
MicroCrypt Assumptions with Quantum Input
Sampling and Pseudodeterminism:

Constructions and Separations

Mohammed Barhoush1⋆, Ryo Nishimaki2, and Takashi Yamakawa2

1 Université de Montréal (DIRO), Montréal, Canada
mohammed.barhoush@umontreal.ca

2 NTT Social Informatics Laboratories
ryo.nishimaki@ntt.com, takashi.yamakawa@ntt.com

Abstract. We investigate two natural relaxations of quantum crypto-
graphic assumptions. First, we examine primitives such as pseudoran-
dom generators (PRGs) and pseudorandom states (PRSs), extended with
quantum input sampling, which we term PRGqs and PRSqs. In these
primitives, the input is sampled via a quantum algorithm rather than
uniformly at random. The second relaxation, ⊥-pseudodeterminism, al-
lows the generator to output ⊥ on an inverse-polynomial fraction of
inputs.
We demonstrate an equivalence between (bounded-query) logarithmic-
sized PRSqs, logarithmic-sized PRSqs, and PRGqs. Notably, such an equiv-
alence remains unknown for the uniform key sampling versions of these
primitives. Furthermore, we establish that PRGqs can be constructed
from ⊥-pseudodeterministic PRGs (⊥-PRGs).
To further justify our exploration, we present two separation results.
First, we examine the relationship between ⊥-pseudodeterministic no-
tions and their deterministic counterparts. We show that there does not
exist a black-box construction of a one-way state generator (OWSG)
from a ⊥-PRG, indicating that ⊥-pseudodeterministic primitives may
be inherently weaker than their deterministic counterparts. Second, we
explore the distinction between quantum and uniform input sampling.
We prove that there does not exist a black-box construction of a ⊥-
psuedodeterministic OWSG from a PRFqs, suggesting that primitives
relying on quantum input sampling may be weaker than those using
traditional uniform sampling. Given the broad cryptographic applicabil-
ity of PRFqss and ⊥-PRGs, these separation results yield numerous new
insights into the hierarchy of primitives within MicroCrypt.

Keywords: Quantum Cryptography · Pseudorandom States · Pseudodetermin-
ism · Black-Box Separation

⋆ Part of this work was done while visiting NTT Social Informatics Laboratories as
an internship.

Table of Contents

MicroCrypt Assumptions with Quantum Input Sampling and
Pseudodeterminism: Constructions and Separations 1

Mohammed Barhoush, Ryo Nishimaki, and Takashi Yamakawa
1 Introduction . 3

1.1 Our Work . 4
1.2 Relation to Previous Work . 6
1.3 Technical Overview . 7

1.3.1 Quantum Input Sampling. 7
1.3.2 Separation Results . 8

1.4 Organization . 10
2 Preliminaries . 10

2.1 Notations . 10
2.2 Black-Box Separation . 11
2.3 MicroCrypt Primitives . 12
2.4 Pseudodeterministic Pseudorandom Strings from

Pseudorandom States . 14
2.5 Pseudodeterministic Primitives in MicroCrypt 15

3 Definitions: Cryptography with Quantum Input Sampling 19
4 Relations among Primitives with Quantum Input Sampling 21

4.1 PRGqs from ⊥-PRG . 22
4.2 PRGqs from BC-SPRSqs . 25
4.3 SPRSqs from PRGqs . 27
4.4 BQ-PRUqs from PRGqs . 28

5 Black-Box Separations Among MicroCrypt . 29
5.1 Separating OWSG from ⊥-PRG . 29
5.2 Separating ⊥-OWSG from PRFqs . 30

A Proof of Separation Results . 33
A.1 Separating OWSG from ⊥-PRG . 33
A.2 Separating ⊥-OWSG from PRFqs . 39

1 Introduction

The search for the minimal assumptions required for quantum cryptography
was triggered with the astonishing discovery that pseudorandom states (PRSs)
[16] may exist even when (classically-evaluable post-quantum) one-way functions
(OWF) do not, relative to an oracle 3 [18]. PRSs serve as the quantum analog to
PRGs, outputting a state instead of a classical string. Critically, this difference
does not prevent PRSs supporting some applications similar to those enabled by
PRGs, such as commitments, one-time signatures, and one-way state generators
(OWSG)s [23, 3].

This separation naturally raised questions on the minimal assumptions
required to build quantum cryptographic primitives. Addressing this question
has fueled significant research, leading to a variety of quantum assumptions.
Different assumptions provide a different balance between how well they replicate
OWFs in cryptography and how strong of an assumption they constitute. The
resulting assumptions are intricately related in what has now came to be known
asMicroCrypt. This field comprises various assumptions derived from OWFs, but
where the other direction is not known. Despite substantial progress, numerous
questions remain unanswered. What is clear, however, is that MicroCrypt is
significantly more intricate than its classical counterpart.

Several of the MicroCrypt assumptions introduced parallel their classical
counterparts but incorporate quantum elements. For instance, quantum unpre-
dictable state generators [21] and one-way state generators [23] yield quantum
outputs, similar to PRSs. Additionally, assumptions such as ⊥-PRG [4] and one-
way puzzles [17] involve only classical communication but rely on quantum com-
putation. These quantum elements are believed to make the assumptions weaker.

Despite advances, using general PRSs as a complete replacement for PRGs
in cryptographic applications has been challenging. Some progress has been made
in the specific case of logarithmic-size pseudorandom states (SPRS), where to-
mography can transform the state into a classical pseudorandom string [2]. How-
ever, tomography is not deterministic, resulting in what has been termed pseu-
dodeterministic PRG. This roughly means that the for a fixed seed, the output is
deterministic on 1− 1/poly(n) fraction of inputs. While these generators proved
useful in various applications, the pseudodeterminism is sometimes problematic
when using them in place of traditional PRGs. This obstacle motivated a follow-
up work [4], that introduced an intermediate notion called ⊥-PRG, which is built
from pseudodeterministic PRGs. With ⊥-PRGs, the non-deterministic outcomes
can be detected and replaced with ⊥, allowing many PRG applications to proceed
by handling ⊥ cases separately. This approach enabled significant applications,
such as many-time digital signatures and quantum public-key encryption with
tamper-resilient keys, which had eluded MicroCrypt.

3 Note that one-way functions and pseudorandom generators are equivalent.

3

While these applications are powerful, ⊥-PRGs and SPRSs have not been
black-box separated from OWFs 4, which somewhat limits the significance of this
result. In fact, most MicroCrypt assumptions, such as pseudorandom function-
like states with proofs of destruction [5] and efficiently verifiable one-way puzzles
(Ev-OWPuzzs) [17, 8], have been conjectured to be weaker than OWFs, but their
separability has not been established. As a result, many applications built in
MicroCrypt have only been realized from assumptions which have not been sep-
arated from OWFs. Understanding which assumptions are separated from OWFs
and, more generally, the relations among different MicroCrypt primitives is an
important goal in the field.

1.1 Our Work

Traditionally, many cryptographic primitives such as PRGs and PRSs rely on
inputs sampled uniformly at random. The main idea of our work is that sampling
inputs with a quantum procedure, instead of at random, yields fundamentally
different primitives. We denote the resulting primitives with a superscript such
as PRGqss and PRSqss.

To clarify, in this work, by PRG we refer to a quantum-evaluable post-
quantum-secure pseudorandom generator 5, where security is guaranteed when
the input is sampled uniformly at random. Meanwhile, by PRGqs, we refer to
a quantum-evaluable post-quantum-secure pseudorandom generator, where se-
curity is guaranteed if the (classical) input is sampled using a specified QPT
algorithm. We similarly define PRS and PRSqs (see Definitions 5 and 12).

While many MicroCrypt primitives have been previously defined with quan-
tum input sampling [22, 17, 6], the fundamental distinction between primitives
based on quantum versus uniform input sampling has not been previously rec-
ognized.

In the first part of this work, we introduce natural variants of MicroCrypt
primitives that incorporate quantum input sampling and examine the relation-
ships among these primitives, finding surprising results. Specifically, we show
black-box constructions for the following:

1. PRGqs from ⊥-PRGqs.
2. PRGqs from bounded-copy SPRSqs (BC-SPRSqs).
3. SPRSqs from PRGqs.
4. BQ-PRUqs 6 from PRGqs.
5. PRUqs from PRFqs.

4 Notably, the separation between PRS and OWFs [18] only applies to linear-sized
PRSs and not to SPRS.

5 This is different from classically-evaluable post-quantum-secure pseudorandom gen-
erators, as demonstrated very recently in [19].

6 This stands for bounded-query pseudorandom unitaries with quantum key sampling,
which is defined in Section 3.

4

As a direct application of these results, we obtain a method to decrease the
output length of SPRSqs and to convert a SPRS into a SPRSqs of longer output
length.

In the second part of our work, we extend our analysis with two separa-
tion results that highlight the distinctions between quantum input sampling and
uniform input sampling and between ⊥-pseudodeterminism and determinism.

Our first separation shows that ⊥-pseudodeterministic notions may be
weaker than deterministic ones.

Theorem 1 (Informal Theorem 8). There does not exist a black-box con-
struction of a OWSG from a ⊥-PRG.

Note that the OWSGs considered in this paper are those with pure-state
outputs and with uniform key generation. Our separation is further emphasized
by the fact that a OWSG is considered weaker than a PRG, since PRSs imply
OWSGs and PRSs are separated from PRGs [18]. Since ⊥-PRGs have broad ap-
plicability [4], this result yields additional separations as corollaries.

Corollary 1 (Informal Corollary 6). OWSGs are black-box separated from:

1. ⊥-PRFs.
2. (Many-time) existentially unforgeable digital signatures of classical messages

with classical keys and signatures (EUF-DS).
3. CPA-secure quantum public-key encryption of classical messages with tamper-

resilient keys and classical ciphertexts (CPA-QPKE).

Our second separation shows that primitives with quantum input sampling
may be weaker than uniform input sampling, even for ⊥-pseudodeterministic
notions.

Theorem 2 (Informal Theorem 9). There does not exist a black-box con-
struction of a ⊥-OWSG from a (quantum-query-secure) PRFqss.

Given that PRFqss have many applications, we obtain many other separa-
tions as a corollary.

Corollary 2 (Informal Corollary 7). ⊥-OWSGs, ⊥-PRGs, and SPRSs are
black-box separated from:

1. PRGqs, SPRSqs, LPRSqs, and PRUqs.
2. Statistically-binding computationally hiding bit commitments with classical

communication (BCCC).
3. Existentially unforgeable message authentication codes of classical messages

with classical communication (EUF-MAC).
4. CCA2-secure symmetric encryption with classical keys and ciphertexts (CCA2-

SKE).
5. EV-OWPuzzs.

Our results give a natural hierarchy in MicroCrypt as depicted in Fig. 1.

5

Fig. 1. The black straight arrows indicate implications that are trivial or from previous
works [23, 2, 4]. The black dotted arrow indicates a separation from previous work [18].
The blue straight arrows are implications from this work and the dotted red arrows
are separations from this work.

1.2 Relation to Previous Work

We discuss relation to previous work.

– Prior research has typically defined PRSs and OWSGs with uniform input
sampling. However, some works have defined them with quantum input sam-
pling, such as [22, 17]. Nevertheless, the relations among primitives with
quantum sampling and the advantage of quantum sampling in yielding po-
tentially weaker assumptions have not been previously recognized. The lat-
ter insight is crucial for known MicroCrypt primitives as well, enabling us to
identify multiple new separations, as outlined in the previous section. None
of the separations mentioned were known prior to this work.

– Previous research did not establish a connection between quantum input
sampling and ⊥-pseudodeterminism. For a ⊥-PRG, there exists a set of
“good” inputs, that produce deterministic outputs, and a set of “bad” in-
puts, that may yield ⊥. To address this non-determinism, a natural solution
is to test inputs during the sampling process to ensure that only good inputs
are selected. It is straightforward to show that this technique can be used
to construct a PRGqs from a ⊥-PRG, thus resolving the pseudodetermin-
ism issue. Note that this approach necessitates a quantum input sampling
procedure instead of traditional uniform input sampling.

6

– It may seem that EV-OWPuzzs can be viewed as a one-way function with a
quantum input sampler. However, critically, these puzzles are non-deterministic.
In fact, [8] use this property to show that uniform and quantum sampling
versions of these puzzles are equivalent. Hence, quantum input sampling
seems more relevant to deterministic notions such as OWFs.

– Very recently, [19] showed a separation between quantumly-evaluable OWFs
and classically-evaluable OWFs, relative to a classical oracle. Our separa-
tions are not comparable with theirs. However, as a direct result, they find
that classically-evaluable OWFs are separated from many cryptographic ap-
plications, such as EUF-DS and QPKE. Our separations imply that such
applications are even separated from OWSGs.

1.3 Technical Overview

1.3.1 Quantum Input Sampling. Our study reveals surprising equivalences
among several variants of MicroCrypt primitives utilizing quantum input sam-
pling.

BC-SPRSqss imply PRGqss. Our first result is that bounded-copy SPRSqs imply
PRGqss. Prior works [2, 4] demonstrated that SPRSs enable ⊥-PRGs. We first
extend this result by showing that bounded-copy SPRSs (BC-SPRS) suffice for
this construction.

At first glance, using BC-SPRS appears infeasible because each evaluation
of the ⊥-PRG exhausts several copies of the SPRS and the adversary has access
to arbitrarily many evaluations in the security experiment. However, the ⊥-PRG
only uses these copies to perform tomography and extract a classical string. Cru-
cially, the extracted strings remain largely consistent across evaluations. Thus,
the information gained through multiple evaluations can be simulated with only
a limited number of SPRS copies. By formalizing this observation, we construct
a ⊥-PRG from a BC-SPRS.

Our next idea is to show that⊥-PRGs imply (deterministic) PRGqss, thereby
showing that quantum input sampling resolves the pseudodeterminism problem.
The idea is simple: to construct a PRGqs from a ⊥-PRG, we search for a good
input for the ⊥-PRG during the input sampling phase and use this input dur-
ing evaluation. However, this approach sacrifices uniform input sampling, which
compromises the security reduction given in [2, 4], thereby only giving a weak
PRGqs. Standard amplification techniques are then applied to achieve strong
security. Hence, we obtain PRGqs from BC-SPRS.

Finally, since we are allowed to use a quantum input sampler for a PRGqs,
we can perform the same conversion starting instead with a BC-SPRSqs. There-
fore, we obtain PRGqss from BC-SPRSqs.

PRGqss imply SPRSqss. We also establish the converse: SPRSqss can be built
from PRGqss. This follows in the same way as the construction of PRSs from

7

PRFs given in [16], but instantiated with a polynomial-domain PRF. Note that
PRFqs with polynomial domain can be trivially derived from PRGqss 7.

