
Securely Instantiating ‘Half Gates’ Garbling in the
Standard Model

Anasuya Acharya1, Karen Azari2 ⋆, Mirza Ahad Baig3, Dennis Hofheinz4, and Chethan
Kamath5

1 Bar-Ilan University, Israel
anasuyahirai@gmail.com

2 University of Vienna, Faculty of Computer Science, Vienna, Austria
karen.azari@univie.ac.at

3 ISTA, Austria
mirzaahad.baig@ist.ac.at

4 ETH Zurich, Switzerland
hofheinz@inf.ethz.ch

5 IIT Bombay, India
ckamath@cse.iitb.ac.in

Abstract. Garbling is a fundamental cryptographic primitive, with numerous theo-
retical and practical applications. Since the first construction by Yao (FOCS’82, ’86),
a line of work has concerned itself with reducing the communication and computa-
tional complexity of that construction. One of the most efficient garbling schemes
presently is the ‘Half Gates’ scheme by Zahur, Rosulek, and Evans (Eurocrypt’15).
Despite its widespread adoption, the provable security of this scheme has been based
on assumptions whose only instantiations are in idealized models. For example, in
their original paper, Zahur, Rosulek, and Evans showed that hash functions satisfy-
ing a notion called circular correlation robustness (CCR) suffice for this task, and
then proved that CCR secure hash functions can be instantiated in the random per-
mutation model.
In this work, we show how to securely instantiate the Half Gates scheme in the stan-
dard model. To this end, we first show how this scheme can be securely instantiated
given a (family of) weak CCR hash function, a notion that we introduce. Further-
more, we show how a weak CCR hash function can be used to securely instantiate
other efficient garbling schemes, namely the ones by Rosulek and Roy (Crypto’21)
and Heath (Eurocrypt’24). Thus we believe this notion to be of independent interest.
Finally, we construct such weak CCR hash functions using indistinguishability ob-
fuscation and one-way functions. The security proof of this construction constitutes
our main technical contribution. While our construction is not practical, it serves as
a proof of concept supporting the soundness of these garbling schemes, which we re-
gard to be particularly important given the recent initiative by NIST to standardize
garbling, and the optimizations in Half Gates being potentially adopted.

Keywords: Garbling Schemes · Circular Correlation Robust (CCR) Hashing · Indistin-
guishability Obfuscation

⋆ Parts of the work were done while the author was affiliated with ETH Zurich, Switzerland.

1 Introduction

Garbling allows encoding a circuit C and an input x into a garbled circuit F and garbled
input X such that given F and X one can “evaluate” F on X to learn C(x) without leaking
anything else about the input. Since its introduction by Yao [56], the primitive has turned
out to be useful not only in theory (e.g., [5,6,26,54]), but also in practice (e.g., [15,48,51]).
Yao’s original construction, based on symmetric-key encryption (SKE), roughly costs four
ciphertexts per gate in terms of communication and four SKE operations per gate in terms
of computation, for both garbling and evaluation, each. While this is already quite efficient,
a line of work [12, 29, 44, 45, 49, 51, 52, 57] (see Section 1.3 for an in-depth overview) has
further boosted efficiency, resulting in extremely efficient constructions. One of the most
efficient is the hash-based scheme by Zahur, Rosulek, and Evans [57], henceforth referred to
as the ‘Half Gates’ scheme. The Half Gates scheme reduces the cost of garbling drastically:

– garbling XOR gates is essentially free of charge,
– the communication cost for AND gates is reduced to two “ciphertexts”, and
– the number of hash operations required for evaluations is just two (garbling still requires

four hash operations).

We have, by now, a reasonably good understanding of the landscape of security of Yao’s
construction [36,38,39,41,46] – in particular, its security (in a strong sense) can be based on
the existence of one-way functions. However, the same is not quite the case for its optimiza-
tions. With the aim of proving the security of schemes that employ the so-called “free-XOR”
optimizations [4,45,50], Choi et al. [24] introduced a new security notion for hash functions,
called circular correlation robustness (CCR). Informally, CCR security of hash functions is
defined with respect to a random, secret “offset” to which the adversary is given oracle access
to: it can adaptively query the oracle on any input of its choice and gets as response the
offset hash (circularity) of the offset input (correlation). It is required that these responses
appear pseudo-random to the adversary. This notion turned out to be quite powerful and the
security of several other constructions, including Half Gates, was later based on it. However,
despite an extensive body of work on this topic, all instantiations of CCR hash functions are
in idealized models like random-oracle or random-permutation model [23, 30, 31, 57]. Thus,
in this work, we ask the following question:

Are optimization techniques (as used in Half Gates) instantiable in the standard
model, or do they rely inherently on idealized models?

We consider this question particularly important in light of the recent effort by NIST to
standardize multi-party threshold schemes, as part of which garbled circuits have been listed
as a ‘Category 2’ primitive [20]. Once standardized, the scheme can be expected to be used
extensively, and it is, therefore, crucial to better understand the precise security guarantees
of the prominent proposals.

To highlight the difficulty of the task at hand, consider plain correlation robustness (CR),
i.e., CCR without the circularity requirement [35] where the adversary can query an oracle
and receive only a hash of the offset input. Even this simpler notion seems hard to achieve:
we are only aware of two works that attempt to instantiate CR in the standard model. One is
the work of Applebaum, Harnik, and Ishai [4], who construct CR hash functions over groups
that support a certain q-type Diffie-Hellman assumption. However, it does not support the
XOR operations (over binary strings) necessary for the Half Gates scheme. The other is
the construction of Abdalla, Benhamouda, and Passelègue [1] which requires non-standard
assumptions on multi-linear maps.

2

1.1 Our Results

We answer the above question positively by proving the following theorem for the already-
mentioned Half Gates scheme.

Theorem 1 (Informal, see Corollary 1). Assuming indistinguishability obfuscation
(iO) for circuits and one-way functions (OWFs) exist, the Half Gates scheme from [57]
can be securely instantiated in the standard model.

Here, by “securely” we refer to the selective simulatability model of security for garbling
schemes [14]. As a consequence of Theorem 1, the Half Gates scheme can be instantiated
under the same hardness assumptions that underlie recent constructions of iO [40,55].

Moreover, a result similar to Theorem 1 can be shown for two more optimized garbling
schemes. The first is the so-called “Three Halves” scheme of Rosulek and Roy [52]. This
scheme supports the free-XOR optimization and can garble AND gates using roughly 1.5κ
bits (where κ denotes the security parameter). The second scheme is by Heath [33], who
presented a garbling scheme for an arithmetic model of computation called oblivious switch
systems. In his scheme, garbling for addition gates is free and the garbling table for each
multiplication gate has size O(ℓκ) bits, where ℓ is the size of the bit-representation for the
underlying arithmetic field.

Theorem 2 (Informal, see Theorems 6 and 7). Assuming indistinguishability obfusca-
tion (iO) for circuits and one-way functions (OWFs) exist, the garbling schemes from [33,52]
can be securely instantiated in the standard model.

We prove Theorems 1 and 2 in two steps. First, we show that a weaker form of CCR
suffices to instantiate this scheme in the standard model. That is:

Theorem 3 (Informal, see Theorems 5 to 7). Assuming a family of weakly CCR
(wCCR) hash functions exists, the schemes from [33, 52, 57] can be securely instantiated in
the standard model.

On a high level, wCCR requires CCR to hold only with respect to semi-adaptive query
strategies (defined soon in Section 1.2). Such a query strategy is weaker than the (fully)
adaptive query strategies that CCR allows (which is why CCR seems hard to instantiate),
but stronger than a selective query strategy where the adversary must submit its queries
in advance (which turns out to be too weak to prove security). Formalizing this notion, we
believe, is our main conceptual contribution.

In the second step, we propose a family of wCCR hash functions based on iO and OWF.
This renders all the garbling schemes mentioned above secure in the standard model (as
opposed to relying on ideal assumptions).

Theorem 4 (Informal, see Theorem 8). Assuming iO and OWFs, a family of wCCR
hash functions exists.

While our construction of wCCR hash family is simple, proving it wCCR turned out to be
involved and is our main technical contribution. We discuss the construction and outline
the proof in Section 1.2.

3

Discussion of our results.
– Efficiency vs. feasibility. The wCCR hash function from Theorem 4 is not efficient at

all. Firstly, it relies on iO. Secondly, as we will see in Section 1.2, its description grows
proportionately to the description of the query strategy. This implies, e.g., that the
description of the hash function in our application to Half Gates (and hence the com-
munication complexity) grows with the size of the circuit to be garbled. Nevertheless,
it does show that all optimization techniques used in the Half Gates scheme can be
instantiated in the standard model. Thus our results serve as a proof of concept in the
vein of Applebaum [3], who showed that the free XOR optimization can be instantiated
from related-key key-dependant message (RK-KDM) secure SKE, a notion that is anal-
ogous to CCR. However, as mentioned in [3], the hash-based construction of Half Gates
requires new techniques.

– Comparing settings. Prior works on security of Half Gates and similar constructions [23,
24,30,31,57] consider security in idealised settings (e.g., ideal permutation model) where
the hash function is modeled as an idealized object available to all parties [13]. This
reflects practice where the hash function is instantiated, e.g., using fixed-key AES which
supports fast hardware implementations. The setting we consider is slightly different.
We assume that the party that garbles the circuit samples the hash function used in the
Half Gates construction from a family, and then sends its description over to the party
that evaluates, as part of the garbled circuit.

– Weak CCR vs. collision resistance. Note that Theorem 4 and [8] together imply that
wCCR hash functions cannot imply collision-resistant hash functions in an (oracle-aided)
black-box sense; we consider this observation interesting from the viewpoint of under-
standing the hierarchy of cryptographic primitives.

Open questions. Our work leaves several fascinating questions open, some of which are listed
below.
– Efficiency. As already pointed out, the description of our weak CCR hash function in

Theorem 4 grows proportionately to the complexity of the query strategy. Avoiding this
blow-up altogether, or recognizing settings where it can be reduced is an interesting
technical question, and resolving it would imply improved communication complexity.

– De-obfuscation. A natural follow-up question to our work is to replace iO with weaker
primitives or weaker computational assumptions. Compare this with the analogous no-
tion of RK-KDM security, which can in fact be instantiated under standard assump-
tions [3, 17].

– Adaptive security. Recall that we prove security only in the weaker selective model of
garbling. Very recently, the adaptive security of Half Gates in idealized models was shown
in [11,32], but nothing else is known about its adaptive security. This is in contrast with
the adaptive security of Yao’s construction, which is a well-studied topic [7,36–39,41,42].
Therefore, it is natural to ask whether our techniques can be lifted to prove adaptive
security in the standard model. While this won’t be possible by a black-box reduction to
the weak CCR security of the hash function, our techniques could still be useful to base
adaptive security on standard assumptions in a non-black-box manner. This however,
could require significantly newer ideas.

1.2 Technical Overview

In this technical overview we focus on the Half Gates scheme [57], since this already allows us
to present all relevant techniques. For the details on the garbling schemes in [52] and [33] we

4

refer the reader to Appendix C and D respectively. We start off with an informal description
of the relevant parts of the Half Gates construction (see Algorithms 1 and 2 for a formal
description), and then explain how (full) CCR is useful to prove its security. Next we describe
wCCR, and explain why it is sufficient to prove security of the Half Gates scheme in the
standard model. Finally, we describe our construction of a wCCR hash function family.

Half Gates and CCR. Recall that the Half Gates scheme is a hash-based optimisation of
Yao’s construction. In Yao’s scheme, to garble a circuit C, one first labels each wire in C with
a pair of randomly-sampled keys, logically associated with bits 0 and 1, respectively. We
refer to these as the 0- and 1-label, respectively. Then these wire labels are used to generate
a garbling table for each gate in C, which encodes its gate table – in Yao’s construction
a garbling table consists of four (double) ciphertexts of the underlying SKE. The garbled
circuit F consists of all the garbling tables along with an output map from labels of output
wires to bits, which is required later for evaluation (for now, let’s ignore the specifics of
evaluation). The garbled input X consists of those labels of input wires of C that correspond
to the input x. The Half Gates construction from [57] optimises the above construction in
two ways:

– Firstly, it employs the so-called “free-XOR” optimisation [45], which means that the
garbling table for XOR gates can be empty. To implement this, the wire labels are
correlated via a global offset ∆. To be specific, the 1-label of a wire C, L1C , is always
set to be an XOR of its 0 label, i.e., L1C := L0C ⊕ ∆. In addition, the 0-label of an
XOR gate, with input wires (A,B) and output wire C is generated deterministically as
L0C := L0A⊕ L0B (thus the output label for XOR gates during evaluation can be obtained
by simply XORing the given input labels).

– However, the garbling table for AND gates in the above optimisation still has to be
generated as in Yao’s scheme, and thus requires four ciphertexts per gate. To reduce
this, a clever “row reduction” for AND gates is additionally employed which results
in a garbling table consisting of just two “ciphertexts”. To implement this, the 0-label
of an AND gate, with input wires (A,B) and output wire C, is also now generated
deterministically using the underlying hash H as follows (for this overview, let’s ignore
the ‘tweaks’)

L0C = H(L0A ⊕ pa∆)⊕ H(L0B ⊕ pb∆)⊕ papb∆. (1)
Here, pa (resp., pb) is the so-called permutation bit for A (resp., B) that is multiplied to
every bit in ∆. In garbling schemes like the half Gates construction where the evaluation
steps depend on an ‘apparent value’ ∈ {0, 1} of the labels available to the evaluator,
these permutation bits work to mask the actual semantic values of the labels, making
this masked apparent value information theoretically hiding. The garbling table for an
AND gate with input wires (A,B) has the form

G0
AND = H(L0A)⊕ H(L0A ⊕∆)⊕ pb∆ G1

AND = H(L0B)⊕ H(L0B ⊕∆)⊕ L0A. (2)

The former ciphertext is a function of the hashes of labels of wire A only whereas the
latter ciphertext contains hashes of labels of wire B only; hence the ‘2 halves’. For labels
LA and LB available during evaluation, letting sa = lsb(LA) and sb = lsb(LB) be the
‘apparent values’ of these wires, the AND gate is evaluated as:

LC = H(LA)⊕ H(LB)⊕ saG
0
AND ⊕ sb(G

1
AND ⊕ LA)

This effectively cancels the appropriate hash values within the ciphertexts using those
of the active labels and applies ∆ only when the inputs values are (1, 1).

5

We now outline how CCR can be used to show security of Half Gates. Recall that,
informally, security requires F and X not to leak anything about the input except for C(x).
This is modelled by requiring the distribution of (F,X) to be efficiently simulatable given
just C and C(x). The simulation for the Half Gates scheme, on a high level, proceeds similar
to that for Yao’s scheme [46]. That is, the garbling tables are generated assuming that the
input is the all-0 string (which implies that all internal wires evaluate to 0), and the output
map is then “programmed” so that the 0-labels of the output wires map to C(x) (which
ensures that evaluation is consistent). Thus all the 1-labels – and therefore the offset ∆ – is
unused and can be replaced by random values.

The definition of CCR is “tailored” to the specific goal of showing that the distribution
of the simulation above is indistinguishable from the real distribution (F,X). To elaborate,
a hash function H is CCR if the ‘CCR oracle’

CH,∆(x, b) := H(x⊕∆)⊕ b∆, (3)

for a (secret) random string ∆, appears pseudorandom to any bounded “legal” distinguisher
given adaptive access to the oracle.6 To see why CCR suffices for showing indistinguishability
of simulation, observe that the garbling table from Eq. (2) can be rewritten in terms of the
0-labels as

H(L0A)⊕ CH,∆(L0A, pb) H(L0B)⊕ CH,∆(L0B , 0)⊕ L0A. (4)

As a result, indistinguishability of (F,X) and the above-described simulated distribution
can be shown based on pseudo-randomness of CCR. Several issues have been brushed under
the rug here – we refer the readers to Section 3.1 for a more formal treatment.

Formulating weak CCR. Our starting point is the observation that allowing the adversary
to access the CCR oracle CH,∆ (Eq. (3)) at arbitrary input points, as in CCR, is an overkill
when proving security in the standard model. In particular, for the case of security of Half
Gates, it suffices to provide restricted access to CH,∆, at the correlated input points from
Eqs. (1) and (2), determined by the construction. The only way that the adversary can
influence the queries is via the choice of circuit and input. To reflect this, we define a weak
form of CCR, captured by the following game between a challenger C and adversary A.

1. A first submits a query strategy QueryStrategy to C. This can be any oracle-aided ran-
domised (polynomial-sized) circuit (A cannot control the random coins, however).7

2. C randomly samples a hash function H, a bit b and the global offset ∆, and then executes
QueryStrategy, answering its queries either using CH,∆ if b = 0 or using a random oracle
(via lazy sampling) if b = 1. Then it returns (the description of) H, along with all the
query-answer pairs, Q, to A.

3. A outputs a guess b′ and wins if it is correct (i.e., b′ = b).

Note that A’s access to the CCR oracle is partly adaptive in the sense that it has some
control over them via the choice of QueryStrategy, but not full control as in the definition of
6 Informally, a distinguisher is legal if it does not trivialise the task, e.g., by querying both CH,∆(x, 0)

and CH,∆(x, 1) to learn ∆. There are two definitions of CCR in the literature, the original one
from [24] and a slightly weaker one from [57]. The definition of “legal” depends on the exact
definition in consideration. We refer the reader to Remarks 1 to 3 for a detailed discussion.

7 That query sequences produces through QueryStrategy are indeed “legal”, as discussed in Foot-
note 6, will be guaranteed by implementing the ‘tweak’ (which we ignored in this overview for
simplicity of exposition) as a counter.

6

CCR. We show that this notion nevertheless suffices to prove selective security of Half Gates.
Once QueryStrategy is tailored to the scheme, the proof is a straightforward adaptation of
the proof using CCR outlined earlier. We refer the reader to Section 3.1 for more details.

Constructing wCCR hash functions. We construct wCCR hash functions using iO and OWF.
The construction is described using puncturable pseudo-random functions (PPRFs), which
are implied by OWFs [18, 19, 43]. Very briefly, a PRF {Fk : {0, 1}κ → {0, 1}κ}k∈{0,1}κ is
a PPRF if it additionally supports puncturing of any key k at any input x∗ ∈ {0, 1}κ,
such that: 1) the punctured key kx∗ preserves functionality of k on inputs x ̸= x∗; and 2)
the evaluation of Fk is pseudorandom at x∗ (even given kx∗).8 Given such a PPRF, our
construction is simple: to sample a hash function from the family, first sample a random
PPRF key k and output the circuit

H(x)← iO(Fk(x)).

To prove that this construction is weakly CCR, we need to show that{
iO(Fk),Q := ((xi, i, bi, yi))i∈[Q]

} c
≈

{
iO(Fk),Q∗ := ((xi, i, bi, y

∗
i))i∈[Q]

}
, (5)

where Q (resp., Q∗) denotes the query-answer pairs obtained by executing QueryStrategy

with the oracle instantiated using the CCR oracle (resp., random oracle), and
c
≈ denotes

computational indistinguishability. Let’s refer to these two distributions by ‘correlated’ and
‘random’, respectively. More formally, for i ∈ [Q], (xi, bi) is the i-th query generated by
QueryStrategy (which may depend on prior answers as well as the random coins), and

– in the correlated distribution, yi := H(xi ⊕∆)⊕ bi∆ for a global offset ∆; and
– in the random distribution, y∗i is a uniformly random value.

The high level idea to prove Eq. (5) is to use a hybrid argument to iteratively replace the
yis with y∗i s. The difficulty lies in dealing with the correlation introduced by ∆. To handle
this, we proceed in two stages.

Stage I. First we show that the correlated distribution is indistinguishable from an ‘inter-
mediate’ distribution {

iO(F ∗k),Q∗ := ((xi, i, bi, y
∗
i))i∈[Q]

}
in which the answers have been switched to random y∗i s (as in the random distribution)
at the expense of altering the hash function to iO(F ∗k). Here, F ∗k is a function related
to Fk, where the evaluation of Fk at points (x1 ⊕ ∆, · · · , xQ ⊕ ∆) is reprogrammed to
(y∗1 ⊕ b1∆, · · · , y∗Q ⊕ bQ∆), respectively. To carry this out, we roughly follow the punctured
programming approach from [53]. To switch the first answer to random:

1. Program9 Fk at x1 ⊕∆. That is, if the input to H is x1 ⊕∆ (where x1 gets fixed once
QueryStrategy and its coins are fixed) output a hardcoded value Fk(x1⊕∆); on all other
inputs invoke Fkx1⊕∆

where, if you recall, kx1⊕∆ denotes a key punctured at x1 ⊕ ∆.
Since the functionality of Fk is not affected by this switch, the resulting distribution is
indistinguishable from the correlated distribution due to security of iO.

8 More generally, PPRFs support puncturing at an arbitrary (polynomial-sized) set S ⊆ {0, 1}κ.
But for our work, puncturing at a single point suffices.

9 In the context of punctured programming, we use ‘programming’ to refer to hard-coding of a
input point to some output. We use ‘reprogramming’ when this hard-coding is changed to a
random output.

7

2. Reprogram the hardcoded value from Fk(x1 ⊕ ∆) to y∗1 ⊕ b1∆, for a random y∗1 . This
switch is indistinguishable thanks to pseudo-randomness of the PPRF.

3. Switch the punctured key back to a normal key. As in Item 1 and since we keep the
programmed random point, iO security implies that this switch is indistinguishable.

The rest of answers can be switched similarly, by iterating the above process. Notice that
at this point, ∆ is used solely for the purpose of reprogramming in F ∗k . To be specific, it is
used to check whether or not the input x equals xi ⊕∆ for some i ∈ [Q], and to compute
the list of hardwired answers (y∗1 ⊕ b1∆, · · · , y∗Q ⊕ bQ∆). This will be key to “forgetting” ∆
in the second stage.

Stage II. Next we revert to iO(Fk) by undoing the reprogramming of F ∗k , and thus end
up with the target random distribution. To this end, let’s assume we are given an injective
pseudorandom generator (iPRG) G. Recall that the only use of ∆ is to check if

‘x = xi ⊕∆ for some i ∈ [Q]’,

or equivalently

‘x⊕ xi = ∆ for some i ∈ [Q]’.

As a first step to forgetting ∆, this check is replaced with an indirect check

‘G(x⊕ xi) = G(∆) for some i ∈ [Q]’.

Since G is injective, the functionality remains unchanged and this switch is indistinguishable
thanks to iO security. Now, we can exploit pseudo-randomness of G to switch the check to

‘G(x⊕ xi) = R for some i ∈ [Q]’

for a random R in the co-domain of G. Since R is outside the image of G with overwhelming
probability, the check fails with overwhelming probability, and therefore it can be dropped
altogether. Since the resulting function is functionally equivalent to Fk, we can rely on
iO security to switch back to iO(Fk), and thus end up with the random distribution from
Eq. (5). We note that the overall approach in second stage is reminiscent of hidden sparse
triggers from [53]. The main additional challenge in our case is that we need to change the
functionality provided by Fk on many inputs xi ⊕ ∆ for known xi and unknown ∆. The
crucial observation here is that it is sufficient to provide a check for ∆ (resp. G(∆)) as above.

