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Abstract

We present the first construction for adaptively secure HIBE, that does not rely on bilinear pairings
or random oracle heuristics. Notably, we design an adaptively secure HIBE from any selectively secure
IBE system in the standard model. Combining this with known results, this gives the first adaptively
secure HIBE system from a wide variety of standard assumptions such as CDH/Factoring/LWE/LPN.
We also extend our adaptively secure HIBE system to satisfy full anonymity, giving the first adaptively
secure anonymous HIBE under CDH/LWE assumption. All our HIBE systems support unbounded
length identities as well as unbounded number of recursive delegation operations.

1 Introduction

Traditional public-key encryption systems support data encryption for users, under the assumption that the
recipient has established a public key. Identity-based encryption (IBE) [Sha85] is an advanced encryption
system, which gets around the need for every user to establish its own individual public key.

In IBE, a central authority (e.g., government entity, non-profit organization, etc) is tasked with estab-
lishing a pair of master public-secret key pair (MPK,MSK). This reduces the burden on every user, as they
do not need to generate and distribute their public keys. Rather, anybody can encrypt data for a user,
given just their public identity ID (e.g., name, department, etc). Encryption needs only MPK and the target
recipient’s identity, ID. Each user gets a secret decryption key skID, corresponding to its identity ID, for
decrypting a ciphertext intended for it. Such keys are issued by the central authority, which authenticates
user’s identity and derives user-specific decryption key from master secret key, MSK.

Hierarchical identity-based encryption (HIBE) [HL02, GS02] is a popular generalization of IBE. It was
proposed to mirror an organizational hierarchy. It allows iterative key derivation, where a key authority
can distribute its workload by delegating private key generation and identity authentication to lower-level
authorities. In standard IBE, a single authority has to bear this burden; while in HIBE, a user with private
key skID (for identity ID) can act as an (intermediate) key authority, thus derive decryption keys for users
under its hierarchy. By users under its hierarchy, we mean users whose identity are of the form ‘ID||? · · ·?’,
where ‘?’ could be any bit. For example, a CS department chair at a university could be given the key for
identity (edu, univ, cs) allowing him to derive keys for identities (edu, univ, cs, username) corresponding to
email addresses username@cs.univ.edu.

(H)IBE enable a powerful encryption functionality. They replace the notion of user-specific public keys
with (natural) identities, and the entire system has just a “single” public key for an exponential number
of users. Since early 2000s, numerous (H)IBE systems have been designed from a variety of cryptographic
assumptions [DH76, Bon98, BR93, BF01, Reg05] with numerous features. The following is a partial list of
such systems [BF01, Coc01, HL02, GS02, CHK03, BB04a, BB04b, Wat05, BBG05, BW06, BGH07, GPV08,
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SW08, AB09, GH09, ABB10a, ABB10b, LW10, CHKP12, BKP14, CGW15, DG17a, DG17b, BLSV18, WC23,
GKRV24, HKK+24].

Defining security. The most desirable goal while designing (H)IBE is to prove adaptive security assuming
standard cryptographic hardness. Adaptive security (also called full security) is defined as the ability to resist
chosen-plaintext attacks. Such attackers: (1) adaptively select a target/challenge identity ID∗ for which they
receive a challenge ciphertext CT∗, (2) can corrupt decryption keys for any polynomial number of identities
{IDi}i as long as none of them match ID∗. For HIBE, condition (2) is generalized to also require that none
of the corrupted keys can be used to decrypt CT∗ (either directly or by deriving a delegated key).

Adaptive security is the most natural approach to capture “real-world” threats. However, proving adap-
tive security is a very challenging problem! Thus, researchers often start with a weaker goal of selective
security, which states that chosen-plaintext attacks can be resisted as long as the attacker selects ID∗ at the
beginning. While selective security is quite unnatural in practice (e.g., why would an attacker select ID∗

before system is set up), it is a good starting point for obtaining theoretical feasibility results. A common
practice in cryptography is to rely on complexity leveraging to boost to full security, but it comes at a heavy
cost of sub-exponential security loss and stronger assumptions.

The problem. Over the last few decades, there has been tremendous progress in designing IBE systems
with adaptive security [BF01, BB04b, Wat05, Gen06, GPV08, Wat09, ABB10a, LW10, CGW15]. This culmi-
nated in beautiful works by Döttling and Garg [DG17a, DG17b], who developed an approach to generically
design adaptively secure IBE and selectively secure HIBE from any selectively secure IBE. This led to major
developments in identity-based cryptography. Unfortunately, Döttling-Garg [DG17a, DG17b] and long line
of follow-ups [BLSV18, DGHM18, GHMR18, GHM+19, GV20, GSW21, GGL24] left open the gap between
selective and full security for HIBE. Thus, a major open problem in identity-based cryptography has been:

Can we design adaptively secure HIBE from same assumptions as that required for adaptively secure IBE?

To date, all known fully secure HIBE systems [Wat05, BW06, Wat09, LW10, LOS+10, LW11, CW13, BKP14,
LP19, LP20] rely on clever algebraic tricks and/or complexity leveraging and/or random oracle heuris-
tic. Moreover, prior works have identified important challenges and barriers in proving full security of
HIBE [LW14, DG17b].

Our results. We close the gap between full and selective security in HIBE, answering the above question
affirmatively. We show:

Theorem 1. Assuming a selectively secure IBE system, there exists a fully secure HIBE system.

Combining these with prior results [Coc01, BF01, AB09, ABB10a, ABB10b, DG17a, DG17b, BLSV18,
DGHM18], we obtain the following as an immediate corollary:

Corollary 1. Assuming hardness of X ∈ {Factoring,CDH, k-Lin, LWE, exLPN}, there exists a fully secure
HIBE system.

We extend our techniques to anonymous HIBE [BDCOP04, BW06, KSW08], where the goal is to additionally
hide recipient’s identity in the ciphertext.

Theorem 2. Assuming hardness of X ∈ {CDH, LWE}, there exists a fully secure anonymous HIBE system.

We remark that all our (anonymous) HIBE systems support unbounded length identities, thus they do not
need an a-priori bound on the depth of the hierarchy.

1.1 Technical Overview

In this section, we provide a high level overview of our techniques. We start by recalling the notion of HIBE
and highlight the differences between selective and adaptive security for HIBE.

An HIBE scheme consists of five algorithms: Setup, Enc, KeyGen, Dec and Delegate. The setup algorithm
outputs the master public key mpk and the master secret key msk. The encryption algorithm takes as input
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a master public key mpk, a message m and an identity id ∈ {0, 1}∗, and outputs a ciphertext ct. The key
generation algorithm uses the master secret key msk to generate a secret key skid for any identity id ∈ {0, 1}∗.
The secret key skid corresponding to identity id can be used to decrypt any ciphertext for id. Additionally,
skid can be used to generate a secret key for any identity that contains id as a prefix (that is, id||id′), using
Delegate(skid, id

′). Such delegation operations can be iteratively performed on a key arbitrary many times.
Informally, security in HIBE is defined as an attacker’s inability to bypass semantic security for any

ciphertext, as long as it does not ask for the secret key associated with challenge identity, or any of the
corrupted secret keys cannot be delegated to generate such a secret key. This is formally captured through
a selective security game as follows.

Selective security. The attacker first selects a challenge identity id∗, and sends it to the challenger. The
challenger sets up the system and sends mpk to the attacker. Next, the attacker makes polynomially many
secret key queries, and selects two challenge messagesm0,m1. It is essential that all identities {idi}i for which
the attacker receives a secret key are such that idi ̸⪯ id∗ (i.e., idi is not a prefix of id∗). Following this, the
challenger creates a challenge ciphertext ct∗, which is either an encryption of m0 or m1 for the identity id∗.
And, on receiving ct∗, the attacker can make more secret key queries (with the same prefix-unsatisfiability
constraint), and has to finally guess whether m0 or m1 was encrypted.

As discussed earlier, selective security does not capture usual real-world threats. Typically, an attacker
would select a target identity id∗ after it looks at mpk and corrupts some secret keys. Such an adaptive
choice for selecting challenge identity is formalized via an adaptive security game. However, unlike IBE (and
more generally FE) systems, defining adaptive security for hierarchical IBE is not as straightforward. The
reason is, beyond giving the attacker the option to select id∗ at a later point, one has to be careful about
how an attacker can corrupt a secret key. Let us elaborate further.

A simple, but incorrect, approach to define adaptive security: To capture fully adaptive adversaries, consider
an adversary that makes polynomially many secret key queries to the KeyGen(msk, ·) oracle, before it commits
to id∗ and messages m0,m1. After this, the game proceeds as in the selective setting. That is, the adversary
receives ct∗ and makes polynomially many (post-challenge) secret key queries to KeyGen(msk, ·) again.

At first glance, the above seems sufficient to capture fully adaptive adversaries in HIBE. Unfortunately,
that is not the case. This is because it does not use Delegate algorithm. As a result, we can trivially design
HIBE systems that will be “adaptively” secure as per above generalization, but otherwise insecure!

For instance, consider a (contrived) scheme where Delegate(skid, id
′) always outputs skid. Clearly, such

an HIBE scheme just gives up the master secret key as part of any key delegation operation, thus if an
adversary ever gets a chance to corrupt a “delegated” key, then the system can be trivially attacked. Such
a definitional issue in hierarchical systems was first pointed by Shi and Waters [SW08]. They proposed a
more sound approach to capture (full) adaptive security.

Adaptive security. An adaptive adversary makes three types of queries – KeyGen, Delegate, and OutputKey.
Using a KeyGen query, it can ask the challenger to create a secret key for any identity id. Specifically, the
challenger uses msk to create skid, but it does not send skid to the attacker! Instead, the challenger sends a
unique ‘token’ t (say, query index). Delegate query is similar, wherein the adversary asks the challenger to
derive a delegated key for an identity id′. Specifically, the adversary provides a valid token t (corresponding
to some key skid), and id′, and the challenger creates a key for id||id′ by running Delegate(skid, id

′). Again,
the challenger does not send the secret key, rather creates a new token t′ and sends t′ to the adversary.

At a high level, the purpose of KeyGen/Delegate queries is to give the adversary the capability to ‘initialize’
honest users in an HIBE system. To actually corrupt keys/users, the adversary can make a third type of
query, OutputKey. The adversary supplies a valid token t and receives the corresponding secret key. This
enables an attacker to fully corrupt any user’s secret key in a real-world execution of HIBE, as a user’s secret
key could be generated by either KeyGen, or Delegate, or any iterative combination of these two algorithms.

By allowing an attacker to make such queries, one can properly capture a fully adaptive attacker. Note
that each attacker can make these queries arbitrarily in the pre/post-challenge phase, with the only restriction
that for all secret keys {skid}id ‘actually corrupted’ by the attacker, id is not a prefix of id∗. That is, the
attacker cannot trivially decrypt the challenge ciphertext.
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We emphasize that this does not limit the attacker from making a KeyGen/Delegate corresponding to id∗

(or its prefix). But it only says that the attacker cannot get their secret keys.

Why is adaptive security much harder? The main challenge in proving adaptive security can be
understood as follows. Consider an adaptive adversary that asks the challenger to first create a secret key
for id∗ by making a KeyGen query. Afterwards, it makes a Delegate query on the token corresponding to id∗.
Eventually, it asks only to corrupt the delegated key. The point is such an (adaptive) adversary can confuse
the challenger by making KeyGen/Delegate queries, both, ‘along’ and ‘off’ the path to challenge identity id∗.
This flexibility in asking the challenger to sample and store a key vs. actually corrupting the key makes it
extremely challenging to design and prove adaptively secure HIBE.

We emphasize that this flexibility is not an issue in the selective setting. The reason is that the adversary
commits to id∗ at the beginning. Thus, the challenger can partition all KeyGen and Delegate queries in
two categories – (a) secret keys for identities that are prefixes of id∗, (b) that are not. This partition is
deterministically known during the pre-challenge phase, thus adversary can no longer confuse the attacker.
Note that the same distinction cannot be made for pre-challenge queries in the adaptive security game.
Thus, the challenger has no way of finding/guessing whether the secret key it has to create as a response to
KeyGen/Delegate (in the pre-challenge phase) will be corrupted or not.

This distinction is the source of hardness surrounding adaptively secure HIBE. Lewko and Waters [LW14]
further studied this issue, and provided many barriers in extending typical proof strategies for adaptive
security from IBE to HIBE. The most common approach in the literature to get around these barriers relies
on the random oracle heuristic [BR93, GS02] or bilinear maps [Wat05, BW06, GH09, Wat09, LW10, LW11,
BKP14, LP19, LP20]. Unfortunately, this only gives us a heuristic approach to adaptively secure HIBE,
unless we want to restrict ourselves to algebraic groups supporting bilinear pairings. Our goal is to prove
adaptive security in the standard model, without relying on heuristics or pairing-based assumptions.

