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Abstract. The rank-2 module-LIP problem was introduced in cryptog-
raphy by (Ducas, Postlethwaite, Pulles, van Woerden, Asiacrypt 2022),
to construct the highly performant HAWK scheme. A first cryptana-
lytic work by (Mureau, Pellet–Mary, Pliatsok, Wallet, Eurocrypt 2024)
showed a heuristic polynomial time attack against the rank-2 module-
LIP problem over totally real number fields. While mathematically in-
teresting, this attack focuses on number fields that are not relevant for
cryptography. The main families of fields used in cryptography are the
highly predominant cyclotomic fields (used for instance in the HAWK
scheme), as well as the NTRU Prime fields, used for instance in the
eponymous NTRU Prime scheme (Bernstein, Chuengsatiansup, Lange,
van Vredendaal, SAC 2017).

In this work, we generalize the attack of Mureau et al. against rank-
2 module-LIP to the family of all number fields with at least one real
embedding, which contains the NTRU Prime fields. We present three
variants of our attack, firstly a heuristic one that runs in quantum poly-
nomial time. Secondly, under the extra assumption that the defining
polynomial of K has a 2-transitive Galois group (which is the case for
the NTRU Prime fields), we give a provable attack that runs in quantum
polynomial time. And thirdly, with the same 2-transitivity assumption
we give a heuristic attack that runs in classical polynomial time. For
the latter we use a generalization of the Gentry–Szydlo algorithm to any
number field which might be of independent interest.

1 Introduction

The recent introduction of the Lattice Isomorphism Problem (LIP) as a new
hardness assumption in cryptography [2,11,12] has lead to an exciting new line
of cryptanalysis [7,10,14,22,23,25]. LIP asks if two lattices are isomorphic, i.e.,
if one is an orthonormal transformation of the other. On the constructive side
the module-lattice isomorphism problem (module-LIP) has been introduced to
increase the efficiency of LIP-based schemes. In particular, the highly performant
scheme HAWK [11] relies on the hardness of module-LIP. And while LIP has a
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long history of cryptanalytic effort, the hardness of the module variant, especially
for modules of low rank, is yet unclear.

Let us consider the case of rank-r module lattices over the ring of integers
OK of a number field K. The rank-r module-LIP problem asks, given two rank-r
OK-modules, to determine whether there exists a K-linear orthonormal trans-
formation mapping one of the module onto the other one. Just as for the Shortest
Vector Problem (SVP), the rank r = 1 case of ideal lattices is considered inse-
cure. Namely, the Gentry–Szydlo algorithm can (depending on the number field)
recover the isomorphism in classical polynomial time [17]. Therefore, schemes like
HAWK propose the usage of modules of rank 2. Recently however, it was shown
that rank-2 module-LIP can heuristically be solved in classical polynomial time
when the number field is totally real [25], i.e., if all its complex embeddings
are real. This is achieved by reducing the initial problem to an instance of the
principal ideal problem over a degree-2 extension ofK, and applying the Gentry–
Szydlo algorithm in this extension [17]. This attack did not affect HAWK as it
is instantiated over the totally imaginary cyclotomic field Q[x]/(xn + 1), where
n is a power of two. In fact, a similar approach as in the totally real case here
reduces the rank-2 module-LIP problem in cyclotomic fields to an instance of the
principal ideal problem [7,14,23], but in a quaternion algebra over the maximal
totally real subfield of K. Quaternion algebras are significantly harder to handle
than number fields (in particular, they are non-commutative), and it is unclear
so far if the Gentry–Szydlo algorithm can be generalized to this setting.

Given that for rank-2 modules the totally real case is easy, and the totally
imaginary case is seemingly unaffected, a natural question is what happens for
intermediate fields. Can rank-2 module-LIP be secure if there is a mixture of real
and complex embeddings? For example, the number field K = Q[x]/(xp−x− 1)
used in NTRU Prime [3] has one real and p−1 complex embeddings. This field is
one of the only non-cyclotomic field used in cryptographic constructions. Hence,
it is natural to wonder whether the rank-2 module-LIP problem would be as
secure over this class of number fields, as it seems to be over cyclotomic fields.

In this work we answer this question to the negative. We show that rank-2
module-LIP is heuristically easy once the underlying number field has at least
one real embedding. Note that this is always the case if the number field has
odd degree.

1.1 Contributions

We describe three attacks against rank-2 module-LIP, when the number field K
has at least one real embedding. The three attacks share the same core idea, but
the end of the attacks differs, which has an impact on some properties of the
attacks (heuristic/provable, classical/quantum, more restriction on the number
fields). Our three algorithms and their properties are summarized in Fig. 1 below.

The first attack we present is a heuristic polynomial-time quantum algorithm
solving rank-2 module-LIP in case the number field K has at least one real
embedding. The heuristic depends on the geometric behavior of the Log-unit
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lattice if we scale up one coordinate, and we experimentally verify this heuristic
to be true for NTRU Prime fields.

Secondly, we present a fully provable polynomial-time quantum algorithm if
we require in addition that the Galois group Gal(Φ) of a defining polynomial
Φ of K acts 2-transitively on its roots. This is a relatively weak assumption as
generally most number fields of degree n have Gal(Φ) ∼= Sn [9], the symmetric
group on a set of size n, which is even n-transitive. In particular this is the case
for NTRU Prime fields.

Lastly, we give a heuristic polynomial-time classical algorithm, again with the
additional requirement that Gal(Φ) is 2-transitive. The heuristic here is a light
number theoretic assumption that the field K(i) is what we call a Gentry–Szydlo
friendly field (see Definition 1). We conjecture that this is true for all fields, and
we verify it experimentally for cyclotomic fields, a collection of random fields
and for NTRU Prime fields K.

As a side contribution, we provide a generalization of the Gentry–Szydlo
algorithm which heuristically works in any number field. So far, the Gentry–
Szydlo algorithm was only known to work in cyclotomic fields [17] and in CM
fields (a larger class of fields containing cyclotomic fields) [21]. We believe that
this generalization to any number field can be of independent interest.

2-transitive
Galois group?

Quantum?
Heuristic Quantum
(Log-unit scaling)

Section 5.2

Provable Quantum
Section 5.4

Heuristic Classical
(GS-friendly)

Section 5.5 and Appendix A

Yes
No

Yes No

Fig. 1: Overview of the three algorithms described in this article for solving rank-
2 module-LIP. They all require that the number field K has at least one real
embedding, and they all run in polynomial time.

1.2 Technical overview

Let K be any number field, andM⊂ O2
K be a (free) rank-2 module with public

basis B0 and secret basis B. The rank-2 module-LIP problem asks to recover the
secret basis B from the knowledge of B0 and G = B∗ ·B (the Gram matrix asso-

ciated to the basis B). Here, B∗ = B
⊤

is the transpose conjugate of the matrix
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B. One should note that conjugation is not always well defined over a number
field K. If K is totally real, then conjugation is simply the identity. If K is a CM
number field (i.e., a totally imaginary number field which is a degree 2 extension
of a totally real field; for instance a cyclotomic field), complex conjugation is still
well defined over K. However, for number fields that are neither CM nor totally
real, there exists no complex conjugation in K. To circumvent this issue, we will
work in a larger set named KR. This set KR, which will be formally defined in
preliminaries, is a ring containing K. In this ring, complex conjugation is always
well defined, and so there exists a subring K of KR consisting of all complex
conjugates of elements of K. The matrix G = B∗B can then be defined for any
field K, albeit in the subring KK of KR, and not directly in the field K.

Similarities and differences with the totally real case. Let B = ( a c
b d ) ∈ O2×2

K

be the secret matrix we want to recover, and let G = B∗B = ( g1 g2
g3 g4 ) be the

public Gram matrix. One of the key point of the algorithm from [25], solving
rank-2 module-LIP in totally real number fields, is the simple observation that
g1 = aa+ bb = a2 + b2 is a sum of two squares in OK . Note that here, we used
the fact that the field is totally real to argue that a = a and b = b.