There are two points that are now left to be discussed. Firstly, we use an iPRG in the
second stage of the construction, whereas to complete the proof of Theorem 4 we need to
rely only on iO and OWF. In the main body of the paper (Section 4) we show how to
relax the requirement from iPRG to injective OWFs. Since iOWFs are implied by iO and
OWFs [16], Theorem 4 follows. Second, notice that the dependence of the description of
our hash function on QueryStrategy stems from having to maintain the hardcoded list that
tracks the reprogramming: to be able to invoke iO security later in the security proof, iO(Fk)
must be initially padded with a dummy value proportional to the size of this list which, in
turn, depends on QueryStrategy. Avoiding this dependence is an interesting open question
(see Section 1.1).

8

1.3 Related Work

Circuit garbling, in general. Circuit garbling was introduced by Yao in [56] as a technique for
secure two-party computation. Later, in [14], Bellare Hoang, and Rogaway provided formal
syntax and security definitions for garbling as a standalone cryptographic primitive. Yao’s
scheme (in fact, there exist several variants of this very prominent construction) was proven
(selectively) secure by Lindell and Pinkas [46] in a quite strong sense: Not only the input
to the circuit remains private, but also the circuit itself, apart from its topology which is
leaked because Yao’s scheme garbles each gate individually.

Optimized schemes. Towards improving the computational cost of circuit evaluation, Naor,
Pinkas and Sumner [49] proposed the so-called point-and-permute technique, which allows
evaluation of the garbled circuit at the cost of only a single decryption per gate (as opposed to
decrypting all four ciphertexts associated to a gate, as in Yao’s original construction). In [45],
Kolesnikov and Schneider proposed a method that allows to garble XOR gates for free, i.e.
evaluation of XOR gates does not require any additional information anymore. Clearly, this
comes at the cost of losing circuit privacy. However, most prominent applications do not
require circuit privacy. A series of works [29, 49, 51] focused on reducing the number of
ciphertexts per gate, independent of the gate’s functionality. Unfortunately only the first of
these is compatible with the free-XOR technique.

The scheme used in most practical applications [21, 22, 25, 30, 31, 47] is the Half Gates
scheme by Zahur, Rosulek and Evans [57]. It allows garbling XOR gates for free and reduces
the complexity of AND gates to just two ciphertexts. Several further constructions improve
over Half Gates for specific types of computation [9] or in the number of ciphertexts per
gate [52], or suggest a new approach for garbling that supports free-XOR [2]. Finally, the
very recent work of Heath, Kolesnikov, and Ostrovsky [34] introduces a novel model of
computation, called tri-state circuits, that allows efficient evaluation of RAM programs.

Security of optimized schemes. All the optimized garbling constructions above only consider
selective security, i.e. a setting where circuit and input are garbled at the same time (as op-
posed to stronger adaptive security, where the circuit is garbled in an offline pre-computation
phase before the input is even known). Furthermore, they rely either on idealized models
such as the random oracle/ permutation model or on novel and very strong assumptions on
the underlying building block they are based on (i.e. symmetric-key encryption or hash func-
tions). In particular, the security of Half Gates relies on circular correlation robust (CCR)
hash functions.

The notion of CCR was introduced by Choi et al. [24] and is strictly stronger than the
notion of correlation robustness that was introduced by Ishai et al. in [35]. There exists very
efficient constructions of CCR secure hash functions in the random permutation model [23,
30, 31], however in the standard model even the simpler notion of correlation robustness
seems hard to achieve: The relatively simple, Diffie-Hellman based construction of PRGs that
are secure under related-key attacks by Applebaum, Harnik, and Ishai [4] does not support
does not support the use of keys which are related by an additive offset. The only known
standard-model construction of (plain) correlation robust hash functions was proposed by
Abdalla, Benhamouda and Passelègue [1] and is based on non-standard assumptions on
multi-linear maps.

There exists a single work addressing the security of optimized garbling techniques in
the standard model: in [3], Applebaum shows that the free-XOR technique can be securely

9

implemented if one uses a symmetric-key encryption scheme that is secure under binary lin-
ear related-key key-dependent message (RK-KDM) attacks. He also shows that this security
notion is a strict strengthening of related key attacks and key-dependent message attacks
and provides a first construction based on the Learning Parity with Noise assumption.
Böhl, Davies, and Hofheinz propose further constructions of RK-KDM secure encryption
from various assumptions. Unfortunately, Applebaum’s approach is not compatible with
row-reduction techniques as used in Half Gates. Furthermore, while RK-KDM security for
encryption shares strong similarity with CCR security for hash functions, the techniques
used to construct RK-KDM secure encryption crucially rely on the use of randomness and
therefore don’t seem applicable in the setting of (deterministic) hash functions.

2 Preliminaries

Notation. Throughout, we denote the computational security parameter by κ ∈ N. Going
forward, all function ensembles are indexed by κ ∈ N and all functions within them are
indexed by i ∈ N, though this notation may be omitted where this is implicit. Let bold-face
letters represent vectors, e.g. v, where v[k] refers to the element in the kth index of the vector
v and |v| refers to the number of elements in v. For an integer n ∈ N let [n] := {1, 2, . . . , n}.
Further for an m < n,m ∈ N let [m : n] = [m,m + 1, · · · , n]. We say that a function
f : N→ R is negligible if for all constants c > 0, there exists N ∈ N such that for all n > N ,
f(n) < n−c. We sometimes use ϵ(·) to denote negligible functions.

Circuit Notation. We represent a Boolean circuit C : {0, 1}n → {0, 1}m as a tuple of the
form C = (n,m, q, {A,B,C, fg}g∈[q]) with fg ∈ {AND,XOR} and A,B,C ∈ [n + q]. Here q
represents the number of gates, n and m the input and output lengths, respectively. The
circuit wires are numbered in topological order where those numbered in the first n are also
the circuit input wires. Every wire beyond that is an output from some gate in the circuit.
For each (binary) gate indexed g ∈ [q], A and B represent the indices of its left and right
input wires respectively, while C = n + g represents the output wire index. fg represents
the functionality of the gate. Note that, in particular, the representation of C exceeds the
number of gates. Looking ahead, this is important for garbling to work in polynomial time.

2.1 Cryptographic Primitives

In this section, we define the cryptographic primitives that we rely on in the paper, namely
hardcore predicates, puncturable PRFs, indistinguishability obfuscator, CCR hash function
and garbling. We refer the reader to Appendix A for additional preliminaries.

Hardcore Predicates. We introduce the notion of hard-core predicates, which relates one-
wayness with pseudo-randomness.

Definition 1 (Hardcore Predicate). For polynomial functions n(·) and m(·), let f =
{fκ : {0, 1}n(κ) → {0, 1}m(κ)}κ∈N be an ensemble of one-way functions. An ensemble of
polynomial-time computable predicates h = {hκ : {0, 1}n(κ) → {0, 1}}κ∈N is hard-core for f
if for any PPT algorithm A, there exists a negligible function ϵ(·) such that for all κ ∈ N

Pr
x←{0,1}n(κ)

[A(1κ, fκ(x)) = hκ(x)] ≤
1

2
+ ϵ(κ).

Goldreich and Levin [28] showed that every one-way function has a hard-core predicate.

10

Puncturable pseudo-random functions (PPRFs). A PPRF [53] is a PRF that additionally
supports puncturing of any key k at any input x∗, such that: 1) the punctured key k∗

preserves functionality on non-punctured inputs x ̸= x∗; and 2) the evaluation of the PRF
at x∗ is pseudorandom even given k∗. A formal definition is given below.

Definition 2 (PPRF). Let n(·) and m(·) be polynomial functions. A family of punc-
turable PRFs F = {Fκ : {0, 1}κ × {0, 1}n(κ) → {0, 1}m(κ)}κ∈N is defined through a triple of
polynomial-time algorithms (KeyF ,PunctureF ,EvalF), where the latter two are deterministic
and the former is randomized, satisfying the following syntax:

– KeyF (1
κ) on input 1κ samples a key k ← {0, 1}κ uniformly at random.

– PunctureF (k, x) on input a key k ∈ {0, 1}κ and a point x ∈ {0, 1}n(κ) outputs a punctured
key kx.

– EvalF (k, x) on input a (possibly punctured) key k and an input x ∈ {0, 1}n(κ) outputs a
value y ∈ {0, 1}m(κ).

We require the following correctness and security properties:

– Functionality Preserved under Puncturing: For all κ ∈ N, all x∗ ∈ {0, 1}n(κ), all x ∈
{0, 1}n(κ) \ {x∗}, all keys k ∈ {0, 1}κ, and punctured key kx∗ := PunctureF (k, x

∗), we
have that Fκ(k, x) = EvalF (k, x) = EvalF (kx∗ , x).

– Pseudorandomness at Punctured Point: For every pair A = (A1,A2) of PPT adversaries,
consider the following setup:
1. (x∗, σ)← A1(1

κ) (where σ is a state to be passed from A1 to A2),
2. k ← KeyF (1

κ) and kx∗ = PunctureF (k, x
∗),

3. y0 = EvalF (k, x
∗) and y1 ← {0, 1}m(κ).

Given this setup, we require that the advantage

AdvPPRFA (κ) =
1

2

∣∣∣∣∣Pr[A2(σ, kx∗ , y0) = 1]− Pr[A2(σ, kx∗ , y1) = 1]

∣∣∣∣∣
is negligible, where the probability is taken over the randomness of KeyF and the ran-
domness of A

For ease of notation we write Fk(x) to represent EvalF (k, x) = Fκ(k, x).

Note that the Goldreich-Goldwasser-Micali PRF [27] is known to be puncturable in the
above sense [18,19,43]. Hence, PPRFs exist if and only if one-way functions exist.

Indistinguishability Obfuscation. Indistinguishability Obfuscation (iO) [10, 53] guarantees
that the obfuscations of two circuits are computationally indistinguishable as long as they
are functionally equivalent, i.e., the output of both circuits are the same on every input.

Definition 3 (Indistinguishability obfuscator (iO) for Circuits). A uniform PPT
algorithm iO is called an obfuscator for polynomial-sized circuits if,

– Completeness: Let n(·) and m(·) be polynomial functions. For every κ ∈ N, every
polynomial-sized circuit Cκ : {0, 1}n(κ) → {0, 1}m(κ), and every input x ∈ {0, 1}n(κ),
we have that

Pr
C̃←iO(1κ,Cκ)

[C̃(x) = Cκ(x)] = 1.

11

– Security: For an adversary A, consider the following interactive game:
1. A outputs (the description of) two circuits (C0,C1),
2. A receives an obfuscation iO(Cb) of Cb (for uniformly chosen b← {0, 1}),
3. A outputs a guess bit b′.

We say that A is valid if it initially only outputs pairs (C0,C1) such that C0 and C1

are functionally equivalent, and have the same size, input length, and output length. For
security, we require that for every valid PPT (in κ) A, the advantage

AdviOA (κ) :=
∣∣∣Pr[b = b′ in the above game with A]− 1/2

∣∣∣
is negligible, where the probability is taken over b, the randomness of iO, and the random
coins of A.

Circular Correlation Robust Hash Function. We recall the definition of circular correlation
robust (CCR) hash functions. For a hash function Hκ : {0, 1}κ × N→ {0, 1}κ, consider the
following two oracles:

– The random oracle R : {0, 1}κ × N × {0, 1} → {0, 1}κ represents a random function.
Note that this oracle can be simulated efficiently by lazy sampling: For each new call to
R with input (x, i, b) a κ-bit string is sampled uniformly at random and assigned as the
oracle output; each time R is queried with a previously queried input, the same output
is delivered.

– The CCR oracle CH,∆ : {0, 1}κ×N×{0, 1} → {0, 1}κ represents a function parametrized
by Hκ and a κ-bit value ∆← {0, 1}κ−1||1 sampled uniformly at random. For each input
(x, i, b), this oracle outputs the value Hκ(x⊕∆, i)⊕ b∆.

Given these oracles, CCR secure hash functions are defined as given below.

Definition 4 (Circular Correlation Robust Hash Function). Let H = {Hκ : {0, 1}κ×
N→ {0, 1}κ}κ∈N be an ensemble of hash functions. Let a ‘legal’ sequence of oracle queries,
each of the form (x, i, b), be one in which the same value (x, i) is never queried with different
values of b. Then H is circular correlation robust (CCR) if for any PPT adversary A,

AdvCCR
A (κ) =

1

2

∣∣∣∣∣Pr∆
[
ACH,∆(1κ) = 1

]
− Pr
R

[
AR(1κ) = 1

]∣∣∣∣∣
is negligible.

Garbling Schemes. Bellare et al. [14] abstract a garbling scheme as a cryptographic ob-
ject containing four algorithms as given in Definition 5. For a Boolean circuit C = (n,m,
q, {A,B,C, fg}g∈[q]), we denote the public information about C by ϕ(C), where ϕ is called
a leakage function. In particular, ϕcirc(C) = C reveals the complete structure of the circuit,
while ϕtopo(C) = (n,m, q, {A,B,C}g∈[q]) reveals only the topology of the circuit, i.e. it does
not leak the type of gates. Since the scope of this work is limited to schemes that garble
gates in {AND,XOR} and support Free-XOR, going forward, we use ϕ = ϕcirc.

Definition 5 (Garbling Scheme [14]). A garbling scheme is a tuple GS =
(Gb,En,Ev,De) of four polynomial-time algorithms with the following syntax:

– (F, e,d)← Gb(1κ,C): on input a security parameter (in unary) and a circuit C, returns
a garbling F, input encoding function e, and output decoding function d.

12

– X = En(e,x): returns the encoding X for function input x.
– Y = Ev(F,X): returns the output labels Y by evaluating F on X.
– {⊥,y} = De(Y,d): returns either the failure symbol ⊥ or a value y = f(x).

These algorithms must satisfy the following properties:

– Correctness: For every circuit C : {0, 1}n → {0, 1}m and input x ∈ {0, 1}n,

Pr[y = C(x) : (F, e,d)← Gb(C), X = En(e,x), Y = Ev(F,X), y = De(d,Y)] = 1

– Non-degeneracy: For any pair C0,C1 : {0, 1}n → {0, 1}m with q gates,

{e0,d0}(F0,e0,d0)←Gb(C0) ≡ {e1,d1}(F1,e1,d1)←Gb(C1)

Definition 6 (Selective Privacy by Simulation (PRIV-SIM)). A garbling scheme
GS = (Gb,En,Ev,De) is PRIV-SIM-secure if there exists a PPT algorithm Sim such that for
every two-stage PPT adversary A = (A0,A1) the following value is negligible:∣∣∣∣ Pr

(C,x,σ)←A0(1
κ)

(F,e,d)←GS.Gb(1κ,C)

[A1(σ, (F,GS.En(e,x),d)) = 1]−

Pr
(C,x,σ)←A0(1

κ)
(F,X,d)←Sim(1κ,C,C(x))

[A1(σ, (F,X,d)) = 1]

∣∣∣∣.
The Half Gates Garbling Scheme. The garbling algorithm takes as input a Boolean
circuit composed of binary AND and XOR gates. Then starting from the input wires, labels
are assigned to represent the 0 and 1 semantic values and then for each gate, the output
wire labels are derived as a function of the input wire labels. Each gate is garbled differently
depending on the gate functionality:

– This garbling scheme supports ‘free-XOR’, that is, XOR gates require no garbled repre-
sentation [45]. This is done by sampling a global offset value ∆ and ensuring that for all
wires in the circuit, the bitwise-XOR of its wire labels is ∆. For the circuit input wires,
the 0-label is sampled uniformly at random while the 1-label is set as the XOR of this
and ∆. The output labels of an XOR gate are calculated by computing the bitwise-XOR
of two input labels, one from each wire:

L0A ⊕ L0B = L1A ⊕ L1B = L0C

L0A ⊕ L1B = L1A ⊕ L0B = L1C = L0C ⊕∆

– The garbling of each AND gate is represented using just 2 ‘ciphertexts’ (2κ-bits) G0
AND

and G1
AND of κ bits each. Intuitively, this needs to transfer enough information that the

evaluation algorithm can derive an output label LC (according to the gate functionality)
as some linear combination of (G0

AND, G
1
AND,H(LA),H(LB), LA, LB) from one of the four

cases in the AND-truth-table, all while being oblivious to which case is being evaluated.
To implement this, first each input wire A and B is associated with a random ‘permu-
tation bit’ pa resp. pb that allows to decouple the actions of the evaluation algorithm
(that depend on the apparent value of the input labels) from the actual semantic value
of the labels. The input labels are set such that pa = lsb(L0A) (resp. pb = lsb(L0B)) and

13

lsb(L1A) = ¬lsb(L0A) (resp. lsb(L1B) = ¬lsb(L0B)), which is guaranteed by choosing ∆ with
lsb(∆) = 1. The output labels are then assigned as:

L0C = H(L0A ⊕ pa∆)⊕ H(L0B ⊕ pb∆)⊕ papb∆

L1C = L0C ⊕∆

The garbling must contain all the information required to evaluate, that is not derivable
from LA and LB . It is generated as,

G0
AND = H(L0A)⊕ H(L1A)⊕ pb∆

G1
AND = H(L0B)⊕ H(L1B)⊕ L0A

During the evaluation, let sa = lsb(LA) and sb = lsb(LB) be the ‘apparent values’ of these
wires – this is the actual wire value (known to the garbler) masked with the permutation
bit. The AND gate is then evaluated as:

LC = H(LA)⊕ H(LB)⊕ saG
0
AND ⊕ sb(G

1
AND ⊕ LA)

allowing the appropriate hashes within G0
AND and G1

AND to cancel, leaving us with the
required output label.

3 Weak Circular Correlation Robust Hash Functions

In this section, we introduce a notion of security for hash function families that relaxes
CCR security from Definition 4. We go on to show that this weaker security notion suffices
to securely instantiate several garbling schemes, notably the Half Gates scheme [57], and
the garbling schemes in [33, 52]. That is, these schemes are selectively private when being
instantiated with a family of weakly CCR secure hash functions. We then show later in
Section 4 that this primitive can be realized in the standard model (i.e., without idealizations
such as random oracles).

Outsourcing Hash Function Access Into a ‘Query Strategy’. Recall that the security notion
of CCR requires that a PPT adversary A – given a hash function H and access to either a
random oracle R or a CCR oracle CH,∆ – cannot distinguish between either case with non-
negligible advantage. Its querying strategy to the given oracle is unrestricted (as long as the
sequence of queries is ‘legal’) and can depend adaptively on the information it receives. In
contrast, we define the security notion of a ‘weakly CCR’ secure hash function family to be
one in which the distinguishing adversary A does not have direct access to the query oracle.
Instead, it creates an efficient deterministic oracle algorithm QueryStrategy(·) and submits
this to a challenger C. Syntactically, QueryStrategy(·) expects the security parameter 1κ and
some string r as input, as well as adaptive oracle access to a function O (that takes as input
a bit-string x, a running number i that is automatically chosen and incremented upon every
oracle query, and a bit b). The output of QueryStrategyO(1κ; r) (for a concrete oracle O)
consists of a transcript of oracle queries (xi, i, bi) and responses yi := O(xi, i, bi). In other
words, the output of QueryStrategyO on input (1κ, r) is of the form

Q = {(xi, i, bi, yi)}i∈[Q].

14

Algorithm 1 Garbling Scheme GSH for circuits with XOR and AND gates
1: procedure Gb(1κ,C)
2: initialize F = [], e = [] and d = []
3: sample ∆← {0, 1}κ−1||1
4: for every i ∈ [n] do
5: sample L0

i ← {0, 1}κ and set L1
i = L0

i ⊕∆
6: set e[i] = L0

i

7: end for
8: for each g ∈ [q] in topological order do
9: parse gate g = (A,B,C, fg)

10: if fg = XOR then
11: set L0

C = L0
A ⊕ L0

B and L1
C = L0

C ⊕∆
12: else
13: k0

g = 2g − 1, k1
g = 2g, pa = lsb(L0

A), pb = lsb(L0
B)

14: G0
g = H(L0

A, k
0
g)⊕ H(L0

A ⊕∆, k0
g)⊕ pb∆

15: G1
g = H(L0

B , k
1
g)⊕ H(L0

B ⊕∆, k1
g)⊕ L0

A

16: L0
C = H(L0

A ⊕ pa∆, k0
g)⊕ H(L0

B ⊕ pb∆, k1
g)⊕ papb∆

17: L1
C = L0

C ⊕∆
18: set F[g] = (G0

g, G
1
g)

19: end if
20: end for
21: for each j ∈ [m] do
22: set d[j] = lsb(L0

j)
23: end for
24: return (F, (∆, e),d)
25: end procedure
26:
27: procedure En((∆, e),x)
28: initialize X = []
29: for every i ∈ [n] do
30: set X[i] = e[i]⊕ x[i]∆
31: end for
32: Return X
33: end procedure

We require that Q, the total number of oracle queries in a run of QueryStrategyO, only
depends on κ, and A’s random coins and the concrete choice of QueryStrategy (but not
on, say, r or O that is input to QueryStrategy). Note that by definition (and in particular
since i is automatically increased upon each query), Q cannot contain two entries of the
form (x, i, b, y) and (x′, i, 1 − b, y′). Hence, this characterization of Q already satisfies the
‘legality’ notion for CCR secure hashing (Definition 4).

How Query Strategies Can Model Garbling. Query strategies as above can be used to express
all the hash function queries that occur during a garbling process. More specifically, for
garbling schemes like the Half Gates scheme (Algorithm 1-2) whose security depends solely
on the properties of the underlying hash function H, given a circuit C and an input x,
we can define a specific querying strategy QueryStrategyOC,x that models a garbling of C
and encoding of input x as follows. First, starting from the input x, we term as active
the value that each wire of the circuit would take on an evaluation of C(x). This means

15

Algorithm 2 Algorithms to Evaluate the Garbling
1: procedure Ev(F,X)
2: initialize Y = []
3: for each gate g ∈ [q] in a topological order do
4: LA, LB ← active labels associated with the input wires of gate g
5: if fg = XOR then
6: LC = LA ⊕ LB

7: else
8: k0

g = 2g − 1, k1
g = 2g, sa = lsb(LA), sb = lsb(LB)

9: LC = H(LA, k
0
g)⊕ H(LB , k

1
g)⊕ saG

0
g ⊕ sb(G

1
g ⊕ LA)

10: end if
11: if C is a circuit output wire then
12: Y[C] = LC

13: end if
14: end for
15: return Y
16: end procedure
17:
18: procedure De(Y,d)
19: initialize y = []
20: for j ∈ [m] do
21: y[j] = d[j]⊕ lsb(Y[j])
22: end for
23: return y
24: end procedure

that in the garbling, for each circuit wire one label, that the evaluation algorithm derives,
would be the active label while the other is termed as the inactive label. Next, we denote
with (F, e,d) := GbO(C; r) the computation of the garbling algorithm from Definition 5 with
random coins r, re-arranged with all executions of H that use the inactive label as input being
replaced by queries to O. This results in all the primitive queries (to either H or O) being
written as a function of the active wire labels only. This is followed by setting X = En(e,x)
as the set of active input wire labels. The arising transcript Q = QueryStrategyOC,x(1

κ; r)
would be the sequence of queries and responses from the oracle that were made by the
garbling algorithm. We discuss this in more detail with an example in Section 3.1.

