
S2DV:Scalable and Secure DAO Voting

Sermin KOCAMAN1 and Ali DOGAN2,3

1 FAME CRYPT, Ankara, Turkiye sermin.cakin@gmail.com
2 Istanbul Settlement and Custody Bank (TAKASBANK) Istanbul, Turkiye

alidoganmath@gmail.com
3 Informatics Institute, Istanbul Technical University, Istanbul, Turkiye

Abstract. Decentralized Autonomous Organization operates without a central
entity, being owned and governed collectively by its members. In this organi-
zation, decisions are carried out automatically through smart contracts for rou-
tine tasks, while members vote for unforeseen issues. Scalability in decision-
making through voting on proposals is essential to accommodate a growing num-
ber of members without sacrificing security. This paper addresses this challenge
by introducing a scalable and secure DAO voting system that ensures security
through Groth16 zk-SNARKs and exponential ElGamal encryption algorithm
while achieving scalability by verifiably delegating heavy computations to un-
trusted entities. While offline computation on the exponential ElGamal homo-
morphic encryption algorithm is enabled to reduce the computational cost of the
blockchain, Groth16 is allowed to maintain robust off-chain calculation without
revealing any further details. Specifically, the Groth16 proof guarantees that (i)
the encrypted votes accurately reflect the voter’s voting power, ensuring no unau-
thorized weight manipulation; (ii) only valid non-negative vote values are en-
crypted, preventing unintended or malicious vote tampering; and (iii) the homo-
morphic summation is performed correctly. The implementation shows that the
proofs are verified remarkably fast, making the S2DV protocol highly suitable for
scalable DAO voting, while preserving the security of the election.

Keywords: Decentralized Autonomous Organization, Voting, zk-SNARK

1 INTRODUCTION

Blockchain technology has facilitated the establishment of self-organized decentralized
application, especially known as the Decentralized Autonomous Organization (DAO),
governed by rules encoded as smart contracts on the blockchain [8]. The smart con-
tract in DAOs guarantees automatic rule execution for predictable situations, while the
distributed ledger records critical information on the blockchain. Although these struc-
tures fulfill requirements in certain circumstances, they are insufficient in case of dy-
namic and unpredictable circumstances. At that point, human decisions are essential
for reaching a collective decision on the rules by voting. Members within the DAOs
put forth proposals, engage in discussions, and cast votes regarding the management of
the organization. The outcome of the election signifies the decision of the community.
In 2016, the first DAO, referred to as The DAO, was established in the literature [20].
Subsequently, many DAO platforms emerged, contributing to the advancement of this



framework, including DAOstack 4, Mantle (previous BitDAO) 5, Mango DAO 6, DAO-
haus 7, Radicle 8, and Aragon 9. More information on them can be found in [16, 22].

Although several forms of DAO platforms exist, community-driven voting is cru-
cial for establishing collective decision-making for all DAOs. The blockchain in DAOs
enables transparent and trustworthy voting processes within organizations [22], While
each DAO platform uses different voting models in blockchain, most of the DAO plat-
forms employ a coin-based voting mechanism [2]. In this model, each member has the
right to vote according to their vote power determined by their token. A proposal is ac-
cepted upon approval by a majority of members, or in the case of an absolute majority,
wherein a predefined quorum is met. This model’s approach to voting power priori-
tizes equity over equality in specific contexts. For instance, in decentralized finance
(DeFi), individuals who have contributed a greater number of tokens or have been ac-
tively involved with the community should be allocated greater voting power, as critical
decisions are likely to have a more significant impact on them.

For a robust voting system, important cryptographic primitives need to be used for
specific purposes. For the correctness of each operation in voting, Zero-Knowledge
Proofs (ZKPs) take the stage for privacy-preserving validation. Nonetheless, their com-
putational costs require effective proofs. For the vote confidentiality, homomorphic en-
cryption algorithm enables computations on encrypted votes. While these cryptographic
primitives enhance security, they can introduce performance challenges. When the num-
ber of members in DAO’s decision-making process is increased, the underlying cryp-
tographic primitives significantly impact the system’s performance and efficiency. For
this reason, scalable the voting system with desirable security is essential for DAOs. In
this study, we design a voting system that balances between desirable characteristics.

