
Practical Zero-Trust Threshold Signatures in
Large-Scale Dynamic Asynchronous Networks

Offir Friedman1, Avichai Marmor1, Dolev Mutzari1, Yehonatan C. Scaly1, and
Yuval Spiizer1

dWallet Labs, research@dwalletlabs.com

Abstract. Threshold signatures have become a critical tool in cryp-
tocurrency systems, offering enhanced security by distributing the sign-
ing process among multiple signers. In this work, we distribute this pro-
cess between a client and a permissionless decentralized blockchain, and
present novel protocols for ECDSA and EdDSA/Schnorr signatures in
this setting. Typical threshold access architectures used by trusted cus-
todians suffer from the honeypot problem, wherein the more assets the
custodian holds, the greater the incentive of compromising it.

Implementing threshold signatures over permissionless blockchains poses
a few challenges. First, existing networks typically work over an asyn-
chronous reliable broadcast communication channel. Accordingly, our pro-
tocol is implemented over such a channel. As a result, it also benefits from
identifiable abort, public verifiability, and guaranteed output delivery, and
the client benefits from censorship resistance of blockchain systems. Sec-
ond, upon signing each block, the participating quorum may dynamically
change and is post-determined. Therefore, we design a fluid protocol,
that supports a post-determined dynamic quorum in each communica-
tion round, thereby complying with existing broadcast channel imple-
mentations. Third, in permissionless networks, parties may join, leave,
and change their stake. Therefore, we offer protocols for network recon-
figuration, with complexity independent of the number of clients in the
system, and our protocol efficiently supports a weighted threshold access
structure for the network. Specifically, the complexity of distributed key
generation and presign only depends on the number of parties and not
on the overall weight, and the amortized cost of sign only depends on
the individual weight.

Furthermore, our protocol introduces key improvements, including the
removal of zero-knowledge proofs towards the client, and presigns with a
non-interactive client. For Schnorr, the presigns are client-independent,
and can be collected by the blockchain in a common pool, available
for all clients in the system. These optimizations reduce communication
overhead and improve the system’s ability to handle traffic spikes during
high-demand periods.

Our protocol is UC-secure, and is therefore natively designed for mul-
tiple clients to use the system in parallel. Notably, we propose a novel
assumption, Slightly-Enhanced ECDSA Unforgeability, offering concrete
security for 256-bit elliptic curves for threshold ECDSA with support for
parallel execution of presigns.

In addition to securing cryptocurrency wallets, we demonstrate how our
protocol enables various cross-chain applications, such as decentralized
bridges, future transactions, and wallet transfer. Our system is designed
for interoperability across multiple blockchains, enhancing security, scal-
ability, and flexibility for decentralized finance (DeFi) ecosystems.

1 Introduction

In recent years, there has been growing interest in thresholdizing digital sig-
natures [EKR20, BD23, BLT+24], distributing the signing process among mul-
tiple parties. This is primarily because digital signatures serve as an authen-
tication mechanism in Bitcoin [Nak08], Ethereum [B+13], and similar plat-
forms where the digital signature on a transaction constitutes a proof of own-
ership of the funds. Specifically, much effort has been made for thresholdizing
ECDSA [JMV01] in past years [GGN16, Lin17, BGG17, LN18, GG19, DKLS19,
CGG+20, DOK+20, DJN+20, GKSS20, CCL+20, ANO+22, BMP22, XAX+22,
DKLS23, ZYP23, WMYC23, CCL+23, CDKS24], due to its widespread use in
cryptocurrency.

Threshold signature based solutions have been widely deployed in the cryp-
tocurrency industry and focus on mainly two use cases: distributed custody (e.g.
Coinbase Wallet [Lin23], Qredo [KZe19b], Zengo [KZe19a], Fireblocks [Fir23],
Copper [Cop21], Web3 Auth [Lab24] and Lit Protocol [CD24b]), and decen-
tralized bridges (e.g. THORChain [Tho20], Keep Network [LP18], Near Net-
work [IA21] and Internet Computer [T+22]). Distributed custody uses threshold
signature protocols to mitigate self-custodial risks such as loss and theft by dis-
tributing the private signing key of the client, which verifies ownership of the
funds, across multiple signers. In some applications, the key is shared between
a client and a centralised or trusted custodian [Lin23, KZe19a, Fir23, Cop21,
Lab24].1 Other applications hand the key to a trusted authorized custodian, and
the client uses an identification mechanism to invoke signing on transactions by
the custodian [KZe19b, CD24b]. Ultimately, the signing key may be shared be-
tween the client and a distributed permissionless custodian in a way that requires
the active consent of both in order to produce a signature. By permissionless,
we mean that anyone can join the custodian network, similar to permissionless
blockchains, and unlike trusted custodians or permissioned blockchains. Cur-
rently, only trusted custodians are deployed. If the client is involved, the custo-
dians are typically centralized due to inherent limitations of prior approaches.

Decentralized bridges consist of a network of nodes that distributedly man-
age multiple signing keys for different wallets, each holding a pool of funds on
different blockchains to form cross-chain liquidity pools. This enables a single en-
tity (the network) to own, manage, and transfer funds (and information) across
different blockchains. When a client owns wallets on two different blockchains
and wishes to transfer funds between them, it can send funds to one end of the

1 In some configurations in e.g. [Cop21], the client may use a client-trusted third party
and sign with a 2-out-of-3 access structure.

2

bridge’s liquidity pool and request a withdrawal of an equivalent amount to the
client’s wallet on the other end. The bridge network then creates and distribut-
edly signs a corresponding transaction that the client can broadcast to the other
blockchain.

To the best of our knowledge, due to inherent limitations of existing threshold
ECDSA signing protocols, all real-world networks for both use-cases are deployed
with a rather small number of nodes (e.g. Internet Computer uses up to 30
[T+22]). This undermines the vision of decentralization as a smaller number of
nodes can more easily collude. Nowadays, blockchains typically have hundreds to
thousands of validators (e.g., Ethereum currently has 4,540 active nodes [Eth24]).
Recently, [FMM+24] has taken a pivotal step toward increasing the number of
nodes for producing ECDSA signatures, and we follow their approach in this
work. Their main observation is that designing the protocol over a broadcast
channel is more scalable with the number of parties. Indeed, prior to the work
of [FMM+24], all practical threshold ECDSA schemes were designed to work
over unicast channels, assuming secure point-to-point (P2P) channels between
every pair of parties. While secure point-to-point channels can be constructed
in theory (under an appropriate PKI setup), in practice they inherently incur a
high network load (i.e., maintaining a high number of sessions concurrently) and
a message complexity quadratic in the number of parties, as each party computes
and sends a message to every other party. Instead, [FMM+24] opts to rely on
a broadcast channel, and reduce the message complexity to linear. Moreover, by
working over a broadcast channel, their protocol achieves identifiable abort (IA)
and public verifiability (PV). When the broadcast channel is implemented over a
blockchain, one also gets immutability of messages, which enables easy recovery
from failures. It also provides incentive mechanisms for faithful participation.
decentralized permissionless blockchains also provide censorship resistance for
the client, as opposed to trusted custodians.

Nevertheless, some key aspects remain unaddressed. Primarily, their choice
of working over an ideal broadcast channel, avoids a lot of difficulties that arises
once one wishes to implementing their protocol over existing broadcast channel
implementations. First, existing networks typically work over an asynchronous
reliable broadcast communication channel. In particular, the parties do not have
synchronized clocks, cannot agree on which parties are online and which parties
are unavailable and did not send a message during some round. Second, upon
signing each block, the participating quorum may dynamically change and is
post-determined. Therefore, parties who participate in one communication round
may not be available for the next one. Section 2 comprehensively explores these
gaps and situates our approach within the broader context of threshold signature
research. Building on [FMM+24], we address these critical challenges and provide
an affirmative answer to the question below:

Can we design an asynchronous, permissionless, decentralized network capable
of concurrently servicing numerous clients requesting digital signatures on their

transactions?

3

Thresholdizing EdDSA. Recently, Bitcoin added support for EdDSA [BDL+12],
a derivative of Schnorr signatures [Sch90]. Other cryptocurrencies such as Stel-
lar [KAS19], Monero [Cry13] and Solana [Yak18] have adopted EdDSA exclu-
sively.2 This has spurred interest in threshold Schnorr protocols [KG21, CKM21,
Lin22, BTZ22, RRJ+22, CGRS23, CDSG+24]. Nonetheless, the vast majority
supports either ECDSA or EdDSA. To support interoperability between the bulk
of deployed blockchains, in this work we consider both threshold ECDSA and
Schnorr signatures.

While threshold protocols for Schnorr are already deployed in production
with up to 150 parties (Chainflip [Har23], Stacks [Ali20], Threshold [Wil22]),
these protocols rely on traditional threshold access structure. Whenever the net-
work consists of a large number of nodes, the client is not involved in producing
the signatures and, in particular, has to rely on the network to safely store the
private signing key. This stands in contrast to the Zero Trust principle [Sta20],
which has been foundational in blockchain ecosystems since the inception of Bit-
coin. Under this principle, no one is trusted, not even miners or validators, and
every client calculates and verifies the state themselves.

Currently, isolated networks that offer interoperability are compromising on
Zero Trust principles in order to enable cross-network operations. Instead, they
take a Castle-and-Moat approach, aiming to create a strong, fortified perimeter
around their network. Unfortunately, Castle-and-Moat Protocols (CMPs) man-
age an ever-increasing amount of digital assets in cross-chain interactions, cre-
ating the Honeypot Problem: as a CMP gains higher Total Value Locked (TVL),
the protocol becomes a more lucrative target for malicious players. For many
years, we have witnessed attacks targeting CMPs. This has resulted in billions
of dollars in losses, hampering the mass adoption of Web3 and the transfer of
real economic value to blockchain applications. For instance, Wormhole [Gra22],
a platform that mints and burns WETH on Solana, has already been exploited
by an attacker in 02/02/2022 to mint 120,000 WETH [Wor22] - worth at the
time over 320 million USD, which were used to withdraw real ETH on Ethereum,
leading to one of the largest hacks in Web3’s history (see [LMDG23] for a recent
review of cross-chain bridge hacks).

In order to resolve those issues and comply with the Zero Trust architecture,
[FMM+24] proposed the 2PC-MPC framework, which we follow and this work
and briefly cover below. In this framework, both the client and a threshold of
a decentralized network must collaborate in order to produce a signature. This
ensures that even if the network is compromised, it cannot sign any transac-
tion without client consent. In particular, on top of hacking the network, the
adversary has to access the secret key share of each client individually, thereby
addressing the honeypot problem. The only threat of an adversary controlling
the network is Denial of Service (DOS), namely, preventing a client from us-
ing its wallet. Nevertheless, the requirement for the client to collaborate with
the network to produce signature raises many practical difficulties. First, the
access structure is inherently hierarchical. Prior solutions that used a thresh-

2 Cardano [Hos17] has recently added support for ECDSA [BA23].

4

old access structure had to compromise on the size of the network, as the user
must have the same weight as the whole network. Second, the client is typically
lightweight, and does not have comparable computational power to parties in
the decentralized network. Optimally, the computation complexity of the client
should be independent of the network size. Third, the client typically does not
have direct access to internal entities in the decentralized network, and might
even not be aware of their identities. Exposing such communication channels
may pose additional cyber-security threat for parties in the network, and would
also significantly increase the communication overhead of the client.

With the above issues in mind, [FMM+24] added on top of the 2PC-MPC
hierarchical access structure an additional requirement that when met, allows
for the system to scale with the number of parties in the decentralized net-
work. Namely, the client experiences a two-party computation (2PC) protocol,
wherein the network emulates the second party by participating in multi-party
computation (MPC) protocol.3 Hence the name: 2PC-MPC.

Another important aspect of a decentralized system is the number of clients it
can concurrently service. This metric was put explicitly on the table in [FMM+24],
and we make further improvements in this metric. Prior works on threshold sig-
natures are typically focused on a single key, and do not consider the system as
a whole. Therefore, each node in the decentralized network must hold a private
share per each wallet of each client in the system. Instead, in [FMM+24], the
private storage of each party in the decentralized network is independent of the
number of clients as well as the number of nodes. This is achieved by utilizing a
threshold additively homomorphic encryption scheme (TAHE) [CDN01]. Essen-
tially, the network share of each signing key is stored in public, encrypted under
the TAHE public key, and only the underlying AHE secret decryption key is
secretly shared.

In this work, we also identify that this design potentially allows for parties
to join and leave the network efficiently. In the naive approach, the network had
to re-distribute the network share of the signing key of each client. In contrast,
in the above design, whenever the network changes its configuration, only this
secret decryption key must be reshared. We propose such a protocol, and point
out that this allows for the decentralized network to be permissionless.

1.1 Our Contribution

Our primary contribution is the design and implementation of a 2PC-MPC pro-
tocol for an asynchronous, permissionless, decentralized, weighted network, ser-
vicing numerous clients concurrently to securely sign messages, using ECDSA
and EdDSA/Schnorr. The motivation behind this design is to be on-par with
implementation requirements of existing blockchains and their underlying com-
munication channels, as we cover in Section 2. Section 2 also provides extensive

3 The client can verify that it interacts with a decentralized network if the communi-
cation channel with the network is a blockchain. However, their design potentially
allows hiding the size of the network, in case a future application might demand
that.

5

comparison with prior works, and [FMM+24] in particular, further highlighting
the challenges addressed in this work and the advantage of our approach.

On top of that, this work introduces several contributions that might have in-
dependent interest. As a side-effect of complying with asynchronous networks, we
improve the round complexity, compared to the 2PC-MPC protocol in [FMM+24].
This is because we may not use commitment rounds, as parties may not be avail-
able in the next round to open them. As a result, both DKG and sign consist of
a one-round trip between the blockchain and the client. Our sign phase can be
broken into a presign phase, and an online-signing phase. The presign phase is
executed without client involvement in an offline phase, potentially before the
message to be signed is decided. This preprocess can reduce computation and la-
tency during high-demand periods. When folded back to the standard threshold
access structure (removing the client), DKG is one-round, presign is one-round
for EdDSA/Schnorr and two rounds for ECDSA, and sign is a single round.
This makes it on-par with state of the art protocols for Schnorr [CDSG+24] and
ECDSA [CDKS24].

In addition, we alleviate the need for zero-knowledge (ZK) proofs towards
the client, that were used in [FMM+24] to prove honest behaviour. In order to
admit the 2PC-MPC framework, [FMM+24] offered to aggregate the proofs from
each party in the network. However, when the plaintext space of the TAHE is
not aligned with the ECDSA/Schnorr group order q, these proofs in [FMM+24]
use range proofs (specifically, Bulletproofs [BBB+18]). While these proofs can
be aggregated in the sense that the aggregated proof size is logarithmic with the
number of parties n, verification time by the client remains linear with n. By
removing the need for zk-proofs, we resolve this issue. We believe our technique
can be applied to their protocol as well.

Furthermore, for Schnorr signatures, presign is client-independent. Namely,
a presign is generated by the network alone, and can be leveraged by any client
during the online signing phase. By computing presigns during periods of low
load or idle time, the system can efficiently handle sudden traffic spikes, ensur-
ing minimal disruption when demand surges. In addition, this saves the cost
associated with generation of client-dedicated presigns that may never be used.

Moreover, for Schnorr signatures, we also support soft key derivation as spec-
ified in the BIP32 standard [Wui13] for hierarchical deterministic wallets. This
standard allows the derivation of a child public key from a master public key,
enabling child keys to inherit permissions from their parent, while optionally
being restricted to more limited actions. We refer to Section 3 for more details.

In terms of security, our protocol for ECDSA circumvents the Enhanced-
ECDSA unforgeability assumption (proposed in [CGG+20]), even when allow-
ing presigns. Enhanced ECDSA was proven secure in the EC-GGM model (see
Section 3) in [GS22], but the concrete parameters of the reduction do not suf-
fice when working over 256-bit elliptic curves commonly used nowadays (e.g.,
secp256k1 [Bal24] used in both Bitcoin and Ethereum). We propose the Slightly-
Enhanced ECDSA unforgeability assumption, and provide a reduction (also in

6

EC-GGM) with a satisfying complexity. We believe other threshold ECDSA
protocols can be adjusted to rely on this assumption instead.

Moreover, in this work we also consider proactive aborts, namely, the par-
ticipating subset in each session and each communication round is not only
post-determined, but is also adversarially chosen. This allows our protocol to
tolerate an adversary not only corrupt part of the network participants, but also
has control over the network communication channel. This introduces challenges
in the UC-simulation, as we cover in Section 3.1.

Additionally, compared to [FMM+24], our protocol UC-realizes a more robust
and natural ideal functionality (see Functionality 4.1). In [FMM+24], a weaker
functionality that was first introduced by [CGG+20] is realized, which apart
from ensuring unforgeability, allows the adversary to control the distribution of
the public key and the signature. We believe [FMM+24] may also be adjusted to
realize our functionality, that generates the public key and signature according to
an ideal signing oracle. Notably, we are only able to realize “slightly-enhanced”
signing oracles, which allow the adversary to inject a linear biases. Nevertheless,
we prove this signing oracles to be secure.

In Section 1.2 we delve deeper into the concrete design of our proposed sys-
tem, followed by Section 1.3 where we explore the range of applications that can
be built upon it.

1.2 System Overview

In this work, we design a blockchain-based massively decentralized cryptosystem
for securely maintaining digital wallets on the bulk of deployed blockchains.
Below we briefly describe the system as a whole.

The blockchain. The blockchain is permissionless, and before the beginning of
every epoch, reconfiguration allows validators to join or leave the network. The
blockchain is based on Proof of Stake (PoS), and each validator has a voting
power proportional to its stake [LRP20].4 In turn, during each reconfiguration
validators may also withdraw part of their stake, or increase their stake, which
could change their voting power accordingly.5 In this context, when referring to
blockchains we also consider DAG-based cryptocurrencies [LeM17], DAG-based
consensus platforms and blockchain-DAG hybrids [BCD+23b] (see [PMIH18,
GZT+19, WYY+22, WYCX23] for recent surveys). DAG-based designs allow
validators to propose blocks in parallel. This improves the system latency, that
is, the time to create a wallet or sign a transaction, as well as the through-
put, that is, the number of transactions (or wallets) produced per unit time. As
observed by [FMM+24], this can be utilized to increase the throughput of the
online-signing phase. Essentially, the bottleneck in this phase is the aggregation

4 If the blockchain is based on Proof of Work (PoW), each miner has a voting power
proportional to its computational power.

5 In PoW blockchains, the estimated computational power of a miner can be adjusted
based on its performance during the last epoch, and its voting power is adjusted
accordingly.

7

of decryption shares. Therefore, each validator can aggregate decryption shares
of a different subset of signing request, amortizing this cost.

Communication. Clients can communicate with the blockchain by sending
transactions and parsing blocks. The MPC party emulation sub-protocols can
be implemented over the consensus channel [FLP85, BT83, BT85] used for
producing blocks.6 The block proposer validator is responsible for aggregat-
ing the last MPC round, compute the message to send to the client, and in-
clude it in its proposed block. Oftentimes, such communication channel is either
asynchronous (as in Narwhal-Tusk [DKKSS22]) or partially synchronous (as in
Narwhal-Bullshark [SGSKK22]).

Policies. Upon creation, wallets will specify policies, either by using smart con-
tracts (see [MPJ18, WYW+18] and [TLL+21, HZL+21] for recent overviews
and surveys) implemented on-chain, or using light-clients [CBC22] in order to
validate policies posted on another blockchain. Before validators participate in
signing a transaction, they validate that it matches the policy of the correspond-
ing wallet. Policies can specify, for instance, a whitelist or a blacklist of accounts,
a transaction limit, a limit on the number of transactions per epoch, or anything
else that can be specified in a smart contract. Compromising a client will not al-
low an adversary to bypass the policy of its wallet. Compromising the blockchain
can only be exploited to bypass policies for wallets for which the client share was
also compromised. This ensures security can only be enhanced by sharing the key
with the blockchain. The only added risk for the client is DOS of the network.

With the above architecture, our cryptosystem supports a range of versatile
applications across multiple blockchains. In Section 1.3, we illustrate several key
use-cases enabled by the flexibility, security, and scalability of the above design.

1.3 Applications

Digital Wallets for any Blockchain. The address of a wallet is typically
derived from its public key. Therefore, public keys generated on our blockchain
can be used as accounts on other blockchains, e.g. on Bitcoin or Ethereum. A
client can make a transaction by initiating a signing protocol with our blockchain.
With this motivation in mind, we support both ECDSA and EdDSA signatures
in our protocols, supporting nearly all blockchains to this date.7

Future transactions. A future transaction is a signed transaction submitted
by a client, that is only executed when and if a certain predetermined client-
specified condition is met. Since in our signing protocol, the client essentially

6 In our case, reliable broadcast [Bra87] is sufficient, as we do not require agreement on
the ordering of MPC messages. Consensus is often implemented on top of a reliable
broadcast channel, e.g., Narwhal-Tusk [DKKSS22], where Tusk implements asyn-
chronous consensus over Narwhal which implements a reliable broadcast channel.

7 In case the standard for digital signatures in cryptocurrency will change, protocols
for the new signatures schemes should be developed. Nevertheless, the system design
could potentially stay the same.

8

sends an encryption of the signature, the blockchain has the capability of delaying
transaction execution. Namely, validators would send their decryption shares
only when and if they observe that the associated condition is met. One type of
such transactions are timelocked transactions [Dev23], wherein the transaction
is executed only after a specified period of time/blocks.

Bridging Blockchains. We identify bridges as an appealing private case of fu-
ture transactions. Clients can transfer, for instance, BTC in exchange for Ether,
as follows. Client A would send a future transaction transferring xA BTC to liq-
uidity pool P, and condition it on receiving at least yP Ether from the liquidity
pool. This way, we can bridge Blockchains, without relying on implementation
of smart contracts or light-clients on either of them.

Cryptocurrency Futures. Cryptocurrency futures [SG20, ACK+20] are fu-
tures contracts that allow investors to place bets on a cryptocurrency’s future
price without owning the cryptocurrency. For instance, a trader might enter a
futures contract to buy Bitcoin at a fixed price at a specific future date; if the
price of Bitcoin increases, they can profit from the difference, even though they
never actually held any Bitcoin. This tool is often used to hedge against volatility,
allowing investors to protect themselves from adverse price movements. To date,
these contracts are traded on the Chicago Mercantile Exchange (CME) and cryp-
tocurrency exchanges and Chicago Board Options Exchange (CBOE) [BAJ23].
Nevertheless, this is a Web2 solution. Instead, such a market can be implemented
by an on-chain market that trades on future transactions that are dictated by
such future contracts.

Recovery. Clients can produce a future transaction that transfers all of their
funds or wallet to some other entity. This can be used for recovery of the wallet
and its funds in case the client share of the key is lost, or compromised. The
condition for initiating this recovery transaction can be signing a transaction
with another wallet whose client share is more protected, or a combination of
signatures from a subset of whitelist wallets with a certain threshold, counting
on “friends”, as an example.

Wallet Transfer. Wallets may have an intrinsic value.8 Therefore, transferring
ownership of a wallet can be of independent interest, and is not necessarily
equivalent to transferring all of its funds. In our system, this can be achieved by
transferring the client share, in a publicly verifiable manner. The blockchain can
then associate the wallet with the receiver client. One can also consider lending
a wallet, where the receiver has to pay a bill every couple of blocks in order to
keep holding or using the wallet.

Decentralized Autonomous Organization (DAO). By supporting BIP32
[Wui13], DAOs can manage a common wallet associated with a master public
key, and delegate permissions on it. For instance, the master key may have

8 For instance, for NFT creators and artists, having a verification badge on Instagram
can enhance their credibility. This verification badge is a property of the account
itself, regardless of its balance.

9

the capability of updating the wallet policy, its child could transfer funds to
any address, but up to a certain maximal amount, and each of its children can
transfer funds to certain whitelists of clients. In particular, (only) the owner of
the master key can add whitelists, change the limit on transaction amount, or
delegate these abilities.

These applications demonstrate the versatility of our system, enabling secure
cross-chain wallet management, future transaction automation, bridging between
blockchains without external dependencies, wallet recovery, asset transfer, and
decentralized autonomous organizations (DAOs). We believe this showcases its
broad potential to address both individual and organizational needs across a
variety of blockchain ecosystems.

1.4 Paper Organization

In Section 2 we cover the limitations of prior works including [FMM+24]. Sec-
tion 3 contains a technical overview of our protocol. It pinpoints the main tech-
nical challenges addressed in this work and outlines our proposed solutions.
Section 4 contains preliminaries and definitions. Our 2PC-MPC ECDSA and
Schnorr protocols are presented in Section 5 and Section 6 respectively. The
protocols for reconfiguration are presented in Section 7. In Section 8 we analyze
the security of our protocol. Implementation details and evaluation are provided
in Section 9.

2 Comparison to [FMM+24] & Related Work

This section provides a detailed comparison of our work with the foundational
2PC-MPC framework proposed by [FMM+24]. While we build on their design,
their instantiation faces significant limitations in real-world applicability. Below,
we outline those key limitations, discuss relevant related works, and highlight
the practical challenges our approach addresses.

First and foremost, the work in [FMM+24] is over an ideal broadcast channel.
In reality, consensus protocols implement a broadcast channel over P2P chan-
nels, e.g. via gossiping [AYSS09]. This distinction is crucial, since implementing
an ideal broadcast channel is theoretically impossible [FLP85]. This abstrac-
tion overlooks three major challenges when resorting to off-the-shelf broadcast
channel implementations, all of which we address in this work.

First, existing implementations realize more relaxed functionalities, e.g. con-
sistent broadcast, reliable broadcast, consensus or atomic broadcast (see [CGR11]
for an overview). Each of those provides different security guarantees, potentially
compromising on latency or bandwidth. In this work, we rely on consistent broad-
cast for security, and require reliable broadcast to ensure correctness properties
such as guaranteed output delivery.

Second, they assume a synchronous communication channel, meaning that
all parties have access to a global clock, and in particular, can decide and agree
if a party does not broadcast a message. This also occurs in [RRJ+22], a re-
cent adaptation of [DKLS23] that achieves identifiable abort by adding a syn-
chronous broadcast channel. Synchronous communication has proven to be a

10

rather stringent requirement [WGD22], and blockchains typically work over the
more relaxed partially-synchronous communication channel [DLS88], or prefer-
ably, over an asynchronous communication channel. Indeed, synchronizing on
a global clock can significantly affect network latency. In this work, the pro-
tocols are defined over an asynchronous channel, which supports existing im-
plementations of broadcast channels (e.g., Narwhal-Tusk [DKKSS22], Narwhal-
Bullshark [SGSKK22], Mysticeti [BCD+23a]) and provides a significantly lower
latency. In asynchronous communication, parties compute and broadcast their
messages for the next round as soon as a threshold of parties from the previous
round broadcasts their messages, without having to coordinate and agree on
which parties failed to participate. Worth mentioning here is ROAST [RRJ+22],
an adaptation of FROST1 [KG21] that works over an asynchronous commu-
nication channel. However, their solution requires running multiple sessions of
FROST in parallel, up to the number of honest parties in the network, making
it asymptotically more expensive. Whenever a party comes back online, it must
complete all the sessions that it missed to ensure delivery. This makes it diffi-
cult for an offline party to catch-up, and also consumes a significant amount of
storage for managing those parallel sessions with respect to each sign request.

Third, their work requires the same subset of parties to participate in all
rounds of each protocol (DKG, presign and sign). This is not on-par with existing
implementations of broadcast channels [DKKSS22, SGSKK22, BCD+23a], which
only ensure that an arbitrary threshold of parties is online during each commu-
nication round. The notion of fluid MPC [CGG+21], which allows the subset of
participating in an MPC protocol to dynamically change between rounds, was
recently proposed. However, current research is mostly theoretic. Our protocol
achieves fluidity, and is therefore aligned with the premises of existing broadcast
channel implementations. In particular, the parties in the protocol are essentially
stateless. Notably, [RRJ+22] also resolves the above issue, but indirectly. Their
transformation ensures that there will be one session in which a fixed thresh-
old of parties participate in all rounds. In our approach, one session can have
a different subset of parties in each round, leading to better performance. One
reason that flexibility might be challenging is that we cannot have commitment
rounds, as parties may not be available in the next round to open them. Our
solution to this borrows ideas from FROST1 [KG21].

Permissionless Networks. Although the 2PC-MPC design is suitable for
letting the set of parties in the network to change, their work neither men-
tions this nor offers a concrete protocol for network reconfiguration. Indeed,
with the 2PC-MPC framework, since all network signing key shares are en-
crypted under the same public key of a TAHE, resharing the secret decryption
key of the TAHE with the new committee is sufficient for network reconfig-
uration. Nevertheless, we find it to be quite challenging, since when working
over a TAHE based on a hidden-order group (e.g. Tiresias [FMM+23] based
on Paillier [Pai99], or [BDO23, BCD+24] based on the Class-Groups encryption
scheme by [CLT18] in the CL framework [CL15]), the secret decryption key is
shared over the integers [Sha79b]. Unfortunately, current re-configuration pro-

11

tocols [YXXM23, LRU22] assume the sharing is over a finite field and cannot be
directly applied. The main concern is that when working over the integers, the
bit-length of the secret shares will increase in every reconfiguration, making it
impractical. We propose two re-configuration protocols for secrets shared over
the integers, each of which may be preferable depending on the use-case.

In this context, many works (e.g., [CMP20, BMP22, CCL+23]) have consid-
ered proactive security [CGHN97], where the adversary can adaptively choose
which subset of parties to corrupt (and recover). This is often achieved by re-
sharing the private signing key, which is somewhat similar to reconfiguration.
Nevertheless, this is different from allowing the threshold and the set of par-
ties themselves to change as well. A more closely related work is Dynamic-
FROST [CDSG+24], the first Schnorr threshold signature scheme that accom-
modates changes in both the committee and the threshold value without relying
on a trusted third party. However, such works directly reshare the private signing
key. As a result, when considering a system with numerous wallets, whenever the
committee changes, such protocol must be executed with respect to each wallet
separately, and so does not scale with the number of clients in the system.

Weighted Access Structure. Oftentimes, the access structure of the decen-
tralized network is weighted. This is the case in Proof-of-Stake (PoS) blockchains,
wherein each validator has a voting power proportional to its stake, and this
is also the case in Proof-of-Work (PoW) blockchains, wherein each miner has a
chance to propose a new block proportional to its computational power. To align
with the financial incentives and security premises of the underlying blockchain,
the secret key of the TAHE should also be shared according to the same weighted
access structure. In this context, [DPTX24] proposed a scheme for weighted Ver-
ifiable Random Functions in which signing and verification time, as well as the
signature size, are independent of the total weight of the parties. However, their
construction relies heavily on the signature being based on pairings. A more
related work is WSTS [Yan23] which reduces the bandwidth during the presign
and sign rounds when parties control multiple keys. In our protocol, bandwidth
and computation during the DKG is independent of the total number of par-
ties as well, as a consequence of the 2PC-MPC design. Indeed, only the DKG
of the underlying TAHE depends on the overall voting power (and reconfigura-
tion). Additionally, the amortized computational cost during the online signing
phase is proportional to the average voting power rather than the total vot-
ing power. We also remark that if the set of parties participating in the online
signing phase is known in advance, the computational cost of each party is pro-
portional to its individual voting power, without amortization. This assumption
was taken in [Yan23], but was not fully exploited since the verification of the
signature shares by the aggregator takes work proportional to the total voting
power. Instead, we utilize the idea in [FMM+24], suggesting that it is sufficient to
verify the aggregated signature in order to verify the correctness of the signature
shares, reducing this additional cost.