When the field K is not totally real, this is not the case anymore. Yet, one
of our key result is to observe that when K has at least one real embedding
σ1 : K → R, then one can efficiently reconstruct the element a2 + b2 from the
element aa+ bb. Indeed, when evaluating the real embedding σ1 at the element
aa+ bb, one obtains

σ1(aa+ bb) = σ1(a) · σ1(a) + σ1(b) · σ1(b) = σ1(a)
2 + σ1(b)

2 = σ1(a
2 + b2),

where the second equality comes from the fact that σ1(a) and σ1(b) are in R.
Moreover, it is known (see, e.g. [26, Lemma 2.5]) that knowing a single embedding
of some element x ∈ K with enough precision is sufficient to recover the element x
exactly. Hence, from σ1(aa+bb) = σ1(a

2+b2), one can reconstruct a2+b2 ∈ OK .3

More generally, one can reconstruct the matrix B⊤B ∈ O2×2
K from the knowledge

of G = B∗B.
We are then back to a situation similar to the totally real case: we know

the element q1 := a2 + b2 ∈ OK for some secret (a, b) ∈ O2
K , and we want to

recover a and b. In the totally real case, the algorithm from [25] then proceeds by
constructing the field K(i), and considering the secret element z = a+ib ∈ K(i).
This element z has a so-called relative norm NK(i)/K(z) = (a + ib) · (a − ib) =
a2 + b2 = q1 which is known. Hence, recovering z (or equivalently a and b)
amounts to solving a relative norm equation in the extension K(i)/K. To do so,
one first constructs the ideal I = zOK(i) from the knowledge of q1.

4 Then, it

3 Note that aa+ bb is in KK but not in K, so the fact that σ1(aa+ bb) = σ1(a
2 + b2)

does not contradict the injectivity of σ1 on K.
4 A better strategy using the knowledge of the full matrix B⊤B to construct I is
proposed in the recent work [7]. This allows to avoid the rerandomization procedure
from [25] and the restriction to a certain class of modules. We use this improved
strategy in our work.
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remains to call the Gentry–Szydlo algorithm on input I and q1 = NK(i)/K(z) to
recover z (up to a root of unity) in classical polynomial time [17]. Note that the
Gentry–Szydlo algorithm applies here because K is totally real, which implies
that NK(i)/K(z) = (a+ ib)(a− ib) = (a+ ib)(a+ ib) = zz (where in the second

equality we used the fact that a = a and b = b).

Almost all steps of this strategy can be adapted to the case of a number field
K with at least one real embedding, once the matrix B⊤B is known: we can
create the field K(i), consider the secret element z = a+ ib, construct the ideal
I = zOK(i) from public information, and we have the equality q1 = NK(i)/K(z).
The main difficulty arises in the last step: from the knowledge of zOK(i) and
NK(i)/K(z), we have no efficient algorithm to recover z.5 Even worse, we have
infinitely many solutions z̃ ∈ OK(i) satisfying z̃OK(i) = I and NK(i)/K(z̃) = q1,
whereas in the totally real case we had only a small finite number of solutions.

Recovering z from I and q1. The last technical question that remains to be
solved is then: how do we recover z from I = zOK(i) and q1 = NK(i)/K(z), when
we have infinitely many solutions satisfying these two equations. This is a time
to look back an remember that we were also given the element aa + bb ∈ KK.
Using this element, together with the element a2 + b2, we show that one can
reconstruct some coefficients of the vector (|σj(z)|)j exactly (and others up to
pairwise swaps), where σj ranges over all complex embeddings of the field K(i).
From there, we propose three different strategies to recover z, leading to our
three algorithms.

The first strategy uses that we know at least one coefficient |σj0(z)|, and
we can try to use this information to recover z exactly from I. Using a quan-
tum computer, one can reduce the problem of recovering z given zOK(i) and
|σj0(z)| (up to a root of unity) to the problem of recovering a vector v in the
so-called Log-unit lattice with a given value for vj0 , its j0-th coordinate. Our
heuristic is that the map sending vectors of the Log-unit lattice to their j0-th
coordinate is injective, and that by scaling this coordinate by a large factor, one
can efficiently invert this map using the LLL algorithm. We verify this heuristic
experimentally when the field K is an NTRU Prime field. This gives us a first
algorithm recovering z, which is heuristic and quantum polynomial time.

For the second and third algorithm, we work a little bit more, and we show
that if the Galois group of Φ is 2-transitive, then one can recover the full vector
(|σj(z)|)j exactly (and not only a few coordinates or up to pairwise swaps).
Knowing |σj(z)| for all the complex embeddings of K(i) allows to improve the
previous strategy: we now have to recover a vector v in the Log-unit lattice,
knowing the value of all its coordinates. This is simple linear algebra, and we

5 There are two limitations for applying the Gentry–Szydlo algorithm as in the totally
real case. A first limitation, which can be easily circumvented (see Appendix A), is
the fact that the field K(i) is not CM anymore. The second and main limitation
is that q1 is not equal anymore to zz, which is a crucial quantity needed by the
algorithm.
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do not need a heuristic anymore. This gives us a provable quantum polynomial
time algorithm.

Finally, the last algorithm uses the fact that knowing (|σj(z)|)j means that

we know zz ∈ K(i)K(i), in addition to the ideal I = zOK(i). Recovering z
from these two quantities is exactly what the Gentry–Szydlo algorithm does
in cyclotomic fields (and what its generalization to CM fields by Lenstra and
Silverberg [21] does). The (minor) issue here is that K(i) is not a CM field,
hence, we generalized the Gentry–Szydlo algorithm to all number fields, and
used it to conclude our third algorithm. Our generalization of the Gentry–Szydlo
algorithm requires the existence of some prime numbers with good properties
with respect to the field K(i). We call number fields for which such good primes
exist Gentry–Szydlo friendly. We conjecture that any number field is Gentry–
Szydlo friendly (and we verify it experimentally for various families of number
fields, including for NTRU Prime fields K), yet we are unable to prove it. This is
why we overall obtain a heuristic classical polynomial time algorithm for rank-2
module-LIP.

1.3 Related works and discussion

It is interesting to observe that, with our current knowledge, the hardness of the
rank-2 module-LIP problem seems to depend on the choice of the number fieldK.
When K is a totally real number field, the work of Mureau at al. [25] showed
that the rank-2 module-LIP problem was solvable heuristically in polynomial
time. This, however, has little impact on cryptography since totally real number
fields are not used in actual cryptographic constructions: the two main families
of fields used in lattice-based cryptography are cyclotomic fields, and NTRU
Prime fields. Our work extends the result of [25] to all number fields with at
least one real embedding. This shows in particular that instantiating the rank-2
module-LIP problem over NTRU Prime fields would be insecure.6

Regarding cyclotomic fields, three recent concurrent works [7, 14, 23] tried
to generalize the result of [25] to CM fields, which includes cyclotomic fields.
Interestingly though, none of these articles managed to provide a polynomial
time attack against rank-2 module-LIP in cyclotomic fields. The three works
reduce the rank-2 module-LIP problem over CM fields to another problem which
might be easier, but they are unable to conclude the attack and prove that the
problem they reduce to is indeed easier that the problem they started from. So
far, the best known algorithm solving rank-2 module-LIP in cyclotomic fields
hasn’t changed, and still consists in ignoring the module structure and running
standard unstructured LIP-solving algorithms.

To the best of our knowledge, this is the first time that we are faced with
an algorithmic problem where NTRU Prime fields seem to lead to weaker in-
stances than cyclotomic fields. It would be interesting to investigate further this

6 We are not aware of any construction based on rank-2 module-LIP in NTRU Prime
fields, so our attack does not break any concrete scheme. But it is a warning against
using NTRU Prime fields when relying on the hardness of module-LIP.
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discrepancy: can this weakness of NTRU Prime fields be exploited also for other
algorithmic problems? Or, on the other hand, is it only a matter of time before
someone manages to efficiently solve rank-2 module-LIP over cyclotomic fields?

1.4 Experimental code and data

The code used to generate the data for the figures in this work is made available
online7 and will be submitted to the call for artifacts of Eurocrypt 2025. All the
data to generate the plots has also been added there.
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2 Preliminaries

2.1 Notation

For a polynomial Φ =
∑k

j=0 ajX
j we denote ∥Φ∥ := ∥(a0, . . . , ak)∥ for any norm

∥.∥. Vectors v ∈ Rk are column vectors and are denoted in lower-case bold. For
a finite multiplicative group G and x ∈ G, we let o(x) denote the order of x in G.
We also let omax(G) be the smallest positive integer such that xomax(G) = 1 for
all x ∈ G (this is known as the exponent of the group G). Equivalently, omax(G)
is the least common multiple of all the o(x) for x ∈ G.

2.2 Precision

In this work we require the approximate representation of real numbers by float-
ing point numbers. This approximation can have a certain precision λ, where a
higher precision gives a better approximation. We discuss here some properties
of such approximate representations and computations with them.

