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Abstract. In this article we present a non-uniform reduction from rank-
2 module-LIP over Complex Multiplication fields, to a variant of the
Principal Ideal Problem, in some fitting quaternion algebra. This reduction
is classical deterministic polynomial-time in the size of the inputs. The
quaternion algebra in which we need to solve the variant of the principal
ideal problem depends on the parameters of the module-LIP problem,
but not on the problem’s instance. Our reduction requires the knowledge
of some special elements of this quaternion algebras, which is why it is
non-uniform.
In some particular cases, these elements can be computed in polynomial
time, making the reduction uniform. This is the case for the Hawk
signature scheme: we show that breaking Hawk is no harder than solving
a variant of the principal ideal problem in a fixed quaternion algebra
(and this reduction is uniform).

1 Introduction

Two lattices L,L′ are said isomorphic when there exists a linear isometry between
them, and the Lattice Isomorphism Problem (LIP) asks to compute such an
isometry. It has been studied in [18,25,36] as a standalone algorithmic problem,
and these works achieve superexponential complexity — at best nO(n) time in
the worst-case — for lattices of rank n. Stemming from this apparent hardness,
LIP has recently been introduced as a security assumption to find cryptographic
primitives in [1,3,16]. It joins other isomorphism-finding-based assumptions already
in use in multivariate or code-based cryptography. Soon after, the signature
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scheme Hawk was presented [15] and submitted5 to the second call for post-
quantum digital signatures organized by the NIST. It relies on a structured
variant of LIP called module-LIP. In this variant, L and L′ are now module
lattices (a transition identical to that of LWE to module-LWE) and an isometry
compatible with the module structure must be found. The resulting scheme
demonstrates slightly better efficiency and signature sizes compared to Falcon
and Dilithium, the two lattice-based signatures selected by NIST during the
first call [35]. Owing to its recent cryptographic introduction, the cryptanalysis
of module-LIP, and thus of Hawk, is however quite young, making it an attractive
target for cryptanalysts.

In the simplest version of module-LIP [15], an attacker is given a (module-
compatible) rotation of O2

K , where OK is the ring of algebraic integers of a
number field K, and is asked to recover the corresponding isometry. As there
may be many more symmetries linked to the algebraic structure of K, it can
be hoped that finding isometries of module lattices can be an easier task than
for the plain case. At Eurocrypt 2024, Mureau et al. [33] focused on the case of
totally real6 number fields and proposed a (heuristic) algorithm to solve module-
LIP over such fields. In the special case of the module O2

K and for some totally
real number fields, this algorithm runs in polynomial time. On the one hand,
this confirmed the intuition that module-LIP could be significantly easier than
LIP (in our current state of knowledge). But, on the other hand, the current
representative of module-LIP-based schemes, Hawk, is not designed over totally
real fields. Instead, it is designed over the prevalent power-of-two cyclotomic
fields, which are by nature totally imaginary. One notes that a cyclotomic field
K = Q(ζ) always comes with a totally real maximal subfield F = Q(ζ + ζ−1),
but the authors of [33] could not use this to their advantage to extend their
algorithm to Hawk’s design. This work aims at narrowing this gap.

From LIP to quaternion ideals. In the case of Hawk, we are given a public
Gram-matrix G = CTC corresponding to a secret basis C of O2

K :

C =

(
a c
b d

)
and G =

(
q11 q12
q12 q22

)
.

Our first observation is that the entire geometry of the problem can be fully
understood by only the first secret vector (a b). Intuitively, once we know this
vector, we can examine the (scaled by q11-)Gram-Schmidt orthonormalization
over K of the secret matrix C, that is, the decomposition of C over the basis
spanned by (a b) and its K-orthogonal (−b a).

Indeed, the value of q22 perfectly determines the component of (c d) over
(−b a), while q12 determines its component over (a b) itself. Thus, we may wish

5 https://hawk-sign.info/
6 Any number field comes with a set of embeddings into either R or C. The field is

said totally real (resp. totally imaginary) when all these embeddings map to R (resp.
none of these embeddings maps to R).
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to study the problem through the lens of (a b) (and its orthogonal (−b a)), more
specifically focusing on recovering the lattice L spanned by the transpose of these
two vectors, i.e.,

L := L(A) with A :=

(
a −b
b a

)T

=

(
a b

−b a

)
.

Elementary linear algebra on the matrix A and G reveals that this lattice is also

spanned by the basis A′ =

(
1 0
q12 q11

)
, which is entirely determined by the public

knowledge of G. Note that the vector (a b) belongs to L, and an inspection
of its K-norm (i.e., aa + bb = q11) shows that it must be a shortest vector
of L. Consequently, we can recover it — or one of its rotations — with a
single module-SVP instance. Since in the case of Hawk, the descent over Z of
this lattice is hypercubic, advanced algorithms can even be employed to solve
this instance [17]. However, the general case of rank-2 module-LIP involves less
geometrically structured modules, not always of the form O2

K . Addressing these
objects at an arithmetic level rather than a geometric one is often better suited.

To do so, let us take a step back: intuitively, the lattice L is spanned by (a b)
and a “conjugate” of this vector, as the image of an involution of the algebra
K2. Thus, this rank 2 lattice is effectively a one-dimensional object, as being

determined by a single vector in K2. Examining the matrix M(a, b) :=

(
a −b
b a

)
reveals its similarity to the matrix representation of complex numbers, i.e., the

representation C ∋ x + yi 7→
(
x −y
y x

)
∈ M2(R). When K is totally real, we

can mimic this representation and work with the element a+ ib in the quadratic
extension K(i)/K. However, when K already contains the imaginary unit i, this
identification is no longer possible. In such cases, we can artificially introduce
an additional root of unity, say j, satisfying j2 = −1, which acts as the element(
0 −1
1 0

)
. Now the map M(a, b) 7→ a + bj is a morphism of algebras, with ij =

−ji. This means that a+ bj belongs to a quaternion algebra over K, and relates
the lattice L to the principal ideal IL spanned by this element. Additionally,
we are given q11 = detM(a, b) =: nrd(a + bj), with nrd called the reduced
norm of the algebra. From the geometric interpretation, the ideal IL can be
described using only public information, and we are thus solving a principal
ideal problem (PIP) instance, given the reduced norm of a generator. When K
is a totally real field, this problem is solved in polynomial time by the Gentry-
Szydlo algorithm [23], and its generalization by Lenstra and Silverberg [27].
However, there is currently no such counterpart for noncommutative quaternion
algebras. Turning to the general case in the hope for a complete reduction,
we face several challenges stemming from this noncommutativity. While being
somewhat common objects in isogeny-based cryptography, such structures have
less exposure or involvement in lattice-based cryptography (they can be seen as
a particular case of cyclic algebras, studied in a lattice context in e.g. [30]).
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Contributions. Our main contribution is a general reduction from the rank-2
version of module-LIP over complex multiplication (CM) fields,7 to the reduced-
norm Principal Ideal Problem (nrdPIP). This latter problem consists of computing
a particular generator of a principal ideal in a suitable quaternion algebra over K,
given the reduced norm of the generator we are looking for. A notable particular
case, that includes Hawk’s instances, is the following:

Theorem 1.1 (Informal, special case of Corollary 4.4). Let K be a cyclotomic
field of degree d and let G = V ∗V ∈M2(OK) with V ∈ GL2(OK) a basis of O2

K .
Given access to an oracle solving nrdPIP, computing a matrix U ∈ GL2(OK)
such that U∗U = G can be done in time polynomial in d and the size of G, by
making only one call to the nrdPIP oracle.

The general version of this statement for all CM number fields and all rank-2
module lattices can be found in Corollary 3.9. In essence, the crux of the method
is representing a module of rank 2 over a number field as an ideal — i.e. a module
of rank 1 — over a ring of dimension twice larger. We stress that when the field
where LIP needs to be solved is a cyclotomic field, there are no known polynomial
time algorithm to solve the quaternionic version of the principal ideal problem
with given reduced norm. In other words, this work does not break Hawk. Our
reduction rather shows that any improvement for solving the nrdPIP problem
(or SVP in ideals of quaternion algebras) would directly impact the hardness of
rank-two module-LIP and the security of Hawk.

To the best of our knowledge, the best algorithm solving the nrdPIP instances
generated by our reduction is due to Kirschmer and Voight [29, Alg. 6.3]. Instantiating
the nrdPIP oracle with this algorithm proves in particular that a single call to
an SVP solver in dimension 2d is sufficient to break Hawk (a fact that seemed
folklore so far, but was never proven anywhere to the best of our knowledge).
In the original Hawk article [15], the authors explain in Section 4.2 that the
best algorithms solving (module-)LIP require at least one SVP call, so to be
conservative they “assume that the best key recovery attack requires one to find
a single shortest vector”. Our result shows that this assumption is tight: one SVP
call is indeed enough for a key recovery attack.

While our reduction provides an easy way to prove this fact about Hawk, it
is probably overkill: the underlying module is free, has rank two, and has many
orthogonal shortest vectors. There are probably more straightforward ways to
show that a single SVP call in a large lattice is enough. For general rank-2
modules over a CM-field K, there does not seem to be a Karp reduction anymore
(i.e., a reduction making only one call to an SVP oracle): instead we are only able
to reduce the module-LIP problem in any rank-2 module of K2 to two instances
of the nrdPIP problem (which can then be reduced to two instances of SVP in
ideal lattices of a non-commutative ring of dimension 2d).

7 A CM field K is a totally imaginary field which is a degree 2 extension of some
totally real subfield F .
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Related works. The Principal Ideal Problem over a number field (say, F -PIP)
has been coined as a central problem in algorithmic number theory (e.g. [10]).

In an arbitrary number field, the state-of-the-art classical algorithms are
heuristic and run in subexponential time [6,4] or quantum polynomial time [5].
We note that all these algorithms reduce to the problem of computing the unit
group and the class group of the underlying field. In lattice-based cryptography,
F -PIP appeared in important results [12,13] on the hardness of the Ideal-SVP
problem. In this article we encounter a variant of this problem over (totally
definite) quaternion algebras, sayA-PIP. In this context, an algorithm to compute
a generator of a principal ideal I ⊂ A is provided in [29, Alg. 6.3]. The strategy
reduces to the computation of the class group of F and to a short vector
computation in a rank-2d Z-lattice, where d is the degree of K.

While computing the class group may be done in quantum polynomial time,
computing short vectors in lattices is believed to be hard even for quantum
computers. For more general algebras, Bley et al. [8] give an algorithm solving
PIP by reducing it to many subproblems, including PIP in K. We note that
their work also provides algorithms to compute isomorphisms between finitely
generated modules over number fields, but that these are not isometries between
modules lattices. In other words, they are not lattice isomorphisms in the sense
we are interested in.

With the additional information of the reduced norm of a generator of a
principal ideal (say, F -nrdPIP), the situation can change drastically and (classical)
polynomial time complexity can be achieved for CM extensions. For cyclotomic
fields, this observation goes back to Gentry and Szydlo’s algorithm [23] to attack
NTRU encryption. Variants of this algorithm [26,22,19,21] were subsequently
used to attack lattice-based signatures in several context, and a more general
version was described by Lenstra and Silverberg [27], covering in particular all
CM fields. On the other hand, for the quaternion variant A-nrdPIP, there are
(to our knowledge) no known polynomial time algorithms, and thus the problem
is solved by using a A-PIP solver instead.

This work can be viewed as an extension of the reduction of Mureau et al. [33]
to cover the case of CM-fields, which include cyclotomic fields. Our reduction
technique subsumes theirs, improving on their polynomial time algorithm to
solve the problem over totally real fields, and additionally removing the need for
a heuristic assumption and the dependency in ρK in their complexity.8

Luo, Jiang, Pan, and Wang published a concurrent work [31], reducing module-
LIP over a CM field to the problem of finding a specific (symplectic) automorphism.
With the knowledge of this automorphism, finding the correct congruence matrix
reduces to a O-nrdPIP instance in a commutative ring O, where the polynomial
time algorithm of Lenstra and Silverberg [27] applies. This “reduction to rank
one” has a flavor similar to our results, and one can interpret the knowledge
of the symplectic automorphism as a way to bypass the non-commutativity
of quaternions. In the totally real case, that is in the context of K(i)/K, the

8 ρK is the so-called residue at 1 of the Dedekind zeta function of the field.
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authors give an alternative presentation of our reduction using the automorphism
formalism (corresponding to Section 4 of [31]).

2 Preliminaries

For a ring R, we denote by R× its set of invertible elements (that is, whose
inverses are in R). The set of n × n matrices with entries in R is denoted by
Mn(R) and the subset of invertible matrices forms the group GLn(R). We use
bold letters to denote vectors. For reasons of space, the proofs of the results
stated further in this section without references are deferred to Appendix A.1.

2.1 Number Fields

Generalities A number field K is a finite extension of the field of rational
numbers Q. It is isomorphic to Q[X]/P (X), where P (X) is an irreducible monic
polynomial of Q[X]. The degree d := [K : Q] of K over Q is exactly the degree of
P (X). A number field K of degree d has d embeddings K → C. Any embedding
σi : K → R is called a real embedding. An embedding σi which is not real
is called complex, and it can be composed with the complex conjugation in C
to obtain a different complex embedding σi. The canonical embedding of K is
defined as σ(e) := (σ1(e), . . . , σd(e)) ∈ Cd, for all e ∈ K and where the σi are all
the embeddings of K. We extend it coordinate-wise to Kℓ.

The space KR is defined9 as KR = K ⊗Q R. Then the canonical embedding
of K extends to KR and its image is isomorphic to the real subspace H =
{(x1, . . . , xd) : xd1+i = xd1+d2+i for 1 ≤ i ≤ d2} ⊂ Rd1 ×C2d2 ⊂ Cd where d1 is
the number of real embeddings of K and 2d2 the number of complex embeddings.
Through this identification KR is equipped with a complex conjugation · which
amounts to taking the complex conjugate coordinate-wise. We denote by Un(KR)
the set of n × n unitary matrices with coefficients in KR, i.e., the set of Θ ∈
Mn(KR) such that Θ∗Θ = Id, where Θ∗ is the transpose-conjugate of Θ.

When all the embeddings of K → C are real, we say that K is totally real.
When none of them are, we say that K is totally complex. An element a ∈ K
is totally positive, resp. totally negative, if all its embeddings are positive, resp.
negative real numbers (in particular, they are real numbers). The (absolute)
trace and norm of e ∈ K is Tr(e) =

∑
i σi(e) and N(e) =

∏
i σi(e) ∈ Q.

We note OK the ring of algebraic integers of a number field K. It is a free Z-
module of rank d. The (absolute) discriminant of K is ∆K = |det([Tr(βiβj)]i,j)|,
for any Z-basis (βi)i of OK .

CM fields. A Complex Multiplication (CM) number field K is a totally complex
quadratic extension of a totally real number field F (we also say K/F is a CM-
extension). Equivalently, here F is a totally real number field and there exists
a totally negative element a ∈ F such that K = F (

√
a) [42, Page 38]. In a

9 If K ≃ Q[X]/(P ), then one has KR ≃ R[X]/(P ).
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CM-extension K/F , there is a unique non-trivial automorphism of K fixing F
pointwise, which is called the complex conjugation. With the notation K =
F (
√
a), it acts on K by τ :

√
a 7→ −

√
a. In particular, the relative norm for

the extension K/F is defined by NK/F (x + y
√
a) := (x + y

√
a) · τ(x + y

√
a) =

(x + y
√
a)(x − y

√
a) = x2 − ay2, for all x + y

√
a ∈ K. The following lemma

justifies why the automorphism τ is also called complex conjugation.