Our Approach

We circle back to the beautiful line of work, initiated by Döttling and Garg [DG17a, DG17b] (referred as
DG17 henceforth). They proposed a novel non-black-box approach towards designing (hierarchical) identity-
based encryption systems. We provide a new security proof to handle adaptive attackers in DG17-style HIBE
constructions. Let us start by briefly reviewing DG17.

Reviewing [DG17a, DG17b]. Döttling and Garg proposed a new primitive called one-time signature with
encryption (OTSE). They showed that OTSE can be built from any selectively secure IBE (as well as other
simple assumptions). And, interestingly, OTSE can be generically used to design adaptively secure IBE and
selectively secure HIBE. The core technical idea behind their generic design was to compose garbled circuits
with OTSE to enable deferred encryption. Below we provide a short recap.

One-time signatures with encryption: It consists of five algorithms – Gen, Setup,Sign,Enc, Dec. The Gen
algorithm takes as input a length parameter ℓ and outputs public parameters pp. Setup takes pp as input
and outputs a signing-verification key pair (sk, vk), with only the requirement that vk’s length should be
independent of ℓ. Using sk one can sign any ℓ bit string x, while Enc publicly encrypts a message α
w.r.t. vk, index i ∈ [ℓ], and bit b. Correctness states that Dec recovers α from the ciphertext, when given
a signature σ on a string x such that xi = b. Formally, if σ ← Sign(sk, x) and ct ← Enc((vk, i, xi), α), then
Dec((vk, x, σ), ct) = α. Security states that no polytime adversary can learn the plaintext, even if it gets a
single signature on any x with the restriction that xi ̸= b (where i, b are used to create ct). Succinctly, OTSE
is a generalization of one-time signatures that additionally support message encryption, with the signature
serving as a decryption key.

OTSE to IBE : The main design principle in DG17-style IBE constructions is to implement a deferred-
encryption paradigm using OTSE and garbled circuits. The IBE master public key acts as a succinct
commitment to an exponential number of (regular) PKE public keys, and the master secret key succinctly
encodes opening information for every public key (corresponding to each identity). Let us be more concrete.

In their design, mpk contains a single OTSE verification key vkϵ (here ϵ denotes the empty string),
and msk contains the corresponding secret key skϵ and a PRF key K. The purpose of the PRF key is to
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deterministically expand vkϵ into 2n PKE public-secret key pairs, one for each (n-bit) identity. At a high
level, the idea is to implicitly define a depth-n complete binary tree, where each internal node is associated
with an OTSE key. That is, let v ∈ {0, 1}≤n denote a unique identifier of any node in the tree. Every internal
node v ∈ {0, 1}<n is associated with an OTSE key pair as (skv, vkv) = Setup(pp;F (K, v)). While leaf nodes
are associated with a PKE key pair sampled as (pke.pkv, pke.skv) = PKE.Setup(pp;F (K, v)). Crucially, all
keys are sampled using this fixed PRF key K, thus deterministically fixed at setup time.

The secret key for an identity id ∈ {0, 1}n contains the SKE key pke.skid for its corresponding leaf node,
and a succinct opening to pke.skid generated as a “chain” of OTSE signatures. In a bit more detail, for every
0 ≤ i < n − 1, the key generator signs the message ‘vkid[1:i]||0||vkid[1:i]||1’ under the OTSE key skid[1:i]. Here
id[1 : i] denotes the first i bits of id. And, for i = n− 1, it signs ‘pke.pkid[1:i]||0||pke.pkid[1:i]||1’ under skid[1:i].

Observe that chaining OTSE signatures as above ensures they are deterministically linked, with two
special features: (1) the size of the OTSE chain of signatures from root to leaf grows polynomially with n,
and not 2n, and (2) this acts as an “opening” of pke.pkid under vkϵ. The point (2) is crucial in enabling
efficient IBE-style encryption/decryption functionality as we explain next.

To encrypt m for id under mpk = vkϵ, the trick is to iteratively garble circuits starting from leaf to root.
Specifically, the encryptor starts by garbling the circuit PKE.Enc(·,m; r) where m and r (chosen uniformly at
random) are hardcorded into the circuit. This results in a garbled circuit T along with the associated labels
{labTj,b}. Next, it garbles the circuit {OTSE.Enc((·, idn ·λ+ j, b), labTj,b)}j,b to produce Q(1) and its associated

labels {lab(1)j,b }. Note that this circuit has the n-th bit of recipient id hardcoded. Such a process is iteratively
carried out, where the i-th circuit has (n − i + 1)-th bit of id hardcoded, and appropriately encrypts wire
labels for (i − 1)-th circuit. Eventually, this way the encryptor computes the ciphertext which contains a

sequence of n+ 1 garbled circuits: Q(n), . . . ,Q(1), and T along with wire keys {lab(n)j,mpkj
} for Q(n).

During decryption, an identity (secret) key is used to successively decrypt the encrypted wire labels
followed up evaluating the garbled circuits to get encrypted wire labels for next circuit and so on. This
process looks like a guided binary search over the OTSE tree. In further detail, the decryptor starts with

{lab(n)j,mpkj
}j and evaluates Q(n). This generates a sequence of OTSE ciphertexts, {OTSE.Enc((vkϵ, id1 ·

λ + j, b), lab
(n−1)
j,b )}j,b. Now using OTSE signature on ‘vk0||vk1’ under key skϵ, the decryptor can obtain

{lab(n−1)j,vkid1,j
}. That is, wire keys corresponding to bits of vkid1 . This process can be iteratively carried, where

it next evaluates Q(n−1) using these keys, then decrypts them using OTSE signature on ‘vkid1||0||vkid1||1’
under key skid1 , and so on. Eventually, it obtains a PKE ciphertext encrypting the plaintext under pke.pkid
which can be decrypted using pke.skid.

Generalizing to hierarchical IBE : DG17 showed that the above template can be easily extended to support
hierarchical encryption and key generation. To handle hierarchical encryption (i.e., encryption for varying
length identities), each internal node is associated with a PKE key (in addition to an OTSE key). To enable
hierarchical key generation, the idea is to use delegatable PRFs [GGM86] (also called prefix-constrained
PRFs [KPTZ13, BW13, BGI14]). Recall a delegatable PRF allows a key holder to construct a constrained
key Kv such that Kv can be used to evaluate the PRF on any string that has v as prefix. We summarize
the main differences between the aforementioned IBE template and its hierarchical generalization below:

Setup. It is nearly identical with the only difference that the PRF key sampled is delegatable.

Key Generation & Delegation. Key generation proceeds as before, except now it signs the message
‘vkid[1:i]||0||vkid[1:i]||1||pke.pkid[1:i]’ instead. Basically, each node’s PKE key is also signed. Additionally,
each secret key also contains a delegated PRF key Kid. Recall using Kid a user can evaluate the PRF
on any input of the form id|| · · · . This allows a secret key holder to further delegate. Because given
Kid, it can deterministically sample OTSE as well as PKE keys for all nodes underneath the id-th node.

Encryption & Decryption. Both these algorithms work nearly identically with minor syntactic changes.
The changes are simply due to the slightly larger message length (to incorporate signing the PKE key
at each level as well) that are now signed using OTSE.
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Delegatable PRFs can be designed via the seminal GGM PRF construction. Therefore, the above general-
ization leads to a hierarchical IBE system.

Proving selective security. To provide more insight into the hardness of proving adaptive security of
HIBE, let us zoom in on how the proof of selective security goes. Recall in selective security, the adversary
commits to challenge identity id∗ at the beginning of the game. Since id∗ is selectively available, the challenger
can replace all the evaluations of the PRF along the path from the root (v = ϵ) to the challenge node (v = id∗)
with truly random values. This leverages selective security of delegatable PRFs. Since the challenger does not
need the full PRF key to answer any admissible secret key query, then one can rely on a step-by-simulation
strategy for simulating the challenge ciphertext ct∗ one garbled circuit at-a-time. In further detail, ct∗ only
contains labels corresponding to vkϵ for the garbled circuit Q(n). Thus, this can be simulated given OTSE
encryptions of wire labels, under vkϵ, for Q(n−1) and appropriate indices (i.e., {(id1 · λ + j, b)}). Next, by
relying on OTSE security, half of these OTSE ciphertexts can be replaced with garbage encryptions. That
is, wire labels corresponding to only vkid1 are correctly encrypted. Following this process iteratively, ct∗

can be fully simulated, where the final garbled circuit T is simulated using a regular PKE ciphertext under
pke.pkid∗ , the challenge identity/node’s PKE key.

Why is it difficult to prove adaptive security? Unfortunately, the above approach cannot handle
adaptive attackers. There are two reasons – first, delegatable PRFs. The canonical approach for designing
delegatable PRFs builds on the classic Goldreich-Goldwasser-Micali PRF construction [GGM86, KPTZ13,
BW13, BGI14]. Until very recently [HKK23], it was not known if delegatable PRFs can be designed with
adaptive security under standard polynomial time hardness. Thus, any approach to prove adaptive security
of DG17-style HIBE construction failed at the first step.

Luckily, in a beautiful recent work by Hofheinz, Kastner, and Klein [HKK23], the problem of adaptively
secure delegatable PRFs was resolved. They developed a new rewinding-based proof technique to prove
adaptive security of GGM PRF under standard polynomial hardness of any PRG. Although their formulation
of delegatable PRFs mildly departs from the abstraction necessary for the DG17-HIBE template1, it is
relatively easy to show that their proof techniques are sufficient to prove adaptive security of delegatable
PRFs that are needed for the DG17-HIBE template. Therefore, by relying on adaptively secure delegatable
PRFs, we can successfully implement the first step of the hybrid proof in the adaptive HIBE security
experiment. But, this is where the second (and major) issue comes up.

Step-by-step garbling simulation breaks down. A major difference between the above IBE and HIBE
templates is that an adversary never directly learns anything about the actual PRF evaluations in an IBE
system (since identity keys only consist of OTSE signatures and PKE secret keys); whereas in HIBE, and
adversary additionally learns (multiple) delegated PRF keys. While one might suppose that, by relying on
adaptively secure delegatable PRFs, this difference would become meaningless, it is not the case!

DG17 (and followups) use the fact that a GGM-style PRF evaluation tree behaves as a tree of truly
random values, as long as an attacker does not see any PRF evaluations. That is, an attacker never explicitly
learns PRF values for any node, but only OTSE/PKE keys corresponding to those nodes. Thus, all these
keys are as good as truly randomly sampled keys rather than pseudo-random. We stress that this ensures
a step-by-step garbled circuit simulation strategy interleaved with OTSE security can be safely executed.
Because for using OTSE security, we have the guarantee that OTSE keys are randomly sampled.

Crucially, this cannot be replicated in HIBE! Note that even having access to adaptively secure delegatable
PRFs, we cannot argue that all intermediate GGM-style PRF evaluations are as good as random. This is
because an adaptive attacker learns PRF evaluations for intermediate nodes due to the hierarchical nature.
In other words, an attacker can query for id = 111, and later for id = 11. Since DG17-style keys must be
deterministically generated from master key, thus the secret key for 11 should be able to generate/explain
the key for 111. This is essentially why we cannot hope to get to a hybrid where the entire (GGM) PRF
tree (or, just the HIBE secret keys which contain delegated PRF keys) are as good as random. This is true

1Standard GGM PRFs rely on a length-doubling PRGs; while for HIBE, we need a length-tripling PRG with the property that
only the two-thirds of the PRF output needs to act as a delegated key in the future.
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even if we assume adaptively secure delegatable PRFs. This is why DG17 and all follow-ups were stuck at
selective security for HIBE.

The core technical hurdle towards adaptive security is that for the pre-challenge queries, we need to
“somehow” guess the path from the root to the challenge identity and replace only the PRF evaluations (in
the queried HIBE keys) along this path with truly random values. In the case of selective security, such
guessing is not required because the challenge identity is committed at the beginning of the game (i.e., there
are no ‘real’ pre-challenge queries since id∗ is known in advance).

Nested hybrids and a pebbling-style strategy. Our main technical contribution is based on the “nested
hybrids” technique [FKPR14, FJP15] and using an intricate pebbling-style argument to prove adaptive se-
curity of the above HIBE scheme with only polynomial security loss. At its core, we show it is sufficient
to only guess the location of a “single node” in the path from the root to the challenge identity id∗, while
moving between consecutive hybrids. At first, it might seem that, guessing the location of a single node in
the tree of polynomial depth, would lead to an exponential security loss. However, we notice that this can
be avoided, and we could prove indistinguishability of consecutive hybrids using nested hybrids, incurring
only a polynomial loss. Basically, we only need to guess the ‘index’ of the first OutputKey query that over-
laps with the path from root to challenge identity2. If we can successfully guess this, then we can answer
all pre-challenge HIBE key queries as well as correctly perform the step-by-step garbling simulation while
leveraging adaptive security of delegatable PRFs. Clearly, this would lead to (only) an overall polynomial
loss in the proof of adaptive security, since number of queries is going to be some polynomial. A crucial
component for this reduction is to ensure that we end up relying on delegatable PRF security to switch PRF
evaluation for exactly one node in the GGM tree. We use a pebbling strategy to correctly design nested
hybrids to be able to reduce to adaptive security of delegatable PRFs. We provide a detailed description
later in Section 3. Below we summarize the key points of our proof:

Game 0. We start with the regular HIBE adaptive security game.