Floating point numbers generally consist of a base b, a precision λ and an
exponent range (emin, emax). For this work we fix b = 2 and ignore any issues
regarding the exponent and assume these have an infinite range. For a real
number y ∈ R we write its floating-point approximation by ŷ ∈ R. For a floating-
point approximation with precision λ we assume the guarantee that

|y − ŷ| ≤ 2−λ−1 · |y|.
7 Available at https://github.com/WvanWoerden/modLIP_real_embedding.
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In other words, we assume that the relative error is bounded by 2−λ−1. Absolute
errors play no role by our assumption that the exponent range is unlimited.

For basic operations or functions f : Rk → R we furthermore assume that on
input floating point numbers x̂1, . . . , x̂k with precision λ we get a floating point
result ŷ ∈ R that satisfies

|f(x̂1, . . . , x̂k)− ŷ| ≤ 2−λ−1 · |f(x̂1, . . . , x̂k)|.

These guarantees are given for most functions by most arbitrary precision
floating point implementations.

2.3 Lattices

A lattice L ⊂ Rn is a discrete subgroup of Rn. We call the dimension k of
spanR(L) ⊂ Rn the rank of the lattice. We will also consider lattices in Cn

simply by identifying Cn ∼= R2n. Any lattice can be represented as L = B · Zk

by a basis B ∈ Rn×k consisting of k linearly independent columns, where k is its
rank. We call G = B⊤B = (⟨bj , bl⟩)j,l the gram matrix of a basis B of a lattice

L. The volume vol(L) of a lattice L is given by vol(L) :=
√
det(B⊤B) for any

basis, which is independent of the chosen basis. A lattice has a minimum distance
λ1(L) between any two distinct lattice point, by linearity this is equivalent to
the length of the shortest nonzero vector, i.e., λ1(L) := minv∈L\{0}∥v∥.

Given a target t ∈ Rn close to the lattice, the LLL algorithm and Babai’s
nearest plane algorithm can recover the closest lattice point in polynomial time.

Lemma 1 (LLL+Babai). Let L ⊂ Rn be a lattice. Let a ∈ Rn be such that
∥a∥ < 2−n · λ1(L). There exists an algorithm that given (a basis of) L and any
target element t ∈ a+ L, recovers a in polynomial time.

Proof. Let b1, . . . , bn be an LLL-reduced basis of L which can efficiently be
obtained from any other basis. This basis has Gram-Schmidt vectors b∗1, . . . , b

∗
n

which satisfy ∥b∗j∥ ≥ 21−j · ∥b1∥. Babai nearest plane algorithm decodes a target

t ∈ a + L correctly if ∥a∥ < 1
2 minj∥b∗j∥. But indeed ∥a∥ < 2−n · λ1(L) ≤

2−n∥b1∥ ≤ 1
2 minj∥b∗j∥.

2.4 Number fields

Notations and basic results. Let K be any number field of degree n and
discriminant∆K . When |∆K | tends to infinity, it holds that n = O(log |∆K |) [24,
pp. 261-264], hence, many of our complexity statements will involve log |∆K |
but not n. We let µ(K) be the group of roots of unity of K. We know that
|µ(K)| ≤ 2n2, and that µ(K) can be computed in polynomial time [25, Corollary
2.11]. We let σ : K → Cn represents the canonical embedding of K, i.e., it is
the concatenation σ = (σ1, . . . , σn) of the r1 real and 2r2 complex embeddings
σj : K → C. In this work we will fix some ordering such that σ1, . . . , σr1 are the
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real embeddings, and σr1+j , σr1+r2+j = σr1+j are the conjugate pairs of complex
embeddings, for 1 ≤ j ≤ r2. Let OK be the ring of integers of K. The image
σ(OK) of OK by the canonical embedding is a rank-n lattices included in Cn.
We assume that we are given a Z-basis (o1, . . . , on) of OK , which is LLL-reduced
for the canonical embedding (i.e., (σ(o1), . . . ,σ(on)) is an LLL-reduced basis of
the lattice σ(OK)).

For any x ∈ K, we let N (x) =
∏

j σj(x) denote the algebraic norm of x.
By the inequality of arithmetic and geometric means, we know that ∥σ(x)∥ ≥√
n · N (x)1/n for all x ∈ K. In particular, since any x ∈ OK satisfies N (x) ≥ 1,

it holds that λ1(σ(OK)) ≥ √n.
Both in our algorithms and the final step of the adapted Gentry–Szydlo

algorithm will require to factor a polynomial over K. This can be performed in
polynomial time, for instance thanks to the following lemma.

Lemma 2 (Factoring polynomials in K [1]). There is a polynomial time
algorithm that, given a number field K and a polynomial P in K[X], factors P
in K[X].

Defining complex conjugation in K. Unless K is totally real or a CM field
there is not a natural definition of complex conjugation within K. In particular,
for an element a ∈ K there does not necessarily exists an element a ∈ K such
that σj(a) = σj(a) for all complex embeddings σj . We resolve that here by
extending K to a larger ring that does include conjugate elements.

We let KR = SpanR(σ(K)) be the R-vector subspace of Cn spanned by the
image of K via the canonical embedding. This is a dimension n vector space,
with basis (σ(o1), . . . ,σ(on)). We also have the following explicit definitionKR =
{x ∈ Cn |xj ∈ R for 1 ≤ j ≤ r1, xj+r2 = xj for r1 < j ≤ r1 + r2}, where
r1 is the number of real embeddings of K and r2 is the number of pairs of
complex embeddings. We view KR as a ring, where addition and multiplication
are performed coordinate-wise. We also define complex conjugation over KR,
which is also defined coordinate-wise: if x = (x1, . . . , xn) ∈ KR, then x :=
(x1, . . . , xn).

We let σ(K) denote the image of K in KR via the canonical embedding.
This is a field for the addition and multiplication of KR (since σ is a ring homo-
morphism). We also define σ(K) := {x |x ∈ σ(K)}. This is a Q-vector space
of dimension n with basis (σ(o1), . . . ,σ(on)), and also a field. Finally, we de-
fine σ(K) · σ(K) := {∑r

j=1 xjyj ∈ KR | r ≥ 1, xj ∈ σ(K), yj ∈ σ(K)}, the
smallest subring of KR containing both σ(K) and σ(K). This is a ring by defi-
nition, and also a Q-vector space of dimension ≤ n2, generated by the elements
(σ(ok)σ(ol))1≤k,l≤n. We note that σ(K) ·σ(K) is not necessarily a field, but the
so-called elementary products, i.e., the elements of the form x ·y with x ∈ σ(K)
and y ∈ σ(K), are always invertible in σ(K) · σ(K) (with inverse x−1 · y−1).

Representation of objects and computation. Recall that we assumed that
an LLL-reduced (for the canonical embedding) Z-basis O = (o1, . . . , on) of OK
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has been fixed. All the objects will be represented with respected to this fixed
basis. The elements of K are represented by their vector of coefficients in the
basis O, i.e., x ∈ K is represented by the vector (x1, . . . , xn) ∈ Qn such that
x =

∑
j xjoj . We call the size of x the quantity size(x) :=

∑
j size(xj), where

the size of a rational number is the sum of the bit-length of its (coprime) nu-
merator and denominator. Similarly, elements of σ(K) (resp. σ(K)) are repre-
sented by the vector of their rational coefficients in the basis (σ(o1), . . . ,σ(on))
(resp. (σ(o1), . . . ,σ(on))), and the size of these elements corresponds to the size
of their vector of rational coefficients. For σ(K) · σ(K), we fix a Q-basis of
this vector space by taking a subset of appropriate size of the generating set
(σ(ok)σ(ol))1≤k,l≤n. Again, vectors of σ(K) · σ(K) are represented by the vec-
tor of dimension ≤ n2 of their rational coefficients in this basis. Given such a
representation of an element x in σ(K),σ(K) or σ(K) ·σ(K) we can efficiently
compute any precision λ = poly(n) floating-point representation x̂ in KR (i.e.,
we can compute floating-point representations of the coordinates of the vector
in Cn).

Since O is LLL-reduced for the canonical embedding, it holds that size(x) =
poly(log ∥σ(x)∥, n) for any x ∈ OK [15, Lemma 2]. Reciprocally, using the fact

that ∥λn(σ(OK))∥ = O(∆
1/n
K ) [4, Theorem 1.6], we see that ∥σ(ok)∥ = poly(2n,

|∆K |1/n) and so log ∥σ(x)∥ = poly(size(x), log |∆K |) for all x ∈ OK .

