
Stationary Syndrome Decoding
for Improved PCGs

Vladimir Kolesnikov1, Stanislav Peceny1,
Srinivasan Raghuraman2, and Peter Rindal3

1 Georgia Institute of Technology
2 Visa Research and MIT

3 Visa Research

Abstract. Syndrome decoding (SD), and equivalently Learning Par-
ity with Noise (LPN), is a fundamental problem in cryptography, which
states that for a field F, some compressing public matrix G ∈ Fk×n, and
a secret sparse vector e ∈ Fn sampled from some noise distribution, Ge
is indistinguishable from uniform. Recently, the SD has gained significant
interest due to its use in pseudorandom correlation generators (PCGs).

In pursuit of better efficiency, we propose a new assumption called
Stationary Syndrome Decoding (SSD). In SSD, we consider q correlated
noise vectors e1, . . . , eq ∈ Fn and associated instances G1e1, . . . ,Gqeq

where the noise vectors are restricted to having non-zeros in the same
small subset of t positions L ⊂ [n]. That is, for all i ∈ L, ej,i is uniformly
random, while for all other i, ej,i = 0.

Although naively reusing the noise vector renders SD and LPN inse-
cure via simple Gaussian elimination, we observe known attacks do not
extend to our correlated noise. We show SSD is unconditionally secure
against so-called linear attacks, e.g., advanced information set decod-
ing and representation techniques (Esser and Santini, Crypto 2024). We
further adapt the state-of-the-art nonlinear attack (Briaud and Øygar-
den, Eurocrypt 2023) to SSD and demonstrate both theoretically and
experimentally resistance to the attack.

We apply SSD to PCGs to amortize the cost of noise generation
protocol. For OT and VOLE generation, each instance requires O(t)
communication instead of O(t logn). For suggested parameters, we ob-
serve a 1.5× improvement in the running time or between 6 and 18×
reduction in communication. For Beaver triple generation using Ring
LPN, our techniques have the potential for substantial amortization due
to the high concrete overhead of the Ring LPN noise generation.

1 Introduction

Syndrome Decoding (SD), or equivalently Learning Parity with Noise (LPN),
are standard assumptions in code-based cryptography. SD states that for some
public matrix G ∈ Fk×n, where k < n, and a secret sparse vector e ∈ Fn

with a Hamming weight |e| ≈ t, Ge is pseudorandom. Recently, SD has seen in-
creased interest due to its applications in secure multi-party computation (MPC)



[RS21,DILO22,ANO+22,AS22,BDSW23], zero knowledge [YSWW21,WYKW21]
[WYY+22,BDSW23], and post-quantum signatures [FJR22,CCJ23].

MPC enables parties that do not trust each other to compute on their private
data without disclosing any information to the other parties. MPC has gained
relevance in both academia and industry (e.g., for online auctions, electronic vot-
ing, privacy-preserving machine learning); its potential remains largely untapped
due to the significantly higher costs compared to plaintext computation.

Most efficient MPC protocols work in the preprocessing model, where parties
first preprocess cryptographic material that is independent of both the function
and its inputs. This preprocessing phase typically involves generating random
instances of oblivious transfers (OTs), oblivious linear evaluations (OLE), vector
oblivious linear evaluations (VOLE), or Beaver triples. Once the function and
inputs are known, the parties compute the function securely using the correlated
randomness of the preprocessed material.

Preprocessing is often the computational bottleneck in MPC. A recent line
of work on pseudorandom correlation generators (PCGs) shows great promise in
significantly reducing preprocessing costs. PCGs offer sublinear communication
and compelling computational overheads. While they have led to substantial
improvements, PCGs are still far from matching the cost of honest majority or
plaintext computation. In this work, one of our goals is to reduce the cost of
MPC by minimizing the costs associated with PCGs.

State-of-the-art PCG constructions intimately rely on the Syndrome Decod-
ing (SD) assumption. These PCGs make use of this assumption by having the
parties interactively generate a secret sharing of the sparse vector e and then
locally compute a sharing of Ge. This final sharing forms, in part, the prepro-
cessed materials. The computational overhead of this process has two main parts;
generating the secret e with sublinear communication and performing the mul-
tiplication Ge. Consequently, existing works optimize PCGs either by adding
structure to G to accelerate the multiplication or by changing the distribution
of e to improve the efficiency of generating a sharing of it. In our work, we take
the latter approach. We amortize the cost of computing e across q SD instances.

To achieve this, we propose and cryptanalyze a new assumption called the
Stationary Syndrome Decoding (SSD). Intuitively, SSD allows for reusing the
non-zero coordinates of a noise vector e across multiple SD instances, provided
that the noise at each coordinate is uniformly drawn for each SD instance. For
example, consider F7, n = 12, and t = 4. The noise vectors could be:

e1 =
(
0 1 0 3 0 0 0 0 6 3 0 0

)
,

e2 =
(
0 0 0 1 0 0 0 0 2 4 0 0

)
,

...,

eq =
(
0 4 0 6 0 0 0 0 0 3 0 0

)
We refer to this assumption as stationary because the noise positions remain

fixed across instances, e.g. at positions L = {2, 4, 9, 10} in the example above.
Note that the noisy values of ei are sampled uniformly from F, including zero.

2



Without delving into details, the stationary nature of the noise positions enables
us to reuse the bulk of the work required to generate a sharing of e, such as the
OTs and the GGM tree expansion. This can indirectly speed up the time to
multiply Ge due to better parameter selection.

We believe the resilience of SSD to known LPN/SD attacks to be both unan-
ticipated and significant. While we are not the first to consider the hardness of
LPN and SD with structured noise, our assumption arguably has more impli-
cations due to the noise being highly correlated. This suggests the intriguing
possibility of LPN and SD with other highly correlated noise distributions and
the potential impact they can have on various constructions.

1.1 Contribution

Our core contribution is the introduction of the Stationary Syndrome Decoding
assumption. First, we provide supporting evidence for its hardness. We show
that SSD is resilient against all linear attacks [Pra62,Ste89,Jab01,BKW03,Lyu05]
[FKI07,ABG+14,BR17,ES24] and adaptations of the state-of-the-art algebraic
attacks of [BØ23].

Then, we show that SSD has significant efficiency implications for pseudo-
random correlation generators (PCGs). In particular, we start with the commu-
nication and computation implications for degree-1 correlations, such as VOLE,
OT, and binary OLE. Next, we discuss the same implications for degree-2 cor-
relations, such as general OLE and Beaver triples. We also show that SSD can
result in much better cache/memory utilization of PCGs.

Degree 1 Correlations. Let n be the length and t the Hamming weight of the noise
vector e. To generate q noise vectors with the SSD assumption, our construction
requires a single “base VOLE” of size tq and t log2(n/t) base OTs. To generate q
noise vectors using the standard SD construction also requires the same size base
VOLE correlation, but q times more base OTs. I.e., we can reuse all OTs across
the q instances. As a result, our construction requires an amortized 2 log2(n/t)
times less data to be sent when generating the sharing of e. Our experiments
show 6.4−7.5× reduction in communication for OT and 10.7−17.6× for VOLE,
for a standard choice of parameters.

Degree 2 Correlations. The setup for degree 2 correlations from Ring-LPN
[BCG+20], e.g. Beaver triples over Fp, is significantly more complex and requires
the generation of a weight t′ := t2 noise vector (product of two t-sparse vectors),
in contrast to the simpler degree 1 setup, which only requires a weight t noise
vector. Moreover, the natural implementation requires O(nt) local work instead
of O(n) in the degree 1 case. Some works starting with [SGRR19,BCG+20] sug-
gested the use of so called batch codes, such as cuckoo hashing, to reduce this
overhead back to O(n) at the expense of more work being performed in MPC,
e.g. O(poly(t′)). However, the concrete costs remain high. We suggest that SSD
can be used, similarly to the degree 1 case, to amortize this expensive setup
across the q instances. In particular, the vast majority of the work performed

3



within the MPC can be performed once and then reused across the q instances.
This brings down the amortized overheads from at least O(t′ log(n/t)+ poly(t′))
to O(t′) communication and from O(nt) to O(n) computation.

Cache and Memory Utilization. To achieve the desired sublinear communica-
tion overhead of PCGs, it has been necessary to generate the correlations in
large batches, e.g. n ≈ 220. However, SSD reduces this necessity as it is more
communication efficient, and therefore allows for a smaller n while achieving the
same relative communication overhead. This in turn results in non-trivial per-
formance improvements as the overall protocol can better fit into CPU cache.
Our implementation shows that by executing q = 25 instances of size n = 215

binary OLEs rather than a large batch of n = 220, we can reduce wall-clock time
for degree 1 correlations by 1.5 times while achieving the same relative commu-
nication overhead. Moreover, we expect speedup for degree 2 correlation to be
even larger due to the larger amount of local computation along with the more
complex setup protocol.

2 Related Work

In Section 3, we review existing works on syndrome decoding (SD) and related
attacks. In this section, however, we focus on approaches aimed at improving
pseudorandom correlation generators (PCGs), which serve as the motivating ap-
plication of SD in our work. The majority of PCGs use essentially the same pro-
tocols [BCGI18,BCG+19b,BCG+19a,BCG+20,CRR21,BCG+22,RRT23]. They
generate a secret sharing of a sparse vector e times either a scalar ∆ or in
[BCG+20] by another sparse vector. This secret sharing is then compressed by
a linear function G. Thus, to improve PCG performance the focus has been
to improve the generation of the shared sparse vector and the time required to
multiply by G. All prior works have focused on improving the generation of a
single SD instance.

Thus far, the most impactful optimization for generating the secret shar-
ing of e [AFS05,HOSS18,Ds17,BCGI18,SGRR19,BCG+19b,BCG+20,BCG+22]
has been the idea of the regular noise distribution [AFS05] that replaces the
Bernoulli/exact distributions (see Section 3.4). In the context of secure com-
putation, this optimization was first used by TinyKeys [HOSS18] and later by
[BCGI18] for PCGs. The regular noise distribution is so beneficial because it
allows the generation of the sharing of ∆e to consist of O(n) AES calls across
t distributed point functions. This is in contrast with other noise distributions
that require O(t) distributed point functions and as much as O(tn) AES calls,
or the use of more complicated batch codes such as cuckoo hashing [SGRR19].

Another line of work tries to optimize the time it takes to multiply matrix
G and e [BCGI18,BCG+19b,BCG+19a,BCG+20,CRR21,BCG+22,RRT23]. The
original LPN assumption states that G is uniform, and therefore G · e requires
O(n2) time. However, it is widely accepted that G can be replaced by the gener-
ator matrix of a code with high minimum distance, unless that code has strongly

4



algebraic structure, such as the Reed-Solomon code, which can be efficiently de-
coded with the Berlekamp-Massey algorithm [Ber68]. By changingG to be a gen-
erator matrix, it is theoretically possible to compute G·v for any v in O(n) time.
However, practical considerations typically result in time O(nc) where c is some-
how related to log n or the security parameter. [BCGI18,BCG+19b,BCG+19a]
propose to rely on LDPC or quasi-cyclic codes as their security is well-studied
and they offer reasonable performance. [BCG+22] propose using a type of turbo
code that they call expand-accumulate, which not only significantly improves
costs but also provably has high minimum distance. [RRT23] further improve
on this code by replacing accumulation with a so-called convolution, which sig-
nificantly increases minimum distance, and hence allows for more favorable pa-
rameters and performance. Our work differs from all these works in that we
amortize PCG cost across multiple SD instances. I.e., we amortize out the cost
of generating the noise vectors e across q instances.

3 Preliminaries

3.1 Notation

Most of our notation follows standard conventions. Specifically, matrices are
denoted using bold, non-italic, uppercase letters, while vectors are represented
by bold, italic, lowercase letters. E.g., G is a matrix and v is a vector. We index
matrices and vectors with subscript and use 1-based indexing, e.g., Mi,j or vi.
|v| represents the Hamming weight of a vector. ||v|| represents the length of a
vector or size of a set. v||u denotes the concatenation of vectors v,u. v⊙u and
v · u denote the component-wise and dot product multiplications, respectively.
[a, b] denotes the sequence of natural numbers a, . . . , b and [n] the sequence [1, n].
[a, b]R denotes the inclusive range from a to b over the real numbers. κ is the
computational security parameter. [[x]] denotes a two-out-of-two secret sharing
of x ∈ F. A sender party holds a share [[x]]s ∈ F, while the receiver party holds
[[x]]r ∈ F such that x = [[x]]s + [[x]]r.

We denote variables of multivariate polynomials in bold, non-italic font, e.g.,
x, e, z. A polynomial f ∈ F[x] is in italics. When given concrete values, we denote
x as x. We use the graded lexicographic monomial ordering, where xα > xβ if
and only if

∑
i αi >

∑
i βi, or

∑
i αi =

∑
i βi and the left-most non-zero entry

of α − β is positive. fi will denote the ith smallest monomial in f . Let LM(f)
denote the largest monomial in f (without its coefficient) and LT(f) denote
the largest term in f (with its coefficient). A set F ⊆ F[x] of polynomials will
be in calligraphy font (along with distributions). M := {xα : α ∈ Nn} =
{xα1

1 · . . . · xαn
n : α ∈ Nn} denotes the set of monomials.

3.2 Distributions and Bias

A distribution D is associated with a set X and each x ∈ X is associated with
a probability p(x) ∈ [0, 1]R s.t.

∑
x∈X p(x) = 1. Let Dist[X] denote the set of

5



all probability distributions over set X. We can sample an element x from D,
denoted as x ← D, such that Pr[x ← D] = p(x). In places, we will also treat D
as a random variable in the natural way. When X is a set, we use x ← X to
denote sampling from the uniform distribution U over X, i.e., p(x) = 1/|X|.

We will make use of the notion of bias, which measures how much a dis-
tribution D is correlated with a linear function v. Given a distribution D over
Fn and a non-zero vector v ∈ Fn, the bias of D with respect to v, denoted as

biasv(D), is equal to: biasv(D) :=

∣∣∣∣ E
d←D

[χ(v · d)]
∣∣∣∣ . where χ : F → C is a non-

trivial character of Fn, e.g., χ(x) := exp 2πiTr(x)
p for a field with pk elements

and field trace Tr(x) := x + xp + ... + xpk−1

. In the binary case, this simplifies
to biasv(D) = |Pr[v · x = 0] − 1/2|. By bias(D), we denote the largest bias of
D with respect to any non-zero v: bias(D) = max

v ̸=0
(biasv(D)) We now present

bias for a distribution
∑

i≤tDi, obtained by taking t independent distributions
D1, . . . , Dt over Fn, sampling di ← Di and outputting the sum d =

∑
i∈[t] di.

One can generalize [Shp09]’s lemma for Fn
2 to arbitrary Fn.

Lemma 1. For t independent distributions D1, . . . ,Dt over Fn, the bias of a
distribution D :=

∑
i∈[t]Di is bounded by bias(D) ≤

∏
i bias(Di) and that biasv ≤∏

i biasvi
(Di) for non-zero vi ∈ Fn.

Proof.

bias(D) = bias

(∑
i

Di

)

= max
v ̸=0

∣∣∣∣ E
di←Di

[χ(v · (d1 + . . .+ dt))]

∣∣∣∣
= max

v ̸=0

∣∣∣∣ E
di←Di

[χ(v · d1) · . . . · χ(v · dt)]

∣∣∣∣ (1)

≤ max
v1 ̸=0

∣∣∣∣ E
d1←D1

[χ(v1 · d1)]

∣∣∣∣ · . . . · max
v1 ̸=0

∣∣∣∣ E
dt←Dt

[χ(v · dt)]

∣∣∣∣ (2)

=
∏
i

bias(Di)

where (1) follows from χ(x+y) = χ(x)χ(y) and (2) follows from the independence
of Di and the triangle inequality. The proof of biasv(D) immediately follows.

3.3 Coding Theory

Let C be a linear code that consists of a set of codewords v such that C := {v :=
xG | x ∈ Fk}, where x is any input of length k, G ∈ Fk×n is a generator matrix
of C, and F is some field. A matrix H ∈ Fm×n, whose kernel is C := {v | Hv :=
0m}, is called a parity check matrix. The code generated by H is called the dual
code of C. From G, we can construct H and vice versa. It follows that GHT = 0.