Game 1. Next, we rely on the fact that all HIBE secret keys (under the DG17 template) can always be
thought to be directly generated from msk by running the key generation algorithm. That is, the
challenger in this game no longer needs to do any computation while answering any KeyGen/Delegate,
but only when the attacker makes a OutputKey query, it actually runs the key generation algorithm
to create the appropriate secret key. This heavily relies on the unique/deterministic key derivation
property of the HIBE construction.

Game (i+ 1)ni=1. Suppose n is the length of challenge identity, id∗. Next, we consider a sequence of n
hybrid games, where we simulate the first i garbled circuits Q(n), . . . ,Q(n−i+1), rather than creating
them honestly.

Game (n+ 2). Here, we additionally simulate the final garbled circuit T as well.

Until this point, the proof structure so far resembles the (iterated) step-by-step garbling simulation strategy
of Döttling-Garg. However, the similarities end here and our proof needs to diverge. Let us dive into the
indistinguishability of hybrids i and i+ 1 (for 1 ≤ i ≤ n). Ideally, we want to replicate [DG17a], and do the
following:

Step 1: Replace i-th garbled circuit with a simulated garbled circuit since only half of its wires keys are
revealed.

Step 2: Use adaptive security of delegatable PRFs to generate OTSE keys randomly for node corresponding
to i-bit prefix of id∗. (Thus, all nodes from root to here contain OTSE keys that are randomly sampled.)

Step 3: Rely on OTSE security to switch half of the ciphertexts (encrypting wire labels for (i+1)-th garbled
circuit) to garbage.

2We highlight that [DG17a] also relied on a similar guessing trick. However, as explained below, there is a major difference
between IBE and HIBE. In IBE, an attacker never learns intermediate PRF values directly, but in HIBE, it does learn them
since they are contained as part of the secret key.
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However, there is a major hurdle. It is unclear how to handle pre-challenge key queries. The reason is during
the above (internal) hybrids, we are changing all OTSE keys for all nodes in id∗[1 : 1], id∗[1 : 2], . . . , id∗[1 : i]
to be fully random instead of pseudo-random. But id∗ is unknown until challenge query is made by the
attacker. Thus, how to figure out which OTSE keys to sample randomly instead of pseudo-randomly in
the pre-challenge phase!? We could guess, but that would result in an exponential security loss. Our
observation is that once we switch half of the OTSE ciphertexts in step 3, then we no longer need OTSE
keys corresponding to id∗[1 : i] to be randomly sampled, but sampling it pseudo-randomly is good enough.
So, we start by adding another internal hybrid as follows:

Step 4: Use adaptive security of delegatable PRFs again to revert back OTSE keys for id∗[1 : i] as pseudo-
randomly sampled.

The advantage of above is that at any point in the proof, we now only need to sample a single OTSE key
randomly. That is, OTSE keys for id∗[1 : 1], id∗[1 : 2], . . . , id∗[1 : i − 1] could still be pseudo-randomly
sampled, but only for id∗[1 : i], we need to sample the corresponding OTSE key randomly. The above is
reminiscent of pebbling strategies used in various other contexts [HJO+16, JW16].

There is a minor technical subtlety that we need to handle while implementing the above idea. Typically,
delegatable PRFs do not allow PRF evaluation queries on any prefix of the challenge input. In the above
approach, we would need honest PRF evaluations for all prefixes of the challenge input (i.e., id∗[1 : i] in
above case). This seems contradictory, but we show that this can be handled nearly generically. Basically,
we create distinction between a PRF evaluation and what we consider a delegated PRF key. This way we
allow an attacker to make PRF evaluation queries on prefixes of challenge input as well, but not delegation
key queries for those prefixes. We show that the recent adaptively secure delegatable PRFs [HKK23] are
still secure under such an expanded definition. Thus, it appears that the main technical hurdle has been
resolved. However, there is one final issue.

How to guess id∗[1 : i] in the pre-challenge phase? The issue is that, even with the above modification, how

does the reduction know what is the value of id∗[1 : i] in the pre-challenge phase? Our latest modifications
remove the need to guess all prefixes of id∗[1 : i], but we still need to know the index of this node at the
i-th level of the tree. This is essential as it is possible that a pre-challenge query overlaps with id∗[1 : i]
(i.e., has the same i-bit prefix). In this case, we need to sample OTSE keys for id∗[1 : i] in the pre-challenge
phase itself. However, this still leads to a potentially super-polynomial security loss, when i = ω(log λ).
Our final observation is that we could instead rely on a sequence of “nested hybrids” where we only need
to do some limited guessing about the adversary’s adaptive choices. Basically, we define these internal
hybrid to depend on a query index q, where we interpret q as the smallest query index such that the q-th
OutputKey query is the first key query that overlaps with the i-bit prefix of id∗, i.e. id∗[1 : i]. Thus, if an
attacker can selectively provide this information or we can guess in the reduction, then we could finish the
security analysis with only a polynomial security loss. This is because any polytime attacker makes at most
a polynomial number of corruption queries, and we are simply the index of the first one which satisfies an
efficiently testable predicate. We provide more details later in the main body. Overall, the above strategy
of coupling a pebbling-argument with nested hybrids and reducing to adaptive security of delegatable PRFs
gives us an adaptively secure HIBE system (under the minimal assumption of selectively secure IBE).

Fully-secure anonymous HIBE from CDH and LWE

An HIBE scheme is anonymous if an adversary cannot even learn the recipient’s identity from the challenge
ciphertext. In other words, the security game is similar to the adaptive HIBE security game, except the
adversary sends two message-identity pairs: (m0, id0) and (m1, id1), and receives Enc(mpk,mb, idb) for a
random bit b. Naturally, the adversary should not receive with any keys for identities that are prefixes of id0
or id1. We show how to design anonymous HIBE under the hardness of the computational Diffie-Hellman
(CDH) or learning with errors (LWE) assumption.

Anonymous HIBE from CDH. Brakerski et al. [BLSV18] showed that anonymous IBE can be constructed
from a weakly compact blind IBE and blind garbled circuits, and these objects can be based on CDH. We
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start by observing that their anonymous IBE can be easily extended by relying on delegatable PRFs similar
to [DG17a]. Next, our strategy is to prove adaptive security of the resulting construction by using our
pebbling strategy and nested hybrids techniques. This results in an anonymous unbounded HIBE scheme
based on CDH. At a very high level, the main difference between this construction and our non-anonymous
HIBE construction is purely in replacing tree-based composition of OTSE and garbled circuits, with blind
IBE and blind garbled circuits. We provide the CDH-based adaptively secure anonymous HIBE in Section 4.

Anonymous HIBE from LWE. Goyal-Koppula-Waters and Wichs-Zirdelis introduced the notion of lockable
obfuscation [GKW17, WZ17, GKVW20], and demonstrated how lockable obfuscation can be used to upgrade
any attribute-based encryption scheme [SW05, GPSW06] to satisfy one-sided predicate hiding [KSW08,
BW07, GKW17]. They designed such obfuscation schemes under the hardness of LWE assumption. We
observe that their construction can also be used (as is) for upgrading HIBE to anonymous HIBE, while
preserving adaptive security. Therefore, this gives us an adaptively secure anonymous HIBE under LWE.
We highlight that despite the fact that lockable obfuscation can only obfuscate circuits of a-priori bounded
size, our anonymous HIBE still supports unbounded length identities. The reason is that, in the GKW
transformation, the encryptor performs obfuscation. Since the recipient’s identity (therefore, the maximum
secret key length that can be used to decrypt the corresponding ciphertext) is fixed at encryption time, thus
we could still use lockable obfuscation without relying on circular security. For completeness, we provide the
transformation in Appendix B.

We believe our techniques might also be useful in other adaptive security contexts, such as adaptive
registration-based encryption [GHMR18, GHM+19, GV20] and other advanced systems such as adaptive
delegatable attribute-based/functional encryption systems [BGG+14, BCG+17]. We leave these as interest-
ing open problems.

1.2 Related Work

Gentry and Silverberg [GS02] presented hierarchical identity-based systems in the ROM under the hardness
of the Bilinear Diffie-Hellman problem. Later, Waters [Wat05] improved this to adaptive security without
random oracles, but could only support constant number of delegation levels. Boyen-Water [BW06] extended
this to additionally design fully anonymous HIBE constructions from similar pairing assumptions. However,
all these schemes could only be proven adaptively secure for identity hierarchies of constant depth as the
security reductions suffered from exponential degradation in depth of hierarchy. Gentry-Halevi [GH09]
presented the first fully secure HIBE with a tight proof of security, hence supporting polynomially many
levels. This was later refined by Waters [Wat09] via the dual systems methodology. Several follow-up
works [LOS+10, LW10, LW11, CW13, BKP14, LP19, LP20] improved this line of work designing fully secure
(anonymous) HIBE with various improvements such as shorter ciphertexts, unbounded identities, tighter
reductions, etc. Achieving adaptive security without bilinear maps has been a very difficult task, and has
generally required more sophisticated primitives, such as indistinguishability obfuscation [BGI+01, GGH+16]
or functional encryption [Wat15, ABSV15]. There are some exceptions [Tsa19, GLW21], but these do not
support any key delegation.

This lack of diversity can also be attributed to many barriers known in the literature. Lewko-Waters [LW14]
demonstrated that adaptive security cannot be proven (via black-box reductions) for schemes with certain
checkability properties. Recently, Brakerski-Medina [BM23] extended this to cover rewinding reductions,
shedding light on why certain lattice-based ABE schemes remain unprovable for full adaptive security, even
though no known adaptive attacks have been identified. In contrast, semi-adaptive security (a weaker no-
tion) has been comparatively easier to achieve [BV16, GKW16], and any selectively secure scheme can be
generically upgraded to achieve semi-adaptive security.

2 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. We denote the set of all positive integers upto
n as [n] := {1, . . . , n} and [n]0 := {0, 1, . . . , n}. Also, we use [i, j] to denote the set of all non-negative
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integers between i and j including i, j, i.e., [i, j] := {i, i+ 1, . . . , j}. For any two binary string x, y, we use
the notation x ⪯ y (or x ∈ prefix(y)) to imply that x is a prefix of y and x || y to denote x concatenated with
y. And, x[i, j] denotes the substring x[i] ||x[i + 1] || . . . ||x[j] when i ≤ j whereas x[i, j] = ϵ where i > j.
Throughout this paper, unless specified, all polynomials we consider are positive polynomials. For any finite
set S, x← S denotes a uniformly random element x from the set S. Similarly, for any distribution D, x← D
denotes an element x drawn from distribution D. The distribution Dn is used to represent a distribution
over vectors of n components, where each component is drawn independently from the distribution D.

2.1 Delegatable Pseudorandom Functions

A delegatable pseudorandom function is a pseudorandom function PRF = (Setup,Eval) with an additional
deterministic algorithm Delegate(·, ·) with the following description and properties.

Setup(1λ, 1m) : The setup algorithm takes as input the security parameter λ and the output length m, and
outputs a key s.

Eval(s, x) : The evaluation algorithm is a deterministic algorithm that takes as input a key s and an input
x ∈ {0, 1}∗ and outputs a string y ∈ {0, 1}m.

Delegate(s, x) : The delegation algorithm is a deterministic algorithm that takes as input a key s and an
input x ∈ {0, 1}∗ and outputs a key sx.

Correctness. The scheme is correct if for all λ,m ∈ N, x, x′ ∈ {0, 1}∗ and s ← Setup(1λ, 1m), and sx =
Delegate(s, x), the following holds – Eval(sx, x

′) = Eval(s, x ||x′) and Delegate(s, x ||x′) = Delegate(sx, x
′)

Definition 2.1 (Adaptive Security). Consider the following experiment:

1. The challenger randomly generates s← Setup(1λ, 1m).

2. In the pre-challenge phase, the adversary has oracle access to the functions Delegate(s, ·) and Eval(s, ·).
Let Q and T be the set of queries made to each oracle by the adversary in this phase.

3. In the challenge phase, the adversary sends x∗ ∈ {0, 1}∗ such that x∗ /∈ T and there does not exists
an x ∈ Q such that x ⪯ x∗, i.e., x is not a prefix of x∗. The challenger randomly picks b ∈ {0, 1}. If
b = 0, it returns Eval(s, x∗), else it returns a truly random value.

4. In the post-challenge phase, the adversary has oracle access to Delegate(s, ·) but is not allowed to query
on any prefix of x∗. It also has access to Eval(s, ·) but is not allowed to query on x∗.

