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Abstract

Komargodski et. al. defined evolving secret-sharing schemes with an unbounded number of
parties. In this model, parties arrive one after the other and the number of parties that will
arrive is not known. Another cryptographic primitive related to secret-sharing is conditional
disclosure of secrets protocols (CDS) that defined in [21]. A CDS protocol for a Boolean function
f involves k servers and a referee. Each server holds a common secret s, a common random
string r, and a private input xi; using these r, each server locally computes one message and
sends it to the referee. The referee, knowing the inputs x1, · · · , xk and the messages, should
be able to compute s if f(x1, · · · , xk) = 1. Otherwise, the referee should not learn information
about the secret. In a sense, this is a non-monotone version of secret sharing schemes.

Peter (ISC 23’), defines evolving CDS, implementing in particular evolving predicate f :
{0, 1}∗ → {0, 1} (he handles somewhat more general predicates for larger input domains, but
generalizing to other input domains is not hard, and we focus on boolean predicates). In
this setting, the number of parties is unbounded, where the parties arrive in sequential order.
Each party, when arrives, sends one random message to a referee, that depending on its input,
the secret, and a common randomness. He also devise evolving CDS protocols for a general
evolving predicate via a black-box reduction to evolving secret-sharing scheme for a related
access structure. He analyzes this construction for general access structures, as well as other
classes of functions, which yields message complexity O(2t) for the worst predicates. In this
work we provide new upper and lower bounds for evolving CDS.

• Observing that CDS has the potential for improved efficiency, as it is not restricted to
monotone operations, we devise a new evolving general CDS construction. In particular,
our construction relies on representing the evolving predicate via an infinite branching pro-
gram - LINBP, generalizing the monotone infinite branching program based construction
of Alon et. al of evolving secret sharing schemes. We obtain nontrivial (2ct−o(t) for c < 1)
message complexity for branching programs of larger width than Alon et al’s construction
(even when restricting attention to monotone predicates), as well as Peter’s construction
for certain (but not all) f ’s.

• Indeed, we prove that our construction, as well as [30] is tight for a certain evolving
predicate – as for evolving secret-sharing, (so called strong) evolving CDS also requires
share complexity of 2t−o(t). This is unlike the state of affairs for the finite setting, where
the best known CDS constructions are much more efficient than the best known secret
sharing schemes (for the hardest monotone functions). The latter bound is proved based
on an adaptation of Mazor’s lower bound (in turns based on Csirmaz’s lower bounding
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technique) to the CDS setting. It relies on a reduction from secret sharing for a certain
class of infinite access structures – the so called partite access structures to evolving CDS
for a related (not necessarily monotone) function. Then, a partite evolving access structure
is crafted using the Csirmaz-type argument.

1 Introduction

In secret-sharing schemes [11, 32, 22], there are n parties and a dealer, which holds a secret. The
dealer applies a randomized algorithm to the secret, resulting in n strings called shares, and gives the
ith share to the ith party. Only certain predefined qualified sets of parties can reconstruct the secret,
while any other set gains absolutely no information about it from their shares. The collections of
predefined qualified sets of parties are called access structures. Secret-sharing schemes are well-
studied and have many cryptographic applications. This model assumes that the number of parties
is known in advance and the share size, are determined by the number of parties.

This assumption poses problems in many scenarios. Of course, one can take some upper bound
on the number of parties. However, if this bound is big, the share size will be unnecessarily large,
even if only a few parties actually participate in the scheme. Conversely, if the bound is too small,
there is a risk that too many parties may arrive, and no further shares can be produced; this will
require an expensive re-sharing of the secret and updating all shares (which can be impossible if
some parties are temporally off-line). Thus, we need to consider models with an unbounded number
of parties.

Komargodski, Naor, and Yogev [24] defined evolving secret-sharing schemes with an unbounded
number of parties. In this model, parties arrive one after the other and the number of parties that
will arrive is not known. At the beginning of the execution, the dealer holds a secret (as in the
common model). When a party arrives, the dealer computes a share and gives it to the party;
this share cannot be updated in the future. Thus, when preparing the tth share, the dealer cannot
assume any bound on the number of parties that will eventually arrive; the size of the tth share
should be measured as a function of t. Correctness and privacy are required with respect to
an evolving access structure, where the parties are {pi}i∈N and the evolving access structure is a
collection of finite subsets of the parties that are authorized to reconstruct the secret.It is assumed
that the order that the parties that arrive is known in advance (in the literature it is the natural
order).

Another cryptographic primitive related to secret-sharing is conditional disclosure of secrets
protocols (CDS) that defined in [21]. CDS can be roughly viewed as a non-monotone version of
secret sharing, and has also had broad applicability in the literature. Notably, in the recent seminal
breakthrough upper bounds for secret sharing with share complexity 2ct for c < 1 [27], as well as in
the currently best known secret sharing with share complexity 1.5n, based on the so called robust
CDS [3]. A CDS protocol for a Boolean function f involves k servers and a referee. Each server
holds a common secret s, a common random string r, and a private input xi; using these r, s, and
xi the i-th server computes one message (without seeing any other input or message) and sends
it to the referee. The referee, knowing the inputs x1, · · · , xk and the messages, should be able to
compute s if and only if f(x1, · · · , xk) = 1. Otherwise, the referee should not learn information
about the secret. CDS protocols have many cryptographic applications and one of them is to reduce
the share size of secret-sharing schemes for general access structures[27, 8, 7].

Motivated by similar goals to those of studying evolving secret sharing [30] defines evolving CDS.
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In this setting, the number of parties is unbounded, and the parties arrive one by one in sequential
order. Each party, when arrives, sends one message to a referee, which is never changed in the
sequel. Evolving CDS protocols implement so called evolving predicates f :

⋃∞
i=1X1 × . . . × Xi.

This sequence of predicates is monotone, in the sense that if a predicate ft holds on some input
x = (x1, . . . , xt) ft, then ft+1 holds on any input of which x is a prefix. Indeed, such monotonicity
is necessary, as once ft(x1, . . . , xt) = 1, and the secret is revealed by messages m1,x1 , . . . ,m1,xt , in
must be valid to reveal it based of any input x′ of which (x1, . . . , xt) is a suffix (as messages are
never discarded by the referee).

1.1 Prior Work

1.1.1 Evolving Secret-Sharing Schemes.

We next briefly discuss the known results on evolving secret-sharing schemes. Komargodski et
al. [24] showed that every monotone evolving access structure can be realized by an evolving secret-
sharing scheme; in this scheme the size of the tth share is 2t−1. Mazor [28], quite surprisingly,
proved that this is almost tight. In particular, for every g(t) ∈ ω(t), there exists an evolving
access structure for which any evolving secret sharing scheme requires Ω(2t−g(t)) (total) share
complexity for all t. This is to contrast with the best lower bound for finite secret sharing schemes
of O(n/log(n)) [15], which leaves an exponential gap between best known lower and upper bounds
for the ‘hardest’ evolving access structures. On the positive side, Komargodski et al. and follow-
up works [25, 17, 5, 18, 6, 13, 16, 20, 29, 31, 33, 34, 30, 1, 19, 14] constructed efficient evolving
secret-sharing schemes for natural classes access structures.

In light of Mazor [28], [1] have searched for as rich as possible a class of evolving access struc-
tures that can be realized with an evolving secret-sharing scheme that has non-trivial share size;
(e.g, schemes with share size 2ct). As many secret-sharing schemes for finite access structures use
a representation of the access structure by some computational model to construct a secret-sharing
scheme realizing the access structure, e.g, CNF and DNF formulas are used in [22], monotone
formulas are used in [10], and monotone span programs are used in [23], they define a certain com-
putational model, for which they construct suitable evolving secret-sharing schemes. In some more
detail, their construction abstracts and generalizes the constructions of [24, 25], defining layered
monotone infinite branching programs (LIBP, which are ordered and read-once), which represent
evolving access structures. They transform an LIBP into an equivalent simpler computation model
they call generalized infinite decision trees (abbreviated GIDT), and show how to construct evolving
secret-sharing schemes for generalized infinite decision trees. In particular, the resulting evolving
secret-sharing schemes has non-trivial share complexity for width w(t) = 20.15t (this is close to, but
not completely tight, resulting in share complexity of ≤ 20.97t).

1.1.2 Evolving Conditional Disclosure of Secrets

As mentioned above, recently Peter [30] formalized evolving conditional disclosure of secrets (CDS)
protocols. The paper also includes a proof that all evolving predicates have evolving CDS protocols,
with complexity O(2t), similarly to the setting of evolving secret sharing, as well as improved
complexity for certain classes of evolving predicates, such as evolving minsum predicates. His
construction for f is based on a black box reduction to the best known evolving secret sharing
scheme for an access structure Af related to f . In particular, it implicitly implies the existence of
an evolving CDS for f for which Af has an LIBP with relatively small width (say O(20.15t).
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1.2 Our Results

We revisit the question of the message complexity of evolving CDS, making progress on two open
questions, as we see them, posed by the work [30].

Question 1. Are there more efficient constructions for broad classes of functions¿ In particular
those with LIBP’s with small width (that need not be non-monotone, in fact)?

This question makes sense, as [30]’s construction reduces evolving CDS to evolving secret shar-
ing, while in the finite setting reductions usually go in the other direction, and often the best known
constructions for CDS are better than the best known secret sharing constructions (see more below)

Question 2. Is [30]’s construction tight in the worst case?

Indeed, we answer the first question in the affirmative (in terms of the best known constructions).
Informally, our main construction yields the following upper bound.

Theorem 1.1 (Informal). Let f : {0, 1}∗ → {0, 1} denote an evolving predicate, that has a
(non-monotone) infinite layered branching program of width upper bounded by w(t) = 2ct, where
0 < c < 0.25 is a constant. Then there exists an evolving CDS protocol for f with message
complexity 2dt+o(t) where 0 < d < 1 is a constant (that depends on c).

This is a strict improvement over a similar evolving secret sharing construction which is based
on a representation of the AS via (infinite) monotone branching programs, where share complexity
is non-trivial only for BP width of (slightly rounding down the constant) 20.15t+o(t).