Our Contribution. In this study, we developed a scalable and secure voting system
for DAOs, named as S2DV. In S2DV, the confidentiality of the votes is ensured through
additive exponential ElGamal homomorphic encryption, and implemented with thresh-
old decryption to prevent the disclosure of intermediate results before the election is
over, ensuring that voters’ decisions are not influenced. Also, encrypted votes are paired
with a Groth16-based ZKP. The proof ensures that the encrypted votes accurately rep-
resent the voter’s token-based power, prevents the encryption of negative values, and
validates the correct application of homomorphic encryption and summation, allowing
precise aggregation without revealing individual votes. Importantly, we assigned offline
calculations on encrypted votes, aggerated before submission, to untrusted off-chain
entities in a manner that allows verification with ZKP. This approach enables certain
computations to occur locally, while ensuring verification of the operation with the us-
age of cryptographic protocols. To showcase the efficiency of our design, we create
prototype implementations and perform various experiments for different implemen-

4 https://daostack.io/
5 https://www.mantle.xyz/
6 https://dao.mango.markets/dao/MNGO
7 https://daohaus.club/
8 https://radicle.xyz/
9 https://www.aragon.org/



tation options. We also compare our Groth16-based system with system built using
Σ-protocols and Bulletproof.

Paper Organization. In this paper, Section 2 gives an overview of voting and the
necessary cryptographic primitives utilized in the construction of S2DV. While Section
3 presents formal construction and an efficient instantiation of S2DV, Section 4 gives
the security and performance analysis of it. Finally, Section 5 concludes the paper.

2 PRELIMINARY

This section gives the differences between traditional voting and DAO-based voting, fol-
lowed by an overview of the fundamental cryptographic primitives necessary for S2DV
system construction. Specifically, following the discussion of the encryption algorithm,
we present the Σ-protocols as a basis for system comparison. Although S2DV system
does not inherently rely on Σ-protocols, we introduce our S2DV-adapted Σ-based proofs
to demonstrate their applicability within our framework, enabling a comparative eval-
uation. Finally, we present the Groth16 zk-SNARK protocol, which forms the core of
our cryptographic design, ensuring efficient and privacy-preserving verification.

2.1 Traditional Voting Versus DAO Voting

The voting in DAO differs from the traditional voting systems in some aspects. In tra-
ditional voting systems, various voting requirements need to be fulfilled [9, 24, 32].
One of the important requirements is the notion of eligibility, which ensures that only
authorized voters are allowed to cast a vote [17]. The other requirement is uniqueness,
which guarantees that each voter’s ballot cannot be counted more than once during the
vote-tallying process [9]. These requirements for traditional voting have different cri-
teria when it comes to DAO voting. They differ within the DAO voting framework as
follows:

– Eligibility. While eligibility in traditional voting systems is granted with identity-
based registration to participate in an election, the authorization required for par-
ticipation in DAO voting is provided by possessing the necessary token or having
a specific membership in DAOs. In DAO voting, the criteria for eligibility can in-
clude one-token one vote, one-person one vote, or restrictions to specific members
to limit participation [12].

– Uniqueness. Uniqueness in traditional voting systems prevents double-voting in
tallying, ensuring equal vote privileges. However, in the context of DAO voting,
the privileges associated with voting can vary based on the vote power determined
by the token. This means that although members of DAO have an equal right to
vote, the impact of each vote may vary, leading to an unequal influence on the
outcome of the election.

On the other hand, the decision-making process in DAO voting can employ various
decision-making mechanisms beyond a simple majority in traditional voting to reach a
consensus. A supermajority requires a minimum percentage of ”yes” votes for a propo-
sition to pass, while a quorum necessitates a certain percentage of voter participation



[12]. These varied methodologies enable DAOs to adjust to distinct situations and pro-
mote more inclusive and effective governance.

Various Dao platforms offer many different voting models, including Holographic,
Conviction, Reputation (Weighted), Quadratic, and Token-based Votings [12, 21]. Their
properties and key metrics can be found at [15].

2.2 Exponential ElGamal Homomorphic Encryption Algorithm

The exponential version of the ElGamal encryption algorithm enables additive opera-
tions on encrypted data by encoding the message m as gm [13]. Also, its distributed ver-
sion supports secure collaborative decryption, preventing the disclosure of data through
a joint decryption process. Let p, q be both primes, g ∈ Gq be a generator of a cyclic
group G of order q. Threshold Exponential ElGamal algorithm works as follows [6]:

– KGen(pp) → (sk, pk): Taking public parameters pp = (G, g,Zp), key generation

algorithm samples secret key as x
$
← Z∗p, then outputs public key as pk = gx. For the

threshold version of exponential ElGamal, Pedersen’s distributed key generation
algorithm can be executed [29].

