
Stateless Hash-Based Signatures for
Post-Quantum Security Keys

Ruben Gonzalez12

1 Neodyme AG
2 Max Planck Institute for Security and Privacy

mail@ruben-gonzalez.de

Abstract. The U.S. National Institute of Standards and Technology
recently standardized the first set of post-quantum cryptography algo-
rithms. These algorithms address the quantum threat, but also present
new challenges due to their larger memory and computational footprint.
Three of the four standardized algorithms are lattice based, offering good
performance but posing challenges due to complex implementation and
intricate security assumptions. A more conservative choice for quantum-
safe authentication are hash-based signature systems. However, due to
large signature sizes and low signing speeds, hash-based systems have
only found use in niche applications. The first NIST standardized, state-
less hash-based signature system is the SPHINCS+-based SLH-DSA.
In this work we combine different approaches to show that SPHINCS+
can be optimized in its parameters and implementation, to be high per-
forming, even when signing in an embedded setting. We demonstrate
this in the context of user authentication using hardware security keys
within FIDO. Our SPHINCS+-based implementation can even outper-
form lattice-based solutions while remaining highly portable. Due to con-
servative security assumptions, our solution does not require a hybrid
construction and can perform authentication on current security keys.
For reproducibility and to encourage further research we publish our
Cortex M4-based implementation.

Keywords: PQC · SPHINCS+ · Hash · LWC · FIDO.

1 Introduction

Shor’s algorithm [52] and recent advances in quantum computing [18] [20] jeopar-
dize the security of most widely used asymmetric cryptosystems. In response to
this growing threat, researchers and standardization bodies have worked together
to find suitable post-quantum cryptography (PQC) algorithms. The U.S. Na-
tional Institute of Standards and Technology (NIST) has recently standardized
one key encapsulation mechanism (KEM) and three digital signature systems
with post-quantum security. Three out of four of these standardized schemes
rely on lattice-based constructions. That is not surprising, as lattice-based cryp-
tography offers high performance at comparatively small key and signature size.
However, trust in these lattice-based PQC algorithms grows only slowly due to



2 Ruben Gonzalez

their novelty, complexity and tangled security assumptions [16,25]. Consequently,
lattice-based algorithms are usually deployed in so-called hybrid mode, combin-
ing them with pre-quantum algorithms to ensure continued security against both
classical and quantum adversaries. A class of PQC algorithms that do not suffer
from this lack of trust are hash-based constructions [42]. In fact, the only NIST
standardized PQC algorithm that isn’t based on structured-lattice constructions
is the hash-based SLH-DSA signature system [45]. SLH-DSA is an instantiation
of the SPHINCS+ signature framework [13]. A major drawback of SPHINCS+
is its slow signing speed and very large signature size. This seems to make it a
rather poor choice for many applications, especially for applications that require
signing in resource constraint environments. On the other hand, hash-based sys-
tems offer the possibility of using PQC without hybrid constructions, reducing
complexity and resource overhead.

In this work we adjust SPHINCS+, by carefully tuning its parameters and
primitives, for a use case it might seem unfit for: FIDO. FIDO (Fast Identity
Online) is an authentication standard for endusers, designed to avoid reliance
on passwords and defeat phishing [1]. We demonstrate that a SPHINCS+ signa-
ture system can be instantiated for use in a resource constrained FIDO security
key, adhering tough resource and time constrains. We further compare the per-
formance and resource consumption of our implementation to previous FIDO
experiments employing lattice-based hybrid PQC constructions and show that
our SPHINCS+-based solution can outperform them.
Our contributions are:

– We show that SPHINCS+ signature systems can be instantiated to perform
well in embedded settings that require signing and relatively short signa-
tures, even outperforming lattice-based PQC systems. We compare the per-
formance to results previously acquired in the same setting (FIDO authenti-
cation) and on the same hardware (the nRF52840 development board). Fur-
thermore, we show that in contrast to previous work utilizing lattice-based
schemes, no complex implementation-level optimization tricks or hybrid con-
structions are necessary for this resource constrained environment.

– We release a Client to Authenticator Protocol (CTAP) implementation for
use in FIDO, based on Google’s OpenSK, employing various adjusted SPHINCS+
instantiations. The released code package includes tools for systematically
testing and benchmarking SPHINCS+ instantiations on Cortex-M4. For
portability and compatibility with OpenSK, the code is written in Rust.
As part of the experiments conducted, the hardware-based hash accelerator
(CryptoCell 310) was used for comparison, but is not necessary to achieve
the documented results. The released code can therefore be used across plat-
forms.

– We further release a tool for quickly identifying suitable SPHINCS+ param-
eter sets for specific parameters, such as speed or signature size.



Stateless Hash-Based Signatures for Post-Quantum Security Keys 3

1.1 Related Work

Post-Quantum FIDO Implementation. In [28] Ghinea et al. implement
CTAP using the, now standardized [47], lattice-based CRYSTALS-Dilithium sig-
nature system for FIDO-based authentication. Their work implements a hybrid
approach using the post-quantum Dilithium and pre-quantum ECDSA algo-
rithms. The authors chose Dilithium over the other now standardized PQC sig-
nature systems Falcon and SPHINCS+ for three reasons: speed, complexity and
size. Dilithium has a much faster key generation than Falcon. This is relevant in
CTAP, as the keys have to be generated on the embedded device. Additionally,
Dilithium has a less complex implementation than Falcon as it does not rely on
floating-point arithmetic. SPHINCS+ was not chosen for their experiment due
to large signature sizes and poor signing performance. To reduce required storage
space their implementation does not actually save a private key, but a small 32
byte seed that can be used to compute the private key on the fly. Moreover, they
invest significant engineering effort to tweak their Dilithium implementation to
recompute certain parts of the private key and intermediate results during every
signing operation. This is done to reduce Dilithium’s memory footprint, trading
worse runtime for fewer memory consumption similar to [17]. In their paper they
also introduce requirements for runtime, memory consumption and message size
within a FIDO security key setting. In our work we adhere to these require-
ments, making a direct comparison possible. As both implementations are based
on OpenSK, we could reuse parts of their setup in our experiments.

SHPINCS+ Instantiations and Optimization. SPHINCS+ was submit-
ted to the NIST PQC competition in 2017 [13]. Since 2024 it is standardized
in the Federal Information Processing Standard (FIPS) 205 under the name
SLH-DSA. As over 90% of computation in SPHINCS+ is spend in the underly-
ing hash function [36], most research into has focused on optimizing that hash
function e.g. in hardware [50] [40]. Karl et al. recently analysed the impact of
hardware-accelerated SPHINCS+ and reviewing possible architectures for such
hardware [37]. The authors also include estimates of communication costs of
using such hardware acceleration. In this work we complement that study, as
we use hardware acceleration for a hash primitive. In another paper, Kölbl and
Philipoom take note of the possibility to tweak SPHINCS+ parameter sets for
custom use cases [38]. They show that SPHINCS+ signatures sizes and veri-
fication speeds can be drastically reduced if the maximum amount of allowed
signings per private key is reduced. While NIST mandated that 264 signatures
should be possible for a single private key without compromising security [46],
this threshold is unnecessarily high for many use cases. Based on this, Kölbl
and Philipoom present a SPHINCS+ parameterization that allows for fast ver-
ification on embedded devices and offers relatively short signatures. They show
experimentally, that this enables firmware verification using SPHINCS+ on an
embedded device. Their parameters maintain compatibility to SLH-DSA, except
for the requirement of allowed signatures per private key. The allowed signatures
per key are drastically reduced to 210 or 220, which is more than enough for



4 Ruben Gonzalez

firmware signing. Our work complements their work in the sense that it also ap-
proaches an embedded use case for which SPHINCS+ seems unfit at first sight.
However, their work focuses exclusively on verification on an embedded device,
which is arguable the much easier problem for SPHINCS+. They further state:
“Compared to other post-quantum signature schemes like Dilithium, the signing
speed will always be significantly worse”. Our work tackles this more difficult case
of key generation and signing within the embedded device.

