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Abstract

Ever since the introduction of encryption, society has been divided over whether the government (or
law enforcement agencies) should have the capability to decrypt private messages (with or without a
warrant) of its citizens. From a technical viewpoint, the folklore belief is that semantic security always
enables some form of steganography. Thus, adding backdoors to semantically secure schemes is pointless:
it only weakens the security of the “good guys”, while “bad guys” can easily circumvent censorship, even
if forced to hand over their decryption keys.

In this paper we put a dent in this folklore. We formalize three worlds: Dictatoria (“dictator wins”:
no convenient steganography, no user cooperation needed), Warrantland (“checks-and-balances”: no
convenient steganography, but need user’s cooperation) and Privatopia (“privacy wins”: built-in, high-
rate steganography, even if giving away the decryption key). We give strong evidence that all these
worlds are possible, thus reopening the encryption debate on a technical level.

Our main novelty is the definition and design of special encryption schemes we call anamorphic-
resistant (AR). In contrast to so called “anamorphic schemes”, — which were studied in the literature and
form the basis of Privatopia, — any attempt to steganographically communicate over an AR-encryption
scheme will be either impossible or hugely slow (depending on the definitional details).
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1 Introduction

Public-Key Encryption (PKE) is a fundamental building block of modern society, powering everything from
the internet to financial institutions. Unfortunately, once citizens have the liberty to communicate privately,
there is a legitimate concern that criminals can abuse this right. Thus, law enforcement agencies (and, often,
governments themselves) argue that any encryption method should come with some possibility to subvert it,
meaning that there should be a built-in method of decrypting the ciphertexts under some circumstances. This
led to the famous encryption debate (also sometimes referred to as the “Crypto Wars”; see [Wik24b, Wik24a]
for numerous references). The debate has a fascinating history, well beyond what can be covered in a research
paper. However, most of the debate so far has focused on the important normative and ethical dimensions of
this question. In this work, we aim to look at the question from a purely technical perspective, leaving all the
ethical and emotional considerations aside. We believe that the technical understanding of the encryption
debate will be extremely important for gap between cryptographers and policy-makers, and ultimately may
help make the right compromise between privacy and security.

Policy vs Crypto Gap. From the policy side, and especially within government, there is an implicit
belief that one can magically setup a backdoor which will enable law enforcement to read precisely what
is warranted for security, and not abuse their power. And while cryptographers repeatedly gave various
arguments to the contrary (see [Lib97] and references therein), many in government believe that these
criticisms could be overcome by improvements in technical design. Indeed, some of the more controversial
results in this paper will partially validate this skepticism.

From the cryptographers’ side, one of the key objections came from the claim that PKE must be seman-
tically secure, at least against foreign observers or other non-government entities. This means encryption
must be probabilistic. As such, users determined to evade surveillance can use this randomness to send
covert messages to each other, which remain hidden even if they reveal their secret key. In other words,
semantic security implies some form of steganography [Sim83], making surveillance pointless: it only weakens
the security of the “good guys”, while “bad guys” can easily circumvent censorship, even if forced to hand
over their decryption keys.

From a technical side, this body of work was initiated by several seminal papers of Hopper et al. [HLv02,
vH04], revisited in the context of PKE by the work of [HPRV19], and eventually morphed into a rigorous
cryptographic primitive called anamorphic encryption [PPY22]. Such a scheme allows the users to send covert
messages of their choice — with semantic security — hidden inside innocent-looking ciphertexts containing
arbitrary other (benign) messages. For example, one of the formal results of [PPY22] proved that one can
always use rejection-sampling to embed a logarithmic (O(log λ)-bit) hidden plaintext into a λ-bit ciphertext,
as long as the encryption scheme is semantically secure.

Most cryptographers interpret this simple observation as the “death” of the encryption debate, but we
disagree. We believe that such low-rate (generic) anamorphic schemes are too slow in distributing the se-
cret information, and not really a meaningful threat to the dictatorial regime. Indeed, in most cases users
anyway have low-rate non-cryptographic steganographic channels [Sim83, Cac00, Mit00, ZFK+98, HLv02]!
For example, they can use timing information, or simple steganography on low-entropy “innocent-looking”
plaintexts. In other words, low rate steganography is anyway available with or without anamorphic encryp-
tion. Thus, we believe that only high (say, super-logarithmic) rate of anamorphism is a realistic threat to the
dictator. And, even then, we will argue shortly that exiting definitions of anamorphic encryption, — while
impressive, — are insufficient for practical use. Either way, the encryption debate is not dead because of
semantic security.

Goal of this work: Bringing Order to the Chaos. Taking a step back from this motivating
discussion, we believe there is a big modeling hole in our formalization of the encryption debate, as many
questions have been left imprecise so far. Who chooses the PKE scheme: the users or the government?
What about the public-key infrastructure (PKI) : should government be able/allowed to influence the PKI?
What if some PKE is already widely used? If surveillance is deemed desirable, should it happen inside the
PKI (so called “key escrow”), or inside individual ciphertexts? Why should citizens use a given scheme,
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if it is known to obviously contain a backdoor? Should decryption be possible automatically, without
the user’s cooperation? Or, conversely, should it require the user to cooperate? Should this cooperation
involve giving the entire decryption key, or be on a ciphertext-to-ciphertext basis? From the other side
of the spectrum, if some progressive government does not believe in surveillance, is standardizing existing
definitions of anamorphic encryption (say, with “high-rate” covert messages) the answer? (Jumping ahead,
the answer will be “almost, but not quite”.)

While we will not answer all these questions, we believe that we will answer some, or at least make good
progress towards putting the encryption debate on firm practical and theoretical footing. We will separate
our contributions into three groups: (1) Objectives; (2) Modeling; and (3) Constructions. We describe these
separately.

Objectives. First, we notice there are at least three fundamentally distinct objectives when talking about
encryption surveillance. While we will use similar encryption syntax in defining these objections (see the
Modeling part below), — after all, any reasonable PKE must be “secure against non-surveilance entities,”
— the technical goals and security definitions will be extremely different, depending on the setting. The
three settings are the following:

• Government Can be Trusted. This means that encryption should be subverted relatively easily
without any assistance from the users. And citizens can trust the government to keep things secure,
and not to abuse its power. We informally call this world Dictatoria, because, in the extreme, this
could lead to Dictatorial regimes, where citizens cannot really communicate freely.

• (Semi-)Voluntary Disclosure under Warrant. This means that all encrypted communications
should be secure from the government, if the user refuses to cooperate (e.g., give its secret key).
However, a user can be held liable (or in contempt) if it refuses to provide its secret key under a
warrant. We informally call this world Warrantland.

• Privacy is a Fundamental Right. In this view no backdoors should be built, because any backdoors
would likely weaken the security of honest users. Moreover, in case a more oppressive government comes
to power in the future, and forces the users to release their secret keys, some “protection mechanism”
should be built-in. We informally call this world Privatopia.

Thus, the main objective of this work is to formally define Dictatoria, Warantland, and Privatopia, and then
answer the following question:

Main Question: Do there exist PKEs satisfying the corresponding
requirements of Dictatoria, Warrantland, and/or Privatopia?

Modeling: Common Elements. Next, we move to our modeling decisions. First, a given PKE in
either world should have a normal interface and security from the perspective of the outside world (without
any backdoors). Namely, PKE should include key generation, encryption and decryption, given by the
corresponding algorithms (Gen,Enc,Dec). Security-wise, these algorithms should yield a Chosen-Ciphertext
Attack (CCA) secure PKE [NY90], which is a strictly stronger notion than mere semantic security. In
particular, for both the key generation and encryption algorithms, we assume that users can be trusted to
generate their own randomness. For example, even in Dictatoria or Warrandland, we will not need any exotic
or hard-to-implement solutions, such as (1) having keys generated by the government (and then “securely
shipped” to the user); and/or (2) randomness generated by a (possibly backdoored [DGG+15, BDG23])
hardware random number generator.

Next, we discuss the choice of public parameters pp. Recall, even in traditional PKE it is often handy
to have a special algorithm Init producing public parameters common to all the users, such as the choice
of Diffie-Hellman/bi-linear group, or various matrices for lattice-based schemes. We will naturally allow for
the same flexibility in our worlds. Critically, though, for Dictatoria and Warrantland we will assume that
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Init will be run by the government (i.e., the Dictator or Law-Enforcement-Agent (LEA), respectively). This
models the fact that the government can choose what forms of encryption are legal, and permit convenient
backdooring (with or without user’s assistance). Technically, it also means that the Init algorithm is allowed
to output a backdoor decryption key dk, in addition to pp.

Of course, this leads to a partially valid objection: why would the users encrypt messages if the scheme
is clearly designed to have a backdoor key dk? The first answer to this question is no different than to any
other law or regulation: why do people pay taxes, tell the truth under oath, refrain from stealing groceries,
validate their bus tickets, etc.? Sure, they can break the law, but there could be undesirable consequences
to such illegal behavior. In the case of PKE, however, there is a secondary consideration. Its use relies on a
PKI, and some wide-spread PKE (or even multiple such schemes) might have been already in place, before
the surveillance law came to effect. Changing the PKI or otherwise migrating many users to a new PKE
system, could be costly and/or impractical.

We choose the following compromise to this dilemma. On the definitional level, we will allow the gov-
ernment to run Init and produce the corresponding backdoor dk. Indeed, a single such backdoor is, by far,
the easiest and most convenient way to do surveillance in either Dictatoria and Warrantland. Nevertheless,
we will prefer (and construct!) a special type of PKE scheme in Dictatoria/Warrantland, which we call
PKI-agnostic. Such a scheme can be built on top of any traditional CCA-secure PKE (without backdoor),
and will share the public key with such a scheme. Thus, the entire existing PKI can be reused in a black-box
way.1 Moreover, the Init algorithm by the government can be run independently of the underlying base
PKE. Instead, only the encryption and decryption algorithms of the base PKI will need some black-box (in
our case, also simple and efficient) modification, which depends on the knowledge of the public parameters
pp produced by the Init algorithm. Arguably, such PKI-agnostic schemes would be the easiest to implement
in either world. The government can fully reuse an existing PKI, and run a single (backdoored) parameter
generation algorithm Init once, getting “unbounded surveilance” afterwards.2

Modeling: Privatopia. Next, we move to world-specific choices, starting with Privatopia. Recall,
the concept of anamorphic encryption [PPY22] is already quite close to what we want. Given a par-
ticular PKE scheme Π = (Init,Gen,Enc,Dec), we say that Π permits an anamorphic instantiation Π′ =
(AGen,AEnc,ADec) if (informally): (a) running Π′ instead of Π allows the user to embed arbitrary covert
messages into normal-looking ciphertexts; (b) using Π′ is indistinguishable from using Π to any observer,
even given the (real or fake) decryption key of the user. Property (b) implies semantic security for covert
messages.

We argue, however, that existing anamorphic encryption schemes [PPY22, WCHY23, BGH+24, CGM24a,
PPY24] — while impressive — are not convenient enough to be used in Privatopia. For example, it was
already observed by [BGH+24] that the standard notion of anamorphic instantiations does not give a natural
mechanism for the receiver to know if the ciphertext had a covert message or not. Namely, anamorphically
decrypting (by ADec) messages normally encrypted (by Enc) might return a valid (and unintended) covert
message. To disallow this, the authors defined so called robust anamorphic instantiations. As we argue,
even robustness is not enough. For example, all of the existing anamorphic instantiations easily allow the
Dictator to “forge” a ciphertext which will contain some hidden message, and therefore trick the user into
an unintended action. (Notice, this does not violate robustness, as the ciphertext could be carefully crafted
rather than honestly encrypted by Enc.)

Instead, in this work we introduce and define a much stronger type of robustness for anamorphic instan-
tiations, called unforgeability (see Definition 9.1). Roughly, it will require that the attacker cannot produce
an anamorphic ciphertext successfully decrypted by ADec, unless explicitly produced by some legitimate
sender. And this is true even if the attacker knows (fake) decryption key of the user. Similarly, most existing

1This natural restriction also rules out other undesirable [Lib97] key escrow type solutions for Dictatoria, where users might
abuse PKI to escrow their secret keys (e.g., by adding encryptions of their secret keys under the key of the dictator).

2Notice, PKI-agnosticism mostly makes sense for Dictotoria/Warrantland, where it might be preferable for the Dictator/LEA
to reuse the existing PKI. It still makes sense in Privatopia as well, in a sense that a liberal government would also prefer to reuse
the PKI. In particular, we say that a Privatopia scheme is ”PKI-agnostic” if the anamorphic key can be generated independently
of the public key and secret key.
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anamorphic encryption schemes are only chosen plaintext attack (CPA) secure, and not chosen ciphertext
attack (CCA) secure. This is because these schemes have an explicit “regular” and “anamorphic” ciphertext
component, with an active attacker being able to distinguish between the types of messages by tampering
with the latter component.

Therefore, our notion of Privatopia will require a strengthening of anamorphic encryption to also satisfy
two additional properties: (a) Unforgeability; and (b) CCA-security. Moreover, to be useful, we already
mentioned that such schemes should have property (c) high “anamorphic rate”: ideally, a ciphertext of size
λ should enable covert insertions of a plaintext of size Ω(λ). And, preferably, property (d) PKI-agnosticism,
as explained in Footnote 2. Most of our Privatopia schemes will satisfy (for the first time) these additional
properties (c)-(d).

Conceptual Novely: Anamorphic-Resistant Encryption. Finally, we turn to Warrantland and
Dictatoria. Functionality-wise, the main difference here is whether or not user’s cooperation is required
to decrypt a given ciphertext c. In Dictatoria, the knowledge of backdoor dk is all that is needed. In
Warrantland, any such c is still CCA-secure, even given the backdoor dk. However, c can be decrypted using
dk and the user’s secret key sk.3

Next, we make a key new observation, which we believe was never made before our work. In order to
realize either Dictatoria or Warrantland (on a technical consideration), it is not enough to put a backdoor
into a given encryption scheme (for Dictatoria), or ask users to reveal their secret keys (for Warrantland).
Indeed, the corresponding encryption scheme has to be provably what we define to be anamorphic-resistant
(AR). Namely, there should be (provably!) no way for the users to communicate subliminally within the
system.

Defining and building such a scheme forms one of the main contributions of this work. First, recall that
one can always embed a logarithmic amount of covert information into any semantically secure PKE. Thus,
we will define AR-encryption schemes to be such where the generic “log-rate” construction is provably the
best possible. In fact, once we additionally require unforgeability (or even mere robustness [BGH+24]) for
anamorphic schemes, we will see that one can construct AR-schemes where even a single covert bit cannot
be embedded, without making the scheme non-robust (and hence, forgeable) by the Dictator! As our key
question, we ask

Do there exist anamorphic-resistant PKEs (with or without robustness)?

We notice, that a recent independent work of [CGM24c] gave an indirect indication that AR-schemes
might exist, by showing a black-box impossibility result showing that no generic construction of anamorphic
encryption can embed more than O(log λ) hidden bits in any given ciphertext. However, they did not formally
define what AR-encryption means, nor did they construct any particular candidate scheme. (Instead, we
will explicitly resolve this question in the positive.)

Summarizing, we arrive at the following final goals. For Dictatoria, we want a special type of PKE which
is: (a) anamorphic-resistant (according to our new definition); (b) CCA-secure; and (c) has a universal
backdoor dk for the Dictator. In contrast, in Warrantland, — where the “Dictator” becomes a “Law-
Enforcement-Agent” (or LEA), — we keep the anamorphic-resistance property (a), drop the no-longer-
desirable property (c), and strengthen CCA-security (b) to also hold even against any potential backdoor
key dk of the LEA. Moreover, in both worlds, we additionally want our PKE to be (d) PKI-agnostic.

1.1 Our Constructions

As our main result, we give strong evidence that all three worlds of Dictatoria, Warrantland, and Privatopia
exist, putting a new dimension to the Encryption Debate. Moreover, in all worlds we can effectively satisfy
the strongest security and efficiency guarantees possible. For Privatopia: anamorphism, unforgeability,

3One can also define more elaborate variants, where the user can convince the LEA of the correctness of the decryption of
c without revealing sk, but we focus on the simpler setting here.
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CCA-security, and linear-covert-rate. For Warrantland and Dictatoria: (provable) anamorphic-resistance,
CCA-securty, and PKI-agnosticism.