Finally, beyond practical implementation challenges, we also address the-
oretical concerns in securing presign protocols. Specifically, proving security

12

when allowing presign is known to be challenging. Up until this work, threshold
ECDSA protocols that enabled presigns (e.g., [CGG+20, DOK+20, DKLS23,
CCL+23, FMM+24]) have assumed the Enhanced ECDSA Unforgeability as-
sumption [CGG+20], which essentially states that forging ECDSA signatures
is hard even if the adversary is allowed to query the nonce part of multiple
signatures before deciding on the messages it wants to sign. The hardness of
Enhanced ECDSA Unforgeability was established in the Elliptic Curve Generic
Group Model (EC-GGM) proposed in [GS22]. However, the complexity of their
reduction is cubic, which is insufficient for concrete security for 256-bit elliptic
curves. In this work, we propose the Slightly-Enhanced ECDSA Unforgeability
assumption, and follow similar techniques to those employed in [GS22] to analyze
its security. In our protocol, the presign is slightly different compared to prior
works, and consists of a pair of nonces rather than one. At the online signing
phase, the nonces are randomly combined based on the message to be signed,
the client’s input, the presign, and the public key. In this case, we achieve a
quadratic complexity for the reduction, making the Slightly Enhanced assump-
tion compatible with 256-bit elliptic curves. For our Schnorr protocol, we use
a similar technique to the one used in FROST3 [CGRS23], and base our secu-
rity on the Algebraic One-More Discrete Log (AOMDL) [NRS21] assumption.
However, we take a more modular approach by first reducing the signing oracle
itself to breaking AOMDL, and then simulating the protocol with calls to the
signing oracle. This modular approach can be of independent interest since it
can potentially simplify the simulation of other threshold Schnorr protocols.

3 Technical Overview

In this section, we discuss the technical challenges addressed in this work. In
Section 3.1 we discuss our methods for implementing a typical threshold signa-
ture protocol in an asynchronous network model, and address the challenges in
UC-simulation. In Section 3.2 we discuss our methods to support presigns for
both ECDSA and Schnorr. In Section 3.3 we elaborate on our methods for al-
lowing the network to dynamically change. Finally, in Section 3.4 we show how
to comply with the 2PC-MPC framework.

3.1 Asynchronous protocol

When working over an asynchronous communication channel, one cannot simply
rely on commitments, as a party that sends a commitment in one round may
be unavailable in the next round to open it. Without commitments, values can
be chosen adaptively by a rushing adversary. Another point of influence given
to the adversary in this model is adaptively choosing the subset of participating
parties based on their messages. The issue is further complicated by the need to
conform to the UC model. To illustrate the above issues, consider a simplified
DKG protocol for Schnorr:

1. Each party i samples xi ← Zq and broadcasts Xi = xi ·G along with a ZKP
πDL.

13

2. The parties agree on a subset S of t+1 parties who sent valid messages and
set X =

∑
i∈S Xi.

As a first attempt, consider an ideal functionality that samples the public
key X at random. Unfortunately, simulation here is impossible, even against a
semi-honest adversary. Regardless of what the simulator sends on behalf of the
honest parties, it cannot force the protocol to land on a specific X. Therefore,
our idea is to explicitly give the adversary more freedom in the ideal world. As
a second attempt, consider a modified functionality that allows the adversary to
inject a bias β, resulting with i.e. X+β ·G. In this case, a standalone simulation
is manageable:

1. The simulator picks an honest party i∗ at random, sends X + xi∗ ·G on its
behalf, and simulates the corresponding ZK proof. On behalf of the rest, it
acts honestly.

2. Upon receiving the messages from the malicious parties, it rewinds the ad-
versary and extracts the discrete log of Xi for each malicious party.

3. When the adversary chooses the subset S, if i∗ ̸∈ S it rewinds to the begin-
ning of the simulation.

4. Finally, it sets β =
∑

i∈S xi and sends it to the ideal functionality.

However, moving to the UC model introduces additional complexities. Specifi-
cally, we cannot use rewinding in order to extract the secrets of the adversary or
to guess i∗ correctly. A naive solution for the former is to use UC-extractable ZK
proofs, e.g. by applying Fischlin’s transform [Fis05]. However, this costs around
an order of magnitude in performance [CL24]. Instead, we utilize TAHE en-
cryption for witness extraction. Using a UC-secure TAHE and simulating the
TAHE’s ideal functionality, the simulator holds the secret decryption key and
extracts encrypted secrets. Computationally sound ZK proofs are still necessary
to bind curve points to ciphertexts but they do not need to be UC-extractable.

As for the latter issue, we relax the functionality even further, and allow the
adversary to apply an affine transformation α · X + β · G with α ̸= 0. In this
case, the simulator can send X + xi · G on behalf of each honest party. Then,
when the adversary picks the subset S, the simulator sets α to be the number
of honest parties in S, in order to land on the same public key as in the real
execution.

As we refine the ideal functionality, in order to complete the security analysis
we must analyze unforgeability with respect to the refined signing oracle. The
unforgeability for Schnorr signatures is established in Theorem 8.2. On the other
hand, it turns out that this functionality makes the adversary too powerful
against ECDSA signatures, and allows an efficient forgery attack:

1. Receive X from the functionality.
2. Choose a message msg∗ to be forged and calculate m∗ = H(msg∗).
3. Set R∗ = X and set r∗ to be R∗’s X coordinate.
4. Send (R∗, r∗, r∗) (i.e., set s∗ = r∗) as the signature to msg∗ with respect to

the public key X − m∗

r∗ G.

14

One can easily verify that this forgery is successful. In order to prevent such
attacks, we modify the functionality as follows: The functionality first samples
two public keys X0, X1 and sends them to the adversary. The adversary can
choose coefficients αi, βi (with βi ̸= 0) and set X ′i = αiXi + βiG. Finally, the
functionality samples random coefficients µ0

x, µ
1
x, µ

G
x , and the final key is µ0

xX0+
µ1
xX1 + µG

x G. (In fact, these coefficients are derived deterministically and not
sampled, see Functionality 8.1 for details.) ECDSA is proven secure with respect
to this functionality in Theorem D.3.

3.2 Adding presign support

Another challenge that we face is support of presigns. In this case, if we allow
the adversary to inject arbitrary bias to the public key, then apparently the
Enhanced ECDSA signing oracle is insecure [GS22]. Moreover, the Enhanced
Schnorr signing oracle is insecure even without the above relaxation [BLL+22].
This is not surprising, as the adversary seems to have a lot of power. In order to
blunt this control we use a technique inspired by FROST1 [KG21]. Essentially,
the nonce part of the signature is derived from the presign output as well as
the message to be signed. This idea gives rise to a modified signing oracle which
we call the Slightly Enhanced Signing Oracle. As the name suggests, we aim to
give evidence that this oracle provides better security than Enhanced Signing
Oracle introduced in [CGG+20] which allows the adversary to see the public
nonce before choosing the message. Apparently, this signing oracle is also secure
when allowing the adversary to apply affine transformations on the public key
and the presigns.

Next, we describe the Slightly Enhanced signing oracle for ECDSA and
Schnorr signatures in more detail. Upon request of a presign, two public nonces
R0, R1 are generated, rather than one. Then, when querying for a signature on
some message msg, the public nonce R used for the signature is determined by a
linear combination of the two nonces R = µ0R0 + µ1R1 + µGG. The coefficients
are derived from the public key X, the presign R0, R1, and the message msg.
Intuitively, this suggests that the adversary cannot predict the nonce before it
decides on a message. In addition, for the reasons mentioned in Section 3.1, we
let the adversary pick invertible affine transformations for the public key (and in
ECDSA, for its two parts), and for both nonces in the presign. Below, we briefly
cover the security analysis of these slightly enhanced signing oracles.

Slightly Enhanced ECDSA Signing Oracle. We prove that Functionality 8.1
is secure in the EC-GGM model introduced by [GS22]. In this model, a group
oracle essentially samples a random mapping π between Zq and the curve G.
The adversary interacts with the group oracle in order to preform computations
over G. We provide two main simulations of Functionality 8.1 in this model. In
the first simulation, called lazy simulation, the mapping π is sampled “on the
fly”, and whenever a new value x ∈ Zq is queried, a value π(x) ∈ G is randomly
sampled, recorded and returned. In the second simulation, called symbolic sim-
ulation, the secret ECDSA signing key is never sampled, and instead a symbolic
variable is used. We i) prove that our protocol UC realizes the lazy simulation

15

in the EC-GGM model, ii) present a polynomial reduction between the lazy
simulation and the symbolic simulation, and iii) show that the symbolic simula-
tion is secure. Specifically, we prove that any adversary to our protocol that can
forge a signature in the EC-GGM model with non-negligible probability must
use Ω(

√
q) overall oracle queries.

Slightly Enhanced Schnorr Signing Oracle. We reduce an adversary that can
forge a signature given access to the signing oracle in Functionality 8.2 to break-
ing Algebraic One More Discrete Log (AOMDL) [NRS21] game. For simplicity,
we first reduce such forgery to forging signatures when adding biases to the pub-
lic key and presign is not allowed (Functionality D.4). Then, we use a generalized
forking lemma [BN06, Lemma 1] to reduce the latter forgery into winning the
AOMDL security game.

Remarkably, Functionalities 8.2 and 8.1 provide greater versatility than what
we have described above. Specifically, the adversary is allowed to specify a tweak
(αkey, βkey) that will be applied on the public key in the signing request itself.
In other words, the adversary is allowed to add a different bias to the same
public key, upon each signing request. This choice enables support for soft key
derivation as specified in BIP32 standard [Wui13]. Crucially, the reason that
despite all of these degrees of freedom the signing oracle stays secure, is that the
functionality’s coefficients are derived from a random oracle on all of the above
values: the biased public key and presign, the tweaks, and the message. If any
of them is removed, an attack becomes feasible.

In addition, Functionality 8.2 allows the adversary to ask for an arbitrary
number of keys and presigns, and then adaptively choose the key-presign-message
binding in parallel for all signing requests to follow. This ensures security for the
use-case of a common pool of presigns for multiple clients.

3.3 Reconfiguration

Before addressing the client, one final issue remains regarding the network: en-
abling dynamic reconfiguration through a dedicated protocol. As previously men-
tioned, it suffices to reshare the secret decryption key of the TAHE scheme,
denoted as sk. While asynchronous reconfiguration protocols exist in the liter-
ature [YXXM23, LRU22], to the best of our knowledge, they all assume secret
sharing schemes over finite fields. Unfortunately, this assumption does not hold
for two prevalent TAHE schemes based on Paillier and class groups, where the
secret key sk resides in a hidden-order group. In these cases, sk is shared over the
integers, introducing notable challenges. Specifically, integer-based secret shares
are substantially larger than the original secret, with their bit-length growing
super-linearly with the number of parties. Moreover, the naive approach of ”re-
sharing the shares” is impractical, since the size of the secret shares may grow
indefinitely with each reconfiguration.

To address this, we propose two asynchronous reconfiguration protocols:

Protocol 1: Dynamic Weight and Distribution Adjustment - This pro-
tocol supports dynamic changes in both the total weight and its distribution

16

among parties. It assumes the secret key is self-encrypted, ctsk := Encpk(sk),
relying on circular security [CL01]. The protocol proceeds as follows:

1. Parties homomorphically add random masks to ctsk while simultaneously
sharing these masks via a Publicly Verifiable Secret Sharing (PVSS) scheme.

2. The masked secret key, ctmasked := ctsk ⊕ Encpk(mask), is then threshold-
decrypted.

3. The sharing of the masked values is converted into a new sharing of the
secret key.

The key challenge is that the secret key space differs from the plaintext space
of TAHE. This is resolved using limb decomposition, which preserves the cor-
rectness of the sharing within the key space. Importantly, the share size remains
constant, as they are always derived from the same ”fresh” ctsk.

Although circular security might seem like a strong assumption, it has been
proven for AHEs based on hidden-order groups within a modified ”ElGamal-
like” subgroup indistinguishability framework [BG10]. Specifically, this vari-
ant applies to Paillier encryption [BG10] and may extend to class-group-based
schemes [BCIL23].

This protocol variant, which allows threshold adjustments, is proven secure
in the standalone model due to challenges similar to those in Section 3.1, par-
ticularly in verifying keys. Reconfiguration is often sequential, blocking other
sessions during execution which would still allow to use this protocol. However,
the protocol can achieve UC-security by generating new random public parame-
ters for the commitment scheme. For Paillier and class-group-based encryption,
this involves a ciphertext element known to the simulator. One possible solution
is to use hash-to-group function, which is straightforward for Paillier but chal-
lenging for class groups [SBK24].Another optio is adding an extra protocol round
where each party sends an encryption with a UC-proof of validity, enabling the
simulator to extract the message, which suffices for simulation.

Protocol 2: Fixed Total Weight and Threshold with Flexible Distri-
bution - This protocol maintains the total weight and threshold but allows
arbitrary redistribution among parties. It is suitable when the overall voting
power and threshold remain unchanged, as in the SUI blockchain [BCD+23b].
The steps are as follows:

1. Parties share a random value to rerandomize the existing secret key sharing.
2. Adjusted shares are distributed among parties.
3. The new shares are combined and reconstructed under the new configuration.

The primary challenge is bounding the size of the new shares. Although recon-
struction initially yields larger shares, careful analysis shows they are divisible
by n!3 over the integers. After division, each share is the sum of the original
share and a share of zero. Consequently, after Nr reconfigurations, a share is
only Nr + 1 times larger, with its bit-length increasing by log(Nr)—a manage-
able growth. Regarding security, since the final sharing combines the previous sk
sharing with a fresh zero-sharing, it effectively constitutes a new integer-based
sharing.

17

3.4 Complying with the 2PC-MPC framework

Finally, we consider integrating the client into our protocol. In the 2PC-MPC
framework, the client run-time and communication overhead should be indepen-
dent of the network size. It turns out that the challenge lies in the zk-proofs,
since the statements that parties in the network send are always summed-up in
our protocols. Unless there is a way to aggregate the zk-proofs of parties in the
network into a single proof for the aggregated statement, as in [FMM+24], the
client cannot receive proofs from the distributed party. We find proof aggregation
to be quite challenging in an asynchronous fluid framework.

Instead, we design the protocol in a way that does not require any proofs
from the distributed party towards the client. The basic concept is to view the
client as a signing oracle, and as such it would not need any proofs. While this
concept somewhat works for EdDSA, it fails for ECDSA and allows for a myriad
of non-trivial attacks.

In our ECDSA protocol, the client essentially gets the ingredients it needs
to compute R := k−1A · RB and an encryption of σA := kA · (m+ rx) under B’s
public key. One can think of (R, σA) as an ECDSA signature with respect to
the group (G, RB), signing key x (and so public x ·RB), and nonce kA sampled
by party A alone. Party B can then translate it into an ECDSA signature over
(G, G) by decrypting σA and dividing it by kB , where RB = kB ·G. Therefore,
intuitively, party A acts as an ECDSA signing oracle, with the exception that
the adversary can pick the generator of the group RB every time.

Unfortunately, the above protocol enables the following attack. Party B sends
X instead of RB .

9 It will get k−1A ·X and (the encryption of) σA = kA(m+ rx).
It then multiply k−1A X by σA to get (m + rx) · X, which gives away x2 · G.
By repeating this, it can get xk · G, for any k ∈ poly(κ). This is an instance
of the Strong Diffie-Hellman Problem which is known to be broken in certain
settings [Che06].

In order to resolve this issue, one might consider letting the client add an
additive mask to the nonce of B. However, in order to do that and still allow
the distributed party to generate a signature, the client must also give away
Enc(kB+β), which allows the adversary to calculate β, bringing us back to square
one. Instead, we observe that allowing the client to apply an affine transformation
and sending Enc(α · kB + β) prevents this issue.

Again, this seems to shift too much power to the client. However, as long as
the protocol enforces that the rerandomization of the nonces (the µs) depends on
α, β and kA, this extra power is still captured by the slightly enhanced signing
oracle, which also allows the adversary to bias the presigns. To this end, the
client sends homomorphic commitments and zk-proofs to α, β and kA, and the
derivation of the nonces depends on those commitments as well. Notably, in order
for the simulation to work without rewinding, Fischlin [Fis05] UC-extractable
proofs are used, and the nonces are derived from the proofs as well. This is
important as the simulator needs to extract α, β, kA before it simulates them.

9 Sending a proof of knowledge for RB prevents this, but our goal is to avoid it.

18

Notably, this incurs a negligible cost on performance, as it is required solely for
the proof sent by the client. Moreover, verifying proofs over elliptic curves is
significantly faster than over class-group based encryption schemes.

4 Preliminaries

Notation. Group elements and sets are denoted by big letters (G,H) while field
elements are typically denoted by small letters x, r. Algorithms are denoted by
calligraphic big letters (A,F). Message identifiers are denoted in a sans-serif font
(sid, ssid). Subscripts are usually reserved for descriptors and superscript are used
for indexing. In cases where only a descriptor is needed, it will be subscripted.
For a finite set P the notation x ← P implies that x is sampled uniformly at
random from P . We also write x← A(·) for the output of an algorithm.

Entities. We consider two sets of parties, denoted by A and B. A is a collection
of “centralized” entities identified by pidA, which play the role of the clients in
the system. The set B represents a single distributed entity identified by pidB ,
which plays the role of the decentralized network, wherein each party Bi ∈ B is
a validator or a miner.

Communication Model. Parties in B do not communicate directly with the
parties in A. Instead, an authorized subset of B agrees on a common message
to send back to A. The receiving party in A is unaware of the identity of the
individual parties comprising B or its internal structure. Typically, blockchains
expose a distributed ledger that is publicly accessible to everyone, yet no in-
dividual is exposed to direct communication channels with the validators that
maintain it. This is formalized in Fglobal-broadcast (Functionality A.2).

The internal communication channel between parties in B is an asynchronous
reliable broadcast channel, which is captured in Fbroadcast (Functionality A.2).
This is the underlying communication channel used in blockchains in order to
agree on transactions to sign. Some of the potential instantiations can be found
in [DKKSS22, SGSKK22, BCD+23a]. Following [SS24], we note that the func-
tionality only ensures consistency, and not completeness. Completeness suggests
that if a single honest party generates an output then every honest party even-
tually generates an output. Instead, this is viewed as a property of the broadcast
protocol itself. In our context, completeness ensures guaranteed output delivery,
but for security and correctness of our protocol, consistent broadcast suffices.

Typically, a consensus protocol is implemented on top of a reliable broadcast
channel, so as to agree on an order for the transactions. However, in our con-
text, a weaker notion may suffice. Recall that our system produces signatures
to be posted on other blockchains, we may be responsible for ordering these
transactions. Therefore, we only require a mechanism to agree upon a subset
of messages corresponding to an authorized subset of parties from the previous
MPC round of a given session sid. This is captured by FACS (Functionality A.3).
A potential instantiation can be found in [SS24]. Another possibility, although
relying on consensus, is to take the first set of blocks that contain an authorized
subset.

19

For brevity, when we refer to the Reliable Broadcast Model, we mean that we
are working in the (Fbroadcast,Fglobal-broadcast,FACS)-hybrid model. The broadcast
functionalities are adapted from [SS24], while FACS is a rephrasing from [Sho24].

Adversarial Model. We work within the static adversarial model, meaning
that the adversary selects the set of parties to corrupt before any protocol be-
gins and cannot corrupt any parties afterward. The adversary is also a rushing
adversary, that first sees the broadcast messages of all honest parties before
sending any of its own. In addition, the adversary can proactively and adaptively
block or delay messages. This is modeled by letting it choose a valid subset of
parties to participate in each round. Indeed, while an attacker aims to corrupt
parties as early as possible and maintain control when feasible, the adaptive
blocking and delaying of messages can be viewed as a form of static corruption
over the network infrastructure itself. The adversary also has access to the head-
ers of any communication between honest parties and ideal functionalities, and
for ease of exposition, we assume this implicitly throughout without explicitly
stating it each time.

Due to our use of a reliable broadcast channel, we assume that the number of
(static + adaptive) corruptions in B is at most n/3 throughout, and otherwise B
is considered corrupt. Essentially, an adversary that corrupts more than a third
of the network, may fork it into two disjoint components and break consistency.
It may also stop participating, in which case guaranteed output delivery fails,
breaking liveness and censorship resistance.

Ideal Functionality. The security of the 2PC-MPC architecture is defined by
the ideal functionality FG,ΓB

tsig (Functionality 4.1). This functionality incorporates
a signing oracle G. The functionality regulates access to the oracle in a straight-
forward manner: it permits any authorized subset to request key generation,
pre-signing, and signing operations from the oracle. Any other type of query is
controlled by the adversary. Additionally, the functionality captures changes to
the network structure. It allows an authorized subset in ΓB to reconfigure the
network. It also enables a client to share its wallet with others and, when the
network is not corrupted, to transfer ownership completely. This distinction is
crucial: in a malicious network, enforcement of policies cannot be trusted. Con-
sequently, a malicious party may collaborate with the network to recover the
private signing key and regain access. For simplicity, the functionality assumes
that presigns are tied to a specific key X. That being said for Schnorr we support
key-independent presigns.

Zero-Knowledge Proofs (ZKPs). We recall the formal definition of Zero-
Knowledge Proofs (ZKPs) and Zero-Knowledge Proofs of Knowledge (ZKPoK) in
Appendix A.2. For a given ternary relation R : {0, 1}∗×{0, 1}∗×{0, 1}∗ 7→ {0, 1},
and every fixed pp ∈ {0, 1}∗, we define the following NP language L[pp] = {x;w |
R(pp, x;w) = 1}. Namely, we require that for each pp ∈ {0, 1}∗, R(pp, ·; ·) is
computable in polynomial time. In our context, pp consists of public parameters
(e.g., a public encryption key or a specification of an elliptic curve), x is a
statement, and w is a witness.

20

FUNCTIONALITY 4.1
(
2PC-MPC Signature Functionality FG,ΓB

tsig

)
The functionality interacts with two disjoint sets of parties A and B along with an
adversary A controlling a subset U . The functionality is parameterized by a signing
oracle G and an initial access structure ΓB . The functionality starts either with a record
(sidB , ΓB) if U /∈ ΓB or with the record (sidB , ΓB ∪ {A}) otherwise.

1. Key Generation: Upon receiving (keygen, sid, pidA) from ApidA along with
(keygen, sid, pidA, pidB) from a subset S ∈ ΓB , do as follows:
(a) Send (keygen, sid) to G.
(b) Act as a proxy betweenA and G until the oracle outputs (keygen-output, sid, X)

which it sends to all parties.
(c) If ApidA /∈ U record (X, {pidA}) otherwise, record (X, {pidA,A}) instead.

2. Presign: Upon receiving (pres, X, sid, ssid, pidA) from ApidA ∈ AX for which
(X,AX) is recorded, along with (pres, sid, ssid, pidA, pidB) from a subset S ∈ ΓB ,
do as follows:
(a) Send (pres, sid, ssid, X) to G.
(b) Act as a proxy between G and A until the oracle outputs

(pres-output, sid, ssid, K⃗) which it sends to all parties.
3. Sign: Upon receiving (sign, X,msg, sid, ssid, pidA) from ApidA ∈ AX for which

(X,AX) is recorded, along with (sign,msg, sid, ssid, pidA, pidB) from a subset S ∈
ΓB , do as follows:
(a) Send (sign,msg, sid, ssid) to G.
(b) Act as a proxy between G and A until the oracle outputs

(sign-output, sid, ssid, σ) which it sends to all parties.
4. Reconfiguration: Upon receiving messages (reconfigure, sidB , pidB , ΓB,new) from

an authorized subset S ∈ ΓB check if either {A} ∈ ΓB or U ∈ ΓB,new. If so record
(sidB , ΓB,new ∪ {{A}}), otherwise record (sidB , ΓB,new).

5. Transfer: Upon receiving messages (transfer, X, pidA, AX,new) from ApidA such that
pidA ∈ AX for a recorded (X,AX) check if either A ∈ AX or AX,new ∩U ̸= ∅. If so
record (X,AX,new ∪ {A}), otherwise record (X,AX,new).

All of the ZKPs used are non-interactive, either by applying the Fiat-Shamir
transform [FS86], or by applying Fischlin’s transform [Fis05] in case UC-extractable

proofs are needed. A ZK protocol for the language L will be denoted as Π
L[pp]
zk

for the former case, and as Π
L[params]
uc-zk for the latter case. Formal definitions of

the languages used in our protocol are provided in Appendix B.

Statement Aggregation. As all messages from B to parties in A must be ag-
gregated, to this end we refer to a simple aggregation protocol. Given a language
L and a binary operator + : L2 → L, the aggregation protocol ΠL

agg works as

follows. First, each party Bi sends to Fbroadcast a ZKP relative to L for (Y⃗i; w⃗i)
and validates the proofs of the other parties. Then, using FACS the parties agree
on a subset of the statements, and using Fglobal-broadcast, the statement

∑
j Y⃗j is

sent to the client.

Shamir Secret Sharing Over the Integers. Shamir’s original secret sharing
scheme [Sha79a] was presented over a finite field. However, when working over a
group of unknown order, [Rab98] suggested to work with a secret sharing scehem

21

over the integers. Later, [FMM+23] offered a more tight analysis and improved
bounds on the secret shares size. including the improved bound on the secret
shares size, and we follow their notation below.

Let s ∈ Z ∩ [−b, b] be an integer secret, and denote ∆n = n!. The algorithm
Sharet,n(s) samples a degree t polynomial p(x) = ∆n · s +

∑t
i=1 aix

i, where
a1, · · · , at ← [−I(σ, n, b), I(σ, n, b)]. Here, I(σ, n, b) is some bound on the abso-
lute value of the coefficients of the polynomial that is chosen to statistically hide
the integer secret s. It then outputs [s] := ([s]1, . . . , [s]n) where [s]j = p(j) is the
secret share of party j.

Reconstruction works as follows. Given a set S of t+1 secret shares, we have
p(0) =

∑
j∈S λS

0,j [s]j = ∆ns, where {λS
i,j}j∈S is the set of Lagrange coefficients

corresponding to the interpolation of point i using the subset of interpolations
points S. However, since the Lagrange coefficients may not be integers, they
are first multiplied by ∆n, and so

∑
j∈S ∆nλ

S
0,j [s]j/∆

2
n = s. We denote the

upper bound on the absolute value of the share on s by D(σ, n, t, b). This will
correspond to the bound on the secret key share size of each party in B.

Homomorphic Commitments. For a commitment scheme with public pa-
rameters pp we denote the message space of the commitment asMpp and ran-
domness space as Rpp. Unless specified otherwise Compp refers to Petersen Com-
mitments [Ped91] on the appropriate Elliptic Curve. Homomorphic Addition is
denote by ⊕ and multiplication by a scalar by ⊙.

Threshold Additively Homomorphic Encryption (TAHE). Additively
Homomorphic Encryption (AHE) is a public key encryption scheme that sup-
ports homomorphic addition of two ciphertexts. The scheme is parameterized
by four abelian groups: the plaintext space Ppk, the ciphertext space Cpk, the
randomness space Rpk, and the key space Kκ. We denote plaintext as pt, cipher-
texts as ct, randomness as η, and public-secret key pairs as (pk; sk). We use ⊕
and ⊙ for homomorphic addition and scalar multiplication respectively.

We utilize an AHE scheme with Ppk = Zq, where q is the prime order of
the elliptic curve used for the digital signature scheme. This can be achieved
natively using class group-based AHE [CL15] or by interpreting the plain-
text as a Z-module using the Paillier scheme [Pai99], as done in [FMM+24].
We require the AHE scheme to satisfy circuit privacy with respect to lin-
ear transformations. Specifically, the scheme admits Secure Linear Evalua-
tion of two ciphertexts, ct0 and ct1, with coefficients a0 and a1, denoted as
AHE.Eval(pk, (ct0, ct1), (a0, a1); η). This evaluation should not reveal any infor-
mation to an adversary holding sk and the randomness used for encrypting ct0
and ct1, other than the output of the linear evaluation on the messages. We
denote by Scale the operation that multiplies a single ciphertext by a scalar
while preserving the same guarantee. Note that we only demand that ct0, ct1 are
elements of the ciphertext space and are not necessarily valid encryption, see
Appendix F for discussion.

In our protocols, we utilize Threshold Additively Homomorphic Encryption
(TAHE), which allows any set of t + 1 parties to decrypt while preventing any
smaller subset from doing so. This is captured by an ideal functionality FDAHE

22

(Functionality A.5), which also allows for dynamic changes to the access struc-
ture. We define an Additively Homomorphic Encryption (AHE) scheme and
extend it to the threshold security model. This functionality can be emulated
using class group-based TAHE [BDO23] or Paillier-based TAHE with circuit pri-
vacy ([FMM+24], following [FMM+23]), along with the reconfiguration protocols
(see Section 7). Both threshold schemes are asynchronous, meaning that the set
of decrypting parties may be unknown in advance during decryption. Impor-
tantly, to obtain security against malicious adversaries, TAHE schemes often use
verification keys which should be thought of as homomorphic commitments on
the secret key shares. The verification keys are produced in the Distributed Key
Generation (DKG) phase, and are then used during the threshold decryption
phase in order to prove correctness of the decryption shares.

Publicly Verifiable Secret Sharing (PVSS). Publicly Verifiable Secret Shar-
ing (PVSS) [Sta96] enables a dealer to share a secret among a set of recipients for
some monotone access structure, while any recipient can verify the correctness
of the shares of every other recipient without further communication. Typically,
this is achieved by the dealer generating encryptions under the public keys of
each recipient while proving, along with ZKPs that the sharing was done cor-
rectly. The main advantage of this approach is that it avoids the need for an
accountability mechanism in case a recipient claims they received an incorrect
share, or did not receive there share at all.

We use PVSS in our reconfiguration protocols, in order to reshare the secret
decryption key. In this context, we only need the Dist algorithm, responsible for
distributing the secret in a publicly verifiable manner. The reconstruction phase
is never invoked, and is only describe for compliance.

Extended Preliminaries. We refer to Appendix A, for a comprehensive back-
ground, formal definitions on: communication model A.1; ZKPs A.2; aggregation
protocol A.3; SSS over Z A.4; homomorphic commitments A.5; TAHE A.6; and
PVSS A.7.

5 ECDSA Based Protocol

Next, we describe the ECDSA protocol, consisting of three sub-protocols: dis-
tributed key generation, presign, and sign. Full details and proofs of correctness
appear in Appendix C.1. Intuitively, the protocol should be thought of as a
two-party protocol, which is then transformed into a 2PC-MPC protocol using
TAHE. Thus all messages sent by the client even if encrypted by the TAHE
should not reveal any information on its secrets. Let us describe the honest
two-party protocol in short:

1. Distributed Key Generation:
(a) B samples x0,B , x1,B ← Zq and sends X0,B := x0,B · G and X1,B := x1,B · G

to A.
(b) A samples xA ← Zq and sends XA = xA ·G to B.
(c) The parties then call the Random Oracle H on XA, X0,B , X1,B and other

necessary values to receive µ0
x, µ

1
x, µ

G
x , and set X = XA + µ0

x · X0,B + µ1
x ·

X1,B + µG
x ·G. Additionally, B sets xB = µ0

x · x0,B + µ1
x · x1,B + µG

x .