Integral ideals of K are represented by a matrix in Zn×n corresponding to
their HNF-basis when seen as Z-modules and using the fixed basis B of OK

to get integer coefficients. Fractional ideals are scaled by an integer until they
are integral, and are then represented by the corresponding integral ideal to-
gether with the scaling factor. The size of a matrix in Zn×n is defined as the
sum of the bit-length of its coefficients. The size of an integral ideal is the size
of the integer matrix representing it, and for a fractional ideal we also add
the bit-length of the (integer) scaling denominator. For any x ∈ K, it holds
that size(xOK) = poly(size(x), log |∆K |). This is because xb1, . . . , xbn forms
a Z-basis of xOK , and the rational matrix associated to this basis has a size
poly(size(x), log |∆K |). Computing the HNF of this matrix cannot increase its
size more than polynomially.

Basic operation on elements, such that addition, multiplication and division
(restricted to inversion of elementary products for σ(K) · σ(K)) of elements
of K, σ(K), σ(K), and σ(K) · σ(K) can be performed in polynomial time in
their size and in log |∆K |. Basic operations on ideals, such as multiplication and
inversion of fractional ideals of K can be performed in polynomial time in their
size and in log |∆K |.

Principal ideal problem. Principal ideals gOK ⊂ OK play an important role
in this work. As discussed above, these ideals are generally represented by their
HNF basis and recovering a principal generator of the ideal is classically a hard
problem. There does however exist a polynomial-time quantum algorithm to
recover a principal generator.

10



Theorem 1 (Principal ideal recovery [6]). Let K be a number field, OK

its ring of integers, and I ⊂ OK a principal OK-ideal. Given (the HNF basis
of) I there exists a quantum algorithm that recovers a principal generator h ∈ I
such that I = hOK in polynomial time.

Log-unit lattice. Let K be a number field of degree n with ring of integers
OK . Let σ1, . . . , σn : K → C be the complex embeddings of K. We define the
logarithmic embedding Log : K∗ → Rn by

Log(x) := (log(|σ1(x)|), . . . , log(|σn(x)|)) for all x ∈ K∗.

Note that this is a group morphism mapping the multiplicative group K∗ onto
an additive subgroup of Rn.

We denote the unit group of OK by O×
K . This is a multiplicative group, which

by the logarithmic embedding maps to an additive discrete sub-group of Rn, i.e.,
a lattice. We call the lattice Log(O×

K) the Log-unit lattice of K. The Log-unit
lattice is useful for relating distinct generators g, h of the same principal ideal
I = gOK = hOK ⊂ OK to each-other. Indeed, in that case u = gh−1 ∈ O×

K and
the difference Log(g)− Log(h) = Log(u) lies in the Log-unit lattice.

The Log embedding O×
K → Log(O×

K) is not injective, more precisely its
kernel consists of all roots of unity y in OK , as those satisfy |σj(y)| = 1 for
all 1 ≤ j ≤ n. This implies that from knowing Log(u) ∈ Log(O×

K) one can
only uniquely recover u up to a root of unity. Additionally because complex
embeddings come in pairs with the same norm the rank of the Log-unit lattice
equals r1 + r2 − 1 < n = r1 + 2r2 where r1 is the number of real and r2 the
number of totally imaginary embeddings.

Computing generators for the unit group, and thereby a basis for the Log-
unit lattice can be done in classical sub-exponential time or quantum polynomial
time.

Theorem 2 (Basis of Log-unit lattice [5,13]). Given a number field K of
degree n, there exists a classical sub-exponential time or a quantum polynomial-
time algorithm (in log |∆K |) that computes a set S of generators for the unit
group O×

K .8 Furthermore, one can compute an LLL-reduced basis of the Log-unit
lattice Log(O×

K) up to precision λ in time poly(log |∆K |, λ).

Furthermore, the first minimum of the Log-unit lattice cannot be too small.

Lemma 3 (First minimum Log-unit lattice [18]). Let K be any number
field of degree n and let LK := Log(O×

K) ⊂ Rn be the Log-unit lattice of K.
Then for any ε > 0, the first minimum λ1(LK) is lower bounded by λ1(LK) ≥
Ω(n− 1

2−ε).

8 These generators are usually represented in the so-called compact representation,
which allows to maintain a representation with bit-length polynomial in log |∆K |,
whereas the standard representation as vectors of coefficients in the known basis of
OK may lead to non-polynomial bit-length.
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2.5 Module lattices and the module-lattice isomorphism problem

Free module lattices. Let K be a degree n number field with a ring of inte-
gers OK . A module lattice over OK is an OK-module M ⊂ Kr along with an
embedding σ into a real or complex vector space. For simplicity and clarity we
restrict ourselves to free module lattices of rank r ≥ 1 over OK by considering
full-rank free modulesM = B · Or

K given by some basis B ∈ Kr×r. Usually we
rescale the coefficients and assume that B ∈ Or×r

K .
As an embedding we consider the canonical embedding σ : K → Cn and

simply extend it to Kr by concatenation, i.e., we define σ(x) = (σ(a1)| . . .
|σ(ar)) ∈ Cnr for x = (a1, . . . , ar) ∈ Kr. The geometry of the module lattice is
then determined via the embedding, i.e., for vectors x,y ∈M their (Hermitian)
inner product equals ⟨σ(x),σ(y)⟩ ∈ C (where ⟨·, ·⟩ denotes the standard Her-
mitian inner product over Crn). Additionally we define the module dot product
⟨x,y⟩K :=

∑r
j=1 σ(aj)σ(bj) ∈ σ(K) · σ(K) ⊂ Cn for x,y ∈ Kr. For a ba-

sis B ∈ Kr×r with columns b1, . . . , br we then define the module Gram matrix
G := (⟨bj , bk⟩K)j,k ∈ (σ(K) · σ(K))r×r consisting of all pairwise module dot
products. One can view B and G as the structured representation of a full basis
and gram matrix of the module lattice embedded in Cnr. Note that when K
is totally real or a CM field, then σ(K) · σ(K) = σ(K) and thus the module
Gram matrix G can simply be represented by elements in K. In this work this
will generally not be the case though and we refer back to Section 2.4 on how
to represent elements of σ(K) · σ(K).

The module-lattice isomorphism problem. Two Z-lattices L1,L2 ⊂ Rn

are isomorphic if there exists a (linear) isometry O ∈ On(R) sending L1 to L2.
In terms of bases B1, B2 ∈ Rn×n for L1,L2 respectively this implies that there
exists an orthonormal transformation (isometry) O ∈ On(R) and a unimodular
(basis transformation) U ∈ GLn(Z) such that B2 = OB1U . One can rephrase
this in terms of their gram matrices Gj := B⊤

j Bj as

G2 = (OB1U)⊤OB1U = U⊤B⊤
1 (O⊤O)B1U = U⊤G1U,

taking the orthonormal transformation O out of the picture. We can thus focus
on recovering U and assume for now that B1, B2 are bases of the same lattice.
One can then rephrase the LIP problem as: given B1 and G2 = B⊤

2 B2, recover
B2 up to an automorphism V ∈ GLn(Z) such that V ⊤G2V = G2.

We now generalize this to free OK-module lattices of rank r as defined in Sec-
tion 2.5. LetM1,M2 ⊂ Or

K be two module lattices of rank r over OK given by
bases B1, B2 ∈ Or×r

K . Again we look for a K-linear isometry between them and

thus we must preserve all pairwise dot products ⟨x,y⟩K ∈ σ(K) · σ(K). Just
as before we can rephrase the LIP problem in terms of (module) gram matrices
and basis transformations U ∈ GLn(OK).

Problem 1 (module-LIP). Let K be a number field. Let B ∈ Or
K be a (secret)

basis of a free module lattice M = B · Or
K . Given the module gram matrix

12



G1 = σ(B⊤)σ(B) and any other basis ofM, recover B up to an automorphism
V ∈ GL2(OK) such that V ⊤G1V = G1.

In particular, in this work, we only consider the module-LIP problem on rank-2
integer OK-module lattices.

Problem 2 (rank-2 module-LIP). Let B =

(
a c
b d

)
with a, b, c, d ∈ OK be a (se-

cret) basis of a module lattice M = BO2
K . Given G := σ(B⊤)σ(B) and any

basis ofM, recover B (up to an automorphism).

Note that the recovery of B is only unique up to automorphisms. For example, if
M = O2

K , then (a, b) and (c, d) can be swapped to (b, a) and (d, c), or multiplied
by a root of unity (u1a, u2b), (u1c, u2d) for u1, u2 ∈ µ(K), without changing G
or the generated lattice.