The Challenger. For security parameter κ, a challenger, on receiving a query strategy
QueryStrategy(·) as above from A, first samples a hash function H : {0, 1}κ × N → {0, 1}κ
uniformly at random from the function family Hκ. It then samples a bit c ∈ {0, 1} according
to which the oracle O is set. That is, if c = 0, O = R (for an independent random oracle R),
and O(x, i, b) = CH,∆(x, i, b) = H(x ⊕∆, i) ⊕ b∆ otherwise. Finally, the challenger samples
random coins r, executes Qc = QueryStrategyO(1κ; r) and hands (Qc,H) to the adversary
A. We say that the ensemble of hash function families H = {Hκ}κ∈N is weakly CCR secure
if there exists no PPT adversary A that can guess the bit c sampled by the challenger with
non-negligible advantage. This notion is formalized in Definition 7.

Definition 7 (Weak Circular Correlation Robust (wCCR) Hash Functions). Let
H = {Hκ}κ∈N be an ensemble where each Hκ is a family of hash functions H : {0, 1}κ×N→
{0, 1}κ. For H ∈ Hκ and ∆ ∈ {0, 1}κ−1||1, we define oracles CH,∆ and R as

16

– CH,∆(x, i, b) = H(x⊕∆, i)⊕ b ·∆ (for x ∈ {0, 1}κ, i ∈ N, b ∈ {0, 1}),
– R is a random function with domain {0, 1}κ × N× {0, 1} and range {0, 1}κ.

For a polynomial Q(·), we say H is a Q-weak circular correlation robust (Q-wCCR) hash
function family if for any PPT adversary (A0,A1), where A0(1

κ) outputs QueryStrategy(·)

that makes at most Q(κ) oracle queries, the following value is negligible:∣∣∣∣ Pr
(QueryStrategy(·),σ)←A0(1

κ)

H←Hκ,r←{0,1}poly(κ)

∆←{0,1}κ−1||1

[A1(σ,QueryStrategy
CH,∆(1κ; r),H) = 1]−

Pr
(QueryStrategy(·),σ)←A0(1

κ)

H←Hκ,r←{0,1}poly(κ),R

[A1(σ,QueryStrategy
R(1κ; r),H) = 1]

∣∣∣∣.
If H is Q-wCCR for every polynomial Q(·), then we say that H is weak circular correlation
robust (wCCR).

In the definition, note that we sample ∆ under the constraint that its last bit is always 1.
Looking ahead, this is required for garbling applications to ensure that the apparent values
of two labels of the same wire are distinct. Several remarks on our definition are in order.

Remark 1 (Comparison with the original definition [24]). The notion of CCR (Definition 4)
first fixes a hash function H and then considers a PPT distinguisher that is given H and
access to an oracle O, which is either CH,∆ or R. It is tasked with distinguishing between
the two worlds, given adaptive access to O under the constraint that for any x ∈ {0, 1}κ and
i ∈ N,O can be queried only on one of (x, i, 0) and (x, i, 1). The definition of wCCR is strictly
weaker than CCR in two aspects. First, the query strategy of a wCCR distinguisher is more
restricted, in that two inputs x0, x1 ∈ {0, 1}κ cannot be queried to O for the same i ∈ N.
This renders the set of allowed query sets as being a strict subset of those that are allowed
in the definition of CCR. Secondly, the degree of adaptivity in queries for wCCR is highly
restricted as the distinguisher no longer has access to O. Instead, it is required to submit its
query strategy to a challenger at the beginning of the security game. Although the strategy
itself can be an arbitrary PPT algorithm yielding a legal query set, the randomness used in
this algorithm, if any, is sampled by the challenger. Furthermore, the query strategy has to
be selected before the hash function H is known, hence queries cannot be made adaptively
depending on H.

Remark 2 (Comparison with “Selective” CCR). In a selective variant of circular correlation
robustness, again a fixed hash function H is considered, but in contrast to adaptive CCR
the distinguisher first declares a set of queries that it will make to the oracle, under the
restriction that for any x ∈ {0, 1}κ and i ∈ N only one of (x, i, 0) and (x, i, 1) can be
queried. It then receives all responses and can make no additional queries. This notion of
CCR is insufficient for instantiating the garbling scheme in [57] where subsequent oracle
queries need to be chosen as a function of preceding query responses. It is also incomparable
to the wCCR notion (Definition 7) that we consider. On the one hand, wCCR allows for
more restricted query sets where there cannot be two inputs x0, x1 to the oracle for the
same i ∈ N. This renders the set of allowed query sets as being a strict subset of those that
are allowed for selective CCR. On the other hand, wCCR allows for more flexibility in the
choice of queries since the query strategy need not select all queries independently of the
responses of others.

17

Remark 3 (Comparison with CCR for Naturally Derived Keys [57]). Zahur et al. [57] define
a notion of CCR where they restrict queries to ‘naturally derived keys’. This is a definition
tailored for application in their garbling scheme where the oracle queries x need to be
‘naturally derived’, in addition to satisfying that for any (x, i) only one of (x, i, 0) and
(x, i, 1) can be queried. A naturally derived query is one that is either (1) sampled at
random in {0, 1}κ; (2) the output of an oracle or hash query with a naturally derived key; or
(3) a linear combination of the same. This notion is incomparable to wCCR as, on the one
hand, this definition heavily restricts the permissible query strategies. On the other hand,
the rules for allowed query sets in wCCR are more strict than those for the notion above.
Furthermore, in wCCR the distinguisher does not have oracle access, and the randomness
within the query strategy is sampled by the challenger.

Remark 4 (Comparison with RTCCR security [52]). Rosulek et al. [52] define a variant of
CCR that they call randomized tweakable circular correlation robust security. This is formally
defined in Section 3.1 (Definition 9) where we discuss its applicability to the garbling scheme
in [52]. This security notion considers a two-part adversary: one with oracle access to either
the CCR oracle CH,∆ or the random oracle R; and the other that receives all this information
(and no further oracle access) and the description of the hash function itself, and needs to
distinguish between the two oracles. Like weak CCR security, this notion considers a family
of hash functions and the deciding adversary receives the hash function but without direct
access to the oracles. However, RTCCR is more general in that hash function outputs can
be a different length than its input. As a result, the CCR oracle also allows for different
linear combinations of the bits of ∆ to be applied to the hash output.

In Section 3.1, we go on to show that the definition of wCCR (Definition 7) suffices as
the underlying assumption for proving that the garbling scheme in [57] is selectively secure.

3.1 Application to Secure Garbling

In this section, we show that the three garbling schemes presented in [33,52,57] are selectively
secure when the underlying hash function H used in the garbling is sampled randomly from
a wCCR-secure hash function family.

Selective Security of the Half Gates Garbling Scheme [57]. Zahur et al. in [57]
present a garbling scheme GSH that we detail in Algorithms 1 and 2. This scheme is proven
selectively secure (PRIV-SIM) based on CCR security (Definition 4) of the underlying hash
function H in [57].

Security under wCCR secure hash function families. For a family of wCCR secure hash func-
tions H, let GSH denote a garbling scheme where the garbling algorithm GSH.Gb(1κ;C) first
samples a hash function H ← Hκ and then operates as in GSH.Gb given in Algorithm 1.
Finally, this garbling algorithm outputs ((F,H), (∆, e),d), where (F, (∆, e),d) are the out-
puts of GSH.Gb. The evaluation algorithm GSH.Ev((F,H),X) works by using H to execute
GSH.Ev as given in Algorithm 2. All other algorithms in GSH operate exactly as in GSH.
Formally, we prove the following theorem:

Theorem 5. Let H = {Hκ}κ∈N be a wCCR secure hash function family ensemble (Def-
inition 7) and GSH = (Gb,En,Ev,De) be the garbling scheme as defined in Algorithms 1

18

and 2 where, for security parameter κ, in the beginning of Gb a hash function H is sampled
uniformly at random from Hκ and output together with the garbled circuit F. Then GSH

satisfies selective privacy by simulation (PRIV-SIM – Definition 6).

We refer the reader to Appendix B for a full proof of Theorem 5.

Proof Outline. The proof for this statement is adapted from [57] and considers the same
description of the simulator and list of hybrids. The simulator for the garbling is a PPT
algorithm ((F,H),X,d)← Sim(1κ,C,C(x)) that needs to output the selective privacy chal-
lenge tuple created only using the circuit and the function output. Let X denote the set of
active input labels for the garbling F,d. For each wire in the circuit C, we refer to the label
derived from evaluating F using X as the active label. In the simulation, for each wire, the
label representing the 0-value is assigned as the active label. Then, note that for each AND
gate, the garbling algorithm can be re-written as:

k0g = 2g − 1, k1g = 2g, pa = lsb(L0A), pb = lsb(L0B)

G0
g = H(L0A, k

0
g)⊕ CH,∆(L0A, k

0
g , pb)

G1
g = H(L0B , k

1
g)⊕ CH,∆(L0B , k

1
g , 0)⊕ L0A

L0C = H(L0A, k
0
g)⊕ (pa ·G0

g)⊕ H(L0B , k
1
g)⊕ pb(G

1
g ⊕ L0A)

in terms of the active labels and the weak CCR hash oracle CH,∆(x, i, b) = H(x⊕∆, i)⊕ b∆
only. Further, note that throughout the garbling algorithm, the indices kbg ∈ N act as a
counter for the oracle queries made, rendering the set of garbling oracle queries and responses
as a legal query strategy satisfying weak CCR (Definition 7).

Given this observation, the simulator Sim works as follows: first, it samples a hash func-
tion H← Hκ. Then, for each input wire, an active label is sampled as in the real garbling.
Then the garbling algorithm is executed with each instance of the weak CCR oracle output
being replaced by a κ-bit value sampled uniformly at random. This process also derives the
active wire label for all other wires in the circuit, including the output wires. Finally, the
output decoding information is set such that the active output labels map to the function
output as required.

Within the list of hybrid experiments to prove that the real and simulated distributions
are computationally indistinguishable, all but one set of adjacent hybrids are identically
distributed. Within the pair of adjacent hybrid distributions that are not identically dis-
tributed, in one hybrid experiment, the garbled circuit is generated in such a way that
the oracle calls described above are made to the random oracle R, in the other hybrid
experiment, these are calls to the oracle CH,∆. Both experiments are otherwise identical.

This pair of adjacent hybrids is shown as computationally indistinguishable by reduction
to the weak CCR property of the hash function family H. Here a PPT adversary AwCCR for
the weak CCR game (Definition 7) accepts from the distinguisher AGS for the hybrids, a
circuit C with qAND AND gates, and input x. AwCCR designs a PPT algorithm QueryStrategy
with the following interface:

Q = {(xj , j, bj , yj)}j∈[2qAND] = QueryStrategyOC,x(1
κ; r).

Letting n = |x|, this algorithm takes as input random coins r ← {0, 1}nκ from the challenger,
that defines the active input labels corresponding to x. This is detailed in Algorithm 3 with
the lines indicating queries that populate Q marked in blue. This is a randomized algorithm

19

that is given to the challenger C for the weak CCR security game. The challenger C accepts
this QueryStrategy(·), operates as implicit in Definition 7 and gives a tuple (Q,H) to AwCCR.
The adversary AwCCR can now execute the garbling using the active labels indicated in Q
and using the items in Q wherever oracle queries are required. The output of this is a tuple
((F,H),X,d) given to AGS. Finally, AGS outputs a bit c′ indicating its deduction for which
hybrid distribution the tuple belongs to, and AwCCR outputs the same bit c′ to complete
the reduction. In this reduction, the advantage of AwCCR would be the same as that of AGS,
which is non-negligible, arriving at a contradiction since H was sampled from a family of
weak CCR secure hash functions. This concludes the proof.

Algorithm 3 Query Strategy QueryStrategyOC,x for GSH adapted from [57]

1: procedure QueryStrategyOC,x(1κ; r ← {0, 1}nκ)
2: initialize Q = []
3: for every i ∈ [n] do
4: set Li = r[(i− 1)κ+ 1 : iκ] ∈ {0, 1}κ
5: end for
6: for each g ∈ [q] in topological order do
7: parse gate g = (A,B,C, fg)
8: if fg = XOR then
9: set LC = LA ⊕ LB

10: else
11: k0

g = 2g − 1, k1
g = 2g, pa = lsb(LA), pb = lsb(LB)

12: query MA = O(LA, k
0
g , pb) and MB = O(LB , k

1
g , 0)

13: set Q[k0
g] = (LA, k

0
g , pb,MA) and Q[k1

g] = (LB , k
1
g , 0,MB)

14: G0
g = H(LA, k

0
g)⊕MA

15: G1
g = H(LB , k

1
g)⊕MB ⊕ LA

16: LC = H(LA, k
0
g)⊕ (pa ·G0

g)⊕ H(LB , k
1
g)⊕ pb(G

1
g ⊕ LA)

17: end if
18: end for
19: return Q
20: end procedure

Selective Security of the Three Halves Garbling Scheme [52]. Rosulek et al. in [52]
present a garbling scheme GSH that we detail in Algorithms 7 and 8 in Appendix C. This is
a non-linear garbling scheme for Boolean circuits with AND and XOR gates that supports
free-XOR and can garble AND gates using 1.5κ + 5 bits (opposed to 2κ bits as in Half
Gates), where κ is the computational security parameter. Their scheme is proven selectively
secure (PRIV-SIM) when the underlying hash function H is RTCCR secure (randomized
tweakable circular correlation robust – Definition 9).

Security under wCCR secure hash function families. The original garbling scheme in [52]
contains a garbling algorithm GSH.Gb, where H is an RTCCR hash function family. The

20

garbling algorithm internally samples a hash function (with κ
2 -bit range) from this family

and proceeds as given in GSH.Gb indicated in Algorithm 7. In our case, for a family of wCCR
secure hash functions H, let GSH denote a garbling scheme where the garbling algorithm
GSH.Gb(1κ;C) first samples a hash function H← Hκ of the form H : {0, 1}κ×N→ {0, 1}κ.
It then operates as in GSH.Gb given in Algorithm 7, but with the following exceptions:
– Algorithm 7 represents the garbling of an AND gate as a system of linear equations:

V

[
C
G

]
= (R⊕T)

L0AL0B
∆

⊕MH

Here H is a vector containing all possible hash evaluations on input labels and M is
an indicator matrix that describes which elements of H are used to compute each (half
of) the output label in the truth-table of the AND gate. Further, (R ⊕T) is a similar
indicator matrix that describes which (half of the) plaintext label is used (XOR-ed to
the hash outputs) in the evaluation. We refer the reader to Appendix C for further
details of the scheme.

– In our modified scheme, whenever calls to H (indicated by M) are of the form H(L, i) for
i ∈ N and L ∈ {L0A, L1A, L0B , L1B}, the κ

2 -bit prefix of the response is used in the garbling.
If the garbling indicates (within (R ⊕ T)) that (part of) ∆ be XOR-ed to this value,
then the κ

2 -bit prefix of ∆ is bitwise XOR-ed to this hash output.
– Whenever calls to H (indicated by M) are of the form H(L ⊕ L′, i) for i ∈ N and

(L ⊕ L′) ∈ {(L0A ⊕ L0B), (L
0
A ⊕ L1B)}, the κ

2 -bit suffix of the response is used in the
garbling. If the garbling indicates (within (R⊕T)) that (part of) ∆ be XOR-ed to this
value, then the κ

2 -bit suffix of ∆ is bitwise XOR-ed to this hash output.

Finally, this garbling algorithm outputs ((F,H), (∆, e),d), where (F, (∆, e),d) are the out-
puts of GSH.Gb. The evaluation algorithm GSH.Ev((F,H),X) works by using H to execute
GSH.Ev as given in Algorithm 8, where the outputs of the hash function H are converted to
κ
2 bits as described above. All other algorithms in GSH operate exactly as in GSH. Formally,
we prove the following theorem:

Theorem 6. Let H = {Hκ}κ∈N be a wCCR secure hash function family ensemble (Def-
inition 7) and GSH = (Gb,En,Ev,De) be the garbling scheme as defined in Algorithms 7
and 8 where, for security parameter κ, in the beginning of Gb a hash function H is sampled
uniformly at random from Hκ and output together with the garbled circuit F. Then GSH

satisfies selective privacy by simulation (PRIV-SIM – Definition 6).

We refer the reader to Appendix C for a full description of the garbling scheme [52]
adapted to GSH and proof of Theorem 6.

Selective Security of the Arithmetic Garbling Scheme in [33]. The work in [33]
presents a garbling scheme GSH for circuits that are a Zm arithmetic generalization of
Boolean garbled circuits where addition is free and each multiplication gate has size O(ℓκ)
bits, where ℓ is the size of the bit representation of each field element in Zm. Their scheme is
proven selectively secure (PRIV-SIM) when the underlying hash function H is CCR secure
(Definition 4). [33] presents a formal proof for a version of their scheme where hash functions
have the interface H : {0, 1}κ × N → {0, 1}κ (as opposed to the more general form H :
Zκ
2k × N → Zκ

2k for which the complete scheme in [33] is defined). They then discuss how
generalizing CCR security to hash functions with more general domains allows proving the
garbling scheme, in its complete generality, selectively secure.

21

Security under wCCR secure hash function families. For a family of wCCR secure hash func-
tions H, let GSH denote a garbling scheme where the garbling algorithm GSH.Gb(1κ;C) first
samples a hash function H← Hκ of the form H : {0, 1}κ×N→ {0, 1}κ and then operates as
in GSH.Gb given in Algorithm 14. Finally, this garbling algorithm outputs ((F,H), (∆, e),d),
where (F, (∆, e),d) are the outputs of GSH.Gb. The evaluation algorithm GSH.Ev((F,H),X)
works by using H to execute GSH.Ev as given in Algorithm 15. All other algorithms in GSH

operate exactly as in GSH. Formally, we prove the following theorem:

Theorem 7. Let H = {Hκ}κ∈N be a wCCR secure hash function family ensemble (Defi-
nition 7) and GSH = (Gb,En,Ev,De) be the garbling scheme as defined in Algorithms 14
and 15 where, for security parameter κ, in the beginning of Gb a hash function H is sampled
uniformly at random from Hκ and output together with the garbled circuit F. Then GSH

satisfies selective privacy by simulation (PRIV-SIM – Definition 6).

We refer the reader to Appendix D for a full description of the garbling scheme [33],
adapted to using hash functions with interface H : {0, 1}κ × N → {0, 1}κ (Algorithms 14
and 15) and a proof of Theorem 7. We refer the reader to Remark 5 for an informal discussion
on how a generalization of weak CCR security, that applies to hash function families with
more general domains, can realize the general garbling scheme in [33] and how this notion
can be realized in the plain model.

4 Realizing Weak CCR

In this section, we present a family of wCCR hash functions. Our construction is simple:
the hash function is the obfuscation of a PPRF whose key is sampled at random. A more
formal description is given below, followed by the proof that it satisfies wCCR.

Construction 1 Let iO be an indistinguishability obfuscator (Definition 3) and F = (KeyF ,
PunctureF ,EvalF) be a puncturable PRF (Definition 2). Our candidate construction of
wCCR hash function family ensemble is defined as

H = {Hκ}κ∈N := {{iO(Fk(·); r)}k∈supp(KeyF (1κ)),r∈{0,1}poly(κ)}κ∈N,

where supp(·) denotes the support of a distribution. To sample a hash function H from this
family, first sample k ← KeyF (1

κ) and then output H(·) ← iO(Fk(·)), where κ ∈ N is the
security parameter.

Theorem 8. Let iO be an indistinguishability obfuscator (Definition 3) and F = (KeyF ,
PunctureF ,EvalF) be a puncturable PRF (Definition 2). Then Construction 1 is a Q-weak
CCR hash function family for any fixed polynomial Q (Definition 7).

As a corollary to Theorems 5 to 8, we obtain our main results:

Corollary 1. Assuming iO and OWFs exist, the Half Gates construction (Algorithms 1
and 2), the Three Halves construction (Algorithms 7 and 8), and switch systems construction
(Algorithms 14 and 15) instantiated with the hash function family from Construction 1
(and modified to sample a hash function from this family during the garbling procedure) are
PRIV-SIM-secure.

22

Notation. Before proving Theorem 8, we need to fix some notation. We start by defining a
few auxiliary functions.

– We use δ∆ to denote the point function at ∆, i.e.:

δ∆(x) :=

{
1 if x = ∆

0 otherwise.
(6)

– For an iOWF f and a hard-core predicate for f , h, we define

π(x) := (f(x), h(x))

π(x) := (f(x), h(x)) = (f(x), 1− h(x)). (7)

Note that π and π are themselves injective.
– It follows from the above notation that

δπ(∆) ◦ π(x) =

{
1 if π(x) = (f(∆), h(∆))

0 otherwise

δπ(∆) ◦ π(x) =

{
1 if π(x) = (f(∆), 1− h(∆))

0 otherwise.
(8)

Although δπ(∆) ◦ π(x) = 0 for all x, the definition will be useful since (for random x)

π(x) = (f(x), h(x)) ≈c (f(x), 1− h(x)) = π(x)

by the security of hard-core predicate. We will exploit this property in one of the steps
of our proof.

– Since QueryStrategy makes its queries iteratively, we abuse notation and use

QueryStrategy(1κ; r, y1, . . . , yi−1)

to denote (xi, bi), the i-th query made by QueryStrategy when it is initiated with ran-
dom coins r, and its first i − 1 queries were answered by y1, · · · , yi−1, respectively. In
particular, QueryStrategy(1κ; r) denotes the first query (x1, b1). Looking ahead, we will
abuse notation and use QueryStrategy(1κ; r, y1, · · · , yQ) to refer to QueryStrategy(1κ; r).

Proof (of Theorem 8). Recall that our objective is to show indistinguishability of the ‘cor-
related’ and ‘random’ distributions, i.e.:(

H(·)← iO(Fk(·)),Q = ((xi, i, bi, yi))i∈[Q] ← QueryStrategyCH,∆(1κ; r)
)

c
≈
(
H(·)← iO(Fk(·)),Q = ((xi, i, bi, y

∗
i))i∈[Q] ← QueryStrategyR(1κ; r)

)
. (9)

Here, QueryStrategy(·) is a query strategy output by the wCCR adversary which was in-
voked on some security parameter κ, k ← KeyF (1

κ) and r is randomly-sampled coins for
QueryStrategy. We proceed via a hybrid argument. There are eight main hybrids, denoted
Hybrid0, · · · ,Hybrid7, where

– the extreme hybrids correspond to the correlated and random distributions from Equa-
tion (9), respectively; and

23

– Hybrid1 corresponds to the ‘intermediate’ distribution we discussed in Section 1.2.