23

2. Presign: B samples γ, k0, k1 ← Zq, and sends R0 = k0 · G,R1 = k1 ·
G, ctγ = AHE.Enc(γ), ctγ·k0 = AHE.Enc(γk0), ctγ·k1 = AHE.Enc(γk1), and ctγ·key =
AHE.Enc(γxB) to A.

3. Sign:
(a) A samples kA, α, β ← Zq and sets m = H(msg). It then calls the random oracle

on the entire transcript, including msg and commitments on α, β, and kA, to
get randomizers µ0

k, µ
1
k, µ

G
k .

(b) A sets R = k−1
A (α(µ0

k · R0 + µ1
k · R1 + µG

k · G) + β · G) and ex-
tracts its X coordinate, denoted as r. It homomorphically computes the
ciphertexts ctα,β = AHE.Enc

(
γ
(
α(µ0

kk0 + µ1
kk1 + µG

k) + β
))

and ctA =
AHE.Enc (γ(kA(m+ r(xA + xB)))). It sends these values to B.

(c) B decrypts ctα,β , ctA to get pt4, ptA respectively and calculate s = pt−1
4 · ptA.

The scalars µ0
x, µ

1
x, µ

G
x are used to randomize the secret key and to limit A’s

influence on it. Similarly, the scalars µ0
k, µ

1
k, µ

G
k serve to restrict A’s control over

the random exponent k of the signature. In contrast, γ is employed for blinding,
ensuring that publishing pt4 and ptA does not reveal any secret information.
While this blinding seems to be redundant in the 2PC protocol, it will be needed
in the 2PC-MPC protocol to prevent a malicious A to collude with a single party
in B. The transformation between the protocols revolves around the distribution
of B and the enforcement of honest behavior from A and B.

Key Generation. In the first step, B samples x0,B and x1,B using Proto-
col A.4 (the aggregation protocol). Then, in addition to sending the public values
X0,B , X1,B , B also sends encryptions of the secret values x0,B , x1,B . These values
will be used later to prove honest behavior of B. In the second step, A samples
its share xA and sends its part of the public key XA along with a UC-extractable
zk-proof.

Presign. The ECDSA presign protocol is executed only by B. Using the aggre-
gation protocol B samples γ and generates ctγ = Enc(γ) and ctγ·key = Enc(γxB).
In the next round, it generates ctγ·k0

= Enc(γk0), ctγ·k1
= Enc(γk1) and

R0 = k0 ·G,R1 = k1 ·G, using the aggregation protocol again.

Sign. The sign protocol is applied by A itself, and focus on enforcing its hon-
est behavior. First, A samples kA, α, β and computes corresponding homomor-
phic commitments Ck, Cα, Cβ and corresponding ZK proofs πk, πα and a UC-
extractable proof πβ . To prove that kA and α are non-zero, we use a public
parameter inversion trick (see Appendix D). Then, A calls the random oracle
on the entire transcript, including all these commitments and proofs, to get the
randomizers µ0

k, µ
1
k, µ

G
k . Next, A computes ctα,β and ctA as in the two-party

protocol, along with corresponding zk-proofs of honest behavior. Finally, the
distributed party verifies the proofs and public computations, and uses FTAHE

to decrypt ctA, ctα,β and compute the signature.

6 Schnorr-Based Protocol

Next, we describe the Schnorr-based protocol. We refer to Appendix C.2 for a
detailed description of the distributed key generation, presign and sign protocols
and proofs of their correctness. We begin with the honest two-party protocol:

24

1. Distributed Key Generation: (as in Section 5 with x1,B = 0, µ1
x = 1, µG

x = 0)
2. Presign: B samples k0, k1 ← Zq and calculates KB,0 = k0 ·G and KB,1 = k1 ·G

which are sent to A.
3. Sign:

(a) A samples kA ← Zq and computes KA = kA · G. It then calls the random
oracle on the entire transcript to get the randomizer µk.

(b) A computes K = KB,0 + µk · KB,1 + KA. It then calls H(K,X,msg) and
receives the challenge e.

(c) A then computes the response zA = kA + e · xA, and sends KA, zA to B.
(d) B also calls the random oracle to obtain µk, e and computes K. Then, it

computes z = zA + k0 + µk · k1 + e · xB , and outputs (z, e).

Again, we make use of FTAHE to comply with the 2PC-MPC design. In con-
trast to the ECDSA protocol, here we need not use zero-knowledge proofs to
enforce honest behavior of A (except for key-gen). Essentially, this is due to
the nature of Schnorr signatures. Specifically, the signature part of A consists a
zero-knowledge proof of knowledge of logG KA.

Presign. The presign protocol consists of a single aggregation round in B, that
collectively generates KB,0, KB,1, ctk0

= Enc(k0), and ctk1
= Enc(k1). Only

KB,0 and KB,1 are sent to A. The values of ctk0
and ctk1

will only be used by
B in the signing protocol to produce the signature part of B.

Notably, the presign is independent of the public key X. Thus, in case the
distributed party B is a system that interacts with several clients Ai, the presign
output can be used by any of them for signing. Importantly, each presign still
can only be used once.

Sign. Party A acts exactly as in the honest two-party protocol described above.
Then, B first verifies that KA + eXA = zA · G. It then uses ctk0 and ctk1 and
ctkey to compute its encrypted share of the signature, decrypts it using FTAHE,
and computes the response part z = zA + zB .

7 Reconfiguration

As described in Section 1.2, reconfiguration allows the distributed party to be
instantiated with a permissionless decentralized PoS blockchain, wherein the
weight of each party corresponds to its voting power. At the end of each epoch,
validators may stake, withdraw stake, join or leave, affecting the distribution of
the overall voting power.

By the 2PC-MPC design, the only secret that is shared in the distributed
party B is the TAHE’s secret key sk. Therefore, reconfiguration boils down to
resharing the secret key sk, a process whose complexity is independent of the
number of clients in A.

We present two protocols for reconfiguration, that is, for resharing sk. The
first one also supports changing the threshold. This is used to adjust the voting
power distribution. Both protocols use an asynchronous PVSS scheme (see Def-
inition A.6) such as [Sch99, GHL22, CD24a]. We choose PVSS over VSS since
we already work over a broadcast channel. In our setting, the parties never re-
construct the secret and a correct decryption proof is not needed for the PVSS.

25

Instead, we ensure that the new verification keys of the TAHE scheme are con-
sistent with the new shares of sk by adding a ZK-proof tying the encryptions of
the shares to homomorphic commitments corresponding to the verification keys.
This commitment provided by PVSS.Dist is denoted by C

Notably, in permissionless blockchains the joining validators are not consid-
ered part of the validator network until the very beginning of the new epoch,
and therefore cannot actively participate in the reconfiguration protocol. In-
stead, they may only provide input to the reconfiguration protocol by locking
their stake, and may receive output by querying the blockchain state. Intu-
itively, joining validators are only exposed to the client communication channel,
and cannot directly communicate with other validators, not even via the internal
broadcast channel. To this end, in both protocols the old quorum B computes
a broadcast message which allows the parties in the new quorum B′ to locally
calculate their shares, and validate the verification keys.

Reconfiguration with a varying threshold. We observe that encryption un-
der pk is actually a way to share the corresponding plaintext, as it can be recon-
structed by applying threshold decryption. The idea is to share the TAHE secret
key sk by encrypting it under pk. We denote this encryption by ctsk = Encpk(sk).
The old quorum then creates an encryption of a random mask ctmask = Enc(r)
which is used to mask the secret key sk under the encryption. Simultaneously,
they create a sharing of the mask [r] that corresponds to the new access structure,
and the two are tied using zk-proofs. The old quorum then preforms threshold
decryption of ctsk ⊕ ctmask and broadcast sk + r. The new quorum then derives
from [r] and sk+ r a fresh sharing [sk] of the secret key. A detailed description
is presented in Section C.3 and Protocol C.6.

Nevertheless, the key space Kκ and plaintext space Ppk of the TAHE need not
be aligned, and therefore ctsk is not necessarily well-defined. In order to resolve
this issue, we decompose the secret key into limbs small enough such that they
can be encrypted and operated upon (to a certain extent) without going over
the size of the plaintext space.

Reconfiguration with a constant threshold. The idea behind this protocol
is to let a threshold of parties from the old quorum to share their shares with re-
spect to the new quorum, and then let each party in the new quorum reconstruct
its shares by applying Lagrange interpolation.

For security, it is important to rerandomize the shares, as otherwise an ad-
versary can combine shares from previous configurations to extract the secret
key. Therefore, parties in the old quorum first generate two sharings of the same
random value r, [r]old, [r]new, where one is designated for the old quorum and the
other for the new quorum. We stress that both shares are over the same overall
voting power and threshold, and so the interpolation points are the same. The
difference between the two shares is which party gets which shares.

The old quorum can then mask their key shares using the random shares
and get [sk+ r]old. The masked key shares are subsequently reshared among the
old quorum. By applying Lagrange interpolation, the old quorum can derive a
sharing over each share [sk + r]oldi . Then, they can send to each party i in the

26

new quorum their share of [sk + r]oldi . Finally, each party in the new quorum i
can then reconstruct [sk + r]oldi , and by subtracting [r]newi , it gets [sk]newi . That
is, its designated shares with respect to the new quorum and fresh randomness,
of the secret sk.

The parties use deterministic commitment schemes (which are statistically
binding and computationally hiding) to verify the consistency of the sharing.
See Section C.3 and Protocol C.7 for full details.

The biggest complication in this framework arises from the fact that, in cer-
tain TAHE schemes, the sharing of the secret key is performed over the integers.
This specifically affects schemes based on groups of unknown order, such as Pail-
lier and Class Groups. During interpolation, the interpolated value may include
a factor of ∆n. This could theoretically cause a significant increase in share size
(as we create a sharing of a share). To address this, we construct the sharing
in a way that enables division by ∆3, normalizing the share size, which thus
grows minimally. In particular, we show that the new share is the sum of the old
polynomial and the polynomial used to share 0 at the same point.

Another issue arises because the final verification key is actually received
raised to the power of ∆3. This can be resolved by adding a communication
round in which each party sends the 1

∆3 root of the verification key, and the
other parties can locally verify that it is indeed the correct root. Alternatively,
the modified verification key can be used for the TAHE scheme, and the root can
be sent during the next reconfiguration phase. This shows that the shares grow
logarithmically with the number of reconfigurations. Therefore, we can effectively
work with a constant bound on share size, e.g. by bounding the number of
reconfigurations by the security parameter κ, with no significant overhead.

8 Security

In this section, we prove the security of our protocol for ECDSA (in 8.1), Schnorr
(in 8.2) and reconfiguration (in 8.3). Omitted proofs are in Appendix D.

8.1 Analyzing Slightly Enhanced ECDSA

In this section, we provide a sketch of the security proof of the ECDSA signing
oracle 8.1 in the EC-GGM model [GS22]. Our proof follows the steps taken
in [GS22], and we refer to Appendix D.1 for a detailed proof.

As in [GS22], the proof consists of three steps. First, the signing oracle is
simulated with a lazy simulation, wherein group mapping and the random oracle
outputs are sampled “on the fly”, only upon queries of new values. Second, the
lazy simulation is reduced to a symbolic simulation, where in particular, the
private signing key and the random values of the signatures are replaced with
combinations of symbolic variables. The main impact of using a slightly enhanced
oracle is apparent in the symbolic simulation. In contrast to [GS22], we show
that by using two nonces in the presign, it is possible to keep one of the two
corresponding variables symbolic throughout the entire simulation. This is the
main difference which leads to a better security bound.

The security proof of the symbolic simulation is based on the symbolic verifi-
cation equation of the forged signature and the equality of symbolic polynomials.

27

FUNCTIONALITY 8.1
(
Slightly Enhanced ECDSA Signing Oracle: G∗SE-ECDSA

)
1. On input (keygen, sid), sample x̃0, x̃1 ← Zq and send X̃0 = x̃0 · G and X̃1 =

x̃1 · G. Upon receiving (biaskey, sid, α
(0)
x , β

(0)
x , α

(1)
x , β

(1)
x) set x0 ← α

(0)
x · x̃0 + β

(0)
x

and x1 ← α
(1)
x · x̃1 + β

(1)
x , together with X0 ← x0 · G and X1 ← x1 · G. Then set

(µ0
x, µ

1
x, µ

G
x) = H(sid, X0, X1). Finally, set x = µ0

x ·x0+µ1
x ·x1+µG

x and X = x ·G,
and record (sid, X;x).

2. On input (pres, sid, ssid), sample k̃0, k̃1 ← Zq, compute R̃0 = k̃0 ·G and R̃1 = k̃1 ·G,
record (sid, ssid, R̃0, R̃1; k̃0, k̃1) and send (sid, ssid, R̃0, R̃1).

3. On input (sign, sid, ssid,msg;β′
key, αpres,0, βpres,0, αpres,1, βpres,1) do:

(a) Retrieve (sid, X;x) and (sid, ssid, R̃0, R̃1; k̃0, k̃1). If no such ssid or sid exist,
ignore.

(b) Compute x′ ← x+ β′
key and X ′ ← x′ ·G.

(c) Compute k0 ← αpres,0 · k̃0 + βpres,0 and k1 ← αpres,1 · k̃1 + βpres,1.
(d) Set R0 = k0 ·G and R1 = k1 ·G.
(e) Set (µ0

k, µ
1
k, µ

G
k) = H(sid, ssid, X, β′

key, R0, R1,msg), and set k = µ0
k · k0 + µ1

k ·
k1 + µG

k and R = k ·G.
(f) Set r = Rx−axis and compute s = k−1 · (H(msg) + r · x′).
(g) Erase (sid, ssid, R̃0, R̃1; k̃0, k̃1) from memory and return

(sid, ssid,msg;β′
key, αpres,0, βpres,0, αpres,1, βpres,1;R, s, r).

Then, following [GS22], we then split the proof into several cases, depending on
the creation of R∗ of the forged signature. We show that the probability of each
case is negligible and deduce:

Theorem 8.1 (D.3) Let A be an adversary to the existential unforgeability
game D.6 with respect to the ECDSA oracle G∗SE-ECDSA (Functionality 8.1) in
the EC-GGM model (LazySimulation D.1), that makes at most N presignature,
signing, hash, or group queries, when Hkey,HM and all Hk are modeled as in-

dependent Random Oracles. Then Adv(A,ExpG
∗
SE-ECDSA

EU , lazy-sim) ≤ O(N
2

q).

We note that our proof also handles Additive Key Derivation, see Ap-
pendix D.1 for details.

8.2 Analyzing Slightly Enhanced Schnorr

In this section, we provide a sketch of the proof of the security of the Schnorr
signing oracle 8.2. Specifically, we reduce signature forgery into breaking the
Algebraic One More Discrete Log problem (AOMDL) D.7. In AOMDL security
game, the challenger generates nDL + 1 group elements, then A asks for nDL

linear combinations of their discrete log values, and then must output all nDL+1
discrete logs to win. The detailed proof is in Appendix D.2.

Theorem 8.2 If there is a PPT algorithm Ans,nkg,nr

SE−Sch−Forger that satisfies

Exp
G∗
SE-Sch

EU (A, 1κ, ns, nkg) with probability at least ϵ, and uses at most nr calls
to the random oracle, then there is a PPT algorithm A′2ns+nkg

that satisfies

Exp
2ns+nkg

AOMDL (A, 1κ, (G, G, q)) with probability at least ϵ
(

ϵ
nr
− 1
|H|

)(
1− ns

|H|

)
with

expected running time 2TIME(Ans,nkg,nr

SE−Sch−Forger) +O(nr + ns + nkg).

28

FUNCTIONALITY 8.2
(
Slightly Enhanced Schnorr Signing Oracle: G∗SE-Sch

)
1. On input (keygen, sid), set x← Zq and X = x ·G, record (sid, X;x) and send X.
2. On input (pres, ssid), sample k0, k1 ← Zq, compute K0 = k0 · G and K1 = k1 · G.

Record (ssid,K0,K1; k0, k1) and send (ssid,K0,K1).
3. On input (sign, sid, ssid,msg;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1) do:

(a) Retrieve (sid, X;x) and (ssid,K0,K1; k0, k1). If no such ssid or sid exist, ignore.
(b) Compute x′ ← αkey ·x+βkey, k

′
0 ← αpres,0 ·k0+βpres,0, and k′

1 ← αpres,1 ·k1+βpres,1.
(c) Set X ′ = x′ ·G, K′

0 = k′
0 ·G and K′

1 = k′
1 ·G.

(d) Set µ = H(X ′,K′
0,K

′
1,msg;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1) and set e =

H(X ′,K′
0 + µ ·K′

1,msg).
(e) compute z = k′

0 + µk′
1 + ex′ mod q.

(f) Erase (ssid,K0,K1; k0, k1) from memory and return
(sid, ssid,msg;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1,K0 + µ ·K1, z).

Essentially, A′2ns+nkg
will simulate G∗SE-Sch when interacting with

Ans,nkg,nr

SE−Sch−Forger, and will use discrete log queries to the AOMDL challenger
in order to compute the signatures.
A′ receives nDL + 1 = 2ns + nkg group elements. The first 2ns are the nonce

of the pre-sign queries and the last nkg are the public keys. Upon receiving a
signing request from A, A′ can compute the randomizer µk and the challenge
e. The signature z is then the linear combination (1, µk, e) of the discrete logs
of the corresponding presigns and public key. Therefore, A′ can compute the
signature with a proper query to the AOMDL challenger.

Next, A should output a forged signature (if not, A′ aborts), which for
Schnorr gives a linear equation over the discrete logs of the public key and
the nonce K∗ introduced by A. Since K∗ may not be part of the AOMDL chal-
lenges, the signature is a linear equation with the new variable k∗. Therefore,
another such equation is obtained by rewinding A to when e∗ was returned
from the random oracle, and returning instead e∗∗ ̸= e∗ sampled at random.
By the Generalized Forking Lemma [BN06, Lemma 1], we show that with non-
negligible probability, A returns a second forgery using the same public key and
the same ephemeral key K∗. Using the forgeries, A′ extracts the discrete log of
the corresponding public key, and wins the AOMDL game.

8.3 Protocol Simulations.

Next, we describe the main security theorems satisfied by our protocols.

Signing Protocols. Both the ECDSA and Schnorr based protocols UC realize
their corresponding threshold signing functionality (Functionality 4.1 with Or-
acle 8.1 and Oracle 8.2) respectively in the reliable broadcast model and FDAHE

(Functionality A.5)-hybrid model.

Theorem 8.3 The protocols Πkeygen, ΠECDSA
presign , and ΠECDSA

sign UC realize

F
G∗
SE-ECDSA,(

[n]
t+1)

tsig in the reliable broadcast model and FDAHE-hybrid model..

29

Theorem 8.4 The protocols Πkeygen, ΠSchnorr
presign , and ΠSchnorr

sign UC-realize

F
G∗
SE-Sch,(

[n]
t+1)

tsig (Functionality 4.1 with Oracle 8.2) in the broadcast model and
FDAHE-hybrid model.

We refer the reader to Appendix D.1 and D.2 for the proofs.

Reconfiguration Simulation. Both reconfiguration protocols may be com-
bined with a wide class of TAHEs to realize a dynamical access structure TAHE
(Functionality A.5) in our reliable broadcast model. There are two types of dy-
namical access structures that we address. One with a constant threshold (Pro-
tocol C.7) that our protocol UC realizes, and one with a dynamic threshold
(Protocol C.6) that our protocol stand-alone realizes.

Theorem 8.5 Let TAHE be a simulatable threshold encryption scheme, i.e.
there exists simulator Skeygen and STDec simulating key generation and threshold
decryption commands of FTAHE. Then TAHE along with either of the protocols
Πvar-th

ReConfigure or Πcons-th
ReConfigure realizes FDAHE in the reliable broadcast model.

We refer the reader to Appendix D.3 for the proof. For discussion about instan-
tiating FDAHE with specific TAHE schemes we refer the reader to Appendix F.

9 Performance

We implemented our ECDSA protocol in Rust. The implementation and
benchmark code will be released as open source. We instantiated our TAHE
with threshold Paillier based on [FMM+23] and with Class Groups based
on [BCD+24], all times are reported for t = 2

3n. We note that our Class-Groups
based implementation is about about 5x slower compared to [BCIL23] and it
similarly uses vartime operations (moving to constant time should mostly effect
the running time of the client). All experiments are conducted over a MacBook
Pro Apple M1 Max with a 3.22GHz CPU on a single thread. We report the raw
tables for our experiments in Appendix E.

30

Fig. 1: Run-time of nodes and client vs number of parties in B. As expected, the client
run-time is independent of network size. The total network size determines the cost of
the the DKG and the pre-sign protocols, while the total share power determines the
cost of the sign protocol. Thus, we are interested in the sign protocol performance for
greater values of n. DKG is significantly faster as it does not involve encryptions. The
node run-time in DKG and presign is linear with network size due to the verification
of zk proofs from each party. The sign complexity is super-linear as the decryption
share size also increases with the number of parties. However, with the amortized
recombination optimization (Section F.3), the amortized cost is divided by n/2.

31

References

ACK+20. Erdinc Akyildirim, Shaen Corbet, Paraskevi Katsiampa, Neil Kellard, and
Ahmet Sensoy. The development of bitcoin futures: Exploring the in-
teractions between cryptocurrency derivatives. Finance Research Letters,
34:101234, 2020.

Ali20. Muneeb Ali. Stacks 2.0 apps and smart contracts for bitcoin. Recuperado
el, 8, 2020.

ANO+22. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlo-
movits. Low-bandwidth threshold ECDSA via pseudorandom correlation
generators. In SP, pages 2554–2572. IEEE, 2022.

AYSS09. Tuncer Can Aysal, Mehmet Ercan Yildiz, Anand D Sarwate, and Anna
Scaglione. Broadcast gossip algorithms for consensus. IEEE Transactions
on Signal processing, 57(7):2748–2761, 2009.

B+13. Vitalik Buterin et al. Ethereum white paper. GitHub repository, 1:22–23,
2013.

BA23. J. Kiguru B. Akolkar. Cardano: New upgrade to support ecdsa and schnorr
cryptographic signatures to make it easier for developers to build cross-
chain apps. Crypto NewsFlash https://www.crypto-news-flash.com, 2023.

BAJ23. P. BAJPAI. Cryptocurrency futures: Definition
and how they work on exchanges. Investopedia
https://www.investopedia.com/articles/investing/012215/how-invest-
bitcoin-exchange-futures.asp, 2023.

Bal24. Kannan Balasubramanian. Security of the secp256k1 elliptic curve used
in the bitcoin blockchain. Indian Journal of Cryptography and Network
Security (IJCNS), 4(1):1–5, 2024.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE symposium on security and privacy (SP),
pages 315–334. IEEE, 2018.

BBHP22. Michael Backes, Pascal Berrang, Lucjan Hanzlik, and Ivan Pryvalov. A
framework for constructing single secret leader election from mpc. In
European Symposium on Research in Computer Security, pages 672–691.
Springer, 2022.

BCD+23a. Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-Kogias,
and Alberto Sonnino. Mysticeti: Low-latency dag consensus with fast com-
mit path. arXiv preprint arXiv:2310.14821, 2023.

BCD+23b. Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis,
Lefteris Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd
Nowacki, Alberto Sonnino, et al. Sui lutris: A blockchain combining broad-
cast and consensus. arXiv preprint arXiv:2310.18042, 2023.

BCD+24. Lennart Braun, Guilhem Castagnos, Ivan Damg̊ard, Fabien Laguillaumie,
Kelsey Melissaris, Claudio Orlandi, and Ida Tucker. An improved thresh-
old homomorphic cryptosystem based on class groups. Cryptology ePrint
Archive, 2024.

BCIL23. Cyril Bouvier, Guilhem Castagnos, Laurent Imbert, and Fabien Laguillau-
mie. I want to ride my bicycl: Bicycl implements cryptography in class
groups. Journal of Cryptology, 36(3):17, 2023.

BD23. LTAN Brandão and Michael Davidson. Notes on threshold eddsa/schnorr
signatures, 2023.

32

BDL+12. Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of cryptographic engi-
neering, 2(2):77–89, 2012.

BDO23. Lennart Braun, Ivan Damg̊ard, and Claudio Orlandi. Secure multiparty
computation from threshold encryption based on class groups. In Annual
International Cryptology Conference, pages 613–645. Springer, 2023.

BG10. Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient
public-key encryption under subgroup indistinguishability: (or: Quadratic
residuosity strikes back). In Advances in Cryptology–CRYPTO 2010: 30th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19,
2010. Proceedings 30, pages 1–20. Springer, 2010.

BGG17. Dan Boneh, Rosario Gennaro, and Steven Goldfeder. Using level-1 homo-
morphic encryption to improve threshold DSA signatures for bitcoin wallet
security. In LATINCRYPT, volume 11368 of Lecture Notes in Computer
Science, pages 352–377. Springer, 2017.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter MR Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Advances in Cryptology–
CRYPTO 2018: 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I 38, pages
565–596. Springer, 2018.

BLL+22. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and
Mariana Raykova. On the (in)security of ros. Journal of Cryptology,
35(4):25, 2022.

BLT+24. Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi
Zhu. Twinkle: Threshold signatures from ddh with full adaptive security.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 429–459. Springer, 2024.

BMP22. Constantin Blokh, Nikolaos Makriyannis, and Udi Peled. Efficient asym-
metric threshold ecdsa for mpc-based cold storage. Cryptology ePrint
Archive, 2022.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Proceedings of the 13th ACM con-
ference on Computer and communications security, pages 390–399, 2006.

Bol02. Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme. In Inter-
national Workshop on Public Key Cryptography, pages 31–46. Springer,
2002.

Bra87. Gabriel Bracha. Asynchronous byzantine agreement protocols. Informa-
tion and Computation, 75(2):130–143, 1987.

BT83. Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceed-
ings of the second annual ACM symposium on Principles of distributed
computing, pages 12–26, 1983.

BT85. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM), 32(4):824–840, 1985.

BTZ22. Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-
interactive threshold signatures: Bls and frost. Cryptology ePrint Archive,
2022.

CBC22. Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias.
Sok: Blockchain light clients. In International Conference on Financial
Cryptography and Data Security, pages 615–641. Springer, 2022.

33

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In
PKC, volume 12111 of Lecture Notes in Computer Science, pages 266–296.
Springer, 2020.

CCL+23. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold ec-dsa revisited:
Online/offline extensions, identifiable aborts proactive and adaptive secu-
rity. Theoretical Computer Science, 939:78–104, 2023.

CD24a. Ignacio Cascudo and Bernardo David. Publicly verifiable secret sharing
over class groups and applications to dkg and yoso. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 216–248. Springer, 2024.

CD24b. Cassano Chris and Sneider David. Lit protocol whitepaper. Github Repos-
itory https://github.com/LIT-Protocol/whitepaper, 2024.

CDKS24. Ran Cohen, Jack Doerner, Yashvanth Kondi, and Abhi Shelat. Secure
multiparty computation with identifiable abort via vindicating release. In
Annual International Cryptology Conference, pages 36–73. Springer, 2024.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper B Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In Advances in Cryp-
tology—EUROCRYPT 2001: International Conference on the Theory and
Application of Cryptographic Techniques Innsbruck, Austria, May 6–10,
2001 Proceedings 20, pages 280–300. Springer, 2001.

CDSG+24. Annalisa Cimatti, Francesco De Sclavis, Giuseppe Galano, Sara Gi-
ammusso, Michela Iezzi, Antonio Muci, Matteo Nardelli, and Marco
Pedicini. Dynamic-frost: Schnorr threshold signatures with a flexible com-
mittee. Cryptology ePrint Archive, 2024.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. UC non-interactive, proactive, threshold ECDSA with
identifiable aborts. In CCS, pages 1769–1787, 2020.

CGG+21. Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and
Gabriel Kaptchuk. Fluid mpc: secure multiparty computation with dy-
namic participants. In Advances in Cryptology–CRYPTO 2021: 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16–20, 2021, Proceedings, Part II 41, pages 94–123. Springer, 2021.

CGHN97. Ran Canetti, Rosario Gennaro, Amir Herzberg, and Dalit Naor. Proac-
tive security: Long-term protection against break-ins. RSA Laboratories’
CryptoBytes, 3(1):1–8, 1997.

CGR11. Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to
Reliable and Secure Distributed Programming. Springer Publishing Com-
pany, Incorporated, 2nd edition, 2011.

CGRS23. Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical
schnorr threshold signatures without the algebraic group model. In Annual
International Cryptology Conference, pages 743–773. Springer, 2023.

Che06. Jung Hee Cheon. Security analysis of the strong diffie-hellman problem.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 1–11. Springer, 2006.

CHI+21. Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Mic-
ciancio, Tarik Riviere, Abhi Shelat, Muthu Venkitasubramaniam, and Rui-
han Wang. Diogenes: lightweight scalable rsa modulus generation with a
dishonest majority. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 590–607. IEEE, 2021.

34

https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2021/060.pdf

CKM21. Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr
assuming schnorr: Security of multi-and threshold signatures. Cryptology
ePrint Archive, 2021.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Advances in Cryptology—EUROCRYPT 2001: International Confer-
ence on the Theory and Application of Cryptographic Techniques Inns-
bruck, Austria, May 6–10, 2001 Proceedings 20, pages 93–118. Springer,
2001.

CL15. Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic en-
cryption from. In Cryptographers’ Track at the RSA Conference, pages
487–505. Springer, 2015.

CL24. Yi-Hsiu Chen and Yehuda Lindell. Optimizing and implementing fischlin’s
transform for uc-secure zero-knowledge. Cryptology ePrint Archive, 2024.

CLT18. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully
secure unrestricted inner product functional encryption modulo p. In In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, pages 733–764. Springer, 2018.

CMP20. Ran Canetti, Nikolaos Makriyannis, and Udi Peled. UC non-interactive,
proactive, threshold ECDSA. IACR Cryptol. ePrint Arch., page 492, 2020.

CNS23. Anamaria Costache, Lea Nürnberger, and Tjerand Silde. Computational
fhe circuit privacy for free. Cryptology ePrint Archive, 2023.

Cop21. Copper. Wallets as a service. Whitepaper
https://copper.co/en/products/wallets-as-a-service, 2021.

Cry13. Nicolas van S Cryptonote. v2. 0. HYPERLINK
https://cryptonote.org/whitepaper.pdf, 2013.

Dev23. Bitcoin Developer. Developer guides – locktime and sequence number. Bit-
coin Developer https://developer.bitcoin.org/devguide/transactions.html,
2023.

DJN+20. Ivan Damg̊ard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Ille-
borg Pagter, and Michael Bæksvang Østerg̊ard. Fast threshold ECDSA
with honest majority. In SCN, volume 12238 of LNCS, pages 382–400.
Springer, 2020.

DKKSS22. George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexan-
der Spiegelman. Narwhal and tusk: a dag-based mempool and efficient
bft consensus. In Proceedings of the Seventeenth European Conference on
Computer Systems, pages 34–50, 2022.