– Enc(pk,m) → (C1,C2): Taking message m ∈ Zp, and public key pk, encryption
algorithm samples random r ∈ Z∗p and outputs ciphertext as (C1,C2) = (gr, gm ·pkr).

– Dec(pk, sk, (C1,C2)) → m: On input pk, sk, and ciphertext (C1,C2), decryption
algorithm outputs m such that gm = C2/(C1)x.

Addition (Additive homomorphism of exponential ElGamal). Given two cipher-
texts encrypting messages m1,m2 ∈ Zq under the same public key pk, their component-
wise multiplication results in a new ciphertext encrypting the sum of the original mes-
sages:

Enc(m1, pk) · Enc(m2, pk) = (gr1+r2 , gm1+m2 · pkr1+r2 )
= Enc(m1 + m2, pk)

2.3 Σ-Protocols

This section introduces the Σ-protocols-based design of the S2DV system to enable a
systematic comparison with the original S2DV framework, which utilizes the Groth16
zk-SNARK protocol. In our token-based DAO voting, voters need to provide some
ZKPs to ensure the correctness of their vote. In detail, they need to prove that the
total distributed voting power matches their allocated vote weight while also demon-
strating that each encrypted vote is non-negative through a range proof. The first one
can be generated by adapting vote sum proof in traditional voting system. Traditional
voting with the exponential ElGamal algorithm necessitates the proof of equality of two
discrete logarithms as a vote sum proof to ensure that, despite the submission of mul-
tiple encrypted votes, the voter did not select more than one candidate [23]. However,
for the token-based DAO voting system, the proof of equality of two discrete logarithm



Prover Verifier
w ∈R Zp

A←− gw ∈ G

B←− pkw ∈ G
A, B

−−−−−−−−−−−−→

c ∈R Z
∗
p

c
←−−−−−−−−−−−−

z←− w − c · r ∈ Zp

z
−−−−−−−−−−−−→

A ?
= gz ·C1

c

B ?
= pkz

· (C2/g
vp)c

0 or 1
←−−−−−−−−−−−

Fig. 1: Proof of equality for the vote power

needs to be adapted to prove the vote power of the member/voter, as voting power is dis-
tributed to the candidates according to preference. On the other hand, the non-negativity
range proof for DAO voting can be demonstrated utilizing adapted Bulletproofs [7]. It
should be noted that since Σ-protocols do not inherently support proving homomorphic
summation within the proof itself, the aggregation of encrypted votes in Σ-based design
must be performed on-chain by the smart contract.

Proof of equality of two discrete logarithms The execution of classic Σ protocol
[30] in parallel proves the equality of two discrete logarithm [10]. In the context of
token-based DAO voting that uses exponential ElGamal, this proof can be tailored to
the member’s vote power vp.

Assume that a member M generates exponential ElGamal-encrypted vote as Vci =

(C1i,C2i) = (gri , gpx · pkri ) for each candidate ci (1 ≤ i ≤ n), where px represents
the member’s vote power allocated to ci, and the total vote power satisfies

∑
px =

vp. Its encrypted vote with aggregated candidates will be Vc = (
∏n

i=1 C1i,
∏n

i=1 C2i) =
(gr, gvp · pkr) = (C1,C2), where r =

∑n
i=1 ri. The member can prove that its ballot

with aggregated candidate decrypts to total vote power. The proof of equality for the
vote power is depicted in Figure 1. This protocol is designed to establish the following
relation:

{ (
vp ∈ Zp, g, pk, C1, C2 ∈ G; r ∈ Zp

)
: C1 = g

r ∧C2 = g
vp · pkr

}
(1)

Proof of non-negativity of an encrypted vote Range proofs achieves to prove that the
member’s vote power px is non-negative. The Bulletproof protocol, designed by Bünz et



al. [7], is commonly used for range proofs and offers a highly efficient solution in terms
of both proof size and verification time. Bulletproof is non-interactive and composable
inner-product range proof that allow provers to show that multiple values lie within
a specific range using a concise, combined proof. The protocol builds on the inner-
product arguments (IPA) developed by Bootle et al. [4]. Bulletproof reduced the size of
the commitment vector by applying a log2 n recursive transformation that compresses an
n-dimensional vector into a 1-dimensional vector, thereby decreasing the complexity of
the original IPA. Furthermore, the Bulletproof protocol does not require a trusted setup
phase, which differentiates it from zero-knowledge proof methods like zk-SNARKs and
highlights its advantages for decentralization.