Lemma 2.1 ([33, Lemma 2.7]). Let K/F be a CM extension of number fields.
For any embedding σi : K → C and x ∈ K, we have σi(x) = σi(τ(x)).

To simplify notations in the rest of this article, we write x instead of τ(x).

Roots of unity. From a celebrated result of Kronecker, one can characterize the
roots of unity among algebraic integers in a number field. It is also useful to
deal with equations of the form aa+ bb = 1 (for a, b in the ring of integers of a
CM number field K), as stated below (and proved in Appendix A). These are
involved later in the paper, see Proposition 3.13 and Corollary B.23.

Proposition 2.2 ([14, Theorem K]). Let K be a CM field and a ∈ OK . If a
is non-zero and if all its conjugates have absolute value at most 1, then a is a
root of unity.

Corollary 2.3. Let K be a CM field and a, b ∈ OK be such that aa + bb = 1.
Then either a is a root of unity and b = 0 or a = 0 and b is a root of unity.

Computing the group µ(K) of roots of unity in a number field is handled by
the following lemma. Note that this group is cyclic [34, 7.4].

Lemma 2.4 (Computing roots of unity [33, Cor. 2.11]). Let K be a degree
d number field. Then, K has at most 2d2 roots of unity and there is a polynomial
time algorithm that given a basis of OK , computes the roots of unity in K.

Ideals. An integral ideal a of K is an additive subgroup of OK , such that for all
x ∈ OK , xa ⊆ a. A fractional ideal a of K is an additive subgroup of K such
that for some x ∈ K \ {0}, xa is an integral ideal. If a is generated by a single
element x, it is said to be principal, and is noted a = xOK . In general, fractional
OK-ideals can all be generated using at most two elements, see [10, Proposition
4.7.7]. We will use fraktur letters to denote fractional ideals of K or F .

Let a, b be two fractional ideals. The product ab is the smallest ideal containing
all products xy for x ∈ a and y ∈ b. We have that a ⊆ b if and only if there
exists an integral ideal c such that a = bc. When this is the case, we say that b
(equivalently c) divides a. An integral ideal p is prime whenever xy ∈ p implies
x ∈ p or y ∈ p. Prime ideals are the maximal ideals in OK . When dealing with
number fields, we have a unique factorization of integral ideals into prime ideals
(up to permutation). Ideals of the form pOK for a prime integer p can be factored
efficiently.

7



Lemma 2.5 ([11, Section 6.2.5]). There exists a polynomial time algorithm
that takes as input any prime integer p ∈ Z and a basis of the ring of integers OK

of a number field K, and computes all the prime ideals of OK dividing p · OK .

When K/F is a CM extension and a is a fractional ideal of K, the set
a := {x |x ∈ a} is again a fractional ideal of K, called the conjugate of a.

Modules. The main reference for this paragraph is the first chapter from [11].
Let V be a finite-dimensional vector space over a number field K. In this work,
for the sake of clarity, we will call “module” any finitely generated, torsion-free
OK-module in V . Such modules are always of the form a1b1 + · · ·+ aℓbℓ, where
the ai’s are fractional ideals in K and the bi’s are K-linearly independent vectors
in V . The data of ((b1, a1), . . . , (bℓ, aℓ)) is called a pseudo-basis of M and the
integer ℓ is called the rank of the module. We write B = (B, {ai}i≤ℓ) where B is
the (column) matrix of the bi’s, and we call it a pseudo-basis of the module. We
use bold capital letters to denote pseudo-bases. In this work, we always consider
modules with full rank, and let dimK(V ) = ℓ. A module M ⊂ Kℓ (resp. Oℓ

K) is
said to be rational (resp. integer).

Two pseudo-bases B = (B, {ai}1≤i≤ℓ) and C = (C, {bi}1≤i≤ℓ) generate the
same module if and only if there exists U = (ui,j)1≤i,j≤ℓ ∈ GLℓ(K) such that
C = BU and ui,j ∈ aib

−1
j for all 1 ≤ i, j ≤ ℓ and a1 · · · aℓ = (detU)b1 · · · bℓ ([11,

Proposition 1.4.2]).
In a CM-field K, the pseudo-Gram matrix associated with a pseudo-basis

B = (B, {ai}i≤ℓ) is G = (B∗B, {ai}i≤ℓ), where B∗ := B
t

is the conjugate-
transpose matrix and the complex conjugation is taken coefficient-wise.10

Let M,M ′ ⊂ Kℓ be modules and let Θ ∈ Mℓ(KR) such that Θ∗Θ = Id.
When M ′ = Θ ·M , we say that Θ is a module lattice isomorphism between M
and M ′. If moreover M ′ = M , we say Θ is a module lattice automorphism.

2.2 Quaternion algebras

We now give the background on quaternion algebras that is needed in this work.
A general reference for this topic is [41], from which we borrow most of the
material. For a field F , a F -algebra is an F -linear space which is also a ring (its
elements can be multiplied together into another ring element). In this work, we
are interested in one type of quaternion algebra, defined below. Recall that F is
a totally real field, a is a totally negative element in F , so that K = F (

√
a) is a

CM-extension.

Definition 2.6. The quaternion algebra A := (a,−1
F ) is the F -algebra of dimension

4 with basis {1, i, j, ij} and satisfying the rules

i2 = a ; j2 = −1 ; ij = −ji.
10 The pseudo-Gram matrix can be more generally defined for any number field [33,

Definition 3.6], but in this work, we will only be interested in CM-field.
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Because of the rule ij = −ji, A is a noncommutative algebra. Its center (the
set of elements that commute with every other) is equal to F . A quaternion
algebra is also equipped with an involution · defined by x+ iy + jz + ijt =
x − iy − jz − ijt. This map is F -linear and satisfies α = α and αβ = β · α
for any α, β ∈ A (see [41, Section 3.2]). The reduced norm on A is the map
nrd : A → F defined by α = x+ iy + jz + ijt 7→ αα = x2 − ay2 + z2 − at2. We
have nrd(αβ) = nrd(α)nrd(β) for all α, β ∈ A [41, Par. 3.3.4]. The CM-extension
K = F (

√
a) of F is included in A, and when x ∈ K, we have nrd(x) = NK/F (x).

Because of our choice for a, the quaternion algebras (a,−1
F ) are said to be

totally definite, as mentioned in the following proposition. In this article, we will
not need to know precisely what a totally definite algebra is, but we will use
results that hold only for totally definite algebras.

Proposition 2.7 ([24, Page 3], adapted). If F is a totally real number field
and a ∈ F is totally negative, then the quaternion algebra (a,−1

F ) is totally
definite.

A notable property of algebras of the form A = (a,−1
F ) as above is that they

are division algebras — that is, all their elements are invertible, or equivalently,
they are non-commutative fields. To see this, note that by definition, −a is totally
positive and thus so is nrd(α) = x2 − ay2 + z2 − at2. Since the embeddings
of a are also non-zero, α ̸= 0 if and only if nrd(α) ̸= 0. Then we can write
α−1 = nrd(α)−1α, and hence conclude that for our algebras, A× = A\{0}.

Quaternion orders and ideals. Let us fix a quaternion algebra A = (a,−1
F ) over

a totally real field F . Recall that in this work modules are all finitely generated
and torsion-free. We define OF -lattices and orders in A.

Definition 2.8 ([41, Definition 9.3.1 and 10.2.1]). An OF -lattice11 in A is
a OF -module contained in A and with full-rank in A (i.e., it is a rank-4 OF -
module included in A). An OF -order O ⊆ A is an OF -lattice in A that is also
a subring of A (in particular, 1 ∈ O). An OF -order of A is said to be maximal
if it is not strictly contained in another OF -order.

Similarly, one can define orders of A for different subrings of A. In this article,
we will only be interested in OF -orders, so we simply call them orders.

Lemma 2.9 ([41, Prop. 15.5.2], adapted). In the quaternion algebra A,
there exists (at least) one maximal order, and every order O is contained in a
maximal order.

Contrary to the case of number fields where the ring of integers is the unique
maximal order, there can be many maximal orders in a quaternion algebra.

Proposition 2.10 ([41, Lemma 10.2.7 and Definition 10.2.8]). Let I ⊆ A
be an OF -lattice. The set Oℓ(I) := {x ∈ A |xI ⊆ I} is an order of A, called the
left order of I. Similarly, the set Or(I) := {x ∈ A | Ix ⊂ I} is an order of A
called the right order of I.
11 Although related, these are not directly Euclidean lattices.
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We denote by O1 the (multiplicative) subgroup of norm 1 elements in an
orderO. In totally definite quaternion algebras,O1 is always finite, andO1/{±1}
belongs to a known list of groups, up to isomorphism — see B.3 for details.

Given an order O, a left (resp. right) fractional O-ideal is an OF -lattice
I ⊆ A satisfying xI ⊆ I (resp. Ix ⊆ I) for all x ∈ O. Since a left fractional
O-ideal is in particular an OF -lattice in A, we can define its left order Oℓ(I). By
definition, this order contains O, but it can be larger. We say that I is a sated
left fractional O-ideal if O = Oℓ(I) (i.e., if O is the largest order for which I is
a left ideal) [41, Definition 16.2.11]. A similar definition holds for right O-ideals.
From these definitions, any OF -lattice I ⊆ A is a (sated) left fractional ideal for
its left order Oℓ(I). In the rest of this section, we will review some definitions and
lemmas from [41, Chapter 16], that extend similar results for ideals in number
fields. These results will be stated for OF -lattices in A (but keep in mind that
these are left fractional O-ideals for some order O, depending on the lattice).

A OF -lattice is principal if there exists α ∈ A× such that I = αOr(I) =
Oℓ(I)α. For any OF -lattice I, if there exists α ∈ A× such that I = αOr(I),
then it also holds that I = Oℓ(I)α, see [41, 16.2.3]. Hence, to test if an OF -
lattice is principal, it suffices to test if it is left (or right) principal. Generally,
let S ⊂ A be a set generating a finitely generated module in A (for example,
a fractional ideal in K). The left (resp. right) O-ideal generated by S is the
smallest fractional left (resp. right) O-ideal of A containing the elements α · s
(resp. s ·α), for (α, s) ∈ O×S. It is denoted by OS (resp. SO). Note that if the
order O is maximal, OS is necessarily a sated left O-ideal.

Let I and J be two OF -lattices in A. The sum of I and J is defined by
I + J := {α + β |α ∈ I, β ∈ J} and their product IJ is the set of all finite
sums

∑
i αiβi, where αi ∈ I, βi ∈ J . It can be checked that I + J and IJ are

still OF -lattices in A (the sum of two finitely generated OF -modules is still a
finitely generated OF -module whose rank is at least the maximum of the ranks
of the two modules; for the product see [41, p.260]). An OF -lattice I is integral
if I2 ⊂ I, and a left ideal I is integral if and only if I ⊂ Oℓ(I), if and only if
I ⊂ Or(I). For an OF -lattice I of A, the reduced norm of I, denoted by nrd(I),
is the (fractional) ideal of F generated by the set {nrd(α) |α ∈ I}.The conjugate
ideal is the OF -lattice I := {α |α ∈ I}.

The quasi-inverse of an OF -lattice I ⊂ A is the set I−1 := {α ∈ A | IαI ⊆ I},
which is, again, an OF -lattice. Using the definition of the left order of an OF -
lattice, one can check that the above definition is equivalent to I−1 = {α ∈
A | Iα ⊆ Oℓ(I)} (because for all x ∈ A, we have x ∈ Oℓ(I) if and only if
xI ⊆ I). By definition, we always have II−1 ⊆ Oℓ(I) and I−1I ⊆ Or(I). We
say that I is invertible when the previous inclusions are in fact equalities. A left
fractional O-ideal I is invertible if it is invertible as an OF -lattice and if it is
sated as a left O-ideal (i.e., Oℓ(I) = O). The following lemma gives a sufficient
condition for an OF -lattice to be invertible and an expression of its inverse.

Lemma 2.11 ([41, Prop. 16.6.15 (b)]). Let I ⊆ A be an OF -lattice. Whenever
either Oℓ(I) or Or(I) is maximal, then both of them are maximal, and futhermore
I is invertible.

10



The following lemma characterizes the inverse of an invertible OF -lattice and
the inclusion of invertible lattices (see Appendix A for proofs).

Proposition 2.12. Let I, I ′ be OF -lattices I such that Or(I) = Oℓ(I
′) and I is

invertible. Then, one has II ′ = Oℓ(I) if and only if I ′ = I−1.

Lemma 2.13. Let I, J ⊆ A be OF -lattices with the same left order, i.e., Oℓ(I) =
Oℓ(J). If J ⊆ I, then the inclusion of quasi-inverses I−1 ⊆ J−1 holds.

Recall that for a given order O, a sated fractional left O-ideal I is an OF -
lattice with Oℓ(I) = O. The quaternionic ideals we will consider in this work are
all sated. When O is a maximal order, such sated left O-ideals enjoy many nice
properties akin to those of fractional ideals in number fields. A first property is
that I is always invertible by Lemma 2.11. Additionally, invertible OF -lattices in
A = (a,−1

F ) are locally principal ([41, Thm. 16.6.1]). A precise definition of this
notion is not needed for the core of this work; rather, it is enough to know that
such lattices have nice properties for the reduced norm, that we recall below —
see Appendix A for the proof of the last one. We say that I is compatible with
J if Or(I) = Oℓ(J).

Lemma 2.14 ([41, Le. 16.3.7, 16.3.5 and 16.3.8]). Let I, J be two OF -
lattices in A, with I invertible.

1. If I is compatible with J , then nrd(IJ) = nrd(I)nrd(J).
2. We have I = Oℓ(I)α if and only if α ∈ I and nrd(α)OF = nrd(I).

Lemma 2.15 ([41, Le. 16.5.11], adapted). Let I, J be two OF -lattices in
A, with I invertible. If I is compatible with J , then Or(IJ) = Or(J).

Lemma 2.16. Let I, J be two OF -lattices in A, with I invertible and Oℓ(I) =
Oℓ(J) or Or(I) = Or(J). If I ⊂ J and nrd(I) = nrd(J), then I = J .

Assume now that O is maximal. Then any left-O-ideal is sated. This implies
in particular that if I and J are two sated left O-ideals, then their sum is still
a sated left O-ideal. We also have the following proposition, which gives us a
description of the quasi-inverse12 of a sum of sated left O-ideals, and proved in
Appendix A.

Proposition 2.17. Let n be a positive integer, O be a maximal order in A and
J1, . . . , Jn be sated fractional left O-ideals in A. Then, the sum I = J1+ · · ·+Jn
has quasi-inverse

I−1 = J−1
1 ∩ · · · ∩ J−1

n .

We conclude this subsection with the norm reduced-Principal Ideal Problem
in quaternion orders. In the commutative version of this problem, K is typically
a cyclotomic number field, and the input consists in (a Z-basis of) a principal
ideal a · OK and the relative norm aa of one of its generator.
12 The same result holds for sums of invertible ideals of number fields.
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Definition 2.18 (O-nrdPIP). Let O be an order in A. The O-norm reduced
Principal Ideal Problem (O-nrdPIP) is: given as input a right O-ideal I and an
element q ∈ F such that nrd(I) = q · OF , to compute, if it exists, an element
g ∈ I with nrd(g) = q.

The following lemma, proven in Appendix A, justifies that computing g ∈ I
such that nrd(g) = q guarantees that I is generated by g.