Roughly speaking, an improvement was to be expected, as unlike secret sharing, CDS is not
restricted to monotone operations. Indeed, in the finite setting the best known general CDS proto-
cols for the hardest functions are strictly more efficient than their secret sharing counterparts, for
functions of the same domain f : {0, 1}n → {0, 1} (2Õ(n0.5

vs 2O(n)) share complexity. This holds
even for monotone f ’s, for which both models are applicable.

As a corollary, we improve over [1] for a certain class of evolving secret sharing schemes – the so
called partite access structures (see Section 5 for further discussion). In a nutshell, a partite access
structure Af corresponding to an evolving predicate f : [N ]→ {0, 1}, say, is defined over the set of
parties {p(i, v)}i∈N,v∈[N ], and the sets containing some {p1,v1 , . . . , pt,vt} where f(v1, . . . , vt) = 1 or a
pair {pi,v, pi,w|v ̸= w}. The improvement follows by observing, that similarly to the finite setting,
one can easily demonstrate potentially improved constructions for partite access structures Af by
a reduction to evolving CDS for f .

Theorem 1.2 (Informal). Let f : {0, 1}∗ → {0, 1} denote an evolving predicate for secret domain
S, which has a strong CDS with message complexity emc(t). Then Af has an evolving secret-sharing
scheme with share complexity emc(t/2) +max(log(|S|), log n+ 1).

More precisely, unlike in the finite setting, we need the CDS to be strong. That is, if no
contiguous set of servers with a joint input v = (v1, . . . , vt) where f(v) = 1 shows up, then nothing
is learned about the secret. Unlike the finite setting, where strong CDS can be reduced to CDS with
a very small message complexity overhead, we do not generally know how to make evolving CDS
strong with a small overhead (we only know how to directly construct such CDS). See Section 4
for more discussion.

On the negative side, we answer Question 2 in the positive, falsifying the hope of obtaining
strong CDS protocols with non-trivial efficiency.
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Theorem 1.3 (Informal). There exists an evolving predicate f : {0, 1}∗ → {0, 1}, such that any
strong evolving CDS for it, and secret domain S = {0, 1} does not have a message complexity bound
of the form st(t) = O(2ct) for a constant c < 1.

Removing the caveat that the lower bound is only for strong CDS is an interesting open problem.
Finally, we observe that our results focus on the boolean input domains merely for convenience,
and our techniques readily generalize to arbitrary input domains.

1.3 Our Techniques

1.3.1 Upper Bounds

1.3.1.1 An IBP-based CDS construction, and comparison to IBP-based evolving se-
cret sharing schemes.

The construction is quite similar in spirit to the evolving secret sharing construction of [1]. We
assume familiarity with the construction of [1] for the sake of the exposition here (the technical
sections of the paper are self contained). In a nutshell, similarly to their construction, our construc-
tion for an evolving predicate f : {0, 1}∗ → {0, 1} relies on representing f via infinite branching
programs (LINBPs) and (generalized) infinite decision trees (GINDTs). In some more detail, an
LINBP is a natural infinite branching program computation model for evaluating evolving predi-
cates. It generalizes the LIBP introduced in [1], by allowing nonmonotone edge labeling predicates.
A GINDT is a natural infinite tree computation model for evaluating evolving predicates. A (lay-
ered) graph of a LINBP B is specified by an infinite rooted DAG G(V,E), partitioned into (finite)
layers, L0, L1, . . ., where L0 consists of the root. Every edge e ∈ Li × Li+1 is labeled by a pred-
icate µe in the variable xi+1. Naturally, a vector σt =∈ {0, 1}t is accepted by B if it satisfied all
predicates along a path from the root to a leaf. As for evolving secret sharing, we do not directly
know how to use an LINBP to build an evolving CDS protocol, as in [1], thus we transform it into
an equivalent generalized infinite decision tree GINDT instance. We partition the variables in the
LINBP into consecutive sets called generations. In The generations are defined by some function
h : N→ N; the ith generation contains the variables xh(i−1)+1, . . . , xh(i). An infinite non-monotone
decision tree T (G, h, v0, µ) generalizes LINBP in that the predicates labeling labeling an edge e
going from layer Ti to layer Ti+1 of the tree depend on several variables - those in generation i+1.
The generations are determined by the function h : N→ N; the ith generation contains the variables
xh(i−1)+1, . . . , xh(i). It is also restricts LINBP in the sense that G has a tree structure. Similarly to
the IBP to GIDT tranasformation in [1], the GINDT model is inspired by an optimized transfor-
mation of LINBP into an equivalent GINDT instance. Next, we describe the transformation, while
emphasizing the differences between it and the transformation from LIBP into GINDT in [1]. In T ,
there is a vertex uj1,...,ji for any sequence of vertices uj1 , . . . , uji in layers h(1), . . . , h(i) respectively,
which contain no leafs. We connect a vertex representing a path p with a vertex of the form (p, v)
for some v ∈ B. Every such e = (up,v′ , up,v′,v) for v

′ in layer h(i− 1) in B is labeled by a predicate
µe in the i’th generation variables, that states that some path from v′ to v in B is satisfied by
this set of variables. Also, we add a leaf uj1,...,ji−1,j for every layer h(i − 1) < j ≤ h(i) in B. The
leaf uj1,...,ji−1,j is the child of uj1,...,ji−1 . The predicate µe of e = (uj1,...,ji−1 , uj1,...,ji−1,j) accounts
for all paths from uji−1 to some leaf in layer j in B. This part of the tree differs from the [1] con-
version, which only had a single leaf vj1,...,ji−1 descending from every uj1,...,ji−1 , which represented
all paths from uj1,...,ji−1 to some leaf in layer h(i − 1) < j ≤ h(i). This change is required due to
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the technical restriction that (standard) CDS needs all servers in its predefined server set to send
a message corresponding to a certain input for the correctness guarantee to hold. In particular, a
predicate labeling e = (up, up,j) depends only on variables xh(i−1), . . . , xj , instead of all the variables
in generation i. Secret-sharing for parties {p1, . . . , pn}, on the other hand, can seamlessly handle
a qualified subset’s S ⊆ {p1, . . . , pn/2} shares, say, as shares of a subset of {p1, . . . , pn/2} 1 2. See
Section 4 for a formal definition of these computational models. To construct a CDS protocol from
T (G = (V,E), u0, µ) for f : {0, 1}∗ → {0, 1}, we proceed in two steps. First, we turn T into an IDT
T ′ (which is a special case of IDT), by modifying its predicates and set of variables. Briefly, every
edge e in an IDT is assigned a predicate ye - a unique variable. The outer scheme is an evolving
secret sharing scheme for the IDT (where qualified sets are those satisfying all predicates on a path
from the root to a leaf). It can be implemented by an ideal evolving secret sharing [24, 1]. Then,
for each e = (up,v′ , up,v′,v) ∈ E where v′, we apply a (finite) CDS for predicate µ(e) for ye’s share
she as the secret among the set of parties on which µ(e) depends (either an entire generation or a
prefix thereof). We then append the corresponding messages mi,0 (mi,1) to qi’s 0 (1) corresponding
CDS messages. Overall, the message complexity of the protocol is O(h(ℓt)Π

ℓt
i=1w(h(i)) executions

of CDS protocols, each among (up to) h(ℓt) parties for a predicate of and an edge leaving layer
i− 1 in T .

We stress that although we build an evolving CDS, the outer scheme is still a secret sharing
scheme for a monotone access structure, implemented among a set of virtual parties, corresponding
to edges of an IDT. The main source of improved efficiency here is the fact we can use CDS protocols
instead of secret sharing protocols for the edge predicates. This is an improvement of 2Õ(n0.5) vs
2O(n) per edge, as discussed above. In particular, unlike the [1] construction, for branching programs
of exponential width, the cost of individual CDS’s is absorbed in the o(t) part in the exponent of
Theorem 1.1.

Another potential source of efficiency improvement, could be the fact that we use a non-
monotone branching program - an LINBP rather than an LIBP, which must have monotone predi-
cates. However, an LINBP for f , has essentially the same structure as an LIBP for Af , which is the
corresponding partite evolving access structure, eliminating this factor as potential improvement.
In turn, evolving CDS for f can be reduced to evolving secret sharing for Af in a black box manner,
and almost no overhead (as done in [30]).

Finally, to make the CDS strong, it turns out that using a strong CDS variant for the edges
results in a strong CDS construction.3

Most examples of monotone functions where there is a gap between the best known the best
known evolving secret sharing and CDS schemes is substantial have exponential BP width, as in
those the saving of CDS vs secret sharing for edge predicates is most substantial. Indeed, this
is the case resulting from analyzing our main construction specified in Theorem 1.1. However,
our approach could provide improved evolving CDS (over evolving secret sharing) complexity for

1We could have also handled this issue at the level of evolving CDS construction for the GINDT, but it would
slightly complicate the implementation of the scheme, which we preferred to avoid.

2Note that monotonicity of f in the sense of Item 1 of Section 2.2.1 is implied by the definition of the LINBP and
GINDT models, as acceptance is defined by satisfying a path from root to leaf (which accounts for a finite prefix of
the variables). So, this restriction is required to allow the function to be computed by natural computational models,
not just for the evolving CDS setting to be applicable.

3Note the subtlety that even 1-predicates receive outer-scheme shares, to make sure that all servers in that
generation show up with some value. Otherwise, the overall protocol does not necessarily end up strong in the sense
we require.
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simpler functions as well (for which {ft}t∈N is in NC1).