DKLS19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In SP 2019,
pages 1051–1066. IEEE, 2019.

DKLS23. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA in three rounds. IACR Cryptol. ePrint Arch., page 765, 2023.

DLS88. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, apr 1988.

DOK+20. Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and
Haya Shulman. Securing DNSSEC keys via threshold ECDSA from generic
MPC. In ESORICS, volume 12309, pages 654–673. Springer, 2020.

DPTX24. Sourav Das, Benny Pinkas, Alin Tomescu, and Zhuolun Xiang. Distributed
randomness using weighted vrfs. Cryptology ePrint Archive, 2024.

35

DT06. Ivan Damg̊ard and Rune Thorbek. Linear integer secret sharing and dis-
tributed exponentiation. In International Workshop on Public Key Cryp-
tography, pages 75–90. Springer, 2006.

EKR20. Sinan Ergezer, Holger Kinkelin, and Filip Rezabek. A survey on threshold
signature schemes. Network, 49, 2020.

Eth24. Etherscan. Ethereum node tracker. Etherscan
https://etherscan.io/nodetracker, 2024.

Fir23. Fireblocks. A guide to digital asset wallets and service providers.
Whitepaper https://www.fireblocks.com/a-guide-to-digital-asset-wallets-
and-service-providers/, 2023.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowl-
edge with online extractors. In Annual International Cryptology Confer-
ence, pages 152–168. Springer, 2005.

FLP85. Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374–382, 1985.

FMM+23. Offir Friedman, Avichai Marmor, Dolev Mutzari, Yehonatan C Scaly, Yu-
val Spiizer, and Avishay Yanai. Tiresias: Large scale, maliciously secure
threshold paillier. Cryptology ePrint Archive, 2023.

FMM+24. Offir Friedman, Avichai Marmor, Dolev Mutzari, Omer Sadika,
Yehonatan C Scaly, Yuval Spiizer, and Avishay Yanai. 2pc-mpc: Emulating
two party ecdsa in large-scale mpc. Cryptology ePrint Archive, 2024.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Conference on the theory and
application of cryptographic techniques, pages 186–194. Springer, 1986.

GG19. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. IACR Cryptol. ePrint Arch., page 114, 2019.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-
optimal DSA/ECDSA signatures and an application to bitcoin wallet se-
curity. In International Conference on Applied Cryptography and Network
Security, pages 156–174. Springer, 2016.

GHL22. Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties. In
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 458–487. Springer, 2022.

GKSS20. Adam Gagol, Jedrzej Kula, Damian Straszak, and Michal Swietek. Thresh-
old ECDSA for decentralized asset custody. IACR Cryptol. ePrint Arch.,
page 498, 2020.

Gra22. Evan Gray. Governor. GitHub Repository https://github.com/wormhole-
foundation/wormhole/blob/main/whitepapers/0007 governor.md, 2022.

GS22. Jens Groth and Victor Shoup. On the security of ecdsa with additive
key derivation and presignatures. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 365–396.
Springer, 2022.

GZT+19. Zhengfeng Gao, Jilai Zheng, Shuyang Tang, Yu Long, Zhiqiang Liu, Zhen
Liu, and Dawu Gu. State-of-the-art survey of consensus mechanisms on
dag-based distributed ledger. Journal of Software, 31(4):1124–1142, 2019.

Har23. Simon Harman. Chainflip protocol whitepaper. Whitepaper
https://chainflip.io/whitepaper.pdf, 2023.

Hos17. Charles Hoskinson. Why we are building cardano. IOHK (accessed 18
December 2017) https://whycardano.com, 2017.

36

https://eprint.iacr.org/2016/013.pdf
https://eprint.iacr.org/2016/013.pdf
https://eprint.iacr.org/2016/013.pdf

HZL+21. Bin Hu, Zongyang Zhang, Jianwei Liu, Yizhong Liu, Jiayuan Yin, Rongx-
ing Lu, and Xiaodong Lin. A comprehensive survey on smart contract
construction and execution: paradigms, tools, and systems. Patterns, 2(2),
2021.

IA21. Polosukhin Illia and Skidanov Alexander. The near white paper. Whitepa-
per https://pages.near.org/papers/the-official-near-white-paper/, 2021.

JMV01. Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ecdsa). International journal of information
security, 1:36–63, 2001.

KAS19. Nida Khan, Tabrez Ahmad, and Radu State. Feasibility of stellar as a
blockchain-based micropayment system. In International Conference on
Smart Blockchain, pages 53–65. Springer, 2019.

KG21. Chelsea Komlo and Ian Goldberg. Frost: flexible round-optimized schnorr
threshold signatures. In Selected Areas in Cryptography: 27th International
Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020,
Revised Selected Papers 27, pages 34–65. Springer, 2021.

Klu22. Kamil Kluczniak. Circuit privacy for fhew/tfhe-style fully homomorphic
encryption in practice. Cryptology ePrint Archive, 2022.

KZe19a. Team KZen. Bitcoin wallet powered by two-party ecdsa - ex-
tended abstract. Whitepaper https://github.com/ZenGo-X/gotham-
city/blob/master/white-paper/, 2019.

KZe19b. Team KZen. Radical new infrastructure for digital asset ownership
and blockchain interoperability. Whitepaper https://www.qredo.com/qredo-
white-paper.pdf, 2019.

Lab24. Torus Labs. Web3 auth. Github Repository https://github.com/web3auth,
2024.

LeM17. Colin LeMahieu. Raiblocks: A feeless distributed cryptocurrency net-
work. URL https://raiblocks. net/media/RaiBlocks Whitepaper English.
pdf, 2017.

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In Annual Inter-
national Cryptology Conference, pages 613–644. Springer, 2017.

Lin22. Yehuda Lindell. Simple three-round multiparty schnorr signing with full
simulatability. Cryptology eprint Archive, 2022.

Lin23. Yehuda Lindell. Digital asset management with mpc. Whitepaper
https://www.coinbase.com/blog/digital-asset-management-with-mpc-
whitepaper, 2023.

LMDG23. Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. Sok:
Not quite water under the bridge: Review of cross-chain bridge hacks. In
2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pages 1–14. IEEE, 2023.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody.
In CCS, pages 1837–1854. ACM, 2018.

LP18. Matt Luongo and Corbin Pon. The keep network: A privacy layer for
public blockchains. Keep Netw., Rep, 2018.

LRP20. Stefanos Leonardos, Daniël Reijsbergen, and Georgios Piliouras. Weighted
voting on the blockchain: Improving consensus in proof of stake protocols.
International Journal of Network Management, 30(5):e2093, 2020.

LRU22. Christophe Levrat, Matthieu Rambaud, and Antoine Urban. Breaking the
t < n/3 consensus bound: Asynchronous dynamic proactive secret sharing
under honest majority. Cryptology ePrint Archive, 2022.

37

https://eprint.iacr.org/2017/552.pdf

MBH23. Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. An effi-
cient threshold access-structure for rlwe-based multiparty homomorphic
encryption. Journal of Cryptology, 36(2):10, 2023.

MPJ18. Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. An
overview of smart contract and use cases in blockchain technology. In 2018
9th international conference on computing, communication and networking
technologies (ICCCNT), pages 1–4. IEEE, 2018.

Nak08. Satoshi Nakamoto. Bitcoin whitepaper. URL:
https://bitcoin.org/bitcoin.pdf-(:17.07.2019), 9:15, 2008.

NRS21. Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: Simple two-round
schnorr multi-signatures. In Annual International Cryptology Conference,
pages 189–221. Springer, 2021.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Advances in Cryptology-EUROCRYPT 99: International
Conference on the Theory and Application of Cryptographic Techniques
Prague, Czech Republic, May 2-6, 1999 Proceedings 18, pages 223–238.
Springer, 1999.

Ped91. Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference,
pages 129–140. Springer, 1991.

PMIH18. Huma Pervez, Muhammad Muneeb, Muhammad Usama Irfan, and Irfan Ul
Haq. A comparative analysis of dag-based blockchain architectures. In
2018 12th International conference on open source systems and technologies
(ICOSST), pages 27–34. IEEE, 2018.

Rab98. Tal Rabin. A simplified approach to threshold and proactive rsa. In Ad-
vances in Cryptology—CRYPTO’98: 18th Annual International Cryptology
Conference Santa Barbara, California, USA August 23–27, 1998 Proceed-
ings 18, pages 89–104. Springer, 1998.

RRJ+22. Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and
Dominique Schröder. Roast: robust asynchronous schnorr threshold signa-
tures. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 2551–2564, 2022.

SBK24. István András Seres, Péter Burcsi, and Péter Kutas. How (not) to hash
into class groups of imaginary quadratic fields? Cryptology ePrint Archive,
2024.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Advances in Cryptology—CRYPTO’89 Proceedings 9, pages 239–252.
Springer, 1990.

Sch99. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic voting. In Annual International Cryptology
Conference, pages 148–164. Springer, 1999.

SG20. Helder Sebastião and Pedro Godinho. Bitcoin futures: An effective tool for
hedging cryptocurrencies. Finance Research Letters, 33:101230, 2020.

SGSKK22. Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris
Kokoris-Kogias. Bullshark: Dag bft protocols made practical. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2705–2718, 2022.

Sha79a. Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

Sha79b. Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

38

https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf
https://dl.acm.org/doi/pdf/10.1145/359168.359176

Sho24. Victor Shoup. A theoretical take on a practical consensus protocol. Cryp-
tology ePrint Archive, 2024.

SS24. Victor Shoup and Nigel P Smart. Lightweight asynchronous verifiable
secret sharing with optimal resilience. Journal of Cryptology, 37(3):27,
2024.

Sta96. Markus Stadler. Publicly verifiable secret sharing. In International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages
190–199. Springer, 1996.

Sta20. V Stafford. Zero trust architecture. NIST special publication, 800:207,
2020.

T+22. DFINITY Team et al. The internet computer for geeks. Cryptology ePrint
Archive, 2022.

Tho20. Thorchain. Thorchain: A decentralised liquidity network. Whitepaper
https://github.com/thorchain/Resources/blob/master/Whitepapers/THORChain-
Whitepaper-May2020.pdf, 2020.

TLL+21. Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A
survey of smart contract formal specification and verification. ACM Com-
puting Surveys (CSUR), 54(7):1–38, 2021.

WGD22. Francesc Wilhelmi, Lorenza Giupponi, and Paolo Dini. Analysis and eval-
uation of synchronous and asynchronous flchain. Computer Networks,
218:109390, 2022.

Wil22. MacLane Wilkison. What is threshold network? Whitepaper
https://docs.threshold.network/, 2022.

WMYC23. Harry W. H. Wong, Jack P. K. Ma, Hoover H. F. Yin, and Sherman S. M.
Chow. Real threshold ECDSA. In NDSS. The Internet Society, 2023.

Wor22. Wormhole. Wormhole incident report — 02/02/22. Wormhole-
crypto Medium https://wormholecrypto.medium.com/wormhole-incident-
report-02-02-22-ad9b8f21eec6, 2022.

Wui13. P. Wuille. Hierarchical deterministic wallets. GitHub Repository
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki, 2013.

WYCX23. Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. Sok: Dag-based
blockchain systems. ACM Computing Surveys, 55(12):1–38, 2023.

WYW+18. Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li, Rui Qin, and Fei-Yue
Wang. An overview of smart contract: architecture, applications, and fu-
ture trends. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages
108–113. IEEE, 2018.

WYY+22. Huan Yu Wu, Xin Yang, Chentao Yue, Hye-Young Paik, and Salil S Kan-
here. Chain or dag? underlying data structures, architectures, topologies
and consensus in distributed ledger technology: A review, taxonomy and
research issues. Journal of Systems Architecture, 131:102720, 2022.

XAX+22. Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong
Cui. Efficient online-friendly two-party ECDSA signature. IACR Cryp-
tol. ePrint Arch., page 318, 2022.

Yak18. Anatoly Yakovenko. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper, 2018.

Yan23. J. Wiley Yandle. Weighted schnorr threshold signatures. GitHub Reposi-
tory https://trust-machines.github.io/wsts/wsts.pdf, 2023.

YXXM23. Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. Long live the
honey badger: Robust asynchronous {DPSS} and its applications. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 5413–5430,
2023.

39

ZYP23. Guy Zyskind, Avishay Yanai, and Alex ’Sandy’ Pentland. Unstoppable
wallets: Chain-assisted threshold ECDSA and its applications. IACR Cryp-
tol. ePrint Arch., page 832, 2023.

A Extended Preliminaries

A.1 Model

Communication Functionalities Following are the detailed functionalities
Fbroadcast, Fglobal-broadcast, and FACS from the communication model (Section 4).

FUNCTIONALITY A.1
(

Internal Broadcast Functionality: Fbroadcast from
[SS24]

)
The functionality interacts a set of parties B = {Bi}i∈[n] and an adversary A.

– Upon receiving (broadcast, sid, i,msg) send (broadcast, sid, i,msg) to A and record.
– Upon receiving (req–output, sid, i, j) from A check if (broadcast, sid, i,msg) was recorded, if so

send (broadcast, sid, i,msg) to Bj .

FUNCTIONALITY A.2
(
Global Broadcast Functionality: FΓB

global-broadcast

)
The functionality interacts two sets of parties A = {ApidA

}, B = {Bi}i∈[n] and an adversary A.

– Upon receiving (global-broadcast, sid, i,msgi) send (global-broadcast, sid, i,msgi) to A and record.
– Upon receiving (req–output, sid) from A, if there exist a message msg and a subset of parties

SB ∈ ΓB , such that for each i ∈ SB there is a record (global-broadcast, sid, i,msg) to all parties
in A.

FUNCTIONALITY A.3
(
Asynchronous Common Subset Functionality: FΓB

ACS from
[Sho24]

)
The functionality interacts with a set of parties B = {Bi}i∈[n] and an adversary A.

– Upon receiving (validate, sid, i, j) from Bi record and send (validate, sid, i, j) to A.
– Upon receiving (req–output, sid, i, SB) from A:

• If SB ̸∈ ΓB , ignore the message.
• Check that (validate, sid, i, j) is recorded for each Bj ∈ SB . Otherwise, ignore the message.
• Record (auth–subset, sid, SB) and reject any future message for sid with a different subset.
• Send (auth–subset, sid, SB) to Bi.

A.2 Security Definitions for ZKPs

Definition A.1. We say that a protocol between two PPT machines P and V
is a Zero-Knowledge Proof for relation R if it is Complete, Sound and Zero-
Knowledge as defined below. We say that the protocol is a Zer-Knowledge Proof
of Knowledge if it is also Knowledge sound.

40

Definition A.2. The protocol will be called complete if for (x,w) ∈ R[pp] if
V(pp, r) ↔ P(pp, x, w) outputs 1 with overwhelming probability with respect to
the random tape r of V .

Definition A.3. If (x,w) /∈ R[pp] then for every PPT algorithm P∗ V(pp, r)↔
P∗(pp, x, w) returns 0 with overwhelming probability with respect to the random
tape r of V

As all of our ZK protocols will be non-interactive it is enough to discuss Honest
Verifier Zero-Knowlege (HVZK)

Definition A.4. A protocol will be called HVZK if there exists a PPT simula-
tor S such that ViewV(S(pp, x)↔ V(pp, r)) is computationally indistinguishable
from ViewV(V(pp, r)↔ P(pp, x, w)) for (x,w) ∈ R[pp].

Definition A.5. A protocol will be called Knowledge-Sound if there exists a
PPT simulator S such that S(pp, x) with black box access to a PPT prover P∗
which outputs correct proofs with non-negligble probability outputs (w such that
(x,w) ∈ R[pp]. A protocol will be called UC Knowledge-Sound or UC Extractable
if the above simulator does not rewind P∗.

A.3 Statement Aggregation Protocol

We present an aggregation protocol for brevity, which will be referred to later
in our protocols. This is a simple protocol consists of sending a statement with
a proof, agreeing on a subset in the access structure that has sent valid proofs
and calculating the aggregated statement. In the case of voting power there is
no need to send individual statements, each party can create, send and prove a
single statement and agreeing on a subset with enough voting power.

PROTOCOL A.4
(
Aggregation Protocol: ΠΓB ,L

agg

)
The protocol interacts with a set of parties B = {Bi}i∈[n]. It is parameterized by an access structure

ΓB ⊂ 2B along with a Maurer language L. Each party Bi holds a tuple (Y⃗i; w⃗i) ∈ L.

– Each Bi does as follows:
1. Run a ZK protocol ΠL

zk(Y⃗i; w⃗i) generating a proof πi. Send (broadcast, sid, i, (proof, Y⃗i, πi))
to Fbroadcast.

2. Upon receiving (broadcast, sid, (proof, Y⃗j , πj)) verify the proof πj , if the proof verifies send
(validate, sid, i, j) to FACS else consider Bj as malicious.

3. Receive (auth–subset, sid, SB) from FACS output
∑

j∈SB
Y⃗j .

A.4 Security Definitions For Shamir Secret Sharing Over The
Integers

The security definition below is taken from [DT06] (Definition 4).

Definition A.6. Privacy of a Secret Sharing Scheme: A Linear Secret
Sharing scheme is private, if for any two secrets s, s′, independent random coins
r, r′ and any set U with at most t shareholders, the distribution of {si(s, r, k)}i∈U
and {si(s′, r, k)}i∈U are statistically indistinguishable.

41

Definition A.7. Correctness of a Secret Sharing Scheme: A Linear Se-
cret Sharing scheme is correct, if the secret is reconsructed from shares {si}i∈S
where S ∈

(
[n]
t+1

)
, by taking an integer linear combination of the shares, with

coefficients that depend only on the index set S.

Importantly note that in the correctness definition for Integers Secret Sharing
the secrets are ∆2

ns instead of s.

A.5 Homomorphic Commitment Schemes

Definition A.8. A non-interactive commitment scheme consists of a pair of
PPT algorithms (setup,Com). The setup algoirthm pp← setup outputs the spaces
Mpp, Rpp and Cpp along with any other public values needed for the scheme.
The commitment algorithm Compp defines a function Mpp × Rpp → Cpp. For
a message m ∈ Mpp, the algirthm draws ρ, and computes commitment C =
Compp(m; ρ). Whenever the public parameters are clear from the contexst we
write Com instead of Compp. Commitment schemes may also be deterministic in
which case one can think of ρ as a trivial group and write Compp(m).

A commitment scheme has two properties, hiding and binding, in the case of
Pedersen Commitment [Ped91] they are perfectly hiding and computationally
binding which is defined as follows:

– Perfectly Hiding. For every (unbounded) adversary A, every pp ← setup(·)
and every m0,m1 ∈Mpp

Pr[A(m0,m1,Com(mb, ρ) = b] =
1

2

where the probability is under a uniform choice of b ∈ {0, 1} andMpp ← Rpp.
– Computationally Binding. For every PPT adversary A and every pp ←

Setup(·),

Pr[(m0,m1, ρ0, ρ1)← A(pp) : m0 ̸= m1∧Com(m0, ρ0) = Com(m0, ρ0)] ≤ µ(κ)

Where the probability is under the random coins of A.

A.6 Formal Definitions For AHE and TAHE

AHE: The definition for AHE below is inspired from [CHI+21]

Definition A.1 (AHE) An additively homomorphic encryption scheme is as-
sociated with an ensemble {Kκ}κ and consists of four polynomial time algo-
rithms: AHE = (Gen,Enc,Dec,Add) specified as follows:

– Gen(1κ, aux) → (pk; sk). A probabilistic algorithm that is given a security
parameter 1κ and possibly some auxiliary information aux and samples a
key-pair (pk, sk) from Kκ. In the following, we assume that the resulting pk

42

contains the description of the security parameter 1κ, the auxiliary infor-
mation aux, as well as the plaintext, randomness and ciphertext spaces Ppk,
Rpk and Cpk, respectively, where Ppk is a Z-module.
In addition, for the purpose in this paper we require an AHE scheme to be
associated with a language LGenAHE[κ] = {pk; aux | (pk; sk) = Gen(1κ, aux)}
(see Eq. 13) that expresses the fact that pk was generated correctly.

– Enc(pk, pt; ηenc) → ct. A deterministic algorithm that on input a public key
pk, a plaintext pt ∈ Ppk and randomness ηenc ∈ Rpk, outputs a ciphertext
ct ∈ Cpk. We define Enc(pk, pt) as a probabilistic algorithm that first uni-
formly samples ηenc ∈ Rpk and then outputs ct = Enc(pk, pt; ηenc) ∈ Cpk.

– Dec(sk, ct)→ pt. A deterministic algorithm that on input a secret key sk and
a ciphertext ct ∈ Cpk outputs a plaintext pt ∈ Ppk.

– Add(pk, ct1, ct2) → ct3. A deterministic algorithm that on input a public
key pk and two ciphertexts ct1, ct2 ∈ Cpk outputs a ciphertext ct3 ∈ Cpk
such that if ct1 = Enc(pk,m1; η1) and ct2 = Enc(pk,m2; η2) then ct3 =
Enc(pk,m1+m1; η1+η2), where m1+m2 and η1+η2 are over Ppk and Rpk,
respectively. Imposing correctness will ensure that Add is a homomorphic
addition. Note that efficient homomorphic scalar multiplication is implied by
the Add operation (e.g., via double-and-add).

In addition, we denote homomorphic addition of two ciphertexts ct1 and ct2
by ct1 ⊕ ct2 and a multiplication of a ciphertext ciphertext ct by a scalar α by
α⊙ ct.

Every affine function can be efficiently computed homomorphically by an
algorithm Eval(pk, f, ct1, . . . , ctℓ; ηeval). Whenever we omit the randomness in
Eval(pk, f, ct1, . . . , ctℓ), we refer to the process of sampling a randomness ηeval ←
{0, 1}poly(κ) and running Eval(pk, f, ct1, . . . , ctℓ; ηeval). Given a public key pk, an

affine function f(x1, . . . , xℓ) = a0+
∑ℓ

i=1 aixi (with ai ∈ Z and ℓ, ∥ai∥2 ∈ poly(κ)
for all 0 ≤ i ≤ ℓ) and ℓ ciphertexts ct1, . . . , ctℓ ∈ Rpk, Eval outputs a ciphertext
ct.

Definition A.2 (Correctness) AHE is correct if for every κ, every t ∈
poly(κ), every ℓ-ary affine function f as above, and every plaintexts pt1, . . . , ptt ∈
Ppk,

Pr[Dec(sk,Eval(pk, f, (ct1, . . . , ctℓ))) = f(pt1, . . . , ptℓ)] ≥ 1− neg(κ)

where (pk, sk)← Gen(1κ) and cti ← Enc(pk, pti), and the probability is over the
coins used by algorithms Gen, Enc and Eval.

Note that for correctness, algorithm Eval may simply output ct =
Enc(pk, a0)

⊕ℓ
i=1 ai ⊙ cti, however, such an algorithm may not satisfy Linear

Circuit Privacy(see below).

Definition A.3 (Semantic security) AHE is semantically secure if for every
PPT adversary A there exists a PPT algorithm S such that for every pair of
PPTs f, h : {0, 1}∗ → {0, 1}∗, and every pt ∈ Ppk:

43

| Pr[A(1κ,Enc(pk, pt), 1|pt|, h(1κ, pt)) = f(1κ, pt)]

−Pr[S(1κ, 1|pt|, h(1κ, pt)) = f(1κ, pt)] | < neg(κ)
(1)

where (pk, sk) ← Gen(1κ) and h refers the auxiliary information function in
possession of the adversary. The probability is over the random coins of Gen and
Enc.

Definition A.4 (Linear Circuit Privacy) AHE has Linear Circuit Privacy if
there exists a PPT algorithm SEval such that for every PPT adversary A, every
ℓ-ary affine function f as above, every (pk, sk) and every plaintexts pt1, . . . , ptℓ ∈
Ppk ∪ {⊥} and randomness η1, . . . , ηℓ,

|Pr[A(1κ, pk, sk, {pti, ηi}ℓi=1,Eval(pk, f, (ct1, . . . , ctℓ))) = 1]

−Pr[A(1κ, pk, sk, {pti, ηi}ℓi=1,SEval(pk, f(pt1, . . . , ptℓ))) = 1]| ≤ neg(κ)
(2)

where cti ∈ Cpk and pti = Dec(sk, cti), and the probability is over the coins used
by Eval and the random coins of A and S.

Remark A.1. We build upon the definition from [FMM+24] and extend it to
cases in which not every element of the ciphertext space is a valid encryption.
Indeed in their work which use the classical Paillier encryption [Pai99] this dis-
tinction is void. But it is not the case for Elgamal style encryption such as
Class-Group [CL15] nor for lattice based AHE. See Appendix F for further dis-
cussion.

TAHE: A TAHE scheme is defined by a tuple of algorithms
(Gen,Enc,Add,TDec,Rec). Gen,Enc,Add works similarly to the definition
of AHE while TDec is an operation that each party runs locally on the
chiphertext and generate a decryption share. Collecting t + 1 such decryption
shares as inputs to Rec outputs a correct decryption.

Let us first formalize the TAHE algorithms and its correctness. The security
properties of the TAHE scheme will be captured via an ideal functionality A.5
and the AHE security definition.

Definition A.5 (TAHE) Threshold additively homomorphic encryption
scheme is associated with an ensemble {Kκ}κ and consists of five polynomial
time algorithms TAHE = (Gen,Enc,Add,TDec,Rec) specified as follows:

– (pk, vki; [sk]i) ← Gen(1κ, i, t, n, aux). A probabilistic (possibly interactive)
protocol that is given a security parameter 1κ, the number of parties n, a
threshold 1 < t < n and possibly some auxiliary information aux and sam-
ples a key-pair (pk, sk) ∈ Kκ such that [sk]i is a sharing on sk and vki is a
verification key. In the following, we assume that the resulting pk contains
the description of the security parameter 1κ, the auxiliary information aux,
as well as the plaintext, randomness and ciphertext spaces Ppk,Rpk, Cpk, re-
spectively, where Ppk is a Z-module.

44

– ct← Enc(pk, pt; η). A deterministic algorithm that on input a public key pk,
a plaintext pt ∈ Ppk and randomness η ∈ Rpk, outputs a ciphertext ct ∈ Cpk.
We define Enc(pk, pt) as a probabilistic algorithm that first uniformly samples
η ← Rpk and then outputs ct = Enc(pk, pt; η) ∈ Cpk

– (dsi, π
i
ds) ← TDec(ct, pk, vki; [sk]i). A deterministic algorithm that on input

of a public key pk a verification key vki, a secret key share [sk]i and a ci-
phertext ct ∈ Cpk outputs a decryption share dsi along with a proof of correct
generation πi

ds.
– pt← Rec(S, {dsi}i∈S). A deterministic algorithm that on input of a set S ∈(

[n]
t+1

)
and a tuple of elements {dsi}i∈S ∈ C|S|pk outputs a elements pt ∈ Ppk.

– ct3 ← Add(pk, ct1, ct2) →. A deterministic algorithm that on input a public
key pk and two ciphertexts ct1, ct2 ∈ Cpk outputs a ciphertext ct3 ∈ Cpk.

Correctness. TAHE is correct if for every κ, every ℓ ∈ poly(κ), every ℓ-ary affine

function f , any subset S ∈
(
[n]
t+1

)
and every plaintexts pt1, . . . , ptℓ ∈ Ppk,

Pr[Rec(S, {TDec([sk]i),Eval(pk, f, (ctj)j∈[ℓ])}i∈S) = f(pt1, . . . , ptℓ)] ≥ 1− neg(κ)

where (pk, {[sk]i}i∈[n])← Gen(1κ) and ctj ← Enc(pk, ptj), and the probability is
over the coins used by algorithms Gen, Enc and Eval.

Dynamical TAHE: In our use-case the parties need to be able to re-share their
secret keys such that the distribution of the secret keys represent their current
stake in the blockchain. To this end in addition to the above algorithms we add
a reconfiguration protocol.
ReConf(1κ, 1σ, t, t′, n, n′, pk, aux; [sk]i) a probabilistic (possibly interactive) pro-
tocol that is given a security parameter 1κ, a statistical security parameter 1σ,
the initial threshold t, the final threshold t′, the initial number of parties n,
possibly some auxiliary information aux and the output (AHE, [sk]i) of the Gen
protocol. We will say that a dynamical TAHE is secure if it realizes the below
ideal functionality A.5 FDAHE

A.7 PVSS Formal Definition

Definition A.6 (PVSS [CD24a]) A PVSS scheme consists of the following al-
gorithms:

– Setup:
• pp← Setup(1κ, ip) outputs public parameters pp. The initial parameters
ip contain information about the number of parties, privacy and Recon-
struction thresholds and spaces of secrets and shares. The public param-
eters include a description of the key space Kκ which should be thought
of as a Cartesian product over the public key share and the private key
share along with some relation they satisfy.
• (pki, π

i
pk; ski)← Gen(pp, i), where (pk; sk) ∈ Kκ and πpk is a proof meant

to assert that pk is a valid public key.
• 0/1← Verify(pp, j, pkj , π

j
pk), a verification algorithm for the proof Πj

pk.

45

FUNCTIONALITY A.5
(
Dynamical Access Structure TAHE: FDAHE

)
The functionality interacts with a set of parties B and an adversary controlling a subset
U ⊆ B. It is parameterized with an additive homomorphic encryption AHE along with
an initial access structure Γkeygen.

1. Key Generation: Upon receiving (keygen, pid, sid) from a subset Skeygen ∈ Γkeygen

for a fresh sid, run (pk; sk) ← AHE.Gen(1κ), send pk to the adversary and receive
the adversary’s response (continue, U ′). If U ∩U ′ = ∅ then send (pubkey, sid, pk) to
all parties in B, define Γ = Γkeygen and store (access− structure, sid, Γ) to memory,
otherwise send (pubkey, sid,⊥, U ∩ U ′) to all parties in B.

2. Decryption: Upon receiving a (decrypt, pid, sid, ct) let Sdecrypt,sid,ct = Sdecrypt,sid,ct ∪
{pid} (if no request were recorded yet treat Sdecrypt,sid,ct as the empty set) and do
the following:
(a) Check if (decrypted, sid, ct, pt) in memory else calculate pt ←

AHE.Dec(pk, ct; sk) and store (decrypted, sid, ct, pt) to memory.
(b) Check if Sdecrypt,sid,ct ∪ U ∈ Γ for (access− structure, sid, Γ) in memory, if true

send (decrypted, sid, ct, pt) to U .
(c) Check if Sdecrypt,sid,ct ∈ Γ for (access− structure, sid, Γ), if true, send

(decrypted, pk, ct, pt) to the adversary and wait to the adversary’s response
(continue, U ′′) if U ∩U ′′ = ∅ send (decrypted, sid, ct, pt) to everyone, otherwise
send (decrypted, pk,⊥, U ∩ U ′′).

3. Re-configuration: Upon receiving (re− configure, pid, sid, Γ ′) from a subset S ∈
Γ delete (re− configure, sid, Γ) and store (re− configure, sid, Γ ′) instead. Further
more delete any message titled decrypt or decrypted along with the sets Sdecrypt,sid,ct.

– Distribution: ({cti}i∈[n], πShare) ← Dist(pp, {pk}i∈[n], s), where s ∈ S is a
valid secret, outputs “encrypted shares” cti and a proof that they are correct
πShare.