6



The minimum distance d of a linear code C represents the minimum number of
positions of some codeword v that must be modified to get another codeword
v′. Equivalently, d can be defined as the minimum weight non-zero codeword or
as the minimum number of linearly dependent columns of H. A dual distance
of the matrix A is the largest integer d such that every subset of d rows of A
is linearly independent. It is also the minimum distance of the dual of the code
generated by A.

3.4 Syndrome Decoding

Syndrome Decoding (SD), or equivalently the dual learning parity with noise
(LPN) formulation, states that for some field F, a public matrix G ∈ Fk×n that
is a generator of a linear error-correcting code, and a private weight-t sparse noise
vector e ∈ Fn sampled from some noise distribution, (G,Ge) is indistinguishable
from (G, b), where b← Fk is uniformly random.

Definition 1 (Syndrome Decoding Assumption (SD)). Syndrome Decod-
ing is parameterized by an implicit computational security parameter κ, a field F,
dimensions n, k ∈ N with k < n, and distributions D ∈ Dist[Fn], G ∈ Dist[Fk×n].
For samples e← D ∈ Fn and G← G ∈ Fk×n, the (n, k,F,D,G)-SD assumption
states:

{(G, b) | b := G · e} ≈ {(G, b) | b← Fk}

where ≈ denotes computational indistinguishability.

The SD (and similarly our SSD) assumption is known to be false for some choices
of G and D. For example, this is the case when G has small minimum distance,
is a Reed-Solomon code, or e is too sparse. This definition serves as template
that we make concrete in Section 5 and Section 6.

Learning Parity with Noise (LPN) is a fundamental cryptographic assumption
introduced by [BFKL94] and is equivalent to SD. LPN states that for some field
F, some public matrix A ∈ Fn×m, a random secret vector s← Fm, and a random
secret weight-t sparse noise vector e ∈ Fn, (A,As+e) is indistinguishable from
(A, b), where b ← Fn is uniformly random. In the original formulations both
A and s were uniformly random and each position of e was sampled from the
Bernoulli with parameters t/n so that in expectation |e| = t. However, fruitful
lines of research have shown that better performance can be achieved by adding
structure to these distributions. Commonly, A is the transpose of a parity check
matrix H of a linear error-correcting code with high minimum distance and fast
encoding, e.g., [BCG+22,CRR21,RRT23]. Additionally, to improve performance
of certain protocols e is often sampled from some noise distribution, e.g., regular
[AFS05] as we will explain later.

Definition 2 (Learning Parity with Noise Assumption (LPN)). Learning
Parity with Noise is parameterized by an implicit computational security parame-
ter κ, a field F, dimensions n,m ∈ N with n > m, and distributions D ∈ Dist[Fn],

7



H ∈ Dist[Fn×m]. For samples e← D ∈ Fn, A← H ∈ Fn×m, and si ← Fm, the
(n,m,F,D,H)-LPN assumption states:

{(A, b) | b := A · s+ e} ≈ {(A, b) | b← Fn}

where ≈ denotes computational indistinguishability.

LPN and SD Equivalence. Recall that for a linear error-correcting code, the
matrix A from the LPN formulation is the transpose of a parity check matrix
H = AT, while G from the SD formulation is the generator. The key observation
is thatGHT = 0. Then,G(HTs+e) = (GHT )s+Ge = Ge = b. Similarly, given
a SD sample (G, b), one can define the equivalent LPN instance by sampling a

uniform ŝ ∈ Fm and outputting (A, b̂) where b̂ := Aŝ+ ê and ê is an arbitrary

solution to Gê = b̂. Correctness follows from the fact that there exists some
s ∈ Fm s.t. As+ e = Aŝ+ ê.

Noise Distributions. Three choices for the noise distribution are dominant in
the literature: Bernoulli, exact, and regular. In secure computation applications,
their choice greatly impacts efficiency. Let t be the desired sparsity of the error
vector e of size n, consisting of elements from some field F:

– Bernoulli is the classic noise distribution. Each ei ∈ F is sampled with
Bert/n, i.e., 0 with probability 1− t/n and otherwise uniformly from F \ {0}.

– Exact noise distribution evolved from the Bernoulli distribution and fixes
the Hamming weight of the noise vector |e| = t, I.e., e← {e ∈ Fn | |e| = t}.

– Regular is the distribution of choice for pseudorandom correlation generators
(PCG) as the noise vector is much cheaper to implement under secure com-
putation than in the exact case (details to follow). e consists of t same-size
blocks e1, ..., et ∈ Fn/t, where each ei is a uniformly random unit vector.
I.e., ei ← {ei ∈ Fn/t | |ei| = 1}.

Interestingly, there is not a clearly best noise distribution when it comes to
security. [ES24] recently showed that regular noise can actually be harder for
some parameter regimes, and vice versa.

3.5 Linear Attacks

Cryptanalyzing LPN is a thriving area of research. Many attacks have been pro-
posed of which the most effective are those based on Gaussian elimination/BKW
algorithm [BKW03,Lyu05] and information set decoding (ISD) [Pra62,Ste89].
When introducing a new LPN variant, it would be laborious to prove secu-
rity against each possible attack. Fortunately, the majority of known attacks
fit in the linear test framework. These include, among others, attacks based on
Gaussian elimination and the BKW algorithm [BKW03,Lyu05], attacks based
on covering codes and information set decoding [Pra62,Ste89], statistical de-
coding [Jab01,FKI07], and finding correlations with low degree polynomials

8



[ABG+14,BR17]. In this framework, the adversary is given the matrix A, ar-
bitrarily preprocesses it, and then outputs a test vector v. Now, the framework
states that the distinguisher, who tries to distinguish the LPN sample from uni-
formly random, can be implemented by a simple linear test v · (As+ e) and by
checking if the output is biased, e.g., equals zero more than random chance.

One advantage of the linear test framework is that when LPN is initialized
with a code that has high minimum distance d, then it cannot be distinguished
from uniform except with negligible probability. Note that high minimum dis-
tance is not a necessary condition for security. It is well-known that small mini-
mum distance can result in secure LPN as long as the pseudominimum distance
is high. Pseudominimum distance represents the weight of the smallest code-
word that is efficiently computable. In other words, small minimum distance
codewords can exist as long as they cannot be efficiently found. We note that
while the linear test framework covers the large majority of known attacks, there
are some notable exceptions such as when the underlying code is strongly alge-
braic (e.g., Reed-Solomon) or the noise is structured (e.g., regular). Stationary
syndrome decoding, which we introduce in this paper, has a highly structured
noise, and thus requires analysis beyond the linear test framework.

To illustrate how the linear test framework captures various attacks, we next
review how to cast state-of-the-art ISD algorithms as linear tests. First, the SD
problem (G,G · e) is converted into its equivalent LPN formulation (A, b :=
As + e), see above. A subset of m := n − k rows of A are selected, called
an information set I ⊂ [n], with the hope that this set does not intersect the
non-zeros of the noise vector e, i.e. ei = 0 for i ∈ I. One can then use Gaussian
elimination to solve for the noisy positions of e by considering the corresponding
m × m submatrix A′, which consists of the rows in the information set i.e.
A′ := (AI1//...//AIm). One then solves the system A′ · s = bI using Gaussian
elimination and checks if e′ := As− b is a t-sparse vector, which implies e′ = e
w.h.p. This algorithm can be implemented in the linear test framework, for
example, by simply checking if e′1 = 0, which is linear in the original SD problem
since e′ is linear in Ge.

When ISD is naively implemented, each information set guess requires a
costly Gaussian elimination step. Advanced ISD algorithms [Ste89,FS09a,BLP11]
[MMT11,BJMM12,MO15,BM18,ES24] typically improve efficiency through a com-
bination of techniques, such as reducing the overall search space, optimizing the
process of finding the right information set, or amortizing the cost of Gaussian
elimination by reusing partial computations across multiple related information
sets. This avoids the need to restart the linear algebra from scratch for each
attempt. While processing each individual set still takes at least O(1) time, the
overall approach becomes significantly more efficient. As a result, in the linear
test framework, these attacks can be structured so that each test effectively runs
in O(1) time as well.

Importantly, we note that the noise parameter t suggested by the linear test
framework tends to be highly conservative. For example, [LWYY22] shows that
in SD, a choice of t ≈ 60 should provide the same level of bit-security against

9



linear tests as opposed to t ≈ 170 required by the linear test framework. In this
work, we adopt a more conservative approach and choose parameters according
to the linear test framework to ensure provable security guarantees. However,
we are also not aware of any concrete speedup for ISD-styled algorithms when
applied to SSD, which suggests more aggressive parameters could be considered.

3.6 Algebraic Preliminaries

Recent work by Briaud and Øygarden [BØ23] represents one such attack that
does not fit within the linear test framework. The attack is based on algebraic
geometry and leverages the regular structure of noise in LPN and SD. At the
highest level, the attack represents LPN/SD as a system of linear and non-linear
polynomials and then solves for the noise vector e. [BØ23]’s work is a crucial pre-
requisite to analyze the security of our assumption against algebraic attacks. For
that reason, we first provide an overview of the concepts necessary to understand
[BØ23]’s attack before reviewing their attack.

Vector Spaces. Let V ⊂ Fd be a vector space of dimension d over a field F. To
qualify as a vector space, V must satisfy the following properties:

(a) Associativity: ∀u,v,w ∈ V,u+ (v +w) = (u+ v) +w.
(b) Commutativity: ∀u,v ∈ V,u+ v = v + u.
(c) Identity: 0 ∈ V and ∀v ∈ V,v + 0 = v.
(d) Inverse: ∀v ∈ V , there exists u ∈ V s.t. v + u = 0.
(e) Multiplicative associativity: ∀v ∈ V, a, b ∈ F, a(bv) = (ab)v.
(f) Multiplicative identity: ∀v ∈ V, 1v = v.
(g) Multiplicative distributivity: ∀u,v ∈ V, a ∈ F, a(u+ v) = au+ av.
(h) Additive distributivity: ∀v ∈ V, a, b ∈ F, (a+ b)v = av + bv.

For a subset S ⊆ V , the F-span of S, denoted as spanF(S) are all F-linear
combinations of elements of S, i.e., spanF(S) := {

∑
i aisi | ai ∈ F, si ∈ S}.

B ⊆ V is a basis of V if all elements of B are linearly independent and the span
of B is V . All bases B of V have the same size and ||B|| is called the dimension
of V . This is denoted as dimF(V ) := ||B|| where B is a basis of V . The dimension
of V can be finite or infinite.

Graded Rings. Recall that an Abelian group is a set A with an operation ◦ that
satisfies

(a) Associativity: ∀a, b, c ∈ A, a ◦ (b ◦ c) = (a ◦ b) ◦ c.
(b) Commutativity: ∀a, b ∈ A, a ◦ b = b ◦ a.
(c) Identity: ∃e ∈ A such that ∀a ∈ A, a ◦ e = a.
(d) Inverse: ∀a ∈ A, there exists b ∈ A s.t. a ◦ b = e.

For example, F-vector spaces are Abelian groups under + (as described in F). A
ring is a set R with two operations + and · that satisfies

(a) R with + forms an Abelian group

10



(b) Multiplicative associativity: ∀a, b, c ∈ R, a · (b · c) = (a · b) · c.
(c) Mulitplicative identity: ∃1 ∈ R such that ∀a ∈ R, a · 1 = 1 · a = a.
(d) Multiplicative distributivity: ∀a, b, c ∈ R, a·(b+c) = a·b+a·c and (b+c)·a =

b · a+ c · a.

If · also commutes, we say that R is a commutative ring. We will typically assume
that rings are commutative unless stated otherwise.

For Abelian groups A and B with operations ∗ and ⋆, the direct sum or
direct product is the Abelian group A ⊕ B = A × B where the underlying set
is the Cartesian product {(a, b) : a ∈ A, b ∈ B} and the operation ◦ is defined
component-wise as (a1, b1)◦(a2, b2) = (a1∗a2, b1⋆b2). This definition immediately
generalizes to the direct sum of finitely many Abelian groups. For an infinite
indexed family of abelian groups (Ai)

∞
i=0, their direct sum

⊕∞
i=0 Ai consists of

the elements that have finite support, i.e., the element considered from all but
finitely many Ais must be the corresponding identity element.

A graded ring is a ring R with two operations + and · that can be decomposed
into a direct sum R =

⊕∞
i=0 Ri of Abelian groups (Ri)

∞
i=0 under + such that

Ri ·Rj ⊆ Ri+j for all i, j ≥ 0, where Ri ·Rj = {r · r′ : r ∈ Ri, r
′ ∈ Rj}.

Polynomials and Ideals. Let A = F[x] denote a polynomial ring in n variables
x = x1, . . . ,xn with coefficients in a field F (the number of variables will be
clear from context). We call a polynomial f ∈ A homogeneous when all its
monomials have the same degree, e.g., x1x

2
3 + 2x2x3x4 + x3

4 with deg(x1x
2
3) =

deg(2x2x3x4) = deg(x3
4) = 3. Otherwise, f is affine. In that case, one of the ways

in which we can turn f into a homogeneous polynomial f (h) (i.e., homogenize
it) is by retaining only the terms of degree deg(f) and removing all lower-degree
terms. Homogenizing polynomials is done primarily for the technical reason of
studying them in the context of projective geometry, although this will not be
something we will need to go into.

A subset I ⊆ A is called an ideal when

(a) 0 ∈ I
(b) for all f, g ∈ I, f + g ∈ I, and
(c) for all f ∈ I and h ∈ A, hf ∈ I.

That is, an ideal is closed under addition and projects all items h in the ring A
into the ideal when multiplied with an ideal element f ∈ I. For our purposes, an
ideal represents the set of equations that are implied by a system of equations.

For polynomials f1, . . . , fs ∈ A, ⟨f1, . . . , fs⟩ = {
∑s

i=1 hifi : h1, . . . , hs ∈ A}
is an ideal and f1, . . . , fs are called its generators. Generators for an ideal are
typically not unique. The ideal generated by the polynomials f1, . . . , fs can be
seen in the following way. For unknowns x = (x1, . . . ,xn), consider the system
of equations

f1(x) = . . . = fs(x) = 0,

then the ideal ⟨f1, . . . , fs⟩ contains all other polynomials g such that g(x) = 0
is implied, e.g., g(x) = x1 · f4(x) + f1(x) = 0 is clearly implied. If we compare

11



with our definition of an ideal then we can check (a) 0(x) = 0. Next, (b) if
f(x) = g(x) = 0, then also (f + g)(x) = 0. Lastly, (c) if f(x) = 0, then for all
h ∈ A, (hf)(x) = 0. The notion of an ideal precisely describes the operations we
can perform on the system of equations to maintain the same system.

An ideal I = ⟨f1, . . . , fs⟩ is homogeneous when its generators f1, . . . , fs are
homogeneous. Otherwise, I is affine. Similar to polynomials, we can homogenize
I = ⟨f1, . . . , fs⟩ by making each generator homogeneous, i.e., we replace each fi
with its homogeneous version f

(h)
i , resulting in I(h) := ⟨f (h)

1 , . . . , f
(h)
s ⟩.

An important point is that A as well as any ideal I can also be seen as F-
vector spaces. For example, B is a vector space basis of A or I if B contains all
monomials in A or I respectively. As such, A would be an infinite dimensional
F-vector space, where each possible monomial contributes to a dimension in the
vector space. The same holds for all I ≠ {0}. For any d ∈ N, we denote Ad as the
vector space defined as Ad := {f ∈ A : deg(f) = d and f is homogeneous}∪{0}.
Ad forms a finite dimensional subspace of A. Similarly, Id := I ∩ Ad = {f ∈
I : deg(f) = d and f is homogeneous} ∪ {0} is also a vector space and forms a
finite dimensional subspace of Ad.

Quotient Rings and Spaces. Let I ⊆ A be an ideal. We can define an equivalence
relation ∼ on A using I as follows: f ∼ g ⇐⇒ f−g ∈ I. It is easy to check that
∼ is in fact an equivalence relation. Therefore, ∼ partitions A into equivalence
classes. The equivalence class corresponding to a polynomial f ∈ A is given by
[f ]I := {f + g : g ∈ I} = I + f . When clear from context we will write [f ].
Therefore [0] = I and each class [f ] can be thought of as shifting I by direction
f . Note that there is typically not a canonical representative element for [f ],
unlike the integers mod p for example. We can define addition and multiplication
over the equivalence classes in a natural way as follows: [f ] + [g] = [f + g] and
[f ] · [g] = [fg]. The identities with respect to addition and multiplication are [0]
and [1] respectively. The additive inverse of [f ] is [−f ]. One can then check that
the equivalence classes form a ring. This ring is called the quotient ring and is
denoted by A/I := {[f ]I : f ∈ A} = {I + f : f ∈ A}. The quotient ring A/I
elements are the distinct cosets of I. Observe also that A/I forms an F-vector
space.