We would like to remark that using fields that are not totally real or a CM
field are probably an inefficient choice for constructions based on module-LIP
(besides the attacks we present). The gram matrix has elements in σ(K) ·σ(K),
which generally could require a representation of size as large as Θ(n2) in the
degree n, compared to Θ(n) for elements in K.

2.6 Our setting: number fields with a real embedding.

In this section we set up the stage and notation for the rest of this work. Our
goal is to solve the module-LIP problem for a rank-2 module M ⊂ O2

K1
over

a number field K1 with at least one real embedding. We also ignore the totally
real case as it has been treated by [25]. We will define some notations for K1

and some extension fields that will be used in the later sections.
Let Φ be an irreducible monic polynomial of degree n = r1 +2r2 with r1 > 0

real and r2 > 0 pairs of conjugate complex roots. We denote the real roots of Φ
in C by α1, . . . , αr1 , and the complex roots by αr1+1, . . . , αr1+r2 , . . . , αr1+r2+1, . . . ,
αr1+2r2 where αr1+r2+j = αr1+j for j = 1, . . . , r2.

Without loss of generality we fix the conjugate pair of roots αr1+1, αr1+r2+1 =
αr1+1, and we consider the number field K1 := Q(αr1+1). Then K1 has degree
n over Q and has n complex embeddings σ1, . . . , σn given by σk : αr1+1 7→ αk.

Since K1 has at least one real embedding σ1 : K1 → R we know that i =√
−1 ̸∈ K1 as otherwise σ1(i)

2 = σ1(i
2) = −1 which is impossible for σ1(i) ∈ R.

Let L1 := Q(αr1+1, i). Then L1 = K1(i) is a degree-2 extension of K1, and a
degree-2n extension of Q. It has 2n complex embeddings σk,± given by

σk,+(x+ yi) = σk(x) + i · σk(y) for k = 1, . . . , n

σk,−(x+ yi) = σk(x)− i · σk(y) for k = 1, . . . , n,

for all x, y ∈ K1.
The Galois group Gal(Φ) of the polynomial Φ is the Galois group of the

splitting field K̃ := Q(α1, . . . , αn) (where α1, . . . , αn are the roots of Φ). In other

words, let Aut(K̃) be the set of automorphisms of K̃ (i.e., the set of all Q-linear
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K1 = Q(αr1+1)

Q

K2 = Q(αr1+1, αr1+1)

L1 = Q(αr1+1, i)

L2 = Q(αr1+1, αr1+1, i)

n

2

n−1
2

or n− 1

n− 1

1 or 2

if 2-transitive

Fig. 2: Diagram of number fields.

bijective field morphisms from K̃ to K̃). This group is called the Galois group of

K̃, and this is also, by definition, the Galois group Gal(Φ) of Φ. Let φ ∈ Gal(Φ)

be an element of the Galois group of Φ. As we have seen, φ : K̃ → K̃ is an
automorphism of K̃. In particular, for any root αj of Φ, the image φ(αj) must be
another root of Φ. Hence, we can make the Galois group Gal(Φ) act on the set of
roots of Φ via the action (φ, αj) ∈ Gal(Φ)×{roots of Φ} 7→ φ(αj) ∈ {roots of Φ}.
We say that Gal(Φ) acts k-transitively on the roots of Φ (for some k ∈ {1, . . . , n})
if, for any two k-tuples (β1, . . . , βk) and (β′

1, . . . , β
′
k) of roots of Φ, where the roots

are distinct within each tuple, there exists φ ∈ Gal(Φ) such that φ(βj) = β′
j for

all 1 ≤ j ≤ k.
To define the remaining extensions K2 and L2 we assume that Gal(Φ) acts

2-transitively on the roots α1, . . . , αn. This will be a requirement for two out
of three of our attacks. This assumption does not exclude many number fields.
In fact (for a certain notion of randomness) most number fields of degree n
have a Galois group isomorphic with the full permutation group Sn [9], which is
k-transitive for all k = 1, . . . , n.

Let K2 = Q(αr1+1, αr1+1). By the 2-transitivity this is a degree-n(n −
1) extension of Q (because it admits n(n − 1) complex embeddings, sending
(αr1+1, αr1+1) to any pair of distinct roots of Φ), and so a degree-(n− 1) exten-
sion of K1. As mentioned before we have n(n− 1) complex embeddings σk,l for
k, l = 1, . . . , n with k ̸= l generated by

σk,l(αr1+1) = αk ∈ C and σk,l(αr1+1) = αl ∈ C.

In particular we will be interested in the embeddings σr1+j,r1+r2+j which map
the conjugate pair (αr1+1, αr1+1) to the conjugate pair (αr1+j , αr1+j) for j =
1, . . . , r2. Additionally, we consider the map ϕ : K2 7→ K2 which maps αr1+1 7→
αr1+1 and αr1+1 7→ αr1+1 as the natural conjugation map on K2.

Lastly, let L2 := Q(αr1+1, αr1+1, i). In case i ∈ K2 we have K2 = L2 and
these number fields collide. Otherwise, L2 is a degree-2 extension of K2 and a
degree-(n−1) extension of L1. Then L2 has 2n(n−1) complex embeddings σk,l,±
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for k, l = 1, . . . , n distinct and ± ∈ {+,−}, given by

σk,l,±(x+ iy) = σk,l(x)± i · σk,l(y),

for all x, y ∈ K2.

NTRU Prime fields. As a concrete example throughout this work we consider
the NTRU Prime field K1 with defining polynomial Φ = xp−x−1 where p is an
odd prime (these polynomial a-re known as Artin-Schreier polynomials). This
field is used in the NTRU Prime key encapsulation mechanism [3], which is
why we give it this name. This field has precisely 1 real embedding σ1 : K →
R, and p − 1 complex embeddings σ2, . . . , σp. Using the notation α1 ∈ R and
α2, . . . , αp ∈ C as before for the roots of Φ we have K1 = Q(α2). Furthermore,
we have OK = Z[α2]/(Φ) and Gal(Φ) ∼= Sp. The Galois group Gal(Φ) acts p-
transitively and in particular 2-transitively on the roots.

3 Reconstructing B⊤B from a single real embedding

Recall that we try to recoverB =

(
a c
b d

)
from the Hermitian formG = σ(B⊤)σ(B)

and any other basis of M = BO2
K . In this section, we show that the Hermi-

tian form σ(B⊤)σ(B) can be transformed into a quadratic form σ(B⊤)σ(B) =
σ(B⊤B), by reconstructing B⊤B. The key observation to do so is the fact

that, for any real embedding, e.g., for σ1 : K1 → R we have σ1(B⊤)σ1(B) =
σ1(B

⊤)σ1(B) = σ1(B
⊤B). Knowing the value of σ1(B

⊤B) (at sufficient preci-
sion) allows us to recover B⊤B ∈ K.

3.1 Reconstruction

The idea is as follows. Each of the embedding maps σk is injective on K1, and
therefore in theory one can recover any preimage y ∈ K1 from its image σ1(y) ∈
R. In particular, one should recover the xj ∈ Q such that

∑d
j=1 xjσ1(oj) = σ1(y)

over the reals. In practice however, one only obtains an approximation of σ1(y)
and for precise recovery one needs to assume that y is part of some discrete set
and that the xj are bounded. In our setting the discreteness is obtained from
knowing that y ∈ OK1

and thus that the xj we are looking for are integer.
We can now apply a standard trick to find a small integer combination of the

σ1(oj) that is close to (our approximation of) σ1(y). We do this by constructing
a basis A as follows where γ̃ is an approximation of σ1(y) such that |γ̃−σ1(y)| ≤
2−λ:

A =


2λ · γ̃ 2λ · σ1(o1) . . . 2

λ · σ1(on)
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
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Note that

∥A · (−1, x1, . . . , xn)∥2 = 22λ ·

γ̃ −
∑
j

xjσ1(oj)

2

+
∑
j

x2
j

= 22λ · (γ̃ − σ1(y))
2
+

∑
j

x2
j ≤ 1 +

∑
j

x2
j ,

and thus if the xj ’s are small, the solution we are looking for corresponds to a
short vector in the lattice generated by the columns of A. Note that this lattice
is of rank n+ 1 in Rn+2.

The remaining question is how large λ has to be for this solution vector to be
sufficiently shorter than all the other vectors in the lattice, such that LLL will
recover it in polynomial time. For a full analysis of this we refer to Appendix A
of [26]. From the same work we take the following complexity statement.