We start with our Main Result about the existence of AR-schemes.

Theorem 1.1 (Main Result; Informal version of Corollaries 6.5 and 6.6). If IND-CCA encryption exists,
then, in the random oracle model (ROM), there exists a PKI-agnistic, IND-CCA encryption scheme which
resists ”non-trivial” anamorphic instantiations.

Note that by “non-trivial” anamorphic instantiations, we mean anamorphic instantiations which either:
(1) can send anamorphic messages of length ω(log λ), or (2) satisfies unforgeability (or even just robustness).

We also give stronger results for Dictatoria and Warrantland respectively. Where “anamorphic-resistant”
means no anamorphic instantiations under either of constraints (1) or (2) above.

Theorem 1.2 (Scheme for Dictatoria, Theorem 7.4 restated). If IND-CCA encryption exists, then in the
ROM, there exists a PKI-agnostic, IND-CCA, anamorphic-resistant encryption scheme for Dictatoria.

Theorem 1.3 (Scheme for Warrantland, Theorem 8.4 restated). If IND-CCA encryption exists, then in the
ROM, there exists a PKI-agnostic, IND-CCA, anamorphic-resistant encryption scheme for Warrantland.
In particular, while decryption requires the secret key of the user, CCA-secury holds even w.r.t. to the LEA’s
backdoor.

We also show some positive results for Privatopia. In particular, we show that a number of existing
schemes have anamorphic instantiations satisfying unforgeability. Note that we consider both a strong and
weak version of unforgeability, which we describe in depth in the next section.

We first show a weak generic result for any anamorphic scheme.

Theorem 1.4 (Generic unforgeability, Theorem 9.3 restated). Any encryption scheme with an anamorphic
instantiation supporting long messages also has an anamorphic instantiation which is (weakly) unforgeable.

We say that an encryption scheme is randomness recoverable if it is possible to retrieve the randomness
used for encryption from a ciphertext and the corresponding secret key. We then show that any encryption
scheme satisfying randomness recoverability supports unforgeable anamorphic instantiations.

Theorem 1.5 (Unforgeability for randomness recoverability, Theorem 9.7 restated). Any encryption scheme
which satisfies randomness recoverability has an anamorphic instantiation which is strongly unforgeable.

Finally, we show that certain specific schemes also support unforgeable anamorphic instantiations.

Theorem 1.6 (Unforgeability for specific schemes, Theorems 9.11 and 10.10 restated). The El-Gamal and
Naor-Yung encryption schemes have anamorphic instantiations which are strongly unforgeable.

Paper Organization. In Section 2 we give a detailed technical overview of all our results. In Section 5,
we prove the properties we need for Encrypt-with-Hash, a deterministic encryption scheme used in our
construction of anamorphic-resistant encryption. In Section 6, we give our main construction of anamorphic-
resistant encryption. The adaptations of our AE-schemes to the settings of Dictatoria and Warrantland are
described in Sections 7 and 8 respectively. In Section 9, we give a number of schemes for the Privatopia
regime, that is unforgeable anamorphic encryption schemes with various extra properties. This includes both
generic constructions and a construction specific to the El-Gamal cryptosystem. Section 10 contains a more
involved construction of an unforgeable anamorphic instantiation for the Naor-Yung cryptosystem.

1.2 Concurrent and Follow-up Work

Concurrent work on unforgeability. Two other concurrent works define unforgeability against a
dictator in anamorphic settings. [JS24] defines unforgeability in the setting of anamorphic signatures, where
covert messages are embedded in a signature scheme instead of an encryption scheme. On the construction
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side, they adapt an existing construction [BGH+24] to give an unforgeable anamorphic instantiation for
so-called ”randomness-identifying unpredictable under key compromise” signature schemes.

Another concurrent work [CCLZ25] defines a number of variants of unforgeability. One of these variants
(ROB-CT+) is essentially our notion of strong unforgeability. Like us, they construct a strong unforgeable
anamorphic instantiation for randomness-recoverable public key encryption schemes. They do not consider
weak unforgeability, nor do they directly consider El-Gamal or Naor-Yung (although they claim without
proof that there exists an anamorphic instantiation of Naor-Yung).

Concurrent work on impossibility of anamorphic instantiations. As mentioned in the introduc-
tion, [CGM24c] showed that any generic construction of an anamorphic instantiation which works for all
(possibly inefficient) public key encryption schemes cannot embed more than anamorphic messages with of
length ω(log λ). In comparison, we give a positive result, showing that there exists an explicit encryption
scheme with no anamorphic instantiation with long anamorphic message length.

A follow-up to [CGM24c] observes that there are contrived encryption schemes where rejection sampling
does not produce an anamorphic instantiation, even for 1-bit anamorphic messages [CGM24b]. Furthermore,
they give a black-box impossibility result in the style of [CGM24c] showing that there does not exist any
generic construction of an anamorphic instantiation which works for all PKE schemes. However, since rejec-
tion sampling does morally give a good anamorphic instantiation, this result should be read as observing a
flaw in the definition of anamorphic encryption. The attack depends on the fact that the dictator is adap-
tive. The message for the observed anamorphic ciphertext may depend on the secret key of the encryption
scheme, and encryption schemes may not be semantically secure on recursive plaintexts. To resolve this
issue, [CGM24b] defines a new notion of ”semi-adaptive” anamorphic security, where the ciphertexts seen
by the dictator have plaintexts which do not depend on the user’s secret key. As observed by a follow-
up work [ABG+25], our Dictatoria and Warrantland constructions also resist semi-adaptive anamorphic
instantiations.

Follow-up work. We shared an early version of our paper with several researchers. As a result, there are
already two follow-up works [CCGM25, ABG+25] which are focused on studying the notion of anamorphic-
resistant encryption in the standard model. [CCGM25] explicitly instantiates the black-box separation
of [CGM24b] using indistinguishability obfuscation (iO) and extremely lossy functions (ELFs). That is, their
construction rules out anamorphic instantiations which send even 1-bit, but only rules out adaptively secure
anamorphic instantiations. [ABG+25] builds anamorphic-resistant encryption schemes from (a variant of)
ELFs which resist either all adaptive anamorphic instantiations or semi-adaptive anamorphic instantiations
with long anamorphic messages. Given the breadth of new problems introduced by our work, we hope that
more follow-up works will appear soon.

2 Technical Overview

2.1 Anamorphic-resistant encryption

Recall, the major challenge in building the scheme in Dictatoria consists of building the first anamorphic-
resistant PKE. Moreover, we only care about ruling out bandwidth-efficient (i.e., linear-rate) instantiations,
as low-rate steganography is anyway not a threat to the Dictator. Recall that having an AR-scheme is
the same as showing that there exists no anamorphic instantiations of a given PKE. We can restate the
contra-positive to the existence of AR-schemes as the following question:

Does there exist a linear (or even super-logarithmic) bandwidth
anamorphic instantiation for every IND-CCA secure encryption scheme?

We show that, at least in the random oracle model, the answer to this question is negative. In fact, there
exists a public key encryption scheme where rejection sampling is the optimal anamorphic instantiation.
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Theorem 2.1 (Restated version of Corollary 6.5). Let RO be a random oracle. Assuming the existence
of IND-CCA secure encryption schemes, there exists an IND-CCA secure public key encryption scheme
(InitRO,GenRO,EncRO,DecRO) such that every anamorphic instantiation (AGenRO,AEncRO,ADecRO) can
only support anamorphic messages of length O(log λ).

Robustness. Recent work shows that it is possible to construct anamorphic instantiations which satisfy an
additional robustness requirement [BGH+24, WCHY23]. Informally, an anamorphic instantiation is robust if
the receiver, who holds the anamorphic key, can tell the difference between ciphertexts holding an anamorphic
message and those which were honestly generated. Thus, we may wonder whether every encryption scheme
supports a robust anamorphic instantiation, even if we must use low bandwidth. As our next result, we
show that the answer to this question is also negative, but now for any covert message length!

Theorem 2.2 (Restated version of Corollary 6.6). Let RO be a random oracle. Assuming the existence
of IND-CCA secure encryption schemes, there exists an IND-CCA secure public key encryption scheme
(InitRO,GenRO,EncRO,DecRO) which does not have any robust anamorphic instantiation.

Our Techniques. The goal behind our construction will be to ensure that rejection sampling is the only
anamorphic technique possible. In particular, let (G,E,D) be some public key encryption scheme (without
public parameters). We will build up to our construction by showing a number of broken schemes, and then
demonstrating how to fix their issues.

For our first broken scheme, we will define honest encryption as

Enc1pk(m; r) = Epk(m;RO(m, r))

If we somehow could force anamorphic ciphertexts to be of the form

AEnc1ak(m, am) = Epk(m;RO(m, ram))

for some adversarially chosen ram, then we would be done. The only way that AEnc can communicate am
to ADec is by biasing RO(m, ram) appropriately, since ADec has no direct access to ram. But the only way
to bias a random oracle output is through rejection sampling.

However, anamorphic encryption does not need to respect the same format as the honest ciphertext.
Thus, we need some way for the dictator to verify whether a ciphertext is of the right format. One simple
way to do this is to reveal the encryption randomness inside the ciphertext. That is, define

Enc2pk(m; r) = Epk(m, r;RO(m, r))

Now, given any ciphertext encrypting m, the dictator can recover r and thus check whether the ciphertext
was generated honestly. That is, the dictator can force

AEnc2ak(m, am) = Epk(m, ram;RO(m, ram))

While it is true that AEnc2 needs to output ciphertexts of this form, this construction actually gives
the anamorphic instantiation another channel in which to communicate. In particular, the output of
AEnc2ak(m, am) directly reveals (to ADec2) the value of ram. By setting ram appropriately (say ram = am),
then ADec2 can use ram to recover am.

To prevent this attack, we would like for ram to be hidden from ADec, while remaining visible to the
dictator. We can do this by requiring ram to be encrypted under the dictator’s public key. That is, the
dictator will set the public parameters pp to be a public key associated with a secret key dk, which the
dictator will keep private. We will then set

Enc3pk(m; r) = Epk(m,Epp(m, r);RO(m, r))

Thus, given a ciphertext, the dictator can check whether the first half of the ciphertext is of the correct form.
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Deterministic Encryption. Note that there is still an issue here. We are introducing new randomness
into the equation, in particular the randomness used to generate Epp(m, r). Thus, it is conceivable that
an anamorphic instantiation could use this randomness to achieve higher bandwidth. To prevent this, we
instead use a deterministic encryption scheme [BBO06].

Note that deterministic encryption is impossible generically. However, it can be achieved if we make
certain assumptions about the distribution of messages. As an example, [BBO06] shows that the Encrypt-
with-Hash paradigm DE defined by

DEpp(r) = Epp(r;RO(r))

is a deterministic encryption scheme when r is from a distribution such that

1. The distribution is samplable (i.e. the output of a PPT algorithm).

2. The distribution is independent of the public key pp

3. The distribution is unpredictable, which can be expressed as H∞(r) = ω(log λ).

Let us imagine that we have two random oracles RO,RO′. If we define

Encfpk(m; r) = Epk(m,Epp(m, r;RO(m, r));RO′(m, r))

then by correctness of deterministic encryption, we must have that anamorphic ciphertexts are of the form

AEncfak(m, am) = Epk(m,Epp(m, ram;RO(m, ram));RO′(m, ram))

otherwise the dictator can distinguish anamorphic ciphertexts from honest ones. Furthermore, it must be
the case that for each anamorphic message am, H∞(ram) = ω(log λ), otherwise anamorphic ciphertexts
could repeat and thus be distinguishable from honest ciphertexts. Thus, two out of the three requirements
for Encrypt-with-Hash are satisfied.

However, it is not the case that ram will be independent of pp, since the anamorphic instantiation can
depend upon the public parameters. Thus, Epp(m, ram, RO(m, ram)) may leak information to ADecf about
ram, which possibly could be used to recover am.

Improved analysis of Encrypt-with-Hash. To resolve this issue, we observe that the proof of security
of Encrypt-with-Hash from [BBO06] requires the distribution to be independent of the public key for one
reason, to ensure that the sampler does not query the random oracle on its output r. To combat this, we
prove that if the number of queries A makes is bounded, even if A may depend on pk and is allowed to query
RO(r), then Encrypt-with-Hash is still weakly secure with security inversely proportional to the number of
queries made by A.

The proof of this fact follows from a more general information-theoretic lemma (see Lemma 5.4). In-
tuitively, if an attacker A makes T queries to the random oracle, and outputs the value x, then the most
he can bias RO(x) is via rejection sampling. More formally, if some event B(x, y,RO−x) happens with
probability αIDEAL when y is uniform (here RO−x is the truth-table to RO without point x), then the
event B(x,RO(x), RO−x) = B(x,RO) happens with probability at most αREAL ≤ (T + 1) · αIDEAL. While
intuitively obvious, the proof of this fact is surprisingly subtle, and uses a very careful compression argument.
We also believe Lemma 5.4 might have other applications.

To apply this, if the sampler A for Encrypt-with-Hash is allowed to query the random oracle on RO(r),
then we can replace RO(r) with a uniformly random value by suffering a T +1 multiplicative loss in security.
This is essentially the same as requiring that A not query RO(r) in the first place, and so the security proof
of Encrypt-with-Hash gives weak security against samplers which are allowed to depend on pk. That is, the
optimal way to bias Epp(m, ram;RO(m, ram)) is by performing rejection sampling.
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Final AR Construction. Our final construction of an AR-encryption encryption scheme is thus the
following. Let (G,E,D) be any public key encryption scheme.4

1. Init: G→ (pp, dk).

2. Genpp: G→ (pk, sk).

3. Encpk,pp(m; r) = Epk(m,Epp(m, r;RO(m, r));RO′(m, r)).

4. Decsk(c1, c2) = Dsk(c1).

Proof sketch. Using the intuition described above, our proof goes as follows. We show that for all
messages m and anamorphic messages am,

Pr[ADec(AEnc(m, am)) = am] ≤ (TAEnc + 1)Pr[ADec(Enc(m)) = am] + negl(λ)

where TAEnc is the number of queries AEnc makes to the random oracles.
Since ADec(Enc(m)) does not depend on am at all, there must exist some am such that Pr[ADec(Enc(m)) =

am] ≤ 1
|AM| . And so the anamorphic messages must have length ≤ log(TAEnc) = O(log λ). Similarly, the

anamorphic scheme cannot be robust, since in a robust scheme, for all am, Pr[ADec(Enc(m)) = am] ≤
negl(λ).

2.2 Anamorphic-resistant encryption in Dictatoria

The AR scheme listed above requires access to the user’s secret key in order for the dictator to detect
anamorphic ciphertexts. Instead, we would like to add a single universal backdoor to our scheme. One way to
add such a universal backdoor is to simply use a backdoored public key encryption scheme [YY06, HMMS22].
In particular, the dictator could require (G,E,D) used in Πar to be an encryption scheme such that key
generation is compromised, and public keys leak their corresponding secret keys. One way to do this would
be to append an encryption of sk under the public parameters pp to each user’s public key pk. However,
this approach requires the dictator to have control over key generation, which may not be the case if users
are outsourcing their keys.

However, there does exist a PKE scheme satisfying these properties. It is anamorphic-resistant even if the
dictator does not have the secret key, and the dictator has a universal backdoor which allows it to decrypt all
ciphertexts. The scheme is also IND-CCA secure against the public. The only change made to Equation (2)
to achieve this is to append Epp(m, r;RO(m, r)) to the ciphertext. More formally, our Dictatoria scheme is
as follows:

Encpk(m; r) = Epp(m, r;RO(m, r)), Epk(m,Epp(m, r;RO(m, r));RO′(m, r)) (1)

Theorem 2.3 (Restated version of Theorems 7.2 and 7.4). Let RO be a random oracle. IF CCA-encryption
exists, then the PKI-agnostic scheme in Equation (1) is CCA-secure against the public, and completely
compromised against the dictator. Moreover, every anamorphic instantiation which is covert only against
dictators without the user’s secret key:

1. can only support anamorphic messages of length O(log λ).

2. is not robust (even for 1 bit anamorphic messages).

4In fact, the encryption scheme used to generate (pp, dk) and (pk, sk) may be distinct.
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2.3 Anamorphic-resistant encryption in Warrantland

We may also consider a slightly more crypto-friendly government, who still wants the ability to read com-
munication if and only if a court issued a corresponding warrant. That is, normal network traffic should still
be secure against a government holding the backdoor key for the public parameters, but if the government
gets the secret key via a warrant they should still be able to determine that no (long) anamorphic messages
were sent.