Modifying the Size of SPRS. By leveraging the above equivalence, we obtain
a way to decrease the output length of a SPRSqs. Simply convert a SPRSqs

into a PRGqs, and then convert this back into a SPRSqs. Due to the change
in parameters during this conversion, the resulting SPRSqs is smaller in size.
Interestingly, a similar result is not known for SPRS.

Furthermore, these equivalences can also be leveraged to increase the out-
put length of a SPRS. Note that it is trivial to extend the output length of a
⊥-PRG by composition. For instance, if Gn is a ⊥-PRG with expansion factor
of 2, then the composition G2n ◦ Gn is a ⊥-OWSG with expansion factor 4.
Hence, starting with a SPRS, building a ⊥-PRG, extending the output length
of the ⊥-PRG sufficiently through composition, and finally converting this to a
SPRSqs, we obtain a method to convert a SPRS into a SPRSqs with larger output
length.

Other Constructions. On the downside, we face an obstacle in the quantum input
sampling regime when attempting to build a PRFqss from PRGqss. While a PRGqs

with sufficient expansion easily implies a PRFqs with polynomial domain, it is
not clear if a PRGqs can be used to build full-fledged PRFqs with exponential
domain. Note that the standard conversion of a PRG to a PRF [14], and its
quantum adaption [27], both implicitly use the uniform input sampling property
of PRGs. Hence, adapting this conversion to the quantum input sampling setting
is an interesting open question.

Fortunately, PRFqs with polynomial domain can still be useful. Using do-
main extension techniques [11], we convert them into bounded-query PRFqss
with exponential domain. These, in turn, enable the construction of bounded-
copy linear-length PRSqs and bounded-query PRUqs following a similar approach
outlined in [16, 20].

1.3.2 Separation Results We present two separation results in this work
using quantum oracles. These separations complement the positive results dis-
cussed above.

Note that the oracles considered in these separations are completely-positive-
trace-preserving (CPTP) maps. Specifically, our separations only rule out black-
box reductions that do not make inverse queries to the oracles and that do not
purify the oracles. Note that CPTP oracle separations have been considered in
previous works [12, 13].

Separating OWSGs from ⊥-PRGs. Firstly, we show that there does not exist a
black-box construction of a OWSG from a ⊥-PRG. This result is somewhat sur-
prising, as OWSGs are considered weaker than PRGs, as evidenced by existing

7 The output of the PRGqs can be interpreted as a PRFqs with polynomial domain.

8

separations between them [18]. Instead, our separation emphasizes the distinc-
tion in determinism to separate OWSGs from ⊥-PRGs. Recall, a ⊥-PRG is the
same as a PRG except on a 1

poly(n) fraction of inputs, the algorithm may return

⊥ sometimes.
The result leverages two oracles. The first oracle is for membership in a

PSPACE-complete language, used to break any OWSG. The second oracle, O,
is a modified quantum random oracle with an abort mechanism. This oracle
exhibits inherent ⊥-pseudodeterminism, rendering it unsuitable for constructing
deterministic primitives like OWSGs.

The oracle O operates as follows: on input x, it computes (ax, bx, cx) ←
O(x) where O is a random function mapping n-bits to 3n-bits. The first com-
ponent, ax, determines whether x is a “good” (deterministic) or “bad” (may
evaluate to ⊥) input. If x is deemed bad, which occurs with 1/poly(n) probabil-
ity, then O outputs cx with probability 1− bx

2n and ⊥ with bx
2n probability, where

bx is interpreted as an integer. Otherwise, if x is deemed good, O outputs cx
with probability 1. Clearly, O functions as a ⊥-PRG.

The challenge lies in showing that O cannot be used for constructing
OWSGs. Formalizing this requires some effort, but the main idea is that a gen-
erator, relying on O(x) for some x, cannot infer whether x is good or bad with
certainty. In the case x is bad, the generator, running in polynomial-time, cannot
distinguish between small variations in determinism errors. In other words, the
output of the generator should remain constant under small perturbations of the
determinism error of x. Generalizing this argument, we show that the genera-
tor’s output must remain invariant even when the determinism error probability
is 1, i.e. if Pr[⊥ ← O(x)] = 1. Informally, this implies that the generator is
independent of O. This independence allows us to construct a OWSG that does
not use the oracle O, which should be impossible as OWSGs cannot exist in the
presence of a PSPACE-oracle [7].

This separation is quite significant since ⊥-PRGs have numerous strong
applications [4], including (1) (many-time) digital signatures of classical messages
and (2) quantum public-key encryption with tamper-resilient keys, showing that
these primitives are separated from OWSGs as well.

Separating ⊥-OWSGs from PRFqss Our second result separates ⊥-OWSGs from
PRFqss. This separation targets the distinction in quantum versus classical input
sampling procedures.

The construction involves three oracles:

– C: An oracle for membership in a PSPACE-complete language, independent
of the other oracles.

– R: A restricted-access random oracle, that can only be accessed with a valid
key as a part of the input.

– σ: A quantum oracle that generates random keys. Each distinct key gives
access to a distinct function in R.

It is straightforward to construct a PRFqs relative to these oracles. The
quantum key generation algorithm of the PRFqs samples a key by querying σ

9

and setting the key as the response. Meanwhile, the evaluation algorithm of
the PRFqs, on input x, uses the key to evaluate the random oracle R on x
and returns the result. The same output of σ is used in each evaluation, so
this yields deterministic evaluations from R. Given that a quantum-accessible
random oracle acts as a (quantum-query-secure) PRF [25], it is not difficult to
show that this construction constitutes a PRFqs.

The more difficult part is showing that ⊥-OWSGs cannot exist relative to
these oracles. Assume G is a ⊥-OWSG relative to these oracles, for the purpose
of obtaining a contradiction. The input sampled uniformly at random for G is
independent of the oracles. Consequently, any evaluation of G receives distinct
keys from queries to σ and, thus, distinct evaluations from R.

To formalize this result, we simulate access to (σ,R) in G using uniformly
sampled random strings that are correlated in the same way as σ and R. Specif-
ically, since each evaluation of G receives different responses from σ and R, this
implies that the generator could simulate its computation by sampling random
strings directly, rather than querying the oracles. As a result, there exists a
⊥-OWSG without oracle access that is secure against adversaries with access to
a PSPACE oracle. However, this contradicts a result from [7], which shows that
there does not exist ⊥-OWSG if PSPACE = BQP.

1.4 Organization

We briefly outline the structure of the paper. Section 2 reviews the required back-
ground material. Section 3 introduces MicroCrypt notions with quantum input
sampling. Section 4 explores implications among various MicroCrypt primitives
with quantum input sampling. Section 5 presents the separation results.

2 Preliminaries

2.1 Notations

We refer the reader to [24] for a detailed exposition to preliminary quantum
information. We let S(H), D(H), and U(H) denote the set of unit vectors, density
matrices, and unitary operators, respectively, on the Hilbert space H and let
Haar(Cd) denote the Haar measure over Cd which is the uniform measure over
all d-dimensional unit vectors.

We let x← X denote that x is chosen from the values in X, according to
the distribution X. If X is a set, then x← X simply means x is chosen uniformly
at random from the set.

We follow the standard notations to define quantum algorithms. We say
that a quantum algorithm A is QPT if it consists of a family of quantum algo-
rithms {Aλ}λ such that the run-time of each algorithm Aλ is bounded by some
polynomial p(λ). We say that a quantum algorithm is deterministic if every in-
put is mapped to a fixed output except with negligible probability with respect
to the input length. We call a QPT algorithm A non-uniform if it consists of a

10

family {Aλ, ρλ}λ where {Aλ}λ are algorithms of polynomial run-time (not nec-
essarily uniformly generated), such that for each λ, there is additionally a subset
of input qubits for Aλ that are designated to be initialized with the density ma-
trix ρλ of polynomial length. All the algorithms used in the security definitions
are uniform unless mentioned otherwise. We also avoid using the λ subscript in
algorithms to avoid excessive notation.

If A is quantum oracle algorithm and P is an algorithm with classical
input space, then AP means that A is given access to a polynomial number of
classical oracle queries to P . Furthermore, we say A has quantum-query access
to P to mean that it is given polynomial quantum queries to the unitary map
UP : |x⟩ → |x⟩|P (x)⟩.

We let [n] = {1, 2, . . . , n}, [n : n + k] = {n, n + 1, . . . , n + k}, and y[1:n] =
y1y2 . . . yn for every n, k ∈ N and string y of length at least n. Furthermore, we
let negl(x) denote any function that is asymptotically smaller than the inverse
of any polynomial. We say (a, ·) ∈ X if there exists an element b such that
(a, b) ∈ X. We let Πn,m = ({0, 1}m){0,1}

n

denote the set of functions mapping
n-bits to m-bits, and Πn denote the set of permutations on n-bits.

We denote the density matrix of a quantum state in a register E as ρE and
we let dTD denote the total trace distance between two density matrices or two
distributions.

2.2 Black-Box Separation

The notion of oracle black-box separations was first considered in [15] and later
formalized in the quantum setting in [9]. We refer the reader to [9] for an ex-
position to this topic. Here, we just recall the definitions relevant for this work
from [9], but adapted to CPTP oracles.

Definition 1. A primitive P is a pair P = (FP ,RP)
8 where FP is a set of

quantum channels, and RP is a relation over pairs (G,A) of quantum channels,
where G ∈ FP .

A quantum channel G is an implementation of P if G ∈ FP . If G is
additionally a QPT channel, then we say that G is an efficient implementation
of P . A quantum channel A P -breaks G ∈ FP if (G,A) ∈ RP . We say that G
is a secure implementation of P if G is an implementation of P such that no
QPT channel P -breaks it. The primitive P exists if there exists an efficient and
secure implementation of P .

Let U be a CPTP implementation of G ∈ P . Then, we say that U is a
CPTP implementation of P . We also say that quantum channel A P -breaks U
to mean that A P -breaks G.

We now formalize the notion of constructions relative to a CPTP oracles.

8 We can think of FP to mean the “correctness” conditions of P and RP to mean the
“security” conditions of P .

11

Definition 2. Let O be a CPTP oracle. An efficient implementation of primi-
tive P relative to O is a QPT oracle algorithm G(·) such that GO ∈ P . Let U be
a CPTP implementation of GO. Then, we say that U is a CPTP implementation
of P relative to O.

We are now ready to define the notion of black-box construction under
CPTP access. All the black-box separations in this paper disprove the existence
of black-box constructions under CPTP access.

Definition 3. A QPT algorithm G(·) is a fully black-box construction of Q from
CPTP access to P if the following two conditions hold:

1. For every CPTP implementation U of P , GU is an implementation of Q.
2. There is a QPT algorithm S(·) such that, for every CPTP implementation U

of P , every adversary A that Q-breaks GU , and every CPTP implementation

Ã of A, it holds that SÃ P -breaks U .

2.3 MicroCrypt Primitives

We recall several MicroCrypt assumptions relevant to this work. First, we define
one-way state generators (OWSGs). In this work, we only consider pure OWSGs
meaning that the output is always a pure state.

Note that different works define correctness of a OWSG slightly differently.
Our notion requires that on any input, the generator produces a fixed pure-state
with high probability. This encompasses some earlier definitions, such as in [7],
but is less general than other variants, such as in [23]. Note that our separation
result only shows that there are no black-box constructions of a OWSG satisfying
our definition from a ⊥-PRG. In other words, we explicitly use this notion of
correctness and the result does not hold for the more generalized notions, such
as in [23]. We do not believe this to be a major issue since, to our knowledge,
all known constructions of OWSGs satisfy our correctness condition.

Definition 4 (One-Way State Generator). Let λ ∈ N be the security pa-
rameter and let n = n(λ) be polynomial in λ. A QPT algorithm G is called a
n-one-way state generator (OWSG), if the following holds:

– (Correctness): There exists a negligible function δ = δ(λ) such that for any
k ∈ {0, 1}λ, there exists a n-qubit pure-state |ϕk⟩ such that Pr[G(k) = |ϕk⟩] ≥
1− δ.

– (Security) For any polynomial t = t(λ) and QPT distinguisher A, there
exists a function ϵ(·) such that:

AdtgOWSG
A,G (1λ, 1t) := Pr[ExpOWSG

A,G (1λ, 1t) = 1] ≤ ϵ(λ).

We say that G is a OWSG if for every QPT A, ϵ is a negligible function. We
say that G is a weak OWSG if for every QPT A, ϵ ≤ 1

p for some polynomial
p.

12

ExpOWSG
A,G (1λ, 1t):

1. Sample k ← {0, 1}λ.
2. For each i ∈ [t+ 1] generate |ψi⟩ ← G(k).
3. k′ ← A(⊗i∈[t]|ψi⟩). Let |ϕk′⟩ ← G(k′).
4. Measure |ψt+1⟩ with {|ϕk′⟩⟨ϕk′ |, I−|ϕk′⟩⟨ϕk′ |} and if the result is |ϕk′⟩⟨ϕk′ |,

then output b = 1, and output b = 0 otherwise.

We define pseudorandom states (PRSs) from [16]. There are three size
regimes for PRSs that are considered separately. Firstly, if the size of the PRS is
n = c · log(λ) with c≪ 1, then this can be constructed information-theoretically
[6] and, therefore, is not very interesting cryptographically. Secondly, if n =
c · log(λ) with c ≥ 1, then tomography can be efficiently performed to extract
classical pseudorandomness, allowing for powerful applications [2]. Finally, larger
states n = Ω(λ), where extracting a classical description is no longer feasible,
are the final regime. This is the only regime that was separated from PRGs in
previous work [18].

Definition 5 (Pseudorandom State Generator). Let λ ∈ N be the security
parameter and let n = n(λ) be polynomial in λ. A QPT algorithm PRS is called
a n-pseudorandom state generator (PRS), if the following holds:

For any polynomial t(·) and QPT distinguisher A:∣∣∣∣ Pr
k←{0,1}λ

[A(PRS(k)⊗t(λ)) = 1]− Pr
|ϕ⟩←Haar(Cn)

[A(|ϕ⟩⊗t(λ)) = 1]

∣∣∣∣ ≤ negl(λ).

We divide PRS into three regimes, based on the state size n:

1. n = c · log(λ) with c≪ 1.
2. n = c · log(λ) with c ≥ 1, which we call short pseudorandom states (SPRSs).
3. n = Ω(λ), which we call long pseudorandom states (LPRSs).

We will also recall the standard definition for (post-quantum) PRGs and
PRFs. We consider only the versions of PRG and PRF with quantum evaluation
algorithms in this work.