– Distribution Verification: 0/1← VerifySharing(pp, {pki, cti}i∈[n],πShare
, a veri-

fication algorithm for πShare.
– Reconstruction:
• ([s]i, π

i
Dec) ← DecShare(pp, pki, ski, cti), outputs a decrypted share [s]i

and a proof πi
Dec of correct decryption.

• (s′) ← Rec(pp, {[s]i}i∈S) either returns abort if S /∈ Γ or an element of
the secret space s′ ∈ S if S ∈ Γ .

– Reconstruction Verification: 0/1 ← VerifyDec(pp, pki, cti, [s]i, π
i
Dec), A veri-

fication algorith for the proof πi
Dec.

We refer the reader to [Sch99, CD24a, GHL22] for further details about the game
based security definitions for a PVSS scheme.

B Languages used in our protocols.

The languages in our protocols are listed below:

– Knowledge of the discrete log of an elliptic-curve point.

LDL[(G, G, q)] = {(P ;x) | P = x ·G} (3)

46

– Knowledge of decommitment.

LDCom[pp] = {C;m, ρ | C = Compp(m; ρ) ∧m ∈Mpp ∧ ρ ∈ Rpp ∧ C ∈ Cpp} (4)

– Knowledge of plaintext.

Lpt[AHE, pk] = {ct;m, η | ct = AHE.Enc(pk;m, η) ∧m ∈ Ppk ∧ η ∈ Rpk ∧ C ∈ Cpk}
(5)

If ct is a vector then interpret the language as proving knowledge of plaintext for
each element in the vector.

– Commitment of discrete log.

LDComDL[pp, (G, G⃗, q)] = {C, Y ; m⃗, ρ | C = Compp(m⃗; ρ) ∧ Y =
∑
ℓ

mℓ ·Gℓ} (6)

– Vector Commitment of discrete log.

LVecDComDL[pp, (G, G⃗, q)] = {C⃗, Y ; m⃗, ρ⃗ | ∀ℓ Cℓ = Compp(mℓ; ρℓ) ∧ Y =
∑
ℓ

mℓ ·Gℓ}

(7)
– Equality between two commitments with different public parameters. (Recall that
Mpp = Zq.)

LDComEQ[pp1, pp2] = {C1, C2;m, ρ1, ρ2 | C1 =Compp1(m, ρ1) (8)

∧C2 =Compp2(m, ρ2)}

– Committed affine evaluation.

LDComEval[pp, pk, c⃗t, q, ℓ, s, κ] = {ctEval,C; a⃗, ρ, ω, η (9)

| ctEval = AHE.Eval(pk, fa⃗(x⃗), c⃗t; η)

∧ C = Compp(⃗a; ρ)

∧ aℓ ∈ [0, q) ∧ ρ ∈ Rpp ∧ η ∈ Rpk}

– AHE encryption of a discrete log.

LEncDL[pk, (G, G, q)] = {(ct, X;x, η) | ct = AHE.Enc(pk, x; η)∧X = x ·G∧ x ∈ [0, q)}
(10)

– AHE scaling of a discrete log.

LScaleDL[pk, (G, G, q), ct0] = {(ct1, X;x, η) | ct1 = AHE.Scale(pk, ct0, x; η)∧ (11)

X = x ·G ∧ x ∈ [0, q)}

– AHE analogue of a DH tuple; namely, ciphertexts of values x, y and xy.

LEncDH[pk, ctx] = {(cty, ctz; y, ηy, ηz) | cty = AHE.Enc(pk, y; ηy) (12)

∧ ctz = AHE.Eval(pk, f, ctx; 0, ηz) s.t. f(x) = y · x mod q ∧ y ∈ [0, q)}

– Correct AHE key generation. The specification of the language depends on the choice
of the AHE scheme (Definition A.6) and so it is not mentioned here explicitly.

LGenAHE[κ] = {pk; aux | (pk; sk) = AHE.Gen(1κ, aux)} (13)

– All languages can be extended to include range claims, this will be done by adding
range to the name of the language and including a vector representing the bounds
on the witnesses.

47

C Full Detailed Protocols

C.1 ECDSA Protocols

Next, we provide the full details of the key generation (Protocol C.1), presign (Proto-
col C.2), and sign (Protocol C.3) protocols for ECDSA and prove their correctness.

Correctness of the key generation protocol: The only correctness demand on the
key generation is that the parties agree on X and that ctkey is an encryption of the dis-
crete log of X. From the consistency of the broadcast ApidA receives (pidA, X0,B , X1,B)
which is the same as received by each party in B. From the uniqueness of pidA and
from the consistency of the broadcast functionality we get that the parties in B gets
the same XA. Thus the parties agree on the inputs to the random oracle which derive
µ0
x, µ

1
x, µ

G
x which in turn uniquely determine X = XA +XB . The correctness of ctkey is

inherited from the correctness of the aggregation protocol.

Correctness of the presign protocol: In this protocol correctness is defined
by getting an encryption of a value γ along with an encryption of γ · x and values
RB,0, RB,1 along with an encryption of their discrete logs. The correctness follows
simply from the correctness of the aggregation protocol and from the consistency of
the broadcast functionality.

Correctness of the sign protocol: The correctness of the sign protocol is more
complex so we are going to go through it in a bit more details. Let’s see that the proof
πk, πα will pass. We have Ck = kA ·G+ρ0H thus G = k−1

A Ck−k−1
A ρ0H which is exactly

of the needed form. Similarly for πα. From the correctness of the pre-sign we have that
ctγ·k = Encpk(γ(µ

0
k · k0 + µ1

k · k1 + µG
k))) and that R′

B = (µ0
k · k0 + µ1

k · k1 + µG
k) ·G. We

denote by kB = α(µ0
k · k0 +µ1

k · k1 +µG
k)+β, k = k−1

A · kB then R′
B = kB ·G,R = k ·G.

From this we have that

1. ctα,β = Encpk(γ · kB)
2. ctA = Encpk(γ(rkAxA +mkA + xBrkA)) = Encpk(γkA(m+ rx)).

3. C1 = Compp(a1)

4. C2 = Compp(a2)

The above observation helps us to show that the following proofs are correct. Since the
random oracle is consistent and receives the same values it returns µk to B and the
calculation of the values in commands i.− iv. is the same as was done by ApidA . Then
after decryption we get s′ = γ−1 · k−1

B kAγ(r+mx) = k−1(r+mx) which is exactly the
form of a valid signature with R = k ·G.

C.2 Schnorr-Based Protocols

Next, we provide the full details and prove the correctness of the presign (Protocol C.4)
and sign (Protocol C.5) protocols for Schnorr-based signatures. The correctness of the
key generation and pre-sign protocols is similar to the ECDSA case.

Correctness of the sign protocol. We denote kB = kB,0+µk ·kB,1 and k = kA+kB
then K = kG. We have that zAG = kAG + ekAG = KA + eKA. ctB = Encpk(kB +
exB + kA + exA) = Encpk(k + ex). Thus ptB = k + ex which is a valid signature with
respect to K.

48

PROTOCOL C.1
(
Key-Generation Πkeygen: KeyGen(G, G, q, ΓB , sid, pk)

)
The protocol is parameterized with the ECDSA group description (G, G, q) along with
an access structure ΓB , a unique session id sid, and a encryption key to a TAHE
scheme pk. The protocol interacts with a centralized party ApidA and a set of parties
B = {Bi}i∈[n]. The set of parties B can only send messages to parties in A through
the functionality Fglobal-broadcast. The parties output the public verification key X and
record the following:

– XA - The centralized party’s share of a public verification key for an ECDSA
signature (implicitly gives the distributed party share).

– The distributed party B also records ctkey an encryption of the secret share held
by the distributed party B

– The centralized party ApidA also records xA - its secret share of an ECDSA signa-
ture key.

The parties do as follows:

1. Each Bi does as follows:
- Round 1:

(a) Sample xi
0, x

i
1 ← Zq and ηi

0, η
i
1 ←Rpk.

(b) Compute Xi
0 = xi

0 · G,Xi
1 = xi

1 · G and cti0 = AHE.Enc(pk, xi
0; η

i
0), ct

i
1 =

AHE.Enc(pk, xi
1; η

i
1).

(c) Run Π
ΓB ,LEncDL[pk,(G,G,q)]
agg on inputs (Xi

0, ct
i
0;x

i
0, η

i
0) and on (Xi

1, ct
i
1;x

i
1, η

i
1) re-

ceiving (X0,B , X1,B , ct0,key, ct1,key).

- Broadcast Round:
(a) Send (global-broadcast, sid, i, (pidA, X0,B , X1,B)) to FΓB

global-broadcast.

2. ApidA does as follows:

(a) Receive (global-broadcast, sid, (pidA, X0,B , X1,B)) from FΓB
global-broadcast.

(b) Verify that X0,B , X1,B ∈ G else consider B malicious and abort.
(c) Sample xA ← Zq and sets XA = xA ·G.

(d) Run Π
LDL[(G,G,q)]
zk-uc (XA;xA) generating a proof πDL.

(e) Send (broadcast, sid, pidA, XA, πDL) to Fbroadcast.
3. Output.

– Each Bi does:
(a) Receive (sid, pidA, XA, πDL)
(b) Verify πDL, if fails consider ApidA malicious and abort, else continue.
(c) Call the Random Oracle H(sid,G, G, q,XA, X0,B , X1,B , πDL) and receive

µ0
x, µ

1
x, µ

G
x

(d) Set X = XA + µ0
x ·X0,B + µ1

x ·X1,B + µG
x ·G.

(e) Set ctkey = µ0
x ⊙ ct0,key ⊕ µ1

x ⊙ ct1,key ⊕ µG
x .

(f) Output X and records (keygen, pidA, X,XA, ctkey).
– Party ApidA does:

(a) Call the Random Oracle H(sid,G, G, q,XA, X0,B , X1,B , πDL) receiving
µ0
x, µ

1
x, µ

G
x

(b) Set X = XA + µ0
x ·X0,B + µ1

x ·X1,B + µG
x ·G.

(c) Output X and records (keygen, pidA, X,XA;xA).

49

PROTOCOL C.2
(
Pre-sign ΠECDSA

Presign : Presign(G, G, q, sid, pk, X,XA, ctkey)
)

The protocol is parameterized with the ECDSA group description (G, G, q) along with
an access structure ΓB , a unique session id sid, a encryption key to a TAHE scheme pk,
an ECDSA verification key X, the centralized party share of the verification key XA

and an encryption of the share of the distributed party of the signing key ctkey. The
protocol interacts with a centralized party ApidA and a set of parties B = {Bi}i∈[n].
The set of parties B can only send messages to parties in A through the functionality
Fglobal-broadcast. Each party Bi outputs:

– ctγ - an encryption of a randomizer γ.
– ctγ·key - an encryption of the randomizer γ multiplied by the signing key share of

the blockchain xB .
– ctγ·k0 , ctγ·k1 - an encryption of a randomized nonces k0 · γ and k1 · γ respectively.
– RB,0, RB,1 - points on the curve equal to k0 ·G and k1 ·G respectively.

1. Each Bi does as follows:
- Round 1:

(a) Sample γi ← Zq and ηi
1, ηi

2 ← Rpk, and compute:
i. ctiγ = AHE.Enc(pk, γi; η

i
1)

ii. ctiγ·key = AHE.Scale(pk, ctkey, γi; η
i
2)

(b) Run Π
ΓB ,LEncDH[pk,ctkey]
agg on inputs (ctiγ , ct

i
γ·key; γi, η

i
1, η

i
2) receiving (ctγ , ctγ·key).

- Round 2:
(a) Sample ki

0, k
i
1 ← Zq and ηi

3,0, η
i
3,1 ←Rpk and compute:

i. ctiγ·k0
= AHE.Scale(pk, ctγ , k

i
0; η

i
3,0)

ii. ctiγ·k1
= AHE.Scale(pk, ctγ , k

i
1; η

i
3,1)

iii. Ri
B,0 = ki

0 ·G
iv. Ri

B,1 = ki
1 ·G

(b) Run Π
ΓB ,LScaleDL[pk,(G,G,q),ctγ]
agg on inputs (ctiγ·k0

, Ri
B,0; k

i
0, η

i
3,0) and

(ctiγ·k1
, Ri

B,1; k
i
1, η

i
3,1) receiving (ctγ·k0 , RB,0), (ctγ·k1 , RB,1).

- Broadcast Round:
(a) Send (global-broadcast, sid, i, (pidA, ctγ , ctγ·key, ctγ·k0 , ctγ·k1 , RB,0, RB,1)) to
FΓB

global-broadcast.

2. Output.
– ApidA receives (global-broadcast, sid, (pidA, ctγ , ctγ·key, ctγ·k0 , ctγ·k1 , RB,0, RB,1))

from FΓB
global-broadcast.

– ApidA verify that RB,0, RB,1 ∈ G \ {0} and ctγ , ctγ·key, ctγ·k0 , ctγ·k1 ∈ Cpk else
it aborts and considers B malicious.

– Each party records (sid, X, ctγ , ctγ·key, ctγ·k0 , ctγ·k1 , RB,0, RB,1)

C.3 Reconfiguration Protocols

First let us introduce the following notations . For an element z ∈ Z we de-
note [[z]]b := (zℓ)ℓ∈[w] as the b-ary decomposition of z i.e. z =

∑
ℓ∈[w] zℓb

ℓ where

w := ⌊logb(z)⌋. For a sequence (zℓ)ℓ∈[w] we define the packing of the sequence in base b
to be Packb((zℓ)ℓ∈[w]) =

∑
ℓ∈[w] zℓb

ℓ. Note that the input sequence may have elements
larger then the base. In addition we define the following operations for brevity, they
represent limb-wise operations:

50

1. ct← Encbpk(z, η⃗) = Encpk([[z]]b) = {Encpk(zℓ, ηℓ)}ℓ∈[w] where ηℓ ←Rpk.
2. dsi ← TDecpk(ct; [sk]i) = {TDecpk(ctℓ, [sk]i)}ℓ∈[w].
3. z ← Recbpk({dsi}i∈S) = Packb(Recpk({dsiℓ}i∈S)).
4. ct3 ← Addpk(ct1, ct2) = {Addpk(ct1ℓ , ct2ℓ)}ℓ∈[w].

Here we provide the full protocols for reconfiguration.

The Varying Threshold Protocol C.6

The Constant Threshold Protocol C.7

D Omitted Security Proofs and Definitions

This section provides the omitted proofs and definitions of the security of our protocols.

D.1 Proofs of Security for ECDSA Based Protocols

Proof of UC realization of the ECDSA protocol (Theorem 8.3) Next,
we provide the full proof of Theorem 8.3.

Proof. Denote by U the set of parties the adversary A controls. We split the proof for
between the cases of malicious ApidA and honest ApidA .

Malicious B Simulation:
We assume, without loss of generality (WLOG), that all parties in B are corrupted.

Thus, their part does not need simulation. For honest parties in B, the simulator follows
the honest protocol, and the simulation remains unchanged.

Key Generation Simulation:

1. Upon receiving (global-broadcast, sid, A, (pidA, X0,B , X1,B)), the simulator verifies
that X0,B , X1,B ∈ G, otherwise, it aborts.

2. The simulator S sends to FG∗
SE-ECDSA

tsig the message (keygen, sid, i) for i ∈ U . It then
receives (keygen, sid, X).

3. The simulator sends (biaskey, sid, 1, 0, 1, 0) to FG∗
SE-ECDSA

tsig and receives (sid, X).

4. The simulator samples µ0
x, µ

1
x, and µG

x and sets XB = µ0
x ·X0,B+µ1

x ·X1,B+µG
x ·G.

5. The simulator sets XA = X and sets the random oracle to return (µ0
x, µ

1
x, µ

G
x)

on the transcript. It then invokes the zero-knowledge (zk) property of Π
LDL
uc-zk to

generate a proof πDL for the statement XA, ensuring it passes verification.
6. The simulator sends (broadcast, sid, pidA, XA, πDL) to the adversary.

Pre-Sign and Sign Simulation:

1. The simulator first performs the following tasks:
(a) The simulator extracts the private key sk correspondent to the published public

key pk from a zk proof of the private key.

(b) S sends (pres, sid, ssid, i) to FG∗
SE-ECDSA

tsig for i ∈ U , and receives
(pres, sid, ssid,K0,K1) in response.

(c) Upon receiving (global-broadcast, sid, (pidA, ctγ , ctγ·key, ctγ·k0 , ctγ·k1 , RB,0, RB,1))
from the adversary, the simulator verifies them as an honest ApidA would,
aborting if the verification fails. This contains only public checks such that
the ciphertexts are elements of the ciphertext space and that the points are
non-zero points on the elliptic curve.

51

(d) The simulator samples kA, α, β ← Zq and computes Cα, Cβ , πα, πβ , Ck, Ckx,
πk, ctγ·k , R

′
B , ctα,β , RB , πRB , and πctα,β step by step exactly as in the protocol.

The simulator also obtains (µ0
k, µ

1
k, µ

G
k) from the random oracle.

(e) The simulator then attempts to use the private key sk to decrypt ctγ , ctγ·k0 ,
ctγ·k1 and ctγ·key and go to the following step according to the specific case.

2. If one of the following applies:

– At least one of the descriptions of ctγ , ctγ·k0 , ctγ·k1 , and ctγ·key failed.

– The value of the plaintext of ctγ is an encryption of zero.

– The plaintext of ctγ·k0 divided by the plaintext of ctγ is not the discrete logs
of RB,0, or the plaintext of ctγ·k1 divided by the plaintext of ctγ is not the
discrete logs of RB,1.

The simulator does the following:

(a) The simulator samples a1 ← Zq and computes R, ctA, a2, C1, and C2 step by
step exactly as in the protocol (except for ctA that corresponds to the sampled
value of a1).

(b) The simulator generates πkx, πR as in the protocol.

(c) It then invokes the zero-knowledge (zk) property of Π
LDComEval
uc-zk to generate a

proof πDComEval for the statement (ctA, (C1, C2)), ensuring it passes verification.

(d) The simulator sends everything to the adversary.

(e) The simulator aborts if it receives a non-valid signature from the adversary.

3. Otherwise, the simulator does as follows:

(a) The simulator decrypts ctγ and ctγ·key and obtains γ (which is a non-zero) and
γx, respectively. The simulator computes x′

B = γx
γ

and sets βkey = x′
B .

(b) The simulator sends (sign,msg, sid, ssid, βkey, 1, 0, 1, 0) to F
G∗
SE-ECDSA

tsig and receives
a signature σ = (r, s) with the public nonce K.

(c) The simulator sets R = K and r, and compute C1, C2, and a2 according to r.

(d) The simulator sets ctA = AHE.Scale(pk, ctα,β , s; ∗).
(e) The simulator invokes the zero-knowledge (zk) property of Π

LDComEval
uc-zk and Π

LDL
uc-zk

to generate the proofs πctA , πR for the statements (ctA, (C1, C2)) and (Ck, RB),
respectively. Thus ensuring it passes the verifications.

(f) The simulator aborts if the signature it receives from the adversary is incorrect.

Malicious B Indistinguishability:

Key Generation: Both in the real and ideal worlds the adversary sees (XA, πDL)
and random oracle returns. The value of XA is uniformly distributed independently
from the values of B in both the real and the simulated executions. The value of πDL

is indistinguishable from the zk property of ZkP.

Pre-Sign and Sign: In the pre-sign protocol, only the adversary acts. So there is no
difference between the real execution and the simulation.

In either one of the cases described in Step 2 the adversary does not expect to obtain
a signature. The only differences between the real execution and the simulation are the
zero-knowledge (zk) proofs and the value of a1. The zk proofs are indistinguishable due
to the zk properties. In all these cases and in both executions, if a1 can be extracted
by the adversary, then the discrete log of RB is unknown to the adversary:

– If one of the decryptions of ctγ , ctγ·k0 , and ctγ·k1 failed then due to the secure
random evaluation of AHE, the plaintext of ctα,β is indistinguishable from random.
Thus, to the adversary it is independent from the discrete log of RB .

52

– If one of the decryptions of ctγ or ctγ·key fails then due to the secure random
evaluation of AHE the plaintext of ctγ·key is indistinguishable from random, and
thus a1 can not be extracted.

– If ctγ is an encryption of zero, then a1 can not be extracted by the adversary.
– If the plaintexts of ctγ , ctγ·k0 , and ctγ·k1 do not correspond to the discrete logs of

RB,0 and RB,1 then the plaintext of ctα,β is independent of the discrete log of RB .

In the real execution, the value of a1 depends on kA · xA. The only other information
of kA sent to the adversary is R = k−1

A RB . So, without the knowledge of the discrete
log of RB , kA · xA is indistinguishable from random. Thus, if a1 can be extracted by
the adversary, it is indistinguishable from random to the adversary. So if the adversary
can extract the value of a1, its values in the two executions are indistinguishable.

In the other case (Step 3), the only differences between the real execution and the
simulation are the values of R, ctA, the signature, and their zk proofs. The value of R
is indistinguishable as it is randomly sampled by the value of kA in the real execution,
and randomly sampled by the oracle in the simulation. The same is true for the zk
proofs. Since the plaintexts of ctγ·k0 and ctγ·k1 are the discrete logs of RB,0 and RB,1

multiplied by the plaintext of ctγ , the plaintext of ctα,β is the discrete log of RB .
Then, the adversary expects to get a signature as if the public key was XA + x′

B · G.
Due to the secure function evaluation, the adversary has no knowledge of how ctA
is computed, and thus, as long as it provides a signature it is indistinguishable from
the real execution. Note that in the simulation, the plaintext of ctA depends on ctα,β

only if ctα,β is a valid encryption of a value corresponding to the discrete log of RB .
Therefore, the adversary has no knowledge of this dependency.

Malicious ApidA Simulation:
Key Generation Simulation:

1. The simulator holds sk as it simulated FDAHE.

2. The simulator receives (sid, X̃0, X̃1) from F
G∗
SE-ECDSA

tsig .

3. For every i ∈ B \ U , the simulator samples xi
0, x

i
1 ← Zq and ηi

0, η
i
1 ← Rpk. It sets

Xi
0 = X̃0+xi

0 ·G, Xi
1 = X̃1+xi

1 ·G, cti0 = Encpk(x
i
0, η

i
0), and cti1 = Encpk(x

i
1, η

i
1). The

simulator generates fake proofs using the zk property for the aggregation protocol
and uses these values as inputs to the aggregation protocol with the adversary.

4. Upon receiving a random oracle call on (X ′
A, X

′
0,B , X

′
1,B , π

′
DL):

(a) Check if π′
DL is a valid zk proof of X ′

A and extract the witness x′
A. If it is not

then return a random value.
(b) If there is a record of (X ′

A, X
′
0,B , X

′
1,B , π

′
DL, µ

′0
x , µ

′1
x , µ

′G
x , ρ). Then return

(µ0
x, µ1

x, µG
x) = (µ′0

x , µ
′1
x , µ

′G
x − (1− ρ · µ′0

x) · xA).
(c) Otherwise, sample ρ← Zq.
(d) Call the random oracle on (X ′

0,B + ρ ·X ′
A, X

′
1,B) and obtain µ′0

x , µ
′1
x , and µ′G

x .
(e) Return (µ′0

x , µ
′1
x , µ

′G
x − (1 − ρ · µ′0

x) · xA) and record
(X ′

A, X
′
0,B , X

′
1,B , π

′
DL, µ

′0
x , µ

′1
x , µ

′G
x , ρ).

5. During the protocol, S receives cti
′
0 and cti

′
1 for i′ ∈ U , along with zk proofs, which

it verifies.
(a) If a proof fails, the simulator flags i′ as malicious. Otherwise, it decrypts cti

′
0

and cti
′
1 to obtain xi′

0 and xi′
1 .

(b) The simulator then emulates FACS and receives an authorized subset SB from
the adversary. This subset must be one where the zk proofs have been vali-
dated. The simulator then computes:

53

– X0,B =
∑

i∈SB
Xi

0

– X1,B

∑
i∈SB

Xi
1

– ct0 =
∑

i∈SB
cti0

– ct1 =
∑

i∈SB
cti1

(c) The simulator receives from the adversary
(global-broadcast, sid, i, pidA, X0,B , X1,B for every i ∈ SB \ U and sends
(global-broadcast, sid, pidA, X0,B , X1,B to the adversary.

(d) Upon receiving (broadcast, sid, pidA, XA, πDL), the simulator verifies πDL. If the
verification fails, it aborts; otherwise, it extracts the witness xA (this can be
done without rewinding since it’s a UC proof).

(e) Check if there is a record of (XA, X0,B , X1,B , πDL, µ
0
x, µ

1
x, µ

G
x , ρ). If there

is not, the simulator does as if it received a random oracle call on
(XA, X0,B , X1,B , πDL), creates such record and obtains (µ0

x, µ1
x, µG

x).
(f) The simulator sets

i. α
(0)
x = α

(1)
x = |SB \ U |

ii. β
(0)
x = ρ · xA +

∑
i∈SB

xi
0

iii. β
(1)
x =

∑
i∈SB

xi
1

(g) The simulator sends (bias, sid, α
(0)
x , β

(0)
x , α

(1)
x , β

(1)
x) to FG∗

SE-ECDSA
tsig .

(h) The simulator computesXB = µ0
x·X0,B+µ1

x·X1,B+µG
x ·G and ctkey respectively.

Pre-Sign and Sign Simulation:

S sends (pres, sid, ssid, i) to FG∗
SE-ECDSA

tsig for i ∈ U , and receives (pres, sid, ssid,K0,K1)
in response.

1. Upon receiving (pres, sid, ssid) the simulator sends it to the oracle and obtains
(sid, ssid, R̃0, R̃1). Then:
(a) On the first round, the simulator samples γi for each honest party and com-

putes ctiγ and ctiγ·key as encryptions of zeros. It cheats on the aggregated zk
proofs.

(b) Between the rounds, the simulator emulates FACS and receives an authorized
subset S0,B from the adversary. This subset must be one where the zk proofs
have been validated. The simulator extracts γi for each i ∈ U ∩ S0,B .

(c) On the second round, the simulator sets ctiγ·k0
and ctiγ·k1

to be encryptions

of zeros. The simulator samples ki
0 and ki

0, and sets Ri
B,0 = ki

0 · G + R̃0 and

Ri
B,1 = ki

1 ·G+ R̃1.
(d) After the second round, the simulator emulates FACS again and re-

ceives an authorized subset S1,B from the adversary. This subset must
be one where the zk proofs have been validated. The simulator ex-
tracts ki

0 and ki
1 for each i ∈ U ∩ S1,B . The simulator records

(sid, ssid, S0,B , S1,B , {γi}i∈S0,B , {ki
0}i∈S1,B , {ki

1}i∈S1,B). It passes the adver-
sary the correct values (ctγ , ctγ·key, ctγ·k0 , ctγ·k1 , RB,0, RB,1), outputted by the
aggregation protocol.

2. When the simulator receives a random oracle call of the form:
(sid,msg,G, G, q,H,X, (ctγ , ctγ·key, ctγ·k0 , ctγ·k1 , RB,0, RB,1), Ck, Ckx, XA, Cα, Cβ ,
πk, πα, πβ), the simulator does as follows:
(a) The simulator validates the proof. If a proof fails it calls the random oracle on

the same input and returns its output.
(b) The simulator samples ρ.

54

(c) The simulator extract α, β and kA from the proofs.

(d) The simulator computes R′
B,0 = ρ ·RB,0.

(e) The simulator calls the random oracle on (sid, ssid, X, 0, R′
B,0, RB,1,msg) and

receives µ0
x, µ

1
x, and µG

x .

(f) The simulator computes:

– µ0
x = µ0

x · ρ · kA · α−1.
– µ1

x = µ1
x · kA · α−1.

– µG
x = α−1(kA · µG

x − β)

(g) The simulator sends (µ0
x, µ1

x, µG
x) to the adversary.

(h) The simulator records the random oracle call with the sampled ρ and
(µ0

x, µ1
x, µG

x).

3. When the simulator receives
(broadcast, sid, (R,RB , Ck, Cα, Cβ , Ckx, ctA, ctα,β , πk, πα, πβ , πkx, πR, πRB , πctα,β ,
πctA)), it loads the corresponding records and does as follows:

(a) If there is no random call record of
(sid,msg,G, G, q,H,X, presX,sid, Ck, Ckx, XA, Cα, Cβ , πk, πα, πβ) then the
simulator sends a random oracle request to itself and create the corresponding
record. The simulator obtains (µ0

x, µ1
x, µG

x) and ρ.

(b) If a zk proof fails, the simulator aborts.

(c) The simulator extracts and computes:

i. kB,0 =
∑

i∈S1,B
ki
B,0

ii. kB,1 =
∑

i∈S1,B
ki
B,1

(d) The simulator sends to the oracle (sign,msg, sid, ssid, 0, |S1,B \ U | · ρ, ρ ·
kB,0, |S1,B \ U |, kB,1) and receives σ = (r, s).

(e) The simulator samples ρ′. On (decrypt, pk, ctA) the simulator returns s ·ρ′, and
on (decrypt, pk, ctα,β) it returns ρ

′.

(f) The simulator verifies that it receives σ from the adversary.

Malicious ApidA Indistinguishability:

Key Generation: The view of the adversary in the real and ideal worlds is
{X0,i, X1,i}i/∈U , {ct0,i, ct1,i}i/∈U along with the zk proofs and random oracle calls. The
X0,i and X1,i are uniformly distributed in both the real and simulated views. The
encryptions are indistinguishable from the semantic security of the TAHE scheme
and the zk proofs are indistinguishable from the zk property. The value of the mod-
ified random oracle are indistinguishable from a true random oracle since the values
(µ′0

x , µ
′1
x , µ

′G
x −(1−ρ·µ′0

x)·xA) are uniformly distributed when ρ is uniformly distributed.

From the soundness property of the zk proofs for malicious parties ct0,i =
Encpk(logG(X0,i)) and ct1,i = Encpk(logG(X1,i)) with overwhelming probability, thus
the simulation extracts the correct values via decrypting cti0 and cti1. From the knowl-
edge soundness of πDL the simulator extracts the correct witnesses with overwhelming

55

probability. Finally, notice that the final X is indeed the final output of FG∗
SE-ECDSA

tsig as:

X = µ0
x ·X0 + µ1

x ·X1 + µG
x ·G

= µ0
x · (α0

x · X̃0 + β0
x ·G) + µ1

x · (α1
x · X̃1 + β1

x ·G) + µG
x ·G

= µ0
x · (|SB \ U | · X̃0 + ρ · xA ·G+

∑
i∈SB

xi
0 ·G)+

+ µ1
x · (|SB \ U | · X̃1 +

∑
i∈SB

xi
1 ·G) + µG

x ·G

= µ0
x · (ρ · xA ·G+

∑
i∈U

(xi
0 ·G) +

∑
i∈SB\U

(X̃0 + xi
0 ·G))+

+ µ1
x · (

∑
i∈U

(xi
1 ·G) +

∑
i∈SB\U

(X̃1 + xi
1 ·G)) + µG

x ·G

= µ0
x · (ρ ·XA +

∑
i∈U

Xi
0 +

∑
i∈SB\U

Xi
0)+

+ µ1
x · (

∑
i∈U

Xi
1 +

∑
i∈SB\U

Xi
1) + µG

x ·G

= µ0
x · (ρ ·XA +

∑
i∈SB

Xi
0) + µ1

x ·
∑
i∈SB

Xi
1 + µG

x ·G

= µ0
x · (ρ ·XA +X0,B) + µ1

x ·X1,B + µG
x ·G

= µ0
x · (ρ ·XA +X0,B) + µ1

x ·X1,B + (µG
x + (1− ρ · µ0

x)xA) ·G

= XA + µ0
x ·X0,B + µ1

x ·X1,B + µG
x ·G

Pre-sign and sign: In the pre-sign protocol, the differences between the real execu-
tion and the simulation are the encryptions. The adversary does not hold the private
key and thus the encryptions are indistinguishable for the adversary. The random or-
acle is indistinguishable between the two executions due to the sampling of the value
ρ that causes the output to be uniformly sampled. In the sign protocol, the differences
between the real execution and the simulation are the values of ptA and pt4. From the
hiding property of encryption scheme and since the adversary does not hold sk, the
two values are indistinguishable.