Similarly, for d ∈ N, recall the vector spaces Id ⊆ Ad. We can define an
equivalence relation ∼ on the vector space Ad using Id as follows: f ∼ g ⇐⇒
f−g ∈ Id. It is easy to check that ∼ is in fact an equivalence relation. Therefore,
∼ partitions the vector space Ad into equivalence classes. The equivalence class
corresponding to a polynomial f ∈ Ad is given by [f ]Id := {f + g : g ∈ Id}
or just [f ] when Id is clear from context. We can define addition and scalar
multiplication over the equivalence classes in a natural way as follows: [f ]+[g] =
[f + g] and for α ∈ F, α · [f ] = [αf ]. The identity with respect to addition is
[0]. The additive inverse of [f ] is [−f ]. One can then check that the equivalence
classes form an F-vector space. This vector space is called the quotient vector
space and is denoted by Ad/Id or (A/I)d. [f ] also does not have a canonical
representative. For example, if I2 has a basis {x1x2+x2

2,x
2
1−x2

2}, then we have
[x1x2] = [2x1x2 +x2

2] = [2x1x2 +x2
1]. Both [x1x2] and [2x1x2 +x2

1] are reduced

12



and represent the same equivalence class. A geometric interpretation of this is
that the cosets I + x1x2 = I + 2x1x2 + x2

1 are equal but were shifted in two
different directions.

Dimension of an Ideal. Although we do not formally define the (Krull) dimension
of an ideal, it describes the asymptotic growth of the size of the set of solutions
to the system of equations corresponding to I = ⟨f1, . . . , fs⟩. This solution set of
x ∈ Fn is called the variety of I, denoted as V(I) := {x : x ∈ Fn, f1(x) = . . . =
fs(x) = 0}. In general, V(I) is a multi-dimensional curve in an n dimensional
space. For example, let I = ⟨x1 − x2

2⟩, and therefore the solution set lies on the
one dimensional curve x1 = x2

2, the basic parabola. A two dimensional variety
can be obtained by I = ⟨x2 − x2

1 − x3,x4 − x1x2⟩ where the variety can be
defined as V(I) = {x : x1,x2 ∈ F,x3 = x2 − x2

1,x4 = x1x2} which clearly is
a two dimensional curve in a four dimensional space. Any non-zero dimensional
ideal will be an infinite dimensional vector space as I does not reduce an infinite
many monomials. E.g., if we order the xk to eliminate larger k first, then all xi

1

are reduced for the first example and xi
1x

j
2 for the second. Note the irreducable

monomials are in general more complicated. Observe that it suffices to only
consider the monomials because if a polynomial was not in I then its monomials
must also not be in I. The number of solutions in V(I) is asymptotically related
to the number of the number of monomials not in I. Informally, a d dimensional
ideal I will have O(id) monomials not in I with degree at most i. Geometrically,
the dimension of I is the dimension of the volume left by A modulo I.

Zero-dimensional Ideal. Intuitively, an ideal I ⊆ A is zero-dimensional if V(I)
is a finite set, i.e., I has only a finite number of solutions over Fn. Formally,
an ideal I ⊆ A is zero-dimensional if and only if A/I is a finite dimensional F-
vector space. That is, there is a finite sized basis B ⊂ A/I such that spanF(B) =
{
∑

i aibi | ai ∈ F, bi ∈ B} is equal to A/I = {[f ]I : f ∈ A} = {I + f : f ∈ A}.
Note that the vector space dimension is distinct from the dimension of I but
the two are related, i.e., the vector space dimension of A/I is finite if and only
if I is zero-dimensional and otherwise infinite.

Thus, when trying to understand the dimension of an ideal, we are interested
in all of the monomials not in I whose equivalence classes form an F-vector space
basis of A/I, i.e., B ⊂ {[xα] : α ∈ Nn}/I. Note that if F is a finite field, any
ideal I ⊆ A is zero-dimensional by definition since the set of solutions is a subset
of Fn which is finite, or equivalently, the field equations limit the size of B.

Hilbert Function. Let I be a homogeneous ideal. The Hilbert function N → N
takes an integer d as input and outputs the dimension of the quotient vector
space Ad/Id over F, i.e.,

HFA/I(d) := dimF(Ad/Id).

Intuitively, this function describes the asymptotic growth rate of the size of the
quotient ring as we allow larger and larger monomial powers.

13



Hilbert Series. Also known as the Hilbert-Poincaré series, for a homogeneous
ideal I ⊆ A, the Hilbert Series of a quotient ring A/I is given by

HSA/I(z) :=

∞∑
d=0

HFA/I(d) · zd.

Note that HS is a univariate series in a single variable z.

Hilbert Polynomial. For a homogeneous zero-dimensional ideal I ⊆ A, the
Hilbert Series becomes a polynomial. Formally, since A is a graded ring with

A =

∞⊕
d=0

Ad,

A/I is also a graded ring with

A/I =

∞⊕
d=0

(Ad/Id).

Therefore, as F-vector spaces,

dimF(A/I) =
∞∑
d=0

HFA/I(d).

By definition, since I is zero-dimensional, dimF(A/I) is finite and hence there is
some dreg, called the degree of regularity, such that for all d ≥ dreg,HFA/I(d) = 0
(also Ad = Id). As we will see, we will be interested in dreg or the behavior of
the Hilbert series in general as this directly relates to the efficiency of the best
known algebraic attacks.

Short Exact Sequences. Let X , Y, and Z be finite dimensional vector spaces.
A short exact sequence of X , Y, Z is given by two maps γ : X → Y and
δ : Y → Z such that γ is injective, i.e., x1 ̸= x2 =⇒ γ(x1) ̸= γ(x2), δ is
surjective, i.e., Z = {δ(y) : y ∈ Y}, and the kernel of δ is the image of γ, i.e.,
{y ∈ Y : δ(y) = 0} = {γ(x) : x ∈ X}. Therefore, δ(γ(x)) = 0 for x ∈ X . We
denote a short exact sequence as

0→ X γ→ Y δ→ Z → 0.

We will use a key property of their dimensions given by

dim(Y) = dim(X ) + dim(Z).

This is easy to see via the Rank-Nullity theorem. We have

dim(Y) = dim(ker(δ)) + dim(im(δ)) = dim(im(γ)) + dim(im(δ))

Since γ is injective, we have dim(im(γ)) = dim(X ), and since δ is surjective,
we have dim(im(δ)) = dim(Z). We will make use of this property to determine
the dimensions of certain vector spaces that will let us get a handle on certain
Hilbert polynomials.

14



Regular and Semi-Regular Systems. Computing the Hilbert series of an ideal
described by arbitrary polynomials is often difficult. However, they are known
for some systems of polynomials. We consider two such systems. For a system of
p polynomial equations F := {f1, . . . , fp} in n variables, we consider a regular
system when p ≤ n and a semi-regular system when p > n. Before formally
defining regular and semi-regular systems, we note that a randomly selected
system is with overwhelming probability (semi-)regular depending on whether
p ≤ n.

Now, a system F is regular when p ≤ n, F is homogeneous (i.e., each fi is
homogeneous), and for all i ∈ [p], fi is not a zero divisor in A/⟨f1, . . . , fi−1⟩
(i.e., if gfi = 0 in A/⟨f1, . . . , fi−1⟩, then g = 0 in A/⟨f1, . . . , fi−1⟩). Its Hilbert
series is given by Proposition 1.

Proposition 1 ([BØ23]). Let F = {f1, . . . , fp} with deg(fi) = di, i ∈ [p], be
a regular system. Then its Hilbert series is given by

HSA/⟨F⟩(z) =

∏p
i=1(1− zdi)

(1− z)n
.

A semi-regular system is defined differently over general F and over F2. Over
F, a system F is semi-regular when p > n, F is homogeneous, I := ⟨F⟩ ̸=
A is a zero-dimensional ideal (let dreg be its degree of regularity), and for all
i ∈ [p], whenever gfi = 0 in A/⟨f1, . . . , fi−1⟩ with deg(gfi) < dreg, g = 0 in
A/⟨f1, . . . , fi−1⟩. Its Hilbert series is almost the same as in Proposition 1 except
that it is truncated after the first ≤ 0 coefficient as given by Proposition 2.

Proposition 2 ([Bar04]). Let F = {f1, . . . , fp} with deg(fi) = di, i ∈ [p], be
a semi-regular system over Fq for q > 2. Then its Hilbert series is given by

HSA/⟨F⟩(z) =

∏p
i=1(1− zdi)

(1− z)n
,

truncated after the first ≤ 0 coefficient.

The semi-regularity definition over F2 is almost identical, except that it uses
the quotient ring F2[x]/⟨x2

1, . . . ,x
2
n⟩ instead of the polynomial ring A. Its Hilbert

series is given by Proposition 3.

Proposition 3 ([Bar04]). Let F = {f1, . . . , fp} with deg(fi) = di, i ∈ [p], be
a semi-regular system over F2. Then its Hilbert series is given by

HSA/⟨F⟩(z) =
(1 + z)n∏p
i=1(1 + zdi)

,

truncated after the first ≤ 0 coefficient.

In general, one could extend the above to any small field by accounting for

the Frobenius morphism that maps x
||F||
i = xi for i ∈ [n].

Unfortunately, the polynomial systems considered in this work cannot be
simply labeled as regular or semi-regular. However, the tools presented in this
section will help us determine their Hilbert series.

15



Note. The definitions of F being regular or semi-regular implicitly involve an
ordering among the polynomials in F . One may wonder whether F may be
regular or semi-regular with respect to one ordering of F but not with respect
to another. This is not possible when F is homogeneous (and in fact is possible
if F is not homogeneous). The proofs of these facts are standard and we do not
get into them in this work.

Macaulay Matrix. The Macaulay matrix is an essential primitive for solving non-
linear systems of equations. LetM := {xα : α ∈ Nn} be the set of all monomials.
Let coeff(f,m) represent the coefficient of a monomial m ∈ M in a polynomial
f ∈ A. For finite subsets F := {f1, . . . , fp} ⊂ A and S := {s1, . . . , sq} ⊂ M, the
Macaulay matrix Macaulay(F ,S), is defined as

Macaulay(F ,S) :=

coeff(f1, s1) ... coeff(f1, sq)
...

. . .
...

coeff(fp, s1) ... coeff(fp, sq)


Note that S need not have all the monomials in F .

XL Algorithm and Gröbner Bases. Techniques based on Gröbner bases and
the closely related XL algorithm [CKPS00] can be used to solve systems of
polynomial equations. Both approaches usually depend on the Macaulay matrix.
For the systems we consider, the XL algorithm is more performant, and hence
our discussion focuses on XL.

Let F := {f1, . . . , fp} such that F ⊆ A be a system of polynomial equations,
i.e., f1(x) = . . . = fp(x) = 0. The XL algorithm can be split into two phases.
The first phase maps the non-linear system F to a linear system. We start by
multiplying each fi by arbitrary monomials such that the resulting polynomials
are of degree at most d. d is carefully selected and input to the algorithm such
that this step produces enough new equations. Note that finding the right d is
often challenging and constitutes a significant effort for the approach. We then
linearize the system by treating its monomials as new variables and save their
coefficients in the Macaulay matrix. The second phase is standard. We proceed
by solving the linear system with Gaussian elimination and obtain a polynomial
in one variable. We solve this polynomial using some factorization algorithm
and obtain a root, substitute, and repeat this process to solve for the remaining
variables. The full algorithm is presented in Figure 1.

As briefly discussed above, for XL to be successful we need to select d carefully
such that we produce in the first phase enough linearly independent equations
in relation to the number of monomials. In other words, p ≥ q in the Macaulay
matrix so that we can apply Gaussian elimination. The threshold for large enough
d is called the witness degree dwit and we use [BØ23]’s definition below.

Definition 3 (Witness Degree [BØ23]). Consider an affine system of poly-
nomials F := {f1, . . . , fp} with coefficients in F, the ideal I := ⟨F⟩, and some
d ∈ N. Now consider:

I≤d := {h ∈ I : deg(h) ≤ d}

16



XL(F = {f1, . . . , fp} ⊂ A, dwit ∈ N) :

1. Expand the system to degree dwit by computing, I≤dwit := {mfi : m ∈ M, fi ∈
F , deg(mfi) ≤ dwit} = {h ∈ I : deg(h) ≤ dwit}.

2. Obtain the Macaulay matrix M := Macaulay(I≤dwit ,M≤dwit) ∈ Fp×q where
M≤dwit := {m ∈ M : deg(m) ≤ dwit} and q := |M≤dwit |. We now have a lin-
ear system M · z = 0 where z1, . . . , zq are relabelings of the M≤dwit .

3. For i ∈ [n] :
(a) Reorder M, z such that (z1, . . . , zdwit+1) = (1,x1

i , . . . ,x
dwit
i ).

(b) Perform Wiedemann Gaussian elimination [Wie86] on M where
(z1, . . . , zdwit+1) = (1,x1

i , . . . ,x
dwit
i ) are eliminated last. Output ⊥ if the

first row of M is not of the form (M1,1, . . . ,M1,dwit+1, 0, . . . 0).
(c) Solve the univariate polynomial system

∑
j∈[dwit+1] M1,jx

j−1
i = 0 using factor-

ing algorithms. Let xi be one of the roots.
(d) Substitute xi in for xi and simplify M.

4. Output (x1, . . . , xn).

Fig. 1. The XL algorithm [CKPS00] for solving quadratic system of equations.

J≤d :=

h ∈ I : ∃gi s.t. h =
∑
i∈[p]

gifi;∀i ∈ [p], deg(gi) ≤ d− deg(fi)


The witness degree dwit is the smallest d ∈ N for which it holds that I≤d = J≤d
and LM(I≤d) = LM(I), where LM(·) (for some graded ordering) denotes the
monomial ideal generated by the leading monomials of all polynomials in the
input ideal.

Intuitively, dwit guarantees that everything we need to know about the struc-
ture of an ideal can be captured by polynomials of degree at most dwit. Note
that the witness degree dwit is related to the degree of regularity dreg. The key
difference is that dreg is usually used for homogeneous systems solved with the
Gröbner basis techniques, while dwit is suitable also for affine systems solved with
XL.

The runtime of the XL algorithm is largely determined by the cost of Gaus-
sian elimination. As the systems we are considering have a single solution and are
sparse, we can use the Wiedemann algorithm [Wie86] to perform the Gaussian
elimination, and find a solution in 3 ·maxRowWeight(M) · q2, where 3 is a con-
stant standard in the literature (see discussion in [BØ23]),maxRowWeight(M) :=
max({|Mi| : i ∈ [p]}) is the maximum number of non-zero entries across the rows
of the Macaulay matrix M, and q is the number of columns in the Macaulay
matrix.

3.7 Algebraic Attacks

[BØ23]’s Attack. The attack solves for the noise vector e ∈ Fn in a polynomial
system representing a single instance of regular-noise SD. Recall that a regular

17



e = e1|| . . . ||et can be viewed as t vectors e1, . . . , et each of size n/t and Ham-
ming weight |ei| = 1. The system consists of k linear parity check equations

Ge− b = 0 and
(
n/t
2

)
t quadratic equations encoding the regular structure of e,

i.e., ei,j1ei,j2 = 0 for all i ∈ [t] and j1 < j2 ∈ [n/t]4. These two sets of equations
represent the complete system of polynomial equations to solve regular syndrome
decoding over a large field F. Over F2, we additionally encode that the sum of
each block equals 1, i.e.,

∑
j∈[n/t] ei,j − 1 = 0, for all i ∈ [t]. We cannot do this

over larger fields as we do not know the values of the non-zero coordinates. We
also include field equations e2i,j − ei,j = 0, for all i ∈ [t] and j ∈ [n/t]. More

generally, we can include e
||F||
i,j − ei,j = 0 for any F. However, for large F, the

degree of the field equations is much higher than dwit, and hence they have no
contribution.