Definition 6 (Pseudorandom Generator). Let λ ∈ N be the security pa-
rameter and let n = n(λ) be polynomial in λ. A deterministic QPT algorithm
G mapping {0, 1}λ to {0, 1}n is called a n-pseudorandom generator (PRG), if
n > λ for all λ ∈ N and for any QPT distinguisher A:∣∣∣∣ Pr

k←{0,1}λ
[A(G(k)) = 1]− Pr

y←{0,1}n
[A(y) = 1]

∣∣∣∣ ≤ negl(λ).

Definition 7 (Pseudorandom Function). Let λ ∈ N be the security parame-
ter and let m = m(λ) be polynomial in λ. A QPT deterministic algorithm F tak-
ing a key in {0, 1}λ and mapping {0, 1}m to {0, 1}m is called a m-pseudorandom

13

function (PRF), if for any QPT distinguisher A:∣∣∣∣ Pr
k←{0,1}λ

[AFk(0λ) = 1]− Pr
O←Πm,m

[AO(0λ) = 1]

∣∣∣∣ ≤ negl(λ).

We say a PRF is quantum-query-secure secure if the above holds even if A is
given quantum-query-secure access to Fk and O. Furthermore, in the case where
security only holds for t ≤ q queries for some polynomial q, then we call this
q-query PRF.

Pseudorandom states can be built from any (quantum-query-secure) PRF
[16].

Lemma 1 (Theorem 1 [16]). For any (quantum-query-secure) PRF : K ×
X → X where X : {1, . . . , N}, the family of states {|ϕ⟩}k∈K defined as follows
is a (logN)-PRS:

|ψk⟩ :=
1√
N

∑
x∈X

ω
Fk(x)
N |x⟩.

where ωN := e−i2π/N .

2.4 Pseudodeterministic Pseudorandom Strings from
Pseudorandom States

We describe the procedure given in [2] to extract classical pseudorandom strings
from pseudorandom states. The original procedure is, for some states, pseudo-
deterministic meaning that running this procedure on the same state may yield
different outcomes each time. However, it was shown that there exists a good
set of states such that the extraction procedure is deterministic.

We first recall the notion of tomography, which is used to extract a classical
approximate description of a quantum state.

Lemma 2 (Corollary 7.6 [1]). For any error tolerance δ = δ(λ) ∈ (0, 1] and
any dimension d = d(λ) ∈ N using at least t = t(λ) := 36λd3/δ copies of a d-
dimensional density matrix ρ, the process Tomography(ρ⊗t) runs in polynomial
time with respect to λ, d, 1/δ and outputs a matrix M ∈ Cd×d such that

Pr[∥ρ−M∥ ≤ δ :M ← Tomography(ρ⊗t)] ≥ 1− negl(λ).

We now recall how Tomography is used to extract pseudorandom strings in
[2].

Construction 1 (Extract [2]). Let λ ∈ N be the security parameter, and let
d := d(λ) and t := t(λ) be polynomials on λ. The algorithm Extract is defined as
follows:

– Input: t := 144λd8 copies of a d-dimensional quantum state ρ.

14

– Perform Tomography(ρ⊗t) with error tolerance δ := d5/6 to obtain a classical
matrix M ∈ Cd×d.

– Run Round(M) to get y ∈ {0, 1}ℓ.

Round(M): Input: Matrix M ∈ Cd×d.

– Define k(λ) := d5/6, r(λ) := d2/3, and ℓ(λ) := d1/6.
– Let p1, . . . , pd be the diagonal entries of M .
– For i ∈ [ℓ]:

1. Let qi :=
∑r

j=1 p(i−1)r+j .

2. Define bi :=

{
1 if qi > r/d

0 if qi ≤ r/d.
– Output b1∥ . . . ∥bℓ.

This extraction procedure was shown to satisfy the following two lemmas.

Lemma 3 (Lemma 3.6 in [2]). If Extract is run on a Haar random state, then
dTD((q1, . . . , qℓ), Z/(2d)) ≤ O(k/d) + O(ℓ/

√
r) where Z is a random variable in

Rℓ with i.i.d. N (2r, 4r) entries. In other words, Z/(2d) has an i.i.d. N (r/d, r/d2)
entries.

Lemma 4 (Claim 3.7 [2]). Define

Gd := {|ψ⟩ ∈ S(Cd) : ∀i ∈ [ℓ], |qi −
r

d
| > 2/d}.

Then,

1. Pr[|ψ⟩ ∈ Gd : |ψ⟩ ← Haar(Cd)] ≥ 1−O(d−1/6).
2. There exists a negligible function negl(n) such that for any |ψ⟩ ∈ Gd, there

exists a string y such that Pr[y ← Extract(|ψ⟩)] ≥ 1− negl(λ).

2.5 Pseudodeterministic Primitives in MicroCrypt

The Extract procedure described in the previous section was used to construct
a QPT algorithm termed pseudodeterministic PRGs from a SPRS. The non-
determinism in these algorithms make their use in cryptography difficult. Hence,
the follow-up work [4] converted pseudodeterministic PRGs into a notion known
as ⊥-PRGs. We recall this notion and introduce a similar relaxation to OWSGs,
which we term ⊥-OWSGs.

Definition 8 (⊥ One-Way State Generator). Let λ ∈ N be the security
parameter and let n = n(λ) be a polynomial in λ. A QPT algorithm G is called
a (µ, n)-⊥-pseudodeterministic OWSG (⊥-OWSG), if the following holds:

– (Correctness):

15

1. For any x ∈ {0, 1}λ, there exists a non-⊥ n-qubit pure-state |ψx⟩ such
that:

Pr[G(x) ∈ {|ψx⟩,⊥}] ≥ 1− negl(λ).

2. There exist a constant c > 0 such that µ(λ) = O(λ−c) and for sufficiently
large λ ∈ N, there exists a set Gλ ⊆ {0, 1}λ such that the following holds:
(a)

Pr
x←{0,1}λ

[x ∈ Gλ] ≥ 1− µ(λ).

(b) For every x ∈ Gλ, there exists a non-⊥ n-qubit state |ψx⟩ such that:

Pr [G(x) = |ψx⟩] ≥ 1− negl(λ). (1)

– (Security) For any polynomial t = t(λ) and QPT distinguisher A, there
exists a function ϵ(·) such that:

Adtg⊥-OWSG
A,G (1λ, 1t) := Pr[Exp⊥-OWSG

A,G (1λ, 1t) = 1] ≤ ϵ(λ).

We say that G is a ⊥-OWSG if for every QPT A, ϵ is a negligible function.
We say that G is a weak ⊥-OWSG if for every QPT A, ϵ ≤ 1

p for some
polynomial p. Furthermore, in the case where security only holds for t ≤ q
for some polynomial q, then we call G a q-copy ⊥-OWSG.

Exp⊥-OWSG
A,G (1λ, 1t):

1. Sample k ← {0, 1}λ.
2. For each i ∈ [t+ 1] generate |ψi⟩ ← G(k) where |ψi⟩ ∈ {⊥, |ϕk⟩}.
3. k′ ← A(⊗i∈[t]|ψi⟩). Let |ϕk′⟩ ← G(k′).
4. If |ψt+1⟩ = ⊥ or |ϕk′⟩ = ⊥, then output b = 0.
5. Measure |ψt+1⟩ with {|ϕk′⟩⟨ϕk′ |, I−|ϕk′⟩⟨ϕk′ |} and if the result is |ϕk′⟩⟨ϕk′ |,

then output b = 1, and output b = 0 otherwise.

We will also need a weaker notion which we call psuedodeterministic OWSG.

Definition 9 (Pseudodeterministic One-Way State Generator). Let λ ∈
N be the security parameter and let n = n(λ) be a polynomial in λ. A QPT
algorithm G is called a (µ, n)-pseudodeterministic OWSG (PD-OWSG), if the
following holds:

– (Correctness): G(x) generates a n-qubit pure-state on any input x ∈ {0, 1}λ.
Furthermore, there exist a constant c > 0 such that µ(λ) = O(λ−c) and
for sufficiently large λ ∈ N, there exists a set Gλ ⊆ {0, 1}λ such that the
following holds:
1.

Pr
x←{0,1}λ

[x ∈ Gλ] ≥ 1− µ(λ).

16

2. For every x ∈ Gλ, there exists a non-⊥ n-qubit state |ψx⟩ such that:

Pr [G(x) = |ψx⟩] ≥ 1− µ(λ). (2)

– (Security) For any polynomial t = t(λ) and QPT distinguisher A, there
exists a function ϵ(·) such that:

AdtgPD-OWSG
A,G (1λ, 1t) := Pr[ExpPD-OWSG

A,G (1λ, 1t) = 1] ≤ ϵ(λ).

We say that G is a PD-OWSG if for every QPT A, ϵ is a negligible function.
We say that G is a weak PD-OWSG if for every QPT A, ϵ ≤ 1

p for some
polynomial p.

ExpPD-OWSG
A,G (1λ, 1t):

1. Sample k ← {0, 1}λ.
2. For each i ∈ [t+ 1] generate |ψi⟩ ← G(k).
3. k′ ← A(⊗i∈[t]|ψi⟩). Let |ϕk′⟩ ← G(k′).
4. Measure |ψt+1⟩ with {|ϕk′⟩⟨ϕk′ |, I−|ϕk′⟩⟨ϕk′ |} and if the result is |ϕk′⟩⟨ϕk′ |,

then output b = 1, and output b = 0 otherwise.

We prove the following lemmas regarding PD-OWSGs that will be useful in
our separation results. These are largely derived from previously known results
on OWSGs, so we only give sketches of the proofs.

Lemma 5. Let n, q, and p be polynomials in the security parameter λ ∈ N.
Let µ = O(λ−c) for some constant c such that µ < 1

λ2q . Let p > 2 · q · λ be a

polynomial in λ. If (1/q)-weak p-copy (µ, n)-PD-OWSGs exist, then (p
qλ)-copy

(µ · q · λ, n · q · λ)-PD-OWSGs exist.

Proof. [sketch] Security follows in the same way as the proof given in [22], which
converts weak OWSGs into OWSGs. For the pseudodeterminism error and the
number of queries, note that the construction of the OWSG in this proof queries
the weak OWSG q · λ times. Hence, the pseudodeterminism error is now µ · q · λ
and the generator is only secure given p

qλ queries. ⊓⊔

Lemma 6. Let n and p be polynomials in the security parameter λ ∈ N and
let µ = O(λ−c) for some constant c > 1. If kn-copy (µ, n)-PD-OWSGs exist for
sufficiently large constant k > 0, then OWPuzzs exist.

Proof. [sketch] Theorem 2.6 in [17] constructs OWPuzzs from (k′n)-copy OWSGs
for some k′ > 0. For a PD-OWSG G, the conversion only satisfies correctness
when applied on a good key x ∈ Gλ. However, by standard amplification argu-
ments through repetition, this correctness error can be reduced to negligible. ⊓⊔

[7] show that if PSPACE = BQP, then OWPuzzs do not exist. In fact, the
attack presented succeeds in finding a solution to a puzzle with probability 1.

17

Lemma 7 ([7]). OWPuzzs do not exist if PSPACE = BQP.

We introduce ⊥-PRGs now. Note that it is easy to distinguish these func-
tions from random by simply looking for any ⊥ evaluations. However, it is suffi-
cient to only require indistinguishability for non-⊥ evaluations. This is incorpo-
rated in the security game by providing ⊥ in the truly random case as well. See
[4] for a more in-depth discussion.

Definition 10 (Is-⊥). We define the operator

Is-⊥(a, b) :=

{
⊥ if a = ⊥
b otherwise.

Definition 11 (⊥-Pseudorandom Generator). Let λ ∈ N be the security
parameter and let m = m(λ) be polynomial in λ. A QPT algorithm G map-
ping {0, 1}λ to {0, 1}m ∪{⊥}, is a (µ,m)-⊥-pseudodeterministic pseudorandom
generator (⊥-PRG) if:

1. (Expansion) m(λ) > λ for all λ ∈ N.
2. (Pseudodeterminism) There exist a constant c > 0 such that µ(λ) = O(λ−c)

and for sufficiently large λ ∈ N there exists a set Gλ ⊆ {0, 1}λ such that the
following holds:
(a)

Pr
x←{0,1}λ

[x ∈ Gλ] ≥ 1− µ(λ).

(b) For every x ∈ Gλ there exists a non-⊥ value y ∈ {0, 1}m such that:

Pr [G(x) = y] ≥ 1− negl(λ). (3)

(c) For every x ∈ {0, 1}λ, there exists a non-⊥ value y ∈ {0, 1}m such that:

Pr [G(x) ∈ {y,⊥}] ≥ 1− negl(λ). (4)

3. (Security) For every QPT distinguisher A, there exists a negligible function
ϵ such that:∣∣∣∣∣∣∣∣∣∣∣
Pr


k ← {0, 1}λ
y1 ← G(k)

...
yq ← G(k)

: A(y1, ..., yq) = 1

− Pr


k ← {0, 1}λ
y ← {0, 1}m

y1 ← Is-⊥(G(k), y)
...

yq ← Is-⊥(G(k), y)

: A(y1, . . . , yq) = 1



∣∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ)

⊥-PRGs were constructed from SPRSs in [4].

Lemma 8 (Corollary 1 [4]). If there exists (c log λ)-SPRS for some constant
c > 12, then there exists a (O(λ−c/12+1), λc/12) - ⊥-PRG.

We note that [4] also constructed a ⊥-pseudodeterministic pseudorandom
function (⊥-PRF) from a ⊥-PRG. We refer the reader to [4] for the explicit
definition of ⊥-PRFs as it is not required in this work.

18

3 Definitions: Cryptography with Quantum Input
Sampling

We present definitions for various known cryptographic primitives but with quan-
tum input sampling algorithms.

Note that any classical input sampling algorithm can be derandomized
and replaced with uniform key sampling. However, a quantum procedure cannot
be derandomized and might include non-deterministic quantum computations.
Delaying these computations to the evaluation or state generation step may lead
to a different outcome each time, which is problematic for deterministic notions
such as PRSs or OWFs. Hence, we include a QPT algorithm QSamp to sample
inputs.

First of all, we define PRS with quantum input sampling.

Definition 12 (Pseudorandom State Generator with Quantum Input
Sampling). Let λ ∈ N be the security parameter and let n = n(λ) and m =
m(λ) be polynomials in λ. A pair of QPT algorithms (QSamp,StateGen) is called
a (m,n)-PRS with quantum input sampling (PRSqs), if the following conditions
hold:

– QSamp(1λ) : Outputs a string k ∈ {0, 1}m.
– StateGen(k) : Takes a m-bit string k and outputs a n-qubit state ρk.
– (Security) For any polynomial t(·) and QPT distinguisher A:∣∣∣∣ Pr

k←QSamp(1λ)
[A(StateGen(k)⊗t(λ)) = 1]− Pr

|ϕ⟩←Haar(Cd)
[A(|ϕ⟩⊗t(λ)) = 1]

∣∣∣∣ ≤ negl(λ).