Let v ∈ Zp, and consider V , an element in a group G, which serves as a Pedersen
commitment to the value v using a randomness parameter γ. The goal of the proof
system is to demonstrate to the verifier that v falls within the range of integers from 0
to 2n − 1. Simply put, the proof system seeks to verify the following relation:{ (

g, h ∈ G, V, n; v, γ ∈ Zp

)
: V = hγgv ∧ v ∈ [0, 2n − 1]

}
(2)

In the Σ-based design of the S2DV system, the nonnegativity proof requires trans-
formation to align with the specific cryptographic primitives. In the system, a homo-
morphic ElGamal encryption (C1,C2) = (gr, gm · pkr) needs to be transformed to be
compatible with Bulletproofs, which require inputs in the form C = (gm ·hr′ ). To bridge
this gap, a ZKP is provided to demonstrate that the message in the commitment used
as input to Bulletproof is equal to the message in the ciphertext. Then, the commitment
can then be given as input to bulletproof. This commitment proof is depicted in Figure
2 and designed for the following relation:{ (

g, h, C2, pk ∈ G; m, r, r′ ∈ Zp

)
: C2 = g

m · pkr ∧C = gm · hr′
}

(3)

2.4 Groth16 zk-SNARK Protocol

A zk-SNARK (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge) is
a cryptographic protocol that allows a prover to demonstrate to a verifier that a compu-
tation F has been executed correctly. Specifically, the prover shows knowledge of a wit-
ness w such that y = F(x, w), where x is publicly known. A key feature of zk-SNARKs
is their succinctness: both the size of the proof and the time required for verification are
significantly smaller than the size of the computation F and the witness w.

The Groth16 zk-SNARK [19] is particularly notable for its efficiency in verifying
rank-1 constraint systems (R1CS), as established in [18]. It stands out due to its minimal
proof size and rapid verification, maintaining its status as the benchmark for practical
applications. These advantages have made Groth16 widely adopted, emphasizing the
importance of advancing its design. Groth16 relies on asymmetric pairings between the
groups G1, G2, and GT , with the proof consisting of two elements from G1 and one
element from G2.

Groth’s zk-SNARK protocol leverages Quadratic Arithmetic Programs (QAPs)[18],
[28] to represent the satisfiability of R1CS instances in a computationally efficient man-
ner using specific low-degree polynomials. The protocol effectively consolidates the M



Prover Verifier
w1, w2, w3 ∈R Zp

A←− gw1 · hw2 ∈ G

B←− gw1 · pkw3 ∈ G
A, B

−−−−−−−−−−−−→

c ∈R Z
∗
p

c
←−−−−−−−−−−−−

z1 ←− w1 + c · m ∈ Zp

z2 ←− w2 + c · r′ ∈ Zp

z3 ←− w3 + c · r ∈ Zp
z1 , z2 , z3

−−−−−−−−−−−−→

A ·Cc ?
= gz1 · hz2

B ·Cc
2

?
= gz1 · pkz3

0 or 1
←−−−−−−−−−−−

Fig. 2: Proof of commitment

constraints into a single equation involving univariate polynomials of degree O(M). The
prover’s task is to demonstrate to the verifier that this equation is satisfied. Importantly,
it suffices for the verifier to confirm that the equation holds at a randomly chosen point,
as distinct low-degree polynomials (relative to the field size) can only coincide at a
limited number of points.

3 OUR PROPOSED S2DV PROTOCOL

This section begins with an overview of our DAO voting protocol, followed by a de-
tailed discussion of each stage. The Groth16-based S2DV Framework can be divided
into 9 steps, as shown in Figure 3. Apart from the smart contract administrator, who sets
up the voting smart contract, there are three main parties involved: voters, the smart
contract, and proposal creators. The procedure can be analyzed in three phases: pre-
election, election, and post-election.