Denote by R′ the value of R that the oracle send to the simulator. Note that R′

equals the value of R that the adversary computes:

56

R = k−1
A ·RB

= k−1
A · (α ·R

′
B + β ·G)

= k−1
A ·

(
α ·
(
µ0
x ·RB,0 + µ1

x ·RB,1 + µG
x ·G

)
+ β ·G

)
= k−1

A ·
(
α ·
(
µ0
x · ρ · kA

α
·RB,0 +

µ1
x · kA
α

·RB,1 +
kA · µG

x − β

α
·G
)
+ β ·G

)
= k−1

A ·
(
µ0
x · ρ · kA ·RB,0 + µ1

x · kA ·RB,1 + kA · µG
x ·G− β ·G+ β ·G

)
= µ0

x · ρ ·RB,0 + µ1
x ·RB,1 + µG

x ·G

= µ0
x · ρ ·

 ∑
i∈S1,B

Ri
B,0

+ µ1
x ·

 ∑
i∈S1,B

Ri
B,1

+ µG
x ·G

= µ0
x · ρ ·

 ∑
i∈S1,B∩U

Ri
B,0 +

∑
i∈S1,B\U

Ri
B,0

+

+ µ1
x ·

 ∑
i∈S1,B∩U

Ri
B,1 +

∑
i∈S1,B\U

Ri
B,1

+ µG
x ·G

= µ0
x · ρ ·

 ∑
i∈S1,B∩U

(ki
B,0 ·G) +

∑
i∈S1,B\U

(ki
B,0 ·G+ R̃0)

+

+ µ1
x ·

 ∑
i∈S1,B∩U

(ki
B,1 ·G) +

∑
i∈S1,B\U

(ki
B,1 ·G+ R̃1)

+ µG
x ·G

= µ0
x · ρ ·

(
|S1,B \ U | · R̃0 + kB,0 ·G

)
+ µ1

x ·
(
|S1,B \ U | · R̃1 + kB,1 ·G

)
+ µG

x ·G

= µ0
x ·R0 + µ1

x ·R1 + µG
x ·G = R′

Proof of the Security of Slightly Enhanced ECDSA Our security analysis
for Slightly Enhanced ECDSA is based on the approach introduced in [GS22]. For
convenience of readers familiar with their work, in this section we follow their notation.
In Table 1 we compare the notation used in this section (and in [GS22]) with the
notation in the rest of this paper.

A simulation of Functionality 8.1 in the EC-GGM is presented in Figure D.1. Utiliz-
ing the fact that the group is modeled as an EC-GGM, we design it as a lazy simulation,
implying that elements of the group are sampled only when they are needed.

The design of the lazy simulation D.1 and the reduction to the symbolic simula-
tion D.2 are essentially the same as the security proof of ECDSA with presigns in [GS22,
Theorem 3]. Therefore, our main innovation lies in the security proof of the symbolic
simulation. This proof consists of two steps:

1. Reduction to the modified symbolic simulation D.3: The key distinction is that,
unlike the original simulation, the modified version does not let the adversary select
affine transformations in key-bias and sign requests; instead, these transformations
are sampled pseudo-randomly. However, the adversary’s influence over these values

57

Object Notation: [GS22] Notation: this work

EC group E G
Generator G G

Secret key d x

Public key D X

Nonce r k

Ephemeral public key (EPK) R K

X-coordinate of EPK t r

Additive key derivation ek β′
key

Table 1: Notation summary, [GS22] vs this work.

through transformations is ultimately negligible. We demonstrate this by program-
ming the random oracles Hkey and Hk to cancel the adversary’s transformations.

2. Security proof of the modified symbolic simulation: In a nutshell, sampling two
points per presign allows us to introduce two symbolic variables per presign in the
symbolic simulation, and fix only one of them in the corresponding sign request.
This in turn results in many independent symbolic variables. We show that this
essentially forces the adversary to fix the messages to be signed before choosing
the point R∗ that will be used in the forgery, which corresponds to the nonce part
of the signature. Then, by modeling the hash functions as random oracles, we can
extract its future sign queries and minimize the effect of presign.

As a consequence of our approach, and in contrast to [GS22], we do not reduce
the security of the scheme to concrete problems on the underlying hash functions, but
prove the security when the hash functions are modeled as random oracles. On the
positive side, our scheme and our proof approach enable better bounds on the success
probability of an efficient adversary, and hold even for an adversary which is allowed
to apply affine transformations on the key and the presign values.

Similarly to [GS22], we begin with presenting a corresponding symbolic simulation:

Lemma D.1 A PPT adversary forging signatures for the lazy simulation (Simula-
tion D.1) with success rate ϵ, can forge signatures for the symbolic simulation (Simu-

lation D.2) with success rate ϵ+O(N
2

q
).

Proof. We describe below a sequence of hybrids where Hybrid0 is the lazy simulation
and Hybrid2 is the symbolic simulation. We show that in each step the success rate gain

is upper bounded by O(N
2

q
).

Hybrid1. We replace d̃ and r̃
(0)
k , r̃

(1)
k for every k with symbolic variables d̃ and r̃

(0)
k ,

r̃
(1)
k . At the end of the simulation, sample d̃, r̃

(1)
k ← Z∗

q . In addition, we sample sk as
in the symbolic simulation. When run with the same random tape, Hybrid0,Hybrid1
may return a different output only if a collision has occurred. Namely, if there are two
elements i ̸= j ∈ Zq[d, r̃

(0)
1 , r̃

(1)
1 , r̃

(0)
2 , r̃

(1)
2 . . .] where (i,Pi) and (j,Pj) are recorded,

yet i(d, r̃
(1)
1 , r̃

(1)
2 , . . .) = j(d, r̃

(1)
1 , r̃

(1)
2 , . . .). Since there are O(N) such polynomials,

and since the coefficient of each monomial is independent of the evaluation point, the

probability of such a collision is bounded by O(N
2

q
), by the Schwartz-Zippel Lemma.

See [GS22, Appendix B] for the full details.
Hybrid2. This final hybrid, which matches the symbolic simulation, differ from

Hybrid1 in only one aspect: If a newly sampled element for Domain(π) or Range(π)

58

collides with an existing one, the simulation aborts instead of resampling. Since the
number of samples is bounded by O(N), the total number of elements in Range(π) and
Domain(π) is also at most O(N). Consequently, the probability of a collision is at most

O(N
2

q
).

Next, we prove the equivalence between the symbolic simulation and its modified
version:

Lemma D.2 A PPT adversary forging signatures for the symbolic simulation (Simu-
lation D.2) with success rate ϵ, can forge signatures for the modified symbolic simulation

(Simulation D.3) with success rate ϵ+O(N
2

q
).

Proof. There are two differences between the simulations — in the bias key and the sign
queries. We begin with the bias key query: In the symbolic simulation, the adversary
sends coefficients α

(0)
x , β

(0)
x , α

(1)
x , β

(1)
x , the simulation sets

(µ0
x, µ

1
x, µ

G
x)← Hkey

(
π(α(0)

x · d̃0 + β(0)
x), π(α(1)

x · d̃1 + β(1)
x)
)
,

and then sets

d(d̃0, d̃1)← µ0
x(α

(0)
x · d̃0 + β(0)

x) + µ1
x(α

(1)
x · d̃1 + β(1)

x) + µG
x . (14)

In the modified simulation, on the other hand, the adversary only gets to choose the
seed idx from which the tuple (µ0

x, µ
1
x, µ

G
x) is derived, and the symbolic secret key is

defined as µ0
xd̃0 + µ1

xd̃1 + µG
x .

By programming Hkey and utilizing the properties of a symbolic representation, we
can show these processes are equivalent: We replace the random oracle of the symbolic
simulation with a programmed random oracle H′

key defined as follows:

1. Receive a tuple (D0, D1) of group elements as inputs. If these values were received
earlier, return the corresponding output; otherwise, continue.

2. For j = 0, 1: if Dj /∈ Range(π):
(a) Sample i ∈ Zq. If i ∈ Domain(π), abort.
(b) Set Dj = π(i) and −Dj = π(−i).

3. Denote d0 = π−1(D0) and d1 = π−1(D1).

4. If d0 is of the form α
(0)
x · d̃0 + β

(0)
x then extract α

(0)
x and β

(0)
x ; otherwise, stop and

return an arbitrary output. Similarly, extract α
(1)
x and β

(1)
x from d1 if possible and

stop otherwise.
5. Set (µ0

x, µ
1
x, µ

G
x) = Hkey(π(d̃0), π(d̃1), (D0, D1)) to be the output of Hkey in the

modified simulation (with the tuple (D0, D1) modeled as idx).
6. Return

(µ′0
x , µ

′1
x , µ

′G
x) =

(
µ0
x

α
(0)
x

,
µ1
x

α
(1)
x

, µG
x −

µ0
xβ

(0)
x

α
(0)
x

− µ1
xβ

(1)
x

α
(1)
x

)
.

One can see that substituting H′
key

(
π(α

(0)
x · d̃0 + β

(0)
x), π(α

(1)
x · d̃1 + β

(1)
x)
)
in (14)

yields µ0
xd̃0+µ1

xd̃1+µG
x , which is equivalent to the secret key d(d̃0, d̃1) of the modified

simulation. Therefore, Simulation D.2 and Simulation D.3 are equivalent as long as
H′

key never aborts. It can be easily verified that the probability that H′
key ever aborts

is bounded by O(N
2

q
).

A very similar programming of Hk allows to cancel the adversary’s bias in the
presign values as well. We omit this analysis as it follows analogously.

59

Next, we may proceed to proving security of slightly enhanced ECDSA:

Theorem D.3 Let A be an adversary to the existential unforgeability game D.6 with
respect to the ECDSA oracle G∗SE-ECDSA (Functionality 8.1) in the EC-GGM model
(LazySimulation D.1), that makes at most N presignature, signing, hash, or group
queries, when Hkey,HM and all Hk are modeled as independent Random Oracles. Then

Adv(A,ExpG
∗
SE-ECDSA

EU , lazy-sim) ≤ O(CN2

q
),

Where C = |C| is the size of the offset space allowed to the adversary.

Remark D.1. We note that the option of adding an offset e ∈ C to the secret
key, independently for each signature request, is enabled for compatibility with the
Additive Key Derivation supported by BIP32. Usecases that are not interested in
Additive Key Derivation may set C = {0} and C = 1, and obtain the bound

Adv(A,ExpG
∗
SE-ECDSA

EU , lazy-sim) ≤ O(N
2

q
).

Proof. By Lemma D.1 and Lemma D.2, it is sufficient to bound the advantage in the
modified symbolic simulation (Simulation D.3). Following the proof of [GS22, Theorem
1], we denote the forgery by (m∗, R∗, s∗, t∗, e∗). The forgery is successful if the equation

π−1(R∗) = s∗−1(h∗ + t∗(µ0
xd̃0 + µ1

xd̃1 + µG
x + e∗)) (15)

holds. Without loss of generality, we assume that the adversary evaluates D before
making the key bias request, evaluates Rk before requesting the corresponding sig-
nature, and verifies its own forgery before outputting it. Consequently, every initial
application of a map query originates either from A’s group query, the key generation
process, or a presign process. We split the forgery into several types and analyze the
probability of each separately.

Type I forger: Suppose R∗ first appeared prior to the key bias request. Consequently,
it must have appeared before any presign or sign request. At that point, the only formal
variables present were d̃0 and d̃1. Therefore, the query that generated R∗ must have
been of the form (map, c0d̃0 + c1d̃1 + c2), implying that R∗ = ±π(c0d̃0 + c1d̃1 + c2),
where the equality holds up to sign, since each group query maps an element along
with its negation. By (15), we obtain that

c0d̃0 + c1d̃1 + c2 = ηs∗−1(h∗ + t∗(µ0
xd̃0 + µ1

xd̃1 + µG
x + e∗))

for some η ∈ {±1}, implying that

c0 = ηs∗−1t∗µ0
x, c1 = ηs∗−1t∗µ1

x, and c2 = ηs∗−1(h∗ + t∗(µG
x + e∗)). (16)

Since η, s∗, t∗, and µ1
x are all required to be nonzero, we obtain that c1 ̸= 0. More-

over, we obtain

c0
c1

=
µ0
x

µ1
x

and
c2
c1

=
h∗ + t∗(µG

x + e∗)

t∗µ1
x

=⇒ h∗ = t∗(
c2µ

1
x

c1
− µG

x − e∗). (17)

Now let us bound the probability of a Type I forgery. First we denote by ZI the
event that at any point during A’s execution, one of the following two events occurs:
(1) Hkey produces a pair of triplets (µ0

x, µ
1
x, µ

G
x) with the same ratio µ0

x/µ
1
x, or (2) HM

outputs 0. Clearly, Pr[ZI] = O(N
2

q
). Next, we fix an index i of a group query of the

60

form R∗ ← (map, c
(i)
0 d̃0+c

(i)
1 d̃1+c

(i)
2), and fix values h∗ and e∗, and denote by BI

i,h∗,e∗

the event that ZI does not occur and A forges a signature using h∗, e∗, and R∗. We can
easily bound the probability of BI

i,h∗,e∗ : Since µ0
x/µ

1
x is assumed to be unique and by

(17), after picking (c
(i)
0 , c

(i)
1 , c

(i)
2) there is at most one suitable choice for (µ0

x, µ
1
x, µ

G
x).

Therefore, and again by (17), there is at most one suitable value for t∗ (recall that
assuming ZI does not occur, we have h∗ ̸= 0). Since t∗ is sampled uniformly after

picking (c
(i)
0 , c

(i)
1 , c

(i)
2), we obtain that Pr[BI

i,h∗,e∗] ≤ O(1q). Combining all the events,
we obtain that the probability of a Type I forgery is at most

Pr[ZI] +
∑

i∈[N],h∗∈Range(HM),e∈C

Pr[BI
i,h∗,e∗] ≤ O(

N2

q
) + CN2 · O(1

q
) = O(CN2

q
).

Type II forger: R∗ = ηRk for some index k and η ∈ {±1}. Following the description
of the sign oracle, we obtain that

π−1(Rk) = s−1
k (hk + tk(µ

0
xd̃0 + µ1

xd̃1 + µG
x + ek)).

Additionally, from the forgery we obtain the equation

π−1(R∗) = s∗−1(h∗ + t∗(µ0
xd̃0 + µ1

xd̃1 + µG
x + e∗)),

where h∗ = HM(m∗). Recall that tk = C̄(Rk) and t∗ = C̄(R∗), and that C̄(−R) =
C̄(R). Therefore, from R∗ = ηRk we obtain tk = t∗. Therefore, the equation

ηs−1
k (hk + tk(µ

0
xd̃0 + µ1

xd̃1 + µG
x + ek)) = s∗−1(h∗ + tk(µ

0
xd̃0 + µ1

xd̃1 + µG
x + e∗))

holds as a symbolic equation, implying that

ηs−1
k tkµ

0
x = s∗−1tkµ

0
x and ηs−1

k (hk + tk(µ
G
x + ek)) = s∗−1(h∗ + tk(µ

G
x + e∗)). (18)

Recall that both tk and µ0
x are nonzero. Therefore, (18) implies

hk + tkek = h∗ + tke
∗. (19)

Notably, the signing process implies that the initial query generating Rk is of the form
Rk ← (map, µ0

kr̃
(0)
k + µ1

kr̃
(1)
k + µG

k).
Now let us bound the probability of a Type II forgery. First, we denote by ZII

the event that at any point during A’s execution, one of the following two events
occurs: (1) for some index k, Hk produces the same triplet (µ0

k, µ
1
k, µ

G
k) (up to the

sign) for two different inputs, or (2) HM produces the same output for two different

messages. Clearly, Pr[ZII] = O(N
2

q
). Next, we fix an index i of a group query of the

form Rk ← (map, (µ0
k)ir̃

(0)
k + (µ1

k)ir̃
(1)
k + (µG

k)i), fix values h∗ and e∗, and denote by
BII

i,h∗,e∗ the event that ZII does not occur and A forges a signature using h∗, e∗, and
R∗ = ±Rk. We can bound the probability of BII

i,h∗,e∗ : The equation R∗ = ±Rk implies

that ((µ0
k)i, (µ

1
k)i, (µ

G
k)i) = ±Hk(D, ek, R̃

(0)
k , R̃

(1)
k ,mk, idk). Since the outputs of Hk are

assumed to be unique, after picking ((µ0
k)i, (µ

1
k)i, (µ

G
k)i) there is at most one suitable

choice for mk and ek. Moreover, (19) implies tk = hk−h∗

e∗−ek
. Notably, e∗ ̸= ek, since an

equality would imply h∗ = hk by (19) and contradict the assumption thatHM produces
unique outputs. Therefore, there is at most one suitable value for tk that is counted
by BII

i,h∗,e∗ . Since tk is sampled uniformly after picking ((µ0
k)i, (µ

1
k)i, (µ

G
k)i), we obtain

61

that Pr[BII
i,h∗,e∗] ≤ O(1q). Combining all the events, we obtain that the probability of

a Type II forgery is at most

Pr[ZII] +
∑

i∈[N],h∗∈Range(HM),e∈C

Pr[BII
i,h∗,e∗] ≤ O(

N2

q
) + CN2 · O(1

q
) = O(CN2

q
).

Type III forger: A forger which is neither Type I nor Type II. Aside from the key
bias process (which is covered by Type I) and the signing process (covered by Type II),
there are two additional ways of generating group elements: group queries and presign
queries. Importantly, a forgery cannot involve a group element R∗ that was generated
by a presign query. The reason is as follows: Suppose that R∗ ∈ {±R̃(0)

k ,±R̃(1)
k }. If

R∗ = ±R̃(1)
k , then π−1(R∗) = ±r̃(1)k , and no future substitution will change it. On the

other hand, if R∗ = ±R̃(0)
k , then π−1(R∗) = ±r̃(0)k , and after the substitution we will

obtain

π−1(R∗) = ±
(
µ0
k

)−1
(
−µ1

kr̃
(1)
k + s−1

k tk(µ
0
xd̃0 + µ1

xd̃1 + µG
x + ek) + s−1

k hk − µG
k

)
.

Since both µ0
k and µ1

k are nonzero, we obtain that in either case, the final value of
π−1(R∗) will involve r̃

(1)
k . However, a successful forgery requires π−1(R∗) = s∗−1(h∗ +

t∗(µ0
xd̃0 + µ1

xd̃1 + µG
x + e∗)), which does not involve r̃

(1)
k .

We may conclude that in every Type III forgery, the initial query generating R∗ is
a group query. We denote its initial preimage by

π−1(R∗) = a+ b0d̃0 + b1d̃1 +
∑

k∈KIII

(
ckr̃

(0)
k + c′kr̃

(1)
k

)
, (20)

where for all k ∈ KIII we have either ck ̸= 0 or c′k ̸= 0. Note that we may have KIII = ∅.
By the verification equation we have

π−1(R∗) = s∗−1(h∗ + t∗(µ0
xd̃0 + µ1

xd̃1 + µG
x + e∗)). (21)

Therefore, the substitutions must eliminate all variables in π−1(R∗) except for d̃0

and d̃1. First, we observe that all presigns k ∈ KIII must be used before the forgery.
Indeed, if the k’th presign is never used, then the final value of π−1(R∗) will involve

either r̃
(0)
k or r̃

(1)
k , contradicting (21). Moreover, we observe that after the k’th presign

is used, the coefficient of r̃
(1)
k in (20) becomes c′k −

ckµ
1
k

µ0
k

. Again from (21), we obtain

that r̃
(1)
k must be eliminated in π−1(R∗), so c′k =

ckµ
1
k

µ0
k

. If c′k = 0 then this equation

implies ck = 0, contradicting the assumption, so we obtain that c′k ̸= 0 and therefore

∀k ∈ KIII :
ck
c′k

=
µ0
k

µ1
k

. (22)

Let us bound the probability of a Type III forgery. First we denote by ZIII the
event that at any point during A’s execution, one of the following two events occurs:
(1) for some index k, Hk produces a pair of triplets (µ0

k, µ
1
k, µ

G
k) with the same ratio

µ0
k/µ

1
k, (2) HM outputs 0, or (3) a map query of the form of (20) is applied, and

afterwards Hk produces a triplet (µ0
k, µ

1
k, µ

G
k) with µ0

k/µ
1
k = ck/c

′
k for some k. Clearly,

Pr[ZIII] = O(N
2

q
). Next, we fix an index i of a group query of the form

R∗ ← (map, a(i) + b
(i)
0 d̃0 + b

(i)
1 d̃1 +

∑
k∈KIII

(c
(i)
k r̃

(0)
k + c

′(i)
k r̃

(1)
k)),

62

fix values h∗ and e∗, and denote by BIII
i,h∗,e∗ the event that ZIII does not occur and A

forges a signature using h∗, e∗, and R∗. We can bound the probability of BIII
i,h∗,e∗ : For

a successful forgery using the ith group query, we obtain by (22) that A must have
c
(i)
k

c
′(i)
k

=
µ0
k

µ1
k

for all k ∈ KIII, where (µ0
k, µ

1
k, µ

G
k) = Hk(D, ek, R̃

(0)
k , R̃

(1)
k ,mk, idk) is the

triplet that will be used in the kth signing process. Since the ratios µ0
k/µ

1
k are assumed

to be unique, we obtain that for every k ∈ KIII, after picking c
(i)
k and c

′(i)
k there is

at most one suitable choice for (µ0
k, µ

1
k, µ

G
k), mk, and ek. By fixing the values sampled

during the kth signing process for all k ∈ KIII, we obtain that after picking the ith
query, there is at most one option for the final expression representing π−1(R∗) for
which a forgery is possible, and this expression is of the form

π−1(R∗) = A(i) +B
(i)
0 d̃0 +B

(i)
1 d̃1. (23)

Intuitively, the reason is that A needs the coefficients in (20) to satisfy the equation

(22) in order to eliminate the variables r̃
(0)
k and r̃

(1)
k , and there is at most one possible

strategy to satisfy all these equations. Since the coefficients A(i), B
(i)
0 , and B

(i)
1 are

fixed, we may observe that (23) is equivalent to Type I forgeries and deduce that
Pr[BIII

i,h∗,e∗] is also bounded by O(1
q
). Combining all the events, we obtain that the

probability of a Type III forgery is at most

Pr[ZIII] +
∑

i∈[N],h∗∈Range(HM),e∈C

Pr[BIII
i,h∗,e∗] ≤ O(

N2

q
) + CN2 · O(1

q
) = O(CN2

q
).

D.2 Proofs of Security for Schnorr Based Protocols

Proof of UC realization of the Schnorr-based protocol (Theorem 8.4)
Next, we provide the full proof of Theorem 8.4.

Proof. The simulator works as follows:

Pre-Sign Simulation: The simulator S sends (pres, sid, ssid, i) to FG∗
SE-Sch

tsig for i ∈ U
and receives (pres, sid, ssid,K0,K1) in return.

Malicious B: We assume, without loss of generality (WLOG), that all
parties in B are corrupted. Therefore, we only simulate A. Upon receiving
(global-broadcast, sid, (pidA,KB,0,KB,1)), the simulator verifies that KB,0,KB,1 ∈ G \
{0}, otherwise, it aborts.

Malicious ApidA :

1. For each i ∈ B \ U , the simulator randomizes ki
0, k

i
1 ← Zq and ηi

0, η
i
1 ← Rpk. It

sets Ki
B,0 = K0+ki

0 ·G and Ki
B,1 = K1+ki

1 ·G. The simulator then invokes the zk
property to generate fake proofs for the aggregation protocol and uses these values
as inputs for the aggregation protocol with the adversary.

2. During the aggregation protocol, S receives ctik0
, ctik1

for i ∈ U along with zk proofs,
which it verifies. If a proof fails, the simulator flags i as malicious. Otherwise, it
decrypts the ciphertexts to obtain ki

0 and ki
1.

3. The simulator emulates FACS and receives an authorized subset SB from the ad-
versary. This set either contains malicious parties with validated proofs or honest
parties. The simulator sets k′

0 =
∑

i∈SB
ki
0 and k′

1 =
∑

i∈SB
ki
1.

4. The simulator emulates Fglobal-broadcast and sends the correct values (KB,0,KB,1) (as
outputted by the aggregation protocol) to the adversary.

63

Simulation for Signing:

Malicious B:

1. The simulator sends (sign,msg, sid, ssid, (1, 0, 1, 0)) to FG∗
SE-Sch

tsig and receives a signa-
ture σ = (r, s) with public nonce K.

2. The simulator randomizes values µk, e, zA ← Zq, sets KA = zA · G − e ·XA, and
computes K = KB,0 +µk ·KB,1 +KA. It programs the random oracle H to return
µk on input (sid, X, presX,sid,KA,msg) and e on input (K,X,msg).

3. The simulator sends (broadcast, sid, (zA,KA)) to the adversary.

4. Upon receiving the signature σ, the simulator verifies its validity. If the signature
fails verification, it aborts.

Indistinguishability: The adversary’s view in this simulation consists of
(X,πDL, zA,KA) along with e and µk from the random oracle. All these values are
uniformly distributed and satisfy the checks imposed by the adversary, particularly
that the zk-proof verifies and that zA · G = K + e · XA. Hence, the only way for the
adversary to distinguish between the real and ideal worlds is through the distribution of
aborts. The only difference in aborts between the real and ideal executions could occur
during the verification of the signature, i.e., when the adversary forges a signature. As-
suming such an adversary exists, we can construct one that breaks the unforgeability
assumption. Since the messages in the protocol are indistinguishable from an inter-
action with a signing oracle, if the adversary produces a signature that verifies on a
message msg′ ̸= msg that was not signed, the simulator can use this signature to send
to the signing oracle and break the unforgeability assumption.

Malicious ApidA :

1. Upon receiving (zA,KA), the simulator verifies that zA · G = KA + e ·XA. If the
check fails, it aborts.

2. The simulator calculates kA = zA − exA (where xA was extracted during the key
generation simulation) and computes the following values:

(a) α0 = nH

(b) α1 = nH

(c) β0 = k′
0

(d) β1 = k′
1

3. The simulator sends (sign,msg, sid, ssid, (α0, β0, α1, β1)) to FG∗
SE-Sch

tsig and receives a
valid signature (z, e).

4. The simulator emulates FDAHE to return z as the plaintext.

5. The simulator emulates Fglobal-broadcast to send (global-broadcast, sid, (z, e)) to the
adversary.

Proof of the Security of Slightly Enhanced Schnorr-based Oracle (The-
orem 8.2) We prove Theorem 8.2 first by defining the Generalized Forking Lemma
(Lemma D.4) as in [BN06, Lemma 1]. Then, we define Non-Biased Slightly Enhanced
Schnorr-based oracle (Functionality D.4), existential unforgeability experiment (Ex-
periment D.6), and Algebraic One More Discrete Log experiment (Experiment D.7).
We also provide a simulation of a Slightly Enhanced Schnorr Signing oracle using a
Non-Biased Slightly Enhanced Schnorr Signing oracle (Simulation D.10), thus proving
that they are equivalent.

64

Lemma D.4 (Generalized Forking Lemma [BN06, Lemma 1]) Let nr ≥ 1 be
an integer. Let Anr(inp, h1, . . . hnr ; ρ) be a randomized algorithm with randomness ρ,
and assume that it outputs either (ℓ, out) for some 1 ≤ ℓ ≤ nr or ⊥. Let H be the set
of possible responses of the random oracle and assume that a random oracle uniformly
samples from H. Let acc(Anr) be the probability, over inp ← InpGen, h1, . . . hnr ← H
and ρ ← R for some given sets H and R, that Anr(inp, h1, . . . hnr ; ρ) does not return
⊥. Consider ForkAnr

(h1, h
′
1, . . . , hnr , h

′
nr
) as in Simulation D.5. The probability that

ForkAnr
(h1, h

′
1, . . . , hnr , h

′
nr
) does not return ⊥, where h1, . . . , hnr and h′

1, . . . , h
′
nr

are
uniformly sampled from H, is at least

acc(Anr)

(
acc(Anr)

nr
− 1

|H|

)
.

Proof (Proof of Theorem 8.2). Let Ans,nkg,nr

SE−Sch−Forger be a PPT algorithm that satisfies

Exp
G∗
Non-Biased-SE-Sch

EU (A, 1κ, ns, nkg) with probability at least ϵ, and uses at most nr calls to

the random oracle H. Then, SExpAOMDL

ExpEU(A
ns,nkg,nr

SE−Sch−Forger
)
and A

SExpEU
AOMDL−Sch are well defined. The

algorithm A
SExpEU
AOMDL−Sch until command line 8 is equivalent to Fork

SExpAOMDL

ExpEU(A
ns,nkg,nr
SE−Sch−Forger

)

.

Thus, according to the Generalized Forking Lemma (Lemma D.4), the success proba-

bility of A
SExpEU
AOMDL−Sch until command line 8 is at least

ϵ

(
ϵ

nr
− 1

|H|

)
Therefore, the success probability of A

SExpEU
AOMDL−Sch is at least ϵ

(
ϵ
nr
− 1

|H|

)
times the

chance that the vectors would be linearly dependent. The sampled vectors are linearly
dependent if and only if a presign has the same value of µ for the two signatures. The
probability of a presign with the same µ for two signatures is at most ns

|H| . Thus, the

success probability of A
SExpEU
AOMDL−Sch is at least

ϵ

(
ϵ

nr
− 1

|H|

)(
1− ns

|H|

)
The expected running time ofA

SExpEU
AOMDL−Sch is bounded by 2TIME(Ans,nkg,nr

SE−Sch−Forger)+O(nr+
ns + nkg).

D.3 Proof of Realization of the Reconfiguration (Theorem 8.5)

Next, we provide the full proof of Theorem 8.5.