We note that the main contribution to the polynomial system comes from the
k parity check equations. Hence, the attack is more effective for instances with a
non-constant rate such as in primal LPN. The presented system is for the dual
setting. To attack the primal setting, we simply convert the primal instance into
an equivalent dual instance and then solve for the presented polynomial system.
We now present the polynomial systems for large F and F2 formally.

Modeling 1 (Polynomial System over a Large Field F). Let (G, b) be a
regular syndrome decoding instance over a large F. Let F := R ∪ S be a set of
polynomials such that:

– R is the set of k linear parity check equations Ge− b = 0.
– S is the set of t

(
n/t
2

)
quadratic equations that encode the regularity of the

noise vector e, i.e., ei,j1ei,j2 = 0 for all i ∈ [t] and j1 < j2 ∈ [n/t].

Modeling 2 (Polynomial System over F2). Let (G, b) be a regular syndrome
decoding instance over F2. Let F := R∪S ∪V ∪W be a set of polynomials such
that:

– R and S are the same sets as in Modeling 1.
– V is the set of n field equations e2i,j − ei,j = 0 for all i ∈ [t] and j ∈ [n/t].
– W is the set of t linear equations

∑
j∈[n/t] ei,j − 1 = 0, for all i ∈ [t]. They

express that each of the t blocks has Hamming weight 1.

[BØ23] solve these polynomial systems with XL Wiedemann. To apply XL
Wiedemann, [BØ23] estimate the witness degree dwit at which the polynomial
system is solved. This is [BØ23]’s key contribution. It also determines the cost
of XL Wiedemann as the witness degree determines the size of the Macaulay
matrix.

The dwit estimate is the index of the first ≤ 0 coefficient in the Hilbert series
HSA/I(z), where I := ⟨F (h)⟩ in Modeling 1 and Modeling 2 respectively. Thus,
dwit can be simply retrieved if we know the Hilbert series. Recall that unfortu-
nately Hilbert series are often difficult to compute. By using the assumption that

4 ei,j represents jth element of ith block ei of e.

18



the relevant Macaulay matrices have maximal rank and using the knowledge of
regular and semi-regular sequences, [BØ23] arrive at the following Hilbert series.

Theorem 1 (Hilbert Series for Modeling 1). Assuming the Macaulay ma-
trix has maximum rank, the Hilbert series of the homogeneous ideal I := ⟨F (h)⟩,
where F is the Modeling 1 polynomial system, is

HSA/I(z) := (1− z)k ·
(
1 +

n

t
· z

1− z

)t

,

truncated after the first ≤ 0 coefficient.

Theorem 2 (Hilbert Series for Modeling 2). Assuming the Macaulay ma-
trix has maximum rank, the Hilbert series of the homogeneous ideal I := ⟨F (h)⟩,
where F is the Modeling 2 polynomial system, is

HSA/I(z) :=
(1 + (n/t− 1)z)

t

(1 + z)k
,

truncated after the first ≤ 0 coefficient.

As presented, the complexity of the algorithm that solves Modeling 1 and
Modeling 2 is too high to be competitive with more established attacks. In other
words, the witness degree is too high and needs to be reduced to potentially
decrease the complexity of the overall algorithm. With that in mind, [BØ23]
present a hybrid approach, which consists of repeatedly guessing a few noise-
free elements of e and invoking XL Wiedemann until successfully computing e.
More specifically, parameterized by f ∈ [t] and µ ∈ [n/t], the hybrid approach
guesses µ noise-free positions in the first f blocks of e (i.e., add new equations
for each guessed noise-free ei,j = 0 to F). Let p be the probability that the
guessed positions are all noise-free. We then expect to repeat the XL Wiedemann
O(p−1) times. The hope is that the loss from having to rerun XL Wiedemann
is superseded by the decreased degree at which the system is solved. As before,
the degree dwit is derived from the Hilbert series, which for Modeling 1 changes
to

HSA/I(z) :=

[
(1− z)k ·

(
1 +

(n
t
− µ

)
· z

1− z

)f

·
(
1 +

n

t
· z

1− z

)t−f
]
,

truncated after the first ≤ 0 coefficient. For Modeling 2, it changes to

HSA/I(z) :=

[
(1 + (n/t− 1− µ)z)

f · (1 + (n/t− 1)z)
t−f

(1 + z)k

]
,

also truncated after the first ≤ 0 coefficient.

19



4 Overview

In this work, we introduce a new assumption that we call the stationary syn-
drome decoding (SSD), analyze its security, and present its implications for dif-
ferent applications. The high-level idea of SSD is straightforward. We consider
q instances of syndrome decoding (SD). SSD states that it is secure to reuse
the noisy positions of the noise vector e across all q instances as long as their
corresponding values are sampled uniformly for each instance. We now define
SSD formally:

Definition 4 (Stationary Syndrome Decoding (SSD)). Stationary Syn-
drome Decoding is parameterized by an implicit computational security param-
eter κ, a field F, dimensions n, k, q ∈ N with k < n, and distributions L ∈
Dist[{0, 1}n], G ∈ Dist[Fk×n]. For sample L ← L and for i ∈ [q], sample
ei ← L⊙ Fn, Gi ← G ∈ Fk×n. The (n, k, q,F,L,G)-SSD assumption states:

{(Gi, bi) | bi := Gi · ei}i∈[q] ≈ {(Gi, bi) | bi ← Fk}i∈[q]

where ≈ denotes computational indistinguishability.

The applications we consider will restrict L to being a subset containing sparse
vectors, typically with O(κ) ones. It is not hard to show that this definition is
equivalent to the following LPN-styled definition.

Definition 5 (Stationary Learning Parity with Noise (SLPN)). Station-
ary Learning Parity with Noise is parameterized by an implicit computational
security parameter κ, a field F, dimensions n,m, q ∈ N with n > m, and distri-
butions L ∈ Dist[{0, 1}n], H ∈ Dist[Fn×m]. For sample L ← L and for i ∈ [q],
sample ei ← L⊙Fn, Ai ← H ∈ Fn×m and si ← Fm. The (n,m, q,F,L,H)-SLPN
assumption states:

{(Ai, bi) | bi := Ai · si + ei}i∈[q] ≈ {(Ai, bi) | bi ← Fn}i∈[q]

where ≈ denotes computational indistinguishability.

In particular, the equivalence holds when Gi is the generator matrix for the
parity check matrix AT

i , see Section 3.4. Note that the more standard definitions
of regular LPN and SD can be obtained simply by restricting q to be one and
requiring non-zero noise. Conversely, Definition 6 shows that one can similarly
reframe SSD, SLPN in terms of the standard LPN formulation (G,G·e) ≈ (G, $)
with specially structured noise e and matrices G.

In the rest of this section, we justify at a high level SSD’s security (Section 4.1)
and discuss SSD’s implications for the performance of pseudorandom correlation
generators (Section 4.2).

20



4.1 The Security of SSD

The majority of known attacks on SD and LPN fall into two categories: linear and
non-linear. For the parameter regime that PCGs commonly use, linear attacks
are typically more efficient. Interestingly, SSD enjoys provable immunity to all
of these attacks. As discussed in Section 3.5, these attacks can be shown to be
equivalent to sampling the generator matrices G1, . . . ,Gq ∈ Fk×n and invoking
an adversary A(G) which outputs a test vector v ∈ Fkq. The distinguisher is
then implemented as v · (b1|| . . . ||bq). I.e., if the output is correlated with the
linear function v = (v1|| . . . ||vq), then the adversary A wins. We provably show
noA exists that has noticeable advantage. The core idea is that any such attacker
has to essentially come up with a codeword vi of Gi that does not intersect the
noise.5 However, from the distribution of the noise, this is unlikely, even if the
noise is correlated. SSD is particularly interesting because it targets a weakness
of linear attacks such as information set decoding (ISD). At a high level, linear
attacks come down to guessing a noise-free set of positions in e, which are the
non-zeros of vi, and then checking for linear correlations. However, this does not
allow an attacker to take advantage of the new information that SSD provides.
For a linear attacker, all vi must be codewords, and therefore the new instances
are no easier to attack than the first.

The situation with respect to non-linear attacks is more complicated. State-
of-the-art techniques encode the problem statement into a system of non-linear
equations and use algebraic techniques for solving the system, e.g., Gröbner
bases. [BØ23] recently proved bounds on the running time of the XL [CKPS00]
algorithm (see Section 3.6 and Figure 1), when applied to the SD problem with
regular noise. They show that when G ∈ Fk×n has non-constant rate, e.g.,
k = (1− ϵ)n, then the XL algorithm can outperform linear attacks.

Given that our system can be seen as an even more structured version of
regular noise SD, it is imperative that we understand how such attacks scale when
adapted to use the additional structure. To achieve this, we define a system of
equations that encodes the structure of the SSD problem and then prove bounds
on the required running time to solve such systems using the XL algorithm. We
show that XL is not noticeably better at solving SSD compared to SD.

4.2 Pseudorandom Correlation Generator (PCG) from SSD

We now explain at a high level how SSD improves the performance of PCGs and
defer the full details to Section 7. Typically, the end goal is to generate a secret
sharing of a random vector v times a scalar ∆, i.e., [[v∆]]. We will first compute
a secret sharing of a t-sparse vector e times ∆, i.e., [[e∆]]. The final result is
obtained by computing [[v∆]] = G[[e∆]], i.e., v = Ge. e,v will be known to the
receiver while ∆ is known to the sender. Many useful degree 1 PCGs, e.g., for
OT, binary OLE, and VOLE, are directly obtained from [[v∆]].

5 Here we abuse notation and redefine vi ∈ Fn as a codeword of Gi that corresponds
to a test vector Givi in the SD setting. See Section 5 for formal detail.

21



In more detail, let n′ := n/t. The receiver samples t subvectors e1, . . . , et ∈
Fn′

of Hamming weight 1 and defines e := e1|| . . . ||et ∈ Fn. The secret sharing
[[e∆]] is generated by evaluating t so-called punctured PRFs [GGM84,BCG+19a]
(PPRF), where the input to the ith PPRF is ei from the receiver and ∆ from
the sender. The output is [[ei∆]] and we obtain [[e∆]] := [[e1∆]]|| . . . ||[[et∆]]. A
single instance of such PPRF protocol requires log2 n

′ oblivious transfers (OTs).
Many applications require billions of correlations. However, due to memory

constraints, it is often inefficient to have n > 224 and as such it is common to
have q PCG instances each of fixed size n, e.g., n = 220. This comes at the cost
of requiring qt log2 n/t OTs and communication. The SSD assumption allows us
to reduce the overhead back down to t log2 n/t OTs in total and an amortized t
communication per instance (i.e., log2 n/t times less than SD). This is because
the bulk of the work in the PPRF protocol is dependent on the locations of the
non-zeros in e but not their values. As such, because SSD states that the location
does not need to change, we obtain significant savings. We additionally obtain a
much more cache-friendly construction that results in significant computational
savings. This is because the ability to reuse the bulk of the setup makes it more
attractive to use smaller values of n, which improves the cache efficiency.

We also obtain significant improvements for degree 2 PCGs such as non-
binary OLEs and Beaver triples that rely on the Ring LPN assumption. This
setting requires a very expensive setup to compute a sharing of two sparse poly-
nomials e · e′. If we apply the SSD assumption to this setting, the vast majority
of the setup can be reused, dramatically decreasing the overhead.

5 Linear Attacks

We now demonstrate that our assumption is resilient to linear attacks. We focus
on the restricted case of regular noise for efficiency. Our argument lies in showing
that the linear test framework adversary gains no significant advantage from
SLPN/SSD. It will be convenient to recast SSD in terms of standard SD with
structured noise and structured G.

Definition 6 (Canonical Representation). We say (n′,m′,F,D,H′)-LPN
is the Canonical Representation of (n,m, q,F,L,H)-SLPN if n′ = nq,m′ =
mq,D = {e1||...||eq : d ← L, ei ← d ⊙ Fn},H′ = {diag(A1, ...,Aq) : Ai ← H}
where diag denotes the function that places A1, ...,Aq along the diagonal of a
n′ ×m′ matrix.

Similarly, we say (n′, k′,F,L,G′)-SD is the Canonical Representation of (n, k,
q,F,D,G)-SSD if n′ = nq, k′ = kq,D = {e1||...||eq : d ← L, ei ← d ⊙ Fn},G′ =
{diag(G1, ...,Gq) : Gi ← G}.

It is not hard to show that the canonical representation is equivalent.

Definition 7 (Security against Linear Tests). Security against Linear
Tests is parameterized by an implicit security parameter κ, a finite field F, di-
mensions n,m ∈ N with n > m, and subsets D ⊂ Fn, H ⊆ Fn×m. We say that

22



the (n,m,F,D,H)-LPN assumption is secure against linear attacks

Pr[bias(DA) > ϵ : A← H] ≤ δ

where ϵ, δ are negligible and DA is the distribution induced by s ← Fm, e ← D
and outputting the LPN sample As+ e.

We note that one can also consider a computational version of linear test by
restricting D to being efficient. This will then correspond to using the pseudo-
minimum distance in the following.

Theorem 3 (Security of SLPN against Linear Tests with Regular Noise).
Let F be a finite field, H ⊆ Fn×m be a set of matrices with dual distance at least
d with probability at least δ, D ∈ {0, 1}n be the set of regular weight t vec-
tors, then (n,m, q,F,D,H)-SLPN is secure against attacks in the (ϵ, δ)-linear
test framework of Definition 7 (in canonical representation) where

ϵ = (1− d/n)
t

Proof. To prove SLPN secure against linear attacks, we split our proof into two
cases and prove them separately. First, we consider the number of LPN instances
q = 1 and only then q > 1.

Non-stationary Noise, q = 1. Let d ∈ [n] be the minimum number of linearly
dependent rows inA. We show that there does not exist a v such that v·(As+ e)
is distinguishable from uniform. We consider two cases.

Non-codeword v. Let us define the code C = {c ∈ Fn : cA = 0} = {mG :
m ∈ Fk}. This implies that all c ∈ C are mapped to zero when multiplied from
the right by A, that is cTA = 0m. Conversely, for v ̸∈ C it holds that vTA ̸= 0m.
Therefore, vTAs = uTs = r where u ∈ Fm is some non-zero vector. Since s is
uniform, it follows that so is r, and therefore max

v ̸∈C
(biasv(As+ e)) = 0.

Codeword v. As just described, when v is a codeword the randomness con-
tributed by s vanishes. That is, vT(As+e) = vTe. To prove that the construction
is secure against linear attacks we must show that v · e has negligible bias. Let
ei and vi denote the ith regular block of e,v, respectively, and let Di denote
the distribution of ei. Lemma 1 states that the overall biasv(D) is bounded as

biasv(D) ≤
∏

i∈[t] biasvi
(Di). We have biasvi

(Di) =

∣∣∣∣ E
ei←Di

[χ(vi · ei)]
∣∣∣∣. Let di

denote the Hamming weight of vi. Recall that we have one noisy location in
ei (possibly with value zero), and therefore the probability the noisy location
intersects vi is di/(n/t). Conditioned on intersecting, vi · ei is uniform over F,
and therefore the bias is 0. Otherwise, vi · ei = 0 and χ(vi · ei) = 1. It follows
that biasvi

(Di) = 1− di/(n/t) and

max
v∈C

(biasv(D)) ≤
∏
i

1− di/(n/t) ≤
(
1− d

n

)t

23



Note that this differs from the traditional regular noise bias for q = 1 as we
allow the noise value to be 0. For F2 and non-zero noise, Pr[vi ·e1 = 1] = di/(n/t)
and χ(vi · e1) = −1. It follows that E[χ(vi · ei)] = −di/(n/t) + (1− di/(n/t)) =
1− 2di/(n/t) and overall biasv(D) ≤ (1− 2d/n)

t
.

Stationary Noise, q > 1. As in the q = 1 case, it is clear that v · (As + e) is
uniform when v is not a concatenation of q codewords. This is because v does
not map s to zero. Now let v1, ...,vq denote the codewords of v, i.e. viAi = 0m

and v = (v1||...||vq). As in the q = 1 case, if v intersects e, then the result
is uniformly random, and therefore has zero bias. Since (a) v is non-zero, and
hence at least one vi is non-zero, and (b) the bias of each block with non-zero vi

is at most
(
1− d

n

)t
, then the overall bias is at most this as well. Note that while

the noisy locations between blocks do not change, their values in each block are
uniformly random, and the overall bias is bounded as the maximum over the
bias of each non-zero block.