It turns out that our original anamorphic scheme

Encpk(m; r) = Epk(m,Epp(m, r;RO(m, r));RO′(m, r)) (2)

satisfies this requirement.

Theorem 2.4 (Restated version of Theorems 8.3 and 8.4 and corollaries 6.5 and 6.6). Let RO be a random
oracle. IF CCA-encryption exists, then the PKI-agnostic scheme in Equation (2) is CCA-secure even against
a dictator with the backdoor. Moreover, every anamorphic instantiation of this scheme both:

1. can only support anamorphic messages of length O(log λ).

2. is not robust (even for 1 bit anamorphic messages).

2.4 On efficient variant schemes

Our schemes listed in Equations (1) and (2) are relatively inefficient as the protocols encrypt the same
message multiple times. In fact, there are simple variants of both schemes with better efficiency. We omit
the proofs for brevity, but discuss the schemes here.

Optimizations for Warrantland. It turns out it is not necessary to encrypt m in the internal cipher-
text. We can replace Equation (2) with

Encpk(m; r) = Epk(m,Epp(r;RO(r));RO′(r)) (3)

However, in the main body of the paper we work with Equation (2) in order for the proof to easily modularly
adapt to the scheme described in Equation (1).

This optimized Warrantland scheme is indeed quite practical. Encryptions under the scheme from Equa-
tion (3) do not have much overhead compared to running any existing PKE directly. The ciphertext consists
of a single original ciphertext (therefore ”PKI-agnostic”) on a plaintext which is O(λ) bits longer than the
original.

Optimizations for Dictatoria. We can improve the efficiency by using CCA-secure hybrid encryp-
tion [CS98]. Such hybrid encryption allows users to efficiently encrypt a long string by encrypting a secret
key for a one-time Authenticated-Encryption with Associated Data (AEAD), and then encrypting the long
message using the AEAD, provided that the AEAD is deterministic. In particular, the secret key should
be fixed to be a third random oracle output of the randomness. Formally, if E is any IND-CCA encryption
scheme

Encpk(m; r) = Epk(RO1(r), Epp(r;RO2(r));RO3(r)), Epp(r;RO2(r)), AEADRO1(r)(m) (4)

The deterministic nature of the AEAD ensures that covert information cannot be passed through the sym-
metric encryption part, all of whose randomness is fixed by the public-key encryption. Moreover, one-time
deterministic AEADs are easy to build very efficiently using any stream cipher and a regular AEAD. The
fact that the secret key for the AEAD is determined via a random oracle output applied to the randomness
guarantees that the anamorphic sender cannot insert a covert message into the AEAD secret key. Given a
ciphertext, the dictator can decrypt r, and then can compute RO1(r), which it can use to decrypt m.

We emphasize that once again this optimized scheme is extremely practical. Ciphertexts in our final
scheme are the same length as standard symmetric ciphertexts, but with security parameter bits added for
hybrid encryption.
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2.5 Anamorphic unforgeability (for Privatopia)
Unforgeability. We say that an anamorphic instantiation is unforgeable if a dictator, who has the secret
key and can view anamorphic encryptions of arbitrary message-anamorphic message pairs, cannot produce
a ciphertext c such that ADecak(c) = m ̸= ⊥. For weak unforgeability, we require that m was never queried
to the anamorphic encryption oracle. For strong unforgeability, we require that c was never queried by such
an oracle (even if m was queried).

Are existing robust schemes also unforgeable? [BGH+24] defines several constructions of robust
anamorphic schemes for a number of public key encryption schemes satisfying certain properties. This work
considers a variety of different settings, some of which allow for preprocessing or ”synchronization” between
sender and receiver. Since we do not model synchronized schemes in this work, we will not discuss whether
or not these schemes are unforgeable (they may be if unforgeability is suitably defined). However, we can
observe that all of the unsynchronized protocols defined in the work do not satisfy strong unforgeability. In
particular, all of these schemes contain anamorphic ciphertexts of the form (c1, c2) where c2 is a deterministic
function of the first ciphertext, the secret key, and the message, i.e. c2 = f(c1, sk,m). Thus, the dictator can
construct a new anamorphic ciphertext from (c1, c2) by picking a new m′ and outputting (c1, f(c1, sk,m

′)).

A generic transformation for weak unforgeability. [BGH+24] shows how to generically add
robustness to any anamorphic instantiation. The idea is to restrict the size of the anamorphic message space
to a negligible fraction of the total space. This way, the probability that an honest encryption anamorphically
decrypts to something in the restricted space is negligible.

Note that while the precise details of this approach are absent from the work, the idea can be realized using
a pseudorandom permutation to define the space. In fact, this approach will also lead to weak unforgeability
if executed carefully. However, for ease of presentation, we give an alternative approach. In particular,
we will use a message authentication code (MAC) to ensure that the dictator cannot forge ciphertexts for
anamorphic messages it has never queried before.

In particular, if (AGen,AEnc,ADec) is an anamorphic encryption scheme, we will define

AEnc′(m, am) = AEnc(m, (am,MAC(am)))

ADec′ will then in addition verify the correctness of the MAC.

Theorem 2.5 (Informal version of Theorem 9.3). Let (Init,Gen,Enc,Dec) be any public key encryption
scheme. If there exists an anamorphic instantiation of (Init,Gen,Enc,Dec) with anamorphic messages of
length ω(log λ), and if there exists a MAC with compatible domain and codomain, then there exists an
anamorphic instantiation of (Init,Gen,Enc,Dec) satisfying weak unforgeability.

Notice that this theorem cannot be applied to anamorphic instantiations with ”trivial” anamorphic mes-
sage of size O(log λ), such as the scheme obtained by rejection sampling. However, we can apply this
theorem to any scheme which supports long anamorphic messages, for example the Naor-Yung scheme de-
tailed in [PPY24] (note that we give another unforgeable instantiation of Naor-Yung with stronger properties
later on).

Note that this scheme is ”PKI-agnostic” in the sense that the MAC key used for unforgeability can be
generated post-hoc using an existing public key, secret key, and anamorphic key.

Why does this not give strong unforgeability? For many anamorphic schemes, there is some ”un-
used” randomness and/or information about the message. For example, consider any anamorphic scheme
which appends a random bit at the end. Given any anamorphic ciphertext, the dictator can forge a new
ciphertext by simply swapping the final bit. This attack applies even after our weak unforgeability transfor-
mation, since our construction only modifies the input to the scheme.
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Strong unforgeability for specific schemes. While we do not construct a generic transformation
to add strong unfogeability to any anamorphic instantiation, we are able to build unforgeable anamorphic
instantiations for a large variety of commonly used cryptographic schemes. In particular, we build strongly
unforgeable anamorphic instantiations for any scheme satisfying randomness-recoverability, as well as for the
El-Gamal and Naor-Yung cryptosystems.

Randomness-recoverability. A randomness-recoverable public key encryption scheme is a scheme
where the randomness used for encryption can be recovered from the ciphertext along with the secret
key [LW10]. [BGH+24] observes that any public key encryption scheme which satisfies a weaker version of
randomness recoverability has an anamorphic instantiation. We observe that if a public key encryption
scheme satisfies full randomness-recoverability, then it is easy to construct an anamorphic instantiation.

In particular, we can simply replace the randomness used in encryption with a symmetric key encryption
of the anamorphic message. Let fk be a pseudorandom permutation, we define

AEncak(m, am; r) = Encpk(m; fak(am, r))

To anamorphically decrypt, ADec will recover fak(am, r) from the ciphertext and invert the permutation to
retrieve am.

We can then apply the generic transform described above to this construction. In particular, we define

AEncak(m, am; r) = Encpk(m; fak(am, r,MACak(m, am, r)))

Note that, as long as we use a deterministic MAC, there is no ”unused” randomness for the dictator to
play with. Every bit of randomness is needed for decryption. And so the barrier to showing our generic
transformation satisfies strong unforgeability no longer applies.

Theorem 2.6 (Restated version of Theorem 9.7). For any randomness-recoverable public key encryption
scheme (Gen,Enc,Dec), there exists a anamorphic instantiation (AGen,AEnc,ADec) satisfying strong un-
forgeability.

Recall the Fujisaki-Okamoto transform [FO99, FO13], which transforms any IND-CPA secure protocol
into one which is IND-CCA secure. It is easy to observe that the resulting scheme is also randomness-
recoverable. Thus, as long as there exists an IND-CPA secure scheme, in the random oracle model there
exists an IND-CCA scheme with an anamorphic instantiation satisfying strong unforgeability.

One very nice property of this anamorphic instantiation is that the anamorphic key is independent of the
public and secret keys. That is, giving away the anamorphic key does not compromise IND-CCA security.

Furthermore, this scheme is ”PKI-agnostic” in the sense that the anamorphic key consists of the key
for the pseudorandom permutation and MAC, and thus can be generated separately from the public key,
secret key pair. In particular, users with existing keys for any randomness recovery scheme may utilize this
approach to later receive anamorphic messages by generating a new anamorphic key.

El-Gamal. Recall the El-Gamal encryption scheme. Let g be a generator for some group G. The secret
key will be a random exponent sk = x, and the public key is pk = gx. To encrypt a message m in the group,
the sender will sample an exponent r uniformly at random, and output (h = gr, z = pkr ·m). To decrypt,
the receiver will compute h−x · z = m. Security follows from the Diffie-Hellman assumption over G.

Note that El-Gamal does not satisfy randomness-recoverability, as it is not possible to compute r from
h = gr. However, encryptions do leak a deterministic function of the randomness, gr. Thus, we can adapt
our anamorphic instantiation for randomness-recoverable schemes to El-Gamal without too much difficulty.

In particular, instead of replacing r, the anamorphic sender will replace h = gr directly. To simulate
the rest of the ciphertext, the anamorphic sender can use the secret key sk = x to directly compute hx. In
particular, we set ak = (x, k) and we define

AEncx,k(m, am; r) = (h = fk(am, r,MAC(m, am, r)), z = hx ·m)
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Note that for this construction, each anamorphic ciphertext is a deterministic function of m, am and r.
Thus, the same argument as for randomness-recoverable schemes gives us that this anamorphic instantiation
satisfies strong unforgeability.

Theorem 2.7 (Informal version of Theorem 9.11). Let (Init,Gen,Enc,Dec) be El-Gamal with group G. If
there exists a pseudorandom permutation over G and a deterministic MAC with compatible domain and
codomain, then there exists an anamorphic instantiation of (Init,Gen,Enc,Dec) satisfying strong unforgeabil-
ity.

This scheme is also ”PKI-agnostic” in the same sense as the randomness-recoverability scheme. That
is, the anamorphic key is again the keys for the pseudorandom permutation and the MAC (along with the
secret key), and thus can be generated after the public key and secret key are determined.

Naor-Yung. Note that in our anamorphic instantiation for El-Gamal, the sender has access to the secret
key used for encryption. This means that if an anamorphic receiver wishes to use the scheme to communicate
honestly with anyone, they give up any notion of security against all of their anamorphic senders.

We remark that the anamorphic instantiation of the Naor-Yung paradigm detailed in [PPY24] does not
have this problem. The Naor-Yung paradigm builds an encryption scheme secure against chosen ciphertext
attack (CCA) from an encryption scheme secure against chosen plaintext attack (CPA). If (G,E,D) is a
CPA secure encryption scheme, then

Encpk1,pk2(m) = (c1 = Epk1(m), c2 = Epk2(m), π)

where π is a proof that both ciphertexts are encryptions of the same message. In particular, the proof π
comes from a simulation-sound, non-interactive, zero knowledge proof system [Sah99].

To construct anamorphic messages, the anamorphic key consists of a trapdoor to the proof system which
allows senders to fake proofs. Thus, to hide an anamorphic message, the sender will simply include the
anamorphic message in the second ciphertext and fake the corresponding proof. In particular,

AEnc(m, am) = (c1 = Epk1(m), c2 = Epk2(am), π)

where the proof π comes from the zero-knowledge simulator.
We show that in addition to satisfying anamorphic security, this construction also achieves strong un-

forgeability as long as the proof system satisfies a slightly stronger soundness requirement. In particular,
the proof system should satisfy simulation soundness against polynomially many queries. This is a notion
defined and constructed in [Sah99], but is not strictly necessary for CCA security.

Theorem 2.8 (Informal version of Theorem 10.10). Let (Init,Gen,Enc,Dec) be the Naor-Yung protocol
utilizing a proof system P. If P satisfies simulation soundness against polynomially many queries, then there
exists an anamorphic instantiation of (Init,Gen,Enc,Dec) satisfying strong unforgeability.

This scheme is not ”PKI-agnostic” in any sense, since the anamorphic key includes a trapdoor for the
proof system, and so must be generated along with the public and secret keys.

3 Notation

We will use probabilistic polynomial time (PPT) to refer to a non-uniform randomized algorithm running
in polynomial time. A PPT oracle algorithm AO is a PPT algorithm A which can make oracle queries to
O. We will use S(x)→ y or y = S(x) to denote some process S on input x with output y. For some set X,

we will use x
$←− X to denote sampling x uniformly from X. When the set X is clear from context, we will

use U to represent the uniform distribution over X, and similarly we will write U → x to refer to x sampled
uniformly at random from X. We will use λ to refer to the security parameter of all schemes, and 1λ to
denote λ represented in unary. When the security parameter is clear from context, we will omit 1λ in the
input to various algorithms. For a randomized algorithm A, we will use A(x; r) to refer to A run on input
x with random coins r. We use x||y or x, y to represent the concatenation of x and y.
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IND − CPA(A):
- Init(1λ)→ (pp, dk).
- Gen(1λ, pp)→ (pk, sk).
- Send (1λ, pp, pk) to A, get back m0,m1.

- Sample b
$←− {0, 1}.

- Set Encpk(1
λ,mb)→ c.

- Send c to A, get back b′.
- Output 1 if and only if b = b′.

IND − CCA(A):
- Init(1λ)→ (pp, dk).
- Gen(1λ, pp)→ (pk, sk).

- Send (1λ, pp, pk) to ADecsk(1
λ,·), get back

m0,m1.

- Sample b
$←− {0, 1}.

- Set Encpk(1
λ,mb)→ c.

- Send c to ADecsk , get back b′.
- Output 1 if and only if b = b′ and A never
queried c to its oracle.

Figure 1: The IND-CPA and IND-CCA security games.

4 Background

4.1 Basic cryptographic notions

Definition 4.1. A public key encryption scheme (Init,Gen,Enc,Dec) has the following syntax

1. Init(1λ)→ (pp, dk): takes in the security parameter λ and outputs the public parameters pp as well as
the dictator’s key dk. For standard encryption schemes, dk will always be ⊥, but we include it here to
model a dictator with control over the public parameters.

2. Gen(1λ, pp) → (pk, sk): takes in the security parameter λ and the public parameters pp and outputs a
public key, secret key pair (pk, sk).

3. Encpk(1
λ,m) → c: takes in the security parameter λ, the public key pk, as well as a message m, and

produces a ciphertext c.

4. Decsk(1
λ, c) → m: takes in the security parameter λ, a secret key sk, as well as a ciphertext c, and

produces a decrypted message m.

Without loss of generality, we will assume that the public key pk contains the public parameters pp. Some
schemes do not have public parameters, and for those schemes we will omit Init.

Definition 4.2. We say that a public key encryption scheme (Init,Gen,Enc,Dec) satisfies correctness if for
all PPT A,

Pr

 Decsk(Encpk(m)) = m :
Init(1λ)→ (pp, dk)

Gen(1λ, pp)→ (pk, sk)
A(pp, pk)→ m


Remark 1. Note that this is slightly stronger than the standard notion of correctness, which only requires
correctness to hold for measages independent of pk. However, this form of correctness also holds for nearly
all IND-CPA encryption schemes, and in addition is implied by perfect correctness.

Definition 4.3. We say that a public key encryption scheme (Init,Gen,Enc,Dec) satisfies IND-CPA security
if it satisfies correctness and for all PPT adversaries A,

Pr[IND − CPA(A)→ 1] ≤ 1

2
+ negl(λ)

where IND − CPA is the game in Figure 1.
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MAC(1λ,A):
-Sample S(1λ)→ k
-Initialize T = {}
-Run AO(1λ)→ (m′, σ′)
-Output 1 if and only if V (1λ, k,m′, σ′) = 1 and
m′ /∈ T .