Example 1.4. A finite weighted threshold (WT) function f : {0, 1}n → {0, 1} is specified by
vector w ∈ Nn and number θ ∈ N, with qualified sets specified by vectors < w,x >≥ θ. It is known
that for any WT function has a best known secret-sharing scheme with complexity nO(logn) [9],
while every such function has a (non monotone) formula of polynomial size (and thus a polynomial
CDS), for a certain worst case setting of w, θ. Now, consider a function f : {0, 1}n → {0, 1} of the
form

∨∞
j=1 fj(xIj ), where fj is a ‘worst case’ WT access structure on the set of variables Ij . The

consecutive intervals Ij are a partition of N, where |Ij | = 2j . To cast in our framework, this access
structure may be represented directly via a GIDT T (G(V,E), v0,1, µ) with 2 vertices in all layers
i > 0, Li = {vi,1, vi,2}. vi,2 is a leaf. For all i ≥ 0, there is an edge ei = (vi,1, vi+1,2) labeled by
µei = fi, and e′i = (vi,1, vi+1,1), µe′i

= 1. The message complexity of the evolving CDS resulting

from the GIDNT and the evolving secret-sharing scheme resulting from the GIDT are tO(1) and
tO(log t) respectively, similarly to the finite setting.

1.3.1.2 Comparison with [30]’s work.

The construction of [30] is a black box reduction of evolving CDS for an evolving predicate
f : {0, 1}∗ → {0, 1} to its partite access structure counterpart Af . As mentioned above, an
instantiation of Af with the [1] construction, can use an LIBP that essentially mirrors the best
LINBP for f . Thus, the only reason our is more efficient than [30] for some f ’s, is because the
(monotone) edge predicates in [1] are implemented via secret-sharing, rather than via CDS, which
can use non-monotone operations, and thus do it more efficiently. Also, observe that the resulting
CDS is not strong, as partite functions reveal the secret whenever pi,0, pi,1 are both present. In fact,
Theorem 1.2 is based on a simple reduction in the other direction - from evolving secret sharing for
evolving partite access structures Af to strong CDS for f . Plugging in our LINBP-based construc-
tion for stong CDS, may improve over [1]’s construction based on that LIBP because of potentially
improved edge predicates in the edge CDS protocols (note that the CDS protocols can never be
worse than secret sharing for Af , as CDS for f can always be impelemnted based on secret-sharing
for Af in the finite setting as well).

1.3.2 Lower bounds

In this section, we demonstrate that similarly to evolving secret-sharing schemes, (strong) evolving
CDS protocols can not be achieved with non-trivial message complexity of 2ct+o(t) for constant
c < 1. We prove the result in two steps. First, we craft a partite evolving secret-sharing scheme Af

for which we can prove a tight lower bound on share complexity. The structure of Af is inspired
by Mazor’s evolving secret-sharing scheme [28] - see Remark 1.7 for more discussion. Then, we use
Theorem 5.1 to derive a lower bound for strong evolving CDS.

Theorem 1.5 (Informal). There exists an evolving predicate f : {0, 1}∗ → {0, 1}, such that any
strong evolving CDS for it, and secret domain S = {0, 1} does not have a message complexity bound
of the form st(t) = O(2ct), where c < 1 is a constant.

As in most secret-sharing lower bounds for general schemes, we rely on an adaptation for evolv-
ing secret-sharing schemes of the seminal technique by Csirmaz [15, 12] for finite access structures.
This technique has led to the best known lower bounds for worst case access structures in the
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finite setting [15], and best known bounds for concrete access structures such as st-conn [1] and
k-hypergraphs [4], to name a few recent results. It also led to the best known (tight) lower bounds
for the worst evolving secret-sharing schemes [28], as well as evolving variant of st-conn and evolv-
ing k-hypergraphs [1]. At the center of the adapted technique is a notion of so called Independent
Sequences.

Definition 1.1 (Independent Sequences [12, 1]). Let n, ℓ ∈ N be integers, let B = {p1, . . . , pℓ},
A ⊆ {pℓ+1, . . . , pn} be a set of parties, and let A be an access structure whose set of parties is
{p1, . . . , pn}. An independent sequence of length ℓ with respect to A is a sequence A1, . . . , Aℓ ⊆ A
of subsets of A such that the following holds.

1. {p1, . . . , pi} ∪Ai ∈ A for all i ∈ {1, . . . , ℓ}.

2. {p1, . . . , pi−1} ∪Ai /∈ A for all i ∈ {1, . . . , ℓ}.

Theorem 1.6 ([12, 15]). Let Γ be an access structure whose set of parties is P = {p1, . . . , pn}.
Assume there exists ℓ ∈ [n] and A ⊆ {pℓ+1, . . . , pn}, for which there exists an independent sequence
of length ℓ with respect to A. Then for every secret-sharing scheme that realizing Γ, the total share
size of the parties in A is at least ℓ− 1.

In some more detail, [28] builds an AS A in a way that Theorem 1.6 can be applied to an
infinite sequence of finite (Ai, Bi) subsets of parties, so that the required lower bound holds. Here
the Bi’s are disjoint sets, which partition a ‘sparsely located’ infinite subset B ⊆ N. Ai consists of
the first i elements of N \B. By establishing an independent sequence of 2i minterms (a convenint
way to satisfy items 1,2 in Definition 1.1) of Ai ∪ Bi with respect to Ai, he concludes that, in
any evolving scheme, the shares that the parties in Ai receive are of total size at least 2i − 1.
The disjointness of the Bi’s ensures that the sets induced by the independent sequence (as in
item 1 of the definition) are indeed minterms of A, rather than just Ai ∪ Bi. This is achieved by
eliminating any constraints from other values of i. Now, as B is sparse, this value 2i − 1 is only
slightly smaller as a function of the last party index in Ai, leading to a bound of 2i−g(i) − 1 for an
arbitrarily small function g = ω(1), controlled by the ‘sparsity’ of the set B. This bound holds for
all values of i. In our choice of Af , we also apply Theorem 1.6 infinitely many times to sets (Ai, Bi),
making sure that the sets induced by the independent sequence in Ai ∪ Bi with respect to Ai are
minterms of the entire AS Af . One global constraint that is imposed on minterms of a partite
function, is that they need to include parties from consecutive pairs {pj,0, pj,1} in some interval
j ∈ [t], and exactly one from each pair. Thus, we use a different shape of (Ai, Bi) pairs. Each
(Ai = p1,1, . . . , plog ti , plog ti+1,0, plog ti+1,1, pti,0, pti,1, B

i = {pti+1,0, . . . , pti+2ti ,0}) are consecutively
located sets of parties. The independent sequence consists of all subsets of Ai consisting of all
the “unpaired” pj,1’s at the beginning (referred next as the “1’s prefix”), and some combination of
pj,b’s from all the available party pairs - 2ti−log ti in total. The ti’s is a fast-growing sequence (we
picked a double exponential growth). The reason is that we want to maintain the pj,1’s prefix part
in the Ai’s relatively small to |Ai|, as it decreases the length of the independent sequence for Ai.
The reason we keep the 1’s prefix at all is to make sure no subset of it was previously set to be a
minterm (because the Bi-part only includes pj,0’s). The bound on total share complexity for each
Ai is 2ti−log ti . We could make it arbitrarily close to 2ti by picking an even faster growth rate of
the ti’s. On the other hand, it makes the density ti’s for which the total share size of parties in [ti]
is large (2ti/2−o(ti)) decreases as the ti sequence grows faster. This is not a problem for us, as all
we need to prove Theorem 1.5 is an infinite such sequence, no matter how sparse.
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This bound immediately implies a lower bound of 2t−o(t) on total message complexity on any
evolving CDS for f corresponding to Af via Theorem 1.2. Finally, we point out that our lower
bound on evolving CDS complexity is tight, as a monotone variant of the simple tree-based generic
construction of [24] results in a 2t− 1 upper bound on the message complexity of evolving CDS for
any evolving predicate.

Remark 1.7. We do not rely on the so called Infinite independent sequences as defined in [1] that
involve a pair of party subsets A,B ⊆ P , which in turn generalizes the hard example by [28]. They
obtain both (nearly) tight lower bound and the bound applies to all sufficiently large prefixes [i]
of the party set. As discussed above, this structure of (Ai, Bi)’s does not apply to our case due to
the restricted form of minterms of partite functions.

2 Preliminaries

We denote vectors by bold small letters, and functions by plain small English letters. For a
vector u, we denote its i’th element by ui or by u[i]. . For an integer t ∈ N, [t] denotes the
set {1 ≤ i ≤ t|i ∈ N}. For a set A, its power set is denoted by 2A.

2.1 Conditional Disclosure of Secrets (CDS)

We present the definition of a k-server conditional disclosure of secrets protocols that defined by
[21].

Definition 2.1 (Conditional Disclosure of Secrets Protocol). Let f : X1×· · ·×Xk → {0, 1}
be a k-input function. A k-server CDS protocol P for f with domain of secrets s consists of:

• A finite domain of common random strings R, and k finite message domains M1, . . . ,Mk

• Deterministic message computation functions ENC1, . . . ,ENCk, where ENCi : Xi×S×R→
Mi for every i ∈ [k] (we also say that ENCi(xi, s, r) is the message sent by the i-th server to
the referee).

• A deterministic reconstruction function DEC : X1 × · · · ×Xk ×M1 × · · · ×Mk → {0, 1}.

We denote ENC(x, s, r) = (ENC1(x1, s, r), . . . ,ENCk(xk, s, r)). We say that a CDS protocol P is a
CDS protocol for a function f if the following two requirements hold:

Correctness. For any input (x1, . . . , xk) ∈ X1×· · ·×Xk for which f(x1, . . . , xk) = 1, every secret
s ∈ S, and every common random string r ∈ R,

DEC(x1, . . . , xk,ENC1(x1, s, r), . . . ,ENCk(xk, s, r)) = s.

Privacy. For any input x = (x1, . . . , xk) ∈ X1×· · ·×Xk for which f(x1, . . . , xk) = 0 and for every
pair of secrets s1, s2, the distributions ENC(x, s1, r) and ENC(x, s2, r) are identical, where
the distributions are over the choice of r from R at random with uniform distribution.

The secret size is defined as log |S|. The message size of a CDS protocol P is defined as the size
of largest message sent by the servers, i.e., mcP,max = max1≤i≤k{log |Mi|}, and the total message
size is defined as mcP =

∑n
i=1 log |Mi|.