5. Finally, the adversary sends b′ ∈ {0, 1} and wins if b = b′.

A PRF PRF is an adaptively secure delegatable pseudorandom function if for all PPT adversaries, there
exists a negligible function negl(·) such that for all λ,m ∈ N, Pr[adversary wins] ≤ 1

2 + negl(λ).

Remark 2.2. Most prior works focused on delegatable PRF that can only be evaluated at the leaf nodes,
i.e., only on n-bit strings. Hofheinz, Kastner, and Klein [HKK23] recently demonstrated that the GGM
construction [GGM86] provides an adaptively secure delegatable PRF. We emphasize that the proof provided
in [HKK23] can be extended to achieve adaptively secure delegatable PRF satisfying the above definition.
More details are provided in Appendix A.

Theorem 2.3. Assuming one-way functions exist, there exists adaptively secure delegatable PRFs.
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2.2 One-Time Signature with Encryption

A One-Time Signature with Encryption (OTSE) scheme consists of the following algorithms.

Gen(1λ, 1ℓ) : The generation algorithm takes as input the security parameter λ and a message length ℓ and
outputs public parameter pp.

Setup(pp) : The setup algorithm takes as input public parameter pp and outputs a verfication key vk and a
signing key sk.

Sign(pp, sk, x) : The signing algorithm takes as input public parameter pp, a signing key sk and a message
x ∈ {0, 1}ℓ and outputs a signature σ.

Enc(pp, (vk, i, b),m) : The encryption algorithm takes as input public parameter pp, a verification key vk, an
index i ∈ [ℓ], a bit b ∈ {0, 1} and a plaintext m. It outputs a ciphertext ct.

Dec(pp, (vk, x, σ), ct) : The decryption algorithm takes as input public parameters pp, a verification key vk,
a signature σ, a message x and a ciphertext ct. It outputs m.

Succinctness. For pp ← Gen(1λ, ℓ) and (vk, sk) ← Setup(pp), the size of vk is independent of ℓ and only
depending on the security parameter λ. But, the size of pp can polynomial in both ℓ and λ.

Correctness. For correctness, we require that for all ℓ, λ ∈ N, message x, plaintext m and i ∈ [ℓ], we have
that Dec(pp, (vk, σ, x), ct) = m, where pp← Gen(1λ, 1ℓ), (vk, sk)← Setup(pp) and ct← Enc(pp, (vk, i, xi),m).

Security. Consider the following experiment with a PPT adversary A.

1. The challenger generates pp← Gen(1λ, 1ℓ) and sends pp to A. A returns a message x.

2. The challenger generates (vk, sk)← Setup(pp) and computes σ ← Sign(pp, sk, x). It sends (vk, σ) to A.

3. A outputs an index i ∈ [ℓ] and two plaintexts m0,m1.

4. The challenger randomly samples b ← {0, 1} and computes ct∗ ← Enc(pp, (vk, i, 1− xi),mb). It sends
ct∗ to A.

5. A outputs b′ ∈ {0, 1} and wins if b′ = b.

An OTSE scheme is said to selective secure if for all PPT adversary A, there exists a negligible function
negl(·) such that for all λ ∈ N, Pr[A wins in the above experiment] ≤ 1

2 + negl(λ).

Theorem 2.4 ([DG17a, Theorem 2]). Assuming selectively secure IBE, there exists secure OTSE schemes.

2.3 Blind Garbled Circuits

A blind garbling scheme GC consist sof three algorithms (Garble,Eval,Sim) with the following syntax:

Garble(1λ, 1n, 1m, C). The garbling algorithm takes as input the security parameter λ, two parameters n,m
and a circuit C : {0, 1}n → {0, 1}m, and outputs a garbled circuit C and the associated labels
{labi,b}i∈[n],b∈{0,1}.

Eval(C, {labi}i∈[n]). The evaluation algorithm takes as input a garbled circuit C and a set of labels {labi}i∈[n],
and outputs y ∈ {0, 1}m.

Sim(1λ, 1|C|, 1n, y). The simulation algorithm takes as input the security parameter λ, the size of a circuit C,
the input length n and a string y ∈ {0, 1}m, and outputs a simulated garbled circuit C and simulated
labels {labi}i∈[n].
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Correctness. We say a garbling scheme satisfies correctness if for all λ, n,m ∈ N, C : {0, 1}n → {0, 1}m, x ∈
{0, 1}n, we have that Eval(C,

{
labi,x[i]

}
i∈[n]) = C(x), where (C, {labi,b}i∈[n],b∈{0,1})← Garble(1λ, 1n, 1m, C).

Simulation Security. For all λ, n,m ∈ N, circuits C : {0, 1}n → {0, 1}m and x ∈ {0, 1}n, the following two
distributions are computationally indistinguishable.{

C,
{
labi,x[i]

}
i∈[n] : (C, {labi,b, }i∈[n],b∈{0,1})← Garble(1λ, 1n, 1m, C)

}
≈c{

C, {labi}i∈[n] : (C, {labi}i∈[n])← Sim(1λ, 1|C|, 1n, C(x))
}

Blindness property. A garbling scheme is said to be blind if Sim(1λ, 1c, 1n, Um) ≈c Uℓ, where ℓ =
|C|+ | {labi}i∈[n] | and Um, Uℓ is the uniform distribution over {0, 1}m, {0, 1}ℓ, respectively.

Theorem 2.5 ([BLSV18]). Assuming PRGs, there exists blind garbling schemes.

2.4 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces I = {{0, 1}n}n∈N and message
spacesM consists of four polynomial time algorithms (Setup,KeyGen,Enc,Dec) with the following syntax:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and identity length
n. It outputs the public parameters mpk and the master secret key msk.

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master secret key msk and an
identity id ∈ {0, 1}n. It outputs a secret key skid.

Enc(mpk, id,m)→ ct. The encryption algorithm takes as input the public parameters mpk, a message m ∈
M, and an identity id ∈ {0, 1}n. It outputs a ciphertext ct.

Dec(skid, ct)→ m/⊥. The decryption algorithm takes as input a secret key skid and a ciphertext ct. It
outputs either a message m ∈M or a special symbol ⊥.

Correctness. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) satisfies correctness if for all λ, n ∈ N,
(mpk,msk) ← Setup(1λ, 1n), id ∈ {0, 1}n, m ∈ M, skid ← KeyGen(msk, id), and ct ← Enc(mpk, id,m), we
have that Dec(skid, ct) = m.

Definition 2.6. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) is fully/adaptive secure if for any
stateful PPT adversary A and polynomial poly(·) there exists a negligible function negl(·), such that for all
λ ∈ N and n = poly(λ), the following holds

Pr

AKeyGen(msk,·)(ct) = b :

1n ← A(1λ)
(mpk,msk)← Setup(1λ, 1n); b← {0, 1}
(m0,m1, id

∗)← AKeyGen(msk,·)(1λ, 1n,mpk)
ct← Enc(mpk, id∗,mb)

 ≤ 1

2
+ negl(λ),

where all identities id queried by A satisfy id ̸= id∗.

Definition 2.7 (Weakly Compact Blind IBE [BLSV18]). An IBE scheme IBE = (Gen,Setup,KeyGen,Enc,
Dec) is a weakly compact blind IBE if

1. Public Parameters: The Gen algorithm takes as input the security parameter 1λ and the number
of identities 1T and generates the public parameter pp, which is used in (Setup,KeyGen,Enc,Dec)
algorithms.

2. Weak Compactness: Size of the master public key is |mpk| = O(T 1−ϵpoly(λ)) where T = 2n is the
number of identities.

3. Encryption Decomposition: The encryption algorithm Enc(pp,mpk, id,m; r) can be decomposed as
Enc1(pp; r) ||Enc2(pp,mpk, id,m; r).

12



4. Blindness: For any stateful PPT adversary A and polynomial poly(·) there exists a negligible function
negl(·), such that for all λ ∈ N and n = poly(λ), the following holds

Pr

AKeyGen(pp,msk,·)
(ct1, ct2) = b :

1n ← A(1λ)

pp← Gen(1λ, 1n); (mpk,msk)← Setup(pp)

b← {0, 1}; id∗ ← AKeyGen(pp,msk,·)(1λ, n,mpk)
m←M; (ct1, ct2) = Enc(pp,mpk, id∗,m)

if b = 1, ct2 ← {0, 1}|ct2|

 ≤ 1

2
+ negl(λ),

where A can query the oracle KeyGen on id∗.

Theorem 2.8 ([BLSV18]). Assuming the hardness of CDH, there exists weakly compact blind IBE schemes.

2.5 Hierarchical Identity-Based Encryption

An unbounded Hierarchical Identity-Based Encryption (HIBE) scheme is a generalisation of IBE for the set
of identity spaces I = {0, 1}∗ and message spacesM that consists of five polynomial time algorithms (Setup,
KeyGen,Enc,Dec,Delegate) with the following syntactical changes and additions:

Setup(1λ) : The setup algorithm takes only the security paramater as input.

KeyGen(msk, id),Enc(mpk, id,m) : The identity could be any bit string, and the syntax for KeyGen and Enc
is identical to that in IBE.

Dec(skid, ct) : The syntax for Dec is identical to that in IBE.

Delegate(skid, id
′)→ skid || id′ . On input a secret key skid and an identity id′ ∈ {0, 1}∗, the delegate algorithm

outputs a secret key skid || id′ .

Correctness. We say an HIBE scheme HIBE = (Setup,KeyGen,Enc,Dec,Delegate) satisfies correctness if
for all λ ∈ N, (mpk,msk)← Setup(1λ), any non-empty sequence of ℓ identities idi ∈ {0, 1}ni for ℓ ≥ 1, i ∈ [ℓ]
where ni ≥ 1, message m ∈M, sk1 ← KeyGen(msk, id1), and ski+1 ← Delegate(ski, idi+1) for i ∈ [ℓ− 1], and
ct← Enc(mpk, id1 || . . . || idℓ,m), we have that Dec(skℓ, ct) = m.

Definition 2.9 (Adaptive security). We say an HIBE scheme HIBE = (Setup,KeyGen,Enc,Dec,Delegate) is
fully/adaptive secure if for any stateful PPT adversary A there exists a negligible function negl(·), such that
for all λ ∈ N, the following holds

Pr

AO(msk,·)(ct) = b :
(mpk,msk)← Setup(1λ); b← {0, 1}
(m0,m1, id

∗)← AO(msk,·)(1λ,mpk)
ct← Enc(mpk, id∗,mb)

 ≤ 1

2
+ negl(λ),

where the oracle O(msk, ·) is a stateful oracle initialized with parameter t := 1, and takes as input a tuple
(id, ind,mode) ∈ {0, 1}∗ × N× {StoreKey,OutputKey,DelegateKey}, and answers each query as follows:

• If mode = StoreKey, then the challenger generates skid ← KeyGen(msk, id), stores (t, id, skid) and replies
with (t,⊥). It also updates t := t+ 1.

• If mode = DelegateKey, then the challenger first checks if there exists a key tuple of the form
(ind, id′, skid′) for some identity id′. If no such tuple exists, it outputs ⊥. Otherwise, it generates
skid′ || id ← Delegate(skid′ , id), stores (t, id

′ || id, skid′ || id) and replies with (t,⊥). It also updates t := t+1.

• If mode = OutputKey, then the challenger first checks if there exists a key tuple of the form (ind, id, skid).
If no such tuple exists or if id is a prefix of id∗ (that is, id ∈ prefix(id∗)), it outputs ⊥. Otherwise, it
replies with (ind, skid).

Note that A must also not have received any queries for any prefixes of id∗ in the pre-challenge-query phase.
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Definition 2.10 (Anonymity). We say an HIBE scheme HIBE = (Setup,KeyGen,Enc,Dec,Delegate) is
anonymous and fully/adaptive secure if for any stateful PPT adversary A there exists a negligible func-
tion negl(·), such that for all λ ∈ N, the following holds

Pr

AO(msk,·)(ct) = b :
(mpk,msk)← Setup(1λ); b← {0, 1}
(m0,m1, id

∗
0, id

∗
1)← AO(msk,·)(1λ,mpk)

ct← Enc(mpk, id∗b ,mb)

 ≤ 1

2
+ negl(λ),

where |id∗0| = |id
∗
1|, and the oracle O(msk, ·) is same as in Definition 2.9 except if mode = OutputKey, then

the challenger first checks if there exists a key tuple of the form (ind, id, skid). If no such tuple exists or if id is
a prefix of id∗0 or id∗1 (that is, id ∈ prefix(id∗0)∪ prefix(id

∗
1)), it outputs ⊥. Otherwise, it replies with (ind, skid).

3 Adaptively Secure Unbounded HIBE

In this section, we present an adaptively secure unbounded HIBE scheme. As discussed earlier, our construc-
tion is identical to the selectively secure HIBE scheme by [DG17a]. We start by describing the construction
(mostly) verbatim from [DG17a]. Any reader familiar with their construction can safely skip Section 3.1 and
move to Section 3.2.