2 Background

This section details the background needed to understand the implementation
and results. First we describe FIDO, a widely-used, signature-based user au-
thentication solution. We then detail the necessary background on PQC and
hash-based signatures in particular.

2.1 FIDO-based Authentication

The FIDO2 standard defines a signature-based and phishing-resistant user au-
thentication mechanism. It can be used for single or second-factor authentication.
As FIDO2 is a vast standard, this section details only its aspects relevant for
this work. Within FIDO, users authenticate themselves by signing login data. For
that purpose the user stores a public key in the application upon registration.
During registration, the user either stores only the public key in the applica-
tion, this is referred to as resident key3 setting, or the symmetrically encrypted
private key alongside it, which is referred to as non-resident key setting. Specif-
ically, the FIDO standard explicitly allows to include the encrypted private key
into metadata stored in the application. Figure 1 shows the high-level difference
between the two options during authentication.

An advantage of the non-resident key setting is that the private key (amongst
other metadata) does not need to be stored on the user’s side. This is very rele-
vant as FIDO otherwise requires the private keys to be stored in secure storage
within a trusted platform module (TPM) [1], where storage is sparse and ex-
pensive. The main advantage of the resident key setting is that it allows for
username-less authentication, as the TPM holds a table with user ID (User
Handle), application domain (Relying-Party-ID) and private key. The down-
side of resident key is that it requires secure storage on the user’s side for ev-
ery application the user registered. FIDO defines three communication parties
for authentication: authenticator, client and the relying party. The client is an
application connecting the authenticator and the relying party, usually a web
browser or operating system. The relying party is the application that requires
authentication. The authenticator securely stores the user’s key material and
signs authentication requests. Authenticators communicate only with the client.

3 The FIDO standard now refers to resident key as “discoverable credential”. However,
as much of the literature and code still refer to resident key, we stay with that term.



Stateless Hash-Based Signatures for Post-Quantum Security Keys 5

Authenticator Client Relying Party

pkU ,EK(skU )K

Username, Password

EK(skU ), Challenge

skU ← DK(EK(sku))

sig ← SignskU
(Challenge)

sig

σ ← VerifypkU
(sig)

Authenticator Client Relying Party

IDU , IDRP , pkUIDU , skU

IDRP , Challenge

sig ← SignskU (Challenge)

IDU , sig

σ ← VerifypkU (sig)

Fig. 1: Simplified protocol flow diagrams of FIDO instantiations of non-resident
key (left) and the resident key (right) authentication. K denotes the symmetric
encryption key stored inside the authenticator, skU and pkU the users private
and public key, IDU , IDRP the user’s and relying party’s IDs. Authentication
succeeds if σ = 1.

They do so via CTAP, the Client to Authenticator Protocol, which is a part of
the FIDO standard. Authenticators can be either roaming (external device) or
bound (internal device). Roaming authenticators are allowed to communicate
via Bluetooth, NFC or USB.

2.2 Post-Quantum Cryptography

NIST recognized the quantum threat in 2015 and soon after launched a multi-
year standardization effort to identify so called post-quantum cryptography
schemes for key encapsulation and digital signatures [46]. In 2022 NIST slected
one key encapsulation mechanism and three signature algorithms for standard-
ization. Table 1 shows the selected signature algorithms with their claimed se-
curity level, key, signatures sizes and performance on a Cortex-M4 embedded
processor [36]. The table reveals that post-quantum cryptography is much more
expensive than its state-of-the-art pre-quantum counterpart: keys and signa-
tures are much larger and operations require more computational time. Memory
limitations can also be problematic for PQC [36], which is of course especially
relevant for embedded use cases where bandwidth, storage, memory and CPU
time are sparse. A suitable choice in algorithm is therefore integral for FIDO
security keys.

Post-Quantum Adoption. The three standardized PQC signature algorithms
rely on different assumptions. Dilithium’s [22] and Falcon [26]’s security claims
are based on the difficulty of solving large instances of structured-lattice prob-
lems. These claims are much discussed and sometimes contested in the academic
discourse [15,14,21]. Because of these debates and the novelty of the algorithms,
most implementers, such as Google [30], Cloudflare [53], Signal [39] or Apple [24],
chose to use lattice-based PQC only in conjunction with a pre-quantum algo-
rithm. This ensures that even if the PQC algorithm contains a major flaw, a



6 Ruben Gonzalez

Table 1: Comparison of NIST PQC signature algorithms selected for standard-
ization. The timings refer to the non-optimized, hence portable, reference imple-
mentation taken from PQM4 [36] running on a Cortex-M4. The table is divided
into security level I, III and V, as defined by NIST. The listed algorithms claim
at least the security level detailed. SPHINCS+ benchmarks use the SHAKE256
extendable output function (XOF) as hash primitive.

Sizes (bytes) Computation (≈Kcycles)

Level I ≈ AES128 privkey pubkey signature keygen sign verify

Ed255191 32 32 64 200 240 720
Dilithium2 2 528 1 312 2 420 1 874 7 925 2 063
Falcon-512 1 281 897 666 229 742 62 255 834
SPHINCS+-128 64 32 17 088 50 505 1 182 422 70 501
Level III ≈ AES192

Dilithium3 4 000 1 952 3 293 3 205 12 359 3 377
SPHINCS+-192 96 48 35 664 74 890 1 937 690 103 305
Level V ≈ AES256

Dilithium5 4 864 2 592 4 595 5 341 15 579 5 610
Falcon-1024 1 281 1793 1280 602 066 136 241 1 678
SPHINCS+-256 128 64 49 856 200 110 4 026 533 108 394

1Pre-Quantum algorithm for comparison. Benchmarks taken from Owens et al. [49].

pre-quantum attacker will not be able to exploit the system. Combining pre- and
post-quantum algorithms into so-called hybrid constructions is therefore quite
common. However, also hybrid constructions are debated. Famously, in 2022 the
Natioal Security Agency (NSA) even stated that it “does not expect to approve”
hybrid constructions for national security citing complexity, interoperability and
maintenance concerns [48].