We use the following, state of the art general CDS protocol.
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Theorem 2.1 ([26]). For any k-input functions f : [n]k → {0, 1} there is a k−server CDS protocol

with a one bit secret and message size nO(
√

k/ logn log(k logn)). In particular, for Xi = {0, 1} (n = 2),
the protocol has message complexity 2O(k0.5 log k).

We adopt the following notions of evolving CDS functions and protocols from [30].

Definition 2.2 (Evolving Predicates [30]). Let {Xt}t∈N denote a sequence of finite input do-
mains. An evolving predicate is a function f : ∪t∈NX1 × . . .×Xt → {0, 1}. For every t We denote
by ft : X1 × . . . ×Xt → {0, 1} the predicate f restricted to X1 × . . . ×Xt (that is, ft(x) = f(x)).
We require that f is monotone in the sense that for every t ∈ N and every (x1, . . . , xt+1) ∈ Xt+1,
it holds that

ft+1(x1, . . . , xt+1) ≥ ft(x1, . . . , xt).

Note that Definition 2.2 implies that if ft holds on the input (x1, . . . , xt) ∈ X1 × · · · ×Xt, then
fi also holds on (x1, . . . , xt, xt+1, . . . , xi) for every (xt+1, . . . , xi) ∈ Xt+1 × . . . ×Xi, and if ft does
not hold on the input (x1, . . . , xt) ∈ X1 × · · · × Xt, then fi also does not hold on (x1, . . . , xi) for
every i ∈ [t− 1].

Definition 2.3 (Evolving Conditional Disclosure of Secrets Protocols [30]). Let {Xt}t∈N
be a sequence of input domains, and let f : ∪t∈NX1× . . .×Xt → {0, 1} be an evolving predicate. An
evolving conditional disclosure of secrets protocol P with domain of secrets S, sequence of domains
of random strings {Rt}t∈N, and sequence of message domains {Mt}t∈N, consists of a sequence of
deterministic message computation algorithms {ENCt : Xt × S × R1 × · · · × Rt → Mt}t∈N, that
takes an input, a secret, and t random strings, and outputs a message for party Qt, and a sequence
of deterministic reconstruction algorithms DECt : X1 × · · · ×Xt ×M1 × · · · ×Mt → S, for every
t ∈ N, that takes t inputs and t messages, and outputs a secret. We say that P is an evolving
CDS protocol for the evolving predicate f if for every t ∈ N, the CDS protocol Pt, with the
message computation algorithms ENCi

t : Xi × S × R1 × · · · × Rt → Mi, for every i ∈ [t], where
ENCt

i(xi, s, r1, . . . , rt) := ENCi(xi, s, r1, . . . , ri), and the reconstruction algorithm DECt, is a CDS
protocol for the predicate ft, as in Definition 2.1.

The total (maximal) message size of an evolving CDS protocol P is defined for every t, as the
message complexity of the prefix [t] of servers (qt). We denote by emcP,max(t) = mcPt,max the
message size of server qt, and the total message size is defined as emcP(t) = mcPt . We say ems(t)
is a maximal (total) message complexity bound for an evolving predicate f , if for every evolving
CDS protocol P implementing f , and for every t, emcf (t) ≥ emcP(t) (emcf (t) ≥ mcPt,max). In
the following, we refer to maximal message complexity as just message complexity, inspired by the
default notion of share complexity in an evolving secret-sharing scheme.

2.2 Secret-Sharing Schemes

We start by defining (perfect) secret-sharing schemes for a finite set of parties.

Definition 2.4 (Access Structures). Let P = {p1, . . . , pn} be a set of parties. A collection Γ ⊆
2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure Γ ⊆ 2{p1,...,pn} is
a monotone collection of non-empty sets. Sets in Γ are called authorized, and sets not in Γ are called
unauthorized. We will represent an n-party access structure by a function f : {0, 1}n → {0, 1},
where an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈ {0, 1}n represents the set Aσ = {pi : i ∈ [n], σi =
1}, and f(σ) = 1 if and only if A ∈ A. We will also call f an access structure.
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A secret-sharing scheme defines a way to distribute shares to parties. Such a scheme is said to
realize an access structure Γ if the shares held by any authorized set of parties (i.e., a set in the
access structure) can be used to reconstruct the secret, and the shares held by any unauthorized
set of parties reveal nothing about the secret. The formal definition is given as follows.

Definition 2.5 (Secret-Sharing Schemes). A secret-sharing scheme Π over a set of parties P =
{p1, . . . , pn} with domain of secrets S and domain of random strings R is a mapping from S × R
to a set of n-tuples S1 × S2 × · · · × Sn (the set Sj is called the domain of shares of pj). A dealer
distributes a secret s ∈ S according to Π by first sampling a random string r ∈ R with uniform
distribution, computing a vector of shares Π(s; r) = (Sh1, . . . ,Shn), and privately communicating
each share Shj to party pj . For a set A ⊆ {p1, . . . , pn}, we denote ΠA(s; r) as the restriction of
Π(s; r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of parties. That is, for
any authorized set B = {pi1 , . . . , pi|B|} ∈ Γ, there exists a reconstruction function ReconB :
Si1 × · · ·×Si|B| → S such that for every secret s ∈ S and every random string r ∈ R, it holds
that ReconB (ΠB(s; r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from its shares. Formally,
for any set T /∈ Γ, every two secrets s1, s2 ∈ S, and every possible vector of shares ⟨Shj⟩pj∈T ,

Pr
[
ΠT (s1; r) = ⟨Shj⟩pj∈T

]
= Pr

[
ΠT (s2; r) = ⟨Shj⟩pj∈T

]
, where the probability is over the

choice of r from R with uniform distribution.

The size of the share of party pj is defined as log |Sj | and the size of the shares of Π is defined as
scΠ,max = max1≤j≤n log |Sj |. The total share size of Π is defined as scΠ =

∑n
j=1 log |Sj |.

In an evolving secret-sharing scheme, defined by [24], the number of parties is not known in
advanced and could potentially be infinite. Parties arrive one after the other; when a party pt
arrives the dealer gives a share only to him. The dealer cannot update the share later and does
not know how many parties will arrive after party pt. Thus, we measure the share size of pt as a
function of t. We defining an evolving access structure, which specifies the authorized sets. The
number of parties in an evolving access structure is infinite, however every authorized set is finite.

Definition 2.6 (Evolving Access Structures). Let P = {pi}i∈N be an infinite set of parties. A
collection of finite sets Γ ⊆ 2P is an evolving access structure if for every t ∈ N the collections
Γt ≜ Γ ∩ 2{p1,...,pt} is an access structure as defined in Definition 2.4. We will represent an access
structure by a function f : {0, 1}∗ → {0, 1}, where an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈
{0, 1}n represents the set Aσ = {pi : i ∈ [n], σi = 1},4 and f(σ) = 1 if and only if Aσ ∈ Γ. We will
also call f an evolving access structure.

Definition 2.7 (Evolving Secret-Sharing Schemes). Let S be a domain of secrets, where |S| ≥ 2,
and {Rt}t∈N , {St}t∈N be two sequences of finite sets. An evolving secret-sharing scheme with
domain of secrets S is a sequence of mappings Π =

{
Πt

}
t∈N, where for every t ∈ N, Πt is a

mapping Πt : S ×R1 × · · · ×Rt → St (this mapping returns the share Sht of pt).

4In particular, the same set has infinitely many representations by inputs of various lengths, using sufficiently
many trailing zeros.
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An evolving secret-sharing scheme Π =
{
Πt

}
t∈N realizes an evolving access structure Γ if for

every t ∈ N the secret-sharing scheme Πt (s; (r1, . . . , rt)) ≜
〈
Π1 (s; r1) , . . . ,Π

t (s; r1, . . . , rt)
〉
(i.e.,

the shares of the first t parties) is a secret-sharing scheme realizing Γt according to Definition 2.5.

2.2.1 On monotonicity

In the following section, we compare the monotonicity of an evolving access structure of an evolving
secret-sharing scheme with the monotonicity of evolving predicate of evolving CDS protocol. We
use vectors (consisting of 0s and 1s) to represent inputs.

In evolving predicate, the monotonicity requirement is:

1. For every t ∈ N and every (x1, . . . , xt+1) ∈ Xt+1, it holds that,

ft+1(x1, . . . , xt+1) ≥ ft(x1, . . . , xt)

(i.e., if we extend a vector, the function’s value on it cannot decrease).

In an evolving access structure, we require the monotonicity condition of evolving predicate but
add additional requirements:

1. For every t ∈ N, every i ∈ N and every (x1, . . . , xt) ∈ Xt, it holds that,

ft(x1, . . . , xi−1, 1, xi+1, . . . , xt) ≥ ft(x1, . . . , xi−1, xi, xi+1, . . . , xt)

(i.e., if we change a 0 to a 1 in a vector, the function’s value on that vector cannot decrease).

2. For every t ∈ N and every (x1, . . . , xt+1) ∈ Xt+1, it holds that,

ft+1(x1, . . . , xt, 0) = ft(x1, . . . , xt)

(i.e., extending a vector by any number of zeros at the end does not change the function’s
value on the vector ).

3. From 2, it follows that every input has an infinite representation of vectors.

In conclusion, in an evolving secret-sharing scheme, monotonicity is ”stronger,” and it is more
convenient to view inputs as a set of parties rather than as vectors, due to the multiple represen-
tations of vectors. In an evolving CDS protocol, monotonicity is ”weaker,” and we think of inputs
as vectors where their length is important.

In the paper, when we want to align the properties of different objects with an evolving CDS
protocol, we refer to them as ”non-monotone” because they do not satisfy the ”strong” monotonicity
of an evolving secret-sharing scheme.