Recall that in the intermediate distribution, the query answers have been switched to ran-
dom, but the hash function now contains a hard-coded list that keeps track of the pro-
gramming. Additionally, in order to prove indistinguishability of Hybrid0 and Hybrid1,
we introduce a sequence of 4(Q+ 1) sub-hybrids where Q is the total number of queries in
an execution of QueryStrategy. These are denoted by

Hybrid0 = Hybrid0,0, · · · ,Hybrid0,3,Hybrid1,0, · · ·
· · ·HybridQ−1,3,HybridQ,0, · · · ,HybridQ,3 = Hybrid1.

(10)

We now describe all the hybrids one by one (the diff from previous hybrids is highlighted
in red), along with an informal argument for why the current step is indistinguishable. A
formal proof can be found in Appendix E.

– Hybrid0 is the correlated distribution. Therefore we use H as in Construction 1, and the
sequence of queries is then derived by running QueryStrategy instantiated with oracle
CH,∆.

Hybrid0(1
κ,QueryStrategy)

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ) and ∆← {0, 1}κ−1||1

2. Generate H(·)← iO(Fk(·))
3. For each i ∈ [1, Q]:

(a) (xi, bi) := QueryStrategy(1κ; r, y1, . . . , yi−1)
(b) yi := CH,∆(xi, i, bi) = H(xi ⊕∆, i)⊕ bi∆

4. Output
(
H, ((xi, i, bi, yi))i∈[Q]

)
– Recall that Hybrid1 corresponds to the intermediate hybrid from Section 1.2. Therefore,

H is modified to H∗, which is the obfuscation of a program F ∗ that is similar to Fk,
but has certain input-output pairs related to QueryStrategy’s queries programmed in it
At the same time, all the answers, y∗i , have been switched to random. This switch will
be carried out iteratively, one answer at a time, using the sequence of sub-hybrids from
Equation (10), which we define later. The indistinguishability of Hybrid0 and Hybrid1

is proved using properties of iO and PPRF (Lemma 1 in Appendix E).

Hybrid1(1
κ,QueryStrategy):

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ) and ∆ ← {0, 1}κ−1||1, and

y∗1 , . . . , y
∗
Q ← {0, 1}κ

2. For each i ∈ [1, Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y
∗
i−1)

3. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program

F ∗((x, i)) =

{
y∗i ⊕ bi∆ if x = xi ⊕∆

Fk((x, i)) otherwise

with values k, ∆ and ((xi, bi, y
∗
i))i∈[Q] hard-coded.

4. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[Q]

)
24

– The only difference between Hybrid2 and Hybrid1 is the way in which F ∗ carries
out the programming. To be specific, on input (x, i) instead of checking if ‘x equals
xi ⊕ ∆’ (where xi is hard-wired), F ∗ now checks if ‘x ⊕ xi equals ∆’. Looking ahead,
the point of this syntactic change is isolate ∆ so that the the aforementioned check
can be implemented using a point function. Since the program F ∗ in both Hybrid1

and Hybrid2 is functionally equivalent, we can use iO security to argue that the two
distributions are indistinguishable.

Hybrid2(1
κ,QueryStrategy):

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , . . . , y

∗
Q ←

{0, 1}κ
2. For each i ∈ [1, Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. Generate H∗(·)← iO(F ∗(·)), where F ∗ is program

F ∗((x, i)) =

{
y∗i ⊕ bi(x⊕ xi) if x⊕ xi = ∆

Fk((x, i)) otherwise

with values k, ∆ and ((xi, bi, y
∗
i))i∈[Q] hard-coded.

4. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[Q]

)
– As already alluded to, the only change in Hybrid3 is that the ‘if’ check in F ∗ is now

implemented using the point function δ∆ from Equation (6). Again, the change is merely
syntactical and functional equivalence of circuits in Hybrid2 and Hybrid3 implies their
indistinguishability via iO security.

Hybrid3(1
κ,QueryStrategy):

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , . . . , y

∗
Q ←

{0, 1}κ
2. For each i ∈ [1, Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program

F ∗((x, i)) =

{
y∗i ⊕ bi(x⊕ xi) if δ∆(x⊕ xi) = 1

Fk((x, i)) otherwise

with values k, ∆ and ((xi, bi, y
∗
i))i∈[Q] hard-coded.

4. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[Q]

)
– In Hybrid4, instead of carrying out the ‘x ⊕ xi equals ∆’ check directly using δ∆, it

is carried out indirectly by applying the function π from Equation (8) first. Since π is
injective, the outcome of these direct and indirect checks is the same.10 Thus, by security
of iO, Hybrid3 and Hybrid4 are indistinguishable. At this point, notice that the only
dependence of F ∗ on ∆ is to implement δπ(∆) and – more importantly – knowledge of
π(∆) suffices to this purpose. This will be crucial to invoking the hard-core security of
π in the next step.

10 In Section 1.2, the indirect check was carried out using an iPRG. There we relied on injectivity
of the iPRG instead.

25

Hybrid4(1
κ,QueryStrategy):

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , . . . , y

∗
Q ←

{0, 1}κ
2. For each i ∈ [1, Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program:

F ∗((x, i)) =

{
y∗i ⊕ bi(x⊕ xi) if δπ(∆) ◦ π(x⊕ xi) = 1

Fk((x, i)) otherwise

with values k, ∆ and ((xi, bi, y
∗
i))i∈[Q] hard-coded.

4. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[Q]

)
– In Hybrid5, we carry out a “computational diagonalization” to replace the indirect ‘if’

check in F ∗ from Hybrid4 with another check, one that never passes.11 To this end,
we replace the point function δπ(∆) with the complementary point function δπ(∆). This
switch is indistinguishable thanks to security of hard-core predicates, and it is crucial
that knowledge of π(∆) suffices to generate both hybrids.

Hybrid5(1
κ,QueryStrategy):

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , . . . , y

∗
Q ←

{0, 1}κ
2. For each i ∈ [1, Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program

F ∗((x, i)) =

{
y∗i ⊕ bi(x⊕ xi) if δπ(∆) ◦ π(x⊕ xi) = 1

Fk((x, i)) otherwise

with values k, ∆ and ((xi, bi, y
∗
i))i∈[Q] hard-coded.

4. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[Q]

)
– Since the indirect ‘if’ check in F ∗ from Hybrid5 never passes, it is possible to ignore

that branch of the program altogether, and the resulting program is simply the PPRF
Fk. Therefore, in Hybrid6 we can revert to the hash function from Construction 1, and
this is indistinguishable thanks to iO security. Note that the resulting distribution is
independent of ∆.

Hybrid6(1
κ,QueryStrategy):

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , . . . , y

∗
Q ←

{0, 1}κ
2. For each i ∈ [1, Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. Generate H(·)← iO(Fk(·))
4. Output

(
H, ((xi, i, bi, y

∗
i))i∈[Q]

)
11 In Section 1.2, this was accomplished by switching the indirect check to ‘if G(x⊕ xi) = R’, for a

random element R in G’s co-domain. With overwhelming probability, R lies outside of G’s image,
and therefore the check is never triggered. Indistinguishability follows by G’s pseudo-randomness.

26

– Finally, in Hybrid7, we replace the y∗i values with the output of a random oracle R.
Since repeat queries are not allowed in QueryStrategy (via tweaks), the distributions
in Hybrid6 and Hybrid7 are identical. Moreover, Hybrid7 is precisely the random
distribution from Equation (9) we were aiming for.

Hybrid7(1
κ,QueryStrategy):

1. Sample k ← KeyF (1
κ) and r ← {0, 1}poly(κ)

2. Generate H(·)← iO(Fk(·))
3. For each i ∈ [1, Q]:

(a) (xi, bi) := QueryStrategy(1κ; r, y1, . . . , yi−1)
(b) yi := R(xi, i, bi)

4. Output
(
H, ((xi, i, bi, y

∗
i))i∈[Q]

)
That concludes description of Hybrid0, · · · ,Hybrid7. We now describe the sequence

of sub-hybrids from Equation (10), which is used to show indistinguishability of Hybrid0

and Hybrid1. Looking ahead, in Hybridj,0, j ∈ [0, Q], the first j answers will have been
switched to random. We then use Hybridj,0, . . . ,Hybridj,3 to switch the (j+1)-th answer
to random (thus Hybridj,3 will be identical to Hybridj+1,0). Consequently, the initial
hybrid Hybrid0,0 is identical to Hybrid0, whereas the final hybrid HybridQ,3 will be
identical to Hybrid1.

– In Hybridj,0, the input-output pairs corresponding to the first j queries are repro-
grammed in F ∗. To be precise, for i < j, the input corresponding to the i-th query, i.e.,
(xi ⊕ ∆, i), is reprogrammed to the random value y∗i ⊕ bi∆; on all other inputs (x, i),
F ∗ evaluates to Fk(x, i). Note that, as a result, Hybrid0,0 is identical to Hybrid0

Hybridj,0(1
κ,QueryStrategy)

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , · · · , y∗j ←

{0, 1}κ
2. For each i ∈ [Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program

F ∗((x, i)) =

{
y∗i ⊕ bi∆ if x = xi ⊕∆

Fk((x, i)) otherwise

with values k, ∆ and ((xi, bi, y
∗
i))i∈[Q] hard-coded.

4. (xj+1, bj+1) := QueryStrategy(1κ; r, y∗1 , . . . , y
∗
j)

5. yj+1 := CH,∆(xj+1, j + 1, bj+1) = H(xj+1 ⊕∆, j + 1)⊕ bj+1∆
6. For each i ∈ [j + 2, Q]:

(a) (xi, bi) := QueryStrategy(1κ; r, y∗1 , · · · , y∗j , yj+1, yj+2 . . . , yi−1)
(b) yi := CH∗,∆(xi, i, bi) = H∗(xi ⊕∆, i)⊕ bi∆

7. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[Q], ((xi, i, bi, yi))i∈[j+1,Q]

)
– In Hybridj,1, we program F ∗ additionally at the hash input corresponding to the

j + 1-th query, i.e., (xj+1 ⊕∆, j + 1). To this end, F ∗ is hard-coded with a key that is

27

punctured at (xj+1 ⊕∆, j + 1). Since punctured keys preserve functionality at all non-
punctured points, the functionality of F ∗s in both Hybridj,0 and Hybridj,1 is same,
and we can argue their indistinguishability using iO security.

Hybridj,1(1
κ,QueryStrategy)

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , · · · , y∗j ←

{0, 1}κ
2. For each i ∈ [Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. (xj+1, bj+1) := QueryStrategy(1κ; r, y∗1 , . . . , y
∗
j)

4. Set yj+1 := Fk(xj+1 ⊕∆, j + 1)⊕ bj+1∆
5. Generate punctured key k(xj+1⊕∆,1) ← PunctureF (k, (xj+1 ⊕∆, 1))
6. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program

F ∗((x, i)) =


y∗i ⊕ bi∆ if x = xi ⊕∆

yj+1 ⊕ bj+1∆ else if x = xj+1 ⊕∆

Fk(xj+1⊕∆,j+1)
((x, i)) otherwise

with k(xj+1⊕∆,j+1), ∆, ((xi, bi, y
∗
i))i∈[Q] and (xj+1, bj+1, yj+1) hard-coded.

7. For each i ∈ [j + 2, Q]:
(a) (xi, bi) := QueryStrategy(1κ; r, y∗1 , · · · , y∗j , yj+1, yj+2 . . . , yi−1)
(b) yi := CH∗,∆(xi, i, bi) = H∗(xi ⊕∆, i)⊕ bi∆

8. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[Q], ((xi, i, bi, yi))i∈[j+1,Q]

)
– In Hybridj,2, the value of F ∗ at (xj+1 ⊕∆, j + 1) is reprogrammed to a random value

y∗j+1 ⊕ bj+1∆. This switch is indistinguishable due to pseudo-randomness of PPRF at
punctured point (which holds even given the punctured key).

Hybridj,2(1
κ,QueryStrategy)

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , · · · , y∗j ←

{0, 1}κ
2. For each i ∈ [Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. (xj+1, bj+1) := QueryStrategy(1κ; r, y∗1 , . . . , y
∗
j)

4. Sample y∗j+1 ← {0, 1}κ
5. Generate punctured key k(xj+1⊕∆,1) ← PunctureF (k, (xj+1 ⊕∆, 1))
6. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program

F ∗((x, i)) =


y∗i ⊕ bi∆ if x = xi ⊕∆

y∗j+1 ⊕ bj+1∆ else if x = xj+1 ⊕∆

Fk(xj+1⊕∆,1)
((x, i)) otherwise

with k(xj+1⊕∆,j+1), ∆ and ((xi, bi, y
∗
i))i∈[j+1] hard-coded.

7. For each i ∈ [j + 2, Q]:
(a) (xi, bi) := QueryStrategy(1κ; r, y∗1 , · · · , y∗j , yj+1, yj+2 . . . , yi−1)
(b) yi := CH∗,∆(xi, i, bi) = H∗(xi ⊕∆, i)⊕ bi∆

8. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[j+1], ((xi, i, bi, yi))i∈[j+2,Q]

)
28

– Finally, in Hybridj,3, we revert the key in F ∗ back to a normal key. Since functionality
is unchanged, thanks to iO security the resulting distribution is indistinguishable from
Hybridj,2. In addition, notice that Hybridj,3 is distributed identically to Hybridj+1,0

since the differences between them are only syntactical.

Hybridj,3(1
κ,QueryStrategy)

1. Sample k ← KeyF (1
κ), r ← {0, 1}poly(κ), ∆ ← {0, 1}κ−1||1 and y∗1 , · · · , y∗j ←

{0, 1}κ
2. For each i ∈ [Q]: (xi, bi) := QueryStrategy(1κ; r, y∗1 , . . . , y

∗
i−1)

3. (xj+1, bj+1) := QueryStrategy(1κ; r, y∗1 , . . . , y
∗
j)

4. Sample y∗j+1 ← {0, 1}κ
5. Generate H∗(·)← iO(F ∗(·)), where F ∗ is the program

F ∗((x, i)) =

{
y∗i ⊕ bi∆ if x = xi ⊕∆

Fk((x, i)) otherwise

with k, ∆, ((xi, bi, y
∗
i))i∈[j+1] hard-coded.

6. For each i ∈ [j + 2, Q]:
(a) (xi, bi) := QueryStrategy(1κ; r, y∗1 , · · · , y∗j , yj+1, yj+2 . . . , yi−1)
(b) yi := CH∗,∆(xi, i, bi) = H∗(xi ⊕∆, i)⊕ bi∆

7. Output
(
H∗, ((xi, i, bi, y

∗
i))i∈[j+1], ((xi, i, bi, yi))i∈[j+2,Q]

)
This concludes the description of our hybrids, and the proof outline. We refer the readers

to Appendix E for a formal proof of their indistinguishability.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A.: Algebraic XOR-RKA-secure pseudorandom
functions from post-zeroizing multilinear maps. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part II. LNCS, vol. 11922, pp. 386–412. Springer, Heidelberg (Dec 2019).
https://doi.org/10.1007/978-3-030-34621-8_14

2. Acharya, A., Ashur, T., Cohen, E., Hazay, C., Yanai, A.: A new approach to garbled circuits.
In: Tibouchi, M., Wang, X. (eds.) ACNS 23, Part II. LNCS, vol. 13906, pp. 611–641. Springer,
Heidelberg (Jun 2023). https://doi.org/10.1007/978-3-031-33491-7_23

3. Applebaum, B.: Garbling XOR gates “for free” in the standard model. Journal of Cryptology
29(3), 552–576 (Jul 2016). https://doi.org/10.1007/s00145-015-9201-9

4. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and appli-
cations. In: Chazelle, B. (ed.) ICS 2011. pp. 45–60. Tsinghua University Press (Jan 2011)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS. pp. 166–175.
IEEE Computer Society Press (Oct 2004). https://doi.org/10.1109/FOCS.2004.20

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient verification via
secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg
(Jul 2010). https://doi.org/10.1007/978-3-642-14165-2_14

7. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with constant online
rate or how to compress garbled circuits keys. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 166–184. Springer, Heidelberg (Aug 2013). https://doi.org/10.
1007/978-3-642-40084-1_10

29

https://doi.org/10.1007/978-3-030-34621-8_14
https://doi.org/10.1007/978-3-030-34621-8_14
https://doi.org/10.1007/978-3-031-33491-7_23
https://doi.org/10.1007/978-3-031-33491-7_23
https://doi.org/10.1007/s00145-015-9201-9
https://doi.org/10.1007/s00145-015-9201-9
https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-642-40084-1_10

8. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional
encryption. In: Guruswami, V. (ed.) 56th FOCS. pp. 191–209. IEEE Computer Society Press
(Oct 2015). https://doi.org/10.1109/FOCS.2015.21

9. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic circuits. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016.
pp. 565–577. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978410

10. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On
the (im)possibility of obfuscating programs. J. ACM 59 (2012), https://doi.org/10.1145/
2160158.2160159

11. Barnum, C., Heath, D., Kolesnikov, V., Ostrovsky, R.: Adaptive garbled circuits and garbled
ram from non-programmable random oracles. Cryptology ePrint Archive, Paper 2023/1527
(2023), https://eprint.iacr.org/2023/1527

12. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended ab-
stract). In: 22nd ACM STOC. pp. 503–513. ACM Press (May 1990). https://doi.org/10.
1145/100216.100287

13. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key block-
cipher. In: 2013 IEEE Symposium on Security and Privacy. pp. 478–492. IEEE Computer So-
ciety Press (May 2013). https://doi.org/10.1109/SP.2013.39

14. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis,
G., Gligor, V.D. (eds.) ACM CCS 2012. pp. 784–796. ACM Press (Oct 2012). https://doi.
org/10.1145/2382196.2382279

15. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation.
In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008. pp. 257–266. ACM Press (Oct 2008).
https://doi.org/10.1145/1455770.1455804

16. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos - trapdoor permuta-
tions from indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A,
Part I. LNCS, vol. 9562, pp. 474–502. Springer, Heidelberg (Jan 2016). https://doi.org/10.
1007/978-3-662-49096-9_20

17. Böhl, F., Davies, G.T., Hofheinz, D.: Encryption schemes secure under related-key and key-
dependent message attacks. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 483–500.
Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-54631-0_28

18. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer,
Heidelberg (Dec 2013). https://doi.org/10.1007/978-3-642-42045-0_15

19. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (Mar 2014).
https://doi.org/10.1007/978-3-642-54631-0_29

20. Brandão, L.T.A.N., Peralta, R.: NIST first call for multi-party threshold schemes (2023), https:
//csrc.nist.gov/pubs/ir/8214/c/ipd

21. Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: ASTRA: high throughput 3pc over rings
with application to secure prediction. In: ACM SIGSAC 2019. pp. 81–92 (2019), https://doi.
org/10.1145/3338466.3358922

22. Chaudhari, H., Rachuri, R., Suresh, A.: Trident: Efficient 4pc frame-
work for privacy preserving machine learning. In: NDSS 2020. The In-
ternet Society (2020), https://www.ndss-symposium.org/ndss-paper/
trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/

23. Chen, Y.L., Tessaro, S.: Better security-efficiency trade-offs in permutation-based two-
party computation. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS,
vol. 13091, pp. 275–304. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92075-3_10

24. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.S.: On the security of the “free-XOR” technique.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53. Springer, Heidelberg (Mar 2012).
https://doi.org/10.1007/978-3-642-28914-9_3

30

https://doi.org/10.1109/FOCS.2015.21
https://doi.org/10.1109/FOCS.2015.21
https://doi.org/10.1145/2976749.2978410
https://doi.org/10.1145/2976749.2978410
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/2160158.2160159
https://eprint.iacr.org/2023/1527
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://csrc.nist.gov/pubs/ir/8214/c/ipd
https://csrc.nist.gov/pubs/ir/8214/c/ipd
https://doi.org/10.1145/3338466.3358922
https://doi.org/10.1145/3338466.3358922
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3

25. Cui, H., Wang, X., Yang, K., Yu, Y.: Actively secure half-gates with minimum overhead un-
der duplex networks. In: EUROCRYPT 2023. pp. 35–67 (2023), https://doi.org/10.1007/
978-3-031-30617-4_2

26. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing compu-
tation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482.
Springer, Heidelberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7_25

27. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of random func-
tions. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 276–288. Springer,
Heidelberg (Aug 1984)

28. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM
STOC. pp. 25–32. ACM Press (May 1989). https://doi.org/10.1145/73007.73010

29. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard assump-
tions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp. 567–578. ACM Press (Oct
2015). https://doi.org/10.1145/2810103.2813619

30. Guo, C., Katz, J., Wang, X., Weng, C., Yu, Y.: Better concrete security for half-gates garbling
(in the multi-instance setting). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 793–822. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/
978-3-030-56880-1_28

31. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation from fixed-key
block ciphers. In: 2020 IEEE Symposium on Security and Privacy. pp. 825–841. IEEE Computer
Society Press (May 2020). https://doi.org/10.1109/SP40000.2020.00016

32. Guo, X., Yang, K., Wang, X., Yu, Y., Liu, Z.: Unmodified half-gates is adaptively secure -
so is unmodified three-halves. Cryptology ePrint Archive, Paper 2023/1528 (2023), https:
//eprint.iacr.org/2023/1528, https://eprint.iacr.org/2023/1528

33. Heath, D.: Efficient arithmetic in garbled circuits. In: EUROCRYPT 2024. pp. 3–31 (2024),
https://doi.org/10.1007/978-3-031-58740-5_1

34. Heath, D., Kolesnikov, V., Ostrovsky, R.: Tri-state circuits - A circuit model that captures RAM.
In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV. LNCS, vol. 14084, pp. 128–
160. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-38551-3_5

35. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (Aug 2003). https:
//doi.org/10.1007/978-3-540-45146-4_9

36. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be adap-
tive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 133–163. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/
978-3-319-63688-7_5

37. Jafargholi, Z., Oechsner, S.: Adaptive security of practical garbling schemes. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 741–762.
Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-65277-7_33

38. Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 40–71. Springer, Heidelberg
(Nov 2017). https://doi.org/10.1007/978-3-319-70503-3_2

39. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M., Smith, A.D.
(eds.) TCC 2016-B, Part I. LNCS, vol. 9985, pp. 433–458. Springer, Heidelberg (Oct / Nov
2016). https://doi.org/10.1007/978-3-662-53641-4_17

40. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions.
In: Khuller, S., Williams, V.V. (eds.) 53rd ACM STOC. pp. 60–73. ACM Press (Jun 2021).
https://doi.org/10.1145/3406325.3451093