3.1 [DG17a] HIBE

The construction relies the following ingredients.

• PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a PKE scheme.

• SS = (SS.Gen,SS.Setup,SS.Sign,SS.Enc,SS.Dec) be an OTSE scheme.

• GC = (GC.Garble,GC.Eval,GC.Sim) be a garbling scheme.

• PRF = (PRF.Setup,PRF.Eval,PRF.Delegate) be a delegatable PRF scheme.

For simplicity, we will assume that the verification keys ss.vk of the OTSE scheme and public keys pke.pk
of the PKE scheme are of length λ. We also assume that the setup algorithms of both the OTSE and the
PKE scheme require λ random bits. As a consequence of this, we require a PRF with output length 2λ and
denote PRF.Eval(s, x) = PRF.Eval1(s, x) ||PRF.Eval2(s, x) where |PRF.Evali(s, x)| = λ. First, we define the
Node function that will be used in the KeyGen and Delegate functions.

Node(pp, v, s) : The function takes as input public parameters pp, a node identifier v ∈ {0, 1}∗ and a PRF key
s. It first computes a pair of verification and signing key (ss.vkv, ss.skv)← SS.Setup(pp;PRF.Eval1(s, v)).
Similarly, it computes ss.vkv∥0 and ss.vkv∥1 and generates (pke.pkv, pke.skv)← PKE.Setup(1λ;PRF.Eval2(s, v)).
Note that if s is a delegated key, we have to truncate v accordingly to achieve correctness.

It sets xv = ss.vkv∥0 || ss.vkv∥1 || pke.pkv and computes ss.σv ← SS.Sign(pp, ss.skv, xv). It generates a
delegate key sv = PRF.Delegate(s, v). It returns (ss.vkv, xv, ss.σv, pke.skv, sv).

Setup(1λ) : The setup algorithm takes as input a security parameter 1λ. It generates a PRF key s ←
PRF.Setup(1λ, 12λ), pp← SS.Gen(1λ, 13λ) and computes (ss.vkϵ, ·, ·, ·, ·)← Node(pp, ϵ, s).

It sets mpk = (pp, ss.vkϵ) and msk = s.

KeyGen(msk, id) : Let msk = s be a PRF key and id be an identity such that n = |id|. For j = 0 to n, it com-
putes (·, xid[1,j], σid[1,j], skid[1,j], sid[1,j]) = Node(pp, id[1, j], s). It outputs skid := ({(σv, xv)}v, pke.skid3, sid)
where v ∈ {id[1, j]}j∈[n]0 .

3It is not important to keep pke.skid as a part of skid because sid can be used to compute PRF.Eval(s, id) by evaluating
PRF.Eval(sid, ϵ). However, we include it for clarity. For the syntax of the PRF, refer to Appendix A
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Delegate(skid, id
′) : Let skid = ({(σid[1,j], xid[1,j])}j∈[n]0 , skid, sid) be an HIBE key and id′ be an identity such

that n′ = |id′| and n = |id|. For j = 1 to n′, it computes

(·, xid || id′[1,j], σid || id′[1,j], skid || id′[1,j], sid || id′[1,j]) = Node(pp, id′[1, j], sid)

It then computes sid || id′ = PRF.Delegate(sid, id
′) and outputs ({(σv, xv)}, skid || id′ , sid || id′) where v ∈

{(id || id′)[1, j]}j∈[n+n′]0 .

Enc(mpk,m, id) : The encryption algorithm takes as input a master public key mpk = (pp, ss.vkϵ), a message
m and an identity id. Let

• Tm(pk) be a circuit that computes PKE.Enc(pk,m).

• Qβ∈{0,1,2},{zi,b}i∈[λ],b∈{0,1}(vk) be a circuit that computes {SS.Enc(pp, vk, β·λ+i, b, zi,b)}i∈[λ],b∈{0,1}.

Let |id| = n. The algorithm starts by generating (T ,
{
labTi,j

}
)← GC.Garble(1λ, Tm). Then, it generates

(Q(n), lab
(n)
i,j )← GC.Garble(1λ, Q2,{labTi,j}).

For k = n − 1 to 0, it computes (Q(k), lab
(k)
i,j ) ← GC.Garble(1λ, Q

id[k+1],
{
lab

(k+1)
i,j

}). Finally, it returns({
lab

(0)
i,ss.vkϵ[i]

}
i∈[λ]

,
{
Q(k)

}
k∈[n−1]0

, T
)
.

Dec(skid, ct) : The decryption algorithm takes as input a secret key skid = ({(σk, xk)}k∈[n]0 , skid, sid) where

n = |id| is the length of id and a ciphertext ct = (
{
lab

(0)
i

}
i∈[λ]

,
{
Q(k)

}
k∈[n−1]0

, T ). It sets vk(0) :=

ss.vkϵ and for k = 0 to n,

1. it computes {ss.cti,j} ← GC.Eval(Q(k), {lab(k)i }i∈[λ]).

2. if (k ̸= n), it sets vk(k+1) := xk[id[k + 1]] where xk is a 3 block of λ length strings. Else, it sets

vk(n+1) := xn[2].

3. it computes lab
(k+1)
i ← SS.Dec(pp, (vk(k), xk, σk), ss.cti,vk(k+1)[i]).

It computes pke.ct← GC.Eval(T , {lab(n+1)
i }i∈[λ]) and sets m← PKE.Dec(skid, pke.ct). It return m.

It important to note that both KeyGen and Delegate algorithms are deterministic. Also, from the cor-
rectness of the delegation of the PRF, we can easily show that KeyGen(msk, id || id′) = Delegate(skid, id

′).

Correctness. Let ct = ({lab(0)i,ss.vkϵ[i]
}i∈[λ], {Q(k)}k∈[n−1]0 , T ) be an encryption of messagem for the identity

id. The decryption process starts by evaluating the garbled circuit Q(0) on {lab(0)i }i∈[λ] where lab
(0)
i =

lab
(0)
i,ss.vkϵ[i]

. Therefore, from the correctness of the garbling scheme we have ss.cti,j = SS.Enc(pp, ss.vkϵ,

id[1] · λ + i, j, lab
(1)
i,j ) for all i ∈ [λ], j ∈ {0, 1}. Next, the algorithm sets vk(1) := x0[id[1]] where x0 =

ss.vk0 || ss.vk1 || pke.pkϵ. Therefore, vk(1) = ss.vkid[1]. Next, it computes lab
(1)
i ← SS.Dec(pp, (vk(0), x0, σ0),

ss.cti,vk(1)[i]). Now, from the correctness of the OTSE scheme, we get lab
(1)
i = lab

(1)
i,ss.vkid[1][i]

. Repeating the

same argument, we will obtain lab
(n+1)
i = labTi,pke.pkid[i]. Again, using the correctness of the garbling scheme,

we obtain pke.ct = PKE.Enc(pke.pkid,m) by evaluating pke.ct ← GC.Eval(T , {lab(n+1)
i }i∈[λ]). Finally, from

the PKE scheme’s correctness, we get m by decrypting pke.ct using pke.skid.
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Efficiency. The master public key mpk is a pair of public parameters and verification key of the OTSE
scheme for a message length of 3λ. Therefore, the size of the master public key is |mpk| = poly(λ).

The master secret key is a PRF key, therefore, |msk| = poly(λ). A secret key (as well as delegated secret
key) for an identity id of length n consists of n pairs of signature-message (where the length of the message
is 3λ), a secret key of the PKE scheme and a delegated PRF key. Therefore |skid| = n · poly(λ).

A ciphertext ct associated with a message m and an identity id of length n consists of a garbled circuit
for Tm(·) whose size is |m| · poly(λ), n garbled circuits of Qβ,{zi,b}(·) of size n · poly(λ) and λ many labels for
a garbled circuit. Therefore, |ct| = (|m|+ n) · poly(λ).

3.2 Proof of Adaptive Security

Theorem 3.1. Assuming PKE is a CPA secure PKE scheme, SS is a secure OTSE scheme, GC is a secure
garbling scheme and PRF is an adaptively secure PRF, then the above construction is adaptively secure.

Proof. The proof of adaptive security proceeds via the following sequence of hybrids.

• Hybrid H0: This is the original adaptively secure HIBE game.

• Hybrid H1: This is same as H0 except that when A queries the oracle O(msk, ·) on (id, ind,mode), the
challenger does the following.

– If mode = StoreKey, then the challenger does not generate the secret key but stores (t, id,⊥) and
replies with (t,⊥). It also updates t := t+ 1.

– If mode = DelegateKey, then the challenger first checks if there exists a key tuple of the form
(ind, id′, ·) for some identity id′. If no such tuple exists, it outputs ⊥. Otherwise, it does not
generate the delegated secret key but stores (t, id′ || id,⊥) and replies with (t,⊥). It also updates
t := t+ 1.

– If mode = OutputKey, then the challenger first checks if there exists a key tuple of the form
(ind, id, ·). If no such tuple exists or if id is a prefix of id∗ (that is, id ∈ prefix(id∗)), it outputs
⊥. Otherwise, if (ind, id, skid) exists, it replies with (ind, skid). Else, it will compute skid ←
KeyGen(msk, id), stores it and outputs (ind, skid).

• For k = 0 to n (where n = |id∗|),

– Hybrid H2,k: In this hybrid,
(
Q(h),

{
lab

(h)
i,ss.vkid∗[1,h][i]

})
are generated by using simulation algo-

rithm on
{
ss.ct

(h)
i,j

}
:= Q

id[h+1],
{
lab

(h+1)
i,j

}(ss.vkid∗[1,h]) (in the case when h = n,
{
ss.ct

(n)
i,j

}
:=

Q2,{labTi,j}(ss.vkid∗)
)
, for all h ∈ [k]0.

• Hybrid H3: In this hybrid,
(
T ,
{
labTi,pke.pkid∗ [i]

})
are generated by using the simulation algorithm on

Tm(pke.pkid∗) = PKE.Enc(pke.pkid∗ ,m).

• Hybrid H4: In this hybrid, rather than using PRF.Eval2(s; id
∗) to generate (pke.pkid∗ , pke.skid∗), it uses

truly random coins in PKE.Setup algorithm.

Analysis: Let pA,H denote probability of A outputting b′ = b in Hybrid H. We will show that this
probability is almost the same in every game.

Lemma 3.2. For all PPT adversaries A, pA,H0
= pA,H1

.

Proof. This follows directly from the fact that KeyGen and Delegate algorithms are deterministic and
KeyGen(msk, id || id′) = Delegate(skid || id′).

We use the notation H2,−1 to denote hybrid H1.
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Lemma 3.3. Assuming that GC is a secure garbling scheme, PRF is a secure delegatable PRF scheme and
SS is a secure OTSE scheme, for all PPT adversaries A, there exists a negligible function negl(·) such that
for all λ ∈ N, k ∈ [n]0, |pA,H2,k

− pA,H2,k−1
| = negl(λ).

Proof. For the case k = 0, observe that only
{
lab

(0)
i,ss.vkϵ[i]

}
is present in the challenge ciphertext. So, we can

immediately replace GC.Garble with GC.Sim to generate Q(0) and the simulated labels and use them in the
ciphertext. Since, GC is a secure garbling scheme, |pA,H2,0 − pA,H2,−1 | = negl(λ).

For the case when k > 0, we will use nested hybrids technique along with a pebbling-style argument as
follows. For a particular k and the adversary A, let |pA,H2,k

− pA,H2,k−1
| = ϵ. Since A is a PPT adversary,

we can bound the number of (pre-challenge) key queries it makes — let us call it Q = Q(λ). We now
consider a modified adversary A′ that uses A to distinguish hybrid H2,k from H2,k−1. At a high level, A′
will attempt to guess the index q such that the first Node(pp, id∗[1, k], ·) computation is performed either in
the q-th OutputKey query or during the generation of challenge ciphertext. The complete description of A′
is as follows:

1. A′ starts by randomly choosing a number q from [Q+ 1].

2. It then interacts with the challenger and A by relaying messages between them.

3. Until the q-th query made by A, A′ maintains a set S containing all identifiers v ∈ {0, 1}k of length
k that the challenger would have visited using Node(pp, ·, ·). It stores the q-th v as guess and checks
whether guess ∈ S. If so, A′ aborts. Otherwise, it continues the game.

4. After receiving the challenge ciphertext, it checks if guess is a prefix of id∗. If not, it aborts the game.
Otherwise, it continues the game until the end by simulating A and returning A’s response b′ as its
final response.

Claim 3.4. pA′,H2,k
≥

pA,H2,k

Q+ 1
and pA′,H2,k−1

≥
pA,H2,k−1

Q+ 1
.

Proof. We will prove the first equality, as the second equality follows analogously. Since, A′ aborts the
game if guess is not the correct prefix of id∗, therefore, the probability of A′ winning in the hybrid H2,k is
pA′,H2,k

≥ pA,H2,k
· Pr [guess ⪯ id∗] .

