) probability, it must be that h ≥ µ−√µ log λ. This means that in Hyb2,

Pr[β = 1] ≥ (1− negl(λ)) ·
µ−√µ log λ

d

= (1− negl(λ)) ·
µ−√µ log λ

µ/p

≥ (1− 2δ)(1− log λ
√
µ

)

≥ (1− 2δ)(1− log λ√
(1− 1.1δ)d

)

≥ 1− 2δ − log λ√
d
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Experiment Hyb3. Hyb3 is the following experiment:

1. Sample h
$←Binomial(d, p), if h < µ−√µ log λ, abort outputting ⊥.

2. Sample β ← Bernoulli(1− 2δ − log λ√
d
).

3. If β = 1, sample h copies of D subject to HC, and sample d − h copies of D subject to the
complement of HC. Output the unordered set of the sampled values.

4. Else if β = 0, sample the output from some suitable residual distribution.

We claim that for some suitable residual distribution, Hyb3 and Hyb2 have negligible statistical
distance. To see this, first, consider an intermediate hybrid Hyb′2 which is almost identical to Hyb2
except that we abort outputting ⊥ if h < µ−√µ log λ. Hyb′2 has negligible statistical distance as
Hyb2. It is easy to see that Hyb2 and Hyb′2 are identically distributed if we select an appropriate
residual distribution.

Note that in Hyb3, we can equivalently switch the order of steps 1 and 2. Further, we can omit
the check on h and aborting step which introduces only negligible statistical distance. Therefore,
Hyb3 has negligible statistical distance from the following experiment:

Experiment Hyb4. Hyb4 is the following experiment:

1. Sample β ← Bernoulli(1− 2δ − log λ√
d
).

2. Sample h
$←Binomial(d, p).

3. If β = 1, sample h copies of D subject to HC, and sample d − h copies of D subject to the
complement of HC. Output the unordered set of the sampled values.

4. Else if β = 0, sample the output from some suitable residual distribution.

Hyb4 can be equivalently rewritten as the following:

Experiment Hyb5. Hyb5 is the following experiment:

1. Sample β ← Bernoulli(p′) for any p′ ≤ 1− 2δ − log λ√
d
.

2. If β = 1, output d independent samples from D.

3. Else if β = 0, sample the output from some suitable residual distribution.

E.3 Proof of Theorem 8.2

We can now prove Theorem 8.2 with our technical lemma. Correctness follows in a straightforward
fashion from the correctness of the underlying LDC and PIR. We therefore focus on proving security.

We consider the following sequence of hybrid experiments, suppose that A controls the server
i ∈ [k].

Experiment PIRReal. This is the real security experiment described in Section 7.1. Basically, the
client and the servers run the honest preprocessing algorithm. Afterwards, in every time step, A
chooses some index, the client then computes the LDC queries x1, . . . , xQ, and for each j ∈ [Q], it
sends to A one copy of PIR.Queryi(xj) and d− 1 copies of PIR.Simi(1

λ, N).
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Experiment HybStateless. The only change from PIRReal is the following: in each time step, for
j ∈ [Q], the client sends one copy of PIR.QueryStatelessi(xj) and d − 1 copies of PIR.Simi(1

λ, N).
By the security of the underlying PIR, A’s views in PIRReal and HybStateless are computationally
indistinguishable.

Experiment Hyb. After the honest preprocessing, during each time step, for each j ∈ [Q]:
the client samples βj ← Bernoulli(1 − δ′) for δ′ = σ/2Q. If βj = 1, the client sends d copies of
PIR.Simi(1

λ, N); else, sample from some residual distribution that depends on xj and send the
outcome.

We claim that for sufficiently large λ, there exists some residual distribution such that Hyb and
HybStateless are computationally indistinguishable. By the security of the underlying PIR, we have
PIR.Simi(1

λ, N) and PIR.QueryStateless(xj) are δ-computationally indistinguishable. The claim now
follows from the proof of Theorem E.4 and a simple hybrid argument to step through the Q copies,
and by observing that when we choose δ < σ/6Q, d > log2 λ/δ2, then δ′ > 2δ + log λ√

d
for sufficiently

large λ.

Experiment Hyb′. After the honest preprocessing, during each time step, sample all of β1, . . . , βQ.
If more than σ among {β1, . . . , βQ} are 0, then abort outputting ⊥. Else, for each j ∈ [Q] such
that βj = 1, send d copies of PIR.Simi(1

λ, N); for each j where βj = 0, sample from some residual
distribution that depends on xj .

We show that Hyb′ has negligible statistical distance from Hyb by showing that the probability
of aborting is negligibly small. In expectation, the number of copies among {β1, . . . , βQ} that are 0
is bounded by Q · δ′ = Q · σ

2Q = σ/2. By the Chernoff bound, the probability that the number of 0
copies exceeds σ is negligibly small in λ.

Finally, observe that in Hyb′, since for at most σ among the Q copies, we send some distribution
dependent on xj , and all other copies do not leak the corresponding xj . Due to the σ-smoothness of
the underlying LDC, the client in Hyb′ can be implemented without knowing the actual query. So
Hyb′ also naturally defines a simulator that can simulate the i-th server’s view without knowing the
query.
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