41. Kamath, C., Klein, K., Pietrzak, K.: On treewidth, separators and yao’s garbling. In: Nissim,
K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 486–517. Springer, Heidelberg
(Nov 2021). https://doi.org/10.1007/978-3-030-90453-1_17

42. Kamath, C., Klein, K., Pietrzak, K., Wichs, D.: Limits on the adaptive security of yao’s
garbling. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826,

31

https://doi.org/10.1007/978-3-031-30617-4_2
https://doi.org/10.1007/978-3-031-30617-4_2
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/2810103.2813619
https://doi.org/10.1145/2810103.2813619
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1109/SP40000.2020.00016
https://doi.org/10.1109/SP40000.2020.00016
https://eprint.iacr.org/2023/1528
https://eprint.iacr.org/2023/1528
https://eprint.iacr.org/2023/1528
https://doi.org/10.1007/978-3-031-58740-5_1
https://doi.org/10.1007/978-3-031-38551-3_5
https://doi.org/10.1007/978-3-031-38551-3_5
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-030-65277-7_33
https://doi.org/10.1007/978-3-030-65277-7_33
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-030-90453-1_17
https://doi.org/10.1007/978-3-030-90453-1_17

pp. 486–515. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84245-1_17

43. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom
functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013.
pp. 669–684. ACM Press (Nov 2013). https://doi.org/10.1145/2508859.2516668

44. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: Flexible garbling for XOR gates that beats
free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
440–457. Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_25

45. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (Jul 2008).
https://doi.org/10.1007/978-3-540-70583-3_40

46. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. Journal
of Cryptology 22(2), 161–188 (Apr 2009). https://doi.org/10.1007/s00145-008-9036-8

47. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: A programming framework for
secure computation. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. pp. 359–376 (2015), https://doi.org/10.1109/SP.2015.29

48. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system.
In: Blaze, M. (ed.) USENIX Security 2004. pp. 287–302. USENIX Association (Aug 2004)

49. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In:
Proceedings of the 1st ACM Conference on Electronic Commerce. p. 129–139 (1999), https:
//doi.org/10.1145/336992.337028

50. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (Mar 2009). https://doi.org/
10.1007/978-3-642-00457-5_22

51. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practi-
cal. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg
(Dec 2009). https://doi.org/10.1007/978-3-642-10366-7_15

52. Rosulek, M., Roy, L.: Three halves make a whole? Beating the half-gates lower bound for gar-
bled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825,
pp. 94–124. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84242-0_5

53. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and
more. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475–484. ACM Press (May / Jun 2014).
https://doi.org/10.1145/2591796.2591825

54. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In: 40th FOCS.
pp. 554–567. IEEE Computer Society Press (Oct 1999). https://doi.org/10.1109/SFFCS.
1999.814630

55. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Canteaut, A.,
Standaert, F.X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698, pp. 127–156. Springer,
Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77883-5_5

56. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS. pp.
162–167. IEEE Computer Society Press (Oct 1986). https://doi.org/10.1109/SFCS.1986.25

57. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data transfer in gar-
bled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/
978-3-662-46803-6_8

32

https://doi.org/10.1007/978-3-030-84245-1_17
https://doi.org/10.1007/978-3-030-84245-1_17
https://doi.org/10.1007/978-3-030-84245-1_17
https://doi.org/10.1007/978-3-030-84245-1_17
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1145/336992.337028
https://doi.org/10.1145/336992.337028
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1109/SFFCS.1999.814630
https://doi.org/10.1109/SFFCS.1999.814630
https://doi.org/10.1109/SFFCS.1999.814630
https://doi.org/10.1109/SFFCS.1999.814630
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

Supplementary Material

A Additional Preliminaries

Definition 8. Two ensembles of probability distributions X = {Xκ}κ∈N and Y = {Yκ}κ∈N
are computationally indistinguishable, denoted X

c
≈ Y , if for every PPT distinguisher D,

there exists a negligible function ϵ(·) such that for every κ ∈ N,∣∣∣∣ Pr
x←Xκ

[D(1κ, x) = 1]− Pr
y←Yκ

[D(1κ, y) = 1]

∣∣∣∣ < ϵ(κ).

B Proof of Theorem 5

Theorem 5 Let H = {Hκ}κ∈N be a wCCR secure hash function family ensemble (Defi-
nition 7) and GSH = (Gb,En,Ev,De) be the garbling scheme as defined in Algorithms 1
and 2 where, for security parameter κ, in the beginning of Gb a hash function H is sampled
uniformly at random from Hκ and output together with the garbled circuit F. Then GSH

satisfies selective privacy by simulation (PRIV-SIM – Definition 6).

Proof. The proof of the theorem would follow from the fact that if there existed a PPT
distinguisher D that has non-negligible advantage ϵ in the PRIV-SIM security game (Defi-
nition 6), this can be used in a black-box way by a PPT adversary A to gain non-negligible
advantage in the security game for weak CCR (Definition 7). To show this, let us first
describe the PPT simulator Sim that the challenger in PRIV-SIM invokes.

Simulator for GSH. The simulator for the garbling is a PPT algorithm ((F,H),X,d) ←
Sim(1κ,C,C(x)) that needs to output the selective privacy challenge tuple created only
using the circuit and the function output. Note that the garbling algorithm GSH.Gb garbles
a circuit C gate by gate in topological order and Sim needs to output a tuple that contains
values that are indistinguishable from those derived from the real garbling scheme on the
circuit and input.

Let X denote the set of active input labels for the garbling F,d. For each wire in the
circuit C, we refer to the label derived from evaluating F using X as the active label. In the
simulation, for each wire we assign the label representing the 0-value as the active label.
Then, note that for each AND gate, the garbling algorithm can be re-written as:

k0g = 2g − 1, k1g = 2g, pa = lsb(L0A), pb = lsb(L0B)

G0
g = H(L0A, k

0
g)⊕ CH,∆(L0A, k

0
g , pb)

G1
g = H(L0B , k

1
g)⊕ CH,∆(L0B , k

1
g , 0)⊕ L0A

L0C = H(L0A, k
0
g)⊕ (pa ·G0

g)⊕ H(L0B , k
1
g)⊕ pb(G

1
g ⊕ L0A)

in terms of the active labels and the weak CCR hash oracle H(x⊕∆, i)⊕ b∆ = CH,∆(x, i, b)
only. Further, note that throughout the garbling algorithm, the indices kbg ∈ N act as a
counter for the oracle queries made, rendering the set of garbling oracle queries and responses
as a legal query strategy satisfying weak CCR (Definition 7).

Given this observation, the simulator Sim works as follows: first, it samples a hash func-
tion H← Hκ. Then, for each input wire, an active label is sampled as in the real garbling.

33

Then the garbling algorithm is executed with each instance of weak CCR oracle output be-
ing replaced by a κ-bit value sampled uniformly at random, as required in the construction.
This process also derives the active wire label for all other wires in the circuit, including the
output wires. Finally, the output decoding information is set such that the active output
labels map to the function output as required. Algorithm 4 formalizes the actions of the
simulator.

Algorithm 4 Simulator Sim for Garbling Scheme GSH adapted from [57]
1: procedure Sim(1κ,C,C(x))
2: sample H← Hκ and initialize F = [], X = [] and d = []
3: for every i ∈ [n] do
4: sample L0

i ← {0, 1}κ
5: set X[i] = L0

i

6: end for
7: for each g ∈ [q] in topological order do
8: parse gate g = (A,B,C, fg)
9: if fg == XOR then

10: set L0
C = L0

A ⊕ L0
B

11: else
12: k0

g = 2g − 1, k1
g = 2g, pa = lsb(L0

A), pb = lsb(L0
B)

13: sample MA,MB ← {0, 1}κ
14: G0

g = H(L0
A, k

0
g)⊕MA

15: G1
g = H(L0

B , k
1
g)⊕MB ⊕ L0

A

16: L0
C = H(L0

A, k
0
g)⊕ (pa ·G0

g)⊕ H(L0
B , k

1
g)⊕ pb(G

1
g ⊕ L0

A)
17: set F[g] = (G0

g, G
1
g)

18: end if
19: end for
20: for each j ∈ [m] do
21: set d[j] = lsb(L0

j)⊕C(X)[j]
22: end for
23: return ((F,H),X,d)
24: end procedure

Hybrid Experiments. To prove the theorem, it now remains to show that the distribution
of the output of this simulator is computationally indistinguishable from a tuple derived
by executing GSH.Gb and GSH.En that follow Algorithm 1. We do so by considering the
following list of hybrid experiments:

– Hybrid0 : This is the distribution that is derived as the outcome of Sim (Algorithm 4)
over all the internal randomness used by the simulator.

Hybrid0 =
{
(F,H),X,d

}
((F,H),X,d)←Sim(1κ,C,C(x)),κ∈N

– Hybrid1 : This is a distribution that is derived as an outcome of a hybrid experiment
where, given access to a random oracle R, a PPT algorithm SimR operates exactly as
(Algorithm 4) except Step 13. Instead, in this experiment, the values MA and MB are

34

derived as,

MA = R(L0A, k0g , pb)
MB = R(L0B , k1g , 0)

Hybrid1 =
{
(F,H),X,d

}
((F,H),X,d)←SimR(1κ,C,C(x)),κ∈N

Due to the nature of the outputs of the random oracle, we have that this distribution is
identical to the former one Hybrid0 ≡ Hybrid1.

– Hybrid2 : This is a distribution that is derived as an outcome of a hybrid experiment
where, first a hash function H← Hκ is sampled. Then given access to a random oracleR,
a PPT algorithm GR,H operates using H as given in Algorithm 5. Unlike in the previous
experiment, G receives the circuit input x as input and uses this to derive the values of
all the active labels. Overall, this hybrid experiment differs from the previous one only
in that the labeling of the active labels is no longer designated as 0, but it carries the
same values as in the real execution of the garbling evaluation.

Hybrid2 =
{
(F,H),X,d

}
((F,H),X,d)←GR,H(1κ,C,x),κ∈N

As such, this distribution is identical to the former one since the (re-)labeling of the
active wire labels is never visible to the adversary Hybrid1 ≡ Hybrid2.

– Hybrid3 : Here first a weak CCR secure hash function H← Hκ is sampled along with
∆← {0, 1}κ−1||1 sampled uniformly at random. Then CH,∆ is the weak CCR oracle that
outputs, CH,∆(x, i, b) = H(x ⊕ ∆, i) ⊕ b∆. The distribution Hybrid3 is derived as an
outcome of a hybrid experiment where, given access to an oracle CH,∆ and function H,
a PPT algorithm GCH,∆,H operates as given in Algorithm 5. G receives the circuit input
x as input and uses this to derive the values of all the active labels.

Hybrid3 =
{
(F,H),X,d

}
((F,H),X,d)←GCH,∆,H(1κ,C,x),κ∈N

This hybrid experiment differs from the previous only in Step 13 in that the oracle
query used to derive MA and Mb are no longer made to the random oracle R, but
to CH,∆. We show later that this hybrid distribution can be shown as computationally
indistinguishable from the previous by reduction to the weak CCR security of the hash
function family Hybrid2

c
≈ Hybrid3.

– Hybrid4 : This is a distribution that is derived as an outcome of a hybrid experiment
where, given access to a weak CCR oracle CH,∆ as above, a PPT algorithm G

CH,∆
∗ operates

as given in Algorithm 6. This differs from the previous hybrid experiment only in that
the lines marked in blue additionally exist in Algorithm 6, where they were not present
in Algorithm 5.

Hybrid4 =
{
(F,H),X,d

}
((F,H),X,d)←G

CH,∆
∗ (1κ,C,x),κ∈N

As the extra lines executed in this hybrid experiment do not affect the output distri-
bution, it follows that this distribution is identical to the previous one Hybrid3 ≡
Hybrid4.

– Hybrid5 : This is the final hybrid experiment where the distribution is derived exactly
as a tuple derived by executing GSH.Gb and GSH.En in Algorithm 1.

Hybrid5 =
{
(F,H),X,d

}
((F,H),(∆,e),d)←GSH.Gb(1κ,C),X=GSH.En((∆,e),x),κ∈N

35

Algorithm 5 Hybrid Experiment GO,H for Garbling Scheme GSH

1: procedure GO,H(1κ,C,x)
2: initialize F = [], X = [] and d = []
3: for every i ∈ [n] do
4: sample L

x[i]
i ← {0, 1}κ

5: set X[i] = L
x[i]
i

6: end for
7: for each g ∈ [q] in topological order do
8: parse gate g = (A,B,C, fg) and let a, b ∈ {0, 1} be the active input values
9: if fg == XOR then

10: set L
XOR(a,b)
C = La

A ⊕ Lb
B

11: else
12: k0

g = 2g − 1, k1
g = 2g, pa = lsb(La

A), pb = lsb(Lb
B)

13: query MA = O(La
A, k

0
g , pb) and MB = O(Lb

B , k
1
g , 0)

14: G0
g = H(La

A, k
0
g)⊕MA

15: G1
g = H(Lb

B , k
1
g)⊕MB ⊕ La

A

16: L
AND(a,b)
C = H(La

A, k
0
g)⊕ (pa ·G0

g)⊕ H(Lb
B , k

1
g)⊕ pb(G

1
g ⊕ La

A)
17: set F[g] = (G0

g, G
1
g)

18: end if
19: end for
20: for each j ∈ [m] do
21: set d[j] = lsb(L

C(x)[j]
j)⊕C(x)[j]

22: end for
23: return ((F,H),X,d)
24: end procedure

This differs from the previous experiment in that, here, for each wire, instead of first
calculating the active label and then deriving the inactive label with respect to it, the
0-label is calculated (irrespective of whether it is the active label) and the 1-label is
derived. Note that in this distribution and the previous, the algebraic relationships
between each element derived remain the same. As such, this distribution is identical to
the previous one Hybrid4 ≡ Hybrid5.

Security Reduction to Weak CCR. To prove the theorem, it only remains now to show
that Hybrid2

c
≈ Hybrid3. We do so by demonstrating a security reduction to the weak

CCR security property (Definition 7) of the underlying hash function family H used in the
garbling scheme. Let DGS be a PPT distinguisher that can distinguish between the hybrid
distributions Hybrid2 and Hybrid3 with non-negligible advantage ϵ. If such a distinguisher
exists, we show that it can be used in a black-box way by a PPT adversary A to win the
weak CCR security game (Definition 7) for the hash function family H with non-negligible
advantage as follows:

– The adversary A receives a circuit C and input x from DGS that expects to receive a
tuple of the form ((F,H),X,d) in return.

– Formulating a Query Strategy: Given C : {0, 1}n → {0, 1}m with qAND AND gates,
and input x ∈ {0, 1}n, the adversary A designs a PPT algorithm with the interface,

Q = {(xj , j, bj , yj)}j∈[2qAND] = QueryStrategyOC,x(1
κ; r)

36

Algorithm 6 Hybrid Experiment GO∗ for Garbling Scheme GSH

1: procedure GO
∗ (1κ,C,x)

2: initialize F = [], X = [] and d = []
3: sample H← Hκ, ∆← {0, 1}κ−1||1 and set O = CH,∆
4: for every i ∈ [n] do
5: sample L

x[i]
i ← {0, 1}κ

6: set L
¬x[i]
i = L

x[i]
i ⊕∆

7: set X[i] = L
x[i]
i

8: end for
9: for each g ∈ [q] in topological order do

10: parse gate g = (A,B,C, fg) and let a, b ∈ {0, 1} be the active input values
11: if fg == XOR then
12: set L

c=XOR(a,b)
C = La

A ⊕ Lb
B

13: else
14: k0

g = 2g − 1, k1
g = 2g, pa = lsb(La

A), pb = lsb(Lb
B)

15: query MA = O(La
A, k

0
g , pb) and MB = O(Lb

B , k
1
g , 0)

16: G0
g = H(La

A, k
0
g)⊕MA

17: G1
g = H(Lb

B , k
1
g)⊕MB ⊕ La

A

18: L
c=AND(a,b)
C = H(La

A, k
0
g)⊕ (pa ·G0

g)⊕ H(Lb
B , k

1
g)⊕ pb(G

1
g ⊕ La

A)
19: set F[g] = (G0

g, G
1
g)

20: end if
21: set L¬c

C = Lc
C ⊕∆

22: end for
23: for each j ∈ [m] do
24: set d[j] = lsb(L

C(x)[j]
j)⊕C(x)[j]

25: end for
26: return ((F,H),X,d)
27: end procedure

where the strategy accepts randomness of the form r ← {0, 1}nκ. This is detailed in
Algorithm 3. This is the algorithm that is given to the challenger C for the weak CCR
security game.

– The challenger C accepts this QueryStrategyO and operates as implicit in Definition 7.
That is, it samples a bit c← {0, 1} and if c = 0, it samples randomness r and executes
QueryStrategyRC,x. Otherwise, it samples r and ∆, and executes QueryStrategy

CH,∆

C,x . It
gives a tuple (Q,H) to A.

– Given the set of query responses Q and the hash algorithm H, the adversary A can
now execute Algorithm 5 with active input labels as indicated in the queries in Q and
using the items in Q where ever oracle queries are required. The output of this is a
tuple ((F,H),X,d) which is distributed as Hybrid2 if the bit chosen by the challenger
is c = 0, and is distributed as Hybrid3 otherwise.

– A gives ((F,H),X,d) to DGS and outputs whatever it outputs.

Note that in the above game, A has the same advantage as that of DGS, which is non-
negligible. However, since H is sampled from a weak CCR secure function family Hκ, it
follows that no such A can exist and therefore no such DGS can exist. This completes the
proof.

37

C Proof of Theorem 6

In this section, we first begin with fully describing the garbling scheme from [52], adapted
to using a hash function H that is sampled from a weak CCR secure hash function family H
(Definition 7). This is a security definition that they introduce which relaxes CCR security
(Definition 4) in the following ways:

– In the security game for RTCCR, the hash function H is drawn from a family of hash
functions, and the adversary only receives the description of H after making all of its
oracle queries.

– The function H : {0, 1}n × N → {0, 1}m may have different input and output lengths.
Further, the CCR oracle CH,∆ in the RTCCR security game receives a linear function
L : {0, 1}n → {0, 1}m (instead of a bit b) and XORs the output of the hash function
with L(∆) (opposed to b ·∆). For the application in the garbling scheme (Algorithms 7
and 8) the hash function H ∈ H is s.t. H : {0, 1}κ×N→ {0, 1}κ

2 and the linear functions
required are of the form,

La,b(∆L, ∆R) = a ·∆L ⊕ b ·∆R

where (a, b) ∈ {(0, 0), (0, 1), (1, 0)} and ∆L and ∆R are the κ
2 -bit prefix and suffix of ∆

respectively.

Definition 9. For polynomial functions n(·) and m(·) and a computational security parame-
ter κ, a family of hash functions Hκ, where each H ∈ Hκ maps {0, 1}n(κ)×T → {0, 1}m(κ) for
some set of tweaks T , is randomized tweakable circular correlation robust (RTCCR)
for a set of linear functions L from {0, 1}n(κ) to {0, 1}m(κ) if, for any PPT adversaries A1,
A2 that never repeat an oracle query to CH,∆ on the same (X, τ),∣∣∣∣ Pr

σ←A
H,CH,∆
1 (1κ)

[
A2(σ,H) = 1

]
− Pr

σ←AH,R
1 (1κ)

[
A2(σ,H) = 1

]∣∣∣∣
is negligible, where the probabilities are taken over the choice of ∆ ← {0, 1}n(κ)−1||1, the
random oracle R : {0, 1}n(κ) × T × L → {0, 1}m(κ) and the hash function H ← Hκ. The
oracle CH,∆ is defined as,

CH,∆(X ∈ {0, 1}n(κ), τ ∈ T , L ∈ L) = H(X ⊕∆, τ)⊕ L(∆)

The Garbling Scheme. For a single AND gate with input wires denoted by A and B, and the
output wire denoted by C, [52] abstracts the garbling in the form of the following system of
linear equations:

V

[
C⃗

G⃗

]
=MH⃗⊕ (R⊕T)

A⃗B⃗
∆⃗

 (11)

where V,M,R,T are binary matrices and A⃗, B⃗, ∆⃗, C⃗, G⃗, H⃗ are vectors. Where it is clear
from the context these may be denoted as A,B,∆,C,G,H, without the vector notation.
. Informally, the optimization in the garbling gate size of [52] is derived from treating each
κ-bit wire label as having two slices of κ

2 bits each. In this equation C⃗ is the vector of the

38

output label slices (where L0C = C[0]||C[1]) and G⃗ is the vector of ciphertexts that the
garbled gate is composed of. The matrix V of binary values acts as indicators that dictate
how C and G relate when evaluating a garbled row of the gate functionality.

H⃗ is the vector of hash output combinations possible for given input wires and their
labels. While in [52] this contains κ

2 -bit elements as the hash outputs, we will explain in the
ensuing text how one can use a hash function H with κ-bit outputs and truncate these to
κ
2 -bit in order to achieve the same results. The matrix M contains indicators that dictate
how these κ

2 -bit elements in H are used to create each ciphertext in G.
A⃗, B⃗ are vectors of input label slices and ∆⃗ is the vector of the free-XOR constant slices.

The above can be simplified to linear garbling if the vectors A⃗, B⃗, C⃗, ∆⃗ are replaced with
respective scalars L0A, L

0
B , L

0
C , ∆. The matrix T of binary values indicates a permutation of

the truth table of the binary AND gate according to the colour bits of the input wires. R is
termed the control matrix. It contains binary values that indicate how the plaintext slices
of the labels are used (along with hash outputs) to create each ciphertext in G.

We now explain the details of the garbling scheme [52], for garbling an AND gate,
including specifying how the matrices V,M,R,T are defined.

L.H.S. of Equation 11. The Boolean AND function over two inputs can be represented
using a truth table containing 4 rows. Corresponding to each row, the garbling scheme in [52]
separately defines how the κ

2 -bit prefix C[0] and suffix C[1] of the output label is derived
using the values in G. The vector of ciphertexts G contains 3 ‘halves’ – κ

2 -bit strings. The
matrix V contains 8 rows – one corresponding to each truth table row and slice in C. It
contains 5 columns, each indicating a linear combination of elements in C and G as given
below.

V

[
C⃗

G⃗

]
=



1 0 0 0 0
0 1 0 0 0
1 0 0 0 1
0 1 0 1 1
1 0 1 0 1
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0




C[0]
C[1]
G[0]
G[1]
G[2]



From the above, we can deduce the linear combination of garbling ciphertexts that are
involved in deriving each output label slice for each row of the truth table for AND gates.
This is indicated in Table 1.
The R.H.S. of Equation 11 indicates which linear combinations of the input labels and the
hashes thereof are involved in the garbling for each row in the AND gate truth table, for
deriving each slice of the output label. Going forward, we first discuss the combination of
hash outputs and then that of the plaintext input labels themselves.