Proof. We start with the varying threshold protocol: First let us describe the correct-
ness of the protocol:

Correctness: We want to see that one can decrypt as typical:∑
jR∈SBR

∆λ
SBR
0,jR

[sk]jR = ∆2sk. First let us make a few notations we denote

r =
∑

jT∈S1
BT

∑
ℓ∈[w][[rjT]]b·2σb

ℓ. Then note that skmasked =
∑

ℓ∈[w]([[sk]]b +∑
jT∈S1

BT

[[rjT]]b·2σ)b
ℓ. We have that [[sk]]b + [[sk]]b +

∑
jT∈S1

BT

[[rjT]]b·2σ ≤
b + (tR + 1)b · 2σ ≤by assumption |Ppk| thus [[sk]]b + [[sk]]b +

∑
jT∈S1

BT

[[rjT]]b·2σ

65

mod |Ppk| = [[sk]]b + [[sk]]b +
∑

jT∈S1
BT

[[rjT]]b·2σ over Z. From this we can conclude

that skmasked = sk + r (This entire argument assumes that the plaintext space is a
Z-module, see definition A.1). Returning to our goal we get that

∑
jR∈SBR

∆λ
SBR
0,jR

[sk]jR =
∑

jR∈SBR

∆λ
SBR
0,jR

∆skmasked −
∑

jT∈S1
BT

[rjT]jR


= ∆2sk+∆2r −

∑
jT∈S1

BT

∑
ℓ∈[w]

∆2[[rjT]]b·2σb
ℓ

= ∆2sk+∆2r −∆2r = ∆2sk

Here the second equality comes from the correctness of the PVSS scheme. The com-
putation of the verification keys is essentially the same but happens under the homo-
morphism of the commitment scheme.

Varying Threshold Simulation: Assume the existence of two straight line sim-
ulators Skeygen and STDec satisfying the following properties:

1. Skeygen(pk) emulates a key generation protocol ending with a public key pk and
verification keys vkBT . The verification keys are commitments of points on a t-
degree polynomial where the free coefficient is sk, and sk corresponds to pk. In
addition, malicious parties receive shares [sk]iT (indistinguishable from the shares
in the real execution) corresponding to the verification keys. The simulator can
extract the shares.

2. STDec(pk, {vkBT }, ct, {[sk]jT }jT∈U) that given a cipher text ct emulates a threshold
decryption protocol ending with the correct decryption pt.

The simulation will thus work as follows:

1. Upon receiving a request for key generation, the simulator sends (keygen, pid, sid)
on behalf of the malicious parties to FDAHE and receives pk. It then uses Skeygen(pk)
to land on the correct key pk along with verification keys vkBT for iT ∈ BT . If
the adversary aborts during the execution on behalf of a subset UBT ,keygen, the
simulator sends (continue, UBT ,keygen) to FDAHE .

2. Upon receiving a valid decryption request from A the simulator sends
(decrypt, pid, sid, ct) to FDAHE. Upon receiving the plaintext pt the simulator uses
STDec(pk, {vkBT }, ct, {[sk]jT }jT∈U) to emulate the decryption protocol landing on
pt as the decryption.

3. Upon receiving a reconfiguration request the simulator sends FDAHE

(reconfigure, pid, sid, Γ) for the correspondent access structure. It then starts
the emulation of the reconfiguration protocol as follows:

(a) Randomize an honest party j∗T pick random values for the shares for the ma-
licious parties and this honest party (denoted by [riT]jT). For the malicious
parties compute their commitments, encryption and proofs honestly and set

C
iT ,j∗T
Share,R = Compp([riT]j∗T) + vk. Then generate the commitments on the coeffi-

cients C
i∗T ,ℓ

Share,T using interpolation in the exponent. In addition generate a fake
proof for this party.

(b) Act according to the real execution emulating FACS. Upon receiving a subset
SB , check if j∗ ∈ S1

BT
. If not, rewind.

66

(c) Use the secret keys skjT to reconstruct [r]iT and predict the value of the
plaintext of ctmasked-key (=

∑
i∈S1

BT

riT).

(d) Use STDec to simulate threshold decryption landing on pt.

Indistinguishability: We argue that the distribution is indistinguishable via a se-
quence of hybrids.

– H0 - the real execution.

– H1 - same as H0 but messages during the key generation are replaced by those
generated by Skeygen.

– H2 - same as H1 but messages during threshold decryption are replaced by those
generated by STDec.

– H3 - same as H2 but encryptions are replaced by encryptions of zeros.

– H4 - same as H3 but encryptions are replaced by the encryptions generated by S.

– H5 - the ideal world execution.

Hybrid H0, H1 and H2 are equivalent from the indistinguishability of Skeygen,STDec.
Hybrids H2, H3, and H4 are indistinguishable from each other due to the ind-cpa and
circular security assumption of the encryption scheme. Thus the remaining differences
between H4 to H5 are i) the zk-proof, ii) the commitment of the distinguished party,
and iii) the output distribution. Thus i)H4, H5 are indistinguishable by the zk-property
of the zk proof, ii) the hiding property of the commitment scheme, and iii) the output
distribution of the verification keys which is randomized the same way as in the real
execution and satisfies the property that vkBR lies on the same tT degree polynomial
with the free coefficient sk.

We are now ready to move to the Constant Threshold Protocol, let us again start
by describing the correctness of the protocol:

Correctness: We argue that [sk]iR = f(iR) + g(iR) where f is the original poly-
nomial used for the sharing of sk used by the quorum BT and g is a polynomial
representing a sharing of 0.

67

∆3f(iR) = ∆3
∑

jT∈S5
BT

λ
S5
BT

iR,jT
[sk]jT

= ∆3

 ∑
jT∈S5

BT

λ
S5
BT

iR,jT
([sk]jT +

∑
j∗
T
∈S1

BT

[rj∗
T
]jT)

−∆3
∑

jT∈S5
BT

λ
S5
BT

iR,jT

∑
j∗
T
∈S1

BT

[rj∗
T
]jT

= ∆2

 ∑
jT∈S5

BT

∆λ
S5
BT

iR,jT
([s̄k]jT)

−∆3
∑

jT∈S5
BT

λ
S5
BT

iR,jT

∑
j∗
T
∈S1

BT

[rj∗
T
]jT

= ∆2

 ∑
jT∈S5

BT

λ
S5
BT

iR,jT
(
∑

j∗
T
∈S3

BT

λ
S3
BT

0,j∗
T
[[s̄k]jT]j∗T)

−∆3
∑

jT∈S3
BT

λ
S3
BT

iR,jT

∑
j∗
T
∈S1

BT

[rj∗
T
]jT

= ∆2

(
∑

j∗
T
∈S3

BT

λ
S3
BT

0,j∗
T

∑
jT∈S5

BT

λ
S5
BT

iR,jT
[[s̄k]jT]j∗T)

−∆3
∑

j∗
T
∈S1

BT

∑
jT∈S3

BT

λ
S3
BT

iR,jT
[rj∗

T
]jT

= ∆3[sk]iR +
∑

j∗
T
∈S1

BT

[rj∗
T
]iR −∆3

∑
j∗
T
∈S1

BT

∑
jT∈S3

BT

λ
S3
BT

iR,jT
[rj∗

T
]jT

This indeed gives f(iR) = [sk]iR + g′(iR) − g(iR) where g =
∑

j∗∈S1
BT

gj∗
T
, g′ =∑

j∗
T
∈S1

BT

g′j∗ and gj∗
T
(j) = [rj∗

T
]jT , g

′
j∗
T
(jT) = [rj∗

T
]jT . In particular gj∗

T
(0) = g′j∗

T
(0) =

rj∗
T

which gives that g(0) = g′(0) =
∑

j∗
T
∈S1

jT

rj∗
T

= r. Thus interpolation over any

subset will give sk + r − r = sk as needed. In terms of the size of the shares it is at
most tripled from the size of the previous share.

Constant Threshold Simulation: The simulator is similar to the simulator for the
varying threshold case. Steps (1) and (2) of the simulators are identical (i.e. the simu-
lation of the Reconfiguration itself). The simulator then:

3. Set [s̄k]iT =
∑

jT∈S1
BT

[rjT]iT and as the public parameters it sets vkiT +∑
jT∈S1

BT

CjT ,iT
Share,T . It then cheats in the zk proof πiT

Share,T .

4. It continues the rest of the protocol similarly to honest parties.

Indistinguishability: The indistinguishability argument is similar to the varying
threshold case up to the transition between H4 and H5. In this case, the differences
are: i) the ZK proofs, ii) the commitments of the free coefficient of the polynomial,
and iii) the distribution of the output. The zk-proofs and commitments are indistin-
guishable as before. In the real execution the parties received f(jR) + g(jR) where
f(0) = ∆sk, g(0) = 0 while in the simulated execution they get fS(jR) + gS(jR). The
adversary may now hold {f(jT)}jT∈U∩BT and {f(jR) + g(jR)}jR∈U∩BR both are in-
distinguishable from the values in the ideal execution based on the statistical security
of Shamir Secret Sharing Over the Integers. Thus the output is indistinguishable.

68

E Performance Full Data

We thereby give the full experimental data for DKG, presign and sign in Table 2,
Table 3 and Table 4 respectively.

Encryption
Scheme

Number of
Tangible
Parties

Nodes Running
Time (ms)

Client Running
Time (ms)

Class Groups

3 309 6
5 368 4
10 443 7
30 720 7
50 1154 5
100 1727 5
150 2357 4

Paillier

3 233 7
5 202 6
10 253 5
30 592 4
50 987 8
100 1600 5
150 2368 3

Table 2: Key Generation Running Time by Encryption Scheme and Number of Tan-
gible Parties

F Instantiating TAHE

In this section we discuss some of the approaches for instantiating the functionality
FTAHE A.5. In particular we discuss the currently most well known options for TAHE
based on Paillier, Class Groups and lattices. In addition we discuss some important
optimizations in the case of decryption of signatures.

F.1 The Scheme

Using [FMM+23] for threshold Paillier one can see that the threshold decryption is
naturally asynchronous. Unfortunately the known methods for generation RSA mod-
ulus in MPC utilize additive secret sharing and thus are synchronous [CHI+21]. This
means that during key generation one must give up on asynchronicity. This can be
mitigated by having a one time generation of the RSA modulus and then for future
key generation use an ala-ElGamal variant [BG10]. For the classical Paillier scheme
[FMM+24] show one can achieve secure function evaluation for valid ciphertext. As
shown in the original paper [Pai99] every element is a valid ciphertext and thus it is
enough to satisfy our stronger definition.

For Class Groups based encryption as presented in [BDO23] the threshold decryp-
tion phase is still asynchronous. As for the key generation while it is presented in
an synchronous manner it can be easily transformed to the asynchronous setting. We

69

Encryption
Scheme

Number of
Tangible
Parties

Nodes Running
Time (ms)

Class Groups

3 1480
5 1585
10 1949
30 3070
50 4775
100 6558
150 8501

Paillier

3 652
5 729
10 1086
30 2629
50 3830
100 6899
150 10578

Table 3: Pre-Sign Running Time by Encryption Scheme and Number of Tangible
Parties

Encryption
Scheme

Total
Voting
Power

Nodes Running
Time (ms)

Client Running
Time (ms)

Class Groups

3 1350 500
9 2132 491
30 3418 492
90 4362 491
150 15994 501
300 18649 504

Paillier

3 292 649
9 515 649
30 536 652
90 493 654
150 454 659
300 1063 670

Table 4: Sign Protocol Running Time by Encryption Scheme and Total Voting Power

70

present such transformation in protocol F.1 which also works for the ala ElGamal Paili-
ier variant. The simulation utilizes that in such encryption schemes linear key bias is
proven to not hurt security [BCD+24] similarly to our technique for ECDSA. Another
issue that arises is that the scheme demands honest majority, while this may look like
a moot point as our protocol assumes t < n/3. But practically speaking one may still
want to take the threshold of for the encryption scheme to be larger as the attacks
based on breaking the threshold scheme are much simpler (just collecting the share),
while typical attacks on the asynchronous protocol which cause us to choose t < n/3
demand ”splitting” of the network which may be practically a much harder attack to
preform. That being said following the proofs in [BDO23] the honest majority is needed
for the complaint mechanism of the VSS and the guaranteed output delivery and not
for the basic security of the encryption scheme. Thus using a PVSS instead of a VSS
and giving up on guaranteed output delivery may allow one to use the scheme with any
threshold. Secure function evaluation works as well although as shown in Lemma F.1.

Lattice based encryption is much more complex as it it’s threshold decryption is
typically synchronous [MBH23], while asynchronous solutions exists [BGG+18] they
suffer from poor performance especially in regards to communication complexity. As
for key generation we are unaware of any works providing an asynchronous solution.
In addition it does not naturally admit secure linear evaluation although recent work
shows that at least for BGV it is achievable [CNS23]. Otherwise one have to use multiple
bootstrapping [Klu22] or resort to the classical approach of noise flooding. Note that
these works assume proofs of correct evaluation are given which we would like to avoid
in our framework.

The main advantage of using lattice based encryption is that you may also allow
low level multiplication depth which will allow the presigns in the ECDSA protocol to
be used for every user multiplying to get an encryption of kx.

F.2 El-Gamal Style Asynchronous Key Generation and Secure
Function Evaluation

We use the following notations:

1. We use multiplicative notation.
2. H and F ≤ H - finite abelian groups. H is of unknown order and F is of known order

q and admits an efficient algorithm for computing discrete logs in the subgroup.
3. Dκ - a probability distribution such that for g ← H/F, r ← Dκ then gr is indistin-

guishable from random.

Let us start with Lemma for secure function evalution:

Lemma F.1 Defining Eval by ctα+rαq
0 · ctβ+rβq

1 + Encpk(0; r) where rα, rβ , r ← Dκ

satisfy secure function evaluation for ElGamal style encryption.

Proof. Let ct0 = (g0, ḡ0), ct1 = (g1, ḡ1). Note that each of the elements can be composed
to give g0 = g0,qf

a0 , ḡ0 = ḡ0,qf
ā0 , g1 = g1,qf

a1 , ḡ1 = ḡ1,qf
ā1 then evaluation with α, β

and randomness r will give (gr · gα+rαq
0,q g

β+rβq

1,q fαa0+βa1 , grs · ḡα+rαq
0,q ḡ

β+rβq

1,q fαā0+βā1).
First we note that g0,q, g1,q, ḡ0,q, ḡ1,q ̸= 1 as this can be check publicly by exponen-
tiation by q. since gcd(H/F, q) = 1 thus whatever subgroup of H/F the elements
g0,q, ḡ0,q, g1,q, ḡ1,q are in the result of the exponentiation by α + rαq or β + rβq is
indistinguishable from random in the subgroup. Thus getting ptf the simulator may

send gr
′
, gr

′sfptf . Both elements of the ciphertext will be indistinguishable by the sub-
group indistingusihability property (the first will be in H/F instead of H and the second

71

the other way around). In the case that ptf =⊥ the simulator will randomize γ and

will send gr
′
, gr

′sfγ the first coordinate will be indistingusihable as first from the low
order assumption and then from the subgroup indistinguishability property. This is
since the elements g0,q, g1,q, ḡ0,q, ḡ1,q will have large enough order such that extracting
gr will be impossible.

In the following we give a general overview for an El-Gamal style asynchronous key
generation F.1 .

Correctness: We have pk = g
∑

j∈SB
αj and

∑
j∈SB

λSB
j,0 [sk]j = ∆sk and vkj =

g
∑

j′∈S fj′ (j) = g[sk]j .
Simulation: The simulator request a pubic key from the functionality receiving pk.

It then randomizes a value αi for every honest party similarly to the honest protocol. It
then sends Ci,j = g[αi]j + pk and cheats in the zk-proof. Upon receiving the shares on
behalf of the malicious parties it follows the honest protocol by validating the proofs
and emulating FACS. It then uses the secret keys to the public encryptions ski to extract
t+ 1 valid shares on αi for every malicious party and thus can reconstruct αi. It then
request from the functionality to change the public key to be pk|SB′\U| · g−

∑
j∈SB

αj .
Indistinguishability: The messages sent by the honest party are indistinguishable
based on the hiding property of the commitment scheme, the zk property of the zk
proof and the security of the Shamir Secret Sharing over the integers.

F.3 Reconstruction Optimization

As shown in [FMM+24] in the case of signature generation it forgo the zk proofs
needed during threshold decryption and for a single participant to combine the de-
cryption shares and broadcast the result. Then proofs will be sent only if the resulting
decryption is not a valid signature. Unfortunately in the asynchronous setting there is a
clear problem, the participant which preforms the recombination may not be available
for the broadcast round and parties may not be available for sending their proofs in case
of a failure. The first issue can be solved using a leader election algorithm [BBHP22]
and the second can be solved by sending the zk proofs during threshold decryption
but verifying them only in the case of failure. In some setting such as proof-of-stake
blockchains leader election is often needed anyways and thus this would not effect per-
formance significantly. On the contrast in system will small number of participants but
high network latency it may be better for each party to locally recombine the decryp-
tion shares. We remark that this optimization does not work if Thus the distributed
decryption looks as follows:

1. Generate the decryptions shares dsi and proofs πi
ds and broadcast them.

2. Elect a leader.
3. The elected leader recombines the shares and checks if the signature verifies. If it

verifies it broadcasts it, else it verifies the proofs until collecting t+1 valid shares.
At this points it calculates a correct signature along with a message cheaters and
the failed proofs.

4. The rest of the parties upon receiving a signature check it’s validity, if it is not
valid the consider the leader malicious. Upon receiving a message cheaters they
verifies the proofs for the decryption shares and consider any party for which the
proofs failed malicious.

72

PROTOCOL C.3
(
Sign ΠECDSA

Sign : Sign(G, G,H, q, sid, ΓB , pk, X,XA, ctkey, presX ,msg)
)

The protocol is parameterized with an ECDSA group description (G, G, q) along with another gen-
erator H for Pedersen commitments, an access structure ΓB , a unique session identifier sid, a TAHE
public key pk, the DKG protocol output (X,XA, ctkey), the pre-sign protocol output with corre-
sponding sid, presX,sid = (ctγ , ctγ·key, ctγ·k0

, ctγ·k1
, RB,0, RB,1), and the message to be signed msg.

The protocol interacts with a centralized party ApidA
and a set of parties B = {Bi}i∈[n]. The parties

output a valid ECDSA signature σ = (r, s) with verification key X.

1. ApidA
does as follows:

(a) Call the random oracle H on msg and receive m.
(b) Sample kA, α, β ← Zq and ρ0, ρ1, ρ2, ρ3 ← Rpp, and computes:

i. Ck = Pedersen.ComG,H(kA; ρ0)
ii. Cα = Pedersen.ComG,H(α; ρ1)
iii. Cβ = Pedersen.ComG,H(β; ρ2)
iv. Ckx = Pedersen.ComXA,H(kA; ρ3)

(c) Run the protocols Π
LDcom[Ck,H]

zk (G; k−1
A ,−k−1

A ρ0), Π
LDcom[Cα,H]

zk (G; (α−1,−α−1ρ1) and

Π
LDcom[G,H]

zk-uc (Cβ ; β, ρ2) generating proofs πk and πα, πβ .
(d) Call the random oracleH(sid,msg,G, G, q,H,X, presX,sid, Ck, Ckx, XA, Cα, Cβ , πk, πα, πβ),

and receives µ0
k, µ

1
k, µ

G
k . It then computes:

– ctγ·k = (µ0
k ⊙ ctγ·k0

)⊕ (µ1
k ⊙ ctγ·k1

)⊕ µG
k

– R′
B = (µ0

kRB,0) + (µ1
k · RB,1) + µG

k ·G
(e) Sample η0, η1 ← Rpk and computes:

i. ctα,β = AHE.Eval(pk, (ctγ , ctγ·k), (0, β, α); η0)

// In honest protocol encrypts γ · (α · (µ0
kkB,0 + µ1

kkB,1 + µG
k) + β) := γ · kB

ii. RB = (α · R′
B) + (β ·G)

iii. R = k−1
A · RB and r = Rx−axis

iv. a1 = r · kA · xA + m · kA and a2 = r · kA

v. ctA = AHE.Eval(pk, (ctγ , ctγ·key), (0, a1, a2); η1)
// In honest protocol encrypts γ · kA(m + rx)

(f) Generate the following proofs:

i. πkx � Π
LDcomEq[(G,H),(XA,H)]

zk (Ck, Ckx; kA, ρ0, ρ3)

ii. πR � Π
LDComDL[G,H,(G,R,q)]

zk (Ck, RB ; kA, ρ0)

iii. πRB
� Π

LVecDComDL[(G,H),(G,(R′
B,G),q)]

zk (Cα, Cβ), RB ; (α, β), ρ1, ρ2)

iv. πctα,β
� Π

LDComEval[G,H,pk,(ctγ,ctγ·k ,(G,G,q))]

zk (ctα,β , (Cβ , Cα); (β, α), ρ0, ρ1, η0)

v. πctA
� Π

LDComEval[G,H,pk,(ctγ,ctγ·key),(G,G,q)]

zk (ctA, (C1, C2); (a1, a2), ρ3r+ρ0m, rρ0, η1)
(g) Send (broadcast, sid, (R,RB , Ck, Cα, Cβ , Ckx, ctA, ctα,β , πk, πα, πβ , πkx, πR, πRB

, πctα,β
,

πctA
)) to Fbroadcast.

2. Each Bi does as follows:
- Round 1:

(a) Call the random oracle H(msg) and receives m.
(b) Receive (broadcast, sid, (R,RB , Ck, Cα, Cβ , Ckx, ctA, ctα,β , πk, πα, πβ , πkx, πR, πRB

,
πctα,β

, πctA
)) from Fbroadcast.

(c) Call the random oracle H(sid,msg,G, G, q,H,X, presX,sid, Ck, Ckx, XA, Cα, Cβ , πk, πα, πβ)
and compute:

i. ctγ·k = (µ0
k ⊙ ctγ·k0

)⊕ (µ1
k ⊙ ctγ·k1

)⊕ µG
k

ii. R′
B = (µ0

kRB,0) + (µ1
k · RB,1) + µG

k ·G
iii. C1 = (r ⊙ Ckx)⊕ (m⊙ Ck)
iv. C2 = r ⊙ Ck

(d) Verify the proofs. If fail abort and consider ApidA
malicious.

(e) Send (decrypt, pk, ctA) and (decrypt, pk, ctα,β) to FTAHE.

- Broadcast Round:
(a) Receive (decrypted, pk, ctA, ptA) and (decrypted, pk, ctα,β , pt4) from FTAHE.

(b) Compute s′ = pt−1
4 · ptA mod q and s = min{s′, q − s′}.

(c) Send (global-broadcast, sid, i, (r, s)) to FΓB
global-broadcast

3. Output:

(a) ApidA
receives (global-broadcast, sid, (r, s)) from FΓB

global-broadcast.

(b) ApidA
verifies that (r, s) is a valid ECDSA signature, if the verification fails it aborts and

considers B malicious.
(c) Both ApidA

and B outputs (r, s).

73

PROTOCOL C.4
(
Schnorr Based Pre-sign ΠSchnorr

pres : SchPresign(G, G, q, ΓB , sid, pk
)

The protocol is parameterized with an elliptic curve group description (G, G, q) along
with an access structure ΓB , a unique session identifier sid, a encryption key to a TAHE
scheme pk. The protocol interacts with a centralized party ApidA and a set of parties
B = {Bi}i∈[n]. The set of parties B can only send messages to parties in A through
the functionality Fglobal-broadcast. Each party Bi outputs:

– KB,0,KB,1 - points on the curve equal to k0 ·G and k1 ·G respectively.
– The distributed parties also output ctk0 , ctk1 - encryptions of k0, k1 respectively.

1. Each Bi does as follows:
- Round 1

(a) Bi samples ki
0, k

i
1 ← Zq and ηi

0, η
i
1 ←Rpk and computes:

i. Ki
B,0 = ki

0 ·G
ii. Ki

B,1 = ki
1 ·G

iii. ctik0
= AHE.Enc(pk, ki

0; η
i
0)

iv. ctik1
= AHE.Enc(pk, ki

1; η
i
0)

(b) Run Π
LEncDL[pk,(G,G,q)]
agg on inputs (ctik1

,Ki
B,0; k

i
0, η

i
0) and (ctik1

,Ki
B,1; k

i
1, η

i
1) re-

ceiving (ctk0 ,KB,0), (ctk1 ,KB,1).

- Broadcast Round:
(a) Send (global-broadcast, sid, i, (pidA,KB,0,KB,1)) to Fglobal-broadcast.

2. Output.
– ApidA receives (global-broadcast, sid, , (pidA,KB,0,KB,1)) from Fglobal-broadcast.
– ApidA Verifies that KB,0,KB,1 ∈ G \ {0} elset it aborts and considers B mali-

cious.
– Both parties output KB,0,KB,1.
– Parties in B also record ctk0 , ctk1 .

74

PROTOCOL C.5
(

Schnorr Based Sign ΠSchnorr
sign :

SchSign(G, G, q, sid, pk, X, ctkey, presX)
)

The protocol is parameterized with an elliptic curve group description (G, G, q) along
with an access structure ΓB , a unique session id sid, a encryption key to a TAHE
scheme pk, a verification key X, an encryption of the share of the distributed party of
the signing key ctkey and the output of a unique pre-sign presX = (KB,0,KB,1). The
protocol interacts with a centralized party ApidA and a set of parties B = {Bi}i∈[n].
The set of parties B can only send messages to parties in A through the functionality
Fglobal-broadcast. The parties output a valid Schnorr signature (z, e) to a verification key
X.

1. ApidA does as follows:
(a) Samples kA ← Zq and computes KA = kA ·G.
(b) Call the random oracle H(sid, X, presX,sid,KA,msg), and receive µk.
(c) Compute K = (KB,0) + (µk ·KB,1) +KA.
(d) Call the random oracle H(K,X,msg), and receive e.
(e) Compute zA = kA + e · xA.
(f) Send (broadcast, sid, (zA,KA)) to Fbroadcast

2. Each Bi does as follows:
- Round 1:

(a) Receive (broadcast, sid, (zA,KA)) from Fbroadcast and verify that KA ∈ G else
consider ApidA malicious and abort.

(b) Check that zAG = KA + e ·XA. If not, it consider ApidA malicious and abort.
(c) Call the random oracle H(sid, X, presX,sid,KA,msg), and receive µk.
(d) Bi computes:

i. ctk = ctk0 ⊕ µk ⊙ ctk1

ii. Compute K = (KB,0) + (µk ·KB,1) +KA.
(e) Call the random oracle H(K,X,msg), and receive e.
(f) Compute ctB = ctk ⊕ (e · ctkey)⊕ zA.
(g) Send (decrypt, pk, ctB) to FTAHE.

- Broadcast Round
(a) receive (decrypted, pk, ctB , ptB) from FTAHE.
(b) set σ = (ptB , e).
(c) Send (global-broadcast, sid, i, σ) to Fglobal-broadcast.

3. Output:
(a) Party ApidA receives (global-broadcast, sid, σ) from Fglobal-broadcast.
(b) Party ApidA verifies that σ is a valid signature if falis it aborts and considers

B malicious.
(c) Both parties output σ.

75

PROTOCOL C.6
(

Reconfiguration with varying threshold Πvar-th
ReConfigure:

ReConfigure(TAHE,PVSS, 1κ, 1σ, tT , tR, nT , nR)
)

The protocol interacts with a transferring quorum BT = {BiT
T }iT∈[nT] and a receiving

quorum BR = {BiR
R }iR∈[nR]. BT holds a tT -out-of-nT secret sharing [sk]iBT

of the secret
decryption key. Both quorums hold the corresponding public key pk, the verification
keys of BT denoted vkBT = {vkiTBT

}iT∈[nT] and public keys of an AHE scheme used

for the PVSS pkBT
= {pkiTBT

}iT∈[nT], pkBR
= {pkiRBR

}iR∈[nR] along with an encryption

of the secret key ctsk = Encbpk(sk; η⃗). The protocol outputs a fresh tR-out-of-nR secret

shares [sk]iRBT
on the secret key sk held by BR and public verifications keys vkBR =

{vkiRBR
}iR∈[nR] corresponding to the shares.

1. BiT ∈ BT does as follows:
- Round 1:
(a) Sample a mask riT ← [−D(Kκ) · 2σ·w, D(Kκ) · 2σ·w].
(b) Calculate ctiTmask = Encb·2

σ

pk (riT ; η⃗iT) along with a commitment

CiT
mask = Com([[riT]]b·2σ). In addition generate proof πiT

mask,T ←
Π

LEncDL[pk,b·2σ]
zk (ctiTmask,C

iT
mask; riT , η⃗iT).

(c) ({ctiT �jR
Share,R}jR∈[nR], {CiT ,ℓ

Share,R}ℓ∈[tR], π
iT
Share,R)← Dist(pkBR

,Packb([[riT]]b·2σ)).

(d) Send (broadcast, sid, iT , (ct
iT
mask,C

iT
mask, π

i
mask, {ct

iT �jR
Share,R}jR∈[nR],

{CiT ,ℓ
Share,R}ℓ∈[1,tR]}ℓ∈[tR], π

iT
Share,R)) to Fbroadcast.

- Round 2:
(a) Receive (broadcast, sid, j, (ctjmask, π

j
mask, {ct

j�jR
Share,R}jR∈[nR], {Cj,ℓ

Share,R}ℓ∈[tR]}ℓ∈[1,tR],

πj
Share,R) from Fbroadcast.

(b) Set Cj,0
Share,R = Packb·2σ (C

j
mask). If any of them fail consider j malicious. Else

send (validate, sid, iT , j) to F
([n]
t+1)B

ACS .
- Round 3:
(a) Receive S1

BT
from FACS and set ctmasked-key = ctsk ⊕

∑
jT∈S1

BT

ctjTmask.

(b) Set (dsiT , π
iT
ds) ← TAHE.TDecpk(ctmasked-key, vk

iT
BT

; [sk]iTBT
) and send

(broadcast, sid, iT , (dsiT , π
iT
ds)) to Fbroadcast.

- Broadcast Round:
(a) Upon receiving (broadcast, sid, j, (dsj , π

j
ds)) verify that the proof πj

ds is valid, if
it fails consider j malicious.

(b) Collect a subset S3,iT
BT

∈
(
[n]
t+1

)
with validated proofs and calculate skmasked =

TAHE.Recbpk({dsjT }jT∈S
3,iT
BT

).

(c) Calculate vkjRBR
= Com(∆skmasked)−

∑
iT∈S1

BT

∑
ℓ∈[tR] C

j,ℓ
Share,R ⊙ jℓT .

(d) Send (global-broadcast, sid, i, (skmasked, {{ctjT �jR
Share,R}jT∈S1

BT

, vkjRBR
}j∈SB}jR∈[nR])

to Fglobal-broadcast.
2. BiR ∈ BR does as follows:

(a) Upon receiving (skmasked, {{ctjT �jR
Share,R}jT∈S1

BT

, vkjRBR
}j∈SB}jR∈[nR]) from

Fglobal-broadcast set [rjT]iR ← Dec(skiT , ct
jT �iR
Share,R).

(b) Calculate [sk]iRR = ∆skmasked −
∑

jT∈S1
BT

[rjT]iR

(c) Record ([sk]iTBR
, {vkjRBR

}jR∈[nR]).

76

PROTOCOL C.7
(

Reconfiguration with Constant Threshold- Πconst-th
reconfigure:

reconfigure(TAHE,PVSS, 1κ, t, nT , nR)
)

The protocol interacts with a transferring quorum BT = {BiT
T }iT∈[nT] and a receiving

quorum BR = {BiR
R }iR∈[nR]. BT holds a t-out-of-nT secret sharing [sk]iBT

of the secret
decryption key. Both quorums hold the corresponding public key pk, the verification
keys of BT denoted vkBT = {vkiTBT

}iT∈[nT] and public keys of an AHE scheme used

for the PVSS pkBT
= {pkiTBT

}iT∈[nT], pkBR
= {pkiRBR

}iR∈[nR]. The protocol outputs

a fresh t-out-of-nR secret sharing [sk]iTBR
of sk, with corresponding verification keys

vkBR = {vkiTBR
}iT∈[nT].