In the case where security only holds for t ≤ q for some polynomial q = q(λ),
then we call this (q,m, n)-bounded-copy PRSqs (BC-PRSqs).

We now introduce PRG with quantum input sampling. As far as we know,
this notion has not been defined previously.

Definition 13 (Pseudorandom Generator with Quantum Input Sam-
pling). Let λ ∈ N be the security parameter and let n = n(λ) and m = m(λ) be
polynomials in λ. A pair of QPT algorithms (QSamp, G) is a (n,m)-PRG with
quantum input sampling (PRGqs) if:

1. QSamp(1λ) : Outputs a string k ∈ {0, 1}n.
2. G(k): Takes an input k ∈ {0, 1}n and outputs y ∈ {0, 1}m
3. (Expansion) m(λ) > n(λ) for all λ ∈ N.
4. (Determinism) For every k ∈ {0, 1}n, there exists a string yk ∈ {0, 1}m such

that:

Pr
k←QSamp(1λ)

[G(k) = yk] ≥ 1− negl(λ).

19

5. (Security) For any QPT distinguisher A, there exists a negligible function ϵ
such that:∣∣∣∣ Pr

k←QSamp(1λ)
[A(G(k)) = 1]− Pr

y←{0,1}m
[A(y) = 1]

∣∣∣∣ ≤ ϵ(λ).
We say that G is a strong PRGqs if for every QPT A, ϵ(λ) is a negligible
function. We say that G is a weak PRGqs if for every QPT A, ϵ(λ) ≤ 1

p(λ)

for some polynomial p.

We now introduce PRFs with quantum key generation.

Definition 14 (Pseudorandom Function with Quantum Key Genera-
tion). Let λ ∈ N be the security parameter and let n = n(λ) and m = m(λ) be
polynomials in λ. A pair of QPT algorithms (QSamp, F) is called a (m,n)-PRF
with quantum key generation (PRFqs), if:

1. QSamp(1λ) : Outputs a key k ∈ {0, 1}m.
2. Fk(x): Takes a key k ∈ {0, 1}m and an input x ∈ {0, 1}n and outputs a

string y ∈ {0, 1}n.
3. (Security) For any QPT distinguisher A:∣∣∣∣ Pr

k←QSamp(1λ)
[AFk(0λ) = 1]− Pr

O←Πn,n

[AO(0λ) = 1]

∣∣∣∣ ≤ negl(λ).

We say a PRFqs is quantum-query-secure if the above holds even if A is
given quantum-query access to Fk and O. Furthermore, in the case where
security only holds for t ≤ q queries for some polynomial q = q(λ), then we
call this a q-query PRFqs.

Definition 15 (Pseudorandom Permutation with Quantum Key Gen-
eration). Let λ ∈ N be the security parameter and let n = n(λ) be polynomial in
λ. A tuple of QPT algorithms (QSamp, F, F−1) is called a (m,n)-pseudorandom
permutation with quantum key generation (PRPqs), if:

1. QSamp(1λ) : Outputs a string k ∈ {0, 1}m.
2. Fk(x): Takes a key k ∈ {0, 1}m and an input x ∈ {0, 1}n and outputs a

string y ∈ {0, 1}n.
3. F−1k (y): Takes a key k ∈ {0, 1}m and an input y ∈ {0, 1}n and outputs a

string x ∈ {0, 1}n.
4. (Inverse Relation) For every k ∈ {0, 1}m, there exists a permutation πk over
{0, 1}n such that for all x, y ∈ {0, 1}n

Pr
k←QSamp(1λ)

[Fk(x) = πk(x)] ≥ 1− negl(λ).

and
Pr

k←QSamp(1λ)

[
F−1k (y) = π−1k (y)

]
≥ 1− negl(λ).

20

5. (Security) For any QPT distinguisher A:∣∣∣∣ Pr
k←QSamp(1λ)

[AFk,F
−1
k (0λ) = 1]− Pr

O←Πn

[AO,O−1

(0λ) = 1]

∣∣∣∣ ≤ negl(λ).

where Πn is the set of permutations on {0, 1}n. We say a PRPqs is quantum-
query-secure if the above holds even if A is given quantum-query-access.
Furthermore, in the case where security only holds for t ≤ q queries for
some polynomial q = q(λ), then we call this q-query PRPqs.

We also define pseudorandom unitaries with quantum input sampling.

Definition 16 (Pseudorandom Unitaries with Quantum Input Sam-
pling). Let m = m(λ) and n = n(λ) be polynomials in the security parameter
λ ∈ N. A pair of QPT algorithms (QSamp, U) is a (m,n)-pseudorandom unitary
with quantum input sampling (PRUqs) if the following holds:

1. QSamp(1λ): Outputs a m-bit key k.
2. Uk: Quantum channel that takes an m-bit key k and acts on n-qubit states.
3. For any QPT adversary A,∣∣∣∣ Pr

k←QSamp(1λ)
[AUk(1λ) = 1]− Pr

U←µ
[AU (1λ) = 1]

∣∣∣∣ ≤ negl(λ).

where µ denotes the Haar measure on the unitary group U(Cn). If A is
restricted to only q = q(λ) queries to the unitary, then this is denoted as
(q,m, n)-BQ-PRUqs.

Note that our definition of is weaker than earlier definitions of PRU [16], as
we do not require that the pseudorandom unitary to be a unitary map. We only
require that it is indistinguishable from a Haar random unitary. Unfortunately,
due to the negligible error inherent in PRPqs and PRFqs, our construction of a
PRUqs from these primitives is not guaranteed to be a unitary map.

4 Relations among Primitives with Quantum Input
Sampling

In this section, we explore relations among MicroCrypt primitives with quantum
input sampling algorithms.

In summary, we find that there exists black-box constructions for the fol-
lowing:

1. PRGqs from ⊥-PRG.
2. PRGqs from BC-SPRSqs.
3. SPRSqs from PRGqs.
4. BQ-PRUqs from PRGqs

We also discuss how these results can be used to modify the output size of
a SPRS in Section 4.3.

21

4.1 PRGqs from ⊥-PRG

We show how to build PRGqss from ⊥-PRGs. First, we build a weak PRGqs, and
then amplify security to achieve a standard PRGqs.

Construction 2. Let m be a polynomial on the security parameter λ ∈ N such
that λ < m. Let µ = O(λ−c) for some constant c > 0. Let G be a (µ,m)-⊥-PRG.
The construction for a weak (λ,m)-PRGqs is as follows:

– QSamp(1λ) : For i ∈ [λ] :
1. Sample ki ← {0, 1}λ.
2. For each j ∈ [λ], compute yi,j ← G(ki).
3. If vote(yi,1, . . . , yi,λ) ̸=⊥ 9, then output ki.
Otherwise, output ⊥.

– PRG(k) :
1. For each j ∈ [λ], compute yj ← G(k).
2. If yj = ⊥ for all j ∈ [λ], then output ⊥.
3. Otherwise, output the first most common non-⊥ value in (y1, . . . , yλ).

Lemma 9. Construction 2 is a weak (λ,m)-PRGqs assuming the existence of a
(µ,m)-⊥-PRG.

Proof. We first show that the algorithm PRG satisfies the determinism con-
dition of PRGqss. Firstly, by the pseudodeterminism condition of the ⊥-PRG
G, there is negligible probability that QSamp(1λ) outputs ⊥. Furthermore, for
any k ∈ {0, 1}λ, if Pr[G(k) = ⊥] ≥ 2

3 , then there is negligible probability
that vote(y1, . . . , yλ) ̸=⊥, where yj ← G(k) for all j ∈ [λ]. By the union
bound, there is negligible probability that QSamp(1λ) outputs a key k such that
Pr[G(k) = ⊥] ≥ 2

3 . Therefore, except with negligible probability, the output of
QSamp(1λ) is a non-⊥ key k such that Pr[G(k) = ⊥] < 2

3 . It is clear that for
such a key, PRG(k) is deterministic by the pseudodeterminism of G.

Next, we need to show that the security condition is satisfied. In other
words, we need to show that for any QPT distinguisher A∣∣∣∣ Pr

k←QSamp(1λ)
[A(PRG(k)) = 1]− Pr

y←{0,1}m
[A(y) = 1]

∣∣∣∣ ≤ 1/poly(λ).

We commence with a hybrid argument.

– Hybrid H0: This is the output distribution of the generator.
• k ← QSamp(1λ).
• For each j ∈ [λ], compute yj ← G(k).
• If yj = ⊥ for all j ∈ [λ], then output ⊥.
• Otherwise, output the first most common non-⊥ value in (y1, . . . , yλ).

– Hybrid H1: The same as hybrid H0 except the input is sampled from the
good set Gλ of G.
• k ← Gλ.

9 vote(a1, . . . , an) outputs the first most common element in the tuple (a1, . . . , an).

22

• For each j ∈ [λ], compute yj ← G(k).
• If yj = ⊥ for all j ∈ [λ], then output ⊥.
• Otherwise, output the first most common non-⊥ value in (y1, . . . , yλ).

– Hybrid H2: The same as hybrid H1 except the output is computed using a
single evaluation of G(k).
• k ← Gλ.
• Output G(k).

– Hybrid H3: The same as hybrid H2 except output is a ⊥ random string.
• k ← Gλ.
• y ← {0, 1}m.
• Output Is-⊥(G(k), y).

– Hybrid H4: The output is a random string.
• y ← {0, 1}m.
• Output y.

We now show that no QPT adversary can distinguish these hybrids, except
with inverse polynomial advantage.

Claim 1. For any QPT adversary:∣∣∣∣ Pr
y←H0

[A(y) = 1]− Pr
y←H1

[A(y) = 1]

∣∣∣∣ ≤ µ+ negl(λ).

Proof. Recall the algorithm of QSamp(1λ) is as follows:
For i ∈ [λ] :

1. Sample ki ← {0, 1}λ.
2. For each j ∈ [λ], compute yi,j ← G(ki)
3. If vote(yi,1, . . . , yi,λ) ̸=⊥, then output ki.

Note that any input in the good set Gλ of G, yields a deterministic output
with high probability, so if k1 ∈ Gλ in the algorithm of QSamp, then the output
is k1 with high probability. In other words, if k1 ∈ Gλ, then the output of QSamp
is statistically indistinguishable from sampling a random element from Gλ. Note
that Prk←{0,1}λ [k ∈ Gλ] ≥ 1 − µ, hence the probability k1 /∈ Gλ is at most µ.
Therefore, we have:∣∣∣∣ Pr

y←H0

[A(y) = 1]− Pr
y←H1

[A(y) = 1]

∣∣∣∣ ≤ µ+ negl(λ).

⊓⊔

Claim 2. Hybrids H1 and H2 are statistically indistinguishable.

Proof. In both hybrids, the first step is to sample a input from the good set.
By the pseudodeterminism of ⊥-PRGs, for any input k ∈ Gλ, there is a string
y satisfying Pr[y ← G(k)] ≥ 1 − negl(λ). In this case, the probability that
vote(y1, . . . , yλ) = y, where yi ← G(k) for i ∈ [λ], is at least 1− negl(λ). Hence,
both hybrids are statistically indistinguishable. ⊓⊔

23

Claim 3. For any QPT adversary A:∣∣∣∣ Pr
y←H2

[A(y) = 1]− Pr
y←H3

[A(y) = 1]

∣∣∣∣ ≤ 2µ+ negl(λ).

Proof. By the pseudodeterminism property of G, Prk←{0,1}λ [k ∈ Gλ] ≥ 1− µ so∣∣∣∣ Pr
y←H2

[A(y) = 1]− Pr
k←{0,1}λ

[A(G(k)) = 1]

∣∣∣∣ ≤ µ+ negl(λ).

Furthermore, by the security of G, there is negligible function such that∣∣∣∣ Pr
k←{0,1}λ

[A(G(k)) = 1]− Pr
k←{0,1}λ,y←{0,1}m

[A(Is-⊥(y,G(k))) = 1]

∣∣∣∣ ≤ negl(λ).

Finally, by the pseudodeterminism property of G,

∣∣∣∣ Pr
k←{0,1}λ,y←{0,1}m

− [A(Is-⊥(y,G(k))) = 1]−

Pr
k←Gλ,y←{0,1}m

[A(Is-⊥(y,G(k))) = 1]

∣∣∣∣ ≤ µ+ negl(λ).

The second term on the left hand side of the equation above is hybrid H3.
All in all, the triangle inequality gives:∣∣∣∣ Pr

y←H2

[A(y) = 1]− Pr
y←H3

[A(y) = 1]

∣∣∣∣ ≤ 2µ+ negl(λ).

⊓⊔

Claim 4. Hybrid H3 is statistically indistinguishable from H4.

Proof. This follows directly from the pseudodeterminism property of ⊥-PRGs.
⊓⊔

By the triangle inequality, we get that for any QPT adversary A such that,∣∣∣∣ Pr
k←QSamp(1λ)

[A(PRG(k)) = 1]− Pr
y←{0,1}m

[A(y) = 1]

∣∣∣∣ =∣∣∣∣ Pr
y←H0

[A(y) = 1]− Pr
y←H4

[A(y) = 1]

∣∣∣∣ ≤ 3µ+ negl(λ).

Hence, Construction 2 is a weak PRGqs. ⊓⊔

Next, it was shown in [10] that a weak PRG can be upgraded to a strong
PRG through a standard amplification argument. This argument applies to PRGqss,
giving the following result.

Theorem 3. If there exists (µ,m)-⊥-PRG where m > λ2 and µ = O(λ−c) for
some constant c > 0, then there exists a (λ2,m)-PRGqs satisfying strong security.

24

4.2 PRGqs from BC-SPRSqs

In this part, we show that BC-SPRSqs can be used to construct PRGqss using
properties of pseudorandom states described in Section 2.4.

Construction 3. Let λ ∈ N be the security parameter and let n = c · log λ,
d = ⌈λc⌉, and m := ⌈λc/12⌉, where c > 12 is a constant. Let (QS,PRS) be a
(200λd8, λ, n)-BC-SPRSqs. The construction for a (λ,m)-PRGqs is as follows:

– QSamp(1λ) : For each i ∈ [λ] :
1. Sample si ← QS(1λ).
2. Extract t := 144λd8 copies of pseudorandom state ρ⊗ti using PRS(si).
3. Run Mi ← Tomography(ρ⊗ti).
4. If Mi ∈ Gλ (as defined in Lemma 4), then output k := si.
Otherwise, output ⊥.

– G(k) :
1. If k = ⊥, then output ⊥.
2. Compute y ← Extract(k).
3. Output y.