Hash Outputs in Equation 11. The garbling scheme in [52] employs a hash function
H : {0, 1}κ×N→ {0, 1}κ

2 that is RTCCR secure. Calls to this hash function are made using
κ-bit inputs and, for a garbled AND gate, H given below is the vector containing all the
different ways this function is used. This includes 4 possible calls with only one input wire
label and 2 that can be made by combining two input labels, one from each input wire. The
matrix M contains 8 rows – one corresponding to each truth table row and slice in C. In

39

Inputs Ciphertext
(0, 0, L) −
(0, 0, R) −
(0, 1, L) G[2]

(0, 1, R) G[1]⊕G[2]

(1, 0, L) G[0]⊕G[2]

(1, 0, R) G[2]

(1, 1, L) G[0]

(1, 1, R) G[1]

Table 1. Cipertexts for each row in GSH. L indicates C[0] and R indicates C[1].

Algorithm 7 Three-halves Garbling GSH for circuits with XOR and AND gates
1: procedure Gb(1κ,C)
2: initialize F = [], e = [] and d = []
3: sample ∆← {0, 1}κ−1||1
4: for every i ∈ [n] do
5: sample L0

i ← {0, 1}κ and set L1
i = L0

i ⊕∆
6: e[i] = L0

i

7: end for
8: for each g ∈ [q] in topological order do
9: parse gate g = (A,B,C, fg)

10: if fg = XOR then
11: set L0

C = L0
A ⊕ L0

B and L1
C = L0

C ⊕∆
12: else
13: derive (L0

C ,G, z)← GbAND(L0
A, L

0
B)

14: set L1
C = L0

C ⊕∆
15: F[g] = (G, z)
16: end if
17: end for
18: for each j ∈ [m] do
19: set d[j] = lsb(L0

j)
20: end for
21: return (F, (∆, e),d)
22: end procedure
23:
24: procedure GbAND(L0

A, L
0
B)

25: set pa = lsb(L0
A), pb = lsb(L0

B)
26: derive T← AND(pa, pb)
27: sample R, r← SampleR(T)

28: compute z ∥
[
C
G

]
= V−1(r ∥ (R⊕T)

L0
A

L0
B

∆

⊕MH)

29: L0
C = C[0]||C[1]

30: return (L0
C ,G, z)

31: end procedure

40

our construction, replacing the hash function with one that is weak CCR secure, for the kth

AND gate, it contains 6 columns, each indicating a linear combination of elements in H as
given below.

MH⃗ =



1 0 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 0 0 1 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 0 0 1 0
0 0 0 1 1 0





κ
2 prefix of H(L0A, 3k − 3)
κ
2 prefix of H(L1A, 3k − 3)
κ
2 prefix of H(L0B , 3k − 2)
κ
2 prefix of H(L1B , 3k − 2)
κ
2 suffix of H(L0A ⊕ L0B , 3k − 1)
κ
2 suffix of H(L0A ⊕ L1B , 3k − 1)

 (12)

Note that these linear combinations contain only hashes that an evaluator is able to compute
for the particular truth table row and slice with the active input labels available to it.

Tweaks. For the kth AND gate garbling, within H, the tweak 3k−3 is used for hash calls of
the form H(L0A) and H(L1A) involving labels of wire A only; the tweak 3k− 2 is used in hash
calls involving labels of wire B only; and 3k − 1 is used in hash calls involving the XOR of
two labels. We omit this from the equation 12 for simplicity.

In order to replace this with a hash function sampled from a weak CCR secure function
family, we require an algorithm that can take the κ-bit output of such a hash function and
convert it to κ

2 -bit values in such a way that the CCR oracle CH,∆ is usable in a black-
box way for garbling – replacing hash calls that involve ∆. Towards this, note that during
evaluation, each slice of the output label is derived separately using the input labels and the
ciphertexts. So during garbling, for each truth table row, we make calls to a hash function H
sampled from a weak CCR secure function family H as indicated by M. Then with the κ-bit
output derived, for computing C[0] and C[1], we use the κ

2 -bit prefix and suffix respectively.
This preserves the correctness and privacy of the given system of equations.

Input Labels in Equation 11. It now remains to discuss how T and the control matrix
R are sampled. T ∈ {0, 1}8×6 is an indicator matrix that dictates whether (either the κ

2 -bit
prefix or suffix of) ∆ is XOR-ed in the equation. Choosing T is straightforward as the
truth table of the AND gate and the colour bits chosen for the input wires in a particular
instantiation of the scheme fixes T. If we have the permute bits to be (πA, πB), then:

T =


0 0 g(πA, πB)
0 0 g(πA, 1⊕ πB)
0 0 g(1⊕ πA, πB)
0 0 g(1⊕ πA, 1⊕ πB)

 (13)

where g(x, y) =

{
02×2 AND(x, y) = 0

I2×2 AND(x, y) = 1

It remains to describe R that indicates the combination of input labels required in the
clear for evaluation. In [52] the input combinations for each value of the permute bits are
chosen separately by the garbler. While this would reveal information about the permute
bits itself, they are encrypted such that the evaluator gets access only to the part of the
matrix R that is chosen for the active labels. Security is proven in context of an adversarial

41

evaluator that only receives this marginal view. [52] give a complete description of how this
matrix is sampled, which we abstract here as the pair of algorithms (SampleR,DecodeR).
This completes the description of the three-halves garbling scheme.

Algorithm 8 Three-halves Scheme GSH Encoding, Decoding, and Evaluation Algorithms
1: procedure En((∆, e),x)
2: initialize X = []
3: for each i ∈ [n] do
4: set X[i] = e[i]⊕ x[i]∆
5: end for
6: return X
7: end procedure
8:
9: procedure De(Y,d)

10: initialize y = []
11: for j ∈ [m] do
12: y[j] = d[j]⊕ lsb(Y[j])
13: end for
14: return y
15: end procedure
16:
17: procedure Ev(F,X)
18: initialize Y = []
19: for each gate g ∈ [q] in topological order do
20: LA, LB ← active labels associated with input wires of gate g
21: if fg = XOR then
22: LC = LA ⊕ LB

23: else
24: E[g]← EvalAND(F[g], LA, LB)
25: LC = E[g][0]||E[g][1]
26: end if
27: if C is a circuit output wire then
28: Y[C] = LC

29: end if
30: end for
31: return Y
32: end procedure
33:
34: procedure EvalAND(F = (G, z), LA, LB)
35: sa = lsb(LA), sb = lsb(LB)
36: H⊤

e = [H(LA, 3g − 3) H(LB , 3g − 2) H(LA ⊕ LB , 3g − 1)]

37: compute r||X[sa, sb] = V[sa, sb]

(
z||

[
0
G

])
⊕

[
1 0 1
0 1 1

]
He

38: R[i, j] = DecodeR(r, sa, sb)

39: set E = X[sa, sb]⊕R[sa, sb]

[
A
B

]
40: return E
41: end procedure

42

C.1 Proof

Theorem 6 Let H = {Hκ}κ∈N be a wCCR secure hash function family ensemble (Defi-
nition 7) and GSH = (Gb,En,Ev,De) be the garbling scheme as defined in Algorithms 7
and 8 where, for security parameter κ, in the beginning of Gb a hash function H is sampled
uniformly at random from Hκ and output together with the garbled circuit F. Then GSH

satisfies selective privacy by simulation (PRIV-SIM – Definition 6).

Proof Outline. The proof for this statement is adapted from [52] and considers the same
description of the simulator and list of hybrids. The simulator for the garbling is a PPT
algorithm ((F,H),X,d)← Sim(1κ,C,C(x)) that needs to output the selective privacy chal-
lenge tuple created only using the circuit and the function output. In the same way as in the
proof for Theorem 5, in the simulation, for each wire the label representing the 0-value is
assigned as the active label. Then the vector of hash evaluations H in the garbling algorithm
for each kth AND gate in the scheme from [52] can be re-written in terms of

κ

2
-bit prefixes of H(L0A, 3k − 3) and H(L1A, 3k − 3)

κ

2
-bit prefixes of H(L0B , 3k − 2) and H(L1B , 3k − 2)

κ

2
-bit suffixes of H(L0A ⊕ L0B , 3k − 1) and H(L0A ⊕ L1B , 3k − 1)

and is used in the algorithm as given by MH, where the indicators in M dictate which of
the above hash calls are activated. The R.H.S. of the system of garbling equations, written
in terms of the labels L0A and L0B , can be re-written as,

(R⊕T)

L0AL0B
∆

⊕MH = (R⊕T)

L0AL0B
0

⊕ (R⊕T)

0
0
∆

⊕MH

Within the part of this system indicated in blue, weak CCR hash evaluations using labels
L1A and L1B can be re-written in terms of the following oracle calls:

CH,∆(L0A, 3k − 3, b) CH,∆(L0B , 3k − 2, b) CH,∆(L0A ⊕ L0B , 3k − 1, b)

using only the labels L0A and L0B , where the last input bit b ∈ {0, 1} can be set according to
the indicators in (R⊕T) that dictate whether ∆ needs to be XOR-ed to the output. Further,
throughout the garbling algorithm, the indices 3k − c ∈ N (c ∈ {3, 2, 1}) act as a counter
for the oracle queries made, rendering the set of garbling oracle queries and responses as a
legal query strategy satisfying weak CCR (Definition 7).

Given this observation, the simulator Sim works as follows: first, it samples a hash func-
tion H← Hκ. Then, for each input wire, an active label is sampled as in the real garbling.
Then the garbling algorithm is executed with each instance of weak CCR oracle output be-
ing replaced by a κ

2 -bit value sampled uniformly at random, as required in the construction.
This process also derives the active wire label for all other wires in the circuit, including the
output wires. Finally, the output decoding information is set such that the active output
labels map to the function output as required.

Like in the proof for Theorem 5, within the list of hybrid experiments to prove that the
real and simulated distributions are computationally indistinguishable, all but one set of
adjacent hybrids are identically distributed. Within the pair of adjacent hybrid distributions

43

that are not identically distributed, in one hybrid experiment, the garbled circuit is generated
in such a way that the oracle calls described above are made to the random oracle R. In the
other hybrid experiment, these are calls to CH,∆. Both experiments are otherwise identical.

This pair of adjacent hybrids can be shown as computationally indistinguishable by re-
duction to the weak CCR property of the hash function family H where the adversary’s
query strategy this time is based on the garbling and encoding algorithm in GSH (Algo-
rithm 7– [52]). This concludes the proof.

Proof. To prove the theorem we show that if there existed a PPT distinguisher D that has
non-negligible advantage ϵ in the PRIV-SIM security game (Definition 6), this can be used
in a black-box way by a PPT adversary A to gain non-negligible advantage in the security
game for weak CCR security of the hash function family H (Definition 7). To show this, let
us first describe the PPT simulator Sim that the challenger in PRIV-SIM invokes.

Simulator for GSH. The simulator for the garbling is a PPT algorithm ((F,H),X,d) ←
Sim(1κ,C,C(x)) that needs to output the selective security challenge tuple created only
using the circuit and the function output. Note that the garbling algorithm GSH.Gb garbles
a circuit C gate by gate in topological order and Sim needs to output a tuple that contains
values that are indistinguishable from those derived from the real garbling scheme on the
circuit and input.

Let X denote the set of active input labels for the garbling F,d. That is, for a real
garbling (F,d), this is the input encoding X = GSH.En((∆, e),x). For each wire in the
circuit C, we refer to the label derived from evaluating F using X as the active label. In the
simulation, for each wire we assign the label representing the 0-value as the active label.
Then, note that for the kth AND gate in the circuit, the system

(R⊕T)

0
0
∆

⊕MH

can be represented using calls to CH,∆ and H on 0-labels only. Here the array H⃗ in the
garbling algorithm can be written as:

H⃗ =



κ
2 prefix of H(L0A, 3k − 3)
κ
2 prefix of H(L1A, 3k − 3)
κ
2 prefix of H(L0B , 3k − 2)
κ
2 prefix of H(L1B , 3k − 2)
κ
2 suffix of H(L0A ⊕ L0B , 3k − 1)
κ
2 suffix of H(L0A ⊕ L1B , 3k − 1)


in terms of the 0-labels and ∆. These values are ‘activated’ depending on the entries in
M. The even entries in this vector can be implemented through calls to CH,∆ where the
last entry b ∈ {0, 1} in CH,∆(·, ·, ·) is determined using the entries in (R ⊕ T). This allows
representing the garbling equation in terms of the active labels and the weak CCR hash
oracle H(x⊕∆, i)⊕ b∆ = CH,∆(x, i, b) only (where either the κ

2 -bit prefix or suffix is used).
Further, note that throughout the garbling algorithm, the indices kcg ∈ N act as a counter
for the oracle queries made, rendering the set of garbling oracle queries and responses as a
legal query strategy satisfying weak CCR (Definition 7).

Given this observation, the simulator Sim works as follows: first, it samples a hash func-
tion H← Hκ. Then, for each input wire, an active label is sampled as in the real garbling.

44

Then the garbling algorithm is executed with each instance of weak CCR oracle output be-
ing replaced by a κ

2 -bit value sampled uniformly at random, as required in the construction.
This process also derives the active wire label for all other wires in the circuit, including the
output wires. Finally, the output decoding information is set such that the active output
labels map to the function output as required. Algorithm 9 formalizes the actions of the
simulator.

Algorithm 9 Simulator Sim for Garbling Scheme GSH adapted from [52]
1: procedure Sim(1κ,C,C(x))
2: sample H← Hκ and initialize F = [], X = [] and d = []
3: for every i ∈ [n] do
4: sample L0

i ← {0, 1}κ
5: set X[i] = L0

i

6: end for
7: for each g ∈ [q] in topological order do
8: parse gate g = (A,B,C, fg)
9: if fg == XOR then

10: set L0
C = L0

A ⊕ L0
B

11: else
12: k0

g = 3g − 2, k1
g = 3g − 1, k2

g = 3g, pa = lsb(L0
A), pb = lsb(L0

B)

13: sample MA,M
′
A,MB ,M

′
B ,MAB ,M

′
AB ← {0, 1}

κ
2

14: derive T← AND(pa, pb)
15: sample R, r← SampleR(T)

16: compute z ∥
[
C
G

]
= V−1(r ∥ (R⊕T)

L0
A

L0
B

∆

⊕MH)

17: where (R⊕T)

0
0
∆

⊕MH is computed as:

– use hash calls H(L0
A, k

0
g), H(L0

B , k
1
g) and H(L0

A ⊕ L0
B , k

2
g) as indicated in MH

– for each entry in MH activating H(L1
A, k

0
g),

• use MA if entry for ∆ in (R⊕T) is 0 and use M ′
A if it is 1

– for each entry in MH activating H(L1
B , k

1
g),

• use MB if entry for ∆ in (R⊕T) is 0 and use M ′
B if it is 1

– for each entry in MH activating H(L0
A ⊕ L1

B , k
2
g),

• use MAB if entry for ∆ in (R⊕T) is 0 and use M ′
AB if it is 1

18: set L0
C = C[0]||C[1]

19: set F[g] = G
20: end if
21: end for
22: for each j ∈ [m] do
23: set d[j] = lsb(L0

j)⊕C(X)[j]
24: end for
25: return ((F,H),X,d)
26: end procedure

Hybrid Experiments. To prove the theorem, it now remains to show that the distribution
of the output of this simulator is computationally indistinguishable from a tuple derived

45

by executing GSH.Gb and GSH.En that follow Algorithm 7. We do so by considering the
following list of hybrid experiments:

– Hybrid0 : This is the distribution that is derived as the outcome of Sim (Algorithm 9)
over all the internal randomness used by the simulator.

Hybrid0 =
{
(F,H),X,d

}
((F,H),X,d)←Sim(1κ,C,C(x)),κ∈N

– Hybrid1 : This is a distribution that is derived as an outcome of a hybrid ex-
periment where, given access to a random oracle R, a PPT algorithm SimR oper-
ates exactly as Algorithm 9 except Step 13. Instead, in this experiment, the values
MA,M

′
A,MB ,M

′
B ,MAB ,M

′
AB are derived as,

MA =
κ

2
-bit prefix of R(L0A, k0g , 0)

M ′A =
κ

2
-bit prefix of R(L0A, k0g , 1)

MB =
κ

2
-bit prefix of R(L0B , k1g , 0)

M ′B =
κ

2
-bit prefix of R(L0B , k1g , 1)

MAB =
κ

2
-bit suffix of R(L0A ⊕ L0B , k

2
g , 0)

M ′AB =
κ

2
-bit suffix of R(L0A ⊕ L0B , k

2
g , 1)

Hybrid1 =
{
(F,H),X,d

}
((F,H),X,d)←SimR(1κ,C,C(x)),κ∈N

Due to the nature of the outputs of the random oracle, we have that this distribution is
identical to the former one Hybrid0 ≡ Hybrid1.

– Hybrid2 : This is a distribution that is derived as an outcome of a hybrid experiment
where, first a hash function H← Hκ is sampled. Then given access to a random oracle
R, a PPT algorithm GR,H operates as given in Algorithm 10. Unlike in the previous
experiment, G receives the circuit input x as input and uses this to derive the values of
all the active labels. Overall, this hybrid experiment differs from the previous one only
in that the labeling of the active labels is no longer designated as 0, but it carries the
same values as in the real execution of the garbling evaluation.

Hybrid2 =
{
(F,H),X,d

}
((F,H),X,d)←GR,H(1κ,C,x),κ∈N

As such, this distribution is identical to the former one since the (re-)labeling of the
active wire labels is never visible to the adversary Hybrid1 ≡ Hybrid2.

– Hybrid3 : Here first a weak CCR secure hash function H← Hκ is sampled along with
∆← {0, 1}κ−1||1 sampled uniformly at random. Then CH,∆ is the weak CCR oracle that
outputs, CH,∆(x, i, b) = H(x ⊕ ∆, i) ⊕ b∆. The distribution Hybrid3 is derived as an
outcome of a hybrid experiment where, given access to an oracle CH,∆, a PPT algorithm
GCH,∆,H operates as given in Algorithm 10. G receives the circuit input x as input and
uses this to derive the values of all the active labels.

Hybrid3 =
{
(F,H),X,d

}
((F,H),X,d)←GCH,∆,H(1κ,C,x),κ∈N

This hybrid experiment differs from the previous only in Step 13 in that the oracle
query used to derive the values MA,M

′
A,MB ,M

′
B ,MAB ,M

′
AB are no longer made to

46

the random oracle R, but to CH,∆. We show later that this hybrid distribution can be
shown as computationally indistinguishable from the previous by reduction to the weak
CCR security of the hash function family Hybrid2

c
≈ Hybrid3.

Algorithm 10 Hybrid Experiment GO,H for Garbling Scheme GSH

1: procedure GO,H(1κ,C,x)
2: initialize F = [], X = [] and d = []
3: for every i ∈ [n] do
4: sample L

x[i]
i ← {0, 1}κ

5: set X[i] = L
x[i]
i

6: end for
7: for each g ∈ [q] in topological order do
8: parse gate g = (A,B,C, fg) and let a, b ∈ {0, 1} be the active input values
9: if fg == XOR then

10: set L
XOR(a,b)
C = La

A ⊕ Lb
B

11: else
12: k0

g = 3g − 2, k1
g = 3g − 1, k2

g = 3g, pa = lsb(La
A), pb = lsb(Lb

B)
13: derive T← AND(pa, pb) and sample R, r← SampleR(T)

14: compute z ∥
[
C
G

]
= V−1(r ∥ (R⊕T)

La
A

Lb
B

∆

⊕MH)

15: where (R⊕T)

0
0
∆

⊕MH is computed as:

• use hash calls H(La
A, k

0
g), H(Lb

B , k
1
g) and H(La

A ⊕ Lb
B , k

2
g) as indicated in MH

• for each entry in MH activating H(L¬a
A , k0

g),
∗ letting x be the entry for ∆ in (R⊕T), use O(La

A, k
0
g , x)

• for each entry in MH activating H(L¬b
B , k1

g),
∗ letting x be the entry for ∆ in (R⊕T), use O(Lb

B , k
1
g , x)

• for each entry in MH activating H(La
A ⊕ L¬b

B , k2
g),

∗ letting x be the entry for ∆ in (R⊕T), use O(La
A ⊕ Lb

B , k
2
g , x)

16: set Lc
C = C[0]||C[1]

17: set F[g] = G
18: end if
19: end for
20: for each j ∈ [m] do
21: set d[j] = lsb(L

C(x)[j]
j)⊕C(x)[j]

22: end for
23: return ((F,H),X,d)
24: end procedure

– Hybrid4 : This is a distribution that is derived as an outcome of a hybrid experiment
where, given access to a weak CCR oracle CH,∆ as above, a PPT algorithm G

CH,∆
∗ operates

as given in Algorithm 11. This differs from the previous hybrid experiment only in that
the lines marked in blue additionally exist in Algorithm 11, where they were not present
in Algorithm 10.

Hybrid4 =
{
(F,H),X,d

}
((F,H),X,d)←G

CH,∆
∗ (1κ,C,x),κ∈N

47

As the extra lines executed in this hybrid experiment do not affect the output distri-
bution, it follows that this distribution is identical to the previous one Hybrid3 ≡
Hybrid4.

Algorithm 11 Hybrid Experiment GO∗ for Garbling Scheme GSH

1: procedure GO
∗ (1κ,C,x)

2: initialize F = [], X = [] and d = []
3: sample H← Hκ, ∆← {0, 1}κ−1||1 and set O = CH,∆
4: for every i ∈ [n] do
5: sample L

x[i]
i ← {0, 1}κ and set L

¬x[i]
i = L

x[i]
i ⊕∆

6: set X[i] = L
x[i]
i

7: end for
8: for each g ∈ [q] in topological order do
9: parse gate g = (A,B,C, fg) and let a, b ∈ {0, 1} be the active input values

10: if fg == XOR then
11: set L

c=XOR(a,b)
C = La

A ⊕ Lb
B

12: else
13: k0

g = 3g − 2, k1
g = 3g − 1, k2

g = 3g, pa = lsb(La
A), pb = lsb(Lb

B)
14: derive T← AND(pa, pb) and sample R, r← SampleR(T)

15: compute z ∥
[
C
G

]
= V−1(r ∥ (R⊕T)

La
A

Lb
B

∆

⊕MH)

16: where (R⊕T)

0
0
∆

⊕MH is computed as:

• use hash calls H(La
A, k

0
g), H(Lb

B , k
1
g) and H(La

A ⊕ Lb
B , k

2
g) as indicated in MH

• for each entry in MH activating H(L¬a
A , k0

g),
∗ letting x be the entry for ∆ in (R⊕T), use O(La

A, k
0
g , x)

• for each entry in MH activating H(L¬b
B , k1

g),
∗ letting x be the entry for ∆ in (R⊕T), use O(Lb

B , k
1
g , x)

• for each entry in MH activating H(La
A ⊕ L¬b

B , k2
g),

∗ letting x be the entry for ∆ in (R⊕T), use O(La
A ⊕ Lb

B , k
2
g , x)

17: set Lc
C = C[0]||C[1] and F[g] = G

18: end if
19: set L¬c

C = Lc
C ⊕∆

20: end for
21: for each j ∈ [m] do
22: set d[j] = lsb(L

C(x)[j]
j)⊕C(x)[j]

23: end for
24: return ((F,H),X,d)
25: end procedure

– Hybrid5 : This is the final hybrid experiment where the distribution is derived exactly
as a tuple derived by executing GSH.Gb and GSH.En in Algorithm 7.