Note that given Theorem 3 and the equivalence of SLPN and SSD (see Section 4),
the security of SSD against linear tests with regular noise is straightforward.

5.1 Other Linear Attacks

Given that our assumption introduces additional structure it is worth considering
the existence of other attacks that could be considered linear while not fit into the
linear test framework. Consider the SSD problem and the q outputs b1, ..., bq,
i.e. bi = GiAisi + Giei for generator Gi of parity check Ai. There exists a
hidden subset G′1, ...,G

′
q of G1, ...,Gq where G′i :=

(
Gi,∗,L1

, . . .Gi,∗,Lt

)
∈ Fm×t

and Gi,∗,Lj
is the jth “noisy column” of Gi. We then have bi = G′i · ci where

ci ∈ Ft are the t noisy values in ei, i.e. ci,j = ei,Lj
. Similarly, we can write this

as one large linear equation b = G′ · c. with G′ = diag(G′1, ...,G
′
t). Given that

|b| > |c|, the pseudorandomness of b clearly depends on G′ being hidden. We
consider a special case where pseudorandomness breaks down.

Consider instantiating the SSD assumption where the space of generator
matrices is the singleton set G = {G}. Therefore G1, ...,Gq above are all the
same. This additionally means that G′ can be expressed as an m × t matrix
as opposed to a qm × qt matrix. In particular, consider C = (c1, ..., cq),B =
(b1, ..., bq) and observe that B = G′ · C. Although the subset corresponding
to G′ is not known, G′ is now fixed and does not grow with q. Therefore,
when q = t, we can assume that span(B) = span(G′). This also means that
bt+1 ∈ span(b1, ..., bt), i.e. bt+1 can be distinguished. Because m < t, one would
not expect this to happen for random bi.

Although this attack is clearly in some sense linear, it is not possible to
perform it in the linear attack framework. Determining the coefficients v ∈ Ft

such that bt+1 = ⟨(b1, ..., bt,v)⟩ is a function of the output, which the linear test
adversary does not have. Linear test adversaries must first fix v before seeing b.
This exemplifies that although the linear test framework captures the majority of
traditional attacks on LPN and SD, new attacks become possible when additional

24



structure is added. To prevent this relatively trivial attack, it is critical that the
family of codes be large and relatively uncorrelated.

Consider G = Fm×n, i.e. the uniform distribution. Then clearly the linear
attack A(b1, ..., bt+1) described above is impossible. Each new bi is the sum
of an independent and uniformly random subset G′i. Any adversary breaking
security must crucially rely on the fact that the G′i matrices are correlated via
the secret L and public parameters G1, ...,Gq.

More generally, existing codes used for PGCs [BCG+19a,BCG+22,RRT23]
all sample their codes from an extremely large sample space. In particular, many
more random bits are used to sample Gi than are present in bi. This suggests
that it is extremely unlike that linear correlations would exist. Given that each
is constructed using a randomly sampled seed, e.g. Gi = CodeGen(H(i)) for a
random oracle H, then such linear attacks in the output should not be feasible.

6 Algebraic Attacks

In this section, we show that SSD is resilient against the recent algebraic attack
of [BØ23]. We first modify [BØ23]’s attack so that it takes advantage of the
stationary noise across instances. We then show that the structured stationary
noise provides negligible advantage. More specifically, we start by presenting our
modified system in Section 6.1. We continue by computing our system’s Hilbert
series in Section 6.2, use it to estimate the witness degree in Section 6.3, repeat
the same procedure for the hybrid approach in Section 6.4, and then evaluate
the attack’s impact on SSD’s security in Section 6.5.

6.1 Formulating Our Polynomial System

Recall that we restrict the noise to be at locations L ∈ L such that the locations
are regular. Consider arbitrary matrices Gi ∈ Fk×n sampled from G and error
vectors ei ∈ Fn, where each ei ← L ⊙ Fn is a vector with at most t non-zeros.
That is, ei = ei,1|| . . . ||ei,t where ||ei,j || = n/t and |ei,j | ≤ 1. We are given

(G1, . . . ,Gq, b1, . . . , bq),

where bi = Gi · ei.
We now formulate a system of polynomial equations to solve for ei for i ∈ [q],

i.e., the system has qn unknowns. We first consider in Modeling 3 the case where
SSD is parameterized over a large field F, and then in Modeling 4 the case where
it is parameterized over F2.

Modeling 3 (SSD over a Large Field F). Let (G1, . . . ,Gq, b1, . . . , bq) be an
SSD instance with regular noise locations L over a large F. Let F := R∪S be a
set of polynomials such that:

– R is the linear equations ⟨Gi,j , ei⟩ − bi,j = 0, for all i ∈ [q] and j ∈ [k].

25



– S is the set of q2t
(
n/t
2

)
= q2n2/2t− q2n/2 quadratic equations ei,v,jei′,v,j′ =

0, for all i, i′ ∈ [q], v ∈ [t], and j < j′ ∈ [n/t], implied by the structured noise
constraint L.

Modeling 4 optimizes the system for F2 by including the field equations
e2i,v,j−ei,v,j = 0, for all i ∈ [q], v ∈ [t], and j ∈ [n/t]. This ensures that the ideal
⟨F⟩ generated by Modeling 4 is zero-dimensional. However, for large F, as noted
prior, these equations will have no contribution.

Modeling 4 (SSD over F2). Let (G1, . . . ,Gq, b1, . . . , bq) be a SSD instance
with regular noise over F2. Let F := R∪S ∪V be a set of polynomials such that:

– R and S are the same sets as in Modeling 3.
– V is the field equations e2i,v,j−ei,v,j = 0 for all i ∈ [q], v ∈ [t], and j ∈ [n/t].

Compared to the prior work modeling for binary fields (Modeling 2), we
observe that SSD appears slightly harder because we no longer restrict e to
being regular with exact weight t (i.e. the noisy positions are sampled uniformly,
and thus can be zero). This eliminates t linear equations that prior attacks
[ES24,BØ23] were able to use.

6.2 Computing Hilbert Series

We now compute the Hilbert series (Section 3.6) of the homogeneous ideals
associated with Modeling 3 and Modeling 4. Our computation uses a template
similar to [BØ23] that estimates the Hilbert series of the ideals associated with
Modeling 1 and Modeling 2. Note that F , neither in the case of a large F nor
F2, is a regular or semi-regular system (Section 3.6). To see why, consider f1 :=
e1,1,1e1,1,2 and f2 := e1,1,2e1,1,3 that come from the structured noise constraint
S. Recall that the regularity and semi-regularity of F is independent of the order
in which we consider the polynomials in the system. Now, e1,1,1f2 = 0 in A/⟨f1⟩,
but e1,1,1 ̸= 0 in A/⟨f1⟩, and hence F is not a regular system. If F were to be a
semi-regular system, then its degree of regularity can be no more than 3 using
the aforementioned examples of f1, f2. However, e1,1,1e1,2,1e1,3,1 ̸∈ ⟨F⟩ (with
high probability). Thus, as long as t ≥ 3 (or even q ≥ 3, etc.), the system is not
semi-regular either. As a result, we cannot use the Hilbert series from Section 3.6
and require a more sophisticated analysis.

Hilbert Series for Modeling 3. Recall Modeling 3’s polynomial system F :=
R∪S. We first compute by monomial counting the Hilbert series HSA/⟨S⟩(z) of
the quotient ring A/⟨S⟩ resulting from the structured noise equations S. After
we compute the Hilbert series corresponding to S, we need to incorporate the
linear parity-check equations R to get the final Hilbert series. To do that, we
follow [BØ23]’s approach. We formalize as Assumption 1 an assumption that
the parity-check equations R behave well in the quotient ring A/⟨S⟩ formed
by the structured noise equations S. Note its similarity with the definition of
semi-regularity over large F.

26



Assumption 1. Let F := R ∪ S be an instance of Modeling 3 and dreg be the
degree of regularity of the zero-dimensional ideal ⟨F⟩. Let R(h) := {r1, . . . , rqk}
be the set of homogenized parity check equations. Our assumption states that for
i ∈ [qk]; if gri = 0 in A/⟨S, r1, . . . , ri−1⟩ with deg(gri) < dreg, then g = 0 in
A/⟨S, r1, . . . , ri−1⟩.

We now state and derive the final Hilbert series.

Theorem 4. For F associated with Modeling 3, the Hilbert series of the homo-
geneous ideal ⟨F (h)⟩ under Assumption 1 is

HSA/⟨F(h)⟩(z) = (1− z)
qk ·

(
1 +

n

t

(
1

(1− z)q
− 1

))t

,

truncated after the first ≤ 0 coefficient. We call (1− z)
qk ·
(
1 + n

t

(
1

(1−z)q − 1
))t

the generating series of ⟨F (h)⟩.

Theorem 4 immediately follows from the proofs of Lemma 2 and Lemma 3.

Lemma 2. For the set S associated with the structural equations of Modeling 3,
the Hilbert series of the homogeneous ideal ⟨S(h)⟩ is

HSA/⟨S(h)⟩(z) =

(
1 +

n

t

(
1

(1− z)q
− 1

))t

.

Proof. Note that S is already homogenized, i.e., S = S(h). Recall that HS(z) =∑
dHF(d) · zd and the HF(d) = dim(Ad/⟨S(h)⟩d) is the size of the vector space

basis Bd ⊂ {[xα] : α ∈ Nn} s.t. span(Bd) = Ad/⟨S(h)⟩d.
Let us first restrict our attention to a specific block v ∈ [t] and let Sv be the

subset of S that only considers block v. Because Sv = {ei,v,jei′,v,j′ : i, i′ ∈ [q], j <

j′ ∈ [n/t]}, the quotientA/⟨S(h)v ⟩ cannot contain any monomials with ei,v,jei′,v,j′

as a factor. That is, for a fixed v no monomial contains more than one j index.
If we then consider a specific degree d and all of the q instances, the admissible

monomials are Bd,v :=
{∏

i∈[q] e
αi
i,v,j : j ∈ [n/t],α ∈ (N ∪ {0})q, d =

∑
i∈[q] αi

}
.

Let us count the number of such monomials for a specific v ∈ [t], j ∈ [n/t], d > 0.
We will use a balls in bins argument to count |{α ∈ (N ∪ {0})q : d =

∑
k αk}|.

One can view this as counting the ways to assign d balls into q bins, i.e., bins
α1, . . . , αq. The number of ways to do this is

(
q+d−1

d

)
and hence the number of

monomials of the form
∏

i∈[q] e
αi
i,v,j for a fixed v, j is

(
q+d−1

d

)
. Therefore, if we

consider all j ∈ [n/t] for the fixed block v, we have |Bd,v| = n
t ·
(
q+d−1

d

)
. Thus,

the Hilbert series “for one block,” say v, is

HSA/⟨S(h)
v ⟩

(z) = 1 +
n

t
·
∞∑
d=1

(
q + d− 1

d

)
zd

where the one is from the constant monomial. We can find a closed form expres-
sion for the infinite sum inductively as follows. Consider q = 1. After substituting

27



q = 1 into the infinite sum in HSA/⟨S(h)⟩,v, we get η1 =
∑∞

d=1

(
1+d−1

d

)
zd = z

1−z .

We claim that for arbitrary q, ηq = 1
(1−z)q − 1, which clearly holds for q = 1.

Now, in pursuit of the inductive step, consider

z+ ηq = z+

∞∑
d=1

(
q + d− 1

d

)
zd

= z+ qz+

(
q + 1

2

)
z2 + . . .

=

(
(q + 1)z+

(
q + 2

2

)
z2 + . . .

)
−
(
(q + 1)z2 +

(
q + 2

2

)
z3 + . . .

)
(3)

=

∞∑
d=1

(
q + d

d

)
zd −

∞∑
d=1

(
q + d

d

)
zd+1

= (1− z)

∞∑
d=1

(
q + d

d

)
zd

= (1− z)ηq+1

where (3) follows from
(
q+d
d

)
−
(
q+d−1
d−1

)
=
(
q+d−1

d

)
. Therefore, ηq+1 =

z+ηq

1−z =

1
(1−z)q+1 −1. Hence,HSA/⟨S(h)

v ⟩
(z) = 1+ n

t

(
1

(1−z)q − 1
)
. Finally, a general mono-

mial of degree d is a product of monomials for distinct blocks with the sum of
their degrees equal to d. Relying on the same symbolic argument as in [FS09b],
which gives the generating series of a Cartesian product, we have

HSA/⟨S(h)⟩(z) =

(
1 +

n

t

(
1

(1− z)q
− 1

))t

Lemma 3. For F associated with Modeling 3, the Hilbert series of the homoge-
neous ideal ⟨F (h)⟩ under Assumption 1 is

HSA/⟨F(h)⟩(z) = (1− z)
qk · HSA/⟨S(h)⟩(z),

truncated after the first ≤ 0 coefficient.

Proof. Our proof is a straightforward modification and expansion of [BØ23]. Let
R(h) := {r1, . . . , rqk} be the set of homogenized parity check equations. Let I(0)
denote the ideal ⟨S(h)⟩ and I(j), j ∈ [qk], denote the ideal ⟨S(h), r1, . . . , rj⟩. We
will show Assumption 1 implies that for j ∈ [qk], d < dreg, there exists a short
exact sequence

0→ Ad−1/I(j − 1)d−1
α→ Ad/I(j − 1)d

β→ Ad/I(j)d → 0.

We prove this as follows. Let α : Ad−1/I(j − 1)d−1 → Ad/I(j − 1)d be the map
defined as

α([f ]) := [rjf ].

28



Firstly, α is well-defined as if f1 ∈ [f ], then f1 = f + g for some g ∈ I(j− 1)d−1.
Then, rjf1 = rjf + rjg. By definition, rjg ∈ I(j − 1)d since rj is homogenous
and linear. Therefore, [rjf1] = [rjf ]. Secondly, α is injective. Suppose α([f ]) =
α([f ′]), i.e., [rjf ] = [rjf

′]. This implies that rjf − rjf
′ ∈ I(j − 1)d, which in

turn from Assumption 1 implies that f − f ′ ∈ I(j − 1)d−1, i.e., [f ] = [f ′].

Let β : Ad/I(j − 1)d → Ad/I(j)d be the map defined as

β([f ]) := [f ].

Again, β is well-defined as if f1 ∈ [f ], then f1− f ∈ I(j− 1)d. Since I(j− 1)d ⊆
I(j)d, f1− f ∈ I(j)d and hence [f1] = [f ]. Also, β is trivially surjective as [f ] is
mapped to [f ].

Finally, we claim that ker(β) = im(α). To this end, we prove two statements.
First, im(α) ⊆ ker(β). This is because if [h] ∈ im(α), there exists an f such that
[h] = [rjf ]. Now, β([h]) = β([rjf ]) = [0] as rj ∈ I(j). Next, ker(β) ⊆ im(α).
Suppose [h] ∈ ker(β). Then, β([h]) = [h] = [0], i.e., h ∈ I(j)d. This implies that
there exist g ∈ S(h) and f1, . . . , fj such that h = f1r1+. . .+fjrj+g. Let g′ denote
the homogenous degree-d part of g and f ′1, . . . , f

′
j denote the homogenous degree-

(d−1) parts of f1, . . . , fj . Then, h = f ′1r1+ . . .+f ′jrj+g, i.e, h−f ′jrj ∈ I(j−1)d.
Therefore, [h] = [rjf

′
j ] and hence α([f ′j ]) = [h], i.e., [h] ∈ im(α).

Therefore, 0 → Ad−1/I(j − 1)d−1
α→ Ad/I(j − 1)d

β→ Ad/I(j)d → 0 is
indeed a short exact sequence. By the Hilbert function property for short exact
sequences (Section 3.6), we have

HFA/I(j−1)(d− 1)−HFA/I(j−1)(d) +HFA/I(j)(d) = 0.

Let hd,j := HFA/I(j)(d) = dim(Ad/I(j)d). Then, hd,j := hd,j−1 − hd−1,j−1.

Let Gj be the generating series for hd,j , i.e., let Gj(z) =
∑∞

d=0 hd,jz
d. Note that

Gj = HSA/I(j). We have

Gj(z) =
∞∑
d=0

hd,jz
d

=

∞∑
d=0

(hd,j−1 − hd−1,j−1)z
d

=

∞∑
d=0

hd,j−1z
d −

∞∑
d=1

hd−1,j−1z
d

=

∞∑
d=0

hd,j−1z
d − z ·

∞∑
d=0

hd,j−1z
d

= (1− z) · Gj−1(z).