Lemma 2.19. Let (I, q) be an instance of O-nrdPIP and suppose that g ∈ I is
a solution. Then I is a principal right O-ideal and g is a generator. Moreover,
the set of solutions is precisely the set of generators of I with reduced norm q,
which is equal to g · O1.

2.3 Module-LIP

This section introduces the problem we study, borrowing from [33].

Definition 2.20 (Congruent pseudo-Gram matrices). Two pseudo-Gram
matrices G = (G, {ai}1≤i≤ℓ) and G′ = (G′, {bi}1≤i≤ℓ) are said to be congruent
if there exists a matrix U = (ui,j)1≤i,j≤ℓ ∈ GLℓ(K) such that:

1. G′ = U∗GU .
2. ∀ i, j ∈ {1, . . . , ℓ}, ui,j ∈ aib

−1
j .

3.
∏

i ai = (detU)
∏

i bj .

Such a matrix U is called a congruence matrix between G and G′. The set of
congruence matrices between G and G′ is denoted by Cong(G,G′).

Given two congruent pseudo-Gram matrices G and G′, module-LIP is the
task of computing the set Cong(G,G′). Following the definition of [33], an
instance takes as an additional parameter a pseudo-basis B of a module M ⊂ Kℓ,
whose pseudo-Gram matrix is G.

Definition 2.21 (wc-smodLIPB
K [33, Definition 3.11]). Let B be a pseudo-

basis of a module M ⊂ Kℓ, and G the pseudo-Gram matrix associated to B.
Let G′ be a pseudo-Gram matrix congruent to G. The worst-case search module
Lattice Isomorphism Problem with parameters K and B (wc-smodLIPB

K) and
input G′, is to compute an element of the set Cong(G,G′).

One can interpret module-LIP as the problem of computing factorizations
C = (C, {bi}i) of G′ = (G′, {bi}i) (that is C∗C = G′) with the constraint
that C is a pseudo-basis of M . In fact the equivalence between LIP and Gram
factorization has already been noticed by Szydlo in [39], for rotations of Zn, in
which case the equivalence with SVP also holds.

Lemma 2.22. Let B = (B, {ai}1≤i≤ℓ) be a pseudo-basis of a rank-ℓ module
M ⊆ Kℓ and with associated pseudo-Gram matrix G. Let G′ = (G′, {bi}1≤i≤ℓ)
be a pseudo-Gram matrix congruent to G. Then a matrix U ∈ GLℓ(K) is in
Cong(G,G′) if and only if C = BU satisfies C∗C = G′ and C = (C, {bi}1≤i≤ℓ)
is a pseudo-basis of M .

12



See Appendix A for the proof. The relation G′ = U∗GU implies that detU is
a solution to the norm equation nrd(x) = NK/F (x) = detG′/ detG in K. These
equations has been studied and solved in [26], having a large number of solutions
in general. The following technical lemma will be useful for the reduction and
is proved in Appendix A. It tells us that all U ∈ Cong(G,G′) have the same
determinant in K×/µ(K). Moreover when K is a CM field, a representative of
this class can be computed efficiently.

Lemma 2.23 (Computing the determinant). Let G = (G, {ai}i) and G′ =
(G′, {bi}i) be two congruent pseudo-Gram matrices. Congruence matrices between
G and G′ all have the same determinant, up to a root of unity of K. We write
δ̄(G,G′) ∈ K×/µ(K) for the equivalence class of all these determinants modulo
the roots of unity of K.

Moreover, if K is a CM field, then there is a polynomial time algorithm
ComputeDet that given G and G′ (and a basis of OK), computes a representative
in K× of δ̄(G,G′).

2.4 Representations of objects

There are standard ways to represent algebraic numbers and generally, modules
over number rings through their pseudo-bases, coming together with notions of
sizes. This material is common to other similar works. In particular, we borrow
many tools from [33, Section 2.3]. We nonetheless present it in Appendix A.2,
for the sake of completeness.

3 A reduction from modLIP to nrdPIP

Let K/F be a CM extension of number fields where K = F (
√
a) and A denotes

the totally definite quaternion algebra A = (a,−1
F ) over F . Through this section

we fix a maximal order O in A containing the order O0 = OK ⊕ OK · j. In
this section, unless explicitly stated otherwise, the modules in K2 shall be all
understood with their module structure taken over OK .

In this section we prove the main result of this paper, namely, a polynomial
time reduction from module-LIP for rank-2 modules in K2 to nrdPIP, the
problem of computing a generator of a (right) principal ideal in A, with given
reduced norm (see Definition 2.18). Thanks to Lemma 2.22, module-LIP can
be reinterpreted as the task of computing the factorizations of a pseudo-Gram
matrix which are also pseudo-bases of a fixed module M ⊂ K2.

The key point is the isomorphism A = K ⊕K · j ≃ K2 of K-vector spaces.
As a consequence, to a matrix C ∈ M2(K) corresponds a unique pair (α, β) ∈
A2 (applying the previous isomorphism on each column of C). We prove in
Lemma 3.5 that when C∗C = G′ holds, then the quotient αβ−1 can be obtained
from an elementary computation involving only the entries of G′ and det(C).
In the setting of module-LIP, this determinant can be computed in polynomial
time using Lemma 2.23, up to a root of unity of K.
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While we are not able to recover α directly from αβ−1, we next use it to
build a principal ideal generated by α. The isomorphism K2 ≃ A also associates
a module M ⊂ K2 to a O-ideal in A: for example, the left ideal of A generated
by all the (images of) the vectors of M . This ideal, denoted by IM , is efficiently
computable from any pseudo-basis of M (Lemma 3.2). In Proposition 3.6, we
then use the knowledge of αβ−1 and IM to build a principal right O′-ideal
α · O′, where O′ is some maximal order in A, efficiently computable from IM
but different from O in general.

Now α · O′ is known, and nrd(α) is an entry of G′: this is an instance of
O′-nrdPIP, which we handle with an oracle. Once such a generator has been
computed, the other generators with the same reduced norm are its (right)
multiples by the elements of O′1, as shown in Lemma 2.19). This leads us to
the factorizations of G′ (C with C∗C = G′), or equivalently to the corresponding
congruence matrices, see Algorithm 1. We are however working with a determinant
that may not be the correct one, since we know it up to a root of unity. Thanks
to the cyclicity of µ(K), we are able to cover all the possible cases in two steps,
and to recover the whole class Cong(G,G′), see Algorithm 2.

Most of the objects used in the reduction depend only on the parameters
of module-LIP and not on its input. Following standard practices, we assume
that we are given Z-bases of OF and OK and pseudo-bases of O, IM and O′

(as OF -modules, see the previous section). We will also assume that the finite
group O′1 has been precomputed13. In our situation such a group belongs to an
explicit list of finite groups ([41, Chap. 32] and see also Appendix B.3).

3.1 Preliminary results

We first start by proving a few auxiliary but useful lemmata.

Embedding modules. Let us recall the setting for an instance of (rank-two)
module-LIP. We are given a pseudo-basis B = (B, a1, a2) of a rank-two module
M ⊂ K2, with associated pseudo-Gram matrix G. Then, wc-smodLIPB

K takes
as input a pseudo-Gram matrix G′ and asks to compute the set Cong(G,G′).
Behind the relation A = K ⊕K · j, we have

φ : K2 −→ A
(x, y) 7−→ x+ yj

an isomorphism of K-vectors spaces, where K acts both on K2 and A by left
multiplication. Recall that O is a maximal order of A, fixed once and for all,
and containing O0 = OK ⊕OK · j.

Definition 3.1. Let M ⊂ K2 be a module. We define IM = O · φ(M), that is,
the left O-ideal generated by φ(M).

13 By computation we mean an abstract finite presentation of a group G, together with
an isomorphism G ≃ O1.
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Since dM ⊂ O2
K for some d ∈ Z, the set φ(M) is included in the O0-lattice

1
dφ(O

2
K), and IM is indeed a left O-ideal. The content of the following lemma

gives a convenient description of IM when a pseudo-basis is known.

Lemma 3.2. Let B = ((b1 | b2), a1, a2) be a pseudo-basis of a module M ⊂ K2.
Let α = φ(b1) and β = φ(b2). Then we have

IM = Oa1α+Oa2β.

Proof. Let {a1, a2} ⊂ K be a two-elements generating set for a1. Then a1α =
a1OK ·α+ a2OK ·α is contained in a OF -lattice of A.The same argument holds
for a2β. Since φ is left K-linear and M = a1b1+a2b2 we have φ(M) = a1α+a2β,
so IM ⊂ Oa1α+Oa2β. Conversely, φ(M) contains the rank one submodule a1α
so it holds that Oa1α ⊂ IM , and in the same way Oa2β ⊂ IM . As IM is stable
by addition, it must contain the sum Oa1α+Oa2β.

By construction, the left order of IM is O. Its right order O′ := Or(IM ) is a
priori different from O, except for special cases such as when M = O2

K . In this
case, the previous lemma applied with the (pseudo)-basis Id = (Id,OK ,OK)
of O2

K immediately gives IM = O, thus O′ = O holds. This fact is stated in
the following corollary, which will be useful to state a simplified version of our
reduction when M = O2

K .

Corollary 3.3. For M = O2
K , we have IM = O.

Remark 3.4. By referring to the discussion at the beginning of [37, Chapter
24], the identity IM = O holds whenever IM is integral and nrd(IM ) = OF is
verified.14 Note that M ⊆ O2

K implies φ(M) ⊆ O0 and thus IM ⊆ O; in other
words, IM is integral whenever M ⊆ O2

K .

Gram matrices and quaternions. We can identifyM2(K) with K2×K2 (taking
the column vectors) and thus with A2, applying φ columnwise. Therefore to a
matrix C ∈ M2(K) corresponds a unique pair (α, β) ∈ A2. In the following
lemma, we prove that if C is a factorization of G′, then the quotient αβ−1 is
expressible in terms of the coefficients of G′ and det(C).

Lemma 3.5. Let C =

(
x1 x2

y1 y2

)
, G′ =

(
q1,1 q1,2
q1,2 q2,2

)
∈ GL2(K) and let α, β ∈ A

be the quaternions defined by α = φ(x1, y1) and β = φ(x2, y2). Then we have
the following equivalence

C∗C = G′ ⇐⇒


nrd(α) = q1,1
nrd(β) = q2,2
αβ−1 = q−1

2,2(q1,2 − det(C)j)
(1)

14 Note that in [37], the norm map NA/F is defined exclusively for normal ideals, i.e.,
ideals whose left and right orders are maximal. Its definition is different from the
one of nrd we gave in Section 2. However Theorem 24.11 and Corollary 24.12 of [37]
ensure that the identity NA/K(I) = nrd(I)2 holds for such ideals. In particular we
have NA/K(I) = OF whenever nrd(I) = OF .
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Proof. Let us write c1 =
( x1
y1

)
and c2 =

( x2
y2

)
for the columns of C, so that

C∗C =
( c∗1 ·c1 c∗1 ·c2
c∗2 ·c1 c∗2 ·c2

)
. The first coefficient is c∗1 · c1 = x1x1 + y1y1 = nrd(α) and in

the same way, the last coefficient is c∗2 · c2 = nrd(β). For the non diagonal terms,
we first compute

αβ = (x1 + y1j)(x2 − y2j) = x2x1 + y2y1 + (y1x2 − x1y2)j

= c∗2 · c1 − det(C)j,

where we used the relations xj = −xj and jx = xj which hold for any x ∈ K.
Combining with β−1 = β · nrd(β)−1, we obtain αβ−1 = nrd(β)−1 · (c∗2 · c1 −
det(C)j). This gives the result.

Next we show how to recover a principal ideal generated by α, from αβ−1

and IM .

Proposition 3.6. Let C = ((c1 | c2), b1, b2) be a pseudo-basis of a module M ⊂ K2.
Let α = φ(c1), β = φ(c2) and O′ = Or(IM ). Then O′ = I−1

M IM is a maximal
order, and we have the following equality of right O′-ideals

αO′ = b−1
1 IM ∩ αβ−1b−1

2 IM .

Proof. Recall that Oℓ(IM ) = O is a maximal order. Then, Lemma 2.11 tells us
that IM is invertible and that O′ = Or(IM ) is maximal too. The same argument
applies to I := Ob1α and we will show that its inverse is I−1 = α−1b−1

1 O. From
Proposition 2.12, it is enough to prove the equality I(α−1b−1

1 O) = Oℓ(I)(= O).
The inclusion I(α−1b−1

1 O) ⊆ Oℓ(I) is clear from the definition of the product of
two ideals, and because b1b−1

1 = OK is contained inOℓ(I) = O. Conversely, since
b1b

−1
1 = OK , there exists elements a1, . . . , ak ∈ b1 and a′1, . . . , a

′
k ∈ b−1

1 such that∑
k aka

′
k = 1. Since 1 ∈ O, we have akα ∈ I for all k. By definition, we also have

α−1a′kx ∈ α−1b−1
1 O for all x ∈ O. This means that x =

∑
k(akα)(α

−1a′kx) ∈
I(α−1b−1

1 O), and proves the other inclusion.
Similarly we have (Ob2β)−1 = β−1b−1

2 O. Using Proposition 2.17 and the
definition of IM from Lemma 3.2 yields I−1

M = (Ob1α)−1∩(Ob2β)−1. Multiplying
this equality by α on the left and by IM on the right (the product of ideals is
compatible), we obtain the result.

3.2 The reduction

Now we have everything we need to prove the main result of this paper. For
readability, we have cut the reduction algorithm into two smaller algorithms.
A first algorithm (Algorithm 1 below) computes all matrices in Cong(G,G′)
with prescribed determinant, from one call to a nrdPIP oracle.15 This algorithm
contains the core techniques of the reduction. We then provide the main reduction
algorithm in Algorithm 2, which computes all congruence matrices between G

15 This set can be empty, for example if the prescribed determinant δ for C is not a
solution to the equation δδ = det(G′).
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and G′, without restriction on the determinant. This algorithm calls Algorithm 1
twice. Having put the fixed determinant computation in a separated algorithm
will also be useful in Section 4, where we will improve the reduction for the
special module-LIP instances appearing in Hawk (still using Algorithm 1).

Algorithm 1: Computing congruence matrices of fixed determinant
Input: • B = (B, a1, a2) a pseudo-basis of a rank-2 module M ⊂ K2, of

associated pseudo-Gram matrix G;
• G′ = (G′ = (qi,j)1≤i,j≤2, b1, b2) pseudo-Gram matrix congruent to
G;
• pseudo-bases of O, IM and O′ = Or(IM ) over OF ;
• the (finite) set O′1;
• an oracle O solving O′-nrdPIP (outputting ⊥ when there is no
solution);
• a prescribed determinant δ ∈ K

Output: The set of all congruence matrices in Cong(G,G′) with
determinant δ

1 Congruence_matδ ← {}
2 γ ← δ · detB
3 if γ · γ ̸= det(G′) then
4 Return {} // there are no solutions with this determinant

5 q ← q−1
2,2(q2,1 − γj) ∈ A // c.f., Lemma 3.5

6 I ← b−1
1 IM ∩ qb−1

2 IM // c.f., Proposition 3.6
7 α′ ← O(I, q1,1)
8 if α′ =⊥ then
9 Return {} // the nrd-PIP instance was invalid

10 S ← {α′ · x |x ∈ O′1} // set of all solutions to the nrdPIP instance
11 for α in S do
12 β ← q−1α
13 C ← (φ−1(α) |φ−1(β))
14 if C = (C, b1, b2) is a pseudo-basis for M then
15 U ← B−1 · C
16 Congruence_matδ ← Congruence_matδ ∪ {U}

17 Return Congruence_matδ.

Theorem 3.7. Let B = (B, a1, a2) be a pseudo-basis of a rank-2 module M ⊂
K2, with associated pseudo-Gram matrix G, let G′ = (G′, b1, b2) be a pseudo-
Gram matrix congruent to G, and let δ ∈ K be a prescribed determinant. Assume
that pseudo-bases over OF of O, IM and O′ = Or(IM ) have been precomputed,
as well as the finite group O′1. Finally, assume that we are given an oracle O
that solves O′-nrdPIP. Then Algorithm 1 returns the (potentially empty) set of
congruence matrices between G and G′ with determinant δ. It makes exactly one
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call to the oracle O and except for this call it runs in time

poly(log∆K , size(G), size(G′)).