Theorem 4. Construction 3 satisfies weak (λ,m)-PRGqs security assuming the
existence of a (200λd8, λ, n)-BC-SPRSqs.

Proof. We first show that the algorithm G satisfies the determinism condition
of a PRGqs. Firstly, by the pseudodeterminism condition of the ⊥-PRG G, there
is negligible probability that QSamp(1λ) outputs ⊥.

The other possibility is that QSamp(1λ) outputs a key s satisfyingMs ∈ Gλ
where Ms ← Tomography(ρ⊗ti) and ρi ← PRS(s) for all i ∈ [t]. In this case, [4]
argues using Lemmas 2 and 4 that G(s) yields a unique output except with
negligible probability. However, this was only shown for SPRSs, or random Haar
states, and not for BC-SPRSqss. The quantum input sampling in BC-SPRSqs does
not affect this argument, however, the limited copies may affect it.

It is easy to argue that the limited copies have no affect on this determinism
property. By our assumption, PRS(s) is indistinguishable from a random Haar
state even given 200λd8 > 2t copies. In other words, if s satisfies Ms ∈ Gλ in
one computation but two computations of G(s) do not agree with non-negligible
probability, then PRS can be distinguished from a random Haar states as follows.
The distinguisher uses 2t copies of the state ρ⊗2ti , where ρi ← PRS(s) for all
i ∈ [2t], to compute G(s) twice. If Ms ∈ Gλ in the first computation but the
two evaluations do not agree, then the distinguisher can distinguish the states
from random Haar states and break BC-SPRSqs security. Therefore, except with
negligible probability, if Ms ∈ Gλ, then two evaluations of G(s) need to yield a
unique output. So G satisfies the determinism condition of PRGqss.

Next, we need to show security. Specifically, we need to show that for any
QPT distinguisher A:∣∣∣∣ Pr

k←QSamp(1λ)
[A(G(k)) = 1]− Pr

y←{0,1}m
[A(y) = 1]

∣∣∣∣ ≤ 1/poly(λ).

The proof is through a hybrid argument:

25

– H0:
1. Sample k ← QSamp(1λ).
2. Compute y ← G(k).
3. Run A(y) and output the result.

– H1: The same as H0, except we modify the PRGqs algorithms by extracting a
classical string from the pseudorandom states during input sampling instead
of during evaluation.
• QSampH1

(1λ) : For each i ∈ [λ] :
1. Sample si ← QS(1λ).
2. Extract t := 144λd8 copies of pseudorandom state ρ⊗ti using PRS(si).
3. Run Mi ← Tomography(ρ⊗ti).
4. If Mi ∈ Gλ, then compute yi ← Round(Mi).
5. Output k := yi.
Otherwise, output ⊥.

• GH1
(k) : Output k.

– H2: Same as H1, except we modify the PRGqs algorithms by using random
Haar states instead of pseudorandom states.
• QSampH2

(1λ) : For each i ∈ [λ] :

1. Sample t := 144λd8 copies of a random Haar state ρ⊗ti from Haar(Cd).
2. Run Mi ← Tomography(ρ⊗ti).
3. If Mi ∈ Gλ, then compute yi ← Round(Mi).
4. Output k := yi.
Otherwise, output ⊥.

• GH2
(k) : Output k.

– H3: Same as H2, except we modify the PRGqs algorithms by removing the
condition on the random Haar states.
• QSampH3

(1λ) :
1. Sample t := 144λd8 copies of a random Haar state ρ⊗t from Haar(Cd).
2. Run M ← Tomography(ρ⊗t).
3. Compute y ← Round(M).
4. Output k := y.
Otherwise, output ⊥.

• GH3(k) : Output k.
– H4: Same as H3, except we sample a random string instead of extracting

randomness from the Haar random states.
• QSampH4

(1λ) : Sample a random string y ← {0, 1}m. Set k = y.
• GH4(k) : Output k.

First of all, hybrid H0 is statistically indistinguishable from hybrid H1, since
we just move a step from the evaluation phase to the input sampling phase.

H1 is computationally indistinguishable from hybrid H2 because any QPT
adversary that can distinguish between these hybrids can be used to break
BC-SPRSqs security.

Next, QSampH2
in hybrid H2 samples a Haar random state that is in the

set Gλ or it returns ⊥. However, the latter occurs with negligible probability, so
it is indistinguishable from sampling a Haar random state in Gλ. Therefore, by
Lemma 4, H2 and H3 can only be distinguished with O(d−1/6) probability.

26

Finally, the variational distance between hybrids H3 and H4 is at most
O(d−1/6) by Lemma 3.

All in all, by the triangle inequality:

∣∣∣∣ Pr
k←QSamp(1λ)

[A(G(k)) = 1]− Pr
y←{0,1}m

[A(y) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
y←H0

[A(y) = 1]− Pr
y←H1

[A(y) = 1]

∣∣∣∣
≤ O(d−1/6).

⊓⊔

Recall that weak PRGqs can be upgraded to a strong PRGqs following the
same argument in [10]. Hence, we obtain the following result.

Theorem 5. If there exists (200λd, λ, n)-BC-SPRSqs, then there exists a (λ2,m)-
PRGqs satisfying strong security.

Note that ⊥-PRGs were used in [4] to construct many-time digital sig-
natures and quantum public-key encryption with tamper-resilient public-keys.
However, it is not clear if these applications can be achieved from PRGqss since
the arguments used intricately rely on the distribution of inputs for the ⊥-PRG.
Our quantum input sampling samples inputs in a more complex manner that
may affect these results. Therefore, PRGqs may be more difficult to use than
⊥-PRGs in certain cryptographic applications. However, in the next section, we
show that PRGqss can still be used for SPRSqs.

4.3 SPRSqs from PRGqs

In this section, we show that PRGqss can be used to build SPRSqs.

Construction 4. Let λ ∈ N be the security parameter and let c > 12 be a
constant. Let m = m(λ) be polynomial on λ such that m > λ2c+1. Let (QS, G)
be a (λ,m)-PRGqs. Let N = ⌈λc⌉ and X = {1, . . . , N}. The construction for a
(λ, c · log λ)-SPRSqs is as follows:

– QSamp(1λ) : Sample s← QS(1λ). Output k = s.
– StateGen(k) :

1. Compute y ← G(k).
2. Interpret y as a function fy : X → X 10.
3. Output

|ψk⟩ :=
1√
N

∑
x∈X

ω
fy(x)
N |x⟩.

10 For i ∈ X , fz(i) := z[it : (i+ 1)t] where t := ⌈logN⌉.

27

Theorem 6. Construction 4 is a (λ, c · log λ)-SPRSqs assuming the existence of
a (λ,m)-PRGqs where m > λ2c+1.

Theorem 6 follows directly from Lemma 1. Specifically, Lemma 1 states
that a n-SPRS can be built from a PRF with domain size 2n. This conversion
applies to the quantum input sampling regime as well. Then, Theorem 6 follows
by setting n := c · log λ and noting that fy in Construction 4 is a PRF.

Theorem 5 states that we can construct a PRGqs from any SPRSqs. On
the other hand, Theorem 6 state that we can construct a SPRSqs from a PRGqs.
Applying these two results consecutively, we get a method to shrink the size of
a SPRS.

Corollary 3. For any sufficiently large c ∈ N and any m < c/36, (λ, c log λ)-
SPRSqs implies (λ,m log λ)-SPRSqs.

Furthermore, by starting with a SPRS, building a ⊥-PRG [4], amplifying
the output length sufficiently 11, building a PRGqs (Theorem 3), and finally a
SPRSqs, we obtain a SPRSqs of larger size.

Corollary 4. For any sufficiently large c ∈ N and any m > c, (λ, c log λ)-SPRS
implies (λ,m log λ)-SPRSqs.

4.4 BQ-PRUqs from PRGqs

Note that a PRGqs with sufficient expansion easily implies a PRFqs with polyno-
mial domain through interpreting the output string as a function. However, it
is not clear if a PRGqs can be used to build full-fledged PRFqs with exponential
domain since the standard construction converting a PRG to a PRF [14] and its
quantum adaption [27] both implicitly use the uniform input sampling property
of PRGs. Hence, adapting this conversion to the quantum input sampling setting
is an interesting open question.

Fortunately, PRFqs with polynomial domain can still be useful for applica-
tions by converting them to bound-query PRFqss with exponential domain using
Lemma 10. Specifically, the paper [11] shows how to expand the domain size of
a PRF, and the same construction and result apply to PRFqss as well.

Lemma 10 (Theorem 7 [11]). Let λ ∈ N be the security parameter and q and
m be polynomials in λ. Let (QSamp,F) be a PRFqs with key space Kq, domain
X : {0, 1}ℓ where ℓ = O(log(λ)), and co-domain Z : {0, 1}m. Then, there exists a
q-query (quantum-query-secure) PRFqs (QSamp, F ′q) with the same key sampling
algorithm and key space Kq, and with domain and co-domain Z.

We will use this result to build BQ-PRUqs and BC-LPRSqs from PRGqss.
First, [26] shows how to build quantum-query-secure pseudorandom permuta-
tions from quantum-query-secure PRFs. This conversion queries the PRF a poly-
nomial number of times with respect to the security parameter and input length.

11 It is easy to amplify the output length of a ⊥-PRG by re-applying the algorithm on
the output.

28

Hence, the same proof can be used to show that for any q′ ∈ poly(λ), there ex-
ists a q ∈ poly(λ) such that q-query pseudorandom functions imply q′-query
pseudorandom permutations.

Corollary 5. Let λ ∈ N be the security parameter and q = q(λ) and m = m(λ)
be polynomials in λ. There exists a polynomial ℓ = ℓ(λ), such that (λ, ℓ)-PRGqss
imply (q, λ,m)-BQ-PRPqss.

Recently, [20] showed how to build a PRU from PRPs and PRFs. Notably,
each unitary evaluation uses a single quantum query to the PRP and to the
PRF. Therefore, we obtain bounded-copy PRUqss from bounded-query PRFqss
and bounded-query PRPqss. Furthermore, BQ-PRUqs imply BC-LPRSqs given
that LPRS can be viewed as a special case of PRUs, where the unitary can only
be queried on the state |0n⟩.

Theorem 7. Let λ ∈ N be the security parameter and q and n be polynomials
in λ. There exists a polynomial ℓ in λ such that (λ, ℓ)-PRGqss imply (q, λ, n)-
BQ-PRUqss and (q, λ, n)-BC-LPRSqs.

5 Black-Box Separations Among MicroCrypt

In this section, we demonstrate two separation results and discuss implications.

5.1 Separating OWSG from ⊥-PRG

First, we show that there does not exist a black-box construction of a OWSGs
from a ⊥-PRG. The proof idea is as follows. We consider two oracles: a oracle
for a PSPACE-complete language and a ⊥-pseudodeterministic quantum oracle.
Through standard arguments, we show that the second oracle already acts as a
⊥-PRG, noting that the ⊥-pseudodeterminism is not a problem given the nature
of ⊥-PRGs. On the other hand, the unpredictability of the ⊥-pseudodeterminism
in the second oracle prevents its use in the construction of deterministic prim-
itives such as a OWSG. Specifically, through a careful argument, we show that
any OWSG must exist independently of the second oracle and, thus, cannot
exist in the presence of a PSPACE oracle. Given this distinction, there cannot
exist a black-box construction of a OWSG from a ⊥-PRG. The proof is given in
Appendix A.1, but the result is stated below.

Theorem 8. Let λ ∈ N be the security parameter. For any function w(λ), poly-
nomial m(λ) > λ, and pseudodeterminism error µ(λ) = O(λ−c) for some c > 0,
there does not exist a black-box construction of a w-OWSG from a (µ,m)-⊥-PRG.

This separation is significant because there are multiple MicroCrypt prim-
itives that can be built from ⊥-PRGs, thus yielding new separations in Micro-
Crypt.

First of all, we note that ⊥-PRGs can be used to build the following prim-
itives [4].

29

Lemma 11. There exist black-box constructions of the following primitives from
⊥-PRGs:

1. ⊥-PRFs.
2. (Many-time) digital signatures of classical messages with classical keys and

signatures.
3. Quantum public-key encryption of classical messages with tamper-resilient

keys and classical ciphertexts.

As a result of Theorem 8 and Lemma 11, we obtain a separation between
OWSGs and some cryptographic applications.

Corollary 6. OWSGs are black-box separated from:

1. ⊥-PRFs.
2. (Many-time) digital signatures of classical messages with classical keys and

signatures.
3. Quantum public-key encryption of classical messages with tamper-resilient

keys and classical ciphertexts.

5.2 Separating ⊥-OWSG from PRFqs

We show that there does not exist a black-box construction of a ⊥-OWSG from
a PRFqs. The idea is to consider three oracles. The first is a restricted-access
oracle O, that can only be accessed with a key as input. This oracle will acts as
a PRFqs. Next, we use another oracle σ that produces random keys such that
each distinct key gives access to a different function in O. Note that this is not
an issue for the PRFqs, as a key from σ can be sampled during key generation
and, then, reused during evaluation to obtain deterministic outputs from O.

On the other hand, a uniform key generation algorithm is incapable of
accessing σ during key generation. Consequently, a ⊥-OWSG is incapable of
obtaining deterministic evaluations from O. This informally means that any
⊥-OWSG cannot depend on (σ,O) and, thus, cannot exist in the presence of a
PSPACE oracle. Therefore, there does not exist a black-box construction of a
⊥-OWSG from a PRFqs. The proof is given in Appendix A.1, but the result is
stated below.

Theorem 9. Let λ, n ∈ N be security parameters, a = a(n) ≥ n and b = b(n) be
polynomials, s = s(λ) be a function, and µ = µ(λ) ≤ λ−c be a function. There
does not exist a black-box construction of a (µ, s)-⊥-OWSG from a (a, b)-PRFqs

for large enough constant c > 0.

The following lemma generalizes the applications of PRFs in cryptogra-
phy [16, 2, 4] to PRFqss. These follow in the same way as using quantum key
generation rather than uniform key generation does not affect the proofs.

Lemma 12. There exists black-box constructions of the following primitives
from (quantum-query-secure) PRFqss:

30

1. PRGqs, SPRSqs, LPRSqs, and PRUqs.
2. Statistically-binding computationally hiding bit commitments with classical

communication.
3. Message authentication codes of classical messages with classical communi-

cation.
4. CCA2-secure symmetric encryption for classical messages with classical keys

and ciphertexts.
5. EV-OWPuzzs.

As a result of Theorem 9 and Lemma 12, we obtain a separation between
⊥-OWSGs and many other MicroCrypt primitives. We note that this separation
extends to ⊥-PRGs and SPRSs since they imply ⊥-OWSGs [4, 23].