O(m):
- Run MSign(1λ, k,m)→ σ.
- Add m to T .
- Output σ.

Figure 2: The MAC security game.

Definition 4.4. We say that a public key encryption scheme (Init,Gen,Enc,Dec) satisfies IND-CCA security
if it satisfies correctness and for all PPT adversaries A,

Pr[IND − CCA(A)→ 1] ≤ 1

2
+ negl(λ)

where IND − CCA is the game in Figure 1.

Definition 4.5. A message authentication code (MAC) is a triple of algorithms (MGen,MSign,MVer) with
the following syntax

1. MGen(1λ)→ k: takes input security parameter λ and outputs a shared key k.

2. MSign(1λ, k,m) → σ: takes input security parameter λ, a key k, and a message m and outputs a tag
σ.

3. MVer(1λ, k,m, σ) → 0/1: takes input security parameter λ, a key k, a message m, and a tag σ, and
outputs 0 or 1.

and satisfying the following properties

1. Correctness: For all m, PrMSign(1λ)→k[MVer(1λ, k,m, S(1λ, k,m))→ 1] = 1.

2. Security: For all PPT A, Pr[MAC(A)→ 1] ≤ negl(λ) where MAC is the game from Figure 2.

Theorem 4.6 (From [Gol04]). If there exists a MAC, then there exists a MAC where MSign is deterministic
and MVer(k,m, σ) outputs 1 if and only if MSign(k,m) = σ.

Definition 4.7. Let F = {F :M→M} be the set of all functions overM. A pseudorandom permutation
(PRP) f : K ×M→M is a function satisfying the following

1. Security: For all PPT A, ∣∣∣∣∣ Pr
F

$←−F
[AF (·) → 1]− Pr

k
$←−K

[Afk(·)]

∣∣∣∣∣ ≤ negl(λ)

2. Permutation: For all keys k ∈ K, fk(·) is a permutation.
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4.2 Random oracles and min-entropy

Definition 4.8. A random oracle H : {0, 1}∗ → {0, 1}n is an oracle giving access to a function {0, 1}∗ →
{0, 1}n chosen uniformly at random during initialization.

Definition 4.9. Let (X,Y ) be a pair of correlated random variables. We say that the min-entropy of X
conditioned on Y is

H∞(X|Y ) := − logEY→y[max
x

Pr[X → x|Y → y]]

Lemma 4.10 (Min-entropy and guessing probability). Let X,Y be two correlated random variables. Let A
be any (inefficient) adversary.

Then
pguess = max

A
[Pr[A(Y ) = X]] = 2−H∞(X|Y )

Lemma 4.11. Let {Xλ, Yλ}λ∈N be a collection of correlated random variables.

H∞(Xλ|Yλ) = ω(log λ)

if and only if

EYλ→y

(
Pr

Xλ→x1,X→x2

[x1 = x2|Yλ → y]

)
≤ negl(λ)

Proof. Note that for all y,

max
x

Pr[X → x|Y → y] ≥ Pr
X→x1,X→x2

[x1 = x2|Y → y]

and so
EY→y[max

x
Pr[X → x|Y → y]] ≥ EY→y[ Pr

X→x1,X→x2

[x1 = x2|Y → y]]

Lemma 3 of [DGG+15] shows that

EY→y[ Pr
X→x1,X→x2

[x1 = x2|Y → y]] ≤ EY→y[max
x

Pr[X → x|Y → y]]2.

Thus, EY→y[maxx Pr[X → x|Y → y]] ≤ negl(λ) if and only if

EY→y

(
Pr

X→x1,X→x2

[x1 = x2|Y → y]

)
≤ negl(λ).

But H∞(X|Y ) = ω(log λ) if and only if EY→y[maxx Pr[X → x|Y → y]] ≤ negl(λ) and so we are done.

Lemma 4.12 (Theorem 5.3.1 of [CT06]). Let X be a set. Let Com : X → {0, 1}∗ be a deterministic
compression algorithm, and let Decom : {0, 1}∗ → X be its corresponding decompression algorithm such that
for all x ∈ X,

Decom(Com(x)) = x

Then,
E
x

$←−X
[|Com(X)|] ≥ log2 |X|.

4.3 Anamorphic encryption

Definition 4.13 (From [PPY24]). Let Π = (Init,Gen,Enc,Dec) be a public key encryption scheme. We say
that a triple of randomized algorithms
Π̃ = (AGen,AEnc,ADec) is an anamorphic instantiaton of Π if it has the following syntax

1. AGen(1λ, pp) → (pk, sk, ak): takes in the security parameter λ and public parameters pp and outputs
an anamorphic secret key public key pair (pk, sk), along with an anamorphic key ak
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REALWORLD(1λ,D):
-Set Init(1λ)→ (pp, dk).
-Set Gen(1λ, pp)→ (pk, sk).
-Output DO(pp, dk, pk, sk).

O(m, am):
-Output Encpk(1

λ,m).

ANAWORLD(1λ,D):
- Set Init(1λ)→ (pp, dk).
- Set AGen(1λ, pp)→ (pk, sk, ak).
- Output DO(pp, dk, pk, sk).

O(m, am):
-Output AEncak(1

λ,m, am).

Figure 3: The two worlds used in the definition of anamorphic security. In the real world, the dictator gets the
user’s secret key and views arbitrary honestly encrypted messages. In the anamorphic world, the dictator gets the
user’s secret key and views arbitrary anamorphically encrypted messages. Anamorphic security states that these two
worlds are indistinguishable.

Robust(A):
-Set Init→ (pp, dk).
-Set AGen(pp)→ (pk, sk, ak).
-Set A(pp, dk, sk, pk)→ m.
-Set Encpk(m)→ c.
-Set ADecak(c)→ am.
-Output 1 if and only if am ̸= ⊥.

Figure 4: The robustness game

2. AEncak(1
λ,m, am)→ c: takes in the security parameter λ, an anamorphic key ak, a message m, and

an anamorphic message am and produces a ciphertext c

3. ADecsk,ak(1
λ, ak, c) → am′: takes in the public parameters λ, an anamorphic key ak, the secret key

sk, and a ciphertext c, and produces a decrypted anamorphic message am′

and satisfies the following properties

1. Anamorphic correctness: for all m, am,

Pr

 ADecsk,ak(c)→ am :
Init→ (pp, bk)

AGen(pp)→ (pk, sk, ak)
AEncak(m, am)→ c

 ≥ 1− negl.

2. Anamorphic security: For all PPT adversaries D, the games in Figure 3 are indistinguishable. That
is, ∣∣Pr[REALWORLD(1λ,D)→ 1]− Pr[ANAWORLD(1λ,D)→ 1]

∣∣ ≤ negl(λ)

where REALWORLD and ANAWORLD are defined in Figure 3.

We will assume without loss of generality that the anamorphic key ak contains the public key pk and the
public parameters pp.

Definition 4.14 (Adjusted from [BGH+24]). We say that a anamorphic instantiation (AGen,AEnc,ADec)
of a public key encryption scheme (Init,Gen,Enc,Dec) is robust if for all PPT A,

Pr[Robust(A)→ 1] ≤ negl(λ)

where Robust is the game from Figure 4.

Remark 2. Unlike [BGH+24], we give the adversary producing the message access to pp, dk, sk and pk. In
the original definition, the adversary does not have access to any information, and must choose the plaintext
m blindly. Note that the robust constructions from [BGH+24] are also robust under this strenghtened model.
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5 Deterministic encryption for oracle dependent inputs

In this section, we formalize the exact properties we need from deterministic encryption. We need that
security holds over sufficiently unpredictable samplable distributions where the sampler does not query the
random oracle on its output. We also include additional randomness appended to the ciphertext. This will
come from extra randomness output by the random oracle.

Construction 5.1 (Encrypt-with-Hash with auxiliary randomness). Let
(G,E,D) be a IND-CPA secure public key encryption scheme. Let R be the randomness space of E and
let R′ be any arbitrary set. Let RO : {0, 1}∗ → R×R′ be a random oracle. We construct a deterministic
encryption algorithm EwH (Encrypt-with-Hash). EwH will take in the public key pk and input r, and will
produce a ciphertext c and auxiliary randomness w. EwH is defined as follows

1. Run RO(r)→ y1, y2.

2. Set c = Epk(r; y1).

3. Set w = y2.

4. Output (c, w).

The following theorem will capture the key property we require from EwH.

Theorem 5.2. Let (G,E,D) be any IND-CPA secure public key encryption scheme.
Let ARO(pk, crs)→ r be a PPT algorithm taking in a public key pk, a common random string crs, and

producing an output r.
Define the following distributions,

D0 : U → crs,G→ (pk, sk),ARO(pk, crs)→ r, (pk, crs, EwH(pk, r))

D1 : U → crs,G→ (pk, sk),ARO(pk, crs)→ r, (pk, crs, Epk(r;U),U)
As long as

1. ARO(pk, crs)→ r never queries RO(r),

2. H∞(ARO(pk, crs)|pk, crs,RO) = ω(log λ)

then D0 and D1 are indistinguishable.

Remark 3. IND-CPA security of E immediately gives that D1 is indistinguishable from encryptions of 0.
Thus, Theorem 5.2 immediately shows that any two ”good” distributions over r will lead to indistinguishable
ciphertexts.

We also observe that a similar property holds even if the sampler A is allowed to query RO(r). However,
in this setting, there is a multiplicative security loss of TA − Tno, the number of queries made by A which
are allowed to query RO(r).

Theorem 5.3. Let (G,E,D) be any IND-CPA secure public key encryption scheme.
Let ARO(pk, crs) → r be a PPT algorithm taking in a public key pk, a common random string crs,

and producing an output r such that H∞(r|pk, crs,RO) = ω(log λ). Let TA ≤ poly(λ) be any bound on the
number of queries made by A. Let 0 ≤ Tno ≤ TA. We will require that ARO(pk, crs) does not query r in its
first Tno queries.

Define the following distributions,

D0 : U → crs,G→ (pk, sk),ARO(pk, crs)→ r, (pk, crs, EwH(pk, r))

D1 : U → crs,G→ (pk, sk),ARO(pk, crs)→ r, (pk, crs, Epk(r;U),U)
Let B be any PPT oracle algorithm. Then

Pr[B(D0)→ 1] ≤ (TA − Tno + 1) · Pr[B(D1)→ 1] + negl(λ)
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The full proof of Theorem 5.3 is given in Section 5.1. Theorem 5.2 follows immediately from Theorem 5.3
by setting Tno to TA.

The key insight required for these proofs from the following key lemma. This lemma says that for any
ARO → r, we can replace RO(r) with a random variable while only suffering a TA − Tno + 1 multiplicative
security loss. The intuition is that there should be many possible values of RO(r) which will not change the
value of A. Otherwise, we can predict RO(r) without querying it. Thus, replacing RO(r) with a random
value will produce the same distribution with probability 1

TA−Tno+1 .

Lemma 5.4 (Key Lemma). Let RO : {0, 1}n → {0, 1}m be a random oracle.
Let ARO(crs) → x be a PPT algorithm taking in a random string crs ∈ {0, 1}ℓ, producing an output

x ∈ {0, 1}n, and making at most TA queries to its oracle. Let 0 ≤ Tno ≤ TA. We will require that
ARO(pk, crs) does not query r in its first Tno queries.

Let BRO be any PPT oracle algorithm. For any oracle RO, define ROx−y by

ROx−y(r) =

{
RO(r) r ̸= x

y r = x

Define

αREAL = Pr

[
BRO(x, crs)→ 1 : crs

$←− R′

ARO(crs)→ x

]

αIDEAL = Pr

 BROx−y

(x, crs)→ 1 :
crs

$←− R′

ARO(crs)→ x

y
$←− R


Then

αREAL ≤ (TA − Tno + 1) · αIDEAL

Proof. Without loss of generality we will assume A and B are deterministic, since otherwise we could simply
pull their random coins from the crs. We will also without loss of generality assume that A queries RO(r).
Note that this assumption increases the total number of queries made by A by 1.

Given any function RO, we define the string RO−x1,...,xt
to be the string consisting of each function

output in order, skipping the outputs for x1, . . . , xt. For any given x, we define the set

S(crs, x,RO−x) = {y : AROx−y

(crs)→ x}

We remark that since x can be determined from RO, we will define

S′(crs,RO) = S(crs,ARO(crs) =: x,RO−x)

Define

γ := Pr

[
y ∈ S′(crs,RO) :

crs,RO
$←− U

y
$←− U

]
Observe that

αIDEAL

≥ Pr

 BROx−y

(x, crs)→ 1 :
crs

$←− R′

ARO(crs)→ x

y
$←− R

∣∣∣∣∣y ∈ S′(crs,RO)


·Pr

[
y ∈ S′(crs,RO) :

crs,RO
$←− U

y
$←− U

]
= αREAL · γ

(5)
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We will then lower bound γ via a compression argument. We define algorithms Com,Decom to compress
crs,RO.

Com(crs,RO) will be defined as follows

1. Run A(crs)→ x, keeping track of the query inputs x1, . . . , xTA .

2. Let i∗ be such that xi∗ = x.

3. Write S′(crs,RO) = S(crs, x,RO−x) = {v1, . . . , vℓ} in some canonical order.

4. Let j∗ be the index of RO(x) in S(x,RO−x). That is, vj∗ = RO(x).

5. Output (i∗, j∗, RO(x1), . . . , RO(xi∗−1), RO−x1,...,xi
, crs).

With an accompanying decompression function
DECOM(i∗, j∗, z1, . . . , zi∗−1, RO−x1,...,xi , crs) defined as follows

1. Run A(crs) up until just before query i∗. Whenever A makes its ith query, give A the response
zi = RO(xi) and store the input as xi.

2. Set x = xi∗ .

3. Reconstruct RO−x as RO−x1,...,xi∗ but with the values z1, . . . , zi∗−1 inserted at indices x1, . . . , xi∗−1

and a blank inserted at the index for x.

4. Write S(crs, x,RO−x) = S′(x,RO) = {v1, . . . , vℓ} in canonical order.

5. Reconstruct RO as RO−x but with the value vj∗ inserted at the index for x.

6. Output (crs,RO).

In particular, note that we will always have RO(x) ∈ S(crs, x,RO−x) by the definition of S. And so, it is
clear by construction that for all crs,RO,

Decom(Com(crs,RO)) = (crs,RO)

Since the query index i∗ will always be contained in [Tno+1, TA+1], it can be represented by log2(TA−
Tno + 1) bits. In particular, we will define T ′ = (TA − Tno + 1).

We thus observe

Ecrs,RO[|Com(crs,RO)|] = log2 T
′ + (2n − 1) ·m+ ℓ+ Ecrs,RO[log2 |S′(crs,RO)|]

= 2n ·m+ ℓ+ Ecrs,RO

[
log2

T ′ · |S′(crs,RO)|
2m

]
(6)

And by Lemma 4.12, we have
E[|Com(crs,RO)|] ≥ 2n ·m+ ℓ (7)

Equations (6) and (7) together give

Ecrs,RO

[
log2

T ′ · |S′(crs,RO)|
2m

]
≥ 0 (8)

By Jensen’s inequality, since log2 is concave, we have

log2 Ecrs,RO

[
T ′ · |S′(crs,RO)|

2m

]
≥ Ecrs,RO

[
log2

T ′ · |S′(crs,RO)|
2m

]
≥ 0

Ecrs,RO

[
|S′(crs,RO)|

2m

]
≥ 1

T ′

γ = Pr

[
y ∈ S′(crs,RO) :

crs,RO
$←− U

y
$←− U

]
≥ 1

T ′

(9)
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Plugging back into Equation (5), we get

αIDEAL ≥ αREAL ·
1

T ′

αREAL ≤ (TA − Tno + 1) · αIDEAL

(10)

5.1 Proof of Theorem 5.3

We first prove an important technical lemma

Lemma 5.5. Let (G,E,D) be any IND-CPA secure public key encryption scheme.
Let ARO(pk, crs)→ r be a PPT algorithm taking in a public key pk, a common random string crs, and

producing an output r.
Define the following distribution,

D : U → crs,G→ (pk, sk),ARO(pk, crs)→ r, (pk, crs, Epk(r;U),U)

If H∞(ARO(pk, crs)|pk, crs,RO) = ω(log λ), then for all PPT adversaries BRO,

Pr[B(D) queries RO(r)] ≤ negl(λ)

Proof. Define
ϵ := Pr[B(D) queries RO(r)].