Lemma 4 (Reconstruction [26, Lemma 2.5]). Let O = (o1, . . . , on) be an
LLL-reduced Z-basis of OK1 . There exists an algorithm that, given O and γ̃1
such that |γ̃1 − σ1(y)| ≤ 2−λ for some y =

∑d
j=1 xjoj ∈ OK1 and some

λ ≥ poly(log |∆K |, log∥Φ∥, size(y)),

recovers x = (x1, . . . , xn) ∈ Zn in probabilistic polynomial time with respect to λ.

In the statement above, we simplified the bound on λ from [26], which was
originally poly(n, logmaxj∥oj∥∞, log∥Φ∥, size(y)). The simplification comes from
the fact that the basis O is LLL-reduced, and so we have seen in preliminaries
that log∥oj∥ = poly(log |∆K |) for all j’s. For a more precise expression of the
needed precision see [26, Lemma A.10]. Generally, the needed precision when
only knowing one embedding is at least Ω(n2) in the degree.

3.2 Reconstruction example: NTRU Prime

Let p be an odd prime and let Φ = xp − x− 1 such that K1 is an NTRU Prime
field. Then ∥Φ∥ = O(1), and log |∆K1 | = poly(p). Now for any y =

∑
j xjoj

with |xj | ≤ 2O(n) we can efficiently recover x from σ1(y) with precision λ =
poly(n) = poly(p). We will observe that in practice, the precision needs only to
be quadratic in p, and the constant in front of p2 is relatively small, see Fig. 3.
The quadratic growth of these experimental results is consistent with the more
precise expression from [26, Lemma A.10].

Setup. For the experiment we sample B =

(
a c
b d

)
∈ O2×2

K1
in the following way,

similar to how HAWK proceeds. First, we sample a, b as polynomials with uniform
random ternary coefficients. Then, using a Hermite Normal Form computation
we try to find c, d such that we have a full basis of OK1

. If this is not possible
we start again by resampling a, b. Lastly, we reduce the size of c, d by a simple
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application of Babai’s basis rounding algorithm. HAWK uses the better Babai’s
nearest plane algorithm for this but we ignore this difference for simplicity.

Given σ1(B
⊤B) we now try to recover the elements of B⊤B =

(
q1 q2
q3 q4

)
,

where notably q3 = q2. In terms of size we roughly have ∥q1∥ < ∥q2∥ < ∥q4∥.
Given that the recovery of qj from σ1(qj) is generally influenced by the norm
we run different experiments for q1, q2 and q4. For each experiment we find the
needed precision λ to recover qj in the procedure explained in Section 3.1 by
a binary search. We use fplll [27] as our LLL implementation. We run the
experiment with 128 trials for each prime 30 < p < 300 and for each coefficient
q1, q2, q4.

Results. The experimental results are presented in Fig. 3. Indeed we observe a
required precision of λ = Θ(n2), but with a relatively small constant in front
of n2, making the procedure quite practical even for high degrees. The binary
search for each case took between a few seconds to at most a day on a single
core for each experiment, and should scale to cryptographic dimensions relatively
easily. As expected, we see in Fig. 3 that the required precision scales with the
norms of qj , in particular q4 requires a higher precision to recover than q1.
We also ran additional experiments where instead of LLL we used BKZ with
blocksize 20 and 40. This reduced the required precision by roughly 31% and
38% respectively over all cases.
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q1 (0.0346p2 + 5.35p− 40.92)

q2 (0.0376p2 + 7.25p− 76.90)

q4 (0.0403p2 + 9.80p− 120.88)

Fig. 3: Required precision λ for reconstruction of q1 = a2 + b2, q2 = ac + bd
and q3 = c2 + d2 from σ1(qj) in the NTRU Prime case. Demonstrates quadratic
growth λ = Θ(p2). The experiment consisted of 128 trials per prime 30 < p < 300
and coefficient q1, q2, q4.
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Precision of LLL. The algorithm behind Lemma 4 runs LLL on a basis with
entries of size at least 2λ ≥ 2Ω(n2). Generally, for an integer basis, the size
of the entries gives an indication of the required precision needed for floating-
point implementations of LLL. It is however not always needed to also run the
floating-point LLL algorithm with the same precision. E.g. for the NTRU Prime
case experiment in Fig. 3, running fplll for all cases p ≤ 300 required at most
160 bits of precision, indicating more of a linear growth O(p) than quadratic.

One explanation for that is that the basis A with λ = O(n2) has volume

2O(n2), which after LLL reduction implies that all coefficients have size at most
2O(n) · 2O(n2)/n = 2O(n). By increasing λ incrementally alternated by LLL re-
ducing the basis one could even provably keep the coefficients of size 2O(n).

Secondly, the incremental nature of fplll is helpful, i.e., it LLL reduces the
first k rows before considering row k + 1. In particular, the first k rows form
a lattice of determinant roughly 2O(n2), and thus once those k rows are LLL
reduced they heuristically have entries bounded by 2O(n2/k). Furthermore the
k + 1-th Gram-Schmidt vector of the initial basis is significantly smaller than
that and thus after a single size-reduction step the (k + 1)-th basis vector also

has its entries bounded by 2O(n2/k) before any of the other LLL operations on
the first k + 1 vectors takes place.

4 Ideal recovery

Recall that L1 = Q(αr1+1, i) = K1(i). In this section we explain how to use B⊤B
to recover the ideal (a + bi)OL1

, where (a, b) is the first column of the secret
basis B. This follows essentially the ideas from [7, Lemma 3.5, Proposition 3.6].
In Section 5 we will then extract (a, b) from this ideal.

4.1 Computing the ideal

To set things up let B = ( a c
b d ) ∈ O2×2

K1
be the secret basis. From the real

embedding we have seen in the previous section how to recover the matrix Q =
B⊤B = ( q1 q2

q3 q4 ) and thus q1 := a2+b2 and q2 := ac+bd. Generators for the ideal
(a+ bi)OL1

now follow from Lemma 5.

Lemma 5 (Adaptation [7, Lemma 3.5, Proposition 3.6]). Let z1 = a+bi
and z2 = c + di be elements in OL1 and IM = z1OL1 + z2OL1 be an integral
ideal in OL1 . Then

z1(det(B)i+ q2) = q1z2,

and z1OL1
= IM ∩ z1z

−1
2 IM = IM ∩ q1(det(B)i+ q2)

−1IM.

Proof. For the first part it is easy to verify that

z1(det(B)i+ q2) = (a+ bi)((ad− bc)i+ ac+ bd)

= a2c+ abd− abd+ b2c+ i(a2d− abc+ abc+ b2d)
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= (a2 + b2)c+ id(a2 + b2) = (a2 + b2)(c+ id) = q1z2.

For the second part note that for any two ideals I1, I2 ⊂ OL1
we have (I1 +

I2)
−1 = I−1

1 ∩ I−1
2 . This gives

I−1
M = (z1OL1

+ z2OL1
)−1 = (z1OL1

)−1 ∩ (z2OL1
)−1 = z−1

1 OL1
∩ z−1

2 OL1
.

To conclude we get

z1OL1
= z1I

−1
M IM = z1z

−1
1 IM ∩ z1z

−1
2 IM = IM ∩ z1z

−1
2 IM.

The last equality finally follows from the fact that z1z
−1
2 = q1(det(B)i+ q2)

−1,
as we have seen before. ⊓⊔

Note that the ideal IM = z1OL1 + z2OL1 does not depend on the choice
of the basis of M = B · O2

K1
we consider. Hence, IM can be computed in

polynomial time from any (public) basis of the underlying module lattice M,
which is assumed to be known. For example, in the case that M = O2

K1
we

simply have IM = OL1
.

Corollary 1. Consider the (secret) module basis B =

(
a c
b d

)
∈ O2×2

K1
. There

exists a polynomial-time algorithm that given det(B), Q = B⊤B ∈ O2×2
K1

, and

any public basis of M = B · O2
K1

, recovers the HNF basis of the ideal z1OL1

where z1 = a+ bi.