Corollary 7. ⊥-OWSGs, ⊥-PRGs, and SPRSs are black-box separated from:

1. PRGqs, SPRSqs, LPRSqs, and PRUqs.
2. Statistically-binding computationally hiding bit commitments with classical

communication.
3. Message authentication codes of classical messages with classical communi-

cation.
4. CCA2-secure symmetric encryption of classical messages with classical keys

and ciphertexts.
5. EV-OWPuzzs.

References

[1] Prabhanjan Ananth, Aditya Gulati, Luowen Qian, and Henry Yuen. “Pseu-
dorandom (Function-Like) Quantum State Generators: New Definitions
and Applications”. In: Theory of Cryptography: 20th International Con-
ference, TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings,
Part I. Springer. 2022, pp. 237–265.

[2] Prabhanjan Ananth, Yao-Ting Lin, and Henry Yuen. “Pseudorandom Strings
from Pseudorandom Quantum States”. In: arXiv preprint arXiv:2306.05613
(2023).

[3] Prabhanjan Ananth, Luowen Qian, and Henry Yuen. “Cryptography from
pseudorandom quantum states”. In: Advances in Cryptology–CRYPTO
2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part I. Springer.
2022, pp. 208–236.

[4] Mohammed Barhoush, Amit Behera, Lior Ozer, Louis Salvail, and Or Sat-
tath. Signatures From Pseudorandom States via ⊥-PRFs. 2024. arXiv:
2311.00847 [cs.CR]. url: https://arxiv.org/abs/2311.00847.

[5] Amit Behera, Zvika Brakerski, Or Sattath, and Omri Shmueli. “Pseudo-
randomness with proof of destruction and applications”. In: Cryptology
ePrint Archive (2023).

31

https://arxiv.org/abs/2311.00847
https://arxiv.org/abs/2311.00847

[6] Zvika Brakerski and Omri Shmueli. “Scalable pseudorandom quantum
states”. In: Annual International Cryptology Conference. Springer. 2020,
pp. 417–440.

[7] Bruno Cavalar, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, and An-
gelos Pelecanos. “On the computational hardness of quantum one-wayness”.
In: arXiv preprint arXiv:2312.08363 (2023).

[8] Kai-Min Chung, Eli Goldin, and Matthew Gray. “On central primitives
for quantum cryptography with classical communication”. In: Annual In-
ternational Cryptology Conference. Springer. 2024, pp. 215–248.

[9] Andrea Coladangelo and Saachi Mutreja. “On black-box separations of
quantum digital signatures from pseudorandom states”. In: arXiv preprint
arXiv:2402.08194 (2024).

[10] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valentine Ka-
banets. “Security amplification for interactive cryptographic primitives”.
In: Theory of Cryptography: 6th Theory of Cryptography Conference, TCC
2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings 6. Springer.
2009, pp. 128–145.

[11] Nico Döttling, Giulio Malavolta, and Sihang Pu. “A combinatorial ap-
proach to quantum random functions”. In:Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7–
11, 2020, Proceedings, Part II 26. Springer. 2020, pp. 614–632.

[12] Bill Fefferman and Shelby Kimmel. “Quantum vs classical proofs and sub-
set verification”. In: arXiv preprint arXiv:1510.06750 (2015).

[13] Eli Goldin, Tomoyuki Morimae, Saachi Mutreja, and Takashi Yamakawa.
“CountCrypt: Quantum Cryptography between QCMA and PP”. In: arXiv
preprint arXiv:2410.14792 (2024).

[14] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct
random functions”. In: J. ACM 33.4 (1986), pp. 792–807. doi: 10.1145/
6490.6503. url: https://doi.org/10.1145/6490.6503.

[15] Russell Impagliazzo and Steven Rudich. “Limits on the provable conse-
quences of one-way permutations”. In: Proceedings of the twenty-first an-
nual ACM symposium on Theory of computing. 1989, pp. 44–61.

[16] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. “Pseudorandom quantum states”.
In: Advances in Cryptology–CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part III 38. Springer. 2018, pp. 126–152.

[17] Dakshita Khurana and Kabir Tomer. “Commitments from quantum one-
wayness”. In: Proceedings of the 56th Annual ACM Symposium on Theory
of Computing. 2024, pp. 968–978.

[18] William Kretschmer. “Quantum Pseudorandomness and Classical Com-
plexity”. In: 16th Conference on the Theory of Quantum Computation,
Communication and Cryptography. 2021.

32

https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503

[19] William Kretschmer, Luowen Qian, and Avishay Tal. “Quantum-Computable
One-Way Functions without One-Way Functions”. In: arXiv preprint arXiv:2411.02554
(2024).

[20] Fermi Ma and Hsin-Yuan Huang. “How to construct random unitaries”.
In: arXiv preprint arXiv:2410.10116 (2024).

[21] Tomoyuki Morimae, Shogo Yamada, and Takashi Yamakawa. Quantum
Unpredictability. Cryptology ePrint Archive, Paper 2024/701. 2024. url:
https://eprint.iacr.org/2024/701.

[22] Tomoyuki Morimae and Takashi Yamakawa. “One-wayness in quantum
cryptography”. In: arXiv preprint arXiv:2210.03394 (2022).

[23] Tomoyuki Morimae and Takashi Yamakawa. “Quantum commitments and
signatures without one-way functions”. In:Advances in Cryptology–CRYPTO
2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part I. Springer.
2022, pp. 269–295.

[24] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quan-
tum information. New York, NY, USA: Cambridge University Press, 2000.
isbn: 0-521-63503-9. doi: 10.1017/CBO9780511976667.

[25] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. “Tightly-secure
key-encapsulation mechanism in the quantum random oracle model”. In:
Advances in Cryptology–EUROCRYPT 2018: 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part III 37. Springer.
2018, pp. 520–551.

[26] Mark Zhandry. “A note on quantum-secure PRPs”. In: arXiv preprint
arXiv:1611.05564 (2016).

[27] Mark Zhandry. “How to construct quantum random functions”. In: 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science. IEEE.
2012, pp. 679–687.

A Proof of Separation Results

A.1 Separating OWSG from ⊥-PRG

To demonstrate the separation between OWSGs and ⊥-PRGs, we will use two
independent oracles. The first oracle C answers membership queries to a PSPACE-
complete language, while the second oracle O is a ⊥-pseudodeterministic quan-
tum random oracle.

Let λ ∈ N be the security parameter. Let c > 0 be a constant. We define a
sequence of CPTP oracles O := {On}n∈N as follows.

Construction 5. Fix a pseudodeterminism error µ(n) = O(n−c). Let w = w(n)
be any function such that 2−w ∈ [µ/16, µ/4] and let m be polynomial such that
m(n) > n. Sample a random permutation Pn ← Πn and random functions
Qn ← Πn,n and On ← Πn,m. The quantum channel On := O[Pn, Qn, On] on
n-qubit input ρ does as follows:

33

https://eprint.iacr.org/2024/701
https://doi.org/10.1017/CBO9780511976667

– Measure ρ in the computational basis and let x denote the result.
– Compute y = On(x).
– Compute q = Qn(x) and let px := q/2n, where q is interpreted as an integer

in [1 : 2n].
– Compute z = Pn(x). If the first w-bits of z are 0w, then let |ϕx⟩ :=

√
px|⊥⟩+√

1− px|y⟩.
– Otherwise, let |ϕx⟩ := |y⟩.
– Measure |ϕx⟩ in the computational basis and output the result.

We define the “good” set GOn for On as follows:

GOn := {x ∈ {0, 1}n : Pn(x)[1:w] ̸= 0w},

where Pn(x)[1:w] denotes the first w-bits of Pn(x).
The following lemma follows directly from the definition of O.

Lemma 13. On has the following properties:

– Prx←{0,1}n [x ∈ GOn] ≥ 1− µ
4 .

– For every x ∈ GOn , there exists a non-⊥ value y ∈ {0, 1}m such that:

Pr [On(x) = y] = 1.

– For every x /∈ GOn , there exists a probability px ∈ [0, 1] and non-⊥ value
y ∈ {0, 1}m such that:
1. Pr [y ← On(x)] = 1− px.
2. Pr [⊥ ← On(x)] = px.

We will now show that there does not exist a black-box construction of a
OWSG from a ⊥-PRG.

Theorem 10. Let λ ∈ N be the security parameter. For any function w(λ),
polynomial m(λ) > λ, and pseudodeterminism error µ(λ) = O(λ−c) for c > 0,
there does not exist a black-box construction of a w-OWSG from a (µ,m)-⊥-PRG.

Proof. Assume for contradiction that there exists a black-box construction of
a w-OWSG GF from any (µ,m)-⊥-PRG F . First, we show that there exists a
(µ,m)-⊥-PRG relative to the oracles (O, C).

Claim 5. Under security parameter n ∈ N, the sequence of functions {On[Pn, Qn, On]}n∈N
is a (µ,m)-⊥-PRG for every possible sequences P and Q and with probability 1
over the distribution of O. Furthermore, correctness is satisfied for any oracle.

Proof. By Lemma 13, O satisfies the correctness/pseudodeterminism condition
of a (µ,m)-⊥-PRG.

For security, we need to show that for any P,Q and with probability 1 over
the distribution of O: for every non-uniform QPT distinguisher A:∣∣∣∣∣∣∣∣∣∣∣
Pr


k ← {0, 1}n
y1 ← On(k)

...
yq ← On(k)

: AO,C(y1, ..., yq) = 1

− Pr


k ← {0, 1}n
y ← {0, 1}m

y1 ← Is-⊥(On(k), y)
...

yq ← Is-⊥(On(k), y)

: AO,C(y1, . . . , yq) = 1



∣∣∣∣∣∣∣∣∣∣∣
≤ negl(n)

34

Let Zn be the function that outputs 0m on any input and let Zn :=
O[Pn, Qn, Zn]. Note that

– Zn is independent of On,
– On(k) = Is-⊥(On(k), On(k)) = Is-⊥(Zn(k), On(k)),
– Is-⊥(On(k), y) = Is-⊥(Zn(k), y).

Therefore, AO,C needs to distinguish between evaluations of Is-⊥(Zn(k), y)
and Is-⊥(Zn(k), On(k)).

Lemma 2.2 from [25] states that a random oracle acts as a PRG i.e.:

E
O←Πn,m

[∣∣∣∣ Pr
k←{0,1}n

[AO(O(k)) = 1]− Pr
y←{0,1}m

[AO(y) = 1]

∣∣∣∣] ≤ 1

2n/4
.

Note that this result even holds against unbounded-time adversaries as
long as the number of queries to the oracle is polynomial. Hence, this result also
holds against adversaries with access to a PSPACE-oracle:

E
O←Πn,m

[∣∣∣∣ Pr
k←{0,1}n

[AO,C(O(k)) = 1]− Pr
y←{0,1}m

[AO,C(y) = 1]

∣∣∣∣] ≤ 1

2n/4
.

Next, notice that for any functions P,Q, distinguishing between evaluations
of Is-⊥(Zn(k), y) and Is-⊥(Zn(k), On(k)) is just as hard as distinguishing the two
scenarios in the equation above, given that Zn is independent of On. Therefore,

E
O←Πn,m

[∣∣∣∣∣ Pr
(y1,...,yq)←D0

Z,O

[
AO,C(y1, ..., yq) = 1

]
− Pr

(y1,...,yq)←D1
Z

[
AO,C(y1, . . . , yq) = 1

]∣∣∣∣∣
]
≤ 2−n/4

where,

D0
Z,O :=


k ← {0, 1}n

y1 ← Is-⊥(Zn(k), On(k))
...

yq ← Is-⊥(Zn(k), On(k))

 D1
Z :=


k ← {0, 1}n
y ← {0, 1}m

y1 ← Is-⊥(Zn(k), y)
...

yq ← Is-⊥(Zn(k), y)


By Markov inequality, we get that

Pr
O←Πn,m

[∣∣∣∣∣ Pr
(y1,...,yq←D0

Z,O

[
AO,C(y1, ..., yq) = 1

]
−

Pr
(y1,...,yq)←D1

Z

[
AO,C(y1, . . . , yq) = 1

]∣∣∣∣ ≥ 2−n/8
]
≤ 2−n/8

By Borel-Cantelli Lemma, since
∑

n 2
−n/8 converges, with probability 1

over the distribution of O, it holds that∣∣∣∣∣ Pr
(y1,...,yq)←D0

Z,O

[
AO,C(y1, ..., yq) = 1

]
− Pr

(y1,...,yq)←D1
Z

[
AO,C(y1, . . . , yq) = 1

]∣∣∣∣∣ ≤ 2−n/8,

35

except for finitely many n ∈ N. There are countable number of quantum
algorithms A making polynomial queries to (O, C), so this bound holds for every
such adversary. Therefore, O is a ⊥-PRG for any P,Q and with probability 1
over the distribution of O. ⊓⊔

By our assumption, the above claim implies that GO[P,Q,O] is a OWSG
relative to (O, C) for any P,Q and uniformly sampled O, with probability 1.

Claim 6. For any QPT adversary A and polynomial t = t(λ), there exists a
negligible function δ such that:

Pr
O
[AdtgOWSG

A(O,C),GO (1
λ, 1t) ≤ δ(λ)] ≥ 1

λ2
.

where the probability is taken over the oracle distribution.

Proof. If this does not hold, then there exists polynomials p, t and QPT adver-
sary A such that

Pr
O
[AdtgOWSG

A(O,C),GO (1
λ, 1t) >

1

p(λ)
] > 1− 1

λ2

for infinitely many λ ∈ N.
By Borel-Cantelli Lemma, since

∑
λ

1
λ2 converges, with probability 1 over

the distribution of O, it holds that AdtgOWSG
A(O,C),GO (1λ, 1t) > 1

p(λ) for infinitely

many λ ∈ N.
In other words,A is successful in breaking the security ofGO with probabil-

ity 1 over the oracle distribution. Therefore, GO is not a OWSG with probability
1 over the oracle distribution, giving a contradiction. ⊓⊔

Let r = r(λ) be a polynomial denoting the maximum run-time of G on any
input and let m = r4 + λ.

Intuitively, we will argue that G cannot depend on On for large n, due to
the deterministic nature of G, and thus cannot exist in the presence of a PSPACE
oracle.

We use the notation G ≃ G′ to mean that there exists negligible function
ϵ = ϵ(λ) such that for every k ∈ {0, 1}λ, there exists a pure-state |ψk⟩, such that
Pr[G(k) = |ψk⟩] and Pr[G′(k) = |ψk⟩] are both at least 1− ϵ.