Pre-election starts with a distributed key generation (DKG), initiated by the proposal
creators, to establish encryption keys for the election. They then upload this public key
along with the Groth16 verification key. Once all voters have registered for the election,
the proposal creators trigger the start of the voting process. In the election phase, a
voter retrieves the current encrypted votes, homomorphically adds their own vote, and
generates a Groth16 proof. They then submit the proof along with the new encrypted
votes to the smart contract. The contract verifies the proof and updates the encrypted
votes accordingly. To finalize the election, the proposal creators trigger the completion
of the election and perform threshold decryption. They submit the decrypted voting



Voters Smart Contract Proposal Creators

0. start DKG 

1. upload the parameters
such as ElGamal public key and

verification key for  Groth16

2. voters registration

3. trigger the voting

4b. cast the new encrypted
votings and proofs

5. verify the proofs
and change stage

6. trigger the tallying

7. decrypt encrypted
voting partially

8. send the  result and correctness proof 

4a. fetch the enc
votings from SC and
generate proof and

new enc votings
 

9. end the voting and
if the proof is valid
accept the result

Fig. 3: S2DV Framework

results and corresponding proofs to the smart contract. If the proofs are valid, the smart
contract finalizes the election.

3.1 Formal Construction

The formal construction of the employed functionalities is given in Algorithm 1. For
the syntax, we employed standard notations. If A denotes an algorithm, then A(x) rep-
resents the output of this algorithm when applied to input x. While x ← y represents
the straightforward assignment operation. , A(x) → y signifies that y is the output of
the algorithm A. Furthermore, Kgen,Enc,Dec,Pr,Vr,HE, andZKP denote key gen-
eration, encryption, decryption, proof, verification, homomorphic encryption, and zero-
knowledge proof, respectively. Additionally, nv, nc, and t represent the number of the
voter, the number of the proposal creators, and threshold value of creators, respectively.
EncDKG function of Algorithm 1 is executed by the proposal creators using Peder-

sen’s distributed key generation [29]. After each proposal creator generates its partial
secret key ski and its corresponding public key pki, the election’s encryption key pk
is generated distributively. This key generation ensures that no single entity possesses
complete control over the private/decryption key.
VoteGen function of Algorithm 1 is run by voters, enabling them to cast their en-

crypted votes. Each voter retrieves an aggregated vote AggVote from the smart contract



and appends his encrypted vote Ci to it with homomorphic operations. To achieve in-
tegrity and prevent malicious acts, the voter produces a zero-knowledge proof (ZKP)
πVotei , demonstrating that the vote was accurately constructed without revealing its con-
tent. Specifically, the ZKP proves that the ciphertext legitimately constructed within the
allowed range (e.g., non-negativite), that the vote power assigned to the voter is cor-
rectly enforced, and that summation is performed correctly. This process eliminates the
need for a trusted tallying authority as vote aggregation are conducted in a distributed
manner, while offering transparent verification due to its ZKPs.
VoteVerif function is run by the smart contract to verify the correctness of sub-

mitted proofs. Upon successful verification, smart contract accepts the aggregated vote
AggVote and changes the phase of the election.
ParDecVote function is executed by proposal creators to decrypt the aggregated

vote partially. Each proposal creator takes the aggregated vote AggVote confirmed by
the smart contract, then applies partial decryption with its secret key ski. Additionally,
they generate the correct decryption proof πpdi to prove that partial decryption per-
formed using the designated secret key share associated with the public key generated
during the Distributed Key Generation. More details of partial decryption for threshold
ElGamal system can be found in [11].
TallyVote function is run by the smart contract to declare the election result. The

smart contract first verifies the correctness proof of description, then aggregates the
partially decrypted values to announce the result.

3.2 An Efficient Instantiation

Encryption (HE). While most homomorphic encryption algorithms encounter scala-
bility challenges as the number of candidates rises, ElGamal algorithm is effective in
these situations [25]. Thus, ElGamal algorithm [13] is selected for encryption due to
its efficiency in homomorphic encryption. More specifically, the exponential variant of
ElGamal, wherein the message is encoded in the exponent, is employed owing to its ad-
ditive properties. Following the traditional decryption process in ElGamal, this version
necessitates an additional step after decryption. However, as the message is confined
to the number of (voters × vote power), this additional discrete logarithm operation
is not difficult to compute. Even efficient solving techniques like Baby-step Giant-step
(BSGS) can be used to reduce time complexity [31].