Proof. The ideal IM from Lemma 5 is independent from the choice of the basis.
Indeed, let B′ =

(
a′ c′

b′ d′

)
be the public basis ofM and consider the ideal I ′M =

(a′ + b′i)OL1
+ (c′ + d′i)OL1

. Because (a, b) ∈ M there exist s, t ∈ OK1
such

that (a, b) = s · (a′, b′) + t · (c′, d′). But then also z1 = a+ bi = s · (a′ + b′i) + t ·
(c′ + d′i) ∈ I ′M. Similarly z2 ∈ I ′M and thus IM ⊂ I ′M, and the other inclusion
work similarly by considering the inverse transformation. We can thus compute
(the HNF basis of) the ideal IM in polynomial time from any public basis of
M. Following Lemma 5 one then computes q1(det(B)i + q2)

−1IM ∩ IM from
the public information, giving the ideal z1OL1

. These are all standard ideal
computations that run in polynomial time. ⊓⊔

Note that the previous corollary requires the knowledge of det(B). Since
we know Q = B⊤B, we can compute det(Q) = det(B)2, and then compute
in polynomial time the roots of the polynomial X2 − det(Q) in K1, which are
{det(B),−det(B)}. This allows us to efficiently recover det(B) up to its sign.
In the final attack we can simply try both options and continue the other steps
with both results (at least one of which is correct).

4.2 Ideal recovery example: NTRU Prime

We implemented the ideal recovery method from Lemma 5 and Corollary 1 for
the NTRU Prime case for several bases B. The implementation was done directly
in PARI/GP as sagemath was significantly slower.
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Setup. We aim to verify both the correctness and the running time of the ideal
recovery step for the NTRU Prime case. For the experiment we sample a random
basis B ∈ O2×2

K1
, for which all elements have uniform ternary coefficients in the

power basis 1, α2, . . . , α
p−1
2 . We continue by computing B⊤B and det(B). Then

we confirm that indeed z1(det(B)i+ q2) = q1z2 as in Lemma 5. To conclude we
compute IM from B and and verify that z1OL1

= IM ∩ q1(det(B)i+ q2)
−1IM.

We run the experiment with 128 trials for each prime 30 < p < 200.

Results. All experiments finished correctly with the runtime shown in Fig. 4.
Computing the intersection is the most expensive step, requiring a large Hermite
Normal Form computation. All other steps were negligible in comparison.
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Fig. 4: Runtime for recovery of ideal (a + bi)OL1
using Corollary 1 in PARI/GP.

128 trials per prime on an AMD Zen2 EPYC 7452 @ 2.35 GHz CPU. The fitting
was done over the primes 100 < p < 200 and the log of their runtime.

5 Recovery of z

In this final section we show how to recover z1 = a + bi ∈ OL1
up to a root

of unity of L1. Since the roots of unity of L1 can be computed in polynomial
time and that there are at most poly(n) such elements (see preliminaries), we
can then enumerate all possible z1’s, and hence recover the first column of the
secret basis B. Doing the same thing for the second column allows to recover
the full secret basis.9 Since we focus here on z1, let us drop the index and write
z := z1 = a+ bi. In order to recover z, we will use the knowledge of a2+ b2 from
Section 3, as well as the knowledge of the ideal zOL1

from Section 4, and the

9 One can actually save a little bit of time by remembering that in the previous section
we showed that z1z

−1
2 was efficiently computable, so once z1 has been recovered, z2

can be computed by a single multiplication in L1.
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knowledge of σ(B)
⊤
σ(B) (and in particular its top-left coefficient σ(a)σ(a) +

σ(b)σ(b) ∈ σ(K) · σ(K)) which was the input of the problem.
Using the polynomial-time quantum algorithms from Theorems 1 and 2, we

can recover a principal generator g of zOL1
and a basis of the Log-unit lattice

Log(O×
L1
). We show in Section 5.1 that the knowledge of a2 + b2 allows us

to compute some coefficients of Log(z) corresponding to the pairs of complex
embeddings of L1 above the real embeddings of K1. The generators z and g of
zOL1

must differ by some unit u and thus Log(z) − Log(g) = Log(u) lies in
the Log-unit lattice. We thus also know some coefficients of Log(u), which using
similar techniques as in Section 3 allows us in Section 5.2 to heuristically recover
u and thus z up to a root of unity.

Furthermore, in the case where Φ is 2-transitive, we show in Section 5.3
that we can recover all coefficients of Log(z), leading to a provable recovery
of z up to a root of unity in Section 5.4. In the 2-transitive case we also show
in Section 5.5 and Appendix A an adaptation of the Gentry–Szydlo algorithm
which heuristically recovers z without the quantum steps in classical polynomial
time.

5.1 Partial recovery of Log(z)

Recall that the 2n complex embeddings of L1 are given by σj,± : a + bi 7→
σj(a) ± i · σj(b) for j = 1, . . . , n and ± ∈ {+,−}. In particular this means for
z = a + bi that |σj,±(z)|2 = σj(a

2 + b2) for any j = 1, . . . , r1 (corresponding
to a real embedding of K1) and any sign ± ∈ {+,−}. So given a2 + b2 we
can compute 2r1 coefficients of Log(z). The remaining values |σj,±(z)| for the
complex embeddings σj with j = r1 + 1, . . . , r1 + 2r2 we can only determine up
to a pairwise swap, thanks to Lemma 6.

Lemma 6. Let a, b ∈ K1 and z = a + bi ∈ L1. Fix some embedding σj of K1

and define, γ = |σj(a)|2 + |σj(b)|2 and δ = σj(a)
2 + σj(b)

2. Then the two real
roots of the polynomial

f(t) = t2 − 2γt+ |δ|2,

are {|σj,+(z)|2, |σj,−(z)|2}.
Proof. Let σ+ := |σj,+(z)|2 and σ− := |σj,−(z)|2, and let us write for simplicity
α = σj(a) and β = σj(b) ∈ C. Then

σ± = (α± iβ)(α∓ iβ) = |α|2 + |β|2 ∓ i(αβ − βα) ∈ R.

We verify that

(t− σ+)(t− σ−) = t2 − (σ+ + σ−)t+ σ+σ−

= t2 − 2(|α|2 + |β|2)t+ (|α|2 + |β|2)2 + (αβ − βα)2

= t2 − 2γt+ |δ|2.

⊓⊔
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Note that the real numbers γ and δ from the lemma can be computed with
arbitrary precision from the knowledge of σ(a)σ(a) + σ(b)σ(b) and a2 + b2.
So one can compute the polynomial f(t) from the lemma in polynomial time,
and then compute its roots with arbitrary precision. Hence, we can obtain the
values of |σj,±(z)| for all embeddings σj,± : L1 → C up to pairwise orderings.
For each of the real embeddings σj where j = 1, . . . , r1, the two values |σj,+(z)|
and |σj,−(z)| coincide and we obtain the corresponding coefficients of Log(z)
precisely as mentioned before.

5.2 Heuristic recovery of z from partial information

Knowing even one coefficients of Log(z) up to high precision seems in practice
enough to reconstruct z. Proving this seems difficult however as it requires cer-
tain geometric properties of the (scaled) Log-unit lattice. In 5.3 we therefore
assume 2-transitivity of the Galois group to construct Log(z) fully, leading to a
fully provable algorithm. In this section we shortly discuss the heuristic approach
that does not require this extra condition.

The reconstruction proceeds similarly to the reconstruction of an element of
OK1

from a single known embedding in Section 3. Here we try to recover Log(z)
from knowing at least one of its coefficients. One embedding is in principle enough
to heuristically recover Log(z) using a generator g of the ideal zOL1 and a basis
of the Log-unit lattice LogO×

L1
. The knowledge of a principal generator g of the

ideal zOL1
fixes the lattice coset Log(z)+LogO×

L1
. Now if at least one coefficient

of Log(z) is known up to sufficiently high precision we can use the discreteness
of the lattice to recover Log(z). This requires the following geometric scaling
property on the Log-unit lattice.

Heuristic 1 (Scaling heuristic). Let LL1
:= Log(O×

L1
) ⊂ R2n be the Log-

unit lattice of L1 of rank n−1. Let Lλ
L1

= diag(2λ, 1, . . . , 1) ·LL1
be the Log-unit

lattice where the first coordinate (corresponding to an embedding σ1,± of L1 above
a real embedding σ1 of K1) is scaled up by 2λ. We say that the scaling heuristic
holds for the Log-unit lattice if

λ1(LL1
) ≥ Ω(poly(n)−1 · 2λ/(n−1)).

for increasing λ ≥ 1.

Note that Heuristic 1 essentially says that the first minimum roughly grows in
correspondence with the increase in volume of the scaled lattice. In practice we
observe an even stronger property, namely the scaled Log-unit lattice behaves
like a random lattice and has its first minimum close to the Gaussian Heuristic
(gh(L) ≈

√
k/2πe · vol(L)1/k for a lattice of rank k). See e.g. Fig. 5 where we

experimentally show this for the NTRU Prime case. With that heuristic in place
we can recover vectors of the Log-unit lattice from a single coefficient.