Claim 7. Let O′ := O[P ′, Q′, O′] and O′′ := O[P ′′, Q′′, O′′] be two oracles such
that (P ′n, Q

′
n, O

′
n) = (P ′′n , Q

′′
n, O

′′
n) for all n ≤ log(2m) and n ≥ r. Then, GO

′ ≃
GO

′′
.

Proof. We will first show that there exists a function ℓ = ℓ(λ) and sequences
P 1, P 2, . . . , P ℓ, Q1, Q2, . . . , Qℓ, and O1, O2, . . . , Oℓ, where P i := {P i

n}n∈N, Qi :=
{Qi

n}n∈N, and Oi := {Oi
n}n∈N, such that:

1. P i
n ∈ Πn, Q

i
n ∈ Πn,n, and O

i
n ∈ Πn,m for any i ∈ [ℓ] and n ∈ N.

2. P ′ = P 1 and P ′′ = P ℓ.

36

3. Q′ = Q1 and Q′′ = Qℓ.
4. O′ = O1 and O′′ = Oℓ.
5. For any i ∈ [ℓ],

dTD(Oi,Oi+1) :=
∑
n∈N

∑
x∈{0,1}n

dTD(Oi
n(x),Oi+1

n (x)) ≤ 1

m
,

where Oi := O[P i, Qi, Oi].

We will now describe how to construct such a sequence. Note that O′n and
O′′n only differ for log(2m) < n < r. For such values of n, if we modify Q1

n by
setting Q2

n(x) to Q
1
n(x)+1 or Q1

n(x)−1, while keeping the other functions fixed,
the resulting oracles satisfy:

dTD(O1,O2) ≤ 1

2log(2m)
≤ 1

m

It is not difficult to see that this allows constructing the sequence of func-
tions described. Specifically, for any log(2m) < n < r, we perform small changes
to Q′n until we reach a function, say Qj

n, that sends all values to 1n, while keep-
ing all other functions fixed. Then, we set Oj+1

n (x) = O′′n(x) for all x such that
Pn(x)[1:w] = 0w and keep Oj+1

n (x) = Oj
n(x) otherwise. This step does not change

the oracle, i.e. Oj = Oj+1, because Qj
n and Qj+1

n return 1n on these inputs so
both oracles return ⊥.

Next, we perform small changes to Qj+1
n until we reach a function, say Qt

n

for some t > j, that sends all values to 0n. Then, we set P t+1
n to any function in

Πn. Again, this step does not change the oracle, i.e. Ot = Ot+1, because Qt
n and

Qt+1
n return 0n on any input. The new function P t+1

n allows us to perform the
first step on a new set of inputs i.e. we can modify Ot+1

n on all inputs such that
P t+1
n (x)[1:w] = 0w. Iteratively applying these modifications allows us to reach the

required functions O′′n and P ′′n . Finally, we perform small changes to Qn while
keeping the other functions fixed to obtain Q′′n. These steps are performed for
all n ∈ [log(2m) : r] to build the sequence described.

Since P i
n ∈ Πn, Q

i
n ∈ Πn,n, and Oi

n ∈ Πn,m for any n ∈ N, by Claim 5,

GO
i

is deterministic for any i ∈ [ℓ].
Note that for any i ∈ [ℓ],Oi is an oracle with classical output and dTD(Oi,Oi+1) ≤

1
m . Therefore, with probability at least 1− r

m , the responses that G receives from
Oi and Oi+1 are indistinguishable. This means that for any k ∈ {0, 1}λ, with
probability at least 1− r

m − negl(λ), GO
i+1

(k) outputs the same state generated

by GO
i

(k). In order to satisfy the determinism property, this must mean that

GO
i ≃ GOi+1

for all i ∈ [ℓ]. By induction, we obtain GO
′ ≃ GO′′

. ⊓⊔
For any oracle O = O[P,Q,O], G is independent of (Pn, Qn, On)n≥r. So,

by the above claim, for any (Pn, Qn, On)n≤log(2m) and k ∈ {0, 1}λ, there exists a
state |ψO≤log(2m)

k ⟩, such that for any (P̃ , Q̃, Õ) satisfying (P̃n, Q̃n, Õn)n≤log(2m) =
(Pn, Qn, On)n≤log(2m),

Pr[GO[P̃ ,Q̃,Õ](k) =
∣∣∣ψO≤log(2m)

k

〉
] ≥ 1− negl(λ). (5)

37

We now consider a generator G that does not depend on the oracle and is
defined as follows on inputs of length λ+ 16m3:

G(k):

– Parse k as (k1, k2) where k1 ∈ {0, 1}λ and k2 ∈ {0, 1}16m
3

.
– Construct functions (Ok2

n)n≤log(2m) in the same way as Construction 5 but
with the randomness determined by k2.

– Initiate an empty memory M.
– Run G(k1) and answer the queries as follows:

1. For a query x of length n ≤ log(2m), respond with Ok2
n (x).

2. For a query x of length n > log(2m), if (x, y) ∈M for some y, respond
with y. Otherwise, sample y ← {0, 1}m, store (x, y) in M, and respond
with y.

– Output the result of G(k1).

Consider the following experiment variants of OWSG security with some
polynomial t = t(λ).

– ExpA1 (λ):
1. Sample oracle O as in Construction 5.
2. b← ExpOWSG

AO,C,GO (1λ, 1t).
3. Output b.

– ExpA2 (λ):
1. Sample oracle O as in Construction 5.
2. b ← ExpOWSG

AC,GO (1λ, 1t). Notice that A no longer has access to O in this
experiment or it is simply be replaced with a oracle that 0.

3. Output b.
– ExpA3 (λ):

1. b← ExpOWSG
AC,G

(1λ, 1t).
2. Output b.

By Claim 6, for any QPT adversary A,

Pr
O
[AdtgOWSG

A(O,C),GO (1
λ, 1t) ≤ δ(λ)] ≥ 1

λ2
.

Therefore,

Pr[ExpA1 (λ) = 1] ≤ 1

λ2
· δ(λ) + (1− 1

λ2
).

Next, the only difference between ExpA1 (λ) and ExpA2 (λ) is that A is no
longer given access to O. Hence, for any QPT adversary A, there exists a QPT
A′ such that

Pr[ExpA2 (λ) = 1] ≤ Pr[ExpA
′

1 (λ) = 1] ≤ 1− 1

λ2
+ δ · 1

λ2

38

Note that the functions (Ok2
n)n≤log(2m) used in ExpA3 have the same distri-

bution as the functions (On)n≤log(2m) sampled in ExpA2 . Furthermore, if (Ok2
n)n≤log(2m) =

(On)n≤log(2m), then for any key k1 ∈ {0, 1}λ, by Eq. (5), G(k1, k2) produces the
same output as GO(k1) except with negligible probability. Therefore, any QPT
adversary A cannot distinguish between ExpA2 and ExpA3 except with negligible
probability, meaning that for large enough λ,

Pr[ExpA3 (λ) = 1] ≤ Pr[ExpA2 (λ) = 1] + negl(λ) (6)

≤ 1− 1

λ2
+ δ · 1

λ2
+ negl(λ) ≤ 1− 1

λ3
(7)

Notice that ExpA3 (λ) is just the OWSG security experiment for G against
AC . On the other hand, [7] presents an attack against a OWSG using a PSPACE
oracle. In particular, they show that there exists an adversary A such that

Pr[ExpA3 (λ) = 1] ≥ 1− negl(λ).

contradicting Eq. (7) above.
Therefore, there does not exist a black-box construction of a OWSG from

a (µ,m)-⊥-PRG. ⊓⊔

A.2 Separating ⊥-OWSG from PRFqs

In this section, we show that there does not exist a black-box construction of
a ⊥-OWSG from a PRFqs. The result can be seen more generally as a method
to separate deterministic MicroCrypt primitives with quantum input sampling
from those utilizing classical input sampling. We choose to apply it to PRFqs

and ⊥-OWSG as this seems to give the strongest separation: (as far as we know)
all ⊥-pseudodeterministic MicroCrypt primitives with uniform input sampling
imply ⊥-OWSG, while PRFqs implies MicroCrypt primitives with quantum input
sampling.

We first describe the oracles used in the separation.

Construction 6. Let T := (σ,O, C) be a tuple of oracles, where σ = {σn}n∈N,
O := {On}n∈N, and C := {Cn}n∈N. For n ∈ N, let On ← Πn,n and Pn ← Π3n,n

be random functions. The oracles are defined as follows:

1. C is for membership in a PSPACE-complete language and is independent of
the other oracles.

2. σn(1
n):

(a) Sample x← {0, 1}n.
(b) Output |x,On(x)⟩.

3. On takes as input a state ρXYAB where each register consists of n-qubits and
does as follows:
(a) Measure registers X and Y in the computational basis and let (x, y)

denote the result and let ρyXAB denote the resulting state in registers
XAB.

39

(b) If On(x) = y, then compute Pn(ρ
y
XAB ⊗ |0n⟩⟨0n|), where Pn is the quan-

tum channel mapping |z⟩ to |z⟩|P (z)⟩ for any z ∈ {0, 1}3n. Measure the
last n-qubits in the computational basis and output the result.

(c) Otherwise, output ⊥.

We first introduce some notation for the proof. Let T denote the set of
all possible oracles and let T ← T denote sampling an oracle in the way given
in Construction 6. For any oracle T and integer m ∈ N, let T≤m denote the
sequence of oracles (σn,On)n≤m and let T[T≤m] denote the set

T[T≤m] := {T̃ ∈ T : T̃≤m = T≤m}.

Theorem 11. Let λ, n ∈ N be security parameters, a = a(n) ≥ n and b = b(n)
be polynomials, s = s(λ) be a function, and µ = µ(λ) ≤ λ−c be a function. There
does not exist a black-box construction of a (µ, s)-⊥-OWSG from a (a, b)-PRFqs

for large enough constant c.

Proof. For simplicity, we only prove the case a = 3n and b = n, but the proof
easily generalizes to other polynomials by modifying the parameters of the ora-
cles.

Assume, for the purpose of obtaining a contradiction, that GF is a black-
box construction of a t-query (µ, s)-⊥-OWSG, from any (3n, n)-PRFqs F , where
t = c′λ, and c′ is some sufficiently large constant. We first show that there exists
a PRFqs relative to T .

Claim 8. There exists a (quantum-query-secure) (3n, n)-PRFqs relative to T for
any O and with probability 1 over the distribution of P . Furthermore, correctness
is satisfied for any oracle T .

Proof. Construction 7. The algorithms of a PRFqs with oracle access to T is
as follows:

– QSampT (1n) :
1. Query σn(1

n) and let |x, y⟩ denote the result.
2. Sample a random string a← {0, 1}n.
3. Output k = (x, y, a).

– F Tk (b) : Interpret k as (x, y, a). Output On(x, y, a, b).

It is clear that (QSampT , F T) satisfies the correctness condition of PRFqs

for any oracle T .
For security, note that for any (x, y)← σn(1

n), On(x, y, a, ·) = Pn(x, a, ·),
where Pn(x, a, ·) is a random function independent of σ. Lemma 2.2 from [25]
states that a random oracle acts as a PRF i.e. for any QPT A:

E
Pn←Π3n,n,P̃n←Πn,n

[∣∣∣∣ Pr
(x,a)←{0,1}n×{0,1}n

[APn,Pn(x,a,·)(1n) = 1]−

Pr[APn,P̃n(1n) = 1]
∣∣∣] ≤ 1

2n/4
.

40

Note that this result even holds against unbounded-time adversaries as
long as the number of queries to the oracle is polynomial. Hence, this result also
holds against adversaries with access to a PSPACE-oracle:

E
Pn←Π3n,n,P̃n←Πn,n

[∣∣∣∣ Pr
(x,a)←{0,1}n×{0,1}n

[APn,Pn(x,a,·),C(1n) = 1]−

Pr[APn,P̃n,C(1n) = 1]
∣∣∣] ≤ 1

2n/4
.

By Markov inequality, we get that

Pr
Pn←Π3n,n,P̃n←Πn,n

[∣∣∣∣ Pr
(x,a)←{0,1}n×{0,1}n

[APn,Pn(x,a,·),C(1n) = 1]−

Pr[APn,P̃n,C(1n) = 1]
∣∣∣ ≥ 2−n/8

]
≤ 2−n/8

By Borel-Cantelli Lemma, since
∑

n 2
−n/8 converges, with probability 1

over the distribution of P , it holds that∣∣∣∣ Pr
(x,a)←{0,1}n×{0,1}n

[APn,Pn(x,a,·),C(1n) = 1]− Pr[APn,P̃n,C(1n) = 1]

∣∣∣∣ ≤ 2−n/8,

except for finitely many n ∈ N. There are countable number of quantum
algorithms A making polynomial queries to T , so this bound holds for every
such adversary. ⊓⊔

Construction 7 is a PRFqs relative to T with probability 1 over the oracle
distribution. Furthermore, correctness is satisfied for all oracles T . Therefore,
GT is a ⊥-OWSG with probability 1 over the oracles T and satisfies correctness
for any oracle T ∈ T.

Claim 9. For any QPT adversary A and polynomial t = t(λ), there exists a
negligible function δ such that:

Pr
T←T

[Adtg⊥-OWSG
AT ,GT (1λ, 1t) ≤ δ(λ)] ≥ 1

λ2
.

Proof. Same as the proof of Claim 6. ⊓⊔

Let r = r(λ) denote the maximum run-time of G and m := 10(rλµ)4 + λ.
Hence, G makes at most r queries to the oracles.

Fix an oracle T . We will need to show the following lemma.

Claim 10. There exists a set GT≤log(2m)

λ ⊆ {0, 1}λ such that:

1. Prk←{0,1}λ [k ∈ GT≤log(2m)

λ] ≥ 1−√µ.
2. If k ∈ GT≤log(2m)

λ , then there exists a state |ψT≤log(2m)

k ⟩ such that:

Pr[GT̃λ (k) =
∣∣∣ψT≤log(2m)

k

〉
: T̃ ← T[T≤log(2m)]] ≥ 1− 3

√
µ,

where the probability is taken over the distribution of oracles T̃ satisfying

T̃≤log(2m) = T≤log(2m) and the resulting distribution of GT̃λ (k).

41

Proof. Define GT≤log(2m)

λ ⊆ {0, 1}λ as the set of inputs that are in the good set

GT̃λ with at least 1−√µ probability over the distribution T̃ ← T[T≤log(2m)].
We first show that at least 1 − √µ fraction of inputs are in this set i.e.

Prk←{0,1}λ [k ∈ GT≤log(2m)

λ] ≥ 1 − √µ. Otherwise, we would have that at least√
µ fraction of inputs that are in the good set with probability less than 1−√µ

over the oracle distribution. In this case, even if the rest of the inputs are in the
good set for any oracle, the average size of the good set is smaller than 1 − µ.
More explicitly, we get

E
T←T

[|GTλ |] < (1−√µ) · 1 +√µ · (1−√µ) = 1− µ.