Proofs (ZKP) In the system, ZKP verifies that the encrypted votes correctly reflect
the voter’s token-based power, that no negative values are encrypted, and that homo-
morphic summation are applied correctly, enabling accurate aggregate without disclos-
ing individual votes. Both zk-SNARKs and Σ-protocols can be utilized to verify these
properties except homomorphic summation. When using Σ-protocols, homomorphic
summation cannot be directly performed by the voter, as Σ-protocols do not support
this operation. In the case of Σ-based design, the aggregation process must be shifted to
the smart contract, where each participant’s vote is aggregated. This introduces an addi-
tional challenge, as performing aggregation within the smart contract increases compu-
tational overhead and may slow down the overall system. Therefore, while Σ-protocols



Algorithm 1: S2DV: Generic Construction

S2DV: Generic Construction

Function EncDKG(pp):
pk← 1
for i← 1 to nc do

HE.KGen(pp)→ (pki, ski)
ZKP.Pr(ski)→ πski
if ZKP.Vr(πski ) = 1 then

pk← pk × pki

return pk

Function VoteGen(Votei,AggVote, pk):
HE.Enc(pk,Votei)→ Ci
HE.Addition(Ci,AggVote)→ AggVote
ZKP.Pr(Ci)→ πVotei
return Bi = (AggVote, πVotei )

Function VoteVerif(AggVote, {πVotei }
nv
i=1):

for i← 1 to nv do
if ZKP.Vr(πVotei ) = 1 then

return AggVote

Function ParDecVote(AggVote, ski):
for i← 1 to nc do

HE.Dec(ski,AggVote)→ pdi
ZKP.Pr(pdi)→ πpdi

return (pdi, πpdi )

Function TallyVote(pdi, πpdi):
result = 1
for i← 1 to t do

if ZKP.Vr(πpdi ) = 1 then
Result← Result × pdi

return result

can be used for the system, the homomorphic summation proof must be handled dif-
ferently, necessitating a change in system design. Given these considerations, Groth16
zk-SNARKs provide a more efficient solution. By directly incorporating homomorphic
summation within the proof, zk-SNARKs ensure that the system can handle aggrega-
tion off-chain while minimizing transaction costs and maintaining system efficiency.
Thus, despite the use of Σ-protocols for comparison, zk-SNARKs should be preferred
for large-scale DAO voting applications.

4 ANALYSIS

4.1 Security Analysis

The security of the protocol is guaranteed by employing cryptographic primitives, thereby
strengthening voter trust. S2DV satisfies privacy, robustness, fairness, and verifiabil-
ity, thereby demonstrating that it constitutes a secure and reliable Decentralized Au-
tonomous Organization (DAO) voting system.

Privacy. Privacy entails severing the links between the voter and the vote [17]. Vote
privacy of the proposed protocol achieves privacy by employing the exponential El-
Gamal algorithm under the decisional Diffie-Hellman (DDH) assumption. The DDH
assumption claims that, without knowledge of the secret exponents a and b, an attacker
cannot distinguish between the two tuples (ga, gb, gab) and (ga, gb, gc), where c is a ran-
dom value. This ensures that, even if an adversary captures the encrypted vote, they
cannot extract any meaningful information about the voter’s choice.



Robustness. It refers to the system’s resilience despite potential malicious actions
from voters or election entities [26]. S2DV achieves this by leveraging ZKPs in each
stages. Within the system, each voter retrieves the aggregated vote from the smart con-
tract, appends its vote along with vote power and non-negativeness range proofs, and
then submits it back to the smart contract. These proofs guarantee that the supplied
votes adhere to valid parameters and preclude any manipulation. As a result, the only
remaining step in the process is the decryption of the aggregated vote stored in the
smart contract. However, this decryption process is already carried out by the proposal
creators, who also publish its ZKP to prove the correctness of the decryption.

Fairness. Fairness refers to the absence of any results being revealed before the
election is completed [17]. In S2DV, distributed key generation is utilized to create en-
cyption key. After the election has ended, the proposal creators collaboratively decrypt
the aggregated votes with its secret key. Since nobody knows the election’s decryption
key, this process ensures that the election results is preserved during the election phase.

Verifiability. Election verifiability guarantees that voters can verify the correctness
of the election result without relying on some authority [3]. In S2DV, voters can con-
firm that their votes have been accurately recorded through a smart contract on the
blockchain, ensuring transparency and immutability. Additionally, the aggregation of
votes can be independently verified by any party using homomorphic encryption, ac-
companied by the correct ZKPs, which guarantees the integrity of the vote tallying
process without revealing private information. Thus, each stage, from vote casting to
result counting, is independently verifiable by participants and external observers.