Proof. Correctness. We prove that the algorithm outputs the set of all congruence
matrices between G and G′ with determinant δ. If the oracle did not fail at
Step 7, then the elements α in S indeed verify nrd(α) = q1,1. By definition of
β, and using the fact that γ · γ = det(G′) (otherwise the algorithm outputs an
empty list), we can also check that nrd(β) = q2,2. Finally let C = ( x1 x2

y1 y2 ) be a
matrix computed during Step 13 and satisfying Step 14, where α = x1+y1j ∈ S
and β = x2+y2j. We have to prove that det(C) = γ, so that C will satisfy all the
conditions in Lemma 3.5. First notice that αβ = x1x2 + y1y2 − (x1y2 − y1x2)j.
On one hand, x1x2+ y1y2 = q1,2 and (x1y2− y1x2)j = det(C)j, so αβ− (x1x2+
y1y2) = αβ − q1,2 = −det(C)j. On the other hand, αβ−1 = q−1

2,2(q1,2 − γj)

by Step 5, so multiplying by nrd(β) = q2,2, we get αβ − q1,2 = −γj (recall
that β−1nrd(β) = β). By identification in A, we get det(C) = γ. Hence, the
coefficients of C verify all the conditions of the right-hand-side of Equation (1)
in Lemma 3.5 and so the lemma implies that we must have C∗C = G′. Since C
is a pseudo-basis for M , the corresponding U = B−1 · C computed at Step 15
is a pseudo-basis change between B and C and it satisfies U∗GU = G′, i.e.,
U ∈ Cong(G,G′).

Conversely, let U0 ∈ Cong(G,G′) with det(U0) = δ and let us prove that
U0 ∈ Congruence_matδ by the end of the algorithm. Then, C0 = B · U0 is a
pseudo-basis of M with det(C0) = γ and such that C∗

0C0 = G′ (which implies in
particular that γ · γ = det(G′), so the algorithm does not terminate at Step 4).
Let c1 and c2 be the columns of C0, and α0 = φ(c1) and β0 = φ(c2). The
element q computed in Step 5 of the algorithm satisfies q = q−1

2,2(q2,1 − γj) =

q−1
2,2(q1,2−det(C)j) = α0·β−1

0 using Lemma 3.5. And Proposition 3.6 then implies
that the ideal I computed in Step 6 satisfies I = α0O′. Moreover, Lemma 3.5
again tells us that nrd(α0) = q1,1, so α0 is a solution to the nrdPIP instance
(I, q1,1). The set S computed during Step 10 of the algorithm is then non-empty
and we know from Lemma 2.19 that α0 ∈ S. For this choice of α = α0 in the
loop, the matrix C computed at Step 13 is exactly C0, so it passes Step 14, and
U = U0 is added to Congruence_matδ at Step 16.

Complexity. The computation of γ at Step 2, as well as the computation of q
at Step 5 and the computation of I at Step 6 can be done in polynomial time (see
subsection A.2 for the computation of I). Note that the size of the right O′-ideal
I is polynomially bounded by the size of the inputs of the algorithm. At Step 7,
the algorithm makes one call to the oracle O. Step 10 can be performed in time
poly(log∆K , size(α′), |O′1|). By Lemma B.25, the size of |O′1| is polynomial in
the degree of F , so this step can be done in polynomial time too, and the size of
S is polynomial in [F : Q]. The for loop starting at Step 11 will then be iterated
a polynomial number of times. Each computation from Step 11 to the end,
including checking that the candidates C are indeed pseudo-bases of M , require
only simple linear algebra computations, which can be performed in polynomial
time. This concludes the bound on the running time of the algorithm.
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Algorithm 2: Reduction of wc-smodLIP to nrdPIP
Input: • B = (B, a1, a2) a pseudo-basis of a rank-2 module M ⊂ K2, of

associated pseudo-Gram matrix G;
• G′ = (G′, b1, b2) pseudo-Gram matrix congruent to G;
• pseudo-bases of O, IM and O′ = Or(IM ) over OF ;
• the (finite) sets µ(K) = ⟨µ0⟩ and O′1;
• an oracle O solving O′-nrdPIP (outputting ⊥ when there is no
solution)

Output: The set of all congruence matrices Cong(G,G′)
1 Congruence_mat← {}
2 δ0 ← ComputeDet(G,G′) // c.f., Lemma 2.23
3 µ0 ← A generator of µ(K)
4 for i ∈ {0, 1} do
5 δ ← δ0 · µi

0

6 Compute Congruence_matδ with Algorithm 1 // c.f., Theorem 3.7
7 for U ∈ Congruence_matδ do
8 for µ ∈ µ(K) do
9 V ← µ · U

10 Congruence_mat← Congruence_mat ∪ {V }

11 Return Congruence_mat.

Theorem 3.8. Let B = (B, a1, a2) be a pseudo-basis of a rank-2 module M ⊂
K2, with associated pseudo-Gram matrix G and let G′ = (G′, b1, b2) be a pseudo-
Gram matrix congruent to G. Assume that pseudo-bases over OF of O, IM and
O′ = Or(IM ) have been precomputed, as well as the finite groups µ(K) and
O′1. Finally, assume that we are given an oracle O that solves O′-nrdPIP. Then
Algorithm 2 returns the set Cong(G,G′) of all congruence matrices between G
and G′. In particular it solves wc-smodLIPB

K on input G′. Moreover, it makes
exactly two calls to the oracle O and except for these calls it runs in time

poly(log∆K , size(G), size(G′)).

Proof. Correctness: We want to prove that at the end of the algorithm, the
variable set Congruence_mat contains all the congruence matrices between G
and G′, i.e., that Congruence_mat = Cong(G,G′). Observe first that if U ∈
Congruence_matδ is chosen at Step 7, then for all µ ∈ µ(K), the matrix V =
µ · U satisfies the three conditions in Definition 2.20 (because U does) thus
V ∈ Cong(G,G′). This proves the inclusion Congruence_mat ⊆ Cong(G,G′).

Let us now prove the reverse inclusion. Let V0 ∈ Cong(G,G′) be arbitrary, we
want to prove that, by the end of the algorithm, V0 ∈ Congruence_mat holds. Let
δ0 ← ComputeDet(G,G′) be as in Step 2 of the algorithm. By Lemma 2.23, we
know that det(V0) is equal to δ0 up to a root of unity of K, i.e., det(V0) = δ0 ·µ for
some µ ∈ µ(K). Since µ0 generates µ(K), one can write in a unique way µ = µi

0 ·
µ2k
0 , where i ∈ {0, 1} and k ∈ {0, . . . , ⌊(|µ(K)|+ 1)/2⌋}. Let us focus on this i-th

iteration of the outer for loop. We will prove that V0 is added to Congruence_mat
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during this iteration. By the previous observation, U0 := µ−k
0 · V0 belongs to

Cong(G,G′) as well. Also by construction, det(U0) = (µ−k
0 )2 det(V0) = δ0µ

i
0 =

δ, where we used the fact that U0 and V0 are 2 by 2 matrices, so det(xV0) =
x2 det(V0) for any x ∈ K. By the correctness of Algorithm 1 (Theorem 3.7),
we conclude that U0 belongs to the set Congruence_matδ computed in Step 6.
During the iteration of the inner loop corresponding to U0 ∈ Congruence_matδ,
V0 is then computed at Step 9. This concludes the proof of the correctness.

Complexity: According to Lemma 2.23, a representative δ0 of the determinant
class can be computed in polynomial time. Inside the outer loop (starting at
Step 4), the computation of δ at Step 5 can be done in polynomial time. Since
it makes two iterations, and by Theorem 3.7, the algorithm makes exactly two
calls to the nrdPIP oracle and except for these calls, Step 6 runs in polynomial
time. The for loop starting at Step 7 will then be iterated a polynomial number
of times (this can be made more precise, see subsection 3.3) and Lemma 2.4 tells
us that there is a polynomial number of roots of unity in K, so the number of
iterations of the final loop (starting at Step 8) will be polynomially bounded and
each computation inside this inner loop can be performed in polynomial time.
This concludes the bound on the running time of the algorithm.

Algorithm 2 requires as input a pseudo-Gram matrix G′ congruent to G
(which will be the input of our module-LIP problem) but also multiple other
objects: a pseudo-basis B of M , a maximal order O containing OK +OK · j, the
ideal IM , the right order O′ of IM , the roots of unity µ(K) of K, and the set O′1

of elements of reduced norm 1 in O′. An important observation is that all these
additional objects only depend on K and B, which are parameters of the module-
LIP problem. Hence, for the purpose of reductions, one can assume that all these
objects have been pre-computed somehow, and that the reduction algorithm
only takes as input G′, the input of module-LIP. This makes the reduction
from module-LIP to nrdPIP non-uniform: for every choice of parameters K and
B of the module-LIP problem, there exists a reduction from wc-smodLIPB

K to
nrdPIP, but there might not exist an efficient algorithm computing a description
of these reductions (e.g., as a Turing Machine, or an arithmetic circuit) from the
knowledge of K and B.

Still, some of the objects from the list above can be computed efficiently.
This is the case of µ(K), which can always be computed from K in polynomial
time (see Lemma 2.4). If O has been computed, then the ideal IM can also
be computed efficiently from O and B, using Lemma 3.2 and results from
Appendix A.2. Once IM has been computed, its right order O′ can also be
computed efficiently, again by Appendix A.2. The only two objects that may
require effort to compute are O and O′1. If K is a cyclotomic field, then O
becomes efficiently computable using Proposition B.18. If, in addition, we have
M = O2

K , then O′ = O and the set O′1 = O1 becomes efficiently computable
too, using Corollary B.27. Hence, when the field K is cyclotomic and the module
M is equal to O2

K , all the quantities needed as input of Algorithm 2 can be
computed in polynomial time from the knowledge of K and B, and so we
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obtain a uniform reduction from wc-smodLIP to ndrPIP (this will be detailed
in Section 4, together with other improvements for this special case).

As a conclusion for this section, we prove the following statement (for general
CM fields and general rank-2 modules M ⊂ K2).

Corollary 3.9 (modLIP to O′-nrdPIP). There is a non-uniform polynomial
time reduction from wc-smodLIPB

K to O′-nrdPIP, where K is any CM-field (with
maximal totally real subfield F ), B is any pseudo-basis of a rank-2 module
M ⊆ K2 and O′ is a particular maximal order of a quaternion algebra over F ,
depending only on K and B. The reduction makes two calls to the O′-nrdPIP
oracle.

Proof. Let K be any CM field with maximal totally real subfield F , and let
a ∈ F totally negative such that K = F (

√
a). Let B be a pseudo-basis of a rank-

2 module M ⊆ K2. Let A be the quaternion algebra (a,−1
F ) and O be a maximal

order of A containing OK +OK · j. Let IM be the left O-ideal of A associated
to the module M , as in Definition 3.1, and let O′ = Or(IM ) (note that O′ is
maximal because O is, using Lemma 2.11). We want to prove that there is a
non-uniform polynomial time reduction from wc-smodLIPB

K to O′-nrdPIP. The
reduction is provided by Algorithm 2. This algorithm takes as input a pseudo-
Gram matrix G′, which is the input of the wc-smodLIPB

K problem, as well as
many other inputs that only depend on K and B, and solves wc-smodLIPB

K on
input G′ by making two calls to a O′-nrdPIP oracle. Since B, O, IM , O′, O′1

and µ(K) all depend only on K and B, which are parameters of the module-
LIP problem, we can assume that these quantities have been hardcoded into the
algorithm, instead of being given as input.

3.3 Application to the number of module lattice automorphisms of
rank-2 modules

Let us fix a rank-ℓ module M ⊂ Kℓ. We clarify the link between Aut(M),
the module lattice automorphism group of M and the full set of solutions to
an instance of module-LIP. Module lattice automorphisms are represented by
matrices, so that Aut(M) = {Θ ∈ GLℓ(KR) |Θ ·M = M and Θ∗Θ = Id}. Note
that the constraint Θ · M = M , together with M ⊂ Kℓ (of rank ℓ), implies
that Θ has coefficients in K. Se we can equivalently define Aut(M) = {Θ ∈
GLℓ(K) |Θ ·M = M and Θ∗Θ = Id}.

Proposition 3.10. Let C = (C, {bi}1≤i≤ℓ) be a pseudo-basis of a rank-ℓ module
M ⊂ Kℓ and let G = C∗C. We have

Aut(M) = {C ′C−1 |C′ = (C ′, {bi}1≤i≤ℓ) is a pseudo-basis of M and C ′∗C ′ = G}.

Proof. If Θ ∈ Aut(M), then Θ = C ′C−1 for C ′ = ΘC which, with the coefficient
ideals bi, forms a pseudo-basis of M having the same Gram matrix G. Conversely,
let C ′ be as in the right set. Then, Θ = C ′C−1 is a K-endomorphism of Kℓ such
that Θ∗Θ = (C−1)∗(C ′∗C ′)C−1 = (C−1)∗(C∗C)C−1 = Id. Moreover, Θ ·M =
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C ′C−1 · (C1b1 ⊕ · · · ⊕ Cℓbℓ) = C ′
1b1 ⊕ · · · ⊕ C ′

ℓbℓ = M , where Ci and C ′
i denote

the column vectors of C and C ′ respectively. Hence we have proved Θ ∈ Aut(M)
and the result.

Corollary 3.11. Let B = (B, {ai}1≤i≤ℓ) be a pseudo-basis of a module M ⊂
Kℓ, with pseudo-Gram matrix G. Consider an instance G′ = (G′, {bi}1≤i≤ℓ) of
wc-smodLIPB

K . For U0 ∈ Cong(G,G′) arbitrary, we have

Aut(M) −→ Cong(G,G′)

Θ 7−→ (B−1ΘB) · U0

is a bijection. In particular, |Aut(M)| = |Cong(G,G′)| and from the knowledge
of Cong(G,G′), one can efficiently recover Aut(M).

Proof. We have the following sequence of equivalences

U ∈ Cong(G,G′)

⇐⇒ C = (C = BU, {bi}1≤i≤ℓ) is a pseudo-basis of M with C∗C = G′.

⇐⇒ BU · (BU0)
−1 ∈ Aut(M)⇐⇒ U ∈ (B−1 ·Aut(M) ·B) · U0,

where the first equivalence comes from Lemma 2.22 and the second is a direct
consequence of Proposition 3.10.

Given Cong(G,G′) one can efficiently recover Aut(M) by fixing any U0 ∈
Cong(G,G′) and computing the set {B · U · U−1

0 · B−1 |U ∈ Cong(G,G′)} by
linear algebra. Note that the reverse computation (computing Cong(G,G′) from
Aut(M)) is a priori not easy to perform without knowing at least one element
of Cong(G,G′).