SPHINCS+, on the other hand is hash based and its security is solely based
on well-understood assumptions of the utilized hash primitive [32]. As these
assumptions are easier to analyze than their structured-lattice counterparts and
since hash-based cryptography has been studied since the early 1970s, it does
not seem to suffer from the same trust issues. Exemplary of this is the French
Cybersecurity Agency (ANSSI) position paper on PQC, stating "any product
that includes post-quantum mitigation shall implement hybridation except if the
quantum mitigation only relies on hash-based signatures like [...] SPHINCS+
[...]" [12]. The German Federal Office for Information Security (BSI) comes to
the same conclusion [34]. The downsides of SPHINCS+ are apparent in Table 1.
Signing is slow and signatures are large, which is especially problematic for
embedded use cases.



Stateless Hash-Based Signatures for Post-Quantum Security Keys 7

2.3 SPHINCS+

Hash-based signature schemes were first described as One Time Signature (OTS)
schemes by Lamport in 1979 [42] and further refined by Winternitz the same
year [44]. Lamport’s scheme relies solely on the properties of the employed one-
way function at the expense of being “one time”. This means that every pri-
vate/public key pair can only by used once, as parts of the private key are
revealed in the signature. Merkle built up on Lamport’s idea by using hash trees
to administer multiple OTS public keys under a common root node [44]. This
comes at the expense of larger signatures, as the authentication path between
OTS public key, which is a leaf node, and the root node has to be included. Much
more problematic, however, is that a global state has to be kept per key. Main-
taining the correct state globally is very challenging and often times impossible,
which is why stateful hash-based signature systems have mainly seen adoption in
niche applications [43]. For usage in FIDO, this state would also present a major
challenge, as all backend systems storing key material within the relying party
would have to be synchronized and would not be allowed to recover a previous
state in case of a fault. In its call for PQC schemes, NIST explicitly called for
stateless contributions, excluding the otherwise already quantum secure stateful
hash based signature schemes.

SPHINCS+ is a stateless hash-based signature scheme. It’s built mainly on
the ideas of the Extended Merkle Signature Scheme (XMSS) [19]. Both rely on
the Winternitz One-Time Signature Plus (WOTS+) [31] OTS scheme. Just as
XMSS, SPHINCS+ relies on a binary hash tree at its core. However, to become
stateless, SPHINCS+ needs to have a hash tree so enormous, that choosing a
leaf node (private/public key pair) at random is sufficient to exclude any real-
istic possibility of key reuse. To accomplish this, two tricks are used. First, a
so-called “hypertree” is utilized. This hypertee contains several layers of XMSS
binary hash trees. Each hash tree root within the hypertree is used to authen-
ticate the hypertrees below it. The trees of the lowest hypertee level have key
pairs associated to their leaf nodes. This is equivalent to the approach described
for multi-tree XMSS in [33]. The novel idea behind SPHINCS+ is to drastically
reduce the hypertree’s size by authenticating few time signature (FTS) instead
of OTS key pairs in its leaf nodes. SPHINCS+ utilizes the Forest of Random
Subsets (FORS) FTS for this purpose. Reusing a FORS key pair decreases se-
curity only gradually, instead of immediately as in OTS schemes. FORS uses its
own tree structure, containing sets of private keys in its leaf nodes for that pur-
pose. As authentication paths shrink due to the much smaller hypertree, using
FORS allows for much better signature sizes without impacting security. The ex-
act inner workings of WOTS, XMSS and FORS are detailed in the SPHINCS+
NIST submission [13]. The subprimitives, WOTS+, hypertree and FORS allow
SPHINCS+ to be stateless, but they also offer many options for parameteriza-
tion. As the SPHINCS+ NIST submission states “SPHINCS+ can be viewed as
a signature template. It is a way to build a signature scheme [...].”.



8 Ruben Gonzalez

SPHINCS+ Parameters. SPHINCS+ instantiations can be fine tuned using
six parameters:

– n: The security parameter. Refers to virtually all hash function input, out-
put and tree node sizes in bytes. Commonly used values are 16, 24 and 32
reflecting NIST security levels I, III and V.

– w : The Winternitz parameter specifying how often a message is split during
encoding for WOTS+. This does not impact security.

– h: The overall height (layers of nodes) of the hypertree.
– d : Number of layers of subtrees in the hypertree.
– k : Number of trees per FORS public key.
– t : Number of leaves in a FORS tree.

The Winternitz parameter (w) and number of hypertree layers (d) only spec-
ify performance tradeoffs. Larger values of w lead to shorter signatures, but more
hash function invocations. The number of subtree layers (d) is proportional to the
signature size, but inversely proportional to the number of hash function invo-
cation during key generation and signing. All remaining parameters are security
relevant. Optimizing these parameters therefore has to be done with caution.
The generic quantum security level (bit security) of SPHINCS+ is captured in
(1) [13]:

b = −1

2
log

(
1

28n
+
∑
γ

(
1−

(
1− 1

t

)γ)k (
q

γ

)(
1− 1

2h

)q−γ
1

2hγ

)
(1)

The equation ties together all configurable, security-critical parameters with
the maximum number of signatures that can securely be produced using the
scheme (q) and the number of times an FTS key pair would have to be reused
before security is degrading (γ). From the equation it is clear that reducing the
maximum allowed number of signatures per SPHINCS+ key pair (q) greatly
affects the possibility to further optimize security-relevant parameters. To make
equations more concise, we further specify the values h′ = h

d as the height of an
XMSS tree within the hypertree and l as the number of n-bytes elements in a
WOTS+ private key which solely depends on w with l = ⌊

log(⌈ 8n
log(w)

⌉(w−1))

log(w) ⌋+1.

SPHINCS+ Runtime. The aforementioned parameters affect runtime, size
and security. More than 90% of the SPHINCS+ runtime is spent inside the hash
primitive [36]. Reducing the number of hash-function calls should therefore be
a prime objective for optimizing SPHINCS+ instantiations to our use case. The
number of hash-function calls for key generation and signing are given in (2) and
(3).

#KeyGen = 2h/d(lw + l + 2)− 1 (2)

#Sign = d
(
2h/d (lw + l + 2)− 1

)
+ k(3t− 1) (3)



Stateless Hash-Based Signatures for Post-Quantum Security Keys 9

It is important to note here, that these equations specify the number of com-
puted hash values. The number of consumed bytes per hash function call, and
hence the number of round/compression function invocations are not reflected.
These numbers, while performance relevant, depend on the employed hash func-
tion and are therefore further discussed in Section 4. However, as we will see, the
number of computed hash values provides a good enough estimate for runtime.

SPHINCS+ Key and Signature Sizes. CPU time, bandwidth and storage
are a concern when using PQC schemes. SPHINCS+ comes with very competi-
tive key sizes, but large signatures. A SPHINCS+ public key contains the n-byte
hypertree root and an n-byte seed needed for deterministic computation of tree
elements. The private key contains the public key as well as an n-byte seed for
WOTS and FORS private key generation and an n-byte random value needed for
randomization in message hashing. The signature contains a randomness value
(n bytes), a FORS signature consisting of FORS leaves with their associated au-
thentications paths (nk(log t+1) bytes) and an XMSS-like signature containing
WOTS+ signatures and corresponding authentication paths (dn(l + h′) bytes).
Table 2 and Figure 2 show the overall length of keys and signatures given these
parameters. From this it becomes apparent that the overall signature size de-
pends on hypertree height (h), number of hypertree layers (d), number of FORS
trees (k) and leaves (t) as well as the Winternitz length parameter (l).