2.3 Infinite Decision Trees

Now, we present the evolving secret-sharing scheme for infinite decision trees (IDT), as formalized
in [1], with the modification that the IDT does not include edges labeled with 1 (as implied in [24,
25]).
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Definition 2.8 (Infinite decision trees – IDT [1]). An infinite decision tree T = (G =
(V,E), u0 = 0, µ) is a special case of GIDT, where each edge (u, v) is labeled by a variable xv,
where for simplicity we assume that V = N ∪ {0} (i.e., a vertex is a non-negative integer). As
G is a tree, each variable labels at most one edge. Furthermore, we assume that the vertices are
ordered by the layers, i.e., L0 = {0}, L1 = {1, . . . , w(1)}, and so on (where w(i) is the width of
layer Li). Thus, the variables on edges entering layer Li are from the set {xj : j ∈ Li}. An IDT
is a computational model which defines monotone evolving AS’s (equivalently, monotone functions
f : {0, 1}∗ → {0, 1}) in a natural way. That is, the function induced by an IDT T , f(x1, . . . , xt) = 1,
if there exists a path from the root to a leaf where all edges are satisfied by x1, . . . , xt.

Construction 2.2 (An evolving secret-sharing scheme ΠIDT for an IDT T = (G, u0, µ) [1]).
Input: s ∈ {0, 1}.
The sharing algorithm:

• For i = 1 to ∞:

– For every vertex u ∈ Li−1 and v ∈ Li, when party pv arrives choose a bit rv as follows:

∗ If v is a leaf, then let u0, v1, . . . , vt−1, v be the path from the root u0 to v in G and
assign rv ← s⊕

⊕t−1
j=1 rvj .

∗ If v is not a leaf and µ(u,v) = xv, then rv is a uniformly distributed random bit.

– The share of pv is Shv = rv.

Claim 2.3 ([1]). The evolving secret-sharing scheme ΠIDT realizes the infinite decision tree T =
(G, u0, µ), where the share of every pt is a bit.

3 Additional notions of CDS

We will need a notion of a strong CDS which handles cases where there are servers that fail to
arrive. This case is clear cut in the standard CDS setting - we require all servers to arrive and
contribute an input. Thus, if at least one of them does not, the secret should not be revealed -
see Construction 3.2 below. However, we obviously can not require that all infinitely many servers
arrive in the evolving CDS. The set of servers contributing inputs should be some (finite) prefix
[n] of N, as implied by the definition of the range of evolving predicates. Thus, it makes sense
to require that the secret is learned only if f(x[1, t]) = 1 for some prefix of the set of available
inputs xA. As we did not find an explicit definition of this notion, we define both the standard and
evolving variants, dubbing it strong CDS.

Definition 3.1 (Strong Conditional Disclosure of Secrets Protocol). Let f : X1×· · ·×Xk →
{0, 1} be a function. A k-server strong CDS protocol P for f with domain of secrets s, randomness
domain R and message domains M1, . . . ,Mk is a CDS protocol for it as in Definition 2.1, with the
following additional privacy requirement. Let us denote,

ENC−i(x, s, r) = (ENC1(x1, s, r), . . . ,ENCi−1(xi−1, s, r),ENCi+1(xi+1, s, r), . . .ENCk(xk, s, r)).

For any input x = (x1, . . . , xk) ∈ X1 × · · · × Xk, for every i ∈ [k] and for every pair of secrets
s1, s2, the distributions ENC[k]\i(x, s1, r) and ENC[k]\i(x, s2, r) are identical, where r is sampled
uniformly from R.
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Strong standard CDS can be easily obtained from standard CDS by a simple transformation,
with almost no overhead. Essentially, it boils down to sharing a masked secret via the standard
scheme, and appending an additive share of the mask to every CDS share. We include it here for
completeness.

Construction 3.1 (Strong CDS Protocol Π′(folklore)). 1. Let Π = (ENC,DEC) denote a k-
server CDS protocol for a function f : X1× . . .×Xk → {0, 1} and secret domain S. A strong
CDS protocol Π′ over S for f is as follows.

2. ENC′
i(xi, s; r

′ = (r, b)): Output (ENCi(xi, s + b( mod ; |S|), r), shi), where shi is the i’th
share in an additive sharing of b.

3. DEC′(x, (v1,1, v1,2), . . . , (vk,1, vk,2): 1. Recover s′ = s + b via DEC(x, v1,1, . . . , vk,1), then
recover b =

∑
j∈[v] vk,2( mod ; |S|), and output s′ − b( mod ; |S|).

For the evolving case we do not have a general black box transformation, but we do devise a
simple transformation from the evolving CDS we construct into a strong evolving CDS (in the text,
for simplicity we directly construct a strong evolving CDS). It is an interesting open question to
devise a general trnasformation from evolving CDS to strong evolving CDS, with a small overhead
in share complexity.

Definition 3.2 (Strong Evolving Conditional Disclosure of Secrets Protocol). Let f be an
evolving predicate specified by ft : X1 × · · · ×Xt → {0, 1}t∈N. An evolving conditional disclosure
of secrets protocol P with domain of secrets S, sequence of domains of random strings {Rt}t∈N,
and sequence of message domains {Mt}t∈N is said to be a strong evolving CDS implementing f
if. (1) It is an evolving CDS implementing f with parameters as above. (2) For every x1, . . . , xt,
for every i ≤ t and for every pair of secrets s1, s2 ∈ S, if F (x1, . . . , xi−1) = 0 the distributions
ENC−i(xt, s1, r = (r1, . . . , rt)) and ENC−i(xt, s2, r = (r1, . . . , rt)) are identical, where r is uniformly
sampled from R1 × . . .×Rt.

5

Let us point out a certain subtlety of the definition of strong evolving CDS.

Remark 3.2. The standard definition of evolving CDS already involves a certain degree of ‘strength’
in the sense that for an input x = (x1, . . . , xt), we receive CDS messages for each of its t prefixes, us-
ing the corresponding Pt CDS protocols with correlated randomness. We would like no information
to leak about the secret in case f evaluates to 0 on all of these prefixes. The privacy guarantees we
require, however, are just for each Pt, for its corresponding ft predicates. It is not clear in advance
why the privacy of each Pi for its own input domain implies that we do not learn anything from
Pj ’s message for (x1 . . . , xj) combined with messages for all inputs (x1, . . . , xj , . . . , xi) for j < i < t
that use correlated randomness for their own inputs. It does work, since f(x1, . . . , xt) = 0, and f is
monotone, so s is not implied by the messages in Pi, a subset of which corresponds to the messages
in Pj , thus no leakage occurs. Now, when the message corresponding to index i ∈ [t] is missing, we
would like that the secret is learned iff. f(x1, . . . , xi−1) = 1 (that is, f is 1 on the last contiguous
prefix of x). But, it could be that f(x1, . . . , xi−1, v, xi+1, . . . , xt) = 1 for all v ∈ Xt. Then, the
above argument does no longer hold, and we need to make an explicit requirement of “strength” for
this case. We would automatically get strength for P if all protocols Pi induced by P were strong
(finite) CDS protocols for their corresponding fi’s. Unlike the finite case, it is not clear how to

5Viewing (ENC1, . . . ,ENCt) as a t-party standard CDS with randomness domain R = R1 × · · · ×Rt.
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achieve this, since applying the naive transformation from Construction 3.1 would result in infinite
message sizes.

4 Strong Evolving CDS Protocols for Infinite Non-Monotone Branch-
ing Programs

In [1], an evolving secret-sharing scheme based on infinite non-deterministic branching programs
(IBP) was constructed. In a nutshell, the construction relied on converting the IBP into a so called
(monotone) generalized infinite tree (GIDT), based on which the evolving secret-sharing scheme
was constructed (formalizing the technique of [24, 25]). In short, the construction proceeds on two
levels. It first performs a variant of an evolving secret-sharing scheme for undirected connectivity
for the GIDT, which assigns ‘virtual’ shares to every edge, and then shares each of the virtual shares
via a finite scheme for the predicate of each share (thus the ‘generalized’, rather than predicates
depending on a single variable as in IDT), among the parties on which that edge depends.

In this section, we define infinite non-monotone non-deterministic branching programs, and use
an approach similar to the above to construct evolving CDS protocols. It turns out that replacing
every edge’s share by the appropriate strong CDS shares results in a strong evolving CDS for f . We
need the strong variant of evolving CDS for our subsequent improved CDS-based evolving secret-
sharing schemes construction. As it does not cost almost any overhead in share size of conceptual
complexity, we prefer to directly construct a strong variant, without a regular one (which could be
obtained by using standard CDS for the edges’ predicates).

An infinite non-monotone non-deterministic branching program (INBP) is a generalization of
infinite monotone non-deterministic branching programs that defined in [1], except that the edge
can label non-monotone variable ¬xi.

Definition 4.1 (Infinite Non-Monotone Non-Deterministic Branching Programs–INBP).
An infinite non-monotone non-deterministic branching program is a triple B = (G = (V,E), u0, µ),
where V is a countable set of vertices, G is an infinite directed acyclic graph, u0 is a source vertex,
and µ : E → {xi : i ∈ N} ∪ {¬xi : i ∈ N} ∪ {1} is a labeling of the edges by variables or by 1 (we
will sometimes use the notation µe instead of µ(e)). We denote by Uleaf the set of vertices in V
with out-degree 0, i.e., the leaves.

For a path P in the branching program and a finite input (an assignment for the variables on
the path) σ ∈ {0, 1}t for some t ∈ N, we say that σ satisfies P and denote satP (σ) = 1 if σ satisfies
all variables on the path, i.e., for each edge e on the path either µe = 1 or µe = xi for some 1 ≤ i ≤ t
such that σi = 1 or µe = ¬xi for some 1 ≤ i ≤ t such that σi = 0. And in particular, no µe on
P depends on a variable xi for i > t (otherwise we say satP (σ) = 0).6 The branching program
accepts an input σ if there exists a directed path P starting in the source vertex u0 and leading to
some leaf u ∈ Uleaf such that satP (σ) = 1. The function f : {0, 1}∗ → {0, 1} computed by B is the
function f such that f(σ) = 1 if and only if B accepts σ.

A LINBP is a private case of INBP, defined over layered (infinite, directed, acyclic) graphs (i.e.,
with edges going only from any one layer to its consecutive layer) with the additional requirement
that the label of any edge from layer i− 1 to layer i is either xi or ¬xi or 1.