Analyzing carefully Algorithms 1 and 2, we are able to give a bound on
the number of solutions to a module-LIP instance, when M ⊂ K2. In light of
Corollary 3.11, this also bounds the cardinality of Aut(M) for such modules.

Theorem 3.12. Let K be a CM field of degree d > 4 and let M ⊂ K2 be a
rank-two module. We have |Aut(M)| ≤ 64d4.

Proof. Let B be any pseudo-basis of M , with associated pseudo-Gram matrix
G, and let G′ be any instance of wc-smodLIPB

K (for example, G′ = G). By
Corollary 3.11, it is enough to bound the cardinality of Cong(G,G′). Looking
at Algorithm 1, one observes that its output has size less than or equal to
|S| = |O′1|. In the same way, at the end of Algorithm 2, we have |Cong(G,G′)| =
|Congruence_mat| ≤ 2|O′1|·|µ(K)| (thanks to Theorem 3.8). But Proposition B.25
gives |O′1| ≤ 16d2 and Lemma 2.4 tells us that |µ(K)| ≤ 2d2, hence we obtain
|Cong(G,G′)| ≤ 64d4.

The group Aut(O2
K) := {Θ ∈ GL2(OK) |Θ∗Θ = Id} can be understood

more precisely — see also Appendix B.3.
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Proposition 3.13. The group Aut(O2
K) is finite of order 2 |µ(K)|2 ⩽ 8d4.

Moreover, Θ ∈ Aut(O2
K) is either diagonal or anti-diagonal and its non-zero

coefficients are in µ(K).

Proof. Let Θ =
(
a c
b d

)
∈ Aut(O2

K). The relation Θ∗Θ = Id implies aa + bb = 1

and cc + dd = 1, looking at the conditions on the diagonal entries. Following
Corollary 2.3, either a or b equals 0, and either c or d equals 0, and the other
ones are roots of unity. With the conditions on the anti-diagonal entries, we see
that either a and d are both 0, or b and c are. Hence Θ is either diagonal or anti-
diagonal and the non zero coefficients are in µ(K). Reciprocally, one can check
that any diagonal or anti-diagonal matrix with coefficients that are roots of unity
is in Aut(O2

K).We count |µ(K)|2 diagonal matrices, and the same number of anti-
diagonal matrices. Lemma 2.4 then gives |Aut(O2

K)| = 2 · |µ(K)|2 ≤ 8d4.

Remark 3.14. For a random module M ⊂ K2 one would expect Aut(M) =
{±Id}. The module O2

K has many more automorphisms, in the same manner
that Zn has 2nn! automorphisms (as a Euclidean lattice, [25, Section 1.1]). If
m = 2ℓ and ζm is a m-th primitive root of unity, then O2

Q(ζm) is isometric to
Zm. This result shows that it also has much less module lattice automorphisms
than plain ones.

4 The special case of Hawk

In this final section, we restrict ourselves to cyclotomic number fields K, and to
the module M = O2

K , given by a pseudo-basis B = (B, a1, a2). These restrictions
are of particular interest, as they occur in Hawk’s framework [15]. Before detailing
this result, we get back to our initial point of view and formalize the geometric
intuition we gave in the introduction.

4.1 A geometric insight on this reduction

We hope that this informal reduction to a module-SVP instance in rank 2,
which is purely geometric, sheds yet another insight into this framework. For
the sake of simplicity, we restrict the presentation to the case of Hawk, when the
pseudo-basis B is (Id,OK ,OK) itself and its associated pseudo-Gram matrix
is (Id,OK ,OK). While it is possible to deal with the general case with the
technique we are presenting here, it appears to be quite cumbersome and the
counterpart given by quaternion arithmetic is much better suited to do so.

Simplified setting. As mentioned in the introduction, we exploit the fact,
thanks to the Gram-Schmidt orthonormalization process, that we can decompose
any basis in a square lattice constructed only from its first vector. This is an
avatar of the fact that a unimodular rank-2 module is necessarily symplectic for
the determinant form, so we can fully describe it using a single primitive vector.
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Write C = ( x1 x2
y1 y2 ) ∈ GL2(OK) the secret Gram-root of G′ =

( q11 q12
q12 q22

)
, and

assume that det(C) = 1.16 Recall that K2 is endowed with a natural inner
product defined as ⟨x, y⟩ = x∗y.

For this inner product, the vectors ( x1
y1 ) and

(−y1

x1

)
form an orthogonal basis

of K2. This basis is checked to be the K-orthonormalization of C for the inner
product defined above, scaled by √q11 =

√
nrd(x1 + y1j) (the square root is

taken here over KR). Let us denote by (a, b) the coordinates of the vector ( x2
y2 )

in this basis, that is ( x2
y2 ) = a ( x1

y1 ) + b
(−y1

x1

)
.

Taking inner product with the vector ( x1
y1 ) on the left-hand side and the

right-hand side gives:

x2x1 + y2y1 =

〈
a

(
x1

y1

)
+ b

(
−y1
x1

)
,

(
x1

y1

)〉
= a(x1x1 + y1y1)

By definition, x2x1 + y2y1 = q12 and x1x1 + y1y1 = q11, so we have a = q12
q11

.
Moreover, since the determinant is an alternating multilinear form over vectors,
we must have b = 1

q11
, since:

1 = det

(
x1 x2

y1 y2

)
= b · det

(
x1 −y1
y1 x1

)
= b · q11

For this inner product, the dual basis of B is (B∗)−1. As such, we obtained the
following matrix decomposition, using the fact that the dual basis of

(
x1 −y1

y1 x1

)
is exactly itself scaled by the factor q11:(

x1 −y1
y1 x1

)∗

· C =

(
q11 q12
0 1

)
(2)

This now entails the preliminary remark we made: it is enough to find only
(x1,−y1) in order to fully recover the full matrix C as there is a simple linear
relation given by public data derived from G′. Since the lattice spanned by C is
O2

K , this ensures that the lattices are the same:(
x1 −y1
y1 x1

)∗

O2
K =

(
q11 q12
0 1

)
O2

K := L

As such, L admits an orthogonal basis as OK-module, entailing that (x1,−y1) is
a shortest vector of this module by the orthogonality of the basis vector. We can
then recover this vector (up to an automorphism of the lattice, which is not an
issue as after completing it in a basis, we will also find a valid Gram root of G′)
as a module-SVP instance and reconstruct the corresponding secret elements x1

and y1.

Remark 4.1. Lemma 3.5 is similar to Equation (2). When seeing the matrix(
x1 y1
−y1 x1

)
as a left regular representation of the quaternion x1 − y1j, this is

16 Let us recall quickly that in Hawk, the secret key is a Gram-root C of the public
key G′, and both have determinant 1 by construction.
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expected. Indeed, this reduction at module level is just the geometrization of
the arithmetic reduction presented in this paper. As such, finding the vector
(x1,−y1) up to an automorphism is the transcription of finding the generator of
the quaternionic ideal IM of Proposition 3.6 up to a unit. Figure 1 provides an
example over the integers.

c2

σ(c1)

σ′(c1)

c1

Fig. 1: Graphical depiction of the lattice involved in the attack for C = ( 2 5
1 2 ) in

Z2, with c1, c2 its column vectors. The attack aims at recovering the square basis(
x1 y1
−y1 x1

)
=

(
2 −1
−1 −2

)
of the lattice L—which is described using the Gram-matrix of

(c1, c2). This lattice corresponds to the principal ideal IM = (2 − j) in the ring Z[j],
for j2 = −1, explaining why it has such a square geometry.

Remark 4.2. We would have been able to get to this result in an even more
elementary way by simply checking that:

−y1q12 ≡ −y1x1x2 − y1y1y2 (mod q11) ≡ −y1x1x2 + x1x1y2 (mod q11)

≡ x1 (x1y2 − y1x2)︸ ︷︷ ︸
=det(C)=1

(mod q11)

entailing that (x1,−y1) and its conjugate belong to L.

4.2 Instantiating our reduction for Hawk

Let us now go back to our quaternionic framework. We already mentioned that
over cyclotomic fields, the reduction becomes uniform since many inputs in
Algorithm 2 can be computed directly from the parameters. In addition to the
uniformity, we will prove that a Karp reduction is possible in that case. This
means that the same result can be achieved making only one call to the nrdPIP
oracle.

Theorem 4.3. Let m ≥ 31 and K be the m-th cyclotomic field, of degree d =
φ(m). Let M = O2

K , with a pseudo-basis B = (B, a1, a2) and G its pseudo-Gram
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Algorithm 3: Karp reduction of wc-smodLIP to nrdPIP for O2
K

Input: • K = Q(ζm) a cyclotomic field, B = (B, a1, a2) a pseudo-basis of O2
K ;

• G = (G = B∗B, a1, a2) and G′ = (G, b1, b2) congruent to G;
• An oracle O solving O-nrdPIP.

Output: The set of all congruence matrices Cong(G,G′).
1 µ(K)← ⟨ζm⟩ ⊂ K×

2 Aut(O2
K)←

{(
a 0
0 b

)
;
(
0 a
b 0

)
: a, b ∈ µ(K)

}
// c.f., Corollary 3.13

3 O ← Run Algorithm 4 on the order OK +OK · j // c.f., Proposition B.18
4 IM ← O; O′ ← O // c.f., Corollary 3.3
5 O′1 ← ⟨ζm, j⟩ // c.f., Corollary B.27
6 Congruence_mat← {}
7 δ0 ← ComputeDet(G,G′) // c.f., Lemma 2.23
8 Compute Congruence_matδ0 with Algorithm 1 on input

(B,G′, δ0,O, IM ,O′,O′1) // c.f., Theorem 3.7
9 Pick any U0 ∈ Congruence_matδ0

10 for Θ ∈ Aut(O2
K) do

11 U ← B−1ΘBU0

12 Congruence_mat← Congruence_mat ∪ {U}
13 Return Congruence_mat.

matrix. Let G′ = (G′, b1, b2) be a pseudo-Gram matrix congruent to G. Assume
that we are given an oracle O that solves O-nrdPIP. Then Algorithm 3 returns
the set Cong(G,G′) of all congruence matrices between G and G′. In particular
it solves wc-smodLIPB

K on input G′. Moreover, it makes exactly one call to the
oracle O and except for this call it runs in time

poly(d, size(G), size(G′)).

Proof. Correctness: First of all we justify that Congruence_matδ0 computed at
Step 8 is non empty. Since G and G′ are chosen to be congruent, there exists
a congruence matrix U ′ ∈ Cong(G,G′), but we might have det(U ′) ̸= δ0 in
general. However, by Lemma 2.23, it holds that det(U ′) = µδ0 for some root
of unity µ ∈ µ(K). We claim that U0 = B−1 · diag(µ−1, 1) · B · U ′ belongs to
Cong(G,G′) too and has determinant det(U0) = µ−1·det(U ′) = δ0. The fact that
U0 ∈ Cong(G,G′) follows from Corollary 3.11 and the fact that diag(µ−1, 1) ∈
Aut(O2

K) thanks to Proposition 3.13. By the correctness of Algorithm 1, this
means that U0 ∈ Congruence_matδ0 is non empty. For any such U0 chosen during
Step 9, Corollary 3.11 guarantees that the for loop computes iteratively exactly
all the other solutions so by the end, the algorithm outputs indeed Cong(G,G′).

Complexity: We need to argue that when K and M are as in the theorem, then
the quantities O, IM , O′, O′1 and µ(K) that are required as input of Algorithm 2
can be computed in polynomial time from the knowledge of K and B. First, when
K is a cyclotomic field of conductor m, thenOK = Z[ζm] can easily be computed,
where ζm is a primitive m-th root of unity in K. Using Proposition B.18, a
maximal order O of A containing OK +OK · j can be computed in polynomial
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time. According to Corollary 3.3, we have IM = O thus O′ = O and O′1 = O1.
The latter equals ⟨ζm, j⟩ for conductors m ≥ 31, by Corollary B.27, so it can
be computed in polynomial time. Finally, recall that log∆K = poly(d) holds for
cyclotomic fields. Hence, the complexity is a consequence of the above discussion,
Lemma 2.23 for Step 7 and Theorem 3.7.

Corollary 4.4 (modLIP to O-nrdPIP, Hawk). For any cyclotomic field K
(with F its maximal totally real subfield) and pseudo-basis B = (B, a1, a2) of
O2

K , there exists a uniform polynomial time Karp reduction from wc-smodLIPB
K

to O-nrdPIP, where O is a maximal order of a quaternion algebra over F , and
is efficiently computable from the parameters.

Proof. When the conductor of K is m ≥ 31, the reduction is provided by
Algorithm 3 and the previous theorem. In that case, since Algorithm 3 makes
only one call to the O-nrdPIP oracle, the reduction is Karp. The fact that it
is uniform follows from several observations, already mentioned. Indeed, OK =
Z[ζm] andO = IM = O′ can be computed in polynomial time (see Proposition B.18),
as well as the finite group O1 (see Corollary B.27 for conductors m ≥ 31).

For lower conductors m ≤ 30, we rely on a generic method that we describe
below. On an input G′ = (G′, b1, b2) congruent to G, one computes the “structured”
Cholesky factorization of G′ with coefficients in KR, that is, some C ∈M2(KR)
such that C∗C = G′ (see [33, Proposition 3.4] for more details). Observe that for
any solution U ∈ Cong(G,G′), then (BU)∗(BU) = G′ is another factorization
of G′ (in K and a fortiori in KR). Thus, [33, Proposition 3.5]) ensures17 the
existence of a unitary transformation Θ ∈ U2(KR) such that C = Θ ·B ·U . Now
from B and C := (C, b1, b2), we explain how to compute all such Θ, from which
we will deduce the congruence matrices.

To B and C one associates the full-rank module lattices L(B), L(C) ⊂ R2d

using the canonical embedding. These two Euclidean lattices are isomorphic as
module lattices and so a fortiori as “plain” lattices. In other words, this gives
an instance of LIP as defined in [25]. Using Theorem 1.1 of [25], one computes
all isomorphisms O ∈ O2d(R) between L(B) and L(C) in time exponential in
d ≤ 30 here. Finally thanks to Corollary A.3, it is possible to check if O is a
module lattice isomorphism Θ or not. When it is, we compute U = (Θ ·B)−1 ·C
and check if U ∈ Cong(G,G′). Summing up, for m ≤ 30, the algorithm we
just described solves wc-smodLIPK

B making no call to the oracle for nrdPIP,
providing the claimed Karp reduction. Since all necessary structures can be
computed efficiently from the parameters of the instance, it is also uniform.
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A Proofs of Section 2 and algorithmic considerations

In this appendix, we present all the proofs for the results Section 2, that where
delayed earlier. We also discuss in detail how to represent the mathematical
structures involved, and how to carry ground-level computations.

A.1 Proofs of Section 2

Proof of Corollary 2.3. By Lemma 2.1), for all embeddings σi of K, σi(aa) =
|σi(a)|2 and σi(bb) = |σi(b)|2 are both positive. Moreover, we have σi(aa) +
σi(bb) = σi(1) = 1. Suppose that a ̸= 0, so 0 < σi(aa) ≤ 1 for all i’s. Then
Proposition 2.2 implies that aa must be a root of unity in K. But aa is totally
positive so aa = 1 and b = 0, which also implies that |σi(a)| = 1. Applying again
Lemma 2.2 to a, we conclude that a is a root of unity.