R FORS Signature HT Signature

Leaf Auth Path

Node

Sig Auth Path

Node

Fig. 2: Elements and substructures of SPHINCS+ signatures with their quantity
and size. The value n is in bytes.



10 Ruben Gonzalez

Table 2: Key and signature sizes for SPHINCS+.

Private Key Public Key Signature

Bytes 4n 2n n(h+ k(log t+ 1) + dl + 1)

3 Implementation

This section details our implementation of a USB-based CTAP authenticator
for use in FIDO, employing PQC signatures in the form of adjusted SPHINCS+
signatures. To allow for comparison of results we use the same hardware and
software stack as in the work of Ghinea et al. [28]. We use the nRF52840 de-
velopment kit [10] with a Cortex-M4F MCU running at 32 MHz. As in [28], we
limit our implementation to 64kB of RAM and keep it generic enough to be eas-
ily portable to other platforms. In contrast to Ghinea et al., we also employ the
nRF52850’s cryptography hardware accelerator CryptoCell 310 [11]. However,
the CryptoCell is only used for comparison and not required by the implemen-
tation. Benchmarks were conducted using the experimental OpenSK [5] security
key firmware CTAP2 implementation. OpenSK is based on the TockOS [6] em-
bedded operating system. Our SPHINCS+ implementation is based on the C
reference implementation. To benchmark within the OpenSK/TockOS environ-
ment, we wrote a SPHINCS+ wrapper for the Rust programming language. All
major components, such as OpenSK, TockOS and the SPHINCS+ wrapper are
written in Rust and published under a permissive license. A repository4 with
benchmarking tools, helper scripts and the Rust code is published for repro-
ducibility and to encourage further research. Both resident and non-resident key
scenarios are supported in our implementation. Experiments were conducted
using USB as CTAP transport. As our SPHINCS+ approach is not a hybrid so-
lution and has very short keys, changes to the OpenSK CTAP implementation
are limited to including SPHINCS+ and adding a new algorithm identifier.

3.1 Requirements

For comparability we follow the requirements described in [28]. These require-
ments stem from the FIDO specification [3]:

– User presence and user verification tokens usually timeout after 30 seconds,
but are guaranteed to be valid for at least 10 seconds.

– The size of a CTAP message over USB cannot exceed 7609 bytes.

We therefore aim for commands to finish within 10 seconds and CTAP mes-
sages smaller than 7609 bytes. The latter limit stems from the fact that CTAP2
uses a signed char (7-bit) value as its length field. Allowing for larger messages
(and hence larger signatures) would be a trivial change in the OpenSK firmware,
4 Located at: https://github.com/rugo/fido-sphincs-experiments/tree/eprint



Stateless Hash-Based Signatures for Post-Quantum Security Keys 11

changing the length field to an unsigned char (8 bit) allows for a payload/message
size of 15 161 bytes [1]. For completeness we also include SPHINCS+ instanti-
ations with signatures larger than the CTAP payload maximum in the results,
but mark them explicitly as non-compliant. From this we follow the priorities as
in [28]:

R1 Key generation must finish in less than 10s.
R2 Key pairs must be smaller than 7 kB.
R3 The private key should be small to allow storing additional credentials.
A1 The login operation is more frequent than registration. Signing should
be as fast as possible.
A2 A private key and signature together must fit into a CTAP message.

As [28], we further limit ourselves to 64kB of RAM and require our imple-
mentation to be as portable as the underlying CTAP implementation written in
Rust. The NIST-submitted SPHINCS+ parameter sets all fail to achieve A1 and
A2. Key generation (R1) and key sizes (R2 & R3) however aren’t a problem.
Our FIDO adjusted SPHINCS+ instantiations should therefore optimize signing
speed and signature size.

Side Channel Resilience Just as in [28], we follow the attacker model de-
scribed in FIDO’s security assumptions [4]. We assume the FIDO client to be
trustworthy and acting in the user’s interest. This is a necessary requirement for
FIDO anyway. Local attacks, such as fault injection [27] or power side-channel
attacks [35] on SPHINCS+, are therefore out of scope. We only consider timing-
based side channels that could be triggered remotely. Here, it is important to
note that SPHINCS+ is constant time via its construction [13]. Time-based side
channels therefore do not take specific effors to be mitigated.

3.2 Adjusting SPHINCS+

Given the lowest acceptable security level I, the public and private key are only
32 and 64 bytes large respectively and could be used as a drop-in replacement for
elliptic curve keys [8] without the need for alterations in e.g. database columns
of the relying party. Therefore, only signature size (A2) and signing speed (A1)
have to be optimized using equations (1), (2) and (3). A core variable to tune our
SPHINCS+ parameter sets is the number of allowed signatures per SPHINCS+
private key q. The NIST-submitted parameter sets allow, by NIST specification,
for q = 264 signatures per key. Given a user performing one authentication per
relying party per day, such a key could be used for far more than a trillion (1012)
years, which is clearly overkill. Similar to the approach in [38] we therefore lower
the maximum amount of allowed signatures to a more realistic level.

Adjusting the Number of allowed Signatures In our analysis we allow for
q = 28, q = 210 and q = 216 signatures/authentications. FIDO seems to be a



12 Ruben Gonzalez

Table 3: SPHINCS+ key lifetimes based on common session expiration times of
popular web services supporting FIDO. Lifetimes are presented in years based
on the number of allowed signature q.

q Google Sharepoint Cloudflare Daily

28 9.8 3.5 2.1 0.7
210 39.3 14 8.4 2.8
216 2, 513.7 897.7 538.7 179.6

good choice for reducing this number, as every signature has to be approved
manually (usually with a tap) by the user. A scenario with real-time constraints
or a high volume of signatures can be ruled out. Additionally, FIDO-based au-
thentication is commonly connected to applications with long-running sessions.
Google web sessions for example last for 14 days by default [7], Cloudflare’s for
3 [2], Microsoft’s for 5 (Sharepoint) to 90 (Entra) days [9]. For simplicity we
assume a somewhat worst case wit respect to the key duration, where a user
authenticates to the same relying party every day. Even with the lowest setting
of q = 28 = 256, this user could authenticate using the same key for approxi-
mately every workday in a year. After this key expires, a new key would have
to be registered. For the user that would mean tapping the authenticator once
more during authentication, which is quite cheap. For the best-case scenario
with authenticating to Google every 14 days, the same key could be used for
around 10 years. With an authentication every day, the settings 210 and 216

would delay re-registering by around 3 and 180 years respectively. Table 3 shows
how different settings in q would affect the key lifetimes when used with popu-
lar FIDO-ready applications. To store the number of computed signatures, the
“signCount” variable already included in the FIDO standard [4] can be employed
in the implementation.