This gives a contradiction since E
T←T

[|GTλ |] ≥ 1 − µ. Hence, Prk←{0,1}λ [k ∈

GT≤log(2m)

λ] ≥ 1−√µ.
Now let k ∈ GT≤log(2m)

λ . By the definition of this set,

Pr[GT̃λ (k) ̸= ⊥ : T̃ ← T[T≤log(2m)]] ≥ 1− 2
√
µ. (8)

It is sufficient to show that

Pr

⊥ ≠ ρ1 ̸= ρ2 ̸= ⊥
T ′, T ′′ ← T[T≤log(2m)]

ρ1 ← GT
′
(k)

ρ2 ← GT
′′
(k)

 ≤ √µ. (9)

If this holds, then combining this with Eq. (8), there exists a unique pure-state

|ψT≤log(2m)

k ⟩ such that

Pr[GT̃λ (k) =
∣∣∣ψT≤log(2m)

k

〉
: T̃ ← T[T≤log(2m)]] ≥ 1− 3

√
µ

which is the result we need to show. Assume that Eq. (9) does not hold. To show
a contradiction, we commence with a hybrid argument.

– Hybrid H0:
1. Sample an oracle T̃ ← T[T≤log(2m)] and let O′ and P ′ denote the func-

tions encoded in T̃ .
2. Sample k ← {0, 1}λ.
3. Compute ρ1 ← GT

′
(k).

4. Compute ρ2 ← GT
′
(k).

5. Output (ρ1, ρ2).
– Hybrid H1:

1. Sample oracle T̃ ← T[T≤log(2m)].

2. Sample k ← {0, 1}λ.
3. Initiate empty memory M.
4. Compute ρ1 ← GT

′
M(k).

5. Reset M to empty.
6. Compute ρ2 ← GT

′
M(k).

42

7. Output (ρ1, ρ2).
Here, T ′M := (σ′M,O′M) is defined as follows.
• σ′M(1n):

1. If n ≤ log(2m), then output σ(1n).
2. Otherwise, sample x← {0, 1}n.
3. Store x in memory M.
4. Output (x,O′n(x)).

• O′M(ρXYAB):
1. If |ρXYAB | = 4n and n ≤ log(2m), then output On(ρXYAB).
2. Otherwise, measure registers X and Y in the computational basis

and let (x, y) denote the result.
3. If x ∈M and y = O′n(x), then output P ′n(ρ

y
XAB).

4. Otherwise, output ⊥.
– Hybrid H2:

1. Sample oracles T ′, T ′′ ← T[T≤log(2m)].

2. Sample k ← {0, 1}λ.
3. Initiate empty memory M.
4. Compute ρ1 ← GT

′
M(k).

5. Reset M to empty.
6. Compute ρ2 ← GT

′′
M(k).

7. Output (ρ1, ρ2).
where T ′M and T ′′M are defined in the same way as in H1.

– Hybrid H3:
1. Sample T ′, T ′′ ← T[T≤log(2m)].

2. Sample k ← {0, 1}λ.
3. Compute ρ1 ← GT

′
(k).

4. Compute ρ2 ← GT
′′
(k).

5. Output (ρ1, ρ2).

Claim 11. With probability at least 1 − µ/8, hybrids H0 and H1 are indistin-
guishable.

Proof. The only way these hybrids may differ is if G submits a query ρXYAB

of length 4n with n > log(2m) to O′n such that the measurement result (x, y)
satisfies O′n(x) = y and was not generated by the oracle σ′n in an earlier query.
Due to the randomness of the function O′n and the run-time of G, this occurs
with probability at most

1− (1− 1

2m
)2r ≤ r

m
≤ µ

8
.

⊓⊔

Claim 12. With probability at least 1 − µ/8, hybrids H1 and H2 are indistin-
guishable.

43

Proof. Consider the two evaluations in H1. Let (x
1
i , O

′(x1i))i∈[r] and (x2j , O
′(x2j))j∈[r]

denote the responses of oracles (σ′n)n>log(2m) to the queries of G in the first and
second evaluation, respectively.

If {x1i }i∈[r] ∩ {x2j}j∈[r] = ∅, then these two hybrids are indistinguishable,
since O and O′ are random functions. This scenario occurs with at least 1 −
(2r)2

m ≥ 1− µ/8 probability by the birthday problem. ⊓⊔

Claim 13. With probability at least 1 − µ/8, hybrids H2 and H3 are indistin-
guishable.

Proof. This follows in the same way as Claim 11. ⊓⊔

By the above three claims, we have that with probability at least 1− µ/2,
hybrids H0 and H3 are indistinguishable.

Notice that in H3, by our assumption, the probability that (ρ1, ρ2) are
non-⊥ distinct states is at least

√
µ. Therefore, the probability that the two

states generated in hybrid H0 also are non-⊥ distinct states is
√
µ− µ/2 > µ/2.

However, this contradicts the pseudodeterminism condition of G, since for a fixed
oracle, two evaluations should yield the same state or ⊥ except with negligible
probability. ⊓⊔

We are now ready to prove the main result (Theorem 9) using a hybrid
argument.

Firstly, note that [27] shows that even computationally unbounded adver-
saries cannot distinguish a polynomial of degree (2r− 1) and a random function
given only r quantum queries. Given that this result holds for computationally
unbounded adversaries, it holds for adversaries with access to a PSPACE-oracle.
Henceforth, for a string w ∈ {0, 1}6rn, we let Fw : F23n → F23n denote the poly-
nomial of degree 2r − 1 on 3n-bit inputs determined by w in the natural way.
Fix a polynomial t = t(λ).

– ExpA0 (λ): Sample oracle T ← T. Run the standard ⊥-OWSG security exper-
iment Exp⊥-OWSG

AT ,GT (1λ, 1t) for G against an adversary A relative to T . G and
A are both given oracle access to (σ,O, C).

– ExpA1 (λ): The experiment is the same except G is given oracle access to
stateful oracles TM := (σM,OM) where the memory M is re-initialized to
empty at the start of every evaluation of G. A is still given access to the
same oracles (σ,O, C). The modified oracles for G are defined as follows:
• σM(1n):

1. If n ≤ log(2m), then output σn(1
n).

2. Otherwise, sample z1, z2 ← {0, 1}n. Return z := (z1, z2).
3. Store (z1, z2,⊥) in memory M.

• OM(ρXYAB):
1. If |ρXYAB | = 4n and n ≤ log(2m), then output On(ρXYAB).
2. Otherwise, measure registers X and Y in the computational basis

and let (x, y) denote the result.
3. If (x, y, w) ∈M for some w ∈ {0, 1}6rn, then output |Fw(ρ

y
XAB)⟩.

44

4. If (x, ·, ·) /∈M, then sample y′ ← {0, 1}n and store (x, y′,⊥) in M.
5. If (x, y,⊥) ∈ M, then sample w′ ← {0, 1}6rn. Switch the entry

(x, y,⊥) in M with (x, y, w′) and output |Fw′(ρyXAB)⟩.
6. Otherwise, output ⊥.

– ExpA2 (λ) : Same as ExpA1 (λ), except A is only given oracle access to C.
– ExpA3 (λ) : Same as ExpA2 (λ) except we replace G with the generator G that

does not use any oracle and is defined as follows on inputs of length λ+16m3:

G(k):

• Parse k as (k1, k2) where k1 ∈ {0, 1}λ and k2 ∈ {0, 1}16m
3

.
• Construct functions (σk2

n ,Ok2
n)n≤log(2m) in the same way as Construction 6

but with the randomness determined by k2.
• Set σk2

n (x) = ⊥ and Ok2
n (x) = ⊥ for all x ∈ {0, 1}n and n > log(2m).

• Define T k2

M := (σk2

M,Ok2

M) in the same way as ExpA1 (λ).

• Output GT
k2
M (k1).

Claim 14. For any QPT adversary A

dTD(Exp
A
0 (λ),Exp

A
1 (λ)) ≤ 1/λ4.

Proof. By Claim 10, there exists a set GT≤log(2m)

λ such that:

1. Prk←{0,1}λ [k ∈ GT≤log(2m)

λ] ≥ 1−√µ.
2. If k ∈ GT≤log(2m)

λ , then there exists a state |ψT≤log(2m)

k ⟩ such that:

Pr[GT̃λ (k) =
∣∣∣ψT≤log(2m)

k

〉
: T̃ ← T[T≤log(2m)]] ≥ 1− 3

√
µ. (10)

Let B denote the event that the key k and oracle T sampled in ExpA0 (λ)

satisfy the following conditions: k ∈ GT≤log(2m)

λ ∩ GT and |ψT≤log(2m)

k ⟩ = |ψTk ⟩,
where |ψT≤log(2m)

k ⟩ is the state that satisfies Eq. (10).
We now show that event B occurs with probability at least 1− 6

√
µ. Note

that Pr[k ∈ GTλ : k ← {0, 1}λ, T ← T] ≥ 1 − µ and Pr[k ∈ GT≤log(2m)

λ : k ←
{0, 1}λ, T ← T] ≥ 1 − √µ so Pr[k ∈ GTλ ∩ GT≤log(2m)

λ : k ← {0, 1}λ, T ← T] ≥
1− 2

√
µ. It is sufficient to show that |ψT≤log(2m)

k ⟩ = |ψTk ⟩ with at least (1− 4
√
µ)

probability if k ← GTλ ∩G
T≤log(2m)

λ and T ← T. If this does not hold, then by an
averaging argument, we obtain

Pr

GT̃λ (k) = ∣∣∣ψT≤log(2m)

k

〉
:

T ← T
T̃ ← T[T≤log(2m)]

k ← GT≤log(2m)

λ

 =

Pr

[
GTλ (k) =

∣∣∣ψT≤log(2m)

k

〉
:

T ← T
k ← GT≤log(2m)

λ

]
≤

(1− 2
√
µ) Pr

[
GTλ (k) =

∣∣∣ψT≤log(2m)

k

〉
:

T ← T
k ← GT≤log(2m)

λ ∩ GTλ

]
+ 2
√
µ ≤

(1− 2
√
µ)(1− 4

√
µ) + 2

√
µ < 1− 3

√
µ

45

which contradicts Eq. (10), as this equation states that the first probability
should be at least 1 − 3

√
µ. Therefore, event B occurs with at least 1 − 6

√
µ

probability.

If eventB occurs, then in ExpA0 (λ), the generatorG
T
λ (k) returns |ψ

T≤log(2m)

k ⟩
⊗t

with probability (1−negl(λ))t. While, in ExpA1 (λ), G
TM
λ (k) returns |ψT≤log(2m)

k ⟩
⊗t

with probability (1− 3
√
µ)t ≥ 1− 1

4λ4 as long as c is large enough.
Overall, if event B occurs, then the two experiments can only be distin-

guished with at most 1
2λ4 probability. Given that event B occurs with probabil-

ity at least 1 − 6
√
µ, these two experiments can be distinguished with at most

6
√
µ+ 1

2λ4 <
1
λ4 probability as long as c > 8. ⊓⊔

Claim 15. For any QPT adversary A, there exists a QPT adversary A′ such
that

Pr[ExpA2 (λ) = 1] ≤ Pr[ExpA
′

1 (λ) = 1].

Proof. This is clear because the only difference between theses experiments is
that the adversary is no longer given access to T . ⊓⊔

Claim 16. For any QPT adversary A

dTD(Exp
A
3 (λ),Exp

A
2 (λ)) = 0.

Proof. Notice that for any oracle T , the modified oracle TM actually only de-
pends on T≤log(2m). Furthermore, it is clear that sampling T≤log(2m) in ExpA2 (λ)

is equivalent to sampling T k2

≤log(2m) in ExpA3 (λ). Therefore, for any k ∈ {0, 1}λ,

GTM(k) has the same distribution as GT
k2
M (k). ⊓⊔

By the above three claims and the triangle inequality, for any QPT adver-
sary A, there exists a QPT adversary A′ such that∣∣∣Pr[ExpA3 (λ) = 1]− Pr[ExpA

′

0 (λ) = 1]
∣∣∣ ≤ 1

λ4
+ negl(λ). (11)

By Claim 9, for any QPT adversary A and polynomial t = t(λ), there
exists a negligible function δ such that:

Pr
T←T

[Adtg⊥-OWSG
AT ,GT (1λ, 1t) ≤ δ(λ)] ≥ 1

λ2
.

Therefore, for any QPT adversary A

Pr[ExpA0 (λ) = 1] ≤ 1

λ2
· δ(λ) + (1− 1

λ2
).

By Eq. (11), for any QPT adversary A and large enough λ,

Pr[ExpA3 (λ) = 1] ≤ 1− 1

λ3
.

46

Notice that G does not use any oracle access and satisfies the correctness condi-
tion of a PD-OWSG by Claim 10. Therefore, we can view ExpA3 (λ) as the security
experiment ExpPD-OWSG

AC,G
(1λ, 1t) of G against adversary AC .

Therefore, we have that for any QPT adversary A,

Pr[ExpPD-OWSG
AC,G

(1λ, 1t) = 1] ≤ 1− 1

λ3
. (12)

Recall that a weak PD-OWSG can be converted into a OWPuzz (Lemmas 5
and 6) as long as c′ is chosen large enough. On the other hand, there exists an
attack against any OWPuzz using a PSPACE oracle given in [7]. In particular,
there exists a QPT adversary A and polynomial t such that

Pr[ExpPD-OWSG

AC
,G

(1λ, 1t) = 1] ≥ 1− negl(λ)

which contradicts Eq. (12).
So there does not exist a black-box construction of a t-copy (µ, s)-⊥-OWSG

from a PRFqs. ⊓⊔

47

	MicroCrypt Assumptions with Quantum Input Sampling and Pseudodeterminism: Constructions and Separations
	Introduction
	Our Work
	Relation to Previous Work
	Technical Overview
	Quantum Input Sampling.
	Separation Results

	Organization

	Preliminaries
	Notations
	Black-Box Separation
	MicroCrypt Primitives
	Pseudodeterministic Pseudorandom Strings from Pseudorandom States
	Pseudodeterministic Primitives in MicroCrypt

	Definitions: Cryptography with Quantum Input Sampling
	Relations among Primitives with Quantum Input Sampling
	PRGqs from bot-PRG
	PRGqs from BC-SPRSqs
	SPRSqs from PRGqs
	BQ-PRUqs from PRGqs

	Black-Box Separations Among MicroCrypt
	Separating OWSG from bot-PRG
	Separating bot-OWSG from PRFqs

	Proof of Separation Results
	Separating OWSG from bot-PRG
	Separating bot-OWSG from PRFqs