4.2 Performance Analysis

Name #Candidates Generation [ms] Verification [ms] #Constraints
Tx (Σ) 3 14.9 12.5 -
Tx (Groth16) 3 114 0.772 26209
Tx (Σ) 4 20.1 16.3 -
Tx (Groth16) 4 191 0.794 34945
Tx (Σ) 5 24.6 20.4 -
Tx (Groth16) 5 203 0.815 43681
Tx (Σ) 6 28.8 23.8 -
Tx (Groth16) 6 209 0.822 52417

Table 1: Transaction Performance Metrics

As previously mentioned, we developed two distinct implementations of S2DV for
the system comparison: one utilizing zk-SNARKs and the other based on Σ-protocols.
Since zk-SNARK constraints can be easily defined in a higher-level language, the zk-
SNARK-based implementation offers superior extendability and ease of implementa-
tion compared to the Σ-protocols version, which necessitates manual construction of
ZKPs to achieve optimal performance. Therefore, the zk-SNARK-based S2DV imple-
mentation is more likely to be adopted in practice and is the primary focus of our eval-



uation. To compare, we present the system’s applicability and performance results for
both zk-SNARK-based and Σ protocol-based implementations, which are available in
our Github 10. Our evaluation of the scheme was conducted on a standard user computer
equipped with 8 GB of RAM, 6 cores, and a 2.90GHz CPU.

Implementation based on zk-SNARKs. The zk-SNARK implementation of S2DV
is built using the gnark library [5], leveraging the BN256 curve [1] and the Groth16
proof system [19].

Implementation based on Σ-protocols and Bulletproof. Using the go-ethereum
library [14] for Σ-protocols, the P-256 curve [27] was used. The zkrp library developed
by ING Bank was used for Bulletproof.

Table 1 presents the proving, verification times and number of candidates for both of
our implementations, along with the number of R1CS constraints in the Groth16-based
implementation. All results are averaged over 50 runs and rounded to three significant
figures. This table demonstrates that, in contrast to the sigma protocol, the verification
time is substantially shorter in a Groth16-based proof, even though the prover time
is larger. Given that verification is performed on-chain, choosing the Groth16-based
system is a reasonable approach to minimize transaction fees.

5 CONCLUSION

In this study, we introduced S2DV, a secure and scalable voting protocol for DAOs. Our
protocol uses threshold decryption to avoid premature result disclosure while maintain-
ing vote confidentiality with additive exponential ElGamal homomorphic encryption.
In order to ensure voting integrity, encrypted votes are combined with Groth16-based
zk-SNARKs, which confirm that votes correctly reflect the voter’s token, that only legit-
imate non-negative values are encrypted, and that homomorphic summation is applied
appropriately.

A key innovation of our approach is the delegation of offline computations to un-
trusted off-chain entities, while ensuring their correctness through cryptographic proofs.
By performing homomorphic aggregation off-chain instead of in the smart contract, we
reduce the burden on the contract. This enables efficient computation without com-
promising security. Our prototype implementation and experimental evaluation demon-
strate the feasibility of S2DV, showing that while Groth16 zk SNARK incurs a higher
proving time compared to sigma protocols, it significantly reduces verification time.
Given that verification occurs on-chain, this trade-off is justified as it minimizes trans-
action fees. Overall, our work highlights the potential of leveraging zk-SNARKs and
homomorphic encryption to enhance scalability and security in DAO voting.

10 https://github.com/midmotor/privacy-preserve-dao-voting



Bibliography

[1] Barreto, P.S., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: In-
ternational workshop on selected areas in cryptography. pp. 319–331. Springer
(2005)

[2] Bellavitis, C., Fisch, C., Momtaz, P.P.: The rise of decentralized autonomous orga-
nizations (daos): a first empirical glimpse. Venture Capital 25(2), 187–203 (2023)

[3] Benaloh, J., Rivest, R., Ryan, P.Y., Stark, P., Teague, V., Vora, P.: End-to-end ver-
ifiability. arXiv preprint arXiv:1504.03778 (2015)

[4] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 327–357. Springer (2016)

[5] Botrel, G., Piellard, T., Housni, Y.E., Kubjas, I., Tabaie, A.: Consen-
sys/gnark: v0.11.0 (Sep 2024). https://doi.org/10.5281/zenodo.5819104,
https://doi.org/10.5281/zenodo.5819104