Recall that A makes Q key queries. Therefore, at most Q+ 1 distinct nodes with identifiers of length k
are visited by the invocation of the Node(pp, ·, ·) algorithm until the challenge ciphertext is generated. These
visits occur either when the challenger responds to the key queries of the adversary or while generating the
challenge ciphertext.

At the beginning of the game, A′ randomly selects an index q from [1, Q + 1]. The goal of A′ is to
guess the first query index where the corresponding identifier v matches the prefix of the challenge identity
id∗[1 : k]. Since there are at most Q+ 1 such indices, the probability that A′ correctly selects the first such

index is at least 1/(Q+ 1). Thus, we get that pA′,H2,k
≥ pA,H2,k

Q+1 .

Our goal is to show that |pA′,H2,k
− pA′,H2,k−1

| = negl(λ). We achieve this by considering additional internal
hybrids as follows. Recall that guess is the q-th identifier v of length k that the challenger would have visited
through Node(pp, ·, ·).

• Hybrid H2,k−1,1: In this hybrid, A′ sends q to the challenger at the beginning of the game. The
challenger, rather than using PRF.Eval1(s, guess) to generate (ss.vkguess, ss.skguess), it uses a truly random
coins in SS.Setup algorithm.

• Hybrid H2,k−1,2: This is similar to the previous hybrid, except that the labels lab
(k)
i,1−ss.vkid∗[1,k][i]

are

replaced with 0 to generate ss.ct
(k−1)
i,1−ss.vkid∗[1,k][i]

for all i ∈ [λ].
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• Hybrid H2,k−1,3: In this hybrid, ss.vkguess, ss.skguess are generated using the PRF.Eval1(s, guess) algo-
rithm in SS.Setup algorithm.

Claim 3.5. Assuming that PRF is a secure delegatable PRF scheme, there exists a negligible function negl(·)
such that for all λ ∈ N, |pA′,H2,k−1,1

− pA′,H2,k−1
| = negl(λ).

Proof. This directly follows from the PRF security. Observe that the PRF is used only during the oracle
queries (while executing KeyGen) and while generating the challenge ciphertext (to generate verification keys
ss.vkid∗[1,i],∀i ∈ [n]0). From Definition 2.1, the PRF adversary is allowed to query for evaluation of the
PRF at any node (except at x∗) whereas delegation queries are not allowed along the path from root to the
target point x∗. In the current hybrid, the target point x∗ is guess and if A′ does not abort (i.e., its guess
is correct which would imply that guess ⪯ id∗), then KeyGen algorithm would require delegated PRF keys
for nodes that are not in the path from root to guess. Therefore, an adversary A′ that can distinguish these
two hybrids can be used to build an adversary B that break the PRF security by faithfully simulating the
HIBE game.

1. The reduction B obtains q from A′ and simulates the HIBE game without generating the PRF key s.

2. B responds to the queries from A′ using the Delegate(s, ·) and Eval(s, ·) oracle provided by the PRF
challenger. In the q-th index of query, it will send guess to the PRF challenger and receives r – which
is either a truly random string or Eval(s, guess). It uses r in the computation of Node(pp, guess, ·) to
generate (ss.vkguess, ss.skguess) and continues to simulate the game.

3. In the challenge phase, we know that if A′ does not abort, then guess will be a prefix of id∗, thus B
simulates the rest of the HIBE game honestly and returns A′ response.

Therefore, any if A′ has non-negligible advantage between distinguishing these hybrids, then B can break
adpative security of delegatable PRFs. This concludes the proof of the claim.

Claim 3.6. Assuming that SS is a secure OTSE scheme, there exists a negligible function negl(·) such that
for all λ ∈ N, |pA′,H2,k−1,2

− pA′,H2,k−1,1
| = negl(λ).

Proof. Recall that in this hybrid, instead of encrypting lab
(k)
i,1−ss.vkid∗[1,k][i]

using ss.vkid∗[1,k−1] (which is a

verification key at the (k − 1)th level of the tree), 0 are being encrypted to generate ss.ct
(k−1)
i,1−ss.vkid∗[1,k]

. We

will show that an adversary A′ that can distinguish between the two hybrids can be used to break the OTSE
security.

1. The reduction B obtains q from A′.

2. The OTSE challenger sends pp to B. B runs the setup algorithm to obtain (mpk,msk) and sends mpk
to A′.

3. B responds to the queries from A′ normally until the q-th ss.vk has to be generated for some id′ ∈
{0, 1}k. It generates (ss.vkid′ || d, ss.skid′ || d) ← SS.Setup(pp;PRF.Eval1(s, id

′ || d)) for d ∈ {0, 1} and

(pke.pkid′ , pke.skid′)← PKE.Setup(1λ;PRF.Eval2(s, id
′)) and sends xid′ := (ss.vkid′ || 0 || ss.vkid′ || 1 || pke.pkid′)

to the OTSE challenger. The challenger returns vk∗ along with σ∗. B sets ss.vkid′ := vk∗ and σid′ = σ∗.

4. In the challenge phase, we know that if A′ does not abort, then guess will be a prefix of id∗, thus B
can generate the challenge ciphertext as follows. For simulating (Q(k−1),

{
lab

(k−1)
i,ss.vkid∗[1:k][i]

}
), it sends

(lab
(k)
i,1−ss.vkid∗[1,k][i]

,0) to obtain ss.ct
(k−1)
i,1−ss.vkid∗[1,k][i]

for each i. The rest of the game can be simulated

by B.

Therefore, any if A′ has non-negligible advantage between distinguishing these hybrids, then B can break
OTSE security. This concludes the proof of the claim.
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Claim 3.7. Assuming that PRF is a secure delegatable PRF scheme, there exists a negligible function negl(·)
such that for all λ ∈ N, |pA′,H2,k−1,3

− pA′,H2,k−1,2
| = negl(λ).

Proof. The proof is similar to Claim 3.5.

Claim 3.8. Assuming that GC is a secure garbling scheme, there exits a negligible function negl(·) such that
for all λ ∈ N, |pA′,H2,k

− pA′,H2,k−1,2
| = negl(λ).

Proof. Observe that only
{
lab

(k)
i,ss.vkid∗[1,k][i]

}
are used in H2,k−1,3. Therefore, using the security of the garbling

scheme, we get |pA′,H2,k
− pA′,H2,k−1,2

| = negl(λ).

Combining the above equalities using triangular inequality, we have |pA′,H2,k
− pA′,H2,k−1

| = negl(λ). Using
the above claims and the triangular equality, we get ϵ/(Q + 1) = negl(λ). This implies that ϵ = negl(λ)
because Q is a polynomial in λ.

Lemma 3.9. Assuming that GC is a secure garbling scheme, PRF is a secure delegatable PRF scheme and
SS is a secure OTSE scheme, for all PPT adversaries A, there exists a negligible function negl(·) such that
for all λ ∈ N, |pA,H3

− pA,H2,n
| = negl(λ).

Proof. The proof is similar to Lemma 3.3.

Lemma 3.10. Assuming that PRF is a secure delegatable PRF scheme, for all PPT adversaries A, there
exists a negligible function negl(·) such that for all λ ∈ N, k ∈ [n]0, |pA,H4

− pA,H3
| = negl(λ).

Proof. The proof follows from a guessing argument and the security of the PRF scheme.

Lemma 3.11. Assuming that PKE is a secure PKE scheme, for all PPT adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N, pA,H4

≤ 1/2 + negl(λ).

Proof. The proof employs a similar guessing technique used in Claim 3.6. In this case, B is a adversary that
tries to breaks the CPA security of the PKE scheme.

1. The PKE challenger sends pk∗ to B. B runs the setup algorithm to obtain (mpk,msk) and sends mpk
to A. Also, B randomly picks i∗ ← [Q+ 1].

2. B responds to the queries from A normally until the (i∗)th pke.pk has to be generated for some
id′ ∈ {0, 1}k. Rather than using the PRF to generate the public key, it sets pke.pkid′ := pk∗ and
continues simulating the rest of the game till the challenge phase.

3. In the challenger phase, if id′ is not equal to id∗, then B will return a random bit as its response
and abort the game. Else, it will generate the challenge ciphertext as follows. For simulating

(T (k),
{
lab

(T )
i,pke.pkid∗

}
), it sends (m0,m1) to obtain pke.ct∗ = PKE.Enc(pke.pkid∗ ,md) for some randomly

chosen d ∈ {0, 1}. The rest of the game can be simulated by B.

Observe that the probability of the reduction guessing the correct index i∗ is at least 1/(Q+1). Therefore,
pA,H4

≤ 1
2 + 1

Pr[id′=id∗]

∣∣pB,PKE − 1
2

∣∣ = 1
2 + negl(λ), where pB,PKE is the probability of B winning the PKE

game.

Using the above lemmas and triangular inequality, for all PPT adversaries A, there exists a negligible
function negl(·) such that for all λ ∈ N, pA,0 ≤ 1

2 + negl(λ).

Using Theorem 2.4, Theorem 2.3 and Theorem 3.1, we have the following corollary.

Corollary 3.12. Assuming the existence of selectively secure IBE, there exists adaptively secure unbounded
HIBE.
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4 Adaptively Secure Anonymous Unbounded HIBE from CDH

In this section, we will present an adaptively secure anonymous unbounded HIBE scheme. Our construction
closely follows the selectively secure IBE scheme from [BLSV18], with the key difference being that we
use a delegatable PRF to achieve delegation. We start by describing the construction (mostly) verbatim
from [BLSV18].

4.1 [BLSV18] HIBE

The construction requires the following primitives.

• IBE = (IBE.Gen, IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) be a weakly blind IBE. The IBE scheme has
the property that it can support T = T (λ) identities with a master public key of size S = S(λ) bits.
By compactness, we choose T = poly(λ) large enough so that S < T/4.

• GC = (GC.Garble,GC.Eval,GC.Sim) be a blind garbling scheme.

• PRF = (PRF.Setup,PRF.Eval,PRF.Delegate) be a delegatable PRF scheme.

For simplicity, we assume that the setup and the key generation algorithm of IBE scheme require λ random
bits.

Gen(1λ) : The generation algorithm takes as input the security parameter 1λ and computes pp← IBE.Gen(λ, 1T ).

Setup(pp) : The setup algorithm takes as input a public parameters pp. It generates a PRF key s ←
PRF.Setup(1λ, 1λ) and computes (mpk(ϵ),msk(ϵ))← IBE.Setup(pp;PRF.Eval(s, ϵ)).

It sets mpk := mpk(ϵ) and msk := s.

KeyGen(pp,msk, id) : The key generation algorithm takes as input a public parameters pp, a master secret
key msk = s and an identity id such that n = |id|. For k = 0 to n,

1. it sets β := id[1 : k] and γ := id[1 : k + 1].

2. it computes (mpk(β),msk(β))← IBE.Setup(pp;PRF.Eval(s, β)).

3. it computes (mpk(γ),msk(γ))← IBE.Setup(pp;PRF.Eval(s, γ)).

4. if k < n, it generates skk,i ← IBE.KeyGen(pp,msk(β), id[k + 1] || i ||mpk(γ)[i]) where i ∈ [S]. Else,

it generates skn ← IBE.KeyGen(pp,msk(id), ϵ).

It generate sid ← PRF.Delegate(s, id). It finally returns
({

mpk(id[1:k])
}
k∈[n]0

, {skk,i}k∈[n−1]0,i∈[S] ,

skn,
4sid

)
.

Delegate(pp, skid, id
′) : The delegation algorithm takes as input a public parameters pp, an HIBE key skid =

(
{
mpk(id[1:k])

}
k∈[n]

, {skk,i}k∈[n−1]0,i∈[S] , skn, sid) and an identity id′ such that n′ = |id′| and n = |id|.

For j = 0 to n′,

1. it sets β := id || id′[1 : j + 1] and γ := id || id′[1 : j + 1].

2. it computes (mpk(β),msk(β))← IBE.Setup(pp;PRF.Eval(sid, id
′[1 : j])).

3. it computes (mpk(γ),msk(γ))← IBE.Setup(pp;PRF.Eval(sid, id
′[1 : j + 1])).

4It is not important to keep skn as a part of skid because sid can be used to compute PRF.Eval(s, id) by evaluating PRF.Eval(sid, ϵ).
However, we include it for clarity. For the syntax of the PRF, refer to Appendix A
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4. if j < n′, it generates skn+j,i ← IBE.KeyGen(pp,msk(β), id′[j + 1] || i ||mpk(γ)[i]) where i ∈ [S].

Else, it generates skn+n′ ← IBE.KeyGen(pp,msk(id || id
′), ϵ).

It generate sid || id′ ← PRF.Delegate(sid, id
′). It finally returns the following set –

({
mpk((id || id

′)[1:j])
}
j∈[n+n′]0

,

{skj,i}j∈[n+n′−1]0,i∈[S] , skn+n′ , sid || id′
)
.