Therefore, we get HSA/I(qk)(z) = (1− z)qk · HSA/⟨S(h)⟩(z). Note that by defini-

tion I(qk) = ⟨S(h), r1, . . . , rqk⟩ = ⟨F (h)⟩. Hence, the lemma follows.

29



Hilbert Series for Modeling 4. Recall that Modeling 4 adds additional struc-
tural equations V to F . We adopt a similar assumption as with Modeling 3. Note
its similarity with the semi-regularity over F2.

Assumption 2. Let F := R∪ S ∪ V be an instance of Modeling 4 and dreg the
degree of regularity of ⟨F (h)⟩. Let R(h) := {r1, . . . , rqk} be the set of homogenized
parity check equations. Our assumption states that for i ∈ [qk], if gri = 0 in
A/⟨S,V, r1, . . . , ri−1⟩ with deg(gri) < dreg, then g = 0 in A/⟨S,V, r1, . . . , ri⟩.

We now state and derive the final Hilbert series.

Theorem 5. For F associated with Modeling 4, the Hilbert series of the homo-
geneous ideal ⟨F (h)⟩ under Assumption 2 is

HSA/⟨F(h)⟩(z) =
1

(1 + z)qk
·
(
1 +

n

t
· ((1 + z)q − 1)

)t
,

truncated after the first ≤ 0 coefficient. We call 1
(1+z)qk

·
(
1 + n

t · ((1 + z)q − 1)
)t

the generating series of ⟨F (h)⟩.

Theorem 5 immediately follows from the proofs of Lemma 4 and Lemma 5.

Lemma 4. For the sets S and V associated with the structural and field equa-
tions of Modeling 4, the Hilbert series of the homogeneous ideal ⟨S(h),V(h)⟩ is

HSA/⟨S(h),V(h)⟩(z) =
(
1 +

n

t
· ((1 + z)q − 1)

)t
.

Proof. Note that S is already homogenized, i.e., S = S(h). V(h) contains the qn
monomials e2i,v,j for i ∈ [q], v ∈ [t], j ∈ [n/t]. Recall that HS(z) =

∑
dHF(d) ·zd

and the HF(d) = dim(Ad/⟨S(h),V(h)⟩d) is the size of the vector space basis
Bd ⊂ {[xα] : α ∈ Nn} s.t. span(Bd) = Ad/⟨S(h),V(h)⟩d.

Let us first restrict our attention to a specific block v ∈ [t] and let Sv,Vv
be the subsets of S,V that only consider block v. Because Sv = {ei,v,jei′,v,j′ :
i, i′ ∈ [q], j < j′ ∈ [n/t]} and V(h)

v = {e2i,v,j : i ∈ [q], j ∈ [n/t]}, the quotient

A/⟨S(h)v ,V(h)
v ⟩ cannot contain any monomials with ei,v,jei′,v,j′ or e

2
i,v,j as a fac-

tor. That is, for a fixed v no monomial contains squares or more than one j index.
If we then consider a specific degree d and all of the q instances, the admissible
monomials are

Bd,v :=

∏
i∈[q]

eαi
i,v,j : j ∈ [n/t],α ∈ {0, 1}q, d =

∑
i∈[q]

αi

 .

We have |{α ∈ {0, 1}q : d =
∑

k αk}|. One can view |{α ∈ {0, 1}q : d =
∑

k αk}|
as counting the ways to pick d items from a total of q, i.e., which d of α1, . . . , αq

must be 1 (and the rest 0). The number of ways to do this is
(
q
d

)
and hence the

number of monomials of the required form for a fixed v, j is
(
q
d

)
. Therefore, if we

30



consider all j ∈ [n/t] for the fixed block v, we have |Bd,v| = n
t ·
(
q
d

)
. Thus, the

Hilbert series “for one block,” say v, is

HSA/⟨S(h)
v ,V(h)

v ⟩
(z) = 1 +

n

t
·
∞∑
d=1

(
q

d

)
zd = 1 +

n

t
· ((1 + z)q − 1)

where the one is from the constant monomial.
Finally, a general monomial of degree d is a product of monomials for distinct

blocks with the sum of their degrees equal to d. Relying on the same symbolic
argument as in [FS09b], which gives the generating series of a Cartesian product,
we have

HSA/⟨S(h),V(h)⟩(z) =
(
1 +

n

t
· ((1 + z)q − 1)

)t

Lemma 5. For F associated with Modeling 4, the Hilbert series of the homoge-
neous ideal ⟨F (h)⟩ under Assumption 2 is

HSA/⟨F(h)⟩(z) =
HSA/⟨S(h)⟩(z)

(1 + z)qk
,

truncated after the first ≤ 0 coefficient.

Proof. We proceed as in the proof of Lemma 3. Let R(h) := {r1, . . . , rqk} be the
set of homogenized parity check equations. Let I(0) denote the ideal ⟨S(h),V(h)⟩
and I(j), j ∈ [qk], denote the ideal ⟨S(h),V(h), r1, . . . , rj⟩. We will show Assump-
tion 2 implies that for j ∈ [qk], d < dreg, there exists a short exact sequence

0→ Ad−1/I(j)d−1
α→ Ad/I(j − 1)d

β→ Ad/I(j)d → 0.

We prove this as follows. Let α : Ad−1/I(j − 1)d−1 → Ad/I(j − 1)d be the map
defined as

α([f ]) := [rjf ].

Firstly, α is well-defined as if f ′ ∈ [f ], then f ′ − f ∈ I(j)d−1, i.e., there exist
g ∈ ⟨S(h),V(h)⟩ and f1, . . . , fj such that f ′ − f = f1r1 + . . . + fjrj + g. Let
g′ denote the homogenous degree-(d − 1) part of g and f ′1, . . . , f

′
j denote the

homogenous degree-(d−2) parts of f1, . . . , fj . Then, f ′−f = f ′1r1+. . .+f ′jrj+g.

Now, rjf
′ − rjf = f ′1rjr1 + . . . + f ′jr

2
j + grj ∈ I(j − 1)d as r2j ∈ ⟨S(h),V(h)⟩.

Therefore, [rjf
′] = [rjf ]. Secondly, α is injective. Suppose α([f ]) = α([f ′]), i.e.,

[rjf ] = [rjf
′]. This implies that rjf − rjf

′ ∈ I(j − 1)d, which in turn from
Assumption 2 implies that f − f ′ ∈ I(j)d−1, i.e., [f ] = [f ′].

Let β : Ad/I(j − 1)d → Ad/I(j)d be the map defined as

β([f ]) := [f ].

Again, β is well-defined as if f1 ∈ [f ], then f1− f ∈ I(j− 1)d. Since I(j− 1)d ⊆
I(j)d, f1− f ∈ I(j)d and hence [f1] = [f ]. Also, β is trivially surjective as [f ] is
mapped to [f ].

31



Finally, we claim that ker(β) = im(α). To this end, we prove two statements.
First, im(α) ⊆ ker(β). This is because if [h] ∈ im(α), there exists an f such that
[h] = [rjf ]. Now, β([h]) = β([rjf ]) = [0] as rj ∈ I(j). Next, ker(β) ⊆ im(α).
Suppose [h] ∈ ker(β). Then, β([h]) = [h] = [0], i.e., h ∈ I(j)d. This implies that
there exist g ∈ ⟨S(h),V(h)⟩ and f1, . . . , fj such that h = f1r1+. . .+fjrj+g. Let g′

denote the homogenous degree-d part of g and f ′1, . . . , f
′
j denote the homogenous

degree-(d− 1) parts of f1, . . . , fj . Then, h = f ′1r1 + . . .+ f ′jrj + g, i.e, h− f ′jrj ∈
I(j − 1)d. Therefore, [h] = [rjf

′
j ] and hence α([f ′j ]) = [h], i.e., [h] ∈ im(α).

Therefore, 0→ Ad−1/I(j)d−1
α→ Ad/I(j − 1)d

β→ Ad/I(j)d → 0 is indeed a
short exact sequence.

By the Hilbert function property for short exact sequences (Section 3.6), we
have

HFA/I(j)(d− 1)−HFA/I(j−1)(d) +HFA/I(j)(d) = 0.

Let hd,j := HFA/I(j)(d) = dim(Ad/I(j)d). Then,

hd,j := hd,j−1 − hd−1,j .

Let Gj be the generating series for hd,j , i.e., let

Gj(z) =
∞∑
d=0

hd,jz
d.

Note that Gj = HSA/I(j). We have

Gj−1(z) =
∞∑
d=0

hd,j−1z
d

=

∞∑
d=0

(hd,j + hd−1,j)z
d

=

∞∑
d=0

hd,jz
d +

∞∑
d=1

hd−1,jz
d

=
∞∑
d=0

hd,jz
d + z ·

∞∑
d=0

hd,jz
d

= (1 + z) · Gj(z).

Therefore, we get HSA/I(qk)(z) =
HSA/⟨S(h),V(h)⟩(z)

(1+z)qk
. Note that by definition

I(qk) = ⟨S(h),V(h), r1, . . . , rqk⟩ = ⟨F (h)⟩. Hence, the lemma follows.

6.3 Estimating Witness Degree

As described earlier, following [BØ23], we will use the witness degree dwit of the
input polynomial system to estimate the cost of the XL Wiedemann approach.
The systems F in Modeling 3 and Modeling 4 admit unique solutions for the

32



range of parameters of interest. If (a1, . . . , an) is a unique solution of the poly-
nomial system, it has the reduced Gröbner basis {x1 − a1, . . . ,xn − an}.6 If
I := ⟨F⟩, we have LM(I≤1) = LM(I) and dim(I≤d) = dim(A≤d) − 1. In par-
ticular, we can say that dwit is the smallest degree such that the rank of the
Macaulay matrix is equal to the number of columns minus one.

As in [BØ23], our Assumption 1 and 2 imply that the relevant Macaulay
matrix has maximal rank. Now, consider the Hilbert series from Theorem 4
and 5 prior to truncation. The coefficient in a term of degree d < dreg is the
number of columns that cannot be reduced in the Macaulay matrix of degree d.
When d ≥ dreg, the coefficient measures the number of “excess” rows after full
reduction. We therefore estimate the witness degree dwit as

dwit = min

d ∈ N :
∑

j∈[d+1]

[zj−1](HS(z)) ≤ 0


where [zj−1](HS(z)) denotes the coefficient of zj−1 in the Hilbert series from
Theorem 4 and 5 prior to truncation. We have experimentally verified these
estimates as we discuss in Section 6.5.

6.4 Hybrid Approach

Following [BØ23], we also present a hybrid approach, which consists of repeat-
edly guessing a few noise-free positions of L (and therefore e) and invoking
XL Wiedemann until successfully computing e. Parameterized by f ∈ [t] and
µ ∈ [nt ], the hybrid approach guesses µ noise-free positions in the first f blocks
of e and adds the equations ei,v,j = 0 for those f blocks v and µ positions j in
every instance i to F . Let us determine a bound pf,µ on the probability that the
guessed positions are all noise-free. There are at least n

t −1 noise-free positions in
each block. Therefore, the probability that the µ positions guessed in any given

block are noise-free is at least
(

n
t
−1
µ )

(
n
t
µ )

= 1− µt
n . This means that the probability

that all the positions guessed are noise-free is at least pf,µ =
(
1− µt

n

)f
. We then

expect to repeat the XL Wiedemann O(p−1f,µ) times.
We now need to derive the Hilbert series of this modified system. We discuss

this hybrid approach for Modeling 3 and note that the case of Modeling 4 is
similar. Consider the impact of our guessing on Lemma 2. For a fixed block v,
the number of j that are not fixed by our guess is now n

t − µ and not n
t in the

first f blocks and still n
t in the last t− f . To make Lemma 3 work, we augment

Assumption 1 as in [BØ23] with Assumption 3. This ensures that fixing variables
does not introduce unexpected cancelations at higher degrees among the parity-

check equations in R. For any invertible matrix P, f ∈ [t], and µ ∈ [nt ], let P
−1
f,µ

6 In the case of Modeling 4, the field equations ensure that the ideal is radical, and
the claim from Hilbert’s Nullstellensatz. In the case of Modeling 3, we assume that
the system is sufficiently overdetermined to ensure this.

33



denote the map that applies P−1 and then fixes the initial µ variables to 0 in
the last f blocks of e.

Assumption 3. Let R be the set of parity-check equations from Modeling 3.
For every permutation matrix P which stabilizes each block of e, f ∈ [t], and

µ ∈ [nt ], we assume R(h) ◦P−1f,µ satisfies Assumption 1 in the ring A ◦P−1f,µ.

Under Assumption 3, the Hilbert series for Modeling 3 now becomes

HSA/⟨F(h)⟩,hyb,f,µ(z) = (1− z)
qk ·

(
1 +

(n
t
− µ

)( 1

(1− z)q
− 1

))f

·(
1 +

n

t

(
1

(1− z)q
− 1

))t−f

,

truncated after the first ≤ 0 coefficient. As before, the degree dwit is derived from
the Hilbert series. We refer to [BØ23] for further details.

6.5 Attack’s Evaluation

We now evaluate our algebraic attack. We write scripts in the Magma Com-
putational Algebra System V2.28-13 [BCP97] to (1) experimentally verify our
Hilbert series and (2) compute the time complexity of the attack. We plan to
open-source our Magma scripts along with our PCG code (see Section 8). In
all our experiments, we use the free online Magma calculator, and hence our
computation is restricted to ≤ 2 minutes. Thus, we were able to run our scripts
only on smaller parameters.

We first experimentally verify our Hilbert series from Section 6.4 is correct.
We compare the output with the output of Magma’s HilbertSeries(·). We
verify the hybrid version of our Hilbert series over F101 and for the same systems
as [BØ23] in Table 7 (we can similarly verify over F2). The key difference is that
we also add a parameter q ≥ 1 (q = 1 for [BØ23]) to our system, which represents
the number of SD instances. The largest q we test for is 4 as for larger q the
HilbertSeries(·) function exceeds our computational resources. For F101, we
confirm our Hilbert series is the same for all the tested systems (q, n, k, t, f, µ),
and hence Assumption 1 holds:

(4, 30, 15, 5, 0, 0), (4, 30, 20, 5, 0, 0), (3, 40, 20, 5, 0, 0),

(4, 40, 30, 5, 0, 0), (3, 49, 30, 7, 0, 0), (3, 48, 30, 8, 0, 0),

(2, 40, 25, 10, 0, 0), (1, 84, 50, 12, 3, 2), (3, 56, 30, 7, 2, 3),

(2, 56, 30, 7, 6, 3), (3, 70, 40, 10, 5, 2), (4, 70, 40, 10, 5, 3)

We next focus on the efficiency of the algebraic attack. We run 2 experiments.
For both, we consider F2128 and F2 and the XL hybrid approach of Section 6.4.
In each, we find the (f, µ) that results in the most efficient attack. We pick
syndrome decoding parameters n, k = n/2 given our computational restrictions.

34



In the first experiment (Figure 2), we show how the witness degree dwit and
the complexity of the XL Hybrid algorithm changes with increasing q. We fix
n = 216, k = 215, fix t = 69 such that we get XL complexity of 128 with
q = 1, and then vary q = {1, 2, 24, 27, 210}. Our results show that in fact the
complexity of the XL algorithm increases with larger q. This is because the
system of equations gets larger with increasing q, and hence more expensive for
XL to solve. Another interesting aspect is that for all runs the best f = t. I.e.,
we should guess noise-free positions in all blocks. It is not surprising that this
holds in the constant rate SD setting, where the amount of noise t is smaller
than in the non-constant rate LPN setting that [BØ23] emphasize. Overall, note
that to get 128-bit security we require t = 69, which is substantially less than
what is suggested by the linear test (Section 8). This implies that the algebraic
attack may not be the ideal choice for our setting.