Adjusting Parameters To optimize the parameters discussed in Section 2.3 we
follow a similar approach to Kölbl et. al [38], but optimize for signing speed and
signature size instead of verification speed. We employ an explorative approach
and built a tool inspired by the SAGE script included in the SPHINCS+ NIST
submission package[13]. This leads to a multitude of parameters with different
tradeoffs further discussed in Section 4.1.

Adjusting Hash Functions The SPHINCS+ NIST submission includes SHA256,
SHAKE256 and Haraka instantiations. Haraka is an AES-based construct op-
timized for use in x86 CPU architectures with AES-NI extension. On our em-
bedded platform Haraka leads to much runtime overhead and was therefore not
investigated further. Additionally to SHA256 and SHAKE256, the ASCON hash
primitive was used in benchmarks. ASCON is a lightweight hash function sched-
uled for standardization by NIST. We employed the ASCON C reference imple-



Stateless Hash-Based Signatures for Post-Quantum Security Keys 13

mentation. The CryptoCell 310 hardware accelerator on our evaluation board
supports the SHA256 hash function. For comparison, SHA256 was benchmarked
in both hard and software.

4 Results

In this section we first culminate all previous considerations into adjusted SPHINCS+
instantiations for FIDO-friendly values of q. We then benchmark different hash
functions relevant to our construction and compare hardware SHA256 to its
software version. Next, we present benchmarks to the FIDO-relevant operations
KeyGen and Sign as well as the FIDO operations MakeCredential and GetCre-
dential. All benchmarks are then discussed and compared to previous work on
the same platform.

4.1 SPHINCS+ Instantiations

To fulfill the requirements detailed in Section 3.1, we utilized our parameter
discovery tool. We filtered parameter choices that could lead to a good speed/size
tradeoff. The filter starts by sorting all parameter choices by signature size. It
then calculates the number of computed hashes and selects a new parameter set if
the number of computed hashes is smaller than that of the previously selected.
It then outputs a list of all selected parameter sets. Figure 3 shows different
parameter choices for all security levels and relevant values of q. The output
shows that level I instantiations offer signature sizes lower than the previously
described CTAP USB message size limit. For level III and V there also exist
parameter choices with small enough signatures to fit this limit. However, as
they require significantly more hash computations and increasing the message
size limit is a technical triviality (see Section 3.1) this increased value is shown
in (b) and (c).

The value q = 28 offers only very marginal improvement over q = 210. Using
q = 210 therefore seems like a good tradeoff for FIDO. However, we benchmark
all relevant choices of q = {28, 210, 216} for completeness. Larger signatures lead
to fewer hash calculations but also longer transmission times during FIDO au-
thentication.

4.2 Hash functions

SPHINCS+ spends the vast majority of its CPU time inside the hash function.
Choosing an appropriate hash function for our use case is therefore integral for
performance. SPHINCS+, as submitted to NIST, employs the secure SHA256,
SHAKE256 and Haraka one way functions. In their work [37], Karl et al. sug-
gest to include the lightweight crypto scheme ASCON [23] which was recently
selected for standardization by NIST. This seems to fit our embedded use case.
We therefore focus our performance comparison on SHA256, SHAKE256 and
ASCON. Table 4 shows the amount of cycles needed on our embedded platform



14 Ruben Gonzalez

0 20 40 60 80 100 120
Hash Computations (103)

4000

5000

6000

7000

8000

9000

Si
gn

at
ur

e 
si

ze
 (b

yt
es

)
CTAP USB HID Message Limit

q = 28 q = 210 q = 216

(a) Security Level I.

0 200 400 600 800 1000 1200
Hash Computations (103)

8000

10000

12000

14000

16000

18000

20000

Si
gn

at
ur

e 
si

ze
 (b

yt
es

)

Aligned CTAP USB HID Message Limit

q = 210 q = 28 q = 216

(b) Security Level III.

0 1000 2000 3000 4000 5000 6000
Hash Computations (103)

13000

14000

15000

16000

17000

18000

19000

20000
Si

gn
at

ur
e 

si
ze

 (b
yt

es
)

Aligned CTAP USB HID Message Limit

q = 28 q = 210 q = 216

(c) Security Level V.

Fig. 3: Signature sizes and number of computed hash values for SPHINCS+
instantiations with a maximum of q signatures per key.

to compute the number of hashes per security level. It comes with no surprise
that software SHA256 is much faster than software SHAKE256 on a 32 bit plat-
form. What might be surprising at first sight, is that SHA256 in software also
outperforms software ASCON and hardware-backed SHA256 on our platform.

Hardware vs. Software However, as Karl. et al. [37] note, not only hard-
ware accelerators themselves, but also the application including data transfer to
those accelerators have to be taken into account. In the case of SPHINCS+, a
large amount of very small messages (usually a small multiple of n) have to be
hashed. This provides a somewhat worst-case scenario for the CryptoCell 310

Table 4: Cycles spent calculating the minimum amount of hashes required for a
given security level. Numbers are given in kilocycles (103), averaged over 1000
runs when compiled with -O3.

Level SHA256 (soft) SHA256 (hard) ASCON SHAKE256

I 93 268 130 997 197 534 488 680
III 209 141 293 743 442 940 1 095 792
V 283 664 398 413 600 774 1 486 258



Stateless Hash-Based Signatures for Post-Quantum Security Keys 15

hardware accelerator, as short messages have to constantly be written into a
specific memory segment followed by a relatively slow call to the CryptoCell.
This is similar to the observation by van der Lann et al. for SPHINCS+ running
on Java Cards [41]. ASCON on the other hand was designed with a very small
hardware footprint, not software performance, in mind.

The software version of SHA256 was therefore used for further benchmarks.
However, results with other hash functions can easily be extrapolated from the
results in Table 4. The employed SHA256 implementation is the C implementa-
tion taken from the SPHINCS+ submission package. This was done to keep the
implementation portable and comes at little cost, as previous work has shown
that assembly-optimized SHA256 does not outperform portable code compiled
with a modern compiler [36].

4.3 Adjusted SPHINCS+ Benchmarks

For FIDO, the runtime of the following four functions is relevant. KeyGen: the
key generation time in the authenticator (hardware security key). Sign: the time
needed to sign an authentication request in the authenticator. MakeCredential :
the time needed to create a new credential (key pair), when requested by the
FIDO client. GetCredential : the time needed to deliver a signed authentication
request to the FIDO client.

As KeyGen is a subroutine of MakeCredential, and Sign of GetCredential,
their respective runtimes are strongly correlated. However, a parameter set with
large signatures might lead to a fast Sign, but a slow GetCredential, due to trans-
mission costs. For better analysis we therefore benchmarked the four functions
individually. The results of MakeCredential and GetCredential are discussed in
the next section. Table 5 shows benchmark results of security level I parameter
choices for q = 210 that have a small enough signature for use in vanilla FIDO.