Enc(pp,mpk,m, id) : The encryption algorithm takes as input a public parameters pp, a master public key

mpk = mpk(ϵ), a message m and an identity id. Let

• Tm,r(mpk) be a circuit that computes IBE.Enc2(pp,mpk, ϵ,m; r).

• Qβ∈{0,1},{zi,b,ri,b}i∈[λ],b∈{0,1}(mpk) be a circuit that computes

{IBE.Enc2(pp,mpk, β∥i∥b, zi,b; ri,b)}i∈[λ],b∈{0,1}.

Let n = |id|. The algorithm starts by generating r and
{
r
(k)
i,b

}
uniformly at random, for all i ∈ [S], b ∈

{0, 1}, k ∈ [n− 1]0. It then

• generates (T ,
{
lab

(n)
i,j

}
)← GC.Garble(1λ, Tm,r) and ctn ← IBE.Enc1(pp; r).

• for k = n − 1 to 0, it computes the set (Q(k),
{
lab

(k)
i,j

}
) ← GC.Garble(1λ, Q

id[k+1],
{
lab

(k+1)
i,j ,r

(k+1)
i,j

})
and ct

(k)
i,j ← IBE.Enc1(pp; r

(k)
i,j ).

Finally, it returns

(ct0, ct1) =

(({{
ct

(k)
i,j

}
i∈[S],b∈{0,1}

}
k∈[n]0

, ctn

)
,

({
lab

(0)

i,mpk[i]

}
,
{
Q(k)

}
k∈[n−1]0

, T
))

Dec(pp, skid, ct) : The decryption algorithm takes as input a public parameters pp, a secret key skid =

(
{
mpk(id[1:j])

}
j∈[n]0

, {skk,i}k∈[n−1]0,i∈[S] , skn, sid) for the identity id (and n = |id|) and a ciphertext

ct as follows

(ct0, ct1) =

(({{
ct

(k)
i,j

}
i∈[S],b∈{0,1}

}
k∈[n]0

, ctn

)
,

({
lab

(0)
i

}
,
{
Q(k)

}
k∈[n−1]0

, T
))

For k = 0 to n− 1,

1. it computes {cti,j}i∈[S],b∈{0,1} ← GC.Eval(Q(k), {lab(k)i }i∈[λ]).

2. it computes lab
(k+1)
i ← IBE.Dec(pp, skk,i, ct

(k)
i,βi

, cti,βi
) for all i ∈ [S] where βi = mpk(id[1:k+1])[i].

It computes ct← GC.Eval(T , {lab(n)i }i∈[S]) and sets m← IBE.Dec(pp, skn, ctn, ct). It returns m.

It important to note that both KeyGen and Delegate algorithms are deterministic. Also, from the cor-
rectness of the delegation of the PRF, we can easily show that KeyGen(msk, id || id′) = Delegate(skid, id

′).

Correctness. Let (ct0, ct1) =

(({{
ct

(k)
i,j

}
i∈[S],b∈{0,1}

}
k∈[n]0

, ctn

)
,
({

lab
(0)
i,mpk[i]

}
,
{
Q(k)

}
k∈[n−1]0

, T
))

be an encryption of message m for the identity id. The decryption process starts by evaluating the garbled

circuit Q(0) on {lab(0)i }i∈[λ] where lab
(0)
i = lab

(0)

i,mpk(ϵ)[i]
. Therefore, from the correctness of the garbling

scheme we have cti,j = IBE.Enc2(pp,mpk(ϵ), id[1] || i || j, lab(1)i,j ) for all i ∈ [λ], j ∈ {0, 1}. Next, the algorithm

sets βi = mpk(id[1])[i]. Next, it computes lab
(1)
i ← IBE.Dec(pp, sk0,i, ct

(0)
i,βi

, cti,βi
) for all i ∈ [S]. Now,

from the correctness of the IBE scheme, we get lab
(1)
i = lab

(1)

i,mpk(id[1])[i]
. Repeating the same argument,
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we will obtain lab
(n+1)
i = labTi,pke.pkid[i]. Again, using the correctness of the garbling scheme, we obtain

ct = IBE.Enc(mpk(id),m) by evaluating ct ← GC.Eval(T , {lab(n+1)
i }i∈[λ]). Finally, from the IBE scheme’s

correctness, we get m by decrypting ct using skid.

Efficiency. The master public key mpk is a master public key of a WCIBE scheme for poly(λ) many
identities. Therefore, the size of the master public key is |mpk| = poly(λ).

The master secret key is a PRF key, therefore, |msk| = poly(λ). A secret key (as well as delegated secret
key) for an identity id of length n consists of n pairs of master public key-secret key of the WCIBE scheme
and a delegated PRF key. Therefore |skid| = n · poly(λ).

A ciphertext ct associated with a message m and an identity id of length n consists of a garbled circuit for
Tm,r(·) whose size is |m| · poly(λ), n garbled circuits of Qβ,{zi,b,ri,b}(·) of size n · poly(λ), λ many labels for a
garbled circuit and n+1 ciphertexts associated with the WCIBE scheme. Therefore, |ct| = (|m|+n)·poly(λ).

4.2 Proof of Adaptive Anonymous Security

Theorem 4.1. Assuming IBE is a secure blind IBE scheme, GC is a secure garbling scheme and PRF is an
adaptively secure PRF, then the above construction is an adaptively secure anonymous unbounded HIBE
scheme.

Proof. We now proceed to sketch the proof that the above scheme is an adaptively secure anonymous
unbounded HIBE scheme.

• Hybrid H0: This is the original adaptively secure anonymous HIBE game where b is the challenge bit.
We will use id∗ := id∗b and m := mb in the rest of the proof.

• Hybrid H1: This is same as H0 except that when A queries the oracle O(msk, ·) on (id, ind,mode), the
challenger does the following.

– If mode = StoreKey, then the challenger does not generate the secret key but stores (t, id,⊥) and
replies with (t,⊥). It also updates t := t+ 1.

– If mode = DelegateKey, then the challenger first checks if there exists a key tuple of the form
(ind, id′, ·) for some identity id′. If no such tuple exists, it outputs ⊥. Otherwise, it does not
generate the delegated secret key but stores (t, id′ || id,⊥) and replies with (t,⊥). It also updates
t := t+ 1.

– If mode = OutputKey, then the challenger first checks if there exists a key tuple of the form
(ind, id, ·). If no such tuple exists or if id is a prefix of id∗ (that is, id ⪯ id∗), it outputs⊥. Otherwise,
if (ind, id, skid) exists, it replies with (ind, skid). Else, it will compute skid ← KeyGen(msk, id), stores
it and outputs (ind, skid).

• For k = 0 to n− 1 (where n = |id∗|),

– Hybrid H2,k: In this hybrid, (Q(k),
{
lab

(k)
i

}
) are generated by using the simulation algorithm on

the output of Q
id∗[k+1],

{
lab

(k+1)
i,j ,r

(k+1)
i,j

}(mpk(id
∗[1,k])).

• Hybrid H3: In this hybrid, (T ,
{
lab

(n)
i

}
) are generated by using the simulation algorithm on the output

of Tm,r(mpk(id
∗)).

• Hybrid H4: In this hybrid, (T ,
{
lab

(n)
i

}
) is replaced with a random string.

• For k = n− 1 to 0 (where n = |id∗|),

– Hybrid H5,k: In this hybrid, (Q(k),
{
lab

(k)
i

}
) is replaced with a random string.
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Analysis: Let pA,H denote probability of A outputting b′ = b in Hybrid H. We will show that this
probability is almost the same in every game.

Lemma 4.2. For all PPT adversaries A, pA,H0 = pA,H1 .

Proof. This follows directly from the fact that the distribution of keys returned by KeyGen(msk, id || id′) is
identical to the distribution of keys generated by Delegate(skid || id′).

We use the notation H2,−1 to denote the hybrid H1.

Lemma 4.3. Assuming that GC is a secure garbling scheme, PRF is a secure delegatable PRF scheme and
IBE is a secure WCIBE scheme, for all PPT adversaries A, there exists a negligible function negl(·) such that
for all λ ∈ N, k ∈ [n− 1]0, |pA,H2,k

− pA,H2,k−1
| = negl(λ).

Proof. The proof is similar to Lemma 3.3, where we construct a modified adversary A′ that guesses an index
q and define multiple internal hybrids. First, we replace the PRF evaluation with a truly random value, then
modify certain IBE ciphertexts to encrypt 0, revert back to the PRF evaluation, and finally use the simulation
mode of the garbling scheme to generate the garbled circuit and necessary labels. Indistinguishability is
argued based on the security of the GC, PRF, and IBE schemes.

Lemma 4.4. Assuming that GC is a secure garbling scheme, PRF is a secure delegatable PRF scheme and
IBE is a secure WCIBE scheme, for all PPT adversaries A, there exists a negligible function negl(·) such that
for all λ ∈ N, |pA,H3

− pA,H2,n−1
| = negl(λ).

Proof. The proof is similar to Lemma 4.3.

Lemma 4.5. Assuming that GC is a secure blind garbling scheme, PRF is a secure delegatable PRF, IBE is
a secure WCIBE scheme, for all PPT adversarier A, there exists a negligible function negl(·) such that for
all λ ∈ N, |pA,H4

− pA,H3
| = negl(λ).

Proof. The proof is similar to Lemma 3.3. Consider the modified adversary A′ that attempts to guess the
index q ∈ [Q+1] such that the first Node(pp, id∗, ·) is performed where Q is the number of key queries made
by A. Our goal is to show that |pA′,H4 − pA′,H3 | = negl(λ). To achieve this, we will utilise the following
internal hybrids. Recall that guess is the q-th distinct v of length n that the challenger would have visited
through Node(pp, ·, ·).

• Hybrid H3,1: In this hybrid, rather than using PRF.Eval(s; guess) to generate (mpk(guess),msk(guess)), it
uses a truly random coins in IBE.Setup algorithm.

• Hybrid H3,2: In this hybrid, (T ,
{
lab

(n)
i

}
) are generated by using the simulation algorithm on the

output of Tt,r(mpk(guess)) where t is a randomly generated message.

• HybridH3,3: In this hybrid, (T ,
{
lab

(n)
i

}
) are generated by using the simulation algorithm on a random

output string, i.e., GC.Sim(1λ, 1|T |, 1λ, t) where t is a random string of length |ibe.ct|.

• HybridH3,4: In this hybrid, (mpk(guess),msk(guess)) are generated using the PRF.Eval(s; guess) algorithm.

Claim 4.6. Assuming that PRF is a secure delegatable PRF scheme, there exists a negligible function negl(·)
such that for all λ ∈ N, |pA′,H3,1 − pA′,H3 | = negl(λ).

Proof. The follows from the adaptive security of the delegatable PRF.

Claim 4.7. Assuming that IBE is a secure CPA scheme, there exists a negligible function negl(·) such that
for all λ ∈ N, |pA′,H3,2

− pA′,H3,1
| = negl(λ).
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Proof. The proof follows directly from the CPA security of the IBE scheme. In hybrid H3,1, (T ,
{
lab

(n)
i

}
) are

generated by using the simulation algorithm on the output of Tm,r(mpk(guess)), i.e., IBE.Enc2(pp,mpk(guess),m; r).
Whereas, in H3,2, m replaced by a truly random string t. It is easy to see that an adversary distinguish H3,2

from H3,1 can be used to break the CPA security of the IBE scheme.

Claim 4.8. Assuming that IBE is a secure WCIBE scheme, there exists a negligible function negl(·) such
that for all λ ∈ N, |pA′,H3,3

− pA′,H3,2
| = negl(λ).

Proof. This follows from the blindness property of the IBE scheme. In hybrid H3,2, (T ,
{
lab

(n)
i

}
) are

generated by using the simulation algorithm on the output of Tt,r(mpk(guess)), i.e., IBE.Enc2(pp,mpk(guess), t; r)
where t is a random string. Whereas, in H3,3, this is replaced by a truly random string. It is easy to see that
an adversary distinguish H3,3 from H3,2 can be used to break the blindness property of the IBE scheme.

Claim 4.9. Assuming that PRF is a secure delegatable PRF scheme, there exists a negligible function negl(·)
such that for all λ ∈ N, |pA′,H3,4

− pA′,H3,3
| = negl(λ).

Proof. The follows from the adaptive security of the delegatable PRF.

Claim 4.10. Assuming that GC is a secure blind garbling scheme, there exists a negligible function negl(·)
such that for all λ ∈ N, |pA′,H4

− pA′,H3,4
| = negl(λ).

Proof. This follows directly from the blindness property of the GC scheme.

Combining the above claims using triangular inequality, we obtain |pA′,H4 −pA′,H3 | = negl(λ). Using the
fact that pA′,H4

= pA,H4
/(Q + 1) and pA′,H3

= pA,H3
/(Q + 1) and Q is a polynomial in λ, we obtain that

|pA,H4
− pA,H3

| = negl(λ).