F2128 (t = 69) F2 (t = 69)
q dwit (f, µ) XL Hybrid dwit (f, µ) XL Hybrid

1 2 (69,410) 128 2 (69,410) 128
2 2 (69,410) 132 2 (69,410) 132
24 2 (69,410) 144 2 (69,410) 144
27 2 (69,410) 156 2 (69,410) 156
210 2 (69,410) 168 2 (69,410) 168

Fig. 2. This experiment shows how the witness degree dwit and the complexity of the
XL algorithm changes with increasing q. We set our parameters n, k following standard
choices in SD. I.e., we fix n = 216, k = 215, fix t = 69 such that we get XL complexity
of 128 with q = 1, and then vary q = {1, 2, 24, 27, 210}. We consider F2128 and F2,
hybrid evaluation, and search all (f, µ) for the most efficient attack for each q. Note
the results for F2128 and F2 are identical.

The first experiment showed that we get the best attack by attacking a single
SD instance. In the second experiment (see Figure 3), we thus show the amount
of noise t necessary to get 128 bits of security for different n, k, and q fixed to
1. We then repeat the same runs for q = 210 to show how t changes.

F2128 F2

q = 1 q = 210 q = 1 q = 210

n k dwit (f, µ) XL t (f, µ) XL t (f, µ) XL t (f, µ) XL t

210 29 2 (101, 4) 128 107 (58,7) 127 58 (101, 4) 128 107 (58,7) 127 58
212 211 2 (89, 20) 127 90 (46,37) 128 46 (89, 20) 127 90 (46,37) 128 46
214 213 2 (74, 192) 128 74 (34,191) 128 34 (79, 91) 128 79 (34,191) 128 34
216 215 2 (69, 410) 128 69 (24,1364) 128 24 (69, 410) 128 69 (24,1364) 128 24

Fig. 3. This experiment picks standard SD’s n, k parameters used for PCGs (i.e. k =
n/2) and computes how much noise t is necessary to get XL complexity of ≈ 128 for
q = 1 and q = 210. We consider F2128 and F2, XL hybrid evaluation, and search all
(f, µ) for the most efficient attack for each parameter setting.

35



7 Pseudorandom Correlation Generator (PCG) from SSD

Securely Computing the Noise Vector for PCG protocols with FSS. Pseudoran-
dom Correlation Generators (PCGs) have emerged as the preferred way to gen-
erate correlated randomness used by MPC protocols. For example, oblivious
transfer (OT) and vector oblivious linear evaluation (VOLE) correlations can be
generated with sublinear communication. For that reason, they are commonly
referred to as silent OT and VOLE. These in turn enable higher level proto-
cols such as garbled circuits, GMW, and PSI protocols. Additionally, Beaver
triples for both binary and larger fields can succinctly be generated using PCG
techniques.

At the heart of these constructions is the syndrome decoding assumption. If
we ignore some complications, these protocols need to multiply a scalar ∆ ∈ F
by the sparse noise vector e ∈ Fn, where ∆, e are each held by a different party.
The result should be a secret sharing [[∆e]] which is then compressed by G, i.e.
[[G∆e]]. Such a secret sharing represents the VOLE correlation and can locally
be compiled into k OTs, where k is the codeword length. Other correlations
follow a similar formula. The crux of this protocol is the generation of [[∆e]].

Note that e with weight t can be succinctly described as t coordinates and
values {(αi, vi)}i∈[t] such that eαi

= vi and otherwise is zero. This can be used
to generate a secret sharing of [[∆e]] with only sublinear O(t log n) communica-
tion and O(n) computation. Although not strictly necessary, for the rest of this
discussion we will assume e is regular, i.e. can be written as the concatenation
of t length n

t subvectors e1, . . . , et ∈ Fn
t .

The secret sharing of e times ∆ is achieved using function secret sharing
(FSS) [BGI15]. Specifically, FSS allows a party with a function f in some function
class F to split it into function shares s1, s2 s.t. s1(i) + s2(i) = f(i) for all i.
Additionally, sj alone leaks no information about f beyond its membership in F .
While it is not known how to efficiently achieve this for general function classes,
the special case of point functions fi,y emit very efficient constructions. A point
function fi,y is defined by fi,y(x) = 0 for all x ̸= i and fi,y(i) = y. The core idea
is that given FSS of the point functions fαi,vi∆ for i ∈ [t], the shares of [[∆e]]
can be generated as the concatenations of the individual FSS shares evaluated
at all x ∈ [n/t]. That is, ∆ei,j = fαi,vi .

Compute [[∆e]] for unit vector e [BGI14]. Let us make the simplification that
e is a unit vector with eα = 1. As such, the point function in question is fα,∆.
Later we will consider the general case where e has higher weight and arbitrary
values.

The protocol is a simple tree-based construction inspired by [GGM84]’s idea
for building a PRF from a length doubling PRG G : {0, 1}κ → {0, 1}2×κ. The
sender, takes∆ ∈ F as input and samples a random seed s ∈ {0, 1}κ. The receiver
takes the noise vector e ∈ Fn as input. The sender with seed s ∈ {0, 1}κ defines a
binary tree with n leaves. s is assigned to the root node. The left and right child
nodes are then assigned the values (s0, s1) = G(s), respectively. This is repeated
for all of the descendant nodes. This tree will have D := ⌈log2(n)⌉ + 1 levels

36



and n leaves. Let the value assigned to the node at level d ∈ [D] and position
j ∈ [2d−1] be indexed as sd,j .

Consider the path from the root to the leaf node α (at level D). We will
call this the critical path Pα. Our first objective is for the receiver to learn
all seeds si,j that are not on the critical path. Consider the so-called co-path
Pα to the critical path Pα which consists of all the sibling nodes along the
critical path. For example, if n = 16, α = 7, then the critical path is Pα =
((1, 1), (2, 1), (3, 3), (4, 7)) while the co-path is Pα = ((2, 2), (3, 4), (4, 8)). Note
that the co-path is not a path in the tree but a set of nodes. The interesting
property is that if the receiver can learn only the seeds indexed by the co-path
Pα, then they can use G to rederive all of the other seeds that are not on the
critical path.

[BCG+19a] presented a surprisingly simple protocol for allowing the receiver
to learn exactly {sp | p ∈ Pα}. For the first level it is simple, the parties can
use a 1-out-of-2 OT so that the receiver can either learn s2,1 or s2,2 depending
on which is indexed by Pα,1. The idea is to then proceed level by level. Once
at level i ∈ {3, . . . , D}, observe that the receiver already knows all but two of
the seeds at level i. In particular, they do not know sPα,i+1 and sPα,i

. However,
we can no longer use a simple 1-out-of-2 OT as the sender does not know which
pair of children to use.

The critical observation is that the sender can sum all of the left child seeds
li :=

∑
j si,2j−1 and the right child seeds ri :=

∑
j si,2j and use these as OT

messages. The receiver will learn the left or right sum depending on if the left
or right child is indexed by Pα,i−1. That is, if Pα,i−1,2 is even, then they will
learn ri and otherwise li. If they learn li, then they can compute si,Pα,i−1

as li
minus the sum of the left children they already know. Otherwise, they compute
si,Pα,i−1

as ri minus the sum of the right children they already know.

Observe that we almost have a secret sharing of e. The sender can define their
shares of [[∆ei]] as −map(sD,i) where map : {0, 1}κ → F is a function mapping
bit strings to field elements. For all but the special index α, the receiver can
set their share as map(sD,i). What remains is for the receiver to somehow learn
the value map(sD,α) + ∆ without revealing α. However, we already have the
machinery to achieve this. The sender can sum all the children and add ∆, i.e.
σ := ∆+

∑
j∈[n] map(sD,j). This sum is sent to the receiver who can subtract off

the shares they already know to compute map(sD,α) +∆. As such, the parties
now have a valid sharing [[∆e]].

Recall that we made two simplifications. First, we restricted the noise value
eα to always be one. Removing this simplification introduces a challenge in that
the sender no longer can simply use ∆ in the final sums. Instead they would need
to use∆eα but eα is a secret value known only to the receiver. This issue is solved
by computing a sharing [[b]] for b = ∆eα using some other secure multiplication
protocol where the sender inputs ∆ and the receiver inputs eα (more specifically,
when we consider t ≥ 1, using another VOLE of size t to multiply ∆ with all t
non-zeros in e, i.e. eα1

, . . . , eαt
). The sender will now use its share [[b]]s in place

of ∆. As such, the result will be sharing [[[[b]]se
′]] where e′ is the unit vector with

37



e′α = 1. The receiver can locally translate this sharing [[[[b]]se
′]] into a sharing

[[∆e]] by simply adding [[b]]re
′ to its share [[[[b]]se

′]]r. That is, the sender computes
[[∆e]]s := [[[[b]]se

′]]s and the receiver computes [[∆e]]r := [[[[b]]se
′]]r + [[b]]re

′.

The second simplification was that e is a unit vector as opposed to regular
weight t with non-zeros at eα1 , . . . , eαt . However, this is easy to remedy by simply
repeating the protocol t times and concatenating the shares (see [SGRR19] for
the non-regular case).

Computing q stationary sharings [[∆e1]], . . . , [[∆eq]]. Given the description above
it should be clear how one can construct many stationary noise vectors. For
example, one could run the same protocol except that now the element type is
Fq as opposed to F. In particular, let α1, . . . , αt be the stationary noise locations.
The parties can first use an additional VOLE protocol to compute shares of
[[b]] = ∆(̇v1,1, . . . , vq,t). The sender can then use v′i := ([[bi,1]]s, . . . , [[bi,q]]s) as the
value for the i’th point function fαi,v′

i
. Finally, the receiver adds their shares

([[bi,1]]r, . . . , [[bi,q]]r) to the position corresponding to αi. The result is q sharings
[[∆e1]], . . . , [[∆eq]], each correlated by ei having noise at locations α1, . . . , αt.

Moreover, the instances can all be computed together or sequentially, where
the next instance [[∆ei+1]] is generated from seeds along with O(t) communica-
tion, i.e. no additional oblivious transfers are required after generating [[∆e1]].
Additionally, the prior VOLE can be used to bootstrap the next instance, elim-
inating the need to perform all of the tq input VOLE correlations.

If performed in parallel, our construction with SSD requires a single VOLE of
size tq and t log2(n/t) OTs. The standard construction requires a single VOLE
of size tq, and qt log2(n/t) OTs. If instead performed sequentially, where we
prepare the next instance from the previous, we require just a single VOLE with
t inputs and t log2(n/t) OTs. Note we can also get [[∆1e1]], . . . , [[∆qeq]], where ∆
is different for each instance, and still reuse all the OTs due to SSD.

Generalizing to OT and Binary OLE. So far, our explanation focused on VOLE.
For VOLE, both e and ∆ are over some arbitrary F. For OT, e is over F2

and ∆ is over some large field, e.g. F2128 . Focusing on the SD case with q =
1, k instances of random OT are obtained as mi,0 := H([[(G∆e)i]]s),mi,1 :=
H([[(G∆e)i]]s + ∆), ai := (Ge)i,mi,ai

:= H([[(G∆e)i]]r). Binary OLE can be
immediately obtained from random OT by defining bi := lsb(mi,1−mi,0), [[ci]]s :=
lsb(mi,0), [[ci]]r := lsb(mi,ai).

With SD, the VOLE and OT protocols are almost identical. The main dif-
ference is that in OT the noise vector e is binary and the noisy ei,α is fixed to 1.
This slightly simplifies the VOLE protocol as we can omit the multiplication of
∆ with ei,α, as described above. However, the SSD assumption states that the
noise must be uniformly random, even in the binary case (i.e. includes 0). There-
fore, e is still binary but the noisy ei,α ∈ {0, 1} must be uniformly sampled. As
a result, for OT with SSD, we still save on the OTs across the q instances, but
we need to perform a (F2,F2128) subfield VOLE of size t for each instance.

38



Cache and Memory for Binary OLEs. Recall that binary OLEs are trivially
generated from OTs and OTs are generated with an almost identical protocol
to VOLE. In other words, we generate [[∆e]] with PPRF. Also note that ran-
dom binary OLEs cost only 2 bits of communication to derandomize. Ideally,
we want the generation of random binary OLEs to be cheaper than the deran-
domization. I.e., we want each generation of random binary OLE to cost only
1 bit of communication. Say we want to generate h = 230 OLEs with plain SD.
Naively, one might set k = h and run a single large SD-based protocol to gen-
erate the OLEs. However, this would be unnecessarily inefficient. As n becomes
very large, memory efficiency dominates the running time. We observe a severe
performance degradation beyond n ̸= 216. However, as k becomes smaller, the
relative communication cost can increase beyond 1 bit per OLE. A reasonable
compromise is k = 220 and run q = h/k independent instances of the SD-based
protocol.

However, when the SSD assumption is employed it is possible to further
reduce k while staying below the 1 bit per OLE threshold. In particular, our
construction requires approximately log2(n/t) times less communication, and
therefore can scale to as small as k = 214 with 3 bits of communication per OLE
or k = 216 with less than 1 bit per OLE. Having a smaller k in turn allows for
better computational overhead while still generating a total of h = qk OLEs.
See Figure 5 in Section 8 for a detailed breakdown of the effect.

Large Field OLE and Beaver Triples. State-of-the-art constructions for correla-
tions of degree 2 are all based on Ring LPN [BCG+20]. Among other correlations,
these protocols allow one to generate an OLE correlation ai, bi, [[ci]] such that
ci = aibi over a large field F, e.g. a prime field. Two of these OLEs can then be
used as a Beaver triple.

Instead of multiplying a scalar ∆ with a sparse vector e, these protocols have
two sparse vectors a′, b′ and interpret them as sparse polynomials. a′ and b′ are
known to the sender and receiver, respectively. If we ignore some details, the shar-
ing [[c]] is obtained by performing sparse polynomial multiplication [[c′]] := a′ · b′
using some secure computation technique (more detail in the following para-
graph). Once the sharing [[c′]] is obtained, these polynomails are compressed by
linear functions G,G′ as a := G ·a′, b := G ·b′, [[c]] := G′ · [[c′]]. For appropriately
chosen G,G′, it will hold that aibi = ci, where ai, bi, ci ∈ F, is the ith coefficient
of the polynomial. The security of this protocol depends on LPN/SD holding for
the specific G used. It is, therefore, natural to generalize this protocol to use the
SSD assumption.

The core challenge in this protocol is the generation of the sparse vec-
tor/polynomial [[c′]]. Unlike the binary OLE, VOLE, and OT above, neither
party knows the value of c′. However, given that a′, b′ are t-sparse, then c′ is
t′ ≤ t2 sparse. Additionally, c′ is not a regular vector/polynomial even if a′, b′

are. This in turn means that using relatively simply techniques [[c′]] will require
O(nt) work to generate. The authors of [BCG+20] suggest that batch codes
could be used to further reduce this to O(n) work but at the cost of substan-
tially increasing the amount of computation needed to be performed in MPC,

39



e.g. cuckoo hashing t2 values. The exact cost of this MPC computation remains
unexplored, but is certainly non-trivial.

We observe that the SSD assumption can significantly improve the amor-
tized complexity of the protocol. Each SSD instance will sample a sparse vec-
tor/polynomial a′i, b

′
i where the sender holds a′i and the receiver holds b′i. The

a′1, . . . , a
′
q vectors will have non-zeros in the same t locations, respectively for

b′1, . . . , b
′
q. The parties will input these non-zero locations into an MPC that

computes

– The t2 non-zero locations in the product polynomials c′i.
– Using batch codes, assigning each non-zero location to a point function

f1, . . . , fτ for some τ ≥ t2, e.g. cuckoo hash t2 values.
– Generate and output distributed point function [Ds17] shares [[f1]], . . . , [[fτ ]].

The parties then locally expand the distributed point function shares [[f1]], . . . , [[fτ ]]
to obtain q different sparse polynomials [[c′q]], . . . , [[c

′
q]]. Depending on the batch

code used, this expansion requires between O(ntq) and O(nq) local computation.
The critical observation is that the vast majority of the work required to

be performed within the MPC is independent of the values of the coefficients
and only depends on the location. As such, generating q = 100 instances is
only slightly more expensive than q = 1. Moreover, batch codes such as cuckoo
hashing require more work to be performed within the MPC, but are completely
independent of q.

This suggests that the use of the more expensive batch codes (which reduce
the local expansion time t×) are indeed a good tradeoff when SSD is used because
the batch code encoding is only performed once and then reused for all of the
q instances. Due to the lack of an existing Ring-LPN protocol implementation
and significant work required to implement it (with or without SSD), we leave
the concrete evaluation of this technique to future work.