Hybrid5 =
{
(F,H),X,d

}
((F,H),(∆,e),d)←GSH.Gb(1κ,C),X=GSH.En((∆,e),x),κ∈N

This differs from the previous experiment in that, here, for each wire, instead of first
calculating the active label and then deriving the inactive label with respect to it, the

48

0-label is calculated (irrespective of whether it is the active label) and the 1-label is
derived. Note that in this distribution and the previous, the algebraic relationships
between each element derived remain the same. As such, this distribution is identical to
the previous one Hybrid4 ≡ Hybrid5.

Security Reduction to Weak CCR. To prove the theorem, it only remains now to show
that Hybrid2

c
≈ Hybrid3. We do so by demonstrating a security reduction to the weak

CCR security property (Definition 7) of the underlying hash function family H used in the
garbling scheme. Let DGS be a PPT distinguisher that can distinguish between the hybrid
distributions Hybrid2 and Hybrid3 with non-negligible advantage ϵ. If such a distinguisher
exists, we show that it can be used in a black-box way by a PPT adversary A to win the
weak CCR security game (Definition 7) for the hash function family H with non-negligible
advantage as follows:

– The adversary A receives a circuit C and input x from DGS that expects to receive a
tuple of the form ((F,H),X,d) in return.

– Formulating a Query Strategy: Given C : {0, 1}n → {0, 1}m with qAND AND gates,
and input x ∈ {0, 1}n, the adversary A designs a PPT algorithm with the following
interface,

Q = {(xj , j, bj , yj)}j∈[3qAND] = QueryStrategyOC,x(1
κ; r)

where the strategy accepts randomness of the form r ← {0, 1}nκ. This is detailed in
Algorithm 12. This is a randomized algorithm that is given to the challenger C for the
weak CCR security game.

– The challenger C accepts this QueryStrategyO and operates as implicit in Definition 7.
That is, it samples a bit c← {0, 1} and if c = 0, it samples randomness r and executes
QueryStrategyRC,x. Otherwise, it samples r and ∆, and executes QueryStrategy

CH,∆

C,x . It
gives a tuple (Q,H) to A.

– Given the set of query responses Q and the hash algorithm H, the adversary A can
now execute Algorithm 10 with active input labels as indicated in the queries in Q and
using the items in Q where ever oracle queries are required. The output of this is a
tuple ((F,H),X,d) which is distributed as Hybrid2 if the bit chosen by the challenger
is c = 0, and is distributed as Hybrid3 otherwise.

– A gives ((F,H),X,d) to DGS and outputs whatever it outputs.

Note that in the above game, A has the same advantage as that of DGS, which is non-
negligible. However, since H is sampled from a weak CCR secure hash function family Hκ,
it follows that no such A can exist and therefore no such DGS can exist. This completes the
proof.

D Proof of Theorem 7

In this section, we first begin with fully describing the garbling scheme from [33], adapted
to using a hash function H that is sampled from a weak CCR secure hash function family H
(Definition 7). [33] defines their garbling scheme for switch systems. These are circuit-like
objects establishing constraints over arithmetic wires that each hold values modulo 2k, for
various widths k. Although [33] defines their garbling scheme for general oblivious switch
systems for arithmetic circuits, for simplicity, we restrict ourselves to the Boolean setting
(i.e. the max-width of the switch system is 1) wherein the garbling scheme uses a hash

49

Algorithm 12 Query Strategy QueryStrategyOC,x for GSH adapted from [52]

1: procedure QueryStrategyOC,x(1κ; r ← {0, 1}nκ)
2: initialize Q = []
3: for every i ∈ [n] do
4: set Li = r[(i− 1)κ+ 1 : iκ] ∈ {0, 1}κ
5: end for
6: for each g ∈ [q] in topological order do
7: parse gate g = (A,B,C, fg)
8: if fg == XOR then
9: set LC = LA ⊕ LB

10: else
11: k0

g = 3g − 2, k1
g = 3g − 1, k2

g = 3g, pa = lsb(LA), pb = lsb(LB)
12: derive T← AND(pa, pb) and sample R, r← SampleR(T)

13: compute z ∥
[
C
G

]
= V−1(r ∥ (R⊕T)

LA

LB

∆

⊕MH), where within (R⊕T)

0
0
∆

⊕MH,

14: if MA = O(LA, k
0
g , 0) is activated, set Q[k0

g] = (LA, k
0
g , 0,MA)

15: if M ′
A = O(LA, k

0
g , 1) is activated, set Q[k0

g] = (LA, k
0
g , 1,M

′
A)

16: if MB = O(LB , k
1
g , 0) is activated, set Q[k1

g] = (LB , k
1
g , 0,MB)

17: if M ′
B = O(LB , k

1
g , 1) is activated, set Q[k1

g] = (LB , k
1
g , 1,M

′
B)

18: if MAB = O(LA ⊕ LB , k
2
g , 0) activates, Q[k2

g] = (LA ⊕ LB , k
2
g , 0,MAB)

19: if M ′
AB = O(LA ⊕ LB , k

2
g , 1) activates, Q[k2

g] = (LA ⊕ LB , k
2
g , 1,M

′
AB)

20: set Lc
C = C[0]||C[1] and F[g] = G

21: end if
22: end for
23: return Q
24: end procedure

function with interface H : {0, 1}κ × N → {0, 1}κ that is compatible with Definition 7. We
refer the reader to Remark 5 for a note on how this definition and its realization can extend
beyond the case of Boolean inputs and outputs.

Oblivious Switch Systems and Notation. A switch system is a model of computation that
generalizes circuits. We re-state its formal definition from [33] below.

Definition 10. A switch system is a system of constraints on wires (i.e., constrained
variables) holding values over moduli 2k for various k. The system is defined in terms of
gates. Non-input wires in the system are initially not set (i.e., have no value), and as the
system runs, wires become set according to the rules of each gate. The types of gates are as
follows:

– A switch takes as input a binary control wire ctrl ∈ Z2 and data wire x ∈ Z2k . The gate
outputs data wire y ∈ Z2k , and it establishes the following implication constraint:

ctrl = 0→ x = y

The output of a switch is denoted by writing x ⊢ ctrl. Switches are bidirectional in the
sense that the system ensures that if ctrl = 0, then x = y, regardless of which data wire
is set first.

50

– A join takes input wires x, y ∈ Z2k and establishes an equality constraint:

x = y

This is denoted by x ▷◁ y. Joins are bidirectional in the sense that the system ensures
that x = y, regardless of which wire is set first.

– An affine gate is parameterized by an affine map f : Zin
2k → Zout

2k , where in, out ∈ N. It
takes as input a vector of wires x ∈ Zin

2k , and it outputs a vector of wires y ∈ Zout
2k . The

gate establishes the following constraint:

f(x) = y

Affine gates are denoted by writing affine constraints of wires and are multi-directional
in the sense that the system uses set wires to solve for the unset wires.

– A modulus gate takes as input a wire x ∈ Z2k+c for arbitrary c, k. It outputs a wire
y ∈ Z2k , and establishes the following constraint:

y = x mod 2k

This is a one-directional gate: the system uses x to solve for y.
– A division gate takes as input a wire x ∈ Z2k+c where it is guaranteed that 2c divides

x. It outputs a wire y ∈ Z2k , and it establishes the following constraint:

y =
x

2c
mod 2k

This is a one-directional gate: the system uses x to solve for y.

Each gate has a unique identifier g and a switch system S has input wires and output wires.
S(x) denotes the values on the output wires after running with input wires x.

Informally, one can think of a switch system as a collection of sets of linear equations.
Depending on which variables in these equations have known values (are set), each set of
linear equations may have either infinite, unique or no solution. The variables that are
initially set (before the evaluation starts) are inputs x and a set of controls dictate the order
in which the equations are evaluated with outputs of one equation possibly feeding into the
input wires of another. This ordering is indicated by the gate IDs and formalized below.

Definition 11. Let S be a switch system and let x be an assignment of input wires. The
controls of S on x, denoted ctrl(S,x) ∈ Z∗2, is the set of all switch control wire values,
each labeled by its gate ID g.

Informally, a switch system as given above is legal if the assignments of values to wires,
starting from the inputs and then as dictated by the controls, lead to a unique solution of
this system.

Definition 12. A switch system S is legal if for any input x there exists only one assign-
ment of circuit wires that satisfies the gate constraints, i.e., wire values are a function of
the input wires.

Definition 13. Consider a switch system S, and let x ∈ Z2k denote a wire modulo 2k in
S. The wire x has width k, denoted by width(x) = k. For a join x ▷◁ y, the width is the
same as the width of x (and y):

width(x ▷◁ y) = width(x) = width(y)

The join width of S is the sum of the widths of all join gates, denoted as Jwidth(S).

51

[33] shows that for any Boolean circuit C there exits a legal switch system S as above such
that:

– |S| = O(|C|) and Jwidth(S) = O(|C|),
– for all inputs x, S(x) = C(x).

The notion of a switch system can also be defined as randomized (in contrast with deter-
ministic) where part of the input wires are designated to accept randomness that originates
from a predetermined distribution. This is formalized in the definition below.

Definition 14. A randomized switch system is a pair consisting of a switch system S
and a distribution D. The execution (S,D)(x) of a randomized switch system on input x is
defined by randomly sampling r← D, then running S(x; r).

Definition 15. A family of legal randomized switch systems (Sκ, Dκ) for κ ∈ N is oblivious
if the distribution of controls of (Sκ, Dκ) can be simulated. That is, there exists a PPT
simulator Simctrl such that for all inputs x,

Simctrl(1
κ)

s
≈ {ctrl(Sκ, (x; r))|r← Dκ}

where
s
≈ denotes that the distributions are statistically close w.r.t. κ.

[33] shows that for any Boolean circuit C, there exits an oblivious switch system (S,D)
such that:

– |S| = O(|C|) and Jwidth(S) = O(|C|),
– for all inputs x, (S,D)(x) = C(x).

Algorithms 14–15 detail the garbling scheme GSH in [33] for such oblivious switch systems
and Algorithm 13 contains a simplification of the garbling and encoding algorithms for
Boolean wires (width k = 1). In the simplified scheme, each wire w has two associated
labels L0w, L

1
w ∈ {0, 1}κ. For a vector x ∈ {0, 1}n, we denote by L⃗0x = {L0x[i]}i∈[n] and

L⃗1x = {L1x[i]}i∈[n] the vector of labels for the 0 and 1 value for each bit position in [n].
Further, the modulus and division gates reduce to equality for the Boolean wire system.

We go on to show that this scheme (for Boolean labels) can be proven selectively secure
in the presence of PPT adversaries as long as the underlying hash function H is sampled
uniformly at random from a weakly CCR secure family of hash function H (Definition 7)
during the garbling procedure.

Remark 5 (Weak CCR security for hash families with general domains). Definition 7 of weak
CCR secure hash function families and the proof of Theorem 8 can be directly extended to
families of hash functions whose members have the form H : Zκ

2k ×N→ Zκ
2k and offsets are

defined as ∆ ← Zκ−1
2k
||1 where these domains are vectors of elements from a larger integer

space Z2k than Boolean values. Further, all operations within the oracle CH,∆ would now
be over Z2k (i.e., element-wise addition and multiplication over the field, instead of Boolean
AND and XOR). This resulting hash function family would suffice for instantiating the
arithmetic garbling scheme GSH in [33] in its complete generality. The construction of such
hash function families would be the same as Construction 1, except the underlying PPRF
would have input and output domain Zκ

2k respectively. The proof for weak CCR security
would follow from the same set of hybrid experiments, with the exception that this change
of PPRF domains and arithmetic operation over the new domain needs to be reflected.

52

D.1 Proof

Theorem 7 Let H = {Hκ}κ∈N be a wCCR secure hash function family ensemble (Defi-
nition 7) and GSH = (Gb,En,Ev,De) be the garbling scheme as defined in Algorithms 14
and 15 where, for security parameter κ, in the beginning of Gb a hash function H is sampled
uniformly at random from Hκ and output together with the garbled circuit F. Then GSH

satisfies selective privacy by simulation (PRIV-SIM – Definition 6).

To prove the theorem, we show that if there existed a PPT distinguisher D that has
non-negligible advantage in the PRIV-SIM security game (Definition 6), this can be used
in a black-box way by a PPT adversary A to gain non-negligible advantage in the security
game for weak CCR (Definition 7). To show this, let us first describe the PPT simulator
Sim that the challenger in PRIV-SIM invokes.

Simulator for GSH. The simulator for the garbling is a PPT algorithm ((F,H),X,d) ←
Sim(1κ, (S,D), S(x)) that needs to output the selective privacy challenge tuple created only
using the circuit and the function output. Note that the garbling algorithm GSH.Gb garbles
an oblivious switch system (S,D) gate by gate in topological order and Sim needs to output
a tuple that contains values that are indistinguishable from those derived from the real
garbling scheme on the system and input.

Let X denote the set of active input labels for the garbling F,d. That is, for a real garbling
(F,d), this is the input encoding X = GSH.En((∆, e),x). For each wire in the switch system
(S,D), we refer to the label derived from evaluating F using X as the active label. In the
simulation, for each wire we assign the label representing the 0-value as the active label.
Note that only the garbling of the switch gates requires calls to the hash function and this is
one hash call of the form either CH,∆(Lctrl, g, 0) (when the control bit ctrl = 1) or H(Lctrl, g)
(when ctrl = 0). This allows representing the garbling in terms of the active labels and the
weak CCR hash oracle H(x⊕∆, i)⊕ b∆ = CH,∆(x, i, b) only. Further, note that throughout
the garbling algorithm, the gate indices g ∈ [q] act as a counter for the oracle queries made,
rendering the set of garbling oracle queries and responses as a legal query strategy satisfying
weak CCR (Definition 7).

Given this observation, the simulator Sim works as follows: first, a set of control bits are
simulated using a call to ctrl ← Simctrl(1

κ) that exists for every oblivious switch system.
Then a hash function H ← Hκ is sampled at random from the family of weak CCR secure
hash functions. For each input wire, an active label is sampled as in the real garbling. Then
the garbling algorithm is executed with each instance of weak CCR oracle output being
replaced by a κ-bit value sampled uniformly at random, as required in the construction.
This process also derives the active wire label for all other wires in the system, including the
output wires. Finally, the output decoding information is set such that the active output
labels map to the function output as required. Algorithm 16 formalizes the actions of the
simulator.

Hybrid Experiments. To prove the theorem, it now remains to show that the distribution
of the output of this simulator is computationally indistinguishable from a tuple derived by
executing GSH.Gb and GSH.En in Algorithm 14. We do so by considering the following list
of hybrid experiments:

– Hybrid0 : This is the distribution that is derived as the outcome of Sim (Algorithm 16)
over all the internal randomness used by the simulator.

Hybrid0 =
{
(F,H),X,d

}
((F,H),X,d)←Sim(1κ,(S,D),S(x)),κ∈N

53

Algorithm 13 Garbling Scheme GSH for Switch Systems over Boolean Domain
1: procedure Gb(1κ, (S,D))
2: initialize F = [], e = [] and d = []
3: sample ∆← {0, 1}κ−1||1
4: sample r← Dκ

5: for every i ∈ [n] do
6: sample L0

i ← {0, 1}κ and set L1
i = L0

i ⊕∆
7: set e[i] = L0

i

8: end for
9: for every randomness wire i set to r[i] ∈ {0, 1} do

10: set L0
i = r[i] ·∆ ∈ {0, 1}κ

11: end for
12: for each g ∈ [q] from S in topological order do
13: if gate g is a switch gate: y = x ⊢ ctrl then
14: L0

y = L0
x ⊕ H(L0

ctrl, g)
15: F[g] = lsb(L0

ctrl)
16: end if
17: if gate g is a join gate: x ▷◁ y then
18: F[g] = L0

y ⊕ L0
x

19: end if
20: if gate g is an affine gate: y = f(x) then
21: L⃗0

y = f(L⃗0
x)

22: end if
23: end for
24: for every j ∈ [m] do
25: set d[j][0] = H(L0

j , q+ j)
26: set d[j][1] = H(L0

j ⊕∆, q+ j)
27: end for
28: return (F, (∆, e),d)
29: end procedure
30:
31: procedure En((∆, e),x)
32: initialize X = []
33: for every i ∈ [n] do
34: set X[i] = e[i]⊕ x[i]∆
35: end for
36: Return X
37: end procedure

– Hybrid1 : This is a distribution that is derived as an outcome of a hybrid experiment
where, given access to a random oracle R, a PPT algorithm SimR operates exactly as
(Algorithm 16) except in Step 15 and Step 22. Instead, in this experiment, the values
L0y (resp. M) are derived as L0x ⊕R(Lctrl, g, x⊕ y) (resp. R(L0j , q+ j, 0))

Hybrid1 =
{
(F,H),X,d

}
((F,H),X,d)←SimR(1κ,(S,D),S(x)),κ∈N

Due to the nature of the outputs of the random oracle, we have that this distribution is
identical to the former one Hybrid0 ≡ Hybrid1.

– Hybrid2 : This is a distribution that is derived as an outcome of a hybrid experiment
where, first a hash function H← Hκ is sampled. Then given access to a random oracle

54

Algorithm 14 Garbling Scheme GSH for Switch Systems [33]
1: procedure Gb(1κ, (S,D))
2: initialize F = [], e = [] and d = []
3: sample ∆← Zκ−1

2kmax ||1
4: sample r← Dκ

5: for every i ∈ [n] with width k do
6: sample L0

i ← Zκ
2k

7: set e[i] = L0
i

8: end for
9: for every randomness wire i set to [r[i]] ∈ [2k] do

10: set L0
i = [(0− r[i]) ·∆] mod 2k

11: end for
12: for each g ∈ [q] from S in topological order do
13: if gate g is a switch gate: y = x ⊢ ctrl then
14: L0

y = L0
x + H(L0

ctrl, g)
15: F[g] = lsb(L0

ctrl)
16: end if
17: if gate g is a join gate: x ▷◁ y then
18: F[g] = L0

y − L0
x

19: end if
20: if gate g is an affine gate: y = f(x) then
21: L⃗0

y = f(L⃗0
x)

22: end if
23: if gate g is a modulus gate: y = x mod 2k then
24: L0

y = L0
x mod 2k

25: end if
26: if gate g is a division gate: y = x

2c
mod 2k then

27: L0
y =

L0x
2c

mod 2k

28: end if
29: end for
30: for every j ∈ [m] do
31: set d[j][0] = H(L0

j , q+ j)
32: set d[j][1] = H(L0

j ⊕∆, q+ j)
33: end for
34: return (F, (∆, e),d)
35: end procedure
36:
37: procedure En((∆, e),x)
38: initialize X = []
39: for every i ∈ [n] do
40: set X[i] = e[i]⊕ x[i]∆
41: end for
42: Return X
43: end procedure

R, a PPT algorithm GR,H operates as given in Algorithm 17. Unlike in the previous
experiment, G receives the switch system input x as input and samples r ← D and
uses this to derive the values of all the active labels. This includes the control values
(as opposed to them being derived from Simctrl as in the previous hybrid). Overall, this

55

Algorithm 15 Algorithms to Evaluate the Garbling
1: procedure Ev(F,X)
2: initialize Y = []
3: for each gate g ∈ [q] in a topological order do
4: use active input labels (that are set) to derive further labels
5: if gate g is a switch gate: y = x ⊢ ctrl then
6: let Lx (resp. Ly) and Lctrl be set
7: parse F[g] = lsbctrl and derive ctrl
8: if ctrl = 0 then
9: compute Ly = Lx + H(Lctrl, g) (resp. Lx = Ly − H(Lctrl, g))

10: end if
11: end if
12: if gate g is a join gate: x ▷◁ y then
13: let Lx (resp. Ly) be set
14: compute Ly = F[g] + Lx (resp. Lx = F[g]− Ly)
15: end if
16: if gate g is an affine gate: y = f(x) then
17: let L⃗x be set
18: compute L⃗y = f(L⃗x) by solving the set of equations
19: end if
20: if gate g is a modulus gate: y = x mod 2k then
21: drop the MSBs of Lx until Ly = Lx mod 2k

22: end if
23: if gate g is a division gate: y = x

2c
mod 2k then

24: drop the LSBs of Lx until Ly = Lx
2c

mod 2k

25: end if
26: if C is a circuit output wire then
27: Y[C] = LC

28: end if
29: end for
30: return Y
31: end procedure
32:
33: procedure De(Y,d)
34: initialize y = []
35: for j ∈ [m] do

36: y[j] =

{
0 if H(Y[j], q+ j) = d[j][0]

1 if H(Y[j], q+ j) = d[j][1]

37: end for
38: return y
39: end procedure

hybrid experiment differs from the previous one only in that the labeling of the active
labels is no longer designated as 0, but it carries the same values as in the real execution
of the garbling evaluation.

Hybrid2 =
{
(F,H),X,d

}
((F,H),X,d)←GR,H(1κ,(S,D),x),κ∈N

56

Algorithm 16 Simulator Sim for Garbling Scheme GSH

1: procedure Sim(1κ, (S,D), S(x))
2: sample H← Hκ and initialize F = [], X = [] and d = []
3: ctrl← Simctrl(1

κ)
4: for every i ∈ [n] do
5: sample L0

i ← {0, 1}κ and set X[i] = L0
i

6: end for
7: for every randomness wire i do
8: set L0

i = 0κ

9: end for
10: for each g ∈ [q] from S in topological order do
11: if gate g is a switch gate: y = x ⊢ ctrl then
12: if ctrl[g] = 0 then
13: L0

y = L0
x ⊕ H(L0

ctrl, g)
14: else
15: sample L0

y ← {0, 1}κ
16: end if
17: F[g] = lsb(L0

ctrl)⊕ ctrl[g]
18: end if
19: · · · ▷ join, affine, modulus and division gates garbled like in Gb
20: end for
21: for every j ∈ [m] do
22: set d[j][S(x)[j]] = H(L0

j , q+ j)
23: set d[j][¬S(x)[j]] = M ← {0, 1}κ
24: end for
25: return ((F,H),X,d)
26: end procedure

As such, this distribution is identical to the former one since the (re-)labeling of the active
wire labels is never visible to the adversary and the output of Simctrl is statistically close
to that of a real assignment of the control wires Hybrid1

s
≈ Hybrid2.