Runtimes in the table are captured in milliseconds instead of cycles. This was
done to be comparable to previous work, mainly Ghinea et al. [28]. Estimates
of cycle counts can, however, be acquired by multiplying the time with the
MCUs frequency, which was configured to 32 768kHz. Unsurprisingly, the number
of hashes computed during signing is strongly correlated with the runtime of
the signing algorithm. The table also shows that the signature size is inversely
proportional to both key generation and signing time. Larger signature sizes also
lead to more stack space consumed. Stack space could be drastically reduced,
as SPHINCS+ signatures are computed front to back and can be streamed [29].
However, since the consumed stack space is well within the requirements, this
is not needed. Compiling the code with -O3 leads to much improved runtimes,
which is consistent with previous work [36]. The largest signature listed (7456B)
still fits into the technical context, complies with RAM/stack requirements and
adheres to the requirements A1 and A2 previously defined. We therefore focus
on the largest signature still fitting into the technical context.

Table 6 shows a direct comparison between the SPHINCS+ results and the
Dilithium-based hybrid approach from [28]. In the table, SPHINCS+ instanti-
ations are denoted as SPHINCS+-b-q, with b being the bit security as defined



16 Ruben Gonzalez

Table 5: Various SPHINCS+ parameter choices for security level I and q = 210

with their performance results averaged over 1000 runs on an nrf52480 board.
Values of t are specified in log2. All parameters were instantiated with a software-
only version of SHA256 and use a Winternitz parameter of w = 16.

Params. KeyGen Sign

Signature Hashes Runtime (ms) Stack Runtime (ms) Stack
(Bytes) (#) h d k t -Oz -O3 (kB) -Oz -O3 (kB)

3968 102528 12 2 15 10 3476.1 2332.3 3.3 11385.5 7631.3 14.0
4048 89216 12 2 17 9 3445.0 2320.0 3.3 9378.3 6310.5 14.2
4208 82048 12 2 20 8 3444.1 1161.9 3.3 8349.9 5620.7 14.7
4288 70720 10 2 17 10 1748.6 1176.7 3.3 8548.1 5665.1 14.9
4336 55360 10 2 19 9 1748.1 585.0 3.3 6316.1 4247.7 15.1
4608 44336 12 3 17 9 857.4 585.0 3.2 5037.8 3432.9 15.8
4768 37168 12 3 20 8 866.8 589.7 3.2 4065.8 2724.3 16.3
5088 33328 12 3 25 7 871.0 589.7 3.2 3531.2 2386.6 17.3
5296 32288 8 2 28 8 866.8 293.8 3.2 3790.3 2553.7 17.9
5328 28192 12 4 20 8 432.7 292.5 3.2 3186.4 2156.5 17.9
5440 26264 9 3 25 8 433.0 292.2 3.2 3124.8 2156.5 18.3
5648 24352 12 4 25 7 434.9 292.3 3.2 2650.9 1775.0 18.9
6032 22048 12 4 32 6 439.3 292.2 3.2 2343.4 1553.7 20.0
6064 21912 9 3 33 7 436.9 147.6 3.2 2524.8 1683.1 20.1
6688 18644 10 5 29 7 218.9 147.6 3.2 2150.1 1439.9 21.9
7152 17560 12 6 32 6 221.1 148.4 3.1 1907.3 1264.4 23.3
7456 16340 10 5 40 6 218.9 147.6 3.2 1820.4 1225.5 24.2

above. The Dilithium private keys are small since its implementation stores a
seed value and computes the private key on every signing operation to save on
expensive TPM storage. Table 6 shows that SPHINCS+ levels I and III with
q = {28, 210} outperform the lattice-based approach on the board in terms of
signing speed at the cost of larger signatures. In security level V, SPHINCS+ has
competitive speed but would require a relaxation in signature-size constraints.

4.4 FIDO Benchmarks

Finally, we conclude with benchmarks on the FIDO-relevant CTAP commands
MakeCredential and GetCredential. All benchmarks were conducted via USB
transport. MakeCredential generates a new key and sends both public and (en-
crypted) private key to the client. This is the non-resident key setting as intro-
duced in Section 2.1. GetCredential on the other hand signs an authentication
request and returns a signature to the client. Table 7 shows the results of these
benchmarks. Runtimes for the hybrid construction were reproduced using the
code from [28]. A first conclusion is that the previously defined requirements
can be met for security level I and III. All CTAP commands finish within 10
seconds and execute well within the RAM requirements. The SPHINCS+-based



Stateless Hash-Based Signatures for Post-Quantum Security Keys 17

Table 6: Runtimes on Cortex-M4F board nrf52840. Comparison between
SPHINCS+ and Dilithium-based hybrid construction from [28]. Both are com-
piled with -O3, runtimes averaged over 1000 runs.

Sizes (bytes) Runtime (ms)

Level I privkey pubkey signature keygen sign

Dilithium2-Hybrid 32 1 344 2 420 197.5 1 320.5
SPHINCS+-129-28 64 32 6 864 148.3 1 079.6
SPHINCS+-129-210 64 32 7 456 147.6 1 225.5
SPHINCS+-130-216 64 32 7 280 292.3 2 261.8
Level III

Dilithium3-Hybrid 32 1 984 3 293 245.6 2 298.4
SPHINCS+-193-28 96 48 14 256 147.5 1 735.6
SPHINCS+-193-210 96 48 13 080 292.3 2 169.8
SPHINCS+-195-216 96 48 14 928 292.3 3 410.8
Level V

Dilithium5-Hybrid 32 2 624 4 595 345.3 2 797.2
SPHINCS+-258-28 † 128 64 25 120 296.2 2 075.7
SPHINCS+-258-210 † 128 64 24 352 292.1 2 638.0
SPHINCS+-258-216 † 128 64 28 832 292.0 3 216.6

†: Instantiation’s signature too large for requirements.

aproach even outperforms the lattice-based, hybrid approach from [28] in these
levels. With a relaxation of the maximum message size, our SPHINCS+ solution
could also outperform their approach in the highest security level.

4.5 Discussion

A reason for the good performance of SPHINCS+ in this setting could be the
required portability. MCU-specific assembly-level optimizations are not possible
when aiming for portable code, which is often times a requirement. Dilithium
seems to suffer from this portability requirement much more than SPHINCS+.
Another reason why Dilithium-backed GetCredential commands are slower on
average is the command’s very long tail. Dilithium’s signing operation has a retry
loop that discards insecure parameters. This makes its runtime non-deterministic.
Ginea et al. even state that 3% of their Dilithium5 GetCredential commands fail
to complete within the 10 second requirement due to this retry loop. SPHINCS+
does not suffer from this, as it is constant time by design and the runtimes showed
virtually no variance.

Much of the current literature seems to focus on optimizing hardware imple-
mentations for SPHINCS+/SLH-DSA [37,51]. While these hardware-backed sys-
tems show impressive performance improvements, they might be able to perform
even better when allowing (or mandating) custom SPHINCS+ instantiations.



18 Ruben Gonzalez

Table 7: Runtime benchmarks in milliseconds of the MakeCredential and Get-
Credential CTAP commands in the non-resident key setting, averaged over 1000
iterations. Standard deviation of GetCredential denoted as σ.