We use the notation H5,−1 to denote the hybrid H4.

Lemma 4.11. Assuming that GC is a secure blind garbling scheme, PRF is a secure delegatable PRF, IBE
is a secure WCIBE scheme, for all PPT adversaries A, there exists a negligible function negl(·) such that for
all λ ∈ N, k ∈ [n− 1]0, |pA,H5,k

− pA,H5,k−1
| = negl(λ).

Proof. The proof is similar to Lemma 3.3 where the internal hybrids are as follows. Recall that guess is the
q-th distinct v of length k that the challenger would have visited through Node(pp, ·, ·).

• Hybrid H5,k,1: In this hybrid, rather than using PRF.Eval(s, guess) to generate mpk(guess),msk(guess), it
uses a truly random coins in IBE.Setup algorithm.

• Hybrid H5,k,2: In this hybrid, (Q(k),
{
lab

(k)
i

}
) are generated by using the simulation algorithm on a

random output string, i.e., GC.Sim(1λ, 1|Q|, 1λ, t) where t is a random string of length 2λ · |ibe.ct|.

• Hybrid H5,k,3: In this hybrid, mpk(guess),msk(guess) are generated using the PRF.Eval(s, id∗[1, k]) in
IBE.Setup algorithm.

Claim 4.12. Assuming that PRF is a secure delegatable PRF scheme, there exists a negligible function
negl(·) such that for all λ ∈ N, k ∈ [n− 1]0, |pA′,H5,k−1,1

− pA′,H5,k−1
| = negl(λ).

Proof. The follows from the adaptive security of the delegatable PRF.

Claim 4.13. Assuming that IBE is a secure WCIBE scheme, there exists a negligible function negl(·) such
that for all λ ∈ N, k ∈ [n− 1]0, |pA′,H5,k−1,2

− pA′,H5,k−1,1
| = negl(λ).

Proof. The follows from the blindness property of the IBE scheme.
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Claim 4.14. Assuming that PRF is a secure delegatable PRF scheme, there exists a negligible function
negl(·) such that for all λ ∈ N, k ∈ [n− 1]0, |pA′,H5,k−1,3

− pA′,H5,k−1,2
| = negl(λ).

Proof. The follows from the adaptive security of the delegatable PRF.

Claim 4.15. Assuming that GC is a secure blind garbling scheme, there exists a negligible function negl(·)
such that for all λ ∈ N, k ∈ [n− 1]0, |pA′,H5,k

− pA′,H5,k−1,3
| = negl(λ).

Proof. The follows from the blindness property of the garbling scheme.

Using the above claim and the triangular inequality, we get that |pA,H5,k
− pA,H5,k−1

| = negl(λ).

Observe that in the last hybrid, the challenge ciphertext ct∗ = (ct∗0, ct
∗
1) does not contain any information

of id∗b or mb. This is because ct∗0 are generated without using id∗b or mb whereas, all the entities in ct∗1
have been replaced with a truly random string. Therefore, the probability of any adversary A that wins
this hybrid game is exactly 1

2 . Using this fact, the above lemmas and triangular inequality, for all PPT
adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N, pA,0 ≤ 1

2 + negl(λ).

Using Theorem 2.8 and Theorem 4.1, we have the following theorem.

Theorem 4.16. Assuming the hardness of CDH, there exists adaptively secure anonymous unbounded HIBE
scheme.
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A Proof of Theorem 2.3

The construction is identical to that provided in the work of Garg and Döttling [DG17a], and we present it
here for completeness. For convenience, we will assume that the length of keys and the outputs of the PRF is
λ whereas the length of the inputs is unbounded. Let PRG be a length-tripling pseudorandom generator with
seed length λ. We write PRG(s) = PRG0(s) ||PRG1(s) ||PRG2(s) where |PRGi(s)| = λ, for all i ∈ {0, 1, 2}.
The construction for the strong-adaptively secure PRF is as follows.

• Setup(1λ) : The setup algorithm outputs a random key k ← {0, 1}λ.
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• Eval(k, x) : The evaluation on input a key k and string x such that |x| = d, outputs

PRG2(PRGxd
(PRGxd−1

(. . . (PRGx1(k)) . . . ))).

• Delegate(k, x) : On input a key k and string x such that |x| = d, the delegation algorithm outputs

PRGxd
(PRGxd−1

(. . . (PRGx1
(k)) . . . )).

Correctness. Correctness follows immediately from the construction.

Security. As the proof is quite similar to the proof presented by Hofheinz, Kastner, and Klein [HKK23],
we only provide the specifics where the proof varies, leaving it to the readers to refer to [HKK23] for the
proof details (the changes are marked in red). The main theorem is as follows.

Theorem A.1 (analogous to [HKK23, Theorem 1]). Let PRG : {0, 1}λ → {0, 1}3λ be a PRG. Then, for
every PRF adversary A that runs in time tA, makes at most QA queries, and the challenge query is of length
d, for every γ ∈ (0, 1], there is a PRG adversary B that runs in time tB, makes at most QB oracle queries5 to
the PRG challenger, such that

AdvPRGB ≥ 1

2(d+ 1)
·
(
AdvPRFA − γ

)
, where

T ≤ ((d+ 3) ·QA + 2), tB ≤ (2 · ln(2 · T /γ)) · tA, QB ≤ 2 · ln(2 · T /γ) · T 3/γ

Compared to [HKK23, Theorem 1], the only changes are (a) we need a length tripling PRG instead of
a length doubling one, (b) the tree depth d is not fixed, instead it depends on the adversary’s challenge
input’s length, (c) we need to replace d with (d + 1) in the advantage bound, and the bound on T since
there are (d + 1) levels of PRG computation in our setting. Using the theorem, if AdvPRFA ≥ ϵ (where ϵ is
some non-negligible function), then we can use γ = ϵ/2 to get a PPT algorithm that breaks PRG security
with non-negligible advantage.

Proof Sketch. We recall two notations from [HKK23] which will be needed for our proof sketch. First,
the view of an A, denoted by view = (ev1, . . . , evT ), captures the PRG evaluations that are triggered by
each delegation and evaluation query made by A. Each delegation query x results in the generation of{
(kx′ || 0, kx′ || 1, kx′ || 2)

}
x′≺x by the challenger, whereas, each evaluation query x results in the generation of{

(kx′ || 0, kx′ || 1, kx′ || 2)
}
x′⪯x by the challenger. These are denoted by {(PRG, x′)}x′ . The term lastpret(view)

on a view = (ev1, . . . , evT ) is the largest index t′ ≤ t such that event evt′ (is a (PRG, x) event) is on the path
along x∗, i.e., x ≺ x∗.

In [HKK23], the authors define a sequence of d + 1 hybrid games, where Game 0 corresponds to the
adaptive security game, and in Game d, the adversary’s advantage is 0. We will follow the same hybrids.
The hybrids are defined using a sampler (defined in Algorithm 1). This is identical to Algorithm 12 in
[HKK23], except that we need to sample three keys in Step 8 instead of two keys. At a high level, the
difference between the ith and (i+1)th hybrids is that the sampler strategically replaces the PRG evaluation
at level i + 1 along the path of x∗ with truly random values, while ensuring that the newly sampled view
remains consistent with the distribution associated with the adversary’s view.

B Anonymous HIBE using Lockable Obfuscation

In this section, we revisit the concept of lockable obfuscation introduced by Goyal, Koppula, and Wa-
ters [GKW17] and present their transformation in the HIBE setting, (mostly) verbatim from [GKW17]. The
transformation takes a regular HIBE scheme and applies lockable obfuscation to derive an anonymous HIBE
scheme.
5B has access to an oracle that, on each invocation, returns either a freshly generated truly random string or PRG(s) for a
newly sampled random seed s.
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Algorithm 1 Sampler Dview
i,bprf

(analogous to [HKK23, Algorithm 12])

1: view0 ← Dview
prf,bprf

2: T := len(view0)
3: for t := 1 to T do
4: Write viewt−1 = (evt−1,0, . . . , evt−1,T )
5: repeat
6: Rewind adversary to point t
7: if evt−1,t = (PRG, x) with |x| ≤ i and lastpret(viewt−1) = t then
8: Sample fresh kx || 0, kx || 1, kx || 2 ← {0, 1}λ
9: Resample from point t+ 1 to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt−1,t, evt,t+1, . . . , evt,T )
10: else
11: Resample from point t to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,T )
12: end if
13: until lastpret(viewt) = lastpret(viewt−1) and len(viewt) = len(viewt−1)
14: end for
15: Return viewT

B.1 Lockable Obfuscation

Let n,m, d be polynomials, and Cn,m,d(λ) be the class of depth d(λ) circuits with n(λ) bit input and m(λ)
bit output. A lockable obfuscator for Cn,m,d consists of algorithms Obf and Eval with the following syntax.
LetM be the message space.

• Obf(1λ, P,msg, α)→ P̃ . The obfuscation algorithm is a randomized algorithm that takes as input the
security parameter λ, a program P ∈ Cn,m,d, message msg ∈ M and ‘lock string’ α ∈ {0, 1}m(λ). It

outputs a program P̃ .

• Eval(P̃ , x)→ y ∈ M∪ {⊥}. The evaluator is a deterministic algorithm that takes as input a program

P̃ and a string x ∈ {0, 1}n(λ). It outputs y ∈M∪ {⊥}.

Correctness For correctness, we require that if P (x) = α, then the obfuscated program P̃ ← Obf(1λ, P,msg, α),

evaluated on input x, outputs msg, and if P (x) ̸= α, then P̃ outputs ⊥ on input x.

Security Let n,m, d be polynomials. A lockable obfuscation scheme (Obf,Eval) for Cn,m,d and message
space M is said to be secure if there exists a PPT simulator sim such that for all PPT adversaries A =
(A0,A1), there exists a negligible function negl(·) such that the following function is bounded by negl(·):∣∣∣∣∣∣∣∣Pr

A1(P̃b, state) = b :

(P ∈ Cn,m,d,msg ∈M, state)← A0(1
λ)

b← {0, 1}, α← {0, 1}m(λ)

P̃0 ← Obf(1λ, P,msg, α)

P̃1 ← sim(1λ, 1|P |, 1|msg|)

− 1

2

∣∣∣∣∣∣∣∣
B.2 Transformation

Let HIBE = (HIBE.Setup,HIBE.KeyGen,HIBE.Delegate,HIBE.Enc,HIBE.Dec) be a hierarchical identity based
encryption scheme for message spaces {Mλ}λ∈N with decryption circuit of depth d(λ) and secret key space

{0, 1}ℓ(λ). Also, let O = (Obf,Eval) be a lockable obfuscator for circuit class Cℓ,k,d (i.e., the class of depth
d(λ) circuits with ℓ(λ) bit input and k(λ) bit output). For simplicity, assume thatMλ = {0, 1}k(λ). Below
we describe our construction. For notational convenience, let ℓ = ℓ(λ), k = k(λ) and d = d(λ).
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• Setup(1λ) → (mpk,msk). The setup algorithm runs HIBE.Setup to generate master public key and
master secret key as (mpk,msk)← HIBE.Setup(1λ).

• KeyGen(msk, id)→ skid. The key generation algorithm runs HIBE.KeyGen to generate the secret key as
skid ← HIBE.KeyGen(msk, id).

• KeyGen(msk, id)→ skid || id′ . The delegation generation algorithm runs the HIBE.Delegate algorithm to
generate the delegated secret key as skid || id′ ← HIBE.Delegate(skid, id

′).

• Enc(mpk, id,m)→ ct. The encryption algorithm chooses a random string α← {0, 1}k and encrypts it
as ctα ← HIBE.Enc(mpk, id, α). Next, it obfuscates the decryption circuit with message m and the lock

α as P̃ ← Obf(1λ,HIBE.Dec(·, ctα),m, α). Finally, it outputs the ciphertext as ct = P̃ .

• Dec(skC , ct) → m or ⊥ . Let ct = P̃ . The decryption algorithm evaluates the obfuscated program on

input skC , and outputs Eval(P̃ , skC).

Correctness and Efficiency. Correctness follows directly from correctness of underlying objects. More-
over, we can note that since the since of HIBE.Dec(·, ctα) circuit is fixed at encryption time, therefore we
could lockable obfuscation for appropriate depth circuit. Thus, even if the underlying HIBE schee supports
unbounded length identities, then so will our anonymous HIBE scheme.

Security. The proof of security follows from adaptive security on underlying HIBE and lockable obfuscation
security. Basically, first one could switch ctα to encrypt a garbage value instead of α. This follows from
adaptive security of underlying HIBE. Then we can use lockable obfuscation security to simulate P̃ since
α is no longer used anywhere else. Thus, the final HIBE ciphertext is simply a simulated program, which
is independent of recipient id. This concludes the adaptive security proof for the above anonymous HIBE
scheme.

Theorem B.1. Assuming the hardness of LWE, there exists adaptively secure anonymous unbounded HIBE
scheme.
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