Let TB = poly(λ) be an upper bound on the number of RO queries made by B.
We first define an adversary B′ which outputs r directly as follows:

1. Pick random t ∈ [T ].

2. Run B(D) until just before query t. Let rt be the corresponding input.

3. Output rt.

Observe that
Pr[B′(D)→ r] ≥ ϵ

TB

since if t is the query at which B queries RO(r), B′ will output r.
We next show that Pr[B′(D) → r] ≤ negl(λ) via a reduction. We will define an attacker C against the

IND-CPA security of (G,E,D) as follows:

1. On input pk

2. Sample crs uniformly at random

3. Run ARO(pk, crs)→ r0, ARO(pk, crs)→ r1.

4. If r0 = r1, send challenge m0 = 0,m1 = 1 and output a random bit.

5. Otherwise, send challenge m0 = r0,m1 = r1.

6. Challenger picks b ∈ {0, 1}. C receives challenge ciphertext cb = Epk(mb;U).

7. Run B′(pk, crs, cb,U)→ r′.

8. If r′ = r0, output 0. If r
′ = r1, output 1. Otherwise, output a random bit.
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First, observe that Pr[r0 = r1] ≤ negl(λ) by Lemma 4.11.
Note that (pk, crs, cb,U) is identically distributed to D. Thus,

Pr[B′(pk, crs, cb,U) = rb] ≥
ϵ

T

We may as well sample B′(cb,U) before choosing r1−b. And so,

Pr[B′(pk, crs, cb,U) = r1−b] ≤ negl(λ)

by Lemma 4.10.
We can then compute the advantage of C as follows:

Pr[C(b = 0)→ 0]− Pr[C(b = 0)→ 1]

≥ Pr[r0 ̸= r1] · (Pr[r′ = r0|b = 0]− Pr[r′ = r1|b = 0])

≥ (1− negl(λ)) ·
(

ϵ

TB
− negl(λ)

)
≥ ϵ

TB
− negl(λ)

(11)

And so
ϵ

TB
− negl(λ) ≤ negl(λ)

But since TB = poly(λ),
ϵ ≤ negl(λ).

We then proceed to the proof of Theorem 5.3.
We prove this via a sequence of hybrids, detailed in Figure 5.

Lemma 5.6. Pr[Hyb1 → 1] ≤ (TA − Tno + 1) · Pr[Hyb2 → 1].

Proof. This follows immediately from lemma 5.4. In particular, A from Lemma 5.4 will be the first three
lines of G1, while B will be the last two lines of G1.

Lemma 5.7. Pr[G2 → 1] ≤ Pr[G3 → 1]

Proof. This is immediate, since G3 outputs 1 if G2 outputs 1 or some other event occurs.

Lemma 5.8. Pr[G3 → 1] = Pr[G4 → 1]

Proof. Note that in both G3 and G4, the value of RO(r) or ROy(r) is never used after the oracle is repro-
grammed. And so the two games are identically distributed.

Lemma 5.9. Pr[G4 → 1] ≤ Pr[G5 → 1] + negl(n)

Proof. Note that (pk, crs, c, y′2) is exactly the distribution from Lemma 5.5. Importantly, we have by as-
sumption H∞(r|pk, crs,RO) = ω(log λ). And so in G4, Pr[B ever queries RO(r)] ≤ negl(λ). The lemma
follows.

Putting these lemmas together, we get

Pr[G1 → 1] ≤ (TA − Tno + 1)Pr[G5 → 1] + (TA − Tno + 1)negl(n)

and so since TA ≤ poly(λ),

Pr[B(D0)→ 1] ≤ (TA − Tno + 1) · Pr[B(D1)→ 1] + negl(λ)
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G1:
-U → crs.
-G→ (pk, sk).
-ARO(pk, crs)→ r.
-RO(r)→ y1, y2.
-Epk(r; y1)→ c.
-Output BRO(pk, crs, c, y2).

Hybrid 1: this is the procedure BRO(D0).

G2:
-U → crs.
-G→ (pk, sk).
-ARO(pk, crs)→ r.
-RO(r)→ y1, y2.

-Sample y′ = (y′1, y
′
2)

$←− R×R′.

-Define ROy(x) =

{
RO(x) x ̸= r

y′ x = r

-Epk(r; y
′
1)→ c.

-Output BROy′

(pk, crs, c, y′2).

Hybrid 2: we first sample ARO(pk, crs) → r. At this point
we resample RO(r) with a random value, then continue as in
hybrid 1.

G3:
-U → crs.
-G→ (pk, sk).
-ARO(pk, crs)→ r.
-RO(r)→ y1, y2.

-Sample y′ = (y′1, y
′
2)

$←− R×R′.

-Define ROy(x) =

{
RO(x) x ̸= r

y′ x = r

-Epk(r; y
′
1)→ c.

-Run BROy′

(pk, crs, c, y′2)→ b.
-If B ever queries ROy′

(r), output 1.
-Otherwise, output b.

Hybrid 3: the same as hybrid 2, but if B ever queries ROy′
(r),

we output 1.

G4:
-U → crs.
-G→ (pk, sk).
-ARO(pk, crs)→ r.
-RO(r)→ y1, y2.

-Sample y′ = (y′1, y
′
2)

$←− R×R′.
-Epk(r; y

′
1)→ c.

-Run BRO(pk, crs, c, y′2)→ b.
-If B ever queries RO(r), output 1.
-Otherwise, output b.

Hybrid 4: the same as hybrid 3, but we remove the repro-
gramming of the random oracle.

G5:
-U → crs.
-G→ (pk, sk).
-ARO(pk, crs)→ r.
-RO(r)→ y1, y2.

-Sample y′ = (y′1, y
′
2)

$←− R×R′.
-Epk(r; y

′
1)→ c.

-Run BRO(pk, crs, c, y′2)→ b.
-Otherwise, output b.

Hybrid 5: the same as hybrid 4, but we remove the test for if
B queried RO(r).

Figure 5: The hybrid games used in the proof of Theorem 5.3.
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6 Anamorphic-resistant encryption

In this section, we construct an encryption scheme for which rejection sampling is the ”best” anamorphic
instantiation. As described in the technical overview, the idea is to use a random oracle output for the
randomness of encryption, and to encrypt the corresponding input under the dictator’s public key.

Construction 6.1. Let (G1, E1, D1), (G2, E2, D2) be two public key encryption schemes. Without loss of
generality we can assume that (G1, E1, D1), (G2, E2, D2) have no initialization algorithm by combining the
initialization algorithm with the generation algorithm.

Let R1,R2 be the randomness spaces of E1, E2 respectively. Let RO : {0, 1}∗ → R1 ×R2 be a random
oracle.

We define a public key encryption scheme Πar = (Initar,Genar,Encar,Decar) as follows:

1. Initar: Run G1 → (sk′, pk′). Output pp = pk′ and dk = sk′.

2. Genar: Run G2 → (sk, pk) and output the same.

3. Encarpp,pk(m): Sample r
$←− {0, 1}λ. Run RO(m, r)→ y1, y2. Set

c1 = E1
pp(m, r; y1). Set c2 = E2

pk(m, c1; y2). Output c2.

4. Decarpp,sk(c2): Run D2
sk(c2)→ (m′, c′). Output m′.

We first ensure that Πar is a secure encryption scheme itself.

Theorem 6.2. If (G1, E1, D1), (G2, E2, D2) are both IND-CPA secure, then Πar satisfies IND-CPA security.

Theorem 6.3. If (G1, E1, D1) is IND-CPA secure and (G2, E2, D2) is IND-CCA secure, then Πar satisfies
IND-CCA security.

We defer these proofs to Section 6.1. Interestingly, even to achieve IND-CCA security, only IND-CPA
security (G1, E1, D1) is necessary.

We then show that there does not exist any anamorphic instantiation of Πar with anamorphic messages
of length ω(log λ). Furthermore, there does not exist any robust anamorphic instantiation of Πar. Both of
these results are corollaries of the following theorem.

Theorem 6.4. Let Π̃ar = (AGenar,AEncar,ADecar) be any polynomial time anamorphic instantiation of
Πar satisfying anamorphic security (where
(AGenar,AEncar,ADecar) all have polynomially bounded oracle access to RO). Let TAGen, TAEnc be a bound
on the number of random oracle queries made by AGenar,AEncar respectively. Then for all m, am,

Initar → (pp, dk),AGenar → (sk, pk, ak)

Pr[ADecarak(AEnc
ar
ak(m, am))→ am]

≤ (TAEnc + 1) · Pr[ADecarak(Enc
ar
ak(m))→ am] + negl(λ)

Informally, this theorem says that with probability inversely proportional to the number of queries made
by the anamorphic instantiation, for every anamorphic message am, an honest encryption will be a valid
anamorphic encryption of am.

As the number of queries made by an anamorphic instantiation is polynomially bounded, we get a
polynomial bound on the number of possible anamorphic messages.

Corollary 6.5. Let Π̃ar = (AGenar,AEncar,ADecar) be any anamorphic instantiation of Πar and let AM
be the anamorphic message space. Then |AM| ≤ 2(TAEnc + 1).
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Proof. For each m, an averaging argument shows that there must exist some am such that

Pr[ADecarak(Enc
ar
ak(m))→ am] ≤ 1

|AM|

Thus,

Pr[ADecarak(AEnc
ar
ak(m, am))→ am] ≤ TAEnc + 1

|AM|
+ negl(λ)

If |AM| ≥ 2(TAEnc + 1), then

Pr[ADecarak(AEnc
ar
ak(m, am))→ am] ≤ 1

2
+ negl(λ)

which contradicts correctness.

As long as Π̃ar runs in polynomial time, it can only encrypt messages of length O(log poly(λ)) = O(log λ).

Corollary 6.6. Let Π̃ar = (AGenar,AEncar,ADecar) be any anamorphic instantiation of Πar. Π̃ar is not
robust.

Proof. If Π̃ar is robust, then for all m, am,

Pr[ADecarak(Enc
ar
ak(m))→ am] ≤ negl(λ)

But then
Pr[ADecarak(AEnc

ar
ak(m, am))→ am] ≤ (TAEnc + 1) · negl(λ) + negl(λ) = negl(λ)

which contradicts correctness.

In addition, in Section 7 we show how to add a universal backdoor to our anamorphic-resistant con-
struction. In Section 8 we show that Πar satisfies IND-CPA/IND-CCA security even against a dictator who
controls the backdoor to the public parameters.

6.1 Security proof for Πar (Theorems 6.2 and 6.3)

For simplicity of presentation we will only show IND-CCA security of Πar when (G2, E2, D2) is IND-CCA
secure. The IND-CPA case is analogous.

Proof. Consider the encryption scheme Πs = (Inits,Gens,Encs,Decs) defined by Inits = Initar, Gens = Genar,
Decs = Decar, and

Encspp,pk(m; r, y1, y2) = E2
pk(m,E1

pp(m, r; y1); y2)

A simple reduction to IND-CCA security of (G2, E2, D2) shows that Πs is IND-CCA secure.
Let IND − CCAar be the IND-CCA game Figure 1 played with Πar, and let IND − CCAs be the

IND-CCA game played with Πs.
Let CRO be any PPT algorithm making at most TC queries to its oracle. We claim that

|Pr[IND − CCAar(C)→ 1]− Pr[IND − CCAs(C)→ 1]| ≤ negl(λ)

This follows directly from Theorem 5.2 applied to (G1, E1, D1). In particular, define A′(pp, crs) to do
the following:

1. Parse the crs as crs1, crs2, b.

2. Run Genar(pp; crs1)→ (pk, sk).

3. Run CDecar
sk(·)(pk; crs2) until it returns a challenge m0,m1.
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4. Sample r
$←− {0, 1}λ.

5. Output (mb, r).

Observe that H∞(A(pp, crs)) ≥ |r| = ω(log2 λ).
And define B(pp, crs, x1, x2) to do the following:

1. Parse the crs as crs1, crs2, b.

2. Run Genar(pp; crs1)→ (pk, sk).

3. Run CDecar
sk(·)(pk; crs2) until it returns a challenge m0,m1.

4. Set c = E2
pk(mb, x1;x2).

5. Continue the execution of CDecar
sk(·)(pk; crs2), using c as the challenge response.

6. Return 0 if C ever queried c. Otherwise, return C’s output bit b′.

In particular, since crs is the same for both A and B, pk, sk will be the same and C will return the same
challenge m0,m1 for both parties. Note that since B generates sk itself, it can simulate Decarsk.

Let D0, D1 be the two distributions from Theorem 5.2 with sampler A and scheme (G1, E1, D1). Note
thatD0 is thus the distribution (pp, crs, Epp(mb, r, y1), y2) for RO(mb, r) = y1, y2, whileD1 is the distribution
(pp, crs, Epp(mb, r;U),U).

By construction, we have

Pr[IND − CCAar(C)→ 1] = Pr[B(D0)→ 1]

and
Pr[IND − CCAs(C)→ 1] = Pr[B(D1)→ 1]

And so since (G1, E1, D1) is IND-CPA secure, Theorem 5.2 gives us

|Pr[IND − CCAar(C)→ 1]− Pr[IND − CCAs(C)→ 1]| ≤ negl(λ)

and we are done.

6.2 Proof of anamorphic-resistance (Theorem 6.4)

To aid in the proof, we define a new process GetRand which the dictator will use to recover the randomness
from an honsetly generated ciphertext. In particular, GetRandsk,dk(c) runsD

2
sk(c)→ (m, c1), runsD

1
dk(c1)→

(m, r), and outputs r.

Let Π̃ar = (AGenar,AEncar,ADecar) be some candidate anamorphic instantiation of Πar satisfying
anamorphic security. Let us fix any message m and anamorphic message am. We will prove Theorem 6.4
via a sequence of hybrids, defined in Figure 6. The first hybrid G1 will be the correctness game played with
m and am, while the last hybrid G6 will be the simplified version of the robustness game from Theorem 6.4,
also played with m and am. Recall that our goal is to show that for all m, am,

Pr[G1(m, am)→ 1] ≤ (TAEnc + 1)Pr[G6(m, am)→ 1] + negl(λ)

Lemma 6.7. For all m, am
Pr[G1(m, am)→ 1] ≤ Pr[G2(m, am)→ 1] + negl(λ)
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G1(m, am):
-Initar → (pp, dk).
-AGenar(pp)→ (sk, pk, ak).
-AEncarak(m, am)→ c.
-ADecarak(c)→ am′.
-Output 1 if and only if am = am′.

Hybrid 1: the anamorphic correctness game instantiated with
(AGenar,AEncar,ADecar).

G2(m, am):
-Initar → (pp, dk).
-AGenar(pp)→ (sk, pk, ak).
-AEncarak(m, am)→ c.
-GetRanddk(c)→ r.
-Encarpk(m; r)→ c′.
-If c ̸= c′, output ⊥.
-ADecarak(c)→ am′.
-Output 1 if and only if am = am′.

Hybrid 2: the ciphertext is re-encrypted honestly using the
randomness derived from the original anamorphic ciphertext.

G3(m, am):
-Initar → (pp, dk).
-AGenar(pp)→ (sk, pk, ak).
-AEncarak(m, am)→ c.
-For all ri queried by AEncarak(m, am), check if
Encarpk(m; ri) = c. If so, set r = ri.
-If no ri is chosen or if r was queried by AGenar(pp),
output ⊥.
-Encarpk(m; r)→ c′.
-If c ̸= c′, output ⊥.
-ADecarak(c)→ am′.
-Output 1 if and only if am = am′.

Hybrid 3: we pull r directly from the queries made by
AGenar,AEncar instead of using GetRand.

G4(m, am):
-Initar → (pp, dk).
-AGenar(pp)→ (sk, pk, ak).
-AEncarak(m, am)→ c.
-For all ri queried by AEncarak(m, am), check if
Encarpk(m; ri) = c. If so, set r = ri.
-If no ri is chosen or if r was queried by AGenar(pp),
output ⊥.
-E1

pp(m, r;U)→ c1.
-E2

pk(m, c1;U)→ c2.
-ADecarak(c2)→ am′.
-Output 1 if and only if am = am′.