6Note that for IBP there was no such issue, as it handled only monotone functions in the sense that complementing
a vector x with infinitely many 0’s could not flip the value of f to 1, so we could always assume this. In the CDS
setting there is no such asymmetry, so we must handle the case of inputs that are actually missing.
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Definition 4.2 (Layered INBP–LINBP). An infinite non-monotone non-deterministic branch-
ing program is layered if the vertices of G can be partitioned into finite sets (Li)i∈N∪{0}, such that
L0 = {u0}, there are edges only from layer i − 1 to layer i for some i ∈ N, and all edges entering
layer i are labeled either by xi or ¬xi or 1. For a vertex u ∈ V , we denote L(u) as the layer of u,
i.e., the index i such that u ∈ Li. The width of the branching program at layer i, denoted w(i),
is the number of vertices in layer Li. For a LINBP B = (G, u0, µ) and vertices u, v, we define the
predicate reachu,v as reachu,v = 0 if there is no path in G from u to v, and otherwise

reachu,v(xL(u)+1, . . . , xL(v)) =
∨

P is a path in G
from u to v

satP (xL(u)+1, . . . , xL(v)),

i.e., an input satisfies reachu,v if and only if it satisfies at least one path from u to v. We stress
that, unlike Definition 4.1, here we consider an assignment to the predicate satP that only contains
the variables that can appear on the path, i.e., we consider assignments σL(u)+1, . . . , σL(v) to the
variables xL(u)+1, . . . , xL(v).

We modify [1]’s definition to define a generalized infinite decision tree that also handles non-
monotone predicates. We define a generalized infinite non-monotone decision tree, is an infinite
tree graph such that each edge, instead of being labeled by a variable xi, is labeled by a predicate
of some variables xi, . . . , xj . The variables are divided into generations {Gi}i∈N, and an edge of
distance i from the root be labeled with a predicate on the variables in generation Gi.

Definition 4.3 (Generalized Infinite Non-Monotone Decision Trees – GINDT). A gen-
eralized infinite non-monotone decision tree is a quadruple T = (G = (V,E), u0, µ, h), where

• V is a countable set of vertices,

• G = (V,E) is an infinite directed tree with root vertex u0 such that the out-degree of each
vertex is finite. We denote the ith level Li as {u ∈ V : u is at distance i from u0}, and refer
to Li as the ith layer.

• h : N → N is an increasing function that partitions the variables into generations, where for
i ∈ N, generation i is the variable set Gi ≜ {xh(i−1)+1, . . . , xh(i)} (where we define h(0) = 0),

• µ is a labeling of the edges by predicates, where for every edge e = (u, v) where u ∈ Li−1

to level v ∈ Li, the labeling µe is any predicate on the variables of generation i, of the
form φe(xh(i−1)+1, . . . , xh(i)) : {0, 1}h(i)−h(i−1) → {0, 1}. If v is a leaf, φe(xh(i−1)+1, . . . , xj) :

{0, 1}j−h(i−1) → {0, 1}may (syntactically) depend on a prefix (xh(i−1)+1, . . . , xj) of xh(i−1)+1, . . . , xh(i).

For a path P in the tree ending at a vertex in level i, we say that P is satisfied by an input
σ ∈ {0, 1}t, denoted by satP (σ) = 1, if h(i) ≤ t (that is, the variables in all predicates labeling
edges in P are from x1, . . . , xt) and for each edge e on the path the predicate µe is satisfied by σ.
The GINDT T accepts an input σ if there is at least one directed path P starting in the source
vertex u0 and leading to a leaf such that satP (σ) = 1. The function f : {0, 1}∗ → {0, 1} computed
by T is the function f such that f(σ) = 1 if and only if T accepts σ.

We next show how to realize an evolving predicate f of a GINDT using the secret-sharing
scheme ΠIDT realizing a related infinite decision tree (where edges are labeled by variables). In a
GINDT each edge e is labeled by a predicate µ; in the following protocol PGINDT we consider this
predicate as describing an evolving predicate f over the servers of the generation.
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Construction 4.1 (An Evolving CDS protocol PGINDT for a GINDT T = (G = (V,E), u0, µ, h)).
Input: s ∈ {0, 1}.

• Construct from the GINDT T = (G = (V,E), u0, µ, h) an IDT T ′ = (G = (V,E), u0, µ
′)

whose variables are {yi : i ∈ N} ∪ {¬yi : i ∈ N}, where for every edge (u, v) ∈ E we have
µ′(u, v) = yv.

• Execute the scheme ΠIDT for T ′ and use its shares as follows:

(∗ Recall that in ΠIDT the parties arrive according to layers, where inside a layer the order is
some arbitrary fixed order ∗)

• For i = 1 to ∞ do:

– When server qh(i−1)+1 arrives do:

∗ For every (u, v) ∈ E, where u ∈ Li−1, v ∈ Li, generate the share rv of yv in the
scheme ΠIDT and use rv as a secret of a strong CDS protocol that realizing the
function defined by µ(u,v) among the servers qh(i−1)+1, . . . , qh(i).

∗ Let MSt, for h(i− 1) + 1 ≤ t ≤ h(i), be the concatenation of the messages of qt in
all these protocols.

∗ Give server qh(i−1)+1 the message MSh(i−1)+1.

– For t = h(i− 1) + 2 to h(i) do:

∗ When server qt arrives give it the massage MSt.

Claim 4.2. PGINDT is a strong evolving CDS realizing the GINDT T = (G, u0, µ, h)’s function.
For a server qt in generation i (that is, h(i− 1) + 1 ≤ t ≤ h(i)), the size of the message of qt is the
sum of the sizes of the messages of qt in the strong CDS protocols for µ(u,v) for every (u, v) ∈ E
such that u ∈ Li−1, v ∈ Li (there are at most w(i) such protocols, where w(i) is the number of
vertices in tree layer i).

Proof. First we prove the correctness of the protocol. Let σt = (σ1, . . . , σt) be an input of the first
t servers accepted by T such that f(σt) = 1. Thus, there exists an accepting path P from u0 to
a leaf such that satP (σ) = 1. For every edge e = (u, v) ∈ P , the input σ satisfies µe. Thus, the t
servers can reconstruct the ΠIDT share rv by correctness of the strong CDS protocol realizing µe.
By correctness of Construction 2.2, the t servers can reconstruct s.

Next we prove the security of the scheme. Let σt′(σ1, . . . , σt′ , σt′+2, . . . , σt) be an input of the
first t′ servers with f(σt′) = 0, followed by a possibly empty input σ+ = (σt′+2, . . . , σt) held by
servers t′+2, . . . , t respectively. We prove that the PGINDT messages corresponding to these inputs
reveal nothing about the secret. Assume for contradiction that they do, so by privacy of ΠIDT,
there exists a path P = (u0, v1, . . . , vk) in T ′, where vk is a leaf for which the servers learn all ΠIDT

shares of edges on P . Assume xt′+1 belongs to generation j of T . There are two cases. In one case,
(vk−1, vk) is labeled by variables x1, . . . , xt′′ for t′′ ≤ t′. Thus all edges on subpath (u0, . . . , vt′′)
depend on the prefix σt′′ of σt′ . In particular, f(σt′′) = 0 since f(σt′) = 0 and f is monotone (in
the sense of Item 1 of Section 2.2.1). Thus, satP (σ

t′′) = 0, so there exists some e ∈ P for which
µe(σ

t′′) = 0. Thus, by privacy of the CDS used for µe (without using the strong property, even),
the share for ye in ΠIDT is not learned, contradicting the fact that all ΠIDT shares along P are
learned. Otherwise, (vk−1, vk) is labeled by variables x1, . . . , xt′′ for t

′′ ≥ t′ + 1. So, for the edge e
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on the path P for which µe depends on xt′+1, the ΠIDT share for ye is not learned by privacy of
strong CDS utilized for this edge.7 This again is a contradiction to the fact that all ΠIDT shares
along P are learned.

For the message size, server qt obtains a message in the strong CDS protocol realizing µ(u,v) for
each edge (u, v) where u ∈ Li−1 and v ∈ Li.

We next describe a transformation from a LINBP B to a GINDT T computing the same
function.

We start with an informal description of the transformation. To transform an LINBP B to an
IDT T (where each edge is labeled by a variable), we duplicate vertices and have in T a vertex
u0,j1,...,ji−1,ji for every path u0, uj1 , . . . , uji−1 , uji in B starting from the root, and add an edge
(u0,j1,...,ji−1 , u0,j1,...,ji−1,ji) whose label is the label of the edge (uji−1 , uji). The problem with this
construction is that the resulting IDT is to big. To construct more efficient GINDT (which will
result in more efficient evolving CDS protocls), we partition the variables into generations (described
by a function h : N→ N), the vertices in layer i of T are u0,j1,j2,...,ji for vertices u0, uj1 , uj2 , . . . , uji in
the layers 0, h(1), h(2), . . . , h(i) in B respectively. That is, the number of vertices in the resulting
GINDT is much smaller. Now an edge (u0,j1,...,ji−1 , u0,j1,...,ji−1,ji) represents all paths in B from
uji−1 to uji , i.e., the predicate of this edge is satisfied by an input σ if and only if σ satisfies some
path in B from uji−1 to uji .

As explained in Section 2.2.1, in an evolving secret-sharing scheme like the evolving CDS pro-
tocol there is monotonicity in the sense that a qualified set always remains qualified no matter
what is added to it later. But unlike the evolving secret-sharing scheme, in the evolving CDS
protocol adding parties with label 0 can turn an unqualified set into a qualified one. Therefore,
it is not possible to use the technique done in [1] when only one edge of a secret-sharing scheme
was included all the leaves in the intermediate levels between h(i) and h(i+1) in LIBP. Now when
we use predicate of CDS protocol, a separate edge must be created for each intermediate level in
LINBP so that the length of the amount of parties is equal.The formal construction is described
below.