Proof of Proposition 2.12. Suppose that II ′ = Oℓ(I
′). Then multiplying on the

left by I−1 gives Or(I)I
′ = I−1Oℓ(I) but Oℓ(I

′) = Or(I) by assumption, so
Or(I)I

′ = I ′. By definition of the pseudo-inverse one has Or(I
−1) = Oℓ(I), so

I−1Oℓ(I) = I−1. Therefore one obtains I ′ = I−1 as expected. The converse is
contained in the definition of being an invertible OF -lattice.

Proof of Lemma 2.13. Using the second definition of the quasi-inverse, we have
I−1 = {α ∈ A | Iα ⊆ Oℓ(I)}. Similarly J−1 = {α ∈ A | Jα ⊆ Oℓ(J)}. Using the
fact that J ⊆ I and that Oℓ(I) = Oℓ(J), we have that any element α ∈ I−1

verifies Jα ⊆ Iα ⊆ Oℓ(I) = Oℓ(J), so α ∈ J−1.

Proof of Lemma 2.16. We do the proof when Oℓ(I) = Oℓ(J), the case where
Or(I) = Or(J) being analogous. Since I invertible and I ⊂ J , we have I−1I =
Or(I) ⊂ I−1J . By hypothesis the latter is a product of compatible ideals, hence
by Lemma 2.14 1., nrd(I−1J) = nrd(I−1)nrd(J). Since OF = nrd(II−1) =
nrd(I)nrd(I−1), we have nrd(I−1) = nrd(I)−1 and nrd(I−1J) = nrd(I)−1nrd(J) =
OF . Thus, the element 1 ∈ Or(I) ⊂ I−1J generates nrd(1)OF = OF = nrd(I−1J),
so by Lemma 2.14 2., I−1J = Or(J) and we conclude I = J .

Proof of Proposition 2.17. Since O is maximal, we know that I is a sated left
O-ideal, i.e., Oℓ(I) = O = Oℓ(Ji) for all i. Moreover, for any 1 ≤ i ≤ n, we
have Ji ⊂ I so we can apply Lemma 2.13, which gives I−1 ⊂ J−1

i . Therefore,
I−1 ⊂ J−1

1 ∩ · · · ∩ J−1
n .

Conversely, let x ∈ J−1
1 ∩· · ·∩J−1

n . Then Ix = (J1+ · · ·+Jn)x = J1x+ · · ·+
Jnx. Since x ∈ J−1

i for all i, and by the second definition of the quasi-inverse, it
holds that Jix ⊆ Oℓ(Ji) = O. Thus Ix ⊂ O = Oℓ(I) which means x ∈ I−1. We
conclude that J−1

1 ∩ · · · ∩ J−1
n ⊂ I−1, as wanted.

Proof of Lemma 2.19. Almost everything is contained in Lemma 2.14 (2.). The
only thing we need to prove is that the solutions are all equal up to right
multiplication by an element inO1. Let g′ ∈ I be another solution. Since I = g·O,
there exists u ∈ O such that g′ = gu. But then nrd(g) = q = nrd(g′) (and the
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multiplicativity of nrd) implies nrd(u) = 1, i.e., u ∈ O1. The converse is true: if
u ∈ O1 then gu ∈ I has reduced norm q.

Proof of Lemma 2.22. Observe that the condition 1. in Definition 2.20 is equivalent
to G′ = C∗C, where C = BU and 2., 3. are the necessary and sufficient
conditions for U to be a pseudo-base change between B and C, i.e., for C
to be a pseudo-basis of the same module M .

Proof of Lemma 2.23. Let U be a congruence matrix between G and G’. Recall
that G is a pseudo-Gram matrix associated to a pseudo-basis of a full rank
module in O2

K . Therefore, detG ̸= 0. By definition U satisfies G′ = U∗GU so
taking the determinant we see that detU is a solution to the norm equation
xx = detG′/ detG. Another property of U is that

∏
i ai = (detU)

∏
i bi. In

particular, detU is a generator of the fractional ideal I =
∏

i aib
−1
i . Any other

congruence matrix U ′ satisfies again these two conditions: detU ′ is a generator
of I, so one can write detU ′ = u · detU with u ∈ O×

K , and the fact that detU ′

is a solution to the same norm equation gives uu = 1. By Kronecker’s theorem,
we conclude that u is a root of unity.

Knowing G and G’, we can call the Lenstra-Silverberg algorithm [27, Theorem
1.3] with inputs I and relative norm detG′/ detG (and a basis of OK). This
algorithm outputs (if it exists) a generator x of I such that xx̄ = detG′/ detG,
and runs in polynomial time. This provides us with the determinant of our
congruence matrix U , up to a root of unity.

Then, we discuss the algorithmic aspects of the reductions presented above.

A.2 Representations of objects

This section covers how we represent mathematical objects to carry actual
computations. We borrow most arguments from [33, Section 2.3].

Lattices in Rℓ. Let 1 ⩽ r ⩽ ℓ be integers, and a fixed set of r independents
vectors of Rℓ, noted b1, . . . , br. The Z-lattice of Rℓ of dimension r generated by
the bi’s, is the set L(b1| . . . |br) := {

∑
aibi, ai ∈ Z}. This set is discrete and

stable by addition. When r = ℓ, we say that L is full rank.
From now on, we will only manipulate full rank lattices when dealing with

lattices in Rℓ. Consider a matrix B ∈ GLℓ(R). Since B is invertible, their column
vectors are independent, and span a full rank lattice L(B). To represent lattices
in Rℓ, we use such matrices B, in a form that is called “LLL-reduced”.

Representations of ground objects. While we consider several sets of numbers,
they are all built on a ground, totally real, number field F of degree d. We
therefore chose this field as the base for representing all elements. Let α1, . . . , αd

be a Z-basis18 of OF . An element x ∈ F is represented by its rational coordinates
18 Note however that computing such a basis may be an expensive task. It is a standard

practice to assume that such a basis is available, at the cost of having non-uniform
reductions. In most of practical usecases, a good basis is explicitely known.
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in the basis (α1, . . . , αd). The size of a rational is the sum of the bit-size of its
numerator and denominator, and the size of an element x ∈ F is defined as
size(x) =

∑
i size(xi), where xi are the coordinates of x in the give basis of

OF . A fractional OF -ideal a is also a Z-module of rank d, and admits a Z-basis
(a1, . . . , ad) — this includes the case of OF . There are many such bases for a
given ideal, but we can always assume that (σ(a1), . . . , σ(ad)) is LLL-reduced
for the so-called T2-norm ∥a∥2 :=

∑
i |σi(a)|2. Then the size of an ideal will be

size(I) =
∑

i size(ai), where the ai’s are reduced in the sense above.
By LLL-reducedness and following the arguments presented in [33, Section 2.3],

one can show that size(x) ≤ poly(log∆F , ∥σ(x)∥) as well as ∥σ(x)∥ ≤ poly(log∆F ,
size(x)) for all x ∈ K. Additionally, an integral OF -ideal a can be represented
with size(a) = poly(log∆F , logN(a)), where N(a) = [OF : a] is the algebraic
norm of the ideal a.

Representations in extensions and of modules. Recall that we are in the setting
of a totally negative a ∈ F and a quaternion algebra A = (a,−1

F ). Then, the
CM-extension K = F (

√
a) can be seen as a F -linear space of dimension 2 and

basis {1,
√
a}. All x ∈ K have coordinates (x1, x2) ∈ F 2 in this basis, and can

thus be represented as a vector in Q2d. Likewise, since A is 4-dimensional over
F with basis {1, i, j, ij}, every element of A has 4 coordinates in this basis, and
corresponds to a vector in Q4d. The size of elements of K and A is then the
sum of the sizes of their F -coordinates. For a matrix B with entries in F and ℓ
columns bi, its size is size(B) :=

∑
i≤ℓ size(bi).

Fractional OK-ideals can be viewed as rank 2 modules over OF living in K ≃
F 2. Similarly, quaternionic ideals in A are also OF -modules (of rank 4) in A. Any
such module has a pseudo-basis (B, {ai}i≤ℓ). According to the representation of
elements above, B is a 2 by 2 or 4 by 4 matrix with entries in F and the ai’s are
fractional OF -ideals given by a LLL-reduced basis. The size of such an object
M is then size(M) := size(B) +

∑
i size(ai). Likewise, pseudo-Gram matrices G

are represented by tuples (G, {ai}i≤ℓ), with G that is also a 2 by 2 or 4 by 4
matrix with entries in F , and ai fractional OF -ideals that supports the same
assumptions as above. Therefore, size(G) := size(G) +

∑
i size(ai).

Computing arithmetic operations with modules. Still following [33, Section 2.3],
we have size(x · y) ≤ poly(size(x), size(y), log(∆F )) for all x, y ∈ F . We now
turn to ideals in F , in the CM extension K and the quaternion algebra (a,−1

F ).
Generally, they are all finitely generated OF -modules in A ≃ F 4 of respective
rank 1, 2 or 4. This gives a convenient way to do arithmetic with them, whenever
the target operation makes sense (e.g. compatibility for the product of quaternion
ideals). Indeed, it is known that the sum, the intersection, the product of twoOF -
modules I, J can be computed from generating sets and the use of the pseudo-
Hermite Normal Form algorithm [11, Section 1.5.2]. Noting that in our case the
rank over OF is bounded by 4, there exists version of this algorithm running in
time poly(size(I), size(J), log |∆F |), see e.g. [7]. If I is invertible, computing I−1

can be done by using that I−1 = Inrd(I)−1 [41, 16.6.14].
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Selecting module lattice isomorphisms from isomorphisms of lattices. Recall that
two (Euclidean) lattices L,L′ ⊂ Rℓ are said to be isomorphic if there exists an
orthogonal matrix O ∈ Oℓ(R) such that L′ = O · L. Such a matrix O is called
an isomorphism between the lattices L and L′.

Given a module M ⊂ Kℓ represented by a pseudo-basis B, one can associate
to it a full-rank lattice L = L(B) ⊂ Rdℓ, once a Z-basis of OK has been fixed.
A natural question is to decide when an isomorphism between L(B) and L(C)
(where C stands for a pseudo-basis of a module M ′ ⊂ Kℓ) actually corresponds
to a module lattice isomorphism between M and M ′. The answer is given in the
following lemma.

Lemma A.1 ([28, Lemma 2.4.3, adapted]). Let K = Q(ζ) be a CM field
of degree d and M,M ′ ⊂ Kℓ be two modules, given by pseudo-bases B and C.
Suppose that σ : Kℓ → Kℓ is a Q-linear map, represented by some Σ ∈Mdℓ(Q)
in a fixed Q-basis of Kℓ. The following statements are equivalent:

1. σ is an isomorphism of module lattices between M and M ′.
2. Σ · L(B) = L(C) and

Tr
(
ασ(v)∗σ(w) + ασ(v)∗σ(w)

)
= Tr

(
αv∗w + αv∗w

)
, (3)

for all v,w ∈ Kℓ and α ∈ {1, ζ}.

Remark A.2. Since the form (v,w) 7→ Tr(αv∗w + αv∗w) is Q-bilinear, it is
enough to check the condition 2. on a Q-generating set of Kℓ.

Corollary A.3. With the same notations as in the previous lemma, suppose
that we are given an isomorphism Σ ∈ Odℓ(R) between the lattices L(B) and
L(C). Then there is an algorithm to determine if Σ is the ground representation
of a module lattice isomorphism σ between M and M ′. Moreover for fixed ℓ, this
algorithm runs in polynomial time in d.

Proof. Let us denote by B a fixed Q-basis of Kℓ, containing dℓ elements. Thanks
to B, one can check in polynomial time if Σ is a Q-endomorphism of Kℓ. If it is
not, then the algorithm returns ⊥. Otherwise, looping over all v,w in a B × B,
the algorithm computes σ(v) := Σ · vt and σ(w) := Σ ·wt, seen as elements of
Kℓ, and check if Equation (3) is satisfied for α ∈ {1, ζ}. If the condition is not
satisfied, the algorithm returns ⊥; if it finishes the loop, it returns True. Each
of these computations can be done in polynomial time, and there are at most
2(dℓ)2 of them. The correctness is guaranteed by Lemma A.1.

B Supplementary material

The aim of this appendix is to justify the computability of some structures used
in Section 3, to prove our reduction in the case where K is a cyclotomic field
and M = O2

K . Precisely, Algorithm 3 requires to compute a maximal order O
containing OK +OK · j and the finite group O1.
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Subsection B.2 is devoted to the computation of maximal orders in quaternion
algebras Am = (am,−1

Fm
). A preliminary step is to compute the discriminant of

Am, which is discussed in B.1. Finally in B.3, we explicit the group O1 for big
enough conductors m, thanks to the classification given in [41, Chapter 32].

B.1 Discriminant of a quaternion algebra

Places and ramification. The complex embeddings σ of a number field F provides
absolute values vσ(x) = |σ(x)|, and completing F with respect to them yields
R or C, depending on whether σ is real or complex — these are often called
archimedian absolute values. Other absolute values can be obtained by looking
at prime ideals. For a prime ideal p of a number field F , the p-adic valuation of
x ∈ OF is the largest integer ep(x) such that pe|xOF . This yields a corresponding
p-adic absolute value vp(x) = N(p)−ep(x), and accordingly a corresponding p-
adic completion Fp. In a generic way, from now on we denote by v an arbitrary
absolute value of F , and the completion of F at v as the field Fv. We may also
call v a place19 of F . Given a quaternion algebra A over F and a place v of F ,
one can extend the scalars of A from F to Fv, giving the quaternion algebra
Av := A⊗F Fv over Fv.

Wedderburn-Artin theorem [41, Corollary 7.3.12] states that a quaternion
algebra A over a field F is either isomorphic to M2(F ), or a division algebra
(i.e., a non necessarily commutative ring in which every non zero element has an
inverse). In the first case, called the split case, all the completions are isomorphic
to a matrix algebra : Av ≃M2(F )⊗F Fv = M2(Fv). When A is a division ring,
Av can be either a matrix algebra or again a division ring. This leads to the
notion of ramification.

Definition B.1 ([41, 14.5.1 and 14.3.1]). Let v a place of F . We say that
the algebra A is ramified at v if Av = A⊗F Fv is a division ring, which means
that every nonzero element has an inverse. Otherwise we say that A is split (or
unramified) at v.

We denote RamA the set of ramified places of A. This set is finite [41,
Lem. 14.5.3]. Analogously as the discriminant for relative extensions of number
fields, the discriminant of A is an integral ideal of OF , defined as the product of
the finite ramified places in A.

discF (A) :=
∏

p∈Ram(A)
p finite

p.

From its definition, it is clear that the discriminant encodes the ramification
at finite places. The behaviour at infinite places leads to the definition of totally
19 Formally, the language of places allows to avoid explicit choices of valuations, since

a place of a number field F is defined as an equivalence class of non-trivial absolute
values on F .

36



definite and indefinite algebras. In the core of this paper we focused on the
algebras (a,−1

F ) where K = F (
√
a)/F is a CM extension. They fall into the

category of totally definite quaternion algebras, an important property which
implies, for example, the finiteness of the groups O1 (see B.3).

Definition B.2 ([41], 14.5.7). We say that A is totally definite if all archimedean
places of F are ramified in A; otherwise, we say A is indefinite.

Hilbert symbol. To check if a quaternion algebra A over F ramifies at some place
v of F , one can compute a Hilbert symbol. In the following we give the definition
of the Hilbert symbol and we stand some properties useful for our purpose. A
standard reference for the theory of Hilbert symbol is [38, Chapter III] but all
the following results can be found in [41].