– Hybrid3 : Here first a weak CCR secure hash function H← Hκ is sampled along with
∆← {0, 1}κ−1||1 sampled uniformly at random. Then CH,∆ is the weak CCR oracle that
outputs, CH,∆(x, i, b) = H(x ⊕ ∆, i) ⊕ b∆. The distribution Hybrid3 is derived as an
outcome of a hybrid experiment where, given access to an oracle CH,∆, a PPT algorithm
GCH,∆,H operates as given in Algorithm 17. G receives the switch system input x as input,
samples randomness and uses this to derive the values of all the active labels.

Hybrid3 =
{
(F,H),X,d

}
((F,H),X,d)←GCH,∆ (1κ,(S,D),x),κ∈N

This hybrid experiment differs from the previous only in Step 16 and Step 23 in that the
oracle query used are no longer made to the random oracleR, but to CH,∆. We show later
that this hybrid distribution is computationally indistinguishable from the previous by
reduction to the weak CCR security of the hash function family Hybrid2

c
≈ Hybrid3.

– Hybrid4 : This is a distribution that is derived as an outcome of a hybrid experiment
where, given access to a weak CCR oracle CH,∆ as above, a PPT algorithm G

CH,∆
∗ operates

as given in Algorithm 18. This differs from the previous hybrid experiment only in that
the lines marked in blue additionally exist in Algorithm 18, where they were not present

57

Algorithm 17 Hybrid Experiment GO,H for Garbling Scheme GSH

1: procedure GO,H(1κ,C,x)
2: initialize F = [], X = [] and d = []
3: sample r← Dκ

4: for every i ∈ [n] do
5: sample L

x[i]
i ← {0, 1}κ

6: set X[i] = L
x[i]
i

7: end for
8: for every randomness wire i set to r[i] ∈ {0, 1} do
9: set L

r[i]
i = r[i] ·∆ ∈ {0, 1}κ

10: end for
11: for each g ∈ [q] from S in topological order do
12: if gate g is a switch gate: y = x ⊢ ctrl then
13: if ctrl[g] = 0 then
14: Ly = Lx ⊕ H(Lctrl, g)
15: else
16: compute Ly = Lx ⊕O(Lctrl, g, x⊕ y)
17: end if
18: F[g] = lsb(Lctrl)⊕ ctrl[g]
19: end if
20: · · · ▷ join, affine, modulus and division gates garbled like in Gb
21: end for
22: for every j ∈ [m] do
23: set d[j] = {S(x)[j] : H(Lj , q+ j), ¬S(x)[j] : M = O(Lj , q+ j, 0)}
24: end for
25: return ((F,H),X,d)
26: end procedure

in Algorithm 17.

Hybrid4 =
{
(F,H),X,d

}
((F,H),X,d)←G

CH,∆
∗ (1κ,(S,D),x),κ∈N

As the extra lines executed in this hybrid experiment do not affect the output distri-
bution, it follows that this distribution is identical to the previous one Hybrid3 ≡
Hybrid4.

– Hybrid5 : This is the final hybrid experiment where the distribution is derived exactly
as a tuple derived by executing GSH.Gb and GSH.En in Algorithm 14.

Hybrid5 =
{
(F,H),X,d

}
((F,H),(∆,e),d)←GSH.Gb(1κ,(S,D)),X=GSH.En((∆,e),x),κ∈N

This differs from the previous experiment in that, here, for each wire, instead of first
calculating the active label and then deriving the inactive label with respect to it, the
0-label is calculated (irrespective of whether it is the active label) and the 1-label is
derived. Note that in this distribution and the previous, the algebraic relationships
between each element derived remain the same. As such, this distribution is identical to
the previous one Hybrid4 ≡ Hybrid5.

Security Reduction to Weak CCR. To prove the theorem, it only remains now to show
that Hybrid2

c
≈ Hybrid3. We do so by demonstrating a security reduction to the weak

58

Algorithm 18 Hybrid Experiment GO∗ for Garbling Scheme GSH

1: procedure GO
∗ (1κ,C,x)

2: initialize F = [], X = [] and d = []
3: sample H← Hκ, ∆← {0, 1}κ−1||1 and set O = CH,∆
4: sample r← Dκ

5: for every i ∈ [n] do
6: sample L

x[i]
i ← {0, 1}κ and set L

¬x[i]
i = L

x[i]
i ⊕∆

7: set X[i] = L
x[i]
i

8: end for
9: for every randomness wire i set to r[i] ∈ {0, 1} do

10: set L
r[i]
i = r[i] ·∆ ∈ {0, 1}κ

11: end for
12: for each g ∈ [q] from S in topological order do
13: if gate g is a switch gate: y = x ⊢ ctrl then
14: if ctrl[g] = 0 then
15: Ly = Lx ⊕ H(Lctrl, g)
16: else
17: compute Ly = Lx ⊕O(Lctrl, g, x⊕ y)
18: end if
19: F[g] = lsb(Lctrl)⊕ ctrl[g]
20: end if
21: · · · ▷ join, affine, modulus and division gates garbled like in Gb
22: set each inactive output label L′

y = Ly ⊕∆
23: end for
24: for every j ∈ [m] do
25: set d[j] = {S(x)[j] : H(Lj , q+ j), ¬S(x)[j] : O(Lj , q+ j, 0)}
26: end for
27: return ((F,H),X,d)
28: end procedure

CCR security property (Definition 7) of the underlying hash function family H used in the
garbling scheme. Let DGS be a PPT distinguisher that can distinguish between the hybrid
distributions Hybrid2 and Hybrid3 with non-negligible advantage ϵ. If such a distinguisher
exists, we show that it can be used in a black-box way by a PPT adversary A to win the
weak CCR security game (Definition 7) for the hash function family H with non-negligible
advantage as follows:

– The adversary A receives an oblivious switch system (S,D) and input x from DGS that
expects to receive a tuple of the form ((F,H),X,d) in return.

– Formulating a Query Strategy: Given S : {0, 1}n → {0, 1}m for a Boolean circuit
with qctrl switch gates, randomness r sampled from distribution D and input x ∈ {0, 1}n,
the adversary A designs a PPT algorithm with the following interface,

Q = {(xj , j, bj , yj)}j∈[qctrl+m] ← QueryStrategyOS,D,x,r(1
κ; r)

where the strategy accepts randomness of the form r ← {0, 1}nκ. This is detailed in
Algorithm 19. This is a randomized algorithm that is given to the challenger C for the
weak CCR security game.

– The challenger C accepts this QueryStrategyO and operates as implicit in Definition 7.
That is, it samples a bit c← {0, 1} and if c = 0, it samples randomness r and executes

59

Algorithm 19 Query Strategy QueryStrategyOS,D,x for Garbling Scheme GSH

1: procedure QueryStrategyOS,D,x,r(1
κ; r ← {0, 1}nκ)

2: initialize Q = []
3: for every i ∈ [n] do
4: set L

x[i]
i = r[(i− 1)κ+ 1 : iκ] ∈ {0, 1}κ

5: end for
6: for every randomness wire i set to r[i] ∈ {0, 1} do
7: set L

r[i]
i = r[i] ·∆ ∈ {0, 1}κ

8: end for
9: for each g ∈ [q] from S in topological order do

10: if gate g is a switch gate: y = x ⊢ ctrl then
11: if ctrl[g] = 0 then
12: Ly = Lx ⊕ H(Lctrl, g)
13: else
14: compute Ly = Lx ⊕O(Lctrl, g, x⊕ y)
15: set Q[g] = (Lctrl, g, x⊕ y, Lx ⊕ Ly)
16: end if
17: F[g] = lsb(Lctrl)⊕ ctrl[g]
18: end if
19: · · · ▷ join, affine, modulus and division gates garbled like in Gb
20: end for
21: for every j ∈ [m] do
22: set d[j] = {S(x)[j] : H(Lj , q+ j), ¬S(x)[j] : M = O(Lj , q+ j, 0)}
23: set Q[q+ j] = (Lj , q+ j, 0,M)
24: end for
25: return Q
26: end procedure

QueryStrategyRS,D,x. Otherwise, it samples r and ∆, and executes QueryStrategyCH,∆

S,D,x. It
gives a tuple (Q,H) to A.

– Given the set of query responses Q and the hash algorithm H, the adversary A can
now execute Algorithm 17 with active input labels as indicated in the queries in Q and
using the items in Q where ever oracle queries are required. The output of this is a
tuple ((F,H),X,d) which is distributed as Hybrid2 if the bit chosen by the challenger
is c = 0, and is distributed as Hybrid3 otherwise.

– A gives ((F,H),X,d) to DGS and outputs whatever it outputs.

Note that in the above game, A has the same advantage as that of DGS, which is non-
negligible. However, since H is sampled from a weak CCR secure hash function family Hκ,
it follows that no such A can exist and therefore no such DGS can exist. This completes the
proof.

E Supporting Lemmas for Theorem 8

Lemma 1. If iO is secure and F is a puncturable PRF, then Hybrid0 and Hybrid1 are
computationally indistinguishable.

Proof. Note that Hybrid0 = Hybrid0,0 and Hybrid1 = HybridQ,0. First, we prove that
the sequence of hybrids from Hybrid0,0 to HybridQ,0 are computationally indistinguish-

60

able. For this we need to only prove that Hybridj,0, Hybridj,1, Hybridj,2 and Hybridj+1,0

are computationally indistinguishable for all j ∈ [0 : Q(κ) − 1]. Before proceeding we fix
some notations. For a PPT distinguisher D and j ∈ [0, Q(κ)− 1], define:

pDj,0(κ) :=

∣∣∣∣ Pr
x←Hybridj,0

[D(x, 1κ) = 1]− Pr
x←Hybridj,1

[D(x, 1κ) = 1]

∣∣∣∣
pDj,1(κ) :=

∣∣∣∣ Pr
x←Hybridj,1

[D(x, 1κ) = 1]− Pr
x←Hybridj,2

[D(x, 1κ) = 1]

∣∣∣∣
pDj,2(κ) :=

∣∣∣∣ Pr
x←Hybridj,0

[D(x, 1κ) = 1]− Pr
x←Hybridj+1,1

[D(x, 1κ) = 1]

∣∣∣∣.
In the following, we will write Q instead of Q(κ) except when we want to emphasize that Q
is a fixed polynomial.

1. For indistinguishability of Hybridj,0 and Hybridj,1 note that

Fk || {(xi ⊕∆, 1) 7→ y∗i ⊕ bi∆}i∈[1:j]

and

Fk(xj+1⊕∆,j+1)
|| {(xi ⊕∆, 1) 7→ y∗

i ⊕ bi∆}i∈[1:j] ∪ {(xj+1 ⊕∆, j + 1) 7→ yj+1 ⊕ bj+1∆}

are functionally equivalent as the output Fk || {(xi ⊕∆, 1) 7→ y∗i ⊕ bi∆}i∈[1:j] is simply
hard-coded on the punctured point. Hence by definition of iO the above two are indis-
tinguishable. Since everything else in the two hybrids is the same we get that any PPT
adversary’s advantage in distinguishing Hybridj,0 and Hybridj,1 is negligible. Thus
for any PPT distinguisher D

∣∣∣∣ Pr
x←Hybridj,0

[D(x, 1κ) = 1]− Pr
x←Hybridj,1

[D(x, 1κ) = 1]

∣∣∣∣ = pDj,0 ≤ AdviOD (κ). (14)

2. For indistinguishability of Hybridj,1 and Hybridj,2, we reduce it to the pseudorandom-
ness of puncturable PRFs. Suppose there exists a PPT adversary A that can distinguish
Hybridj,1 and Hybridj,2 with a non-negligible advantage then we can create an adver-
sary B that given the punctured key k(xj+1⊕∆,j+1) for puncturing point (xj+1⊕∆, j+1)
distinguishes Fk(xj+1⊕∆, j+1) from a randomly sampled value. B would play a PPRF
game where it does the following:

(a) First samples ∆ ← {0, 1}κ−1||1 and then chooses the puncture point at (xj+1 ⊕
∆, j + 1).

(b) B receives the punctured key k(xj+1⊕∆,j+1) and challenge c from the challenger. The
challenge c is either Fk(xj+1 ⊕∆, j + 1) or a uniformly random value.

(c) B simulates a hybrid distinguishing game with A

(d) Upon receiving QueryStrategy(·) from A, B fixes a random r and samples y∗i ←
{0, 1}κ ∀i ∈ [1 : j].

61

(e) Then B creates

H =iO(Fk(xj+1⊕∆,j+1)
|| {(xi ⊕∆, 1) 7→ y∗i ⊕ bi∆}i∈[1:j]∪

{(xj+1 ⊕∆, j + 1) 7→ c′ ⊕ bj+1∆})
such that

(x1, b1) =QueryStrategy(1κ; r), y1 = CH,∆(x1, 1, b1) = y∗1

(xi, bi) =QueryStrategy(1κ; r, y∗1 , · · · , y∗i−1) ∀i ∈ [2 : j]

yi =CH,∆(xi, i, bi) = y∗i ∀i ∈ [2 : j]

(xj+1, bj+1) =QueryStrategy(1κ; r, y∗1 , · · · , y∗j)
c′ =c⊕ bj+1∆

yj+1 =H(xj+1 ⊕∆, j + 1)⊕ bj+1∆ = c′ = c⊕ bj+1∆

(xi, bi) =QueryStrategy(1κ; r, y∗1 , · · · , y∗j , yj+1, · · · , yi−1) ∀i ∈ [j + 2 : Q]

yi =H(xi ⊕∆, i)⊕ bi∆ ∀i ∈ [j + 2 : Q]

(f) B sends to A

{
H, (((xi, i), bi, y

∗
i))i∈[1:j], ((xi, i, bi, yi))i∈[j+1:Q])

}
(g) If A replies with Hybridj,1, B replies to PPRF challenger with 0, otherwise with 1.

We can infer B’s advantage by observing that c is either Fk(xj+1 ⊕ ∆, j + 1) or a
uniformly random value. If c is a uniformly random value then so is c′. Thus A gets
either Hybridj,1 or Hybridj,2. Therefore AdvPPRF

B ≥ AdvA on hybrid game. Thus for
any PPT distinguisher D, there exists an adversary B such that,∣∣∣∣ Pr

x←Hybridj,1

[D(x, 1κ) = 1]− Pr
x←Hybridj,2

[D(x, 1κ) = 1]

∣∣∣∣ = pDj,1 ≤ AdvPPRF
B (κ). (15)

3. For indistinguishability of Hybridj,2 and Hybridj+1,0, note that similar to Hybridj,0
to Hybridj,1, we have function equivalence of

Fk(xj+1⊕∆,j+1)
|| {(xi ⊕∆, 1) 7→ y∗

i ⊕ bi∆}i∈[1:j] ∪ {(xj+1 ⊕∆, j + 1) 7→ y∗
j+1 ⊕ bj+1∆}

and

Fk || {(xi ⊕∆, 1) 7→ y∗i ⊕ bi∆}i∈[1:j] ∪ {(xj+1 ⊕∆, j + 1) 7→ y∗j+1 ⊕ bj+1∆}

by definition of PPRF and hard-coding. Thus the advantage of any PPT distinguisher
D is bounded above by AdviOD (κ). Therefore, for any PPT distinguisher D∣∣∣∣ Pr

x←Hybridj,2

[D(x, 1κ) = 1]− Pr
x←Hybridj+1,0

[D(x, 1κ) = 1]

∣∣∣∣ = pDj,2 ≤ AdviOD (κ) (16)

Suppose Hybrid0,0,HybridQ,0 are not computational indistinguishable i.e. there exists
a PPT distinguisher D and a positive polynomial p(·) such that for every N ∈ N there exists
κ > N such that∣∣∣∣ Pr

x←Hybrid0,0

[D(x, 1κ) = 1]− Pr
x←HybridQ,0

[D(x, 1κ) = 1]

∣∣∣∣ > 1

p(κ)
.

62

Using triangle inequality, we get∣∣∣∣ Pr
x←Hybrid0,0

[D(x, 1κ) = 1]− Pr
x←Hybrid0,1

[D(x, 1κ) = 1]

∣∣∣∣+∣∣∣∣ Pr
x←Hybrid0,1

[D(x, 1κ) = 1]− Pr
x←Hybrid0,2

[D(x, 1κ) = 1]

∣∣∣∣+
...

+

∣∣∣∣ Pr
x←HybridQ−1,2

[D(x, 1κ) = 1]− Pr
x←HybridQ,0

[D(x, 1κ) = 1]

∣∣∣∣
≥
∣∣∣∣ Pr
x←Hybrid0,0

[D(x, 1κ) = 1]− Pr
x←HybridQ,0

[D(x, 1κ) = 1]

∣∣∣∣
>

1

p(κ)

This implies

pD0,0 + pD0,1 + pD0,2 + pD1,0 + · · ·+ pDQ,0 >
1

p(κ)

Combining this with results from Eqs. (14) to (16) we get that

2 ·Q(κ) · AdviOD (κ) +Q(κ) · AdvPPRF
B (κ) >

1

p(κ)

AdviOD (κ) + AdvPPRF
B (κ) >

1

2 · p(κ) ·Q(κ)

By averaging, either AdviOD > 1
4·p(κ)·Q(κ) or AdvPPRF

B > 1
4·p(κ)·Q(κ) must hold. Either way, we

will get that there exists a PPT adversary D or B and a polynomial 4 · p(κ) ·Q(κ) such that
for all N ∈ N there exists κ > N such that AdviOD > 1

4·p(κ)·Q(κ) or AdvPPRF
B > 1

4·p(κ)·Q(κ) .
This contradicts either iO assumption (Definition 3) or PPRF assumption (Definition 2).

Lemma 2. If iO is secure and F is a puncturable PRF, then Hybrid1 and Hybrid7 are
computationally indistinguishable.

Proof. We proceed via a hybrid argument.

1. For Hybrid1,Hybrid2,Hybrid3 and Hybrid4, we simply note that the following four
circuits are functionally equivalent:

Fk || {(xi ⊕∆, i) 7→ y∗i ⊕ bi∆}i∈[Q]

C(x, i) =

{
y∗i ⊕ bi(x⊕ xi), if x⊕ xi = ∆

Fk(x, i), otherwise.

C(x, i) =

{
y∗i ⊕ bi(x⊕ xi), if δ∆(x⊕ xi) = 1

Fk(x, i), otherwise.

C(x, i) =

{
y∗i ⊕ bi(x⊕ xi), if δπ(∆) ◦ π(x⊕ xi) = 1

Fk(x, i), otherwise.

63

Since the description of rest of the hybrids remains the same, by security of iO we get
that Hybrid1,Hybrid2,Hybrid3 and Hybrid4 are computationally indistinguishable.
Formally, for any PPT distinguisher D, any positive polynomial p(·) and large enough
κ, and ∀i ∈ [1, 3]∣∣∣∣ Pr

x←Hybridi

[D(x, 1κ) = 1]− Pr
x←Hybridi+1

[D(x, 1κ) = 1]

∣∣∣∣ ≤ 1

p(κ)
.

2. For Hybrid4 and Hybrid5, suppose there is a PPT adversary A such that it can
distinguish Hybrid4,Hybrid5 with non-negligible probability. Then we can create a
PPT adversary B which can compute h(∆) given f(∆) for a randomly generated ∆
with a non-negligible probability. This would contradict the property of a hardcore
predicate (Definition 1). B upon receiving f(∆) for a randomly sampled ∆ simply puts
π′(∆) = (f(∆), 0) and simulates Hybrid4 except with δπ′(∆) in place of δπ(∆). Now if
A replies with 0 (corresponding to Hybrid4) then B also replies with 0 otherwise with
1. We should note that B doesn’t need to know ∆ to simulate Hybrid4 with δπ′(∆) in
place of δπ(∆). It just needs to know f(∆) which it receives from the hardcore predicate
challenger. Formally, for any PPT distinguisher D, any positive polynomial p(·) and
large enough κ,∣∣∣∣ Pr

x←Hybrid4

[D(x, 1κ) = 1]− Pr
x←Hybrid5

[D(x, 1κ) = 1]

∣∣∣∣ ≤ 1

p(κ)

3. For Hybrid5 and Hybrid6, note that δπ(∆)◦π(x⊕xi) is always 0. Thus the two circuits
in Hybrid5 and Hybrid6 are functionally equivalent. Since the remaining part of the
hybrid is the same, by definition of iO the hybrids are indistinguishable. Thus, the
advantage of distinguishing them is bounded above by AdviO(κ), which is negligible.
Formally, for any PPT distinguisher D, any positive polynomial p(·) and large enough
κ, ∣∣∣∣ Pr

x←Hybrid5

[D(x, 1κ) = 1]− Pr
x←Hybrid6

[D(x, 1κ) = 1]

∣∣∣∣ ≤ 1

p(κ)

4. For Hybrid6 and Hybrid7 note that by definition of R, the distribution of {y∗i }i∈[Q]

is same as {yi : yi ← R(xi, i, bi)}i∈[Q]. Since the rest is the same in both hybrids, they
are identical. Formally, for any PPT distinguisher D∣∣∣∣ Pr

x←Hybrid5

[D(x, 1κ) = 1]− Pr
x←Hybrid6

[D(x, 1κ) = 1]

∣∣∣∣ = 0

Now, suppose for contradiction that Hybrid1 and Hybrid7 are not computationally indis-
tinguishable i.e. there exists a PPT distinguisher D and a positive polynomial p(·) such that
for every N ∈ N there exists κ > N such that∣∣∣∣ Pr

x←Hybrid0,0

[D(x, 1κ) = 1]− Pr
x←HybridQ,0

[D(x, 1κ) = 1]

∣∣∣∣ > 1

p(κ)
.

64

Using triangle inequality, we get∣∣∣∣ Pr
x←Hybrid0

[D(x, 1κ) = 1]− Pr
x←Hybrid1

[D(x, 1κ) = 1]

∣∣∣∣+∣∣∣∣ Pr
x←Hybrid1

[D(x, 1κ) = 1]− Pr
x←Hybrid2

[D(x, 1κ) = 1]

∣∣∣∣+
...

+

∣∣∣∣ Pr
x←Hybrid6

[D(x, 1κ) = 1]− Pr
x←Hybrid7

[D(x, 1κ) = 1]

∣∣∣∣
≥
∣∣∣∣ Pr
x←Hybrid0

[D(x, 1κ) = 1]− Pr
x←Hybrid1

[D(x, 1κ) = 1]

∣∣∣∣
>

1

p(κ)

By an averaging argument, there exists at least one i ∈ [1, 6] such that∣∣∣∣ Pr
x←Hybridi

[D(x, 1κ) = 1]− Pr
x←Hybridi+1

[D(x, 1κ) = 1]

∣∣∣∣ > 1

6 · p(κ)

If i < 3, this contradicts Item 1. If i = 4, 5, 6, this contradicts Items 2 to 4 respectively.

65

	Securely Instantiating `Half Gates' Garbling in the Standard Model