Construction 4.3 (A Transformation from a LINBP to a GINDT).
Input: A LIBP B = (G = (V,E), u0, µ) and an increasing function h : N → N. (∗ We use
the following notation for the vertices of the LIBP B – the vertices in the i-layer of B are Li =
{ui1, . . . , uiw(i)} for i ∈ N ∪ {0}. ∗)
Output: A GIDT T = (G′ = (V ′, E′), u′0, µ

′, h).
The transformation:

• The vertices in layer i of the tree G′ are L′
0 = {u0} and for i ∈ N define 8

L′
i =

{
u0,j1,...,ji : 1 ≤ j1 ≤ w(h(1)), u1j1 /∈ Uleaf , . . . , 1 ≤ ji ≤ w(h(i)), uiji /∈ Uleaf

}⋃
{v0,j1,...,ji−1,j : 1 ≤ j1 ≤ w(h(1)), u1j1 /∈ Uleaf , . . . , 1 ≤ ji−1 ≤ w(h(i− 1)), ui−1

ji−1
/∈ Uleaf ,

h(i− 1) + 1 ≤ j ≤ h(i)}.

The vertices of G′ are V ′ = ∪i∈N∪{0}L′
i. The tree leaves are U ′

leaf = ∪i∈N{v0,j1,...,ji−1,j : 1 ≤
j1 ≤ w(h(1)), u1j1 /∈ Uleaf , . . . , 1 ≤ ji−1 ≤ w(h(i− 1)), ui−1

ji−1
/∈ Uleaf , h(i− 1) + 1 ≤ j ≤ h(i)}.

7Note that by definition of strong CDS, this holds even if µe = 1.
8Note that the last index in v0,...,ji−1,j corresponds to a layer index, rather than the index of a vertex inside a

layer, as for the former indices.
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• The edges are

E′ =
{
(u0,j1,...,ji−1 , u0,j1,...,ji−1,ji) : i ∈ N, u0,j1,...,ji−1,ji ∈ V ′}⋃{

(u0,j1,...,ji−1 , v0,j1,...,ji−1,j) : i ∈ N, u0,j1,...,ji−1 , v0,j1,...,ji−1,j ∈ V ′} .

• For every e =
(
u0,j1,...,ji−1 , u0,j1,...,ji−1,ji

)
∈ E′, let u = u

h(i−1)
ji−1

, v = u
h(i)
ji

and define

µ′
e(xh(i−1)+1, . . . , xh(i)) = reachu,v(xh(i−1)+1, . . . , xh(i)).

• For every e =
(
u0,j1,...,ji−1 , v0,j1,...,ji−1,j

)
∈ E′, let u = u

h(i−1)
ji−1

and define

µ′
e(xh(i−1)+1, . . . , xh(i)) =

∨
v is a leaf in layer j in B

reachu,v(xh(i−1)+1, . . . , xj).

Claim 4.4. Construction 4.3 outputs a GINDT T which computes the same function as B. Further-

more, the number of vertices in layer i of T is |L′
i| =

(∏
1≤j<i(w(h(j))

)
· (w(h(i))+h(i)−h(i−1)),

where ct is the generation size of Li.

Proof. We first prove the equivalence of B and T , that is, we prove that B accepts an input
σ = σ1, . . . , σt if and only if T accepts σ. Let ℓ be the generation of t, that is h(ℓ−1)+1 ≤ t ≤ h(ℓ).

First assume that B accepts σ. W.l.o.g., assume that no proper prefix of σ is accepted by
B (otherwise apply the following arguments to such minimal prefix). Then, there exists a path
P = (u00, u

1
j1
, . . . , utjt) in G where utjt ∈ Uleaf and satP (σ) = 1. Consider the path

P ′ = (u0, u0,jh(1) , . . . , u0,jh(1),jh(2),...,jh(ℓ−1)
, v0,jh(1),jh(2),...,jh(ℓ−1),t)

inG′. We partition the path P inG to sub-paths – for every 1 ≤ i ≤ ℓ−1, let P i = (u
h(i−1)
jh(i−1)

, . . . , u
h(i)
jh(i)

)

and let P ℓ = (u
h(ℓ−1)
jh(ℓ−1)

, . . . , utjt). Since satP (σ) = 1, we deduce that satP i(σh(i−1)+1, . . . , σh(i)) = 1

for 1 ≤ i ≤ ℓ− 1 and satP ℓ(σh(i−1)+1, . . . , σt) = 1. By the definition of reachu,v, this implies that

reach
u
h(i−1)
jh(i−1)

,u
h(i)
jh(i)

(σh(i−1)+1, . . . , σh(i)) = 1

for every 1 ≤ i ≤ ℓ − 1 and reach
u
h(ℓ−1)
jh(ℓ−1)

,ut
jt

(σh(i−1)+1, . . . , σt) = 1, where utjt is a leaf in B. Thus,

in T we have

satP ′(σ) =

 ∨
v is a leaf in layer t in B

reach
u
h(ℓ−1)
jh(ℓ−1)

,v
(σh(ℓ−1)+1, . . . , σt)


∧

 ∧
1≤i≤ℓ−1

reach
u
h(i−1)
jh(i−1)

,u
h(i)
jh(i)

(σh(i−1)+1, . . . , σh(i))

 = 1.

In the other direction, assume that T accepts σ. W.l.o.g., assume that no proper prefix of σ
is accepted by T . Then in T there exists a path P ′ = (u0, u0,j1 , . . . , u0,j1,...,jℓ−1

, v0,j1,...,jℓ−1,t) where
v0,j1,...,jℓ−1,t is a leaf and satP ′(σ) = 1. This implies that for every 1 ≤ i ≤ ℓ− 1

µ′
(u0,j1,...,ji−1

,u0,j1,...,ji−1,ji
)(σh(i−1)+1, . . . , σh(i))

= reachui−1
ji−1

,ui
ji

(σh(i−1)+1, . . . , σh(i)) = 1.
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Thus, for each 1 ≤ i ≤ ℓ−1, there exists some path P i from ui−1
ji

to uiji in G such that satP i(σ) = 1.
Furthermore, since µ′

(u0,j1,...,jℓ−1
,v0,j1,...,jℓ−1,t

)(σh(ℓ−1)+1, . . . , σt) = 1 there exists a leaf v in layer Lt

in B such that reachuℓ−1
jℓ−1

,v(σh(ℓ−1)+1, . . . , σt) = 1 and, therefore, in G there exists a path P ℓ from

uℓ−1
jℓ−1

to a leaf v such satP ℓ(σ) = 1. By concatenating the paths P 1, . . . , P ℓ, we obtain a path P in

G from u0 to a leaf for which satP (σ) = 1; thus, B accepts σ.
To bound |L′

i|, recall that a vertex in layer i of T is either u0,j1,...,ji or leafs of the form

v0,j1,...,ji−1,j , where h(i − 1) + 1 ≤ j ≤ h(i). Thus |L′
i| ≤

(∏
1≤j≤i−1w(h(i))

) (
w(h(i)) + h(i) −

h(i− 1))
)
.

Next, we construct a strong evolving CDS protocol for LINBPs.

Theorem 4.5. Let B = (G = (V,E), u0, µ) be an LINBP implementing an evolving predicate
f : {0, 1}∗ → {0, 1} and h : N → N be an increasing function, where h(0) = 0. Then, there exists
a strong evolving CDS protocol realizing f in which the message of server qt in generation i, i.e.,

h(i− 1) + 1 ≤ t ≤ h(i), consists of the messages of qt in the
(∏

1≤j≤i−1w(h(j))
)
(w(h(i)) + h(i)−

h(i− 1)) strong CDS protocols realizing the predicates of the edges between layer i− 1 and layer i
in the GIDT constructed in Construction 4.3.

Proof. We use Construction 4.3 to transform B into an equivalent GINDT T with the specified h
(The choice of h depends on each LINBP itself. It is a trade-off between a larger number of levels
in GINDT and a larger number of servers in each generation.). Next, we apply Construction 4.1 to
T to obtain a strong evolving CDS protocol realizing T . Finally, by Claim 4.4 and Claim 4.2, we
derive a strong evolving CDS protocol realizing B with the messages as stated in the theorem.

4.1 Application of Evolving Strong CDS Protocols for LINBP with Bounded
Width

Next we demonstrate that an LINBP-based construction yields non trivial upper bounds on (strong)
evolving CDS for evolving predicates represented by LINBP’s of width O(20.2499t). To compare,
the similar LIBP-based construction for evolving secret sharing yields non-trivial bounds only for
LIBP’s of width O(20.15t).

Theorem 4.6. Let 0 < ϵ < 0.25 denote a constant, and B a LINBP of width w(t) ≤ 2ϵt imple-
menting an evolving predicate f : {0, 1}∗ → {0, 1}. Then f has a strong evolving CDS with message
complexity O(2dt) for a constant d < 1.

Proof. We apply Theorem 4.5 to B and h(i) = ci. Fix a server qt and let i be the generation of qt,
that is, ci−1 + 1 ≤ t ≤ ci, in particular

ci ≤ ct. (1)

By Theorem 4.5, the number of strong CDS messages for the relevant predicates (and different
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CDS instances) that pt holds is ∏
1≤j≤i−1

w(h(j))

 (w(h(i)) + h(i)− h(i− 1)) ≤ (2)

 ∏
1≤j≤i−1

w(h(j))

 (w(h(i)) + ct) (3)

= O

 ∏
1≤j≤i

2ϵc
j

 = O
(
2ϵ

∑
1≤j≤i c

j
)

≤ O
(
2ϵc

i+1/(c−1)
)
≤ O

(
2ϵc

2t/(c−1)
)
, (4)

where the first and the last inequality is from (1). To realize the predicates of the edges, we use the
best known k-party CDS protocols Theorem 2.1 (applied with k ≤ h(i) − h(i − 1) ≤ ct, modified
to be strong via Construction 3.1, which does not impose an overhead which impacts our bound.
Thus, the size of the message of qt is

2ϵc
2t/(c−1) · 2Õ(

√
tc) = 2ϵc

2t/(c−1)+o(t) (5)

We choose the optimum c = 2 and get by Equation (5) that for every LINBP of width w(t) = 2ϵt

for ϵ < 0.25 the message size of pt is less than O(2dt) for a constant d < 1.