Definition B.3. Let A = (a,bF ) be a quaternion algebra over a number field F
and v be a place of F (either finite of infinite). The Hilbert symbol of A at v is(

a, b

v

)
:=

{
1 if x2 − ay2 − bz2 = 0 has a non trivial solution in (Fv)

3

−1 otherwise

Let us link the Hilbert symbol with the ramification. Recall that an element
α = x+ iy + jz + kt ∈ A has reduced norm nrd(α) = x2 − ay2 − bz2 + abt2. In
this expression, one recognizes the quadratic form involved in the definition of
the Hilbert symbol, with an extra term abt2. If there exists a non trivial solution
(x0, y0, z0) ∈ (Fv)

3 to x2 − ay2 − bz2 = 0, one can consider the quaternion
α0 = x0+ iy0+jz0 ∈ Av, which reduced norm is zero, by construction. Since the
invertible elements in Av are the ones with non zero reduced norm, we conclude
that α0 ̸= 0 is not invertible and Av can’t be a division ring (and so A does not
ramify at v).

The converse is actually true, that is, any element in A \ {0} with reduced
norm equal to zero gives a non trivial zero in (Fv)

3 to the quadratic form x2 −
ay2 − bz2. As a consequence, we obtain that the Hilbert symbol is non trivial
exactly at the ramified places:(

a, b

v

)
=

{
1 if A is split at v
−1 if A is ramified at v

.

Hilbert reciprocity law states that the product
∏

v(
a,b
v ) over all places v of F

is always equal to 1. Therefore, the set Ram(A) = {v | (a,bv ) = −1} of ramified
places has even cardinal.

Lemma B.4 (Hilbert reciprocity law, [41, 14.6.3]). Let F be a number
field and a, b ∈ F×. Then, ∏

v

(
a, b

v

)
= 1, (4)

where the product is taken over all places v of F . In particular when F is totally
real of even degree and A is totally definite, the same holds when the product is
indexed over finite places of F .
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This is a powerful result which sometimes makes us able to decide if the
ramification at a place is impossible or must occur, without computing any
Hilbert symbol. Finally, we state a formula for computing Hilbert symbols, in
the particular case of our quaternion algebras (am,−1

Fm
). We emphasize that the

following formula does not hold for prime ideals above 2.

Lemma B.5 ([41, 12.4.10]). Let F be a number field and A = (a,−1
F ). For

any prime ideal p of F such that p ∤ (2), the Hilbert symbol of A at p is given by(
a,−1
p

)
=

(
−1
p

)vp(a)

,

where
(

−1
p

)
:=

{
1 if − 1 is a square in (OF /p)

×

−1 otherwise is the Legendre symbol of −1

at p and vp(a) := max{e ∈ N | a ∈ pe} is the p-adic valuation of a.

Algorithms. In [40], the authors gave deterministic polynomial time algorithms
for computing Hilbert symbols, treating the case where p is above 2 separately.

Lemma B.6 ([40, Theorem 6.1]). Let F be a number field and let v be a
place of F . There exists an algorithm to evaluate the Hilbert symbol (a,bv ) for
a, b ∈ F×, that is deterministic polynomial time in the size of the inputs.

Corollary B.7. There exists an algorithm that given a quaternion algebra A =
(a,−1

F ) and the prime factorization of a ·OF , computes discF (A). Moreover, this
algorithm is deterministic and runs in polynomial time.

Proof. According to Lemma B.5, it is enough to check if the prime ideals dividing
a · OF ramify in A, as well as the prime ideals above 2. The latters can be
computed in polynomial time thanks to Lemma 2.5. For each prime ideal p
dividing either a · OF or 2 · OF , the Hilbert symbol (a,−1

p ) is computed in
deterministic polynomial time, using Lemma B.6. There are at most 2 · [F : Q]
such ideals.

B.2 Computing maximal orders

Relative norm for ideals in CM extensions. Here, we state some additionnal
results and terminology regarding ideals in CM fields, that will be of use later.
Let K/F be a CM field, and p be a prime ideal of OF . Recall from [34, Chapter
I, (8.3) and (9.1)] that pOK factorizes in OK either as

pOK =

qq with q ̸= q prime ideals (split case)
q2 with q = q prime ideal (ramified case)
q with q = q prime ideal (inert case).

(5)

In the split and ramified cases, we have qq∩F = pOK ∩OF = p ([32, Chapter 3,
Exercise 9 (c)]). For the inert case, qq∩F = p2OK ∩OF = p2. The relative norm
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of a prime ideal q ⊂ OK is then as NK/F (q) = qq ∩ F . Thanks to the previous
observation, this definition coincides with the one given in [34, Chapter III, §1].
The relative norm is then extended multiplicatively to the set of fractional ideals
of K. In particular it is multiplicative, i.e., NK/F (ab) = NK/F (a)NK/F (b) holds.
In fact NK/F (a) is also equal to the ideal of F generated by {NK/F (x) |x ∈ a},
see [34, Chapter III, (1.6)]. For a principal ideal a = g · OK , we have NK/F (a) =
NK/F (g) · OF .

Discriminant of orders. The discriminant of an order O in a quaternion algebra
A over F is the following ideal of OF :

disc(O) := {det(trd(αiαj)1⩽i,j⩽4), α1, . . . , α4 ∈ O} · OF ,

where trd(a) := a + a is the reduced trace map on A, and trd(aiaj)1⩽i,j⩽4 is a
4× 4 matrix with coefficients in F . Given a pseudo-basis O = a1α1⊕ · · ·⊕ a4α4,
and according to [41, Corollary 15.2.7, Paragraph 15.2.8], we have

disc(O) = (a1 · · · a4)2 · det(trd(αiαj)1⩽i,j⩽4) · OF

In fact disc(O) is the square of an ideal of OF (see [41, Section 15.4]) and we call
reduced discriminant of O the ideal such that discrd(O)2 = disc(O). It somehow
measures how far O is from being a maximal order, in the sense that it is a
maximal order if and only if its (reduced) discriminant is equal to the one of A.

Lemma B.8 ([41, Proposition 15.5.5]). A quaternion order O in a quaternion
algebra A is maximal if and only if discrd(O) = disc(A).

Notice that relative discriminants in a CM (so quadratic) extension K/F are
defined in the same fashion

disc(O) := {det(trd(aiaj))1⩽i,j⩽2, a1, a2 ∈ O} · OF ,

for any order O ⊂ OK . For the maximal order O = OK , we denote ∆K/F :=
disc(OK) the relative discriminant of K over F .

Example B.9. Consider A = (−1,−1
Q ). According to [41, Example 15.5.7] we have

disc(A) = 2Z. The order O := Z ⊕ Zi ⊕ Zj ⊕ Zk has basis {1, i, j, k} and
one computes disc(O) = (det diag(2,−2,−2,−2)) · Z so discrd(O) = 4Z and
O is not maximal. So this order is not maximal in A. Now consider O′ :=
Z ⊕ Zi ⊕ Zj ⊕ Zγ, where γ =

(
1+i+j+k

2

)
. Then one computes disc(O′) =

(det diag(2,−2,−2,−1/2)) · Z so discrd(O′) = 2Z and O′ is thus maximal.

Algorithms. Before focusing on the case of the algebras Am, we give a generic
procedure to compute a maximal order Õ containing some given order O in
a quaternion algebra A. As in the commutative case, the algorithm can be
described iteratively. Given a prime ideal p of OF , we say that O is p-maximal
if vp(discrd(O)) is minimal, i.e., when vp(discrd(O)) = vp(discF (A)) holds.
Therefore, the maximal orders of A are precisely the orders which are p-maximal
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for every prime ideal. It is enough to look at the prime ideals p dividing discrd(O)
(since q ∤ discrd(O) implies that vq(discrd(O)) is already minimal). Once the
factorization of discrd(O) is known, a p-maximal order containing O can be
computed in deterministic polynomial-time. Repeating this step for each prime
p |discrd(O) leads to a maximal order O, as desired.

Lemma B.10 ([40, Algorithm 7.10]). Let O and A be as above and let p be
a prime ideal of OF . There exists an algorithm that given as input a pseudo-basis
of O and p, computes a pseudo-basis of a p-maximal order containing O. It is
deterministic and it runs in polynomial-time in rankZ(O) = 4 · [F : Q] and in
the size of O.

Remark B.11. The complexity of this algorithm is not mentionned in [40] however
it is guaranteed to run in deterministic polynomial-time thanks to the following
result.

Lemma B.12 ([40, Theorem 7.14]). Let O and A be as above and let p be a
prime ideal of OF . There exists an algorithm that given as input a pseudo-basis
of O, computes a pseudo-basis of a maximal order Õ ⊃ O. It is deterministic
polynomial-time reducible to the problem of factoring discrd(O) in OF .

An explicit computation in cyclotomic fields. Let Km = Fm(am) be the m-th
cyclotomic field with maximal totally real subfield Fm, andAm be the quaternion
algebra (am,−1

Fm
) over Fm. We investigate the maximality of the order Om =

OKm ⊕OKm · j ⊂ Am, and we give a polynomial time algorithm for computing
a maximal order containing it. In Corollary B.17, we prove that Om is often
maximal and always not far from being maximal, in the sense that discrd(Om)
is either OFm

, a prime ideal p of OFm
or p2. Since discrd(Om) ⊂ discFm

(Am)
holds (as for any order in Am) we get as a corollary the prime factorization of
discFm(Am). Once given the factorizations of discFm(Am) and discrd(Om), we
are then able to compute a maximal order containing Om in polynomial time.

Lemma B.13 ([41, 15.2.12]). We have the equality discFm
(Om) = ∆2

Km/Fm
.

Proof. Apply [41, 15.2.12] with the OFm-order S = OKm , whose discriminant
relatively to OFm

is by definition ∆Km/Fm
.

So, computing discFm
(Om) boils down to computing the factorization of

∆Km/Fm
. This is done in two steps. First, we recall how this ideal can be

built efficiently. Then, a property says that the prime ideals of OFm dividing
∆Km/Fm

are the ones which ramify in OKm
(this is in fact an equivalence, see [34,

Chapter III, Corollary 2.12]). Ramification in cyclotomic CM-extensions is well-
understood: Lemma B.15 recalls those ramified prime ideals. Additionally, the
(relative) different ideal DK/F is an ideal of OK whose prime factors are exactly
the primes of OK over the ones in F that ramify. Morally, DK/F encodes the
ramification in K/F , as ∆K/F does, but at the level of K. Below we recall how
these ideals are linked.
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Lemma B.14 ([34, Chap. 3, Prop. 2.4]). Let K = F (α)/F be an extension
of number fields and suppose that OK = OF [α]. Then,

DK/F = (T ′(α)) · OK

∆K/F = NK/F (T
′(α)) · OF ,

where T (X) ∈ OF [X] is the minimal polynomial of α over F .

In our case, Km = Fm(ζm), OKm
= OFm

[ζm]20 and the minimal polynomial
of ζm over Fm is T (X) = X2 − (ζm + ζ−1

m )X + 1 so ∆Km/Fm
= NKm/Fm

(2ζm −
(ζm + ζ−1

m )) · OFm = NKm/Fm
(ζm − ζ−1

m ) · OFm
= (ζm − ζ−1

m )2 · OFm
. Moreover,

from the identity ζ−1
m − ζm = ζ−1

m (1 − ζm)(1 + ζm), we have DKm/Fm
= (1 −

ζm)(1 + ζm) · OKm
.

Lemma B.15 ([42, Proposition 2.15]). If m = pe or 2pe with p an odd
prime, then Km/Fm is ramified at the unique prime ideal above p and unramified
everywhere else. In the other cases, Km/Fm is unramified.

Corollary B.16. If m = pe or 2pe with p an odd prime, then ∆Km/Fm
= p

where p = (ζm+ ζ−1
m −2) is the unique prime ideal above p. If m = 2e is a power

of two (with e > 2), then ∆Km/Fm
= p22 where p2 = (ζm + ζ−1

m ) is the unique
prime ideal above 2. Otherwise, ∆Km/Fm

= OFm .

Before proving this corollary, recall that, given a CM extension Km/Fm,
the relative norm of a ∈ Km over Fm is NKm/Fm

(a) = aa. The same notation
NKm/Fm

is used for the relative norm of ideals of K, as defined at the beginning
of this subsection. The absolute norm of an ideal a ⊂ K is the Z-fractional ideal
N(a) (equal to |OKm

/a| · Z when a is an integral ideal).

Proof. Thanks to [34, Chapter III, Corollary 2.3 and 2.12], the primes ideals of
Fm dividing ∆Km/Fm

are exactly the ramified primes inOKm
. So, by Lemma B.15,

there are three cases to distinguish. If m is not a prime power, then no prime ideal
ramifies so ∆Km/Fm

= OFm . If m = pe, then 2 is coprime to m and therefore

1+ ζm =
1−ζ2

m

1−ζm
is a cyclotomic unit, see c.f., [42, §8.1]. Since Km/Fm is ramified

at the unique prime ideal above p by Lemma B.15, 1− ζm cannot also be a unit,
and so we have DKm/Fm

= (1− ζm) · OKm
as the sole ideal above the prime p in

Fm that ramifies in Km, and p = (ζm+ ζ−1
m −2) ·OFm

as claimed, by computing
the relative norm of 1− ζm. Note that the case where m = 2pe with p odd prime
leads to the same result, since Km = Kpe .21

Now suppose that p = 2. Then both ζm and −ζm are primitive m-th roots of
unity. In particular NKm/Q(1−ζm) = NKm/Q(1+ζm). Using that −ζm = ζm/2+1,
we have the identity (1− ζm)

∑m/2
i=0 ζim = 1 + ζm, so that

∑m/2
i=0 ζim ∈ OKm

has
norm 1: it is a unit. Hence we have (1−ζm) ·OKm

= (1+ζm) ·OKm
. We compute

20 In fact for cyclotomic rings of integers we have OKm = Z[ζm]. But then OFm [ζm] is
a sub-order containing both Z and ζm, so we must have equality.

21 Indeed, Kpe ⊂ Km holds because pe | m and φ(pe) = φ(m) so the fields have same
degree over Q and are thus equal.
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∆Km/Fm
as NKm/Fm

((1− ζm)2) = (ζm+ ζ−1
m − 2)2. To finish the proof, we must

argue that (ζm+ζ−1
m −2)·OFm

is in fact equal to p2. For this, we use [2, Theorem
2.2] which implies that N(ζm + ζ−1

m ) = 2. Thus, 2 ∈ (ζm + ζ−1
m ) · OFm

and the
inclusion (ζm + ζ−1

m − 2) ⊂ p2 holds. But these two integral ideals have the same
absolute norm, so they must be equal.

Corollary B.17. The following assertions hold:

1. If m = 2e (with e > 2) then discrd(Om) = p22, where p2 = (ζm + ζ−1
m ) is the

unique prime ideal above 2, whereas discFm
(Am) = OFm

.
2. If m = pe or 2pe with p = 1 (mod 4) then discrd(Om) = p, where p =

(ζm+ζ−1
m −2) is the unique prime ideal above p, whereas discFm

(Am) = OFm
.

3. If m = pe or 2pe with p = 3 (mod 4) then discrd(Om) = p, where p =
(ζm + ζ−1

m − 2) is the unique prime ideal above p, whereas discFm
(Am) = p.

In particular, Om is maximal.
4. Otherwise, discrd(Om) = discFm

(Am) = OFm
. In particular, Om is maximal.