Make Get

Level I duration duration σ

Dilithium2-Hybrid 547.3 1 808.7 933.8
SPHINCS+-129-28 283.4 1 595.9 0.2
SPHINCS+-129-210 283.7 1 791.8 0.1
SPHINCS+-130-216 429.2 2 687.9 0.1
Level III

Dilithium3-Hybrid 668.3 2 861.1 1 865.2
SPHINCS+-193-28 283.2 2 099.9 0.2
SPHINCS+-193-210 429.6 2 751.8 0.2
SPHINCS+-195-216 426.3 3 967.3 0.1
Level V

Dilithium5-Hybrid 799.2 4029.2 2 437.4
SPHINCS+-258-28 † 425.7 2 803.9 0.2
SPHINCS+-258-210 † 429.4 3 406.0 0.1
SPHINCS+-258-216 † 432.2 4 075.8 0.1

†: Instantiation’s signature too large for requirements.

Comparing and combining adjusted SPHINCS+ parameter sets with custom
hardware seems like an interesting avenue for future research.

5 Conculsion

In this paper we proposed a practical, post-quantum solution for hardware-
security-key-based authentication using tailored stateless hash-based signatures.
The results show that adjusting SPHINCS+ to a specific application that re-
quires signing can yield very competitive results that rely on only few, well-
understood assumptions. Especially in an embedded setting, where resources
are sparse this opens many possibilities. Furthermore, our solution is highly
portable and reduces complexity as it does not require sophisticated implemen-
tation tricks and can be used without a hybrid construction.

We implemented and benchmarked our solution with various parameteriza-
tions and showed that it can even outperform lattice-based solutions from the
literature. Our implementation and benchmarking setup was published to en-
courage further research in this direction.

These results emphasize that SPHINCS+ should be seen as a very flexible
framework for creating signature schemes, rather than just a signature scheme.



Stateless Hash-Based Signatures for Post-Quantum Security Keys 19

References

1. Authentication Specifications - FIDO Alliance — fidoalliance.org. https://
fidoalliance.org/specifications/download/, [Accessed 03-02-2025]

2. Cloudflare - manage active sessions. https://developers.cloudflare.com/
fundamentals/setup/account/account-security/manage-active-sessions/,
[Accessed 29-01-2025]

3. Fido alliance - ctap2 specification. https://fidoalliance.org/specs/
fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.
0-ps-20190130.html, [Accessed 29-01-2025]

4. Fido security reference. https://fidoalliance.org/specs/common-specs/
fido-security-ref-v2.1-rd-20210525.html, [Accessed 29-01-2025]

5. GitHub - google/OpenSK: OpenSK. github.com/google/OpenSK, [Accessed 29-01-
2025]

6. Github - tockos. https://github.com/tock/tock, [Accessed 29-01-2025]
7. Google - session length for google services. https://support.google.com/a/

answer/7576830, [Accessed 29-01-2025]
8. Libsodium - ed25519 implementation. https://github.com/jedisct1/

libsodium/blob/59a98bc7f9d507175f551a53bfc0b2081f06e3ba/src/
libsodium/include/sodium/crypto_sign_ed25519.h#L34, [Accessed 29-01-
2025]

9. Microsoft - session timeouts for ms 365. https://learn.microsoft.com/en-us/
microsoft-365/enterprise/session-timeouts, [Accessed 29-01-2025]

10. Nordic nrf52840 dk brief. https://www.nordicsemi.com/
-/media/Software-and-other-downloads/Product-Briefs/
nRF52840-DK-product-brief.pdf, [Accessed 29-01-2025]

11. Nordic semiconductor - arm trustzone cryptocell 310. https://docs.nordicsemi.
com/bundle/ps_nrf52840/page/cryptocell.html, [Accessed 29-01-2025]

12. ANSSI: Anssi views on the post-quantum cryptography transition (2024),
ttps://cyber.gouv.fr/sites/default/files/document/follow_up_position_
paper_on_post_quantum_cryptography.pdf, Accessed 24-01-2025

13. Aumasson, J., Bernstein, D., Beullens, W., Dobraunig, C., Eichlseder, M., Fluhrer,
S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., et al.: Sphincs+-
submission to the nist post-quantum project, v3. 1. NIST PQC round 3 (2022)

14. Bernstein, D.J.: Multi-ciphertext security degradation for lattices. Cryptology
ePrint Archive (2022)

15. Bernstein, D.J.: Asymptotics of hybrid primal lattice attacks. Cryptology ePrint
Archive (2023)

16. Bernstein, D.J., Bhargavan, K., Bhasin, S., Chattopadhyay, A., Chia, T.K., Kan-
nwischer, M.J., Kiefer, F., Paiva, T., Ravi, P., Tamvada, G.: Kyberslash: Exploit-
ing secret-dependent division timings in kyber implementations. Cryptology ePrint
Archive (2024)

17. Bos, J.W., Renes, J., Sprenkels, A.: Dilithium for memory constrained devices. In:
International Conference on Cryptology in Africa. pp. 217–235. Springer (2022)

18. Bravyi, S., Cross, A.W., Gambetta, J.M., Maslov, D., Rall, P., Yoder, T.J.: High-
threshold and low-overhead fault-tolerant quantum memory. Nature 627(8005),
778–782 (2024)

19. Buchmann, J., Dahmen, E., Hülsing, A.: Xmss-a practical forward secure signa-
ture scheme based on minimal security assumptions. In: Post-Quantum Cryptog-
raphy: 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29–December 2, 2011. Proceedings 4. pp. 117–129. Springer (2011)

https://fidoalliance.org/specifications/download/
https://fidoalliance.org/specifications/download/
https://developers.cloudflare.com/fundamentals/setup/account/account-security/manage-active-sessions/
https://developers.cloudflare.com/fundamentals/setup/account/account-security/manage-active-sessions/
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
github.com/google/OpenSK
https://github.com/tock/tock
https://support.google.com/a/answer/7576830
https://support.google.com/a/answer/7576830
https://github.com/jedisct1/libsodium/blob/59a98bc7f9d507175f551a53bfc0b2081f06e3ba/src/libsodium/include/sodium/crypto_sign_ed25519.h#L34
https://github.com/jedisct1/libsodium/blob/59a98bc7f9d507175f551a53bfc0b2081f06e3ba/src/libsodium/include/sodium/crypto_sign_ed25519.h#L34
https://github.com/jedisct1/libsodium/blob/59a98bc7f9d507175f551a53bfc0b2081f06e3ba/src/libsodium/include/sodium/crypto_sign_ed25519.h#L34
https://learn.microsoft.com/en-us/microsoft-365/enterprise/session-timeouts
https://learn.microsoft.com/en-us/microsoft-365/enterprise/session-timeouts
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-DK-product-brief.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-DK-product-brief.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-DK-product-brief.pdf
https://docs.nordicsemi.com/bundle/ps_nrf52840/page/cryptocell.html
https://docs.nordicsemi.com/bundle/ps_nrf52840/page/cryptocell.html
ttps://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
ttps://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf


20 Ruben Gonzalez

20. Campbell, E.: A series of fast-paced advances in quantum error correction. Nature
Reviews Physics 6(3), 160–161 (2024)

21. Chen, Y.: Quantum algorithms for lattice problems. Cryptology ePrint Archive
(2024)

22. Contributors, D.: Crystals-dilithium specification v3.1. https://pq-crystals.
org/dilithium/data/dilithium-specification.pdf (2021), [Accessed 03-02-
2025]

23. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2: Lightweight
authenticated encryption and hashing. Journal of Cryptology 34, 1–42 (2021)

24. Engineering, A.S.: iMessage with PQ3: The new state of the art in quantum-secure
messaging at scale. https://security.apple.com/blog/imessage-pq3/ (2024),
[Accessed 03-02-2025]

25. Firmin, C.: PQShield plugs timing leaks in Kyber / ML-KEM to improve PQC
implementation maturity | PQShield — pqshield.com. https://pqshield.com/
pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/,
[Accessed 03-02-2025]

26. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z., et al.: Falcon: Fast-fourier lattice-
based compact signatures over ntru. Submission to the NIST’s post-quantum cryp-
tography standardization process 36(5), 1–75 (2018)

27. Genêt, A., Kannwischer, M.J., Pelletier, H., McLauchlan, A.: Practical fault injec-
tion attacks on sphincs. Cryptology ePrint Archive (2018)

28. Ghinea, D., Kaczmarczyck, F., Pullman, J., Cretin, J., Kölbl, S., Misoczki, R., Pi-
cod, J.M., Invernizzi, L., Bursztein, E.: Hybrid post-quantum signatures in hard-
ware security keys. In: International Conference on Applied Cryptography and
Network Security. pp. 480–499. Springer (2023)

29. Gonzalez, R., Hülsing, A., Kannwischer, M.J., Krämer, J., Lange, T., Stöttinger,
M., Waitz, E., Wiggers, T., Yang, B.Y.: Verifying post-quantum signatures in 8 kb
of ram. In: Post-Quantum Cryptography: 12th International Workshop, PQCrypto
2021, Daejeon, South Korea, July 20–22, 2021, Proceedings 12. pp. 215–233.
Springer (2021)

30. Hansen, R.: Post-Quantum Cryptography: Standards and Progress —
security.googleblog.com. https://security.googleblog.com/2024/08/
post-quantum-cryptography-standards.html (2024), [Accessed 03-02-2025]

31. Hülsing, A.: W-ots+–shorter signatures for hash-based signature schemes. In:
Progress in Cryptology–AFRICACRYPT 2013: 6th International Conference on
Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings 6. pp. 173–188.
Springer (2013)

32. Hülsing, A., Kudinov, M.: Recovering the tight security proof of sphincs+. In:
International Conference on the Theory and Application of Cryptology and Infor-
mation Security. pp. 3–33. Springer (2022)

33. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for xmss mt. In: Secu-
rity Engineering and Intelligence Informatics: CD-ARES 2013 Workshops: MoCry-
SEn and SeCIHD, Regensburg, Germany, September 2-6, 2013. Proceedings 8. pp.
194–208. Springer (2013)

34. for Information Security, F.O.: Kryptografie quantensicher gestal-
ten - quantum secure cryptography (german). https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/
Kryptografie-quantensicher-gestalten.pdf (2024), [Accessed 17-02-2025]

https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://security.apple.com/blog/imessage-pq3/
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
https://security.googleblog.com/2024/08/post-quantum-cryptography-standards.html
https://security.googleblog.com/2024/08/post-quantum-cryptography-standards.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/Kryptografie-quantensicher-gestalten.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/Kryptografie-quantensicher-gestalten.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/Kryptografie-quantensicher-gestalten.pdf


Stateless Hash-Based Signatures for Post-Quantum Security Keys 21

35. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Differential
power analysis of xmss and sphincs. In: Constructive Side-Channel Analysis and
Secure Design: 9th International Workshop, COSADE 2018, Singapore, April 23–
24, 2018, Proceedings 9. pp. 168–188. Springer (2018)

36. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

37. Karl, P., Schupp, J., Sigl, G.: The impact of hash primitives and communication
overhead for hardware-accelerated sphincs+. In: International Workshop on Con-
structive Side-Channel Analysis and Secure Design. pp. 221–239. Springer (2024)

38. Kölbl, S., Philipoom, J.: A note on sphincs+ parameter sets. Cryptology ePrint
Archive (2022)

39. Kret, E.: Quantum Resistance and the Signal Protocol — signal.org. https://
signal.org/blog/pqxdh/ (2024), [Accessed 03-02-2025]

40. Kwak, J., Jang, Y., Park, J., Lee, H.: Slh-dsa-based digital signature and verifica-
tion fpga system. Transactions on Semiconductor Engineering 2(4), 69–77 (2024)

41. van der Laan, E., Poll, E., Rijneveld, J., de Ruiter, J., Schwabe, P., Verschuren,
J.: Is java card ready for hash-based signatures? In: International Workshop on
Security. pp. 127–142. Springer (2018)

42. Lamport, L.: Constructing digital signatures from a one way function (1979)
43. Lange, T.: Hash-based signatures. In: Encyclopedia of Cryptography, Security and

Privacy, pp. 1110–1112. Springer (2025)
44. Merkle, R.C.: A certified digital signature. In: Conference on the Theory and Ap-

plication of Cryptology. pp. 218–238. Springer (1989)
45. NIST: FIPS205: Stateless Hash-Based Digital Signature Standard. https://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf, [Accessed 03-02-2025]
46. NIST: Submission Requirements and Evaluation Criteria for the Post-

Quantum Cryptography Standardization Process. https://csrc.nist.
gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf, [Accessed 03-02-2025]

47. Nist, G.M.D.: Fips 204: Module-Lattice-Based digital signature standard (2024)
48. NSA: The commercial national security algorithm suite 2.0 and quantum

computing faq (Sep 2022), TheCommercialNationalSecurityAlgorithmSuite2.
0andQuantumComputingFAQ

49. Owens, D., El Khatib, R., Bisheh-Niasar, M., Azarderakhsh, R., Kermani, M.M.:
Efficient and side-channel resistant ed25519 on arm cortex-m4. IEEE Transactions
on Circuits and Systems I: Regular Papers (2024)

50. Saarinen, M.J.O.: Accelerating slh-dsa by two orders of magnitude with a single
hash unit. In: Annual International Cryptology Conference. pp. 276–304. Springer
(2024)

51. Saarinen, M.J.O.: Accelerating slh-dsa by two orders of magnitude with a single
hash unit. In: Annual International Cryptology Conference. pp. 276–304. Springer
(2024)

52. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. Ieee (1994)

53. Westerbaan, B.: Cloudflare now uses post-quantum cryptography to talk
to your origin server — blog.cloudflare.com. https://blog.cloudflare.com/
post-quantum-to-origins/ (2023), [Accessed 03-02-2025]

https://github.com/mupq/pqm4
https://signal.org/blog/pqxdh/
https://signal.org/blog/pqxdh/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
The Commercial National Security Algorithm Suite 2.0 and Quantum Computing FAQ
The Commercial National Security Algorithm Suite 2.0 and Quantum Computing FAQ
https://blog.cloudflare.com/post-quantum-to-origins/
https://blog.cloudflare.com/post-quantum-to-origins/

	Stateless Hash-Based Signatures for Post-Quantum Security Keys