5 Improved Evolving Secret-Sharing Schemes for a Class of Evolv-
ing Access Structures via Strong Evolving CDS Protocols

In this section, we present an optimized evolving secret-sharing schemes construction for a specific
class of evolving access structures, so called partite access structures, based on (strong) evolving
CDS protocols. The scheme’s efficiency is beyond what [1]’s IBP (infinite branching program)-based
protocol allows for.

The class of functions in question is obtained from evolving predicates, similarly to partite
access structures derived from (not necessarily monotone) functions in a way that a CDS protocol
immediately translates into a secret sharing scheme for the function essentially with no overhead
[2].

Definition 5.1. [Evolving Partite Access Structure] Let f : {0, 1}∗ → {0, 1} denote an evolv-
ing predicate as in Definition 2.2 for secret domain S. We define an evolving AS Af corresponding
to it as follows. Af : {0, 1}∗ → {0, 1} is defined over the set of parties p1,0, p1,1, p2,0, p2,1, . . . with the
minterm set M = {pi,0, pi,1|i ∈ N+}∪{p1,x1 , . . . , pt,xt |t ≥ 1, f(x1, . . . , xt) = 1,∀i < t, f(x1, . . . , xi) =
0}. We refer to such AS’s as partite evolving AS’s, and to Af as the partite evolving AS corre-
sponding to f .

On a high level, our secret sharing for Af is a black box reduction to an evolving strong CDS for
f . We note that it beats [1], when the edge predicates in their main constructions are instantiated
by generic schemes. That is, either the best known worst case [3] or the best known directed st-conn
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based secret sharing for a graph derived from the LIBP. 9 If we instantiate those predicates with
the best known CDS-based secret sharing schemes (as the edge predicates are in fact finite partite
functions), the result has similar complexity to what we get in the following construction, when
instantiated with the strong CDS in Section 4.

Theorem 5.1. Let f : {0, 1}∗ → {0, 1}∗ denote an evolving predicate, and let Af denote the
partite evolving AS, and P denote a strong evolving CDS protocol for f for secret domain S and
message complexity cds(t). Then Af has a secret sharing scheme with share complexity sc(t) =
cds(⌈t/2⌉) + |log(S)|.

We prove the theorem by a simple direct construction.

Construction 5.2 ( Πf,CDS - an evolving secret-sharing scheme for Af ).

• Input: s ∈ S.

• Let PCDS = (ENCCDS ,DECCDS) denote a strong evolving CDS protocol for f , with secret
domain S, and randomness domain sequence {Rt}t∈N.

• Share((t, b), s, r1, . . . , rt−1) :

– When party pt,b arrives :

– If b = 0:

∗ Pick a random rt ∈ Z|S|. Let Sh
1
(t,0) = rt + s mod |S|.

∗ Sample CDS randomness r′t ← Rt.

– If b = 1: let Sh1
(t,1) = rt.

– Let Sh2
t,b = Enct(b, s, r

′
1, . . . , r

′
t).

– Give pt,b the share Sht,b = (Sh1
t,b,Sh

2
t,b).

Claim 5.3. Πf,CDS is an evolving secret-sharing scheme for Af as claimed to exist in Theorem 5.1

Proof. First we prove the correctness of the scheme. Let A denote a (finite) qualified set of parties.
If pt,0, pt,1 ∈ A for some t ≥ 1, the secret can be reconstructed via s = Sh1

t,0 + Sh1
t,1 mod |S|.

Otherwise, there exist x ∈ {0, 1}t with f(x) = 1 such that p1,x1 , . . . , pt,xt ∈ A. Thus, the parties
can reconstruct the secret from DECt(Sh

2
1,x1

, . . . ,Sh2
t,xt

), by correctness of PCDS .
Next we prove the security of the scheme. Let B denote a (finite) unqualified set of parties.

It does not contain pt,0, pt,1 for any t ≥ 1, or it would be qualified. Thus, the Sh1 parts are all
random and independent (among themselves and of the Sh2’s) in Z|S| (for all s). By definition of

f,Af , there exists no x = (x1, . . . , xt) such that f(x) = 1, and {pi,xi |i ∈ [t]} ⊆ A. Thus, the Sh2’s
do not reveal any information due to the fact that PCDS is strong.

9It beats the upper bound resulting from these protocols for a wide range of BP width parameters, and often
beats the actual resulting complexity resulting from either instantiation.
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6 Lower bounds for (strong) evolving CDS

In this section, we demonstrate that similarly to evolving secret-sharing schemes, (strong) evolving
CDS can not generally be achieved with non-trivial message complexity of 2ct+o(t) for constant
c < 1. We prove the result in two steps. First, we craft a partite evolving secret-sharing scheme
Af for which we can prove a tight lower bound on share complexity. Then, we use Theorem 5.1 to
obtain a lower bound for strong evolving CDS. See Section 1.3.2 for more discussion on the high
level proof structure, and comparison with prior work.

Theorem 6.1. There exists an evolving predicate f : {0, 1}∗ → {0, 1}, such that any strong evolving
CDS for it, and secret domain S = {0, 1} does not have a message complexity bound of the form
st(t) = O(2ct).

Proof of Theorem 6.1. We construct f in an iterative manner, along with a lower bound
l(t) ∈ 2t−o(t) on the share complexity of Af . We specify Af by the sequence of minterms, which
determines the entire (partite) evolving AS. Note that the minterms which are not of the form
{pi,0, pi,1} are specified by some b ∈ {0, 1}t, as Ab = {pi,bi

|i ∈ [t]}, because the AS is partite.
10. Let us (arbitrarily) set t1 = 16.

• For every t ≥ 1, add {pt,0, pt,1} to the set of minterms of Af .

• Let t1 = 16,pref1 = 1log(t1) = 14.

• For i ≥ 1:

– Add the following minterms: for every v ∈ {0, 1}ti−|prefi|, add

Av = {pi,(prefi||v)1 , . . . , pti,(prefi||v)ti} ∪ {p(ti+1,0), . . . , p(ti+1+v,0)}

.11

– Set prefi+1 = 1ti and fix ti+1 = 2ti .12

First, we observe that Af specified above is indeed a partite evolving AS, and all sets added are
indeed minterms (rather than being implied by previously added minterms). This easily follows by
induction. Clearly, for every i, the Av’s added at step i are all incomparable (as sets). Now, for
i > 1, we add minterms Av containing the set {pj,1|j ∈ [ti]} as a subset, while all previously added
minterms either of the form {pl,0, pl,1} or ones that contained ptj+1,0 for some tj < ti − 1 (as part
of the ‘B-set’), and did not contain ptj+1,1.

Claim 6.2. For Af constructed above, for every evolving secret sharing scheme Sh, and for in-
finitely many values t ≥ 1, pt size in Sh of at least ℓ(t), for a function ℓ(t) = 2t/2−o(t).

10f is as uniquely induced by Af we define.
11In ti + 1 + v we interpret v as a binary number (possibly with leading zeros).
12Other large functions would also do. Picking larger growth rate would result in a larger bound. In fact, we could

arbitrarily strengthen the bound proving for any g(t) = ω(1), strong evolving CDS share complexity for f can not be
2t−g(t) for all t > t0 for some t0.
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Proof of Claim. Fix some i ≥ 1. Then the claim follows from Theorem 1.6, applied to
the set A = Ai = {pj,b|j ∈ [ti], b ∈ {0, 1}} \ {pi,0|i ∈ [log(ti)]} ⊆ [t′i], induced by the indepen-
dent sequence comprised of the Av’s added at time i (which are subsets of Ai) and B = Bi =
{pti+1,0, . . . , pti+1+...,0} (up to reordering of parties). Indeed, it is an independent sequence, as
all ℓ = 2t

′
i/2−log(t′i)+1 sets in the sequence are minterms of Af (see above). Thus, the total share

complexity for Af ∩ 2[t
′
i] is lower bounded by ℓ− 1 (for every valid evolving secret-sharing schemes

for Af ). Therefore, at least one of the members of A, gets a share of size

≥ 2t
′
i/2−log(t′i)+1/|A| = 2t

′
i/2−log(t′i)+1/(t′i − log(t′i) + 1) = 2t

′
i/2−o(t′i).

Let us denote the highest index in Ai of such a party by maxi. Now, even if maxi = t′i, its
dependence of share size on its index is of the form sc(t) = 2t/2−o(t). Finally, there must exist
an infinite sequence of parties with this share complexity bound. As a simple way to see this,
we observe that if all maxi’s belonged to a finite set B of party indices. For a sufficiently large
j, for every pi ∈ B, we have that |shi| < 2|A

j |/2−log(|Aj |+2)/|Aj |. We conclude that maxj /∈ B,
contradicting the fact that B is the set of all maxi values. □

We are now ready to complete the proof of Theorem 6.1. Here we show that for every evolving
secret sharing scheme Sh for Af above, infinitely many parties ti, have share size at least 2

ti/2−o(ti).
By Theorem 5.1, a strong evolving CDS protocol for f with message complexity c(t), then the share
complexity ofAf is at most c(t/2)+O(1) for all t. Assuming for contradiction c(t) ≤ 2ct+o(t) for some
c < 1, we obtain an evolving secret-sharing scheme with share complexity c(t′i/2)+O(1) = 2ct

′
i/2−o(t′i)

which is strictly below the lower bound above for all sufficiently large ti’s as above, leading to a
contradiction. □

It is an interesting open question to obtain a similar result for (non-strong) evolving CDS.
We note that the lower bound for strong evolving CDS can already be viewed as a certain clue
that standard evolving CDS may be hard (in terms of requiring message complexity 2t−o(t) in the
worst case, as the best known CDS we know how to construct 4 implicitly puts forward a CDS
construction that can be made strong with very small complexity overhead. Although we could
not currently find a generic “black box” transformation, it could be the case that concrete evolving
CDS constructions could be easy to come up with.
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