Proof. In all cases we will use the inclusion of ideals discrd(Om) ⊂ discFm(Am) ⊂
OFm

, so that any prime ideal dividing the second discriminant must also divide
the first one.

1. If m = 2e and e > 2, then we have discFm(Om) = ∆2
Km/Fm

, by Lemma B.13
and ∆Km/Fm

= p22 by Corollary B.16 so discrd(Om) = p22. There are [Fm :
Q] = φ(m)/2 = 2e−2 ∈ 2Z infinite places in Fm which all ramify in Am.
Since discFm

(Am) | discrd(Om), the unique finite place of Fm which can
potentially ramify in Am is p2. But then by Hilbert reciprocity law (4),

1 =
∏
v∞

(
am,−1
v∞

)
︸ ︷︷ ︸
=(−1)deg(Fm) =1

·
∏
p

(
am,−1

p

)
=

(
am,−1

p2

)
·
∏
p∤(2)

(
am,−1

p

)
︸ ︷︷ ︸

=1

=

(
am,−1

p2

)
.

so Am does not ramify at p2 and discFm(Am) = OFm .
2. If m = pe or 2pe with p = 1 (mod 4), then Corollary B.16 gives ∆Km/Fm

= p
so discrd(Om) = p. There are [Fm : Q] = φ(m)/2 = (p − 1)pe−1/2 ∈ 2Z
infinite places in Fm which all ramify in Am. In the same way, the unique
finite place of Fm which can potentially ramify in Am is p. Again by Hilbert
reciprocity law, Am can’t ramify at p so discFm

(Am) = OFm
.

3. If m = pe or 2pe with p = 3 (mod 4), then Corollary B.16 gives ∆Km/Fm
= p

so discrd(Om) = p. There are [Fm : Q] = φ(m)/2 = (p − 1)pe−1/2 ∈
(2Z + 1) infinite places in Fm which all ramify in Am. In the same way,
the unique finite place of Fm which can potentially ramify in Am is p. Now
Hilbert reciprocity law implies thatAm must ramify at p, so discFm(Am) = p.
Finally, discrd(Om) = discFm

(Am) so Om is maximal, by Lemma B.8.
4. In all other cases, Corollary B.16 gives ∆Km/Fm

= OFm
so discFm

(Am) =
discrd(Om) = OFm

and Om is maximal, by Lemma B.8.
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Algorithm 4: Computing a maximal order Õm ⊃ Om = OKm⊕OKm ·j
Input: An integer m ∈ N>2 (m ̸= 4), a primitive m-th root of unity ζm.

Km = Q(ζm) (resp. Fm = Q(ζm + ζ−1
m )). A pseudo-basis

(B, {a, b}) of OKm = Z[ζm] over OFm = Z[ζm + ζ−1
m ].

Output: A pseudo-basis over OFm
of a maximal order containing Om.

1 Check if m = 2e, pe or 2pe and if p = 1 or 3 (mod 4);
2 Compute (the prime factorization of) discFm

(Am) and discrd(Om) ▷
Thanks to Corollary B.17;

3 if discFm(Am) = discrd(Om) then
4 return (diag(B,B), {a, b, a, b})
5 else
6 Õm ← p-maximal order containing Om ▷ Using Lemma B.10;
7 return (Õm)

Proposition B.18. For m ∈ N>2,m ̸= 4 and with the previous notations,
Algorithm 4 computes (a pseudo-basis of) a maximal order Õm of Am containing
the order Om = OKm

⊕ OKm
· j. Moreover, it runs in polynomial time in the

degree dm = φ(m) = [Km : Q].

Proof. Correctness. If discFm(Am) = discrd(Om), then Lemma B.8 ensures
that Om is already maximal. Otherwise, Corollary B.17 tells us that we have
discrd(Om) = p or p2. In both cases, vp(discFm

(Am)) = 0 and vq(discFm
(Am)) =

vq(discrd(Om)) = 0 for any prime q ̸= p, so it is enough to build an order
Õm ⊃ Om which is p-maximal i.e., such that vp(discrd(Õm)) is maximal. This
is done in step 6, according to Lemma B.10.

Complexity. One can check if m is either of the form 2e, pe or 2pe, in
polynomial time in m. Step 6 is achieved in polynomial time in rankZ(O) = 2d
and in size(O) = poly(dm, log∆Km

) = poly(dm), as log∆Km
= poly(dm) holds

for cyclotomic fields (see [42, Proposition 2.1]).

B.3 Units of reduced norm 1 of an order

Recall that our setting is a CM extension K/F of number fields, and a totally
definite quaternion algebra A = (a,−1

F ), where a is such that K = F (
√
a). Let

A× resp. A1 is the set of elements with non-zero reduced norm (equivalently,
invertible), resp. reduced norm equal to 1. For any order O in A, we let O× =
A×∩O (so, the units of O) and O1 = A1∩O. Lastly, we let O×

K ,O1
K and O×

F ,O1
F

the intersection of A× resp. A1 with OK , resp. OF .
We now precise the structure of O× and O1.

Proposition B.19 ([41, Proposition 32.3.7]). Let O be a maximal order of
a definite quaternion algebra A. Then O1 is a finite group.

We are mostly concerned with the possible size of O1, and the goal of this
section is to show that it remains small. The structure of O1 can sometimes
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be elucidated, but following [41, Chap. 32], it is easier to understand working
modulo signs. Let PA× := A×/F×. In the totally definite case, O1/{±1} is not
only a finite subgroup of PA1, but its structure is also known to some extent.

A dihedral group Dm can be understood as the group of symmetry of a
regular polygon with m vertices, and thus is generated by a reflexion τ and a
cyclic permutation σ of order m. It is non commutative when m > 2, as we have
τστ = σ−1. Recall that Sn is the group of all the permutations of n symbols,
and An is its subgroup of even permutations.

Proposition B.20 ([41, Proposition 32.4.1]). The finite subgroups of PA×

are cyclic, dihedral, or isomorphic to a permutation group A4, S4, A5. In particular,
the group O1/{±1} is of this form.

Finite groups of PA× isomorphic to a permutation group are called exceptional.
Their size is constant (respectively 12, 24 and 60), and particularly independent
of the CM extension K/F . We will show that for many (and the most interesting)
cases, O1/{±1} will not be an exceptional group.

There are known characterizations and even descriptions (up to isomorphism)
of each of the possible situations above, proved in [41, Proposition 32.5.1, 32.5.5,
32.5.8, 32.6.6, 32.7.1]. We separate the exceptional and non-exceptional cases for
clarity.

Proposition B.21 (Characterizations of non-exceptional groups).

– PA× contains a cyclic subgroup Γ of order m > 2 if and only there exists
a primitive m-th root of unity ζm in an algebraic closure of F , such that
ζm + ζ−1

m ∈ F and F (ζm) = K.22

– PA1 contains a cyclic subgroup of order m if and only if PA× contains one
of order 2m. In this case, it contains ⟨ζ2m⟩, of order m.

– PA1 contains a dihedral group of order 2m > 4 if and only if, with the
notation ζm as above, we have K = F (1 + ζm).

When there exists a cyclic group Γ in PA×, then it is conjugated to ⟨1 + ζm⟩,
the group generated by 1 + ζm, by an element of A×.

Proposition B.22 (Characterizations of exceptional groups). The group
PA1 contains a subgroup isomorphic to:

– A4 if and only if a2 = −1;
– S4 if and only if a2 = −1 and

√
2 ∈ F ;

– A5 if and only if a2 = −1 and
√
5 ∈ F .

Any such subgroups are isomorphic if and only if they are conjugated by an
element of A×.

22 In [41, Proposition 32.5.1] the condition that K splits A is needed. The latter is in
fact automatic for us, thanks to [41, Proposition 2.3.1].

44



These exceptional characterizations can be understood informally by the
presence of 1√

2
(1±ϵ), of order 4 (modulo sign) and 1√

2
(ϵ±ϵ′) of order 2 (modulo

sign) when
√
2 ∈ F , for ϵ, ϵ′ distinct in {i, j, k}. Algebraically, one then works

out the structure of S4, or identifies these quaternions to symmetries of regular
polygons. In the typical usecase where K is a power-of-two cyclotomic field, these
exceptional groups appear in PA1. The case of

√
5 involves the golden ratio and

can also be worked out similarly, see [41, Chap. 11].
While copies of all these well-identified groups can be explicitely written out

in PA×, without the knowledge of the conjugating element δ ∈ A×, we only
know them “up to isomorphism” and cannot explicitely compute with them. We
now characterize the elements of norm 1 in OK +OK · j. Recall that µ(K) is the
group of roots of unity in the number field K, which is cyclic [34, 7.4].

Corollary B.23 (Corollary of 2.3). Let O0 := OK +OK · j. We have O1
0 =

⟨j, µ(K)⟩, that is, O1
0 is the group generated by j and µ(K)

Proof. Let x = a+ bj ∈ O0. We have x ∈ O1
0 if and only if nrd(x) = aa+ bb = 1.

Corollary 2.3 gives the solutions.

This tells us that O1
0/{±1} is a dihedral group of size at least |µ(K)|. When

µ(K) is large enough, O1/{±1} then cannot be exceptional. We sum-up these
observations in the next proposition.

Proposition B.24. Let O be a maximal order containing O0 and d = [F : Q].
If |µ(K)| ≥ 61, then O1/{±1} is dihedral and O1 has at most 16d2 elements.

Proof. By inclusion, we have O1 ⊃ ⟨j, µ(K)⟩ = O1
0. Let G,G0 be respectively

O1/{±1} and O1
0/{±1}. Because |G0| > 60, neither G or G0 can be any of

the exceptional groups, thus they are cyclic or dihedral. In any of this cases,
the cyclic component of G, generated by γ (say), contains the cyclic component
µ(K)/{±1} of G0 generated by ζ. This means that γ commutes with ζ, and that
±γk = ±ζ, for some integer k ≥ 1. By cardinality of µ(K), we also see that
γ ̸= −1 and therefore γ ̸∈ F . Now, ζ or −ζ is a primitive root of 1 in K \ F ,
so we have F ⊊ F (ζ) ⊂ K. Because K is quadratic over F , this means that we
have K = F (ζ) ⊂ F (γ) ⊂ A. Since all elements in A have degree at most 2 over
F , with minimal polynomial T 2 − (γ + γ)T + nrd(γ), F (γ) has degree 2 over F
and thus actually F (γ) = K. We deduce that γ and −γ are roots of unity in K,
and one (or both) of them any generator of µ(K). The conclusion comes from
Lemma 2.4.

A more general version of this proposition is as follows:

Proposition B.25. Let K be a CM field, such that K = F (
√
a) is a quadratic

extension of a totally real field F of degree d = [F : Q]. Let O′ be an order in
A = (K,−1

F ). If d > 2, then O′1 has at most 16d2 elements.
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Proof. O′1/{±1} is a finite subgroup of PA1. According to Proposition B.21,
and [41, Proposition 32.7.1], the finites subgroup of PA1 are either dihedral,
cyclic, or conjugated to an exceptionnal subgroup A4,A5 or S4. If O′1/{±1} falls
in the latter case, considering the size of each of these groups, this means that
|O′1/{±1}| ⩽ 60.

Suppose now that O′1/{±1} is cyclic of order m. Then by Proposition B.21,
it is conjugated to the group generated by ζ2m, where ζ2m is a 2m-th root
of unity in A (so a m-th root of −1) such that A = (F (ζ2m),−1

F ). Again by
Proposition B.21, ζ2m + ζ−1

2m ∈ F , so the minimal polynomial of ζ2m in F [T ] is
T 2 − (ζ2m + ζ−1

2m)T +1. This polynomial is of degree 2, and so [F (ζ2m) : F ] = 2.
We know, according to Lemma 2.4, that µ(F ) is a cyclic group of order ⩽ 2d2,
so µ(F (ζ2m)) is a cyclic group of order ⩽ 8d2, so 2m is at most equal to 8d2. To
sum up, in this case, we have |O′1/{±1}| ⩽ 4d2, and |O′1| ⩽ 8d2.

Finally, if O′1/{±1} is dihedral of order 2m > 4, then by Proposition B.21,
it contains a cyclic subgroup of order m. As per the same argument as above,
m ⩽ 4d2, |O′1/{±1}| ⩽ 8d2, and |O′1| ⩽ 16d2.

Since we assumed in the Proposition that d > 2, we have 16d2 > 120, and
so, to sum up, |O′1| ⩽ 16d2.

We can show that the automorphism group of O2
K is the semi-direct product

of µ(K) and the quaternions of norm 1 in the natural order above.

Proposition B.26. Let F be totally real subfield with CM-extension K = F (
√
a),

and O0 = OK + jOK in A = (a,−1
F ). We have a split short exact sequence

1 −→ O1
0 −→ Aut(O2

K) −→ µ(K) −→ 1,

where the second map is the restriction of the left regular representation ρ :
A → M2(K) to O1

0, and the third map is the restriction of the determinant to
Aut(O2

K).

Proof. As seen in the proof of Proposition 3.13, a direct calculation shows that
matrices in Aut(O2

K) are either diagonal or anti-diagonal with entries in µ(K),
thanks to Lemma 2.2. Looking at the group homomorphism det : Aut(O2

K) →
µ(K), we see from this description that H := ker det is the normal subgroup
where the diagonal is x, x, or the antidiagonal is −x, x. We now consider the left
regular representation [41, Sec. 2.3.8] ρ of A, which maps a+ jb to the matrix

ρ(x+ jy) =

(
x −y
y x

)
.

This is an homomorphism of F-algebra, and a faithful representation, so it is
also an injective group homomorphism when restricted to O1

0, it is in particular
injective. Recall that µ(K) is cyclic. By examination, we see that ρ(O1

0) = H, so
if we let ζ be a generator of µ(K), Corollary B.23 tells us that H is generated
by

ρ(j) =

(
0 −1
1 0

)
and ρ(ζ) =

(
ζ 0

0 ζ

)
.
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Now let C be the set of matrices in Aut(O2
K) which are diagonal with a, 1 as

entries, for a ∈ µ(K). This is a cyclic subgroup, isomorphic to µ(K). We may
always write diag(ζi, ζj) = diag(ζi+j , 1) · diag(ζ−j , ζj), and similarly for the
antidiagonal matrices, using ρ(j). In other words, we have Aut(O2

K) = H · C.
We also readily check that C∩H = {Id}, which gives us that Aut(O2

K) = C⋉H
by characterization of semi-direct products of groups. The result follows from
the equivalence between split short exact sequences of groups and semi-direct
products.

We note that the product is certainly not direct, as C acts non trivially by
conjugation over H, since jζj = −ζ. A direct corollary is to recover Proposition 3.13
by inspection of the cardinality of the groups above.

Quaternion algebra over cyclotomic fields. The special case of cyclotomic CM
extensions can be made explicit for large conductors, so we isolate its formulation
for the sake of clarity and reusability. Recall the notation Km for the cyclotomic
field Q(ζm), with maximal totally real subfield Fm. Denote byAm the quaternion
algebra Km + Km · j over Fm, with order Om = OKm + OKm · j. Finally, Õm

denotes a maximal order containing Om. The following result explicits Õm in all
but one cases.

Corollary B.27. Let m ≥ 2 be an integer. If m is of the form m = 2e or
m = pe or 2pe with p = 1 (mod 4) prime, suppose furthermore that m ≥ 31.
Then,

Õm
1 = O1

m = ⟨±ζm, j⟩.
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