[6] Brandt, F.: Efficient cryptographic protocol design based on distributed el gamal
encryption. In: International Conference on Information Security and Cryptology.
pp. 32–47. Springer (2005)

[7] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Short proofs for confidential transactions and more. In: 2018 IEEE sym-
posium on security and privacy (SP). pp. 315–334. IEEE (2018)

[8] Cai, W., Wang, Z., Ernst, J.B., Hong, Z., Feng, C., Leung, V.C.: Decentralized
applications: The blockchain-empowered software system. IEEE access 6, 53019–
53033 (2018)

[9] Cetinkaya, O., Cetinkaya, D.: Towards secure e-elections in turkey: requirements
and principles. In: The Second International Conference on Availability, Reliabil-
ity and Security (ARES’07). pp. 903–907. IEEE (2007)

[10] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Annual interna-
tional cryptology conference. pp. 89–105. Springer (1992)

[11] Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. European transactions on Telecommunications
8(5), 481–490 (1997)

[12] Ding, Q., Liebau, D., Wang, Z., Xu, W.: A survey on decentralized autonomous
organizations (daos) and their governance. World Scientific Annual Review of
Fintech 1, 2350001 (2023)

[13] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

[14] Ethereum Foundation: go-ethereum: Official Go implementation of the Ethereum
protocol. https://github.com/ethereum/go-ethereum (2025), accessed: Feb 6, 2025

[15] Fan, Y., Zhang, L., Wang, R., Imran, M.A.: Insight into voting in daos: conceptual
analysis and a proposal for evaluation framework. IEEE Network 38(3), 92–99
(2023)



[16] Faqir-Rhazoui, Y., Arroyo, J., Hassan, S.: A comparative analysis of the platforms
for decentralized autonomous organizations in the ethereum blockchain. Journal
of Internet Services and Applications 12, 1–20 (2021)

[17] Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large
scale elections. In: Advances in Cryptology-AUSCRYPT’92: Workshop on the
Theory and Application of Cryptographic Techniques Gold Coast, Queensland,
Australia, December 13–16, 1992 Proceedings 3. pp. 244–251. Springer (1993)

[18] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Advances in Cryptology–EUROCRYPT 2013:
32nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Athens, Greece, May 26-30, 2013. Proceedings 32. pp. 626–
645. Springer (2013)

[19] Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-
12, 2016, Proceedings, Part II 35. pp. 305–326. Springer (2016)

[20] Hassan, S., De Filippi, P.: Decentralized autonomous organization. Internet Policy
Review 10(2) (2021)

[21] Hellström, E.: Fair voting system for permissionless decentralized autonomous
organizations (2022)

[22] Ibrahimy, M.M., Norta, A., Normak, P.: Blockchain-based governance models
supporting corruption-transparency: A systematic literature review. Blockchain:
Research and Applications 5(2), 100186 (2024)

[23] Joaquim, R.: How to prove the validity of a complex ballot encryption to the voter
and the public. Journal of information security and applications 19(2), 130–142
(2014)

[24] Langer, L.: Privacy and verifiability in electronic voting. Ph.D. thesis, Technische
Universität Darmstadt (2010)

[25] Li, L.: An electronic voting scheme based on ElGamal homomorphic encryption
for privacy protection. In: Journal of Physics: Conference Series. vol. 1544, p.
012036. IOP Publishing (2020)

[26] Magkos, E., Kotzanikolaou, P., Douligeris, C.: Towards secure online elections:
models, primitives and open issues. Electronic Government, an International Jour-
nal 4(3), 249–268 (2007)

[27] National Institute of Standards and Technology: FIPS PUB 186-4: Digital Signa-
ture Standard (DSS). Tech. rep., National Institute of Standards and Technology
(2013), https://doi.org/10.6028/NIST.FIPS.186-4, accessed: Feb 6, 2025

[28] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical veri-
fiable computation. Communications of the ACM 59(2), 103–112 (2016)

[29] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual international cryptology conference. pp. 129–140. Springer
(1991)

[30] Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology
4, 161–174 (1991)

[31] Shanks, D.: Class number, a theory of factorization, and genera. In: Proc. Symp.
Math. Soc., 1971. vol. 20, pp. 415–440 (1971)



[32] Wang, K.H.K., Mondal, S.K., Chan, K.C., Xie, X.: A review of contemporary e-
voting: Requirements, technology, systems and usability. Data Science and Pattern
Recognition 1(1), 31 (2017)