Hybrid 4: the deterministic encryption of r embedded in Enc
is replaced with an encryption with honest randomness.

G5(m, am):
-Initar → (pp, dk).
-AGenar(pp)→ (sk, pk, ak).
-E1

pp(m,U ;U)→ c1.
-E2

pk(m, c1;U)→ c2.
-ADecarak(c2)→ am′.
-Output 1 if and only if am = am′.

Hybrid 5: we replace c1 with an honest encryption of m fol-
lowed by a random string. We also remove the check r was
queried directly by AGenar or AEncar.

G6(m, am):
-Initar → (pp, dk).
-AGenar(pp)→ (sk, pk, ak).
-Encarpk(m)→ c.
-ADecarak(c)→ am′.
-Output 1 if and only if am = am′.

Hybrid 6: the simplified robustness game for
(AGenar,AEncar,ADecar) used in the statement of Theo-
rem 6.4.

Figure 6: The hybrid games used in the proof of Theorem 6.4.
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Proof. Let

ϵ1 = Pr

 Encarpp,pk(m;GetRand(Encarpp,pk(m; r)))
= Encarpp,pk(m; r)

:

Initar → (pk, dk)
Genar → (sk, pk)

r
$←− U



ϵ2 = Pr

 Encarpp,pk(m;GetRand(AEncarak(m, am; r)))
= AEncarak(m, am; r)

:

Initar → (pk, dk)
AGenar → (sk, pk)

r
$←− U


Correctness of (G1, E1, D1), (G2, E2, D2) gives that GetRand(Encarpp,pk(m; r)) = r with probability 1 −

negl(λ). And so ϵ1 ≥ 1− negl(λ).
By anamorphic security, since the dictator can run GetRand and Encar, we have that |ϵ1 − ϵ2| ≤ negl(λ)

and so
ϵ2 ≥ 1− negl(λ) (12)

That is, with probability 1− negl(λ) in G2, c
′ = c. The lemma follows.

Lemma 6.8. For all m, am
Pr[G2(m, am)→ 1] ≤ Pr[G3(m, am)→ 1] + negl(λ)

The technical details behind this proof are involved, and so have been deferred to Section 6.3. The
intuition is that if AEncar does not query RO(r), then it must have predicted c = Encarpk(m; r) without
querying RO(r). But since c is the output of a secure encryption scheme, it must have high entropy as
a random variable controlled by RO(r). And so therefore it should not be possible to predict c without
querying RO(r), and so Encarpk must query RO(r) directly.

Lemma 6.9. For all m, am
Pr[G3(m, am)→ 1] ≤ (TAEnc + 1) · Pr[G4(m, am)→ 1] + negl(λ)

Proof. This lemma follows from Theorem 5.3. In particular, we define A to be the process consisting of the
first five lines of G3. That is, let RAGen be the randomness of AGenar. ARO(pp,RAGen) will be defined as
follows

1. Run AGenar(pp;RAGen)→ (sk, pk, ak)

2. Run AEncarak(m, am)→ c

3. For all ri queried by AEncarak(m, am), check if Encarpk(m; ri) = c. If so, set r = ri.

4. If no ri is chosen or r was queried by AGenar(pp), output ⊥.

5. Otherwise, output (m, r).

Note that H∞(c|pp, pk,RO) must be ω(log λ) otherwise we could distinguish anamorphic ciphertexts from
honest ones by checking if a re-encryption collides.

Furthermore, as long as A does not output ⊥, c is a deterministic function of r, pp, pk,RO. And we know
from the previous hybrid that the probability that A outputs ⊥ is negligible. This implies that

H∞(r|pp, pk,RO) = ω(log λ)

and ARO satisfies the conditions of Theorem 5.3.
We can then set B(pp,RAGen, c, y) to simulate the rest of the game

1. Run AGenar(pp;RAGen)→ (sk, pk, ak)

2. Run E2
pk(m, c; y)→ c2 and ADecarak(c2)→ am′

3. Output 1 if and only if am = am′
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We have B(D0) = G3(m, am) and B(D1) = G4(m, am). Without loss of generality, we will assume that
AGenar(pp) makes exactly TAGen queries. We know that A makes at most TAGen + TAEnc queries to RO(r).
The lemma follows from Theorem 5.3 by setting Tno to TAGen.

Lemma 6.10. For all m, am, we have: Pr[G4(m, am)→ 1] ≤ Pr[G5(m, am)→ 1] + negl(λ)

Proof. Replacing E1
pp(m, r;U) with E1

pp(m,U ;U) will only cause a negligible change by the IND-CPA security
of (G1, E1, D1). Note that the remainder of G5 after this point does not depend on dk, the secret key of
(G1, E1, D1).

Removing the event that the game outputs ⊥ when no ri is chosen can only increase the probability that
G5 outputs 1.

Lemma 6.11. For all m, am, we have: Pr[G5(m, am)→ 1] ≤ Pr[G6(m, am)→ 1] + negl(λ)

Proof. This follows from Theorem 5.2 applied to (G1, E1, D1) with A(pp)→ (m,U).

Putting everything together, we get that for all m, am,

Pr[G1(m, am)→ 1] ≤ (TAGen + TAEnc) Pr[G6(m, am)→ 1] + negl(λ)

Plugging in the definitions of G1 and G6, we get

Pr

[
ADecarak(AEnc

ar
ak(m, am))→ am :

Initar → (pp, dk)
AGenar → (sk, pk, ak)

]
≤ (TAGen + TAEnc) Pr

[
ADecarak(Enc

ar
ak(m))→ am :

Initar → (pp, dk)
AGenar → (sk, pk, ak)

]
+ negl(λ)

(13)

6.3 Proof of Lemma 6.8

Lemma 6.12 (Lemma 6.8 restated). For all m, am,

Pr[G2(m, am)→ 1] ≤ Pr[G3(m, am)→ 1] + negl(λ)

In particular, it is sufficient to show that in G2(m, am), with high probability AEncar together query
exactly 1 RO(r) such that c = Encarpk(m; r) and furthermore AGenar does not query any RO(r) such that
c = Encarpk(m; r).

In particular, let BAD1 be the event that in G2, neither AGenar or AEncar queries RO(r). Let BAD2

be the event that in G2, AGen
ar ever queries r such that Encarpk(m; r) = c. Finally, let BAD3 be the event

that in G2, AEnc
ar queries two inputs r ̸= r′ such that Encarpk(m; r) = Encarpk(m; r′) = c.

We will show that Pr[BAD1],Pr[BAD2],Pr[BAD3] ≤ negl(λ). This is sufficient to show that with all
but negligible probability, AEncar queries exactly one RO(r) such that c = Encarpk(m; r) and AGenar queries
no such RO(r).

Note that we already know that Pr[c = c′] ≥ 1− negl(λ) from the previous hybrid.

Lemma 6.13. Pr[BAD1] ≤ negl(λ).

Proof. We first observe that if the random oracle is not queried on r by the algorithm generating c, then the
probability that Encarpk(m; r) = c is the same when RO(r) = y1, y2 are sampled after c is generated. Formally,

Pr[BAD1] = Pr[Encarpk(m; r) = c and RO(r) is not called before c is generated]

= Pr[Epk(m,Epp(m, r; y1); y2) = c and RO(r) is not called before c is generated]

= Pr[Epk(m,Epp(m, r;U);U) = c and RO(r) is not called before c is generated]

≤ Pr

[
Epk(m,Epp(m, r;U);U) = c :

Initar → (pp, dk)
AGenar(pp)→ (sk, pk, ak)

] (14)
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Writing this out fully,

Pr[BAD1] ≤ Pr

 Epk(m,Epp(m,GetRandsk,dk(c);U);U) = c :
Initar → (pp, dk)

Genar(pp)→ (sk, pk)
AEncarak(m, am)→ c

 (15)

Anamorphic security then says that we can swap AEncar and Encar. And so we get

Pr[BAD1]

≤ Pr

 Epk(m,Epp(m,GetRandsk,dk(c);U);U) = c :
Initar → (pp, dk)

Genar(pp)→ (sk, pk)
Encarak(m, am)→ c

+ negl(λ)

≤ Pr

 Epk(m,Epp(m, r;U);U) = Encarpk(m; r) :

Initar → (pp, dk)
Genar(pp)→ (sk, pk)

r
$←− U

+ negl(λ)

(16)

where the last inequality comes from correctness of GetRand.
But by IND-CPA security of (G,E,D), this is negligible. Otherwise, an attacker could distinguish an

encryption of (m,Epp(m, r)) under Epk from any other message. And so

Pr[BAD1] ≤ negl(λ) (17)

Lemma 6.14. Pr[BAD2] ≤ negl(λ)

Proof. Formally, let Sak = {s1, . . . , sTAGen
} be the set of query inputs made by AGenar. We have

Pr[BAD2] = Pr
AGenar(pp)→ak

[GetRandsk,dk(AEnc
ar
ak(m, am)) ∈ Sak]

≤
TAGen∑
i=1

Pr
AGenar(pp)→ak

[GetRandsk,dk(AEnc
ar
ak(m, am)) = si] + negl(λ)

≤
TAGen∑
i=1

Pr
AGenar(pp)→ak

[AEncarak(m, am) = Encarpk(m; si)] + negl(λ)

(18)

where the last inequality follows from Equation (12).
Let ϵi := PrAGenar(pp)→ak[AEnc

ar
ak(m, am) = Encarpk(m; si)]. We will show

ϵi ≤ negl(λ) (19)

Let us define

ϵcoll = Pr

 c1 = c1 :

Initar → (pp, dk)
AGenar(pp)→ (sk, pk, ak)

AEncar(m, am)→ c1
AEncar(m, am)→ c2


The same argument as Lemma 4.11 shows that if ϵcoll ≤ negl(λ), then ϵi ≤ negl(λ) for each i.

So it is sufficient to show that
ϵcoll ≤ negl(λ) (20)

By anamorphic security, we can replace AGenar and AEncar in ϵcoll with Genar and Encar.

ϵcoll ≤ Pr

 c1 = c2 :

Initar → (pp, dk)
Genar(pp)→ (sk, pk, ak)

Encar(m, am)→ c1
Encar(m, am)→ c2

+ negl(λ) (21)
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But IND-CPA security of Πar gives that

Pr

 c1 = c2 :

Initar → (pp, dk)
Genar(pp)→ (sk, pk, ak)

Encar(m, am)→ c1
Encar(m, am)→ c2

 ≤ negl(λ) (22)

as otherwise we could distinguish Encar(m, am) from an encryption of 0.
Thus, Equation (20) holds and so

ϵi ≤ negl(λ) (23)

for each i.
Thus, since TAGen ≤ poly(λ), Equations (18) and (23) give

Pr[BAD2] ≤ TAGennegl(λ) + negl(λ) ≤ negl(λ) (24)

Lemma 6.15. Pr[BAD3] ≤ negl(λ)

Proof. This follows directly from the correctness of GetRand. In particular, let s1, . . . , sTAEnc
be the queries

made by AEncarpk(m, am) which were not previously queried by AGenar. Let BADi
3 be the event that

Pr[GetRanddk(Encpk(m; si)) ̸= si]

Since at the point si is chosen, the value RO(ri) has not been queried, we have

Pr[BADi
3]

≤ Pr[GetRandsk.dk(Epp(m,Epk(m, r;U);U)) ̸= r]

≤ negl(λ)

(25)

But note that if none of BADi
3 hold, then for each i ̸= j, Encpk(m; si) ̸= Encpk(m; sj), and so BAD3 also

doesn’t hold. And so by union bound,

Pr[BAD3] ≤
∑

Pr[BADi
3] ≤ TAEnc · negl(λ) = negl(λ) (26)

7 Scheme for Dictatoria

Construction 7.1. Let (G1, E1, D1), (G2, E2, D2) be two public key encryption schemes. Without loss of
generality we assume that both schemes have no initialization algorithm.

Let R1,R2 be the randomness spaces of E1, E2 respectively. Let RO : {0, 1}∗ → R1 ×R2 be a random
oracle.

We define a public key encryption scheme Πdict = (Initdict,Gendict,Encdict,Decdict) as follows:

1. Initdict: Run G1 → (sk′, pk′). Output pp = pk′ and dk = sk′.

2. Gendict: Run G2 → (sk, pk) and output the same.

3. Encdictpp,pk(m): Sample r
$←− {0, 1}n. Run RO(m, r) → y1, y2. Set c1 = E1

pp(m, r; y1). Set c2 =
E2

pk(m, c1; y2). Output c = (c1, c2).

4. Decdictpp,sk(c1, c2): Run D2
sk(c2)→ (m′, c′). If c1 = c′, output m′. Otherwise, output ⊥.

In this section, we will show that the above construction is an anamorphic scheme with a universal
backdoor. In particular, we prove in Section 7.1 that Πdict satisfies IND-CPA/IND-CCA security as long as
(G2, E2, D2) does as well. In Section 7.2, we show that the protocol is resistant to anamorphic instantiations
even if the dictator does not have access to the secret key.
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7.1 Security of scheme for Dictatoria

Theorem 7.2. If (G2, E2, D2) is IND-CPA/IND-CCA secure and (G1, E1, D1) is IND-CPA secure, then
Πdict is IND-CPA/IND-CCA secure.

Proof. For simplicity of presentation, we will only present the case where the schemes are IND-CCA secure.
The IND-CPA case goes by a simpler version of the argument.

Consider the encryption scheme Πs1 = (Inits1,Gens1,Encs1,Decs1) defined by Inits1 = Initdict, Gens1 =
Gendict, Decs1 = Decdict, and

Encs1pp,pk(m; r, y1, y2) = Epp(m, r; y1), Epk(m,Epp(m, r; y1); y2)

That is, in Πs1, the random oracle outputs y1, y2 are replaced with random strings.
The same argument as Theorems 6.2 and 6.3 shows that if Πs1 is IND-CCA secure then Πdict is IND-CCA

secure. Thus, it remains to show security of Πs1.
We will do this by reducing to an even simpler encryption scheme Πs2 = (Inits2,Gens2,Encs2,Decs2). We

define Inits2 = Inits1 = Initdict, Gens2 = Gens1 = Gendict, Decs2 = Decs1 = Decdict, and

Encs2pp,pk(m; y1, y2) = E1
pp(0; y1), E

2
pk(m,E1

pp(0; y1); y2)

That is, in Πs2, c1 is replaced with an honest encryption of 0.
IND-CPA security of (G1, E1, D1) is enough to show that if Πs2 is IND-CCA secure, then so is Πs1. This

goes by simply replacing the challenge ciphertext in the IND-CCA game for Πs1 with the encryption of the
challenge message under Encs2. Since the adversary for the IND-CCA game of Πs1 does not have access to
dk, even taking into account its oracle, this change is undetectable. So any IND-CCA adversary against Πs1

is also an IND-CCA adversary against Πs2.
Thus, it remains to show that Πs2 is secure. In particular, let A be an attacker for the IND-CCA security

game applied to Πs2. Define IND−CCAs2(A) to be the IND-CCA game played with A. We will construct

an attacker A′ for the IND-CCA security game for (G2, E2, D2) such that Pr[IND−CCA(G2,E2,D2)(A′)→
1] ≥ Pr[IND−CCAs2(A)→ 1]−negl(λ), where IND−CCA(G2,E2,D2) is the IND-CCA game played with
(G2, E2, D2). A′ will simulate A and runs as follows

1. On receiving the public key pk, run G→ (pp, dk). Send (pp, pk) to A

2. When A sends the challenge m0,m1, compute c′ = E1
pp(0). Send challenge ((m0, c

′), (m1, c
′)).

3. Upon receiving the challenge response c, send challenge (c′, c) to A.

4. When A makes a query (c1, c2) to Decs2sk(1
λ, ·), do the following

(a) If the query is made after the challenge and c2 = c, return ⊥ to A.
(b) Otherwise, forward c2 to the decryption oracle of A′, getting a response (m′, c′).

(c) If c′ = c1, return m′ to A.
(d) Otherwise, return ⊥ to A.

5. Output A’s response bit b′.

It is clear that the view of A is the same as in the IND-CCA game for Πs2. The only odd case is when
A queries (c′′, c) where c′′ ̸= c′. However, by the definition of Decs2, Decs2sk(c

′′, c) will be ⊥ with all but
negligible probability.