8 Experimental Evaluation

Implementation & Setting. We present a detailed description of how to adapt
existing PCG protocols in Section 7. The crux for degree 1 PCG protocols is
(1) generating a sharing of ∆e and (2) compressing it by the generator matrix
G. SSD optimizes the generation of [[∆e]] across q PCG instances. Thus, we
implement our SSD-based [[∆e]] generation. Our implementation extends the
libOTe framework [RR]. We use libOTe’s implementation of OT from [Roy22]’s
SoftSpokenOT and VOLE from [RRT23]’s work on expand-convolute codes for
the base correlations (OT, subfield VOLE for F2, and VOLE for F2128).

We conduct our experiments on an HP Victus machine running Windows 11,
equipped with a 12th Gen Intel(R) Core(TM) i7-12650H CPU at 2.30GHz and
15.6GB of usable RAM. The parties execute sequentially on the same thread and
on the same laptop. The wall-clock time reflects the combined runtime of both
parties. We also report the total communication summed across both parties.
Each data point is sampled over 10 runs, and we present their arithmetic mean.

40



Time (ns/o) Comm. (b/o)
Protocol q Assumption #OTs #VOLE Setup Expand Mult. Setup Expand

OT
e ∈ Fn

2

∆ ∈ F2128

24
SSD, t = 400 4400 6400 0.09 11.36 52.63 0.18 0.46
SD, t = 176 33792 0 0.20 17.24 52.63 0.52 2.24

28
SSD, t = 400 4400 102400 0.04 11.88 52.75 0.10 0.21
SD, t = 176 540672 0 0.19 16.91 52.75 0.52 2.24

212
SSD, t = 400 4400 1638400 0.04 12.11 52.73 0.10 0.20
SD, t = 176 8650752 0 0.19 16.74 52.73 0.52 2.24

VOLE
e ∈ Fn

2128

∆ ∈ F2128

24
SSD, t = 400 4400 6400 0.53 11.55 52.63 1.18 0.46
SD, t = 400 70400 6400 0.89 17.63 54.58 2.19 4.70

28
SSD, t = 400 4400 102400 0.19 11.91 52.75 0.08 0.21
SD, t = 400 1126400 102400 0.59 17.29 54.61 1.15 4.70

212
SSD, t = 400 4400 1638400 0.26 12.20 52.73 0.01 0.20
SD, t = 400 18022400 1638400 0.66 17.15 54.65 1.08 4.70

Fig. 4. This experiment compares the runtime and communication costs of generating
OT and VOLE with SSD vs. SD. It fixes n = 219, k = 218 and varies the number of
batches q ∈ {24, 28, 212}. The cost is split into base correlations (OT, (subfield) VOLE),
expanding the seeds to get a sharing of ∆e, and multiplying the result by G. The time
(nanoseconds) and communication (bits) are expressed per output, i.e. divided by qk.
t is selected such that we get 128 bits of security.

Time (ns/o) Comm. (b/o)
Protocol k Assumption #OTs #VOLE Setup Expand Mult. Setup Expand

OT
e ∈ Fn

2

∆ ∈ F2128

214
SSD, t = 400 2800 409600 0.58 11.90 33.48 1.58 3.17
SD, t = 176 1441792 0 2.04 32.17 33.48 5.50 24.84

216
SSD, t = 400 3600 102400 0.15 11.95 49.61 0.41 0.84
SD, t = 176 450560 0 0.64 20.59 49.61 1.72 7.58

218
SSD, t = 400 4400 25600 0.05 11.80 52.80 0.12 0.26
SD, t = 176 135168 0 0.19 17.81 52.80 0.52 2.24

VOLE
e ∈ Fn

2128

∆ ∈ F2128

214
SSD, t = 400 2800 409600 3.22 11.93 33.48 0.32 3.17
SD, t = 400 2867200 409600 7.25 32.55 37.30 11.24 50.20

216
SSD, t = 400 3600 102400 0.79 11.88 49.61 0.31 0.84
SD, t = 400 921600 102400 2.07 21.30 52.05 3.81 15.67

218
SSD, t = 400 4400 25600 0.26 11.62 52.80 0.31 0.26
SD, t = 400 281600 25600 0.64 18.32 54.49 1.36 4.70

Fig. 5. This experiment compares the runtime and communication costs of generating
OT and VOLE with SSD vs. SD. It fixes qk = 224, and varies q, k such that (q, k) ∈
{(210, 214), (28, 216), (26, 218)}. The cost is split into base correlations (OT, (subfield)
VOLE), expanding the seeds to get a sharing of ∆e, and multiplying the result by G.
The time (nanoseconds per output) and communication (bits per output), i.e. total
divided by qk. t is selected such that we get 128 bits of security.

Security. We use our findings in Section 5 on SSD security against linear tests to
choose the appropriate amount of noise t for Figure 4 and Figure 5. To get 128
bits of security, we need t = 176 for OT generated with the SD assumption and
t = 400 otherwise. Importantly, note from Theorem 3 that q does not impact the
choice of t. We also note that the parameters from the linear test framework tend

41



to be conservative. E.g., [LWYY22]’s work suggests that t ≈ 60 gives 128 bits of
security against known linear attacks while our algebraic attacks in Section 6.5
suggest 60 < t < 110. We could narrow this gap by adapting existing linear
attacks to SSD. For example, [ES24] recently did this for regular SD. As a first
work that introduces SSD, we opt to be more conservative and select parameters
according to the linear test framework to obtain provable guarantees.

Communication. We now express our communication costs analytically. Both
protocols require the same constant number of rounds. The exact number de-
pends on the instantiation but can be as small as 2.

We denote the depth of the GGM tree d = ⌈log2(n/t)⌉. For OT with SSD,
we generate dt base OTs for the GGM tree, send 256dt additional bits for the
GGM tree, and generate subfield VOLE of size qt. As we are working over F2,
we implement the subfield VOLE via qt base OTs. We also communicate 128tq
bits during the expansion to get [[∆e]]. In total, we need (d + q)t base OTs
and 256dt + 128qt bits. In contrast, OT with SD requires qdt base OTs and
256qt(d + 1) additional bits, but with a mildly smaller t. For VOLE with SSD,
we also generate dt base OTs for the GGM tree, send 256dt additional bits for
the GGM tree, and communicate 128tq bits during the expansion. However, we
also consume qt base VOLE correlations, which cannot be implemented with
base OTs as we are not working over F2. Thus, in total we need dt base OTs, qt
VOLE correlations, and 256dt+128qt bits. In contrast, VOLE with SD requires
qdt base OTs, qt VOLE correlations, and 256qt(d+ 1) bits of communication.

Experiments. We consider two experiments. The first (Figure 4) fixes a batch
size of n = 219, k = 218 and varies the number of batches q ∈ {24, 28, 212}.
We compare our new SSD-based OT and VOLE protocols to the traditional
SD protocols. We report the number of base correlations required, i.e. OTs and
(subfield) VOLE. We break down the time required to compute base correlations,
expand the seeds to compute [[∆e]], and compress the error vector using expand-
convolute codes [RRT23]. We report time as the number of nanoseconds per
output element. We also report the communication overhead as bits per output
element. The second experiment (Figure 5) reports the same quantities but for
varied batch size k ∈ {214, 216, 218} and a fixed qk = 224.

Discussion. First, we discuss observations that apply to both experiments. Note
that for OT from SD we need no base VOLEs as the noisy elements of e are
always 1 (recall this is not the case for OT from SSD). For all other settings, we
need qt base VOLEs. Furthermore, note that for SSD and a fixed k, n, the number
of base OTs stays the same for different q as all can be reused. Next, note that
the setup for SSD is cheaper for OTs than for VOLEs as for OTs we generate
the base VOLEs also with OTs. For VOLE, the multiplication by G is slightly
more expensive for SD than for SSD as we cannot run the multiplication for SD
over F2. Lastly, the parameter t differs for SD and SSD when generating OTs.
We select t using our equations in Section 5 to get 128 bits of security assuming

42



G has a relative pseudominimum distance of 0.2. We now discuss observations
specific to each experiment.

– Experiment 1.We reduce the total communication ≈ 4.3−9.4× for OT and
≈ 4.2 − 28.6× for VOLE. To compute [[∆e]] (Setup+Expand in Figure 4),
we reduce runtime ≈ 1.4 − 1.5×. For the parameters in this experiment,
multiplying [[∆e]] by G is the runtime bottleneck, and thus we reduce total
runtime ≈ 1.1× for both OT and VOLE. Our improvement can be signifi-
cantly larger for different parameters (see Experiment 2).

– Experiment 2. We reduce total communication ≈ 6.4 − 7.5× for OT and
≈ 10.7 − 17.6× for VOLE. To compute [[∆e]], we reduce runtime ≈ 1.5 −
2.7×. Notably, the runtime improvement increases for higher q and smaller
k. This implies that for a fixed qk, it is preferable to create more smaller
instances (i.e. large q and small k) than execute few large instances. This is
further exacerbated by the fact that for small instances, multiplying by G
also becomes cheaper (33 nanoseconds per output (ns/o) for k = 214 vs. 52
ns/o for k = 218).
To generate 224 OTs, the fastest (q, k) configuration with respect to runtime
results in about 5 b/o and a total of 45 ns/o for SSD and 68 ns/o for SD
resulting in 1.5× improvement in throughput. For VOLE, we similarly get
≈ 1.5× throughput improvement.

Acknowledgments. This work is supported in part by a Visa research award
and NSF awards CNS-2246354, and CCF-2217070.

References

ABG+14. Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon
Rosen. Candidate weak pseudorandom functions in ac0 ⊙ mod2. In Pro-
ceedings of the 5th Conference on Innovations in Theoretical Computer
Science, ITCS ’14, page 251–260, New York, NY, USA, 2014. Association
for Computing Machinery.

AFS05. D. Augot, M. Finiasz, and N. Sendrier. A family of fast syndrome based
cryptographic hash functions. In Mycrypt, 2005.

ANO+22. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlo-
movits. Low-bandwidth threshold ECDSA via pseudorandom correlation
generators. In 2022 IEEE Symposium on Security and Privacy, pages
2554–2572. IEEE Computer Society Press, May 2022.

AS22. Damiano Abram and Peter Scholl. Low-communication multiparty triple
generation for SPDZ from ring-LPN. In Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS,
pages 221–251. Springer, Heidelberg, March 2022.

Bar04. M. Bardet. Étude des systèmes algébriques surdéterminés. applications
aux codes correcteurs et à la cryptographie. In Theses, Université Pierre
et Marie Curie - Paris VI, 2004.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Lorenzo Cavallaro, Johannes Kinder,

43



XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291–
308. ACM Press, November 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl. Efficient pseudorandom correlation generators from
ring-LPN. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 387–416. Springer,
Heidelberg, August 2020.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 603–633. Springer,
Heidelberg, August 2022.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 896–912. ACM Press,
October 2018.

BCP97. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

BDSW23. Carsten Baum, Simon Dittmer, Peter Scholl, and Xiao Wang. Sok: vector
ole-based zero-knowledge protocols. Designs, Codes and Cryptography,
91(8):3527–3561, 2023.

Ber68. Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill series in sys-
tems science. McGraw-Hill, 1968.

BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lip-
ton. Cryptographic primitives based on hard learning problems. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 278–291.
Springer, Heidelberg, August 1994.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 337–367. Springer, Heidelberg, April 2015.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves in-
formation set decoding. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer,
Heidelberg, April 2012.

BKW03. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. In Journal of the
ACM, 2003.

BLP11. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller de-
coding exponents: Ball-collision decoding. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 743–760. Springer, Heidel-
berg, August 2011.

44



BM18. Leif Both and Alexander May. Decoding linear codes with high error
rate and its impact for lpn security. In Tanja Lange and Rainer Stein-
wandt, editors, Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, pages 25–46, Heidelberg, 2018. Springer.

BØ23. Pierre Briaud and Morten Øygarden. A new algebraic approach to the reg-
ular syndrome decoding problem and implications for PCG constructions.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 391–422. Springer, Heidelberg, April 2023.

BR17. Andrej Bogdanov and Alon Rosen. Pseudorandom Functions: Three
Decades Later, pages 79–158. Springer International Publishing, Cham,
2017.

CCJ23. Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures
from regular syndrome decoding in the head. In Carmit Hazay and Mar-
tijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part
V, volume 14008 of Lecture Notes in Computer Science, pages 532–563.
Springer, 2023.

CKPS00. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate poly-
nomial equations. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 392–407. Springer, Heidelberg, May 2000.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver:
Silent VOLE and oblivious transfer from hardness of decoding structured
LDPC codes. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 502–534, Virtual Event, August
2021. Springer, Heidelberg.

DILO22. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenti-
cated garbling from simple correlations. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS,
pages 57–87. Springer, Heidelberg, August 2022.

Ds17. Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 523–535. ACM Press, October / November
2017.

ES24. Andre Esser and Paolo Santini. Not just regular decoding: Asymptotics
and improvements of regular syndrome decoding attacks. In Leonid Reyzin
and Douglas Stebila, editors, Advances in Cryptology - CRYPTO 2024
- 44th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2024, Proceedings, Part VI, volume 14925 of Lecture
Notes in Computer Science, pages 183–217. Springer, 2024.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding
in the head: Shorter signatures from zero-knowledge proofs. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 541–572. Springer, Heidelberg, August 2022.

FKI07. Marc P. C. Fossorier, Kazukuni Kobara, and Hideki Imai. Modeling bit
flipping decoding based on nonorthogonal check sums with application to
iterative decoding attack of mceliece cryptosystem. IEEE Transactions on
Information Theory, 53(1):402–411, 2007.

45



FS09a. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of
code-based cryptosystems. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 88–105. Springer, Heidelberg, December 2009.

FS09b. P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge Univer-
sity Press, 2009.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479.
IEEE Computer Society Press, October 1984.

HOSS18. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. TinyKeys: A new approach to efficient multi-party computation.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 3–33. Springer, Heidelberg, Au-
gust 2018.

Jab01. A. Al Jabri. A statistical decoding algorithm for general linear block codes.
In Bahram Honary, editor, Cryptography and Coding, pages 1–8, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

LWYY22. Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of LPN
over any integer ring and field for PCG applications. Cryptology ePrint
Archive, Report 2022/712, 2022. https://eprint.iacr.org/2022/712.

Lyu05. Vadim Lyubashevsky. The parity problem in the presence of noise, de-
coding random linear codes, and the subset sum problem. In Chandra
Chekuri, Klaus Jansen, Jose D. P. Rolim, and Luca Trevisan, editors, Ap-
proximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, pages 378–389, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer, Hei-
delberg, December 2011.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 203–228. Springer, Heidelberg, April 2015.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. In
IRE Transactions on Information Theory, 1962.

Roy22. Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field
silent VOLE in the minicrypt model. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
657–687. Springer, Heidelberg, August 2022.

RR. Peter Rindal and Lawrence Roy. libOTe: an efficient, portable, and easy
to use Oblivious Transfer Library. https://github.com/osu-crypto/

libOTe.
RRT23. Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-

convolute codes for pseudorandom correlation generators from LPN. In He-
lena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV,
volume 14084 of LNCS, pages 602–632. Springer, Heidelberg, August 2023.

RS21. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and
circuit-PSI from vector-OLE. In Anne Canteaut and Franccois-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 901–930. Springer, Heidelberg, October 2021.

46

https://eprint.iacr.org/2022/712
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe


SGRR19. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana
Raykova. Distributed vector-OLE: Improved constructions and imple-
mentation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 1055–1072. ACM Press,
November 2019.

Shp09. Amir Shpilka. Constructions of low-degree and error-correcting ϵ-biased
generators. In computational complexity, 2009.

Ste89. Jacques Stern. A method for finding codewords of small weight. In Gerard
Cohen and Jacques Wolfmann, editors, Coding Theory and Applications,
pages 106–113, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

Wie86. D. Wiedemann. Solving sparse linear equations over finite fields. In IEEE
Transac- tions on Information Theory, 1986.

WYKW21. Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolver-
ine: Fast, scalable, and communication-efficient zero-knowledge proofs for
boolean and arithmetic circuits. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages
1074–1091. IEEE, 2021.

WYY+22. Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang.
AntMan: Interactive zero-knowledge proofs with sublinear communication.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 2901–2914. ACM Press, November 2022.

YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 2986–3001. ACM Press, November 2021.

47



Supplementary Material

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

48


	Stationary Syndrome Decoding  for Improved PCGs 