1. BiT
T ∈ BT does as follows:

- Round 1:
(a) Sample riT ← Kκ.
(b) ({ctiT �jT

Share,T }jT∈[nT], {CiT ,ℓ
Share,T }ℓ∈[t], π

iT
Share,T)← Dist(pkBT

; riT).

(c) ({ctiT �jR
Share,R}jR∈[nR], {CiT ,ℓ

Share,R}ℓ∈[t], π
iT
Share,R)← Dist(pkBR

; riT).

(d) Send (broadcast, sid, iT , (({ctiT �jT
Share,T }jT∈[nT], {CiT ,ℓ

Share,T }ℓ∈[t], π
iT
Share,T ,

{ctiT �jR
Share,T }jR∈[nR], {CiT ,ℓ

Share,R}ℓ∈[1,t], π
iT
Share,R) to Fbroadcast.

- Round 2: Receive (broadcast, sid, j, (({ctj�jT
Share,T }jT∈[nT], {Cj,ℓ

Share,T }ℓ∈[t], π
j
Share,T ,

{ctj�jR
Share,T }jR∈[nR], {Cj,ℓ

Share,R}ℓ∈[1,t], π
j
Share,R))

(a) Set Cj,0
Share,R = Cj,0

Share,T and verify the proofs. If any of the checks fail consider

j malicious, Else send (validate, sid, pidiT) to F
([n]
t+1)BT

ACS .

- Round 3: Receive (authorized-subset, sid, S1
BT

)

(a) For every jT ∈ S1
BT

set [rjT]iT = Dec(skiT , ct
jT �iT
Share,T). Calculate [rS1

BT

]iT =∑
jT∈S1

BT

[rjT]iT and [s̄k]iT = [sk]iT + [rS1
BT

]iT .

(b) ({c̄tiT �jT
Share,T }jT∈[nT], {C̄iT ,ℓ

Share,T }ℓ∈[t], π̄
iT
Share,T) � Dist(pkBT

; [s̄k]iT)

(c) Send (broadcast, sid, iT , ({c̄tiT �jT
Share,T }jT∈[nT], {C̄iT ,ℓ

Share,T }ℓ∈[1,t], π̄
iT
Share,T)).

- Round 4: Receive (broadcast, sid, j, ({c̄tj�jT
Share,T }jT∈[nT], {C̄j,ℓ

Share,T }ℓ∈[1,t], π̄
j
Share,T))

(a) Set C̄j,0
Share,T = vkj +

∑
jT∈S1

BT

∑
ℓ∈[t] C

j,ℓ
Share,T ⊙ jℓT . Verify the proofs π̄j

Share,T .

If the check fails consider j malicious. Else send (validate, sid, iT) to F
([n]
t+1)BT

ACS .
- Round 5: Receive (authorized-subset, sid, S3

BT
) from FACS.

(a) Set [[s̄k]jT]iT ← Dec(skiT , c̄t
jT �iT
Share,T) for jT ∈ S3

BT
.

(b) Set [[s̄k]jR]iT =
∑

jT∈S3
BT

∆λ
S3
BT

jR,jT
[[s̄k]jT]iT for jR ∈ [nR].

(c) Set c̄tiT �jR
Share,R = EncpkjT ([[s̄k]jR]iT , ηiT ,jR) along with a zk proof π̄iT �jR

Share,R of en-

cryption of decommitment regarding c̄tiT �jR
Share,R, C̄

jR,iT
Share,R, [[s̄k]jR]iT , ηiT , jR where

C̄jR,iR
Share,R = Com([[s̄k]jR]iT)

(d) Send (broadcast, sid, iT , {c̄tiT �jR
Share,R, π̄

iT �jR
Share,R)}jR∈[nR] to Fbroadcast.

- Round 6: Upon receiving a message from party j calculate C̄jT ,j
Share,T =∑

ℓ∈[t] C̄
jT ,ℓ
Share,T ⊙ jℓ and C̄jR,j

Share,R =
∑

jT∈S3
BT

∆λ
S3
BT

jR,jT
C̄jT ,j

Share,T for jR ∈ [nR] use

C̄jR,j
Share,R as the commitment part of the zk statements. Then work similarly to

round (2) to agree on a valid subset. S5
BT

.
- Broadcast Round: Receive (authorized-subset, sid, S5

BT
) from FACS.

(a) Calculate vkjRBR
=
∑

jT∈S5
BT

∆λ
S5
BT

0,jT
C̄jR,jT

Share,R −∆3 · (
∑

jT∈S1
BT

CjT ,jR
Share,R).

(b) Send (global-broadcast, sid, ({ctjT �jR
Share,R}iT∈S1

BT

{c̄tjT �jR
Share }jT∈S5

BT

, vkjRBR
}jR∈[nR]))

to Fglobal-broadcast.
2. BiT

T ∈ BR Does as follows: Receive (global-broadcast,
({ctjT �jR

Share,R}iT∈S1
BT

{c̄tjT �jR
Share }jT∈S5

BT

, vkjRBR
}jR∈[nR])).

(a) For every jT ∈ S1
BT

set [rjT]iR = Dec(skiR , ct
jT �iR
Share,R).

(b) For every jT ∈ S5
BT

set [[s̄k]iR]jT = Dec(skiR , c̄t
jT �iR
Share,R).

(c) Set [sk]iRBR
= 1

∆3

∑
jT∈S5

BT

∆λ
S5
BT

0,jT
[[s̄k]iR]jT −

∑
jT ∗∈S1

BT

[rjT]iR .

77

SIMULATION D.1
(
Slightly Enhanced ECDSA Lazy Simulation SECDSA

)
Key generation is applied immediately at the beginning. A biaskey request can be
applied only once, and all presign and sign requests must be applied afterward.

1. Key generation:
(a) π ← {(0,O)}
(b) d̃0, d̃1 ← Z∗

q

(c) Invoke (map, 1) to obtain G
(d) Invoke (map, d̃0) and (map, d̃1) to obtain D̃0 and D̃1, respectively
(e) Return (G, D̃0, D̃1)

2. To process a key bias request (biaskey, α
(0)
x , β

(0)
x , α

(1)
x , β

(1)
x):

(a) Set d0 ← α
(0)
x · d̃0 + β

(0)
x and d1 ← α

(1)
x · d̃1 + β

(1)
x

(b) Invoke (map, d0) and (map, d1) to obtain D0 and D1, respectively
(c) (µ0

x, µ
1
x, µ

G
x)← Hkey(D0, D1)

(d) d← µ0
x · d0 + µ1

x · d1 + µG
x

(e) Invoke (map, d) to obtain D
(f) k ← 0;K ← ∅
(g) Return D

3. To process a group oracle query (map, i):
(a) If i /∈ Domain(π):

i. P ← E∗;
while P ∈ Range(π) do: P ← E∗

ii. Add (i,P) and (−i,−P) to π
(b) Return π(i)

4. To process a group oracle query (add,P0,P1):
(a) For j = 0, 1: if Pj /∈ Range(π):

i. i← Z∗
q ;

while i ∈ Domain(π) do: i← Z∗
q

ii. Add (i,Pj) and (−i,−Pj) to π
(b) Invoke (map, π−1(P0) + π−1(P1)) and return the result

5. To process a presignature request:
(a) k ← k + 1

(b) r̃
(0)
k , r̃

(1)
k ← Zq

(c) R̃
(0)
k ← (map, r̃

(0)
k), R̃

(1)
k ← (map, r̃

(1)
k)

(d) K ← K ∪ {k}
(e) Return R̃

(0)
k , R̃

(1)
k

6. To process a sign request (sign, k,mk, ek, α
(0)
k , β

(0)
k , α

(1)
k , β

(1)
k):

(a) If k /∈ K or ek /∈ C then abort
(b) K ← K \ {k}
(c) hk ← HM(mk)

(d) Set r
(0)
k ← α

(0)
k · r̃

(0)
k + β

(0)
k and r

(1)
k ← α

(1)
k · r̃

(1)
k + β

(1)
k

(e) R
(0)
k ← (map, r

(0)
k), R

(1)
k ← (map, r

(1)
k)

(f) (µ0
k, µ

1
k, µ

G
k)← Hk(D, ek, R

(0)
k , R

(1)
k ,mk)

(g) rk ← µ0
kr

(0)
k + µ1

kr
(1)
k + µG

k

(h) Rk ← (map, rk)
(i) tk ← C̄(Rk) ∈ Zq; if tk = 0 or hk + tkd = 0 then return fail.
(j) sk ← r−1

k (hk + tk(d+ ek))
(k) Return (Rk, sk, tk)

78

SIMULATION D.2
(
Slightly Enhanced ECDSA Symbolic Simulation

)
1. Key generation:

(a) Set π ← {(0,O)}
(b) Invoke (map, 1) to obtain G
(c) Invoke (map, d̃0) and (map, d̃1) to obtain D̃0 and D̃1, respectively
(d) Return (G, D̃0, D̃1)

2. To process a key bias request (biaskey, α
(0)
x , β

(0)
x , α

(1)
x , β

(1)
x):

(a) Set d0(d̃0)← α
(0)
x · d̃0 + β

(0)
x and d1(d̃1)← α

(1)
x · d̃1 + β

(1)
x

// These are functions of the existing symbolic variables and not new variables
(b) Invoke (map, d0(d̃0)) and (map, d1(d̃1)) to obtain D0 and D1, respectively
(c) (µ0

x, µ
1
x, µ

G
x)← Hkey(D0, D1)

(d) d(d̃0, d̃1)← µ0
x · d0(d̃0) + µ1

x · d1(d̃1) + µG
x

// From now on, d(d̃0, d̃1) is thought of as the private key
(e) Invoke (map, d(d̃0, d̃1)) to obtain D
(f) Set k ← 0 and K ← ∅, and return D

3. To process a group oracle query (map, i):
(a) If i /∈ Domain(π):

i. P ← E∗;
if P ∈ Range(π) then abort

ii. Add (i,P) and (−i,−P) to π
(b) Return π(i)

4. To process a group oracle query (add,P0,P1):
(a) For j = 0, 1: if Pj /∈ Range(π):

i. i← Z∗
q ;

if i ∈ Domain(π) then abort
ii. Add (i,Pj) and (−i,−Pj) to π

(b) Invoke (map, π−1(P0) + π−1(P1)) and return the result
5. To process a presignature request:

(a) k ← k + 1

(b) R̃
(0)
k ← (map, r̃

(0)
k), R̃

(1)
k ← (map, r̃

(1)
k)

(c) K ← K ∪ {k}
(d) Return R̃

(0)
k , R̃

(1)
k

6. To process a sign request (sign, k,mk, ek, α
(0)
k , β

(0)
k , α

(1)
k , β

(1)
k):

(a) If k /∈ K or ek /∈ C then abort
(b) K ← K \ {k}
(c) hk ← HM(mk)

(d) Set r
(0)
k (r̃

(0)
k)← α

(0)
k · r̃

(0)
k + β

(0)
k and r

(1)
k (r̃

(1)
k)← α

(1)
k · r̃

(1)
k + β

(1)
k

// These are functions of the existing symbolic variables and not new variables

(e) R
(0)
k ← (map, r

(0)
k (r̃

(0)
k)), R

(1)
k ← (map, r

(1)
k (r̃

(1)
k))

(f) (µ0
k, µ

1
k, µ

G
k)← Hk(D, ek, R

(0)
k , R

(1)
k ,mk)

(g) rk(r̃
(0)
k , r̃

(1)
k)← µ0

kr
(0)
k (r̃

(0)
k) + µ1

kr
(1)
k (r̃

(1)
k) + µG

k

(h) Rk ← (map, rk(r̃
(0)
k , r̃

(1)
k))

(i) tk ← C̄(Rk) ∈ Zq; if tk = 0 then abort
(j) sk ← Z∗

q

(k) Substitute(
α
(0)
k

)−1 ((
µ0
k

)−1
(
−µ1

kr
(1)
k (r̃

(1)
k) + s−1

k tk(d(d̃0, d̃1) + ek) + s−1
k hk − µG

k

)
− β

(0)
k

)
for the variable r̃

(0)
k throughout Domain(π), to obtain rk(r̃

(0)
k , r̃

(1)
k) =

s−1
k (hk + tk(d(d̃0, d̃1) + ek)), and abort if any two polynomials collapse

(l) Return (Rk, sk, tk)

79

SIMULATION D.3
(
Slightly Enhanced ECDSA Modified Symbolic Simulation

)
Key generation is applied immediately at the beginning. A biaskey request can be
applied only once, and all presign and sign requests must be applied afterward.

1. Key generation:
(a) Set π ← {(0,O)}
(b) Invoke (map, 1) to obtain G
(c) Invoke (map, d̃0) and (map, d̃1) to obtain D̃0 and D̃1, respectively
(d) Return (G, D̃0, D̃1)

2. To process a key bias request (biaskey, idx):
(a) (µ0

x, µ
1
x, µ

G
x)← Hkey(D̃0, D̃1, idx)

// From now on, µ0
xd̃0 + µ1

xd̃1 + µG
x is thought of as the private key.

(b) Invoke (map, µ0
xd̃0 + µ1

xd̃1 + µG
x) to obtain D

(c) k ← 0;K ← ∅
(d) Return D

3. To process a group oracle query (map, i):
(a) If i /∈ Domain(π):

i. P ← E∗;
if P ∈ Range(π) then abort

ii. Add (i,P) and (−i,−P) to π
(b) Return π(i)

4. To process a group oracle query (add,P0,P1):
(a) For j = 0, 1: if Pj /∈ Range(π):

i. i← Z∗
q ;

if i ∈ Domain(π) then abort
ii. Add (i,Pj) and (−i,−Pj) to π

(b) Invoke (map, π−1(P0) + π−1(P1)) and return the result
5. To process a presignature request:

(a) k ← k + 1

(b) R̃
(0)
k ← (map, r̃

(0)
k), R̃

(1)
k ← (map, r̃

(1)
k)

(c) K ← K ∪ {k}
(d) Return R̃

(0)
k , R̃

(1)
k

6. To process a sign request (sign, k,mk, idk, ek):
(a) If k /∈ K or ek /∈ C then abort
(b) K ← K \ {k}
(c) hk ← HM(mk)

(d) (µ0
k, µ

1
k, µ

G
k)← Hk(D, ek, R̃

(0)
k , R̃

(1)
k ,mk, idk)

(e) Rk ← (map, µ0
kr̃

(0)
k + µ1

kr̃
(1)
k + µG

k)
(f) tk ← C̄(Rk) ∈ Zq; if tk = 0 then abort
(g) sk ← Z∗

q

(h) Substitute
(
µ0
k

)−1
(
−µ1

kr̃
(1)
k + s−1

k tk(µ
0
xd̃0 + µ1

xd̃1 + µG
x + ek) + s−1

k hk − µG
k

)
for r̃

(0)
k throughout Domain(π), and abort if any two polynomials collapse

(i) Return (Rk, sk, tk)

80

FUNCTIONALITY D.4
(
Slightly Enhanced Schnorr Signing Oracle without biases

: G∗Non-Biased-SE-Sch
)

Parameters. A Random Oracle function H : {0, 1}∗ → Zq. Slightly Enhanced Schnorr
oracle works as follows:
Operation.

1. On input (keygen, sid, (G, G, q)), sample x ← Zq and return X = x · G. Record
(sid, X;x).

2. On input (pres, ssid), sample k0, k1 ← Zq and return K0 = k0 ·G and K1 = k1 ·G.
Record (ssid,K0,K1; k0, k1) and standby.

3. On input (sign, sid, ssid,msg) do:
(a) Retrieve (ssid,K0,K1; k0, k1) and (sid, X;x) from memory. If no such ssid or

sid exist, ignore.
(b) Set µ = H(X,K0,K1,msg) and set e = H(X,K0 + µ ·K1,msg).
(c) Set z = k0 + µk1 + ex mod q.
(d) Erase (ssid,K0,K1; k0, k1) from memory and return (sid, ssid,msg,K0 + µ ·

K1, z).

ALGORITHM D.5
(
Forking Algorithm: ForkA(inp, h1, h

′
1, . . . , hnr , h

′
nr
)
)

Parameters. A forking algorithm is parameterized by A and its random space R. The
algorithm works as follows:
Operation.

1. Sample ρ← R.
2. Call A(inp, h1, . . . hnr ; ρ). If A outputs ⊥, then return ⊥, otherwise retrieve (ℓ, out).
3. Call A(inp, h1, . . . , hℓ−1, h

′
ℓ, . . . , h

′
nr
; ρ). If A outputs ⊥, then return ⊥, otherwise

retrieve (ℓ′, out′).
4. If ℓ ̸= ℓ′ or hℓ = h′

ℓ′ then return ⊥.
5. Return (ℓ, out, out′).

EXPERIMENT D.6
(

G∗-Existential Unforgeability Experiment

ExpG
∗

EU (A, 1
κ, ns, nkg) following [BMP22]

)
The experiment interacts with an adversary A and is parameterized with 1κ.

1. Call G∗ with (setup) and hand (G, G, q) to A.
2. The adversary A makes at most nkg = poly(κ) adaptive keygen calls to G∗ and at

most ns = poly(κ) adaptive pres or sign calls to G∗ in the following way:
– Call G∗ with (keygen, sid) and hand X to A.
– Call G∗ with (pres, ssid) and hand K0 and K1 to A.
– Call G∗ with (sign, sid, ssid,msg) and hand (sid, ssid,msg, σ) to A.

3. A outputs (sid,msg, σ).

The experiment’s output is 1 iff Verfiy(sid,msg, σ) = 1 and m was not queried to G∗,
otherwise output 0.

81

EXPERIMENT D.7
(
Algebraic One More Discrete Log ExpnDL

AOMDL(A, 1
κ, (G, G, q))

[Bol02]
)

The experiment interacts with an adversary A and is parameterized with 1κ, (G, G, q),
and nDL.

1. The challenger:
(a) Samples k1, . . . , knDL ← Zq, computes Kℓ = kℓ ·G for every ℓ ≤ nDL,
(b) Sends K1, . . . ,KnDL to the adversary.

2. A repeats the following process nDL − 1 times:
(a) Chooses α0, . . . , αnDL from Zq and sends them to the challenger.
(b) Receives from the challenger α1 · k1 + · · ·+ αnDL · knDL .

3. A sends to the challenger k′
1, . . . , k

′
nDL

.

The experiment’s output is 1 if and only if kℓ = k′
ℓ for every ℓ ≤ nDL, otherwise output

0.

82

SIMULATION D.8
(
Hybrid Simulation of Experiment D.6 with predetermined keys

and presigns SExpAOMDL

ExpEU(A
ns,nkg,nr

SE−Sch−Forger
)
(1κ, (G, G, q), h1, . . . , hnr+2ns ; ρ)

)
This hybrid simulates the challenger in Experiment D.6 facing Ans,nkg,nr

SE−Sch−Forger and simu-

lates A in Exp
2ns+nkg

AOMDL (A, 1κ, (G, G, q)) facing the challenger from Experiment D.7. The
hybrid uses predetermined values for: Ans,nkg,nr

SE−Sch−Forger’s random tape and H queries out-
put. The hybrid outputs a forged signature based on the predetermined random oracle
queries output. It does not try to succeed in Experiment D.7.

1. Receive K1, . . .K2ns+nkg from the challenger.
2. Replace the notation Xℓ = K2ns+ℓ for ℓ ≤ nkg.
3. Run Ans,nkg,nr

SE−Sch−Forger with randomness ρ as follows:

– Upon receiving (keygen, sid from Ans,nkg,nr

SE−Sch−Forger:
(a) Let Xℓ be the next one not in memory. If all of Xℓ are used, abort.
(b) Keep (keygen, sid, Xℓ) in memory and send it to Ans,nkg,nr

SE−Sch−Forger.

– Upon receiving (pres, ssid) from Ans,nkg,nr

SE−Sch−Forger:
(a) Let Kℓ be the next one not in memory. If all of Kℓ are in memory, abort.
(b) Keep (pres, ssid,Kℓ,Kℓ+1) in memory and send it to Ans,nkg,nr

SE−Sch−Forger.
– Upon Receiving calling the random oracle H(C) do the following process de-

noted by RO(C):
• If there is h such that (RandomOracle, C, h) is in memory, send h to
Ans,nkg,nr

SE−Sch−Forger and break.
• Otherwise, let hℓ be the minimal ℓ such that there is no hℓ in memory.
• Keep (RandomOracle, C, h) in memory and send h to Ans,nkg,nr

SE−Sch−Forger.
– Upon receiving (sign, sid, ssid,msg) do:
• If there is z such that (sign, sid, ssid,msg, z) is in memory, send

(sign, sid, ssid,msg, z) to Ans,nkg,nr

SE−Sch−Forger.
• If either sid or ssid are not in the memory, send ⊥ to the challenger and

abort.
• Otherwise:

(a) Denote by Kℓ and Kℓ+1 the pair such that (pres, ssid,Kℓ,Kℓ+1) is in
memory. If there is none, abort.

(b) Denote by Xℓ′ the value such that (keygen, sid, Xℓ′) is in memory.
(c) Set µ = RO(X,Kℓ,Kℓ+1,msg) and e = RO(Xℓ′ ,Kℓ + µ ·Kℓ+1,msg),

where RO(C) is the process described earlier, and do not send its
output to Ans,nkg,nr

SE−Sch−Forger.
(d) Set αℓ = 1, αℓ+1 = µ, α2ns+ℓ′ = e, and otherwise αs = 0
(e) Send α1, . . . , α2ns+nkg to the challenger.
(f) Receive z from the challenger.
(g) keep (sign, sid, ssid,msg, z) in memory and send it to Ans,nkg,nr

SE−Sch−Forger.

– Upon receiving ⊥ from Ans,nkg,nr

SE−Sch−Forger, abort.

– Upon receiving (sid,msg,K, z) from Ans,nkg,nr

SE−Sch−Forger do:
(a) If there are ssid and z such that (sign, sid,K,msg, z) is in memory abort.
(b) Retrieve X such that (keygen, sid, X) is in memory.
(c) Retrieve ℓ such that (RandomOracle, (X,K,msg), hℓ) is in memory. If there

is none, abort.
(d) output (ℓ, (msg, X,K, z)).

83

ALGORITHM D.9
(
AOMDL adversary A

SExpEU
AOMDL−Sch(1

κ, (G, G, q))
)

This algorithm is a PPT adversary A for Exp
2ns+nkg

AOMDL (Experiment D.7) that reduces
AOMDL to forging sigantures. It uses SExpEU to simulate the challenger in Experi-
ment D.6 and retrieve a forged signature from Ans,nkg,nr

SE−Sch−Forger. It uses a fork to forge two
signatures with the same nonce, in order to break AOMDL.

1. Sample h1, h
′
1, . . . , hnr+2ns , h

′
nr+2ns

from H.
2. Receive K1, . . . ,K2ns+nkg from the challenger.

3. Sample ρ←R. // the random space of Ans,nkg,nr

SE−Sch−Forger

4. Simulate SExpEU(1
κ, (G, G, q), h1, . . . , hnr+2ns ; ρ) as follows:

– Send K1, . . . ,K2ns+nkg to SExpEU .
– Upon receiving α1, . . . , α2ns+nkg from SExpEU :

(a) If there is z such that ((α1, . . . , α2ns+nkg), z) is in memory, send z to SExpEU
and break.

(b) Otherwise, send α1, . . . , α2ns+nkg to the challenger.
(c) Receive z from the challenger.
(d) Keep ((α1, . . . , α2ns+nkg), z) in memory.
(e) Send z to SExpEU .

– Upon receiving ⊥ from SExpEU , send ⊥ to the challenger and abort.
5. Receive (ℓ0, (msg, X,K, z0)) from SExpEU and keep it in memory.
6. Simulate SExpEU(1

κ, (G, G, q), h1, . . . , hℓ0−1, h
′
ℓ0
, . . . , h′

nr+2ns
; ρ):

– Send K1, . . . ,K2ns+nkg to SExpEU .
– Upon receiving α1, . . . , α2ns+nkg from SExpEU :

(a) If there is z such that ((α1, . . . , α2ns+nkg), z) is in memory, send z to SExpEU
and break.

(b) Otherwise, send α1, . . . , α2ns+nkg to the challenger.
(c) Receive z from the challenger.
(d) Keep ((α1, . . . , α2ns+nkg), z) in memory.
(e) Send z to SExpEU .

– Upon receiving ⊥ from SExpEU , send ⊥ to the challenger and abort.
7. Receive (ℓ1, (msg′, X ′,K′, z1)) from SExpEU .
8. If ℓ0 ̸= ℓ1, or hℓ0 = h′

ℓ0
, or msg ̸= msg′, or K ̸= K′, or X ̸= X ′ then send ⊥ to the

challenger.
9. Retrieve ℓ > 2ns such that Kℓ = X. If there is none, abort.

10. Check that logG Kℓ =
z0−z1

hℓ0
−h′

ℓ0

. If not, then the signatures are incorrect. Return ⊥
and abort.

11. For ℓ′ ≤ 2ns + nkg, set αℓ′ to 1 if ℓ′ = 2ns + ℓ, and to 0 otherwise.
12. Keep ((α1, . . . , α2ns+nkg),

z0−z1
hℓ0

−h′
ℓ0

) in memory.

13. Let {vℓ′}
2ns+nkg

ℓ′=1 ⊂ H2ns+nkg be a set of vectors such that:
– For every ((α1, . . . , α2ns+nkg), z) in memory, there is ℓ′ such that vℓ′ =

(α1, . . . , α2ns+nkg).

– The set {vℓ′}
2ns+nkg

ℓ′=1 is linearly independent.
14. If there is no such set, send ⊥ to the challenger and abort.
15. Send the challenger vℓ′ if and only if there is no z such that (vℓ′ , z) is in memory.

16. Retrieve logG K1, . . . , logG K2ns+nkg using the linear combinations {vℓ′}
2ns+nkg

ℓ′=1 as
the result of each linear combination of them is already known.

17. Send logG K1, . . . , logG K2ns+nkg to the challenger.

84

SIMULATION D.10
(

Simulation of Slightly Enhanced Schnorr Signing Oracle
(with multiplication): SSE-Sch

)
SSE-Sch simulates the biased signing oracle G∗SE-Sch given oracle access to the unbiased
signing oracle G∗Non-Biased-SE-Sch (and its random oracle H). Parameters. A cyclic group
(G, G, q), a Random Oracle function H : {0, 1}∗ → Zq. The bias oracle uses the
variables denoted by ′, while the unbiased variables are denoted without it. Slightly
Enhanced Schnorr oracle works as follows:

Operation.

1. On input (keygen, sid), call G∗Non-Biased-SE-Sch with (keygen, sid), receive (sid, X), record
and send it.

2. On input (pres, ssid), call G∗Non-Biased-SE-Sch with (pres, ssid). Receive (ssid,K0,K1),
record and send it.

3. On input (query, X ′,K′
0,K

′
1,msg′;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1), do as fol-

lows:
(a) Set X ← α−1

key · (X
′ − βkey · G), K0 ← α−1

pres,0 · (K′
0 − βpres,0 · G), and K1 ←

α−1
pres,1 · (K′

1 − βpres,1 ·G).
(b) If there is no record of (sid, X) or of (ssid,K0,K1), query
H(X,K0,K1,msg;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1), record and return
its output.

(c) Else, if there is no record of (map, X,X ′,K0,K1,K
′
0,K

′
1,K0 + µ · K1,

K′
0 + µ′ ·K′

1,msg,msg′;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1, µ, µ
′):

i. Sample msg← {0, 1}κ
ii. query H(X,K0,K1,msg), receive µ and compute µ′ =

µ·αpres,0

αpres,1
.

iii. Record (map, X,X ′,K0,K1,K
′
0,K

′
1,K0 + µ ·K1,K

′
0 + µ′ ·K′

1,msg,msg′;
αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1, µ, µ

′)
(d) Return µ′.

4. On input (query, X ′,K′,msg′), do as follows:
(a) If there is no record of (map, X,X ′,K0,K1,K

′
0,K

′
1,K0 + µ ·K1,K

′
0 + µ′ ·K′

1,
msg,msg′;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1, µ, µ

′), query H(X ′,K′,msg′)
and return its output.

(b) Else, retrieve X, K, msg, αkey, and αpres,0, and query e = H(X,K,msg).
(c) Compute, record and return e′ =

e·αpres,0

αkey
.

5. On input (sign, sid, ssid,msg′;αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1) do:
(a) Retrieve (sid, X) and (ssid, pres,K0,K1) from memory.
(b) Compute X ′ ← αkey · X + βkey · G, K′

0 ← αpres,0 · K0 + βpres,0 · G, and K′
1 ←

αpres,1 ·K1 + βpres,1 ·G.
(c) Set µ′ and e′ by self-calling (query, X ′,K′

0,K
′
1,msg′;αkey, βkey, αpres,0, βpres,0,

αpres,1, βpres,1) and (query, X ′,K′,msg′), respectively.
(d) Retrieve (map, X,X ′,K0,K1,K

′
0,K

′
1,K0 + µ · K1,K

′
0 + µ′ · K′

1,msg,msg′;
αkey, βkey, αpres,0, βpres,0, αpres,1, βpres,1, µ, µ

′) from memory.
(e) Call G∗Non-Biased-SE-Sch with (sign, sid, ssid,msg) and receive z.
(f) Compute zA = βpres,0 + µ′ · βpres,1 + e′βkey.
(g) Record and return z′ = αpres,0 · z + zA.

85

PROTOCOL F.1
(
ala ElGamal TAHE asynchronous key generation Πasync-keygen:

TAHE.Gen(1κ, i, t, n, aux)
)

The protocol is parameterized by a computational security parameter κ, a party indicator i, a thresh-
old t, the number of parties n and an auxiliary information aux containing an efficient description
of finite abelian groups H and F ≤ H, a distribution Dκ and public parameters for a commitments
scheme pp = g which is a random element in G/H. The subgroup H is of unknown order and the
subgroup F is of known order M and admits an efficient algorithm for computing discrete logs in
the subgroup. The protocol assumes that the parties have runs the setup phase of the PVSS scheme
and that g is indeed randomized. The parties work as follows:

1. Bi ∈ B does as follows:
(a) Sample a contribution to the secret key αi ← Dκ.

(b) ({cti,jShare, Ci,j}j∈[n], π
i
Share)← PVSS.Dist(pp, {pkj}j∈[n], αi, g).

(c) Send (broadcast, sid, i, ({cti,jShare, Ci,j}j∈[n], π
i
Share)) to Fbroadcast.

2. Bi ∈ B does as follows:

(a) Upon receiving ({ctj,j
′

Share, Cj,j′}j′∈[n], π
j
Share) verify the proofs πj

Share and send

(validate, sid, i, j) to F

(
[n]
t+1

)
B

ACS . Else consider Bj malicious.
3. Output:

(a) Receive SB from FACS and set pk = Πj∈SB
Cj,0.

(b) Set [αj]i ← PVSS.DecShare(pp, pki, ski, ct
j,i
Share).

(c) [sk]i =
∑

j∈S [αi]j and vkj = Πj′∈SB
Cj′,j .

(d) record (pk, {vkj}j∈[n]; [sk]i).

86

	Practical Zero-Trust Threshold Signatures in Large-Scale Dynamic Asynchronous Networks