By construction, A′ never makes a query to Dsk(·) on the challenge ciphertext. Thus,

Pr[IND − CCA(G,E,D)(A′)→ 1] ≥ Pr[IND − CCAs2(A)→ 1]− negl(λ) (27)

and so if (G,E,D) is IND-CCA secure, so is Πs2,Πs1, and Πdict.

We also formally prove that there does not exist an anamorphic instantiation of Πdict which fools a
dictator who does not have access to the receiver’s secret key. Full details are included in Section 7.2.
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REALWORLD(1λ,D):
-Set Init(1λ)→ (pp, dk).
-Set Gen(1λ, pp)→ (pk, sk).
-Output DO(pp, dk, pk).

O(m, am):
-Output Encpk(1

λ,m).

ANAWORLD(1λ,D):
- Set Init(1λ)→ (pp, dk).
- Set AGen(1λ, pp)→ (pk, sk, ak).
- Output DO(pp, dk, pk).

O(m, am):
-Output AEncak(1

λ,m, am).

Figure 7: The two worlds used in the definition of strong anamorphic security. Unlike in Figure 3, the dictator does
not have access to the user’s secret key.

7.2 Strong anamorphic resistance

We formally define what it means for an encryption scheme to be resistant to anamorphic instantiations
without secret key access. Informally, a dictator should be able to detect whether users send anamorphic
messages even without secret key access.

Definition 7.3 (From [PPY24]). Let Π = (Init,Gen,Enc,Dec) be a public key encryption scheme. We say

that a triple of randomized algorithms Π̃ = (AGen,AEnc,ADec) is a weak anamorphic instantiaton of Π if it
satisfies Definition 4.13 but with the anamorphic security game replaced by Figure 7.

Theorem 7.4. Let Π̃dict = (AGendict,AEncdict,ADecdict) be any weak anamorphic instantiation of Πdict

with each algorithm making at most TAGen, TAEnc, TADec ≤ poly(λ) queries to the random oracle respectively.

Let AM be the anamorphic message space of Π̃dict. Then

1. |AM| ≤ 2(TAEnc + 1)

2. Π̃dict is not robust.

Proof. This proof is nearly identical to the proof of Theorem 6.4 and corollaries 6.5 and 6.6. The main
difference is that we redefine GetRand as follows:

1. On input dk, c

2. Parse c as (c1, c2)

3. Parse D1
dk(c1) as (m, r)

4. Output r

The only difference in the hybrids is that in games G4 and G5 we pass (c1, c2) into ADec instead of just c2.

Since GetRand no longer requires access to sk, Π̃dict satisfying weak anamorphic security is enough for the
proof to hold.

8 Anamorphic-Resistant Encryption in Warrantland

We observe that the anamorphic-resistent encryption scheme detailed in Section 6 by necessity requires
that the dictator already have access to users secret keys in order to either decrypt or detect anamorphic
ciphertexts. In particular, this scheme is the ideal scheme for the warrant setting. In this section, we
formalize this intuition.

We first define what it means for a scheme to be secure even against the dictator. Essentially, it must be
secure even against adversaries who have the dictator’s key dk.
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IND − CPA+ (A):
- Init(1λ)→ (pp, dk).
- Gen(1λ, pp, dk)→ (pk, sk).
- Send (1λ, pp, dk, pk) to A, get back m0,m1.

- Sample b
$←− {0, 1}.

- Set Encpk(1
λ,mb)→ c.

- Send c to A, get back b′.
- Output 1 if and only if b = b′.

IND − CCA+ (A):
- Init(1λ)→ (pp, dk).
- Gen(1λ, pp, dk)→ (pk, sk).

- Send (1λ, pp, dk, pk) to ADecsk(1
λ,·), get back

m0,m1.

- Sample b
$←− {0, 1}.

- Set Encpk(1
λ,mb)→ c.

- Send c to ADecsk(1
λ,·), get back b′.

- Output 1 if and only if b = b′ and A never
queried c to its oracle..

Figure 8: The augmented IND-CPA and IND-CCA security games. The only difference between these and Figure 1
is that the adversary A is given access to the dictator’s key in addition to the public parameters and public key.

Definition 8.1. We say that a public key encryption scheme (Init,Gen,Enc,Dec) satisfies IND-CPA+ secu-
rity (or IND-CPA security against a dictator) if it satisfies correctness and for all PPT adversaries A,

Pr[IND − CPA+ (A)→ 1] ≤ 1

2
+ negl(λ)

where IND − CPA+ is the first game in Figure 8.

Definition 8.2. We say that a public key encryption scheme (Init,Gen,Enc,Dec) satisfies IND-CCA+ se-
curity (or IND-CCA security against a dictator) if it satisfies correctness and for all PPT adversaries A,

Pr[IND − CCA+ (A)→ 1] ≤ 1

2
+ negl(λ)

where IND − CCA+ is the second game in Figure 8.

Theorem 8.3. If (G,E,D) is IND-CPA+ secure, then Πar is IND-CPA+ secure.

Theorem 8.4. If (G,E,D) is IND-CCA+ secure, then Πar is IND-CCA+ secure.

The intuition behind these proofs goes as follows.
We consider the simplified encryption scheme Πs used in the proofs of Theorems 6.2 and 6.3. Recall

that Πs is the same as Πar except that we replace the random oracle outputs in encryption with uniform
randomness. It is clear that Πs is IND-CCA+ secure.

Thus, we show that the security games for Πs and Πar are indistinguishable. This proof is similar to the
proof of Theorem 5.2. That is, we show that an adversary distinguishing these two must query RO(r), where
r is the encryption randomness. Thus, by guessing the query index, we get an algorithm which computes r
from the ciphertext Encs(m; r) = Epk(m,Epp(m, r)). But this gives a way to distinguish Epk(m,Epp(m, r))
from Epk(0), breaking IND-CPA security of (G,E,D). And so the security games for Πs and Πar are
indistinguishable.

Formally,

Proof. For simplicity of exposition, we will only prove the IND-CCA+ case.
Consider the encryption scheme Πs = (Inits,Gens,Encs,Decs) defined by Inits = Initar, Gens = Genar,

Decs = Decar, and
Encspp,pk(m; r, y1, y2) = E2

pk(m,E1
pp(m, r; y1); y2)

A straightforward reduction shows that if (G,E,D) is IND-CCA+ secure, then Πs is also IND-CCA+
secure.

36



Rand− Search(A):
- Init(1λ)→ (pp, dk).
- Gen(1λ, pp, dk)→ (sk, pk).

- Send (1λ, pp, dk, pk) to ARO,Decsk(1
λ,·), get back m.

- Sample r
$←− U . - Set Encpk(1λ,m; r)→ c.

- Send c to ARO,Decsk , get back r′.
- If A ever queried c to its encryption oracle or r to
its random oracle, output 0. - Otherwise, output 1
if and only if r = r′.

Figure 9: The randomness search version of the IND-CCA game. Instead of trying to distinguish two messages, A
is trying to find the randomness used in encryption.

We will then show that as long as Πs is IND-CCA+ secure, so is Πar. Let IND − CCAar+ be the
IND-CCA+ game played with the encryption scheme Πar. Similarly, let IND−CCA+s be the IND-CCA+
game played with the encryption scheme Πs. Let A be any PPT algorithm. We will show that

Pr[IND − CCAar + (A)→ 1] ≤ negl(λ)

Note that the only difference between IND−CCAar + (A) and IND−CCAs + (A) is the randomness
used in the challenge ciphertext. In particular, let ϵ be the probability that A queries the challenge ciphertext
randomness r in IND − CCAar + (A). We have that if ϵ ≤ negl(λ), then

|Pr[IND − CCAs + (A)→ 1]− Pr[IND − CCAar + (A)→ 1]| ≤ negl(λ) (28)

By IND-CCA+ security of Πs, we have

Pr[IND − CCAs + (A)→ 1] ≤ negl(λ) (29)

Equations (28) and (29) together show that

Pr[IND − CCAar + (A)→ 1] ≤ negl(λ) (30)

and so Πar is IND-CCA+ secure.
Thus, it remains to show ϵ ≤ negl(λ). Let Rand − Searchar, Rand − Searchs be the game in Figure 9

instantiated using Πar and Πs respectively. Let T ≤ poly(λ) be a bound on the number of queries A makes
to the random oracle. We can build an attacker A′ such that

Pr[Rand− Searchar(A′)→ 1] ≥ ϵ

T
− negl(λ) (31)

A′ will simulate A and be defined as follows

1. On input (pp, dk, pk)

2. Guess t
$←− [T ]

3. Run A(pp, dk, pk), receiving a challenge m0,m1

4. Sample b
$←− {0, 1}, outputting the challenge mb

5. Forward the challenge ciphertext c to A.

6. Simulate A up until just before A makes the tth query on input r′.
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7. Output r′.

As long as A queries the challenge ciphertext randomness r after sending its challenge, then A′ will guess
the correct query with probability 1

T . But the probability that A queries r before making its challenge is
negligible, since r is sampled uniformly at random after this point and A makes at most poly(λ) queries
before this point. Equation (31) follows.

But we can observe that

Pr[Rand− Searchar(A′)→ 1] = Pr[Rand− Searchs(A′)→ 1] (32)

since A′ is not allowed to make queries to RO(r) in either game, and the only difference between these games
is that RO(r) is replaced with a random string.

Equations (31) and (32) give us that

ϵ ≤ T Pr[Rand− Searchs(A′)→ 1] + negl(λ) (33)

and so it remains to bound Pr[Rand−Searchs(A′)→ 1]. We can do this by relying on IND-CCA security of

(G2, E2, D2). Let IND−CCA(G2,E2,D2)+ be the IND-CCA+ game for (G2, E2, D2). We define an attacker

A′′ for IND − CCA(G2,E2,D2)+. A′′ will simulate A′ internally.

1. On input pk.

2. Run G→ (pp, dk).

3. Simulate A′(pp, dk, pk), generating a challenge m.

4. Choose any m ̸= m.

5. Sample r
$←− {0, 1}λ.

6. Output challenge m0 = (m′, 0), m1 = (m,E1
pp(m, r)).

7. Upon receiving the challenge ciphertext c, forward c to A′.

8. Whenever A′ makes a query to Decsk(c
′),

(a) Forward c′ to the oracle of A′′, getting a response (m′, c′),

(b) Send m′ to A′.

9. When A′ returns a string r′, output 1 if and only if r′ = r.

Observe that when the challenge bit in the IND-CCA+ game is 1, then the view of A′ is exactly the same
as its view in Rand− Searchs. So

Pr[IND − CCA(G2,E2,D2) + (A′′)→ 1|b = 1] = Pr[Rand− Searchs(A′)→ 1] (34)

But when the challenge bit in the IND-CCA+ game is 0, then r is chosen uniformly at random independent
of r′. And so Pr[r′ = r] = 1

2λ
. Thus,

Pr[IND − CCA(G2,E2,D2) + (A′′)→ 1|b = 0] =
1

2λ
(35)

Equations (34) and (35) together imply that

Pr[IND − CCA(G2,E2,D2) + (A′′)→ 1] =
1

2
(Pr[Rand− Searchs(A′)→ 1] + negl(λ)) (36)

and so Pr[Rand− Searchs(A′)→ 1] ≤ negl(λ) by IND-CCA+ security of (G2, E2, D2).
So by Equation (33), ϵ ≤ negl(λ). And so Πar is IND-CCA+ secure.
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Unforge(A):
-Initialize T = [].
-Init(1λ)→ (pp, dk).
-AGen(1λ, pp)→ (sk, pk, ak).
-AAna(1λ, pp, sk, pk, dk)→ c.
-ADecsk,ak(1

λ, c)→ am.
-Output 1 if and only if am ̸= ⊥ and am /∈ T .

Ana(m, am):
-AEncak(1

λ,m, am)→ c.
-Add am to T .
-Return c.

UnforgeS(1λ,A):
-Initialize T = [].
-Init(1λ)→ (pp, dk).
-AGen(1λ, pp)→ (sk, pk, ak).
-AAna(1λ, pp, sk, pk, dk)→ c.
-ADecak(1

λ, c)→ am.
-Output 1 if and only if am ̸= ⊥ and c /∈ T .

Ana(m, am):
-AEncak(1

λ,m, am)→ c.
-Add c to T .
-Return c.

Figure 10: The weak anamorphic unforgeability game Unforge and the strong anamorphic unforgeability game
UnforgeS.

9 Unforgeable Anamorphic Instantiations (Privatopia)

Definition 9.1 (Unforgeability). Let Unforge and UnforgeS be the games from Figure 10. We say that an

anamorphic instantiation Π̃ = (AGen,AEnc,ADec) of a public key encryption scheme Π = (Init,Gen,Enc,Dec)
satisfies weak unforgeability if for all PPT A,

Pr[Unforge(A)→ 1] ≤ negl(λ)

Similarly, we say that (AGen,AEnc,ADec) satisfies strong unforgeability if for all PPT A,

Pr[UnforgeS(A)→ 1] ≤ negl(λ)

9.1 Adding weak unforgeability to any anamorphic scheme

Any anamorphic scheme with non-trivial anamorphic message length can be made weakly authentic by
simply appending a MAC to the anamorphic message inside the anamorphic encryption.

Construction 9.2. Let Π = (Init,Gen,Enc,Dec) be any public key encryption scheme. Let Π̃ = (AGen,AEnc,ADec)
be an anamorphic instantiation of Π with message length ℓ = ω(log λ). Let (MGen,MSign,MVer) be a MAC

on messages of length ℓ/2 with output length ℓ/2. Define Π̃wun = (AGenwun,AEncwun,ADecwun) by

1. AGenwun(pp): Run AGen(pp)→ (sk, pk, ak). Run MGen→ k. Set sk′ = sk, pk′ = pk, and ak′ = ak||k.
Output (sk′, pk′, ak′).

2. AEncwun
ak,k(m, am) = AEncak(m, am,MSign(k, am))

3. ADecwun
sk,ak,k(c): Run ADecsk,ak(c) → am′, σ. If MVer(k, am′, σ) = 1, output am′. Otherwise, output

⊥.

Theorem 9.3. Π̃wun satisfies anamorphic correctness, anamorphic security, and weak unforgeability.

Proof. Anamorphic correctness is clear from the construction, while anamorphic security follows immediately
from anamorphic security of (AGen,AEnc,ADec).

Weak unforgeability follows from a reduction to MAC security. In particular, let A be any adversary
breaking weak unforgeability of Π̃wun. We will construct an adversary A′ breaking the MAC security of
(MGen,MSign,MVer) simulating A.

1. Run Init→ (pp, dk), AGenwun(pp)→ (sk, pk, ak).
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2. Send pp, sk, pk, dk to A.

3. On an anamorphic encryption query m, am, query the signing oracle to get MSign(k, am) → σ. Send
AEncak(m, (am, σ)) to A.

4. Given a challenge ciphertext c, run ADecak(c)→ (am′, σ′). Output (am′, σ′).

It is clear that the distribution A sees is the same as in the game Unforge. Furthermore, if A wins the
unforgeability game, then it outputs a ciphertext c which anamorphically decrypts to a message am′ ̸= ⊥
which has never been queried to the anamorphic encryption oracle before. In particular, this means that
ADec(c)→ (am′, σ′) with MVer(k, am′, σ′) outputting 1. Since am′ has never been queried to the encryption
oracle, A′ has never queried it to its signing oracle, and so (am′, σ′) is a valid forgery.

9.2 Strong unforgeability for randomness-recoverable schemes

Although we do not have a way to construct a strong unforgeable version of any anamorphic encryption
scheme, we can directly construct a strongly unforgeable anamorphic instantiation for a wide variety of
schemes, namely those that are randomness recoverable [LW10]. [BGH+24] observes that any public key
encryption scheme which satisfies a weaker version of randomness recoverability has an anamorphic instan-
tiation.

Definition 9.4. We say that an encryption scheme (G,E,D) satisfies full randomness recoverability if there
exists an algorithm RecRandsk(c) such that for all m,

Pr

 RecRandsk(c) = r :

G→ (pk, sk)

r
$←− U

Epk(m; r)→ c

 = 1

Theorem 9.5. If there exists an IND-CCA encryption scheme, then there exists a public key encryption
scheme which is IND-CCA secure in the random oracle model and satisfies strong randomness recoverability.

In particular, the Fujisaki-Okamoto transform produces schemes which are IND-CCA secure in the ran-
dom oracle model and satisfy strong randomness recoverability.

Construction 9.6 (Randomness recoverable scheme). Let
Πrr = (Genrr,Encrr,Decrr,RecRandrr) be an encryption scheme satisfying strong randomness recoverability
with randomness space R. Let f : Kf × R be a pseudorandom permutation. Let (MGen,MSign,MVer) be
a deterministic MAC (and so MVer(k,m, σ) outputs 1 if and only if MSign(k,m) = σ) with key space KM .

We construct an anamorphic instantiation Π̃rr = (AGenrr,AEncrr,ADecrr) as follows

1. AGenrr: Sample kf
$←− Kf . Sample MGen → kM . Sample Genrr → (sk, pk). Output (sk, pk, ak =

(kf , kM )).

2. AEncrrak(m, am): Parse ak as (pk, kf , kM ). Sample U → s. Compute
MSign(kM , s||m||am)→ σ and fkf

(s, am, σ)→ r. Output Encrrpk(m; r).

3. ADecrrsk,ak(c): Parse ak as (pk, kf , kM ). Run RecRandsk(c)→ r. Parse f−1
kf

(r) as (s′, am′, σ′). Compute

Decrrsk(c)→ m′. If V (kM ,m′||am′||s′) = 1, output am′. Otherwise, output ⊥.

Theorem 9.7. Π̃rr is an anamorphic instantiation of Πrr which satisfies strong unforgeability.

Strong unforgeability follows from a similar argument as Theorem 9.3. The key observation is that the
anamorphic encryption uses all the randomness for Encrr, and so there is none left over for the dictator to
play with. MACing the message and randomness in addition to the anamorphic message means that the
dictator can’t modify the ciphertext without changing one of the elements of the MAC. Formally,
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Proof. Correctness: follows immediately from the construction.
Replacing f with a random function in the definitions of AGenrr,AEncrr,ADecrr and conditioning on the

ciphertext randomness never repeating yields exactly Πrr. Since the ciphertext randomness is sufficiently
long, the probability that it ever repeats is negligible. Thus, anamorphic security follows directly from the
pseudorandomness of f .

In particular, let A be an adversary against the strong unforgeability of Π̃rr. We will define A′ breaking
MAC security as follows:

1. Run AGenrr → (sk, pk, kf , kM ).

2. Send sk, pk to A.

3. On an anamorphic encryption query m, am.

(a) Sample U → s.

(b) Query the signing oracle to get MSign(kM ,m||am||s)→ σ.

(c) Compute fkf
(r, am, σ)→ r.

(d) Send Encrrpk(m; r) to A.

4. Given a challenge ciphertext c, run RecRandrrsk(c)→ r′. Run f−1
kf

(r′)→ (s′, am′, σ′). Run Decrrsk(c)→
m′. Output ((m′||am′||r′), σ′).

It is clear that the view of A in this game is identical to the view of A in the strong unforgeability game.
Consider a challenge ciphertext c winning the strong unforgeability game, that is ADecrrak(c) ̸= ⊥ and A

never received c from A′. Let r′,m′, am′, σ′ be the values computed in the last step of A′ from c. Since
ADecrrak(c) ̸= ⊥, we know σ′ = S(kS ,m

′||am′||s′).
As long as A never received c from A′, then for each query response mi||ami||si, σi made by A′,

(mi, ami, si, σi) ̸= (m′, am′, s′, σ′). This follows immediately from the fact that ci is a deterministic function
of (mi, ami, si, σi).

Thus, we get that
Pr[UnforgeS(A)→ 1] ≤ Pr[MAC(A′)→ 1]

and so strong unforgeability follows.

Remark 4. The anamorphic key used for Π̃rr is completely independent of both the public and secret keys.
And so the scheme is still IND-CCA secure against parties with the anamorphic key.

9.3 Strong unforgeability of El-Gamal

Although the scheme from the previous subsection applies only for schemes where all of the randomness used
for encryption is directly revealed, it can also be adapted to a number of other schemes. As an example, we
show how to achieve strong unforgeability for El-Gamal using the same ideas.

Recall the construction of the El-Gamal cryptosystem.

Construction 9.8 (El-Gamal public key encryption). Let G be a cyclic group of order p, and let g be a
generator of G. We define the El-Gamal encryption scheme Πeg = (Geneg,Enceg,Deceg) as follows

1. Geneg: Sample x
$←− Zp. Output (sk = x, pk = gx).

2. Encegpk(m): Sample r
$←− Zp. Set h = gr. Set z = pkr ·m. Output (h, z).

3. Decegsk(h, z): Output h−sk · z.

Theorem 9.9 (From [ElG85]). If the Diffie-Hellman assumption holds, Πeg is an IND-CPA secure public
key encryption scheme.
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We then will construct an anamorphic instantiation satisfying strong unforgeability.

Construction 9.10. Let Πeg be El-Gamal over the group G. Let f : Kf × G → G be a pseudoran-
dom permutation. Let (MGen,MSign,MVer) be a deterministic MAC (and so MVer(k,m, σ) outputs 1
if and only if MSign(k,m) = σ) with key space KM . We will construct an anamorphic instantiation

Π̃eg = (AGeneg,AEnceg,ADeceg) as follows:

1. AGeneg(g): Sample kf
$←− Kf . Sample MGen → kM . Sample x

$←− |G|. Output (sk = x, pk = gx, ak =
(kf , kM )).

2. AEncegak(m, am): Parse ak as (kf , kM ). Sample U → r. Compute MSign(kM , r||m||am) → σ and
fkf

(r, am, σ)→ h. Output c = (h, hx ·m).

3. ADecegsk,ak(c): Parse c as (h, z) and ak as (k, kS , kf ). Parse f
−1
kf

(c) as (r′, am′, σ′). Computem′ = h−x·z.
If V (kS ,m

′||am′||r′) = 1, output am′. Otherwise, output ⊥.

Theorem 9.11. Π̃eg is an anamorphic instantiation of El-Gamal which satisfies strong unforgeability.

Proof. This proof is nearly identical to the proof of Theorem 9.7. In particular, the key idea is that we are
replacing the entirety of the randomness used for encryption, with no extra randomness remaining.

10 Strong unforgeability for Naor-Yung

A major flaw of the strongly unforgeable anamorphic instantiation of El-Gamal is that the anamorphic key
contains the secret key, and so all honest communication is compromised against an anamorphic sender.

In this section we show that a simple modification of the anamorphic instantiation of the Naor-Yung
paradigm from [PPY24] satisfies strong unforgeability when the NIZK satisfies an especially strong simulation
soundness requirement. In particular, the anamorphic key will not contain the secret key (the anamorphic
key will be enough to compromise IND-CCA security, but not IND-CPA security).

10.1 NIZK variants

Definition 10.1. A language L ⊆ {0, 1}∗ is a set of strings. A relation R ⊆ {0, 1}∗ × {0, 1}∗ is a set of
pairs of strings. Each relation R has a corresponding language LR defined by

LR = {x ∈ {0, 1}∗ : ∃ y ∈ {0, 1}∗ (x, y) ∈ R}.

Definition 10.2 (Rephrased from [Sah99]). A non-interactive zero-knowledge proof (NIZK)
P = (Prove,Verify,Sim1,Sim2) for a relation R ⊆ {0, 1}∗×{0, 1}∗ is a tuple of algorithms with the following
syntax

1. Prove(1λ, crs, x, w) → π: takes in a common random string crs, an input x, and a witness w and
produces a proof π

2. Verify(1λ, crs, x, π) → 0/1: takes in a common random string crs, an input x and a proof π, and
produces a binary output

3. Sim1(1
λ)→ crs, td: produces a simulated common random string crs and a trapdoor td

4. Sim2(1
λ, crs, td, x)→ π: takes in a simulated common random string crs, a trapdoor td, and an input

x. Produces a simulated proof π.

satisfying the following properties

1. Completeness: For all x ∈ LR,

Pr
U→crs

[Verify(1λ, x,Prove(1λ, x))→ 1] = 1
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NIZKReal(1λ,D):
-Sample U → crs.
-Send crs to D, receive response (x,w).
-Set π = Prove(1λ, crs, x, w).
-Send π to A.
-Output A’s response.

NIZKIdeal(1λ,D):
-Sample Sim1(1

λ)→ (crs, td).
-Send crs to D, receive response (x,w).
-Set π = Sim2(1

λ, crs, td, x).
-Send π to A.
-Output A’s response.

Figure 11: The two worlds used in the definition of zero-knowledge. In the real world, the distinguisher sees an
honest proof for a chosen input. In the ideal world, the distinguisher sees a simulated proof for a chosen input.

SSound(A):
-Initialize T = {}.
-Sim0(1

λ)→ (crs, trapdoor)
-AO(1λ, crs)→ (x′, π′)
-A wins if

-x′ /∈ L,
-π′ /∈ T ,
-Verify(x′, π′, crs) = 1

O(x):
-Sim1(x, trapdoor)→ π.
-Add π to T .
-Output π.

Figure 12: The strong simulation soundness game.

2. Soundness: For all PPT A,

Pr
U→crs

[Verify(1λ, x, π) and x /∈ LR : A(crs)→ (x, π)] ≤ negl(λ)

3. Zero-knowledge: For all PPT D,∣∣Pr[NIZKReal(1λ,D]− Pr[NIZKIdeal(1λ,D]]
∣∣ ≤ negl(λ)

where NIZKReal and NIZKIdeal are the processes defined in Figure 11.

We will in addition assume that NIZK proofs are unique to each message. That is, for every common random
string crs, for all inputs x ̸= x′, and for all proofs π, if Verify(crs, x, π) = 1 then Verify(crs, x′, π) = 0. This
is a property referred to by [Sah99] as having ”uniquely applicable proofs.”

Definition 10.3 (Rephrased from [Sah99]). We say that a NIZK P = (Prove,Verify,Sim0,Sim1) satisfies
strong simulation soundness if for all PPT A,

Pr[SSound(A)→ 1] ≤ negl(λ)

where SSound is the game in Figure 12.
We say that P satisfies standard simulation soundness if the same condition holds when A is restricted

to one simulator query.

10.2 Strongly unforgeable construction

Before constructing our anamorphic instantiation, let us first recall the Naor-Yung paradigm.
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Construction 10.4. Let P = (Prove,Verify,Sim1,Sim2) be a NIZK for the relation

R = {((pk1, pk2, c1, c2), (m, r1, r2)) : Epk1(m1; r1) = Epk2(m2; r2)}.

Let (G,E,D) be an IND-CPA secure public key encryption scheme. The Naor-Yung paradigm defines the
following public key encryption scheme Πny = (Genny,Encny,Decny)

1. Genny: Run G(1λ) twice, producing G → (sk1, pk1) and G → (sk2, pk2). Sample U → crs. Output
(sk = sk1, pk = (pk1, pk2, crs)).

2. Encnypk1,pk2,crs
(m): Sample U → r1, r2. Set c1 = Epk1(m; r1) and c2 = Epk2(m; r2). Produce a proof

Prove(crs, (pk1, pk2, c1, c2), (m, r1, r2))→ π. Output (c1, c2, π).

3. Decnysk1,pk1,pk2
(c1, c2, π): If Verify(crs, (pk1, pk2, c1, c2), π) = 0, output ⊥. Otherwise, outputDsk1

(c1)→
m′.

Theorem 10.5 (Theorem 4.1 from [Sah99]). If the NIZK satisfies standard simulation soundness, then Πny

is IND-CCA secure.

An anamorphic scheme was proposed by [PPY24] as follows:

Construction 10.6. Define Π̃ny = (AGenny,AEncny,ADecny) by

1. AGen: Run G(1λ) twice, producing G → (sk1, pk1) and G → (sk2, pk2). Sample Sim1 → (crs, td).
Output (sk = sk1, pk = (pk1, pk2, crs), ak = (sk2, td)).

2. AEncpk1,pk2,crs,sk2,td(m, am): Set c1 = Epk1(m), c2 = Epk2(m). Simulate a proof
Sim1(crs, td, (pk1, pk2, c1, c2))→ π. Output (c1, c2, π).

3. ADecsk2,td(c1, c2, π): Output Dsk2
(c2)→ am′.

Theorem 10.7 (Theorem 3 from [PPY24]). If the NIZK P satisfies standard simulation-soundness, then

Π̃ny satisfies anamorphic security.

Note that this scheme is not even robust. In particular, an honest encryption Encpk(m) is also an
anamorphic encryption with am = m. However, assuming a sufficiently strong NIZK, this is in some sense
the only attack. Thus, we can prevent against this attack by simply disallowing the anamorphic message to
be the same as the honest message. In order to keep the same space, we will introduce a special symbol ⊤
which will be used to anamorphically encrypt the honest message. Note that this shrinks our anamorphic
message space by one element.

Construction 10.8. Define Π̃ny2 = (AGenny2,AEncny2,ADecny2) by

1. AGenny2: same as AGenny.

2. AEncny2pk,ak(m, am): If am = m, output AEncnypk,ak(m,⊤). Otherwise, output AEncnypk,ak(m, am).

3. ADecny2sk,ak(c): Run Decnysk (c) → m′ and ADecnysk,ak(c) → am′. If am′ = m′ or am′ = ⊥, output ⊥. If
am′ = ⊤, output m′. Otherwise, output am′.

Theorem 10.9. Π̃ny2 satisfies anamorphic security and correctness.

Proof. Anamorphic correctness follows by construction. Anamorphic security follows from the anamorphic
security of Π̃ny.

Theorem 10.10. When the NIZK used by the Naor-Yung paradigm Πny satisfies strong simulation sound-
ness, Π̃ny2 satisfies strong unforgeability.

Proof. Let A be an attacker against strong unforgeability. We will construct an attacker A′ (who will run
A) against strong soundness.
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1. On input crs, first sample G→ (sk1, pk1) and G→ (sk2, pk2). Set sk = sk1, pk = (pk1, pk2, crs).

2. Send (sk, pk) to A.

3. On an anamorphic message query (m, am), compute c1 = Epk1
(m) and c2 = Epk2

(am). Send (c1, c2)
as a simulator query to the challenger, and set O(c1, c2)→ π. Send (c1, c2, π) to A.

4. On a challenge ciphertext c′ = (c′1, c
′
2, π

′), output ((c′1, c
′
2), π

′).

It is clear that the distribution seen by A is identical to that in the strong unforgeability game. Further-
more, if A wins the strong unforgeability game, then A outputs a ciphertext c′ = (c′1, c

′
2, π

′) such that A
never received c′ from a query and Verify((c′1, c

′
2), π

′, crs) = 1.
Let c′ = (c′1, c

′
2, π

′) be a challenge received by A′ from A such that ADecny2sk,ak(c
′) ̸= ⊥ and c′ was

never sent to A by A′. It is clear that Verify(crs, (c′1, c
′
2), π

′) = 1 since ADecny2sk,ak(c
′) ̸= ⊥. Furthermore,

Dsk1
(c′1) ̸= Dsk2

(c′2), and so by correctness we have that (c′1, c
′
2) /∈ LR. Finally, we know that c′ was never

sent to A by A′, and so A′ never received π′ in response to a query of the form (c′1, c
′
2). But since the NIZK

has uniquely applicable proofs and since Verify((c′1, c
′
2), π

′, crs) = 1, A′ never received π′ in response to any
other query either.

Thus, if c′ is a challenge received by A′ from A such that ADecny2sk,ak(c
′) ̸= ⊥ and c′ was never sent to A

by A′, then A′ wins the strong soundness game. And so,

Pr[SSound(A′)→ 1] ≥ Pr[UnforgeS(A)→ 1]

11 Conclusions

In this work we revisited the Encryption Debate from a purely technical viewpoint. We formalized the worlds
of Dictotoria, Warrantland and Privatopia, and gave strong evidence that all these worlds likely exist. For
Privatoria, we strengthened the existing notion of anamorphic encryption to satisfy a new property called
unforgeability (as well as traditional CCA-security). For Warrantland and Dictatoria, we identified a whole
new dimension missed by prior technical discussions. The need for anamorphic-resistant encryption schemes,
which we defined and constructed in this work (albeit in the random oracle model). Many open questions
obviously remain, but we hope our paper will stimulate further technical discussion about the issues of
backdoors in encryption. Indeed, as we already mentioned, two follow-up works on anamorphic-resistant
encryption already appeared recently [CCGM25, ABG+25].
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