Heuristic Claim 1 (Unit reconstruction) Let C = (c1, . . . , cn−1) be an LLL-
reduced basis of LL1

. If Heuristic 1 holds, there exists an algorithm that, given C
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Fig. 5: The normalized first minimum λ1(Lλ
L1
)/2λ/(p−1) of the scaled Log-unit

lattice Lλ
L1

for the NTRU Prime case. Heuristic 1 states that λ1(Lλ
L1
)/2λ/(p−1) ≥

Ω(poly(n)−1). In the figure we see that in fact a much stronger property
λ1(Lλ

L1
)/2λ/(p−1) ≈ gh(LL1

) > Ω(1) is satisfied.

and γ̃1 ∈ R such that |γ̃1−u1| ≤ 2−λ · |u1| for some u =
∑n−1

j=1 xjcj ∈ Log(O×
L1
)

and some

λ ≥ poly(n, log∥u∥2),

recovers x = (x1, . . . , xn−1) ∈ Zn−1 in polynomial time with respect to λ.

Justification. We consider the scaled lattice Lλ
L1
. Note that the vector t :=

(2λγ̃1, 0, . . . , 0) has a close lattice vector uλ := (2λu1, u2, . . . , u2n) ∈ Lλ
L1

as

∥(2λγ̃1, 0, . . . , 0)− (2λu1, u2, . . . , u2n)∥2 ≤ 22λ · |γ̃1 − u1|2 + ∥u∥22 ≤ 1 + ∥u∥22.

Under Heuristic 1 we have λ1(Lλ
L1
) ≥ 2λ/(n−1) ·Ω(poly(n)−1), which for some

λ = O(n(n+log∥u∥2)) satisfies λ1(Lλ
L1
) > 2n ·

√
(1 + ∥u∥22). Lemma 1 then suf-

fices to recover the close vector uλ = (2λu1, u2, . . . , un) from t by an application
of LLL and Babai’s nearest plane algorithm. Note that here we ignored further
rounding errors which can be handled as in the proof of Lemma 4. △
We see from the justification that a precision of O(n2) is generally sufficient to
recover Log(z) from a single coefficient.

More generally, with a similar heuristic when scaling multiple coefficients, one
would require a precision of O(n2/k) when k coordinates are known. Lemma 9
shows indeed that when all k = 2n coefficients are known a precision of O(n)
suffices.
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5.3 Full recovery of Log(z) using 2-transitivity

From now on, we assume that the Galois group Gal(Φ) acts 2-transitively on the
roots of Φ, and we will use this to recover the full vector Log(z) (or, equivalently,
to recover |σj,±(z)| for all the embeddings σj,± of L1).

Recall that, due to the 2-transitivity of Gal(Φ), K2 = Q(αr1+1, αr1+1) has a
conjugation automorphism ϕ which swaps αr1+1 and αr1+1. This automorphism
can be somehow viewed as a complex conjugation over K2 (even though we do
not have σ(ϕ(x)) = σ(x) for all x ∈ K2). In particular, we can embed the
ring σ(K1) · σ(K1) into K2 via the Q-linear map: σ(bj)σ(bk) 7→ bjϕ(bk) (recall

that the (σ(bj)σ(bk))j,k form a generating set of σ(K1) · σ(K1) as a Q-vector

space). In particular, from the knowledge of the gram matrix σ(B)
T
σ(B), we

can compute in polynomial time the element aϕ(a) + bϕ(b) ∈ K2. Recall also
that L2 = Q(αr1+1, αr1+1, i).

Lemma 7. Let z± = a± ib for a, b ∈ OK1 and let z̃± = ϕ(a)∓ iϕ(b) ∈ OL2 . Let
γ = aϕ(a) + bϕ(b) ∈ OK2 and δ = a2 + b2 ∈ OK1 . Then z+z̃+, z−z̃− ∈ L2 are
the roots of Q(x) = x2 − 2γx + δϕ(δ) in L2 and one can recover {z+z̃+, z−z̃−}
in polynomial time, given γ, δ.

Proof. To verify that z+z̃+ and z−z̃− are the roots of Q(x) note that,

z+z̃+ · z−z̃− = (a+ ib)(ϕ(a)− iϕ(b)) · (a− ib)(ϕ(a) + iϕ(b))

= (a2 + b2)(ϕ(a)2 + ϕ(b)2) = δϕ(δ),

and

z+z̃+ + z−z̃− = (a+ ib)(ϕ(a)− iϕ(b)) + (a− ib)(ϕ(a) + iϕ(b))

= 2aϕ(a) + 2bϕ(b) = 2γ.

Hence, we have that (x−z+z̃+)(x−z−z̃−) = x2−(z+z̃++z−z̃−)·x+z+z̃+·z−z̃− =
Q(x). We conclude that the roots of Q in L2 are {z+z̃+, z−z̃−}, as desired. In
order to compute {z+z̃+, z−z̃−}, it then suffices to construct the polynomial
Q(x), which can be done in polynomial time from γ an δ, and then to factor it
over L2, which can also be performed in polynomial time using Lemma 2. ⊓⊔

We do not know which of the roots is z+z̃+ but we can simply try both options.
For the next Lemma we therefore assume to know z+z̃+.

Lemma 8. Given zz̃ where z = a+bi and z̃ = ϕ(a)−iϕ(b) and q1 = a2+b2, one
can recover all absolute embeddings |σj,±(z)| for j = 1, . . . , n and ± ∈ {+,−} up
to arbitrary precision in polynomial time. In particular one recovers Log(z) ∈
Log(OL1) up to arbitrary precision.

Proof. We first consider the case that [L2 : K2] = 2 and later the special case
that L2 = K2(i) = K2. Due to this and the 2-transitivity of Gal(Φ) we get
that σk,l,± : L2 → C as defined in Section 2.6 is a complex embedding for
all distinct k, l ∈ {1, . . . , n} and ± ∈ {+,−}. Recall that σk,l,±(αr1+1) = αk,

24



σk,l,±(αr1+1) = αl and σk,l,±(i) = ±i. We consider the case that {k, l} = {r1 +
j, r1 + r2 + j} for j = 1, . . . , r2 such that σk and σl are conjugate embeddings.
Note that

σk,l,±(zz̃) = (σk,l(a)± i · σk,l(b))(σk,l(ϕ(a))∓ i · σk,l(ϕ(b)))

Now note that a ∈ K1 and thus σk,l(a) = σk(a) (and the same for b). Further-

more since ϕ : αr1+1 7→ αr1+1, it holds that σk,l(ϕ(a)) = σl(a) = σk(a). From
this we get that

σk,l,±(zz̃) = (σk(a)± i · σk(b))(σk(a)∓ i · σk(b)) = |σk,±(z)|2.

Note that such embeddings can efficiently be computed and constructed. So we
can efficiently recover |σk,±(z)|2 for k = r1 + 1, . . . , r1 + 2r2. For k = 1, . . . , r1
Lemma 6 already suffices.

We now consider the case that [L2 : K2] = 1. In this case i ∈ Q(αr1+1, αr1+1)
and thus there exists a rational multivariate polynomial P ∈ Q[X,Y ] such that
i = P (αr1+1, αr1+1). Then, by the 2-transitivity we get that P (αk, αl) = ±i
for all roots k ̸= l. In particular, we can fix the order of the conjugate roots
αr1+j , αr1+r2+j such that P (αr1+j , αr1+r2+j) = i. Because L2 = K2 its complex
embeddings are given by the σk,l for k ̸= l. Furthermore, because we fixed the
ordering based on the sign of i we know that

σr1+j,r1+r2+j(i) = σr1+j,r1+r2+j(P (αr1+1, αr1+1)) = P (αr1+j , αr1+j) = i,

and thus that σr1+j,r1+r2+j = σr1+j,r1+r2+j,+. From here we can proceed as
before to compute |σk,+(z)|. Using that |σk,−(z)| = |σk(a

2 + b2)|/|σk,+(z)| and
with Lemma 6 we again obtain all values of |σk,±(z)|. ⊓⊔

5.4 Reconstructing z from Log(z) and zOL1

In Section 5.2 we already showed how to heuristically recover z from the ideal
zOL1

and a single coefficient of Log(z). Then, in the case that Gal(Φ) is 2-
transitive we have shown in Section 5.3 that we can recover all coefficients of
Log(z). Using this full information we can provable recover z up to a root of
unity of L1, in quantum polynomial time. The reason for that is that we do not
have to scale up (one coordinate of) the Log-unit lattice anymore, and therefore
we can simply use existing bounds on the first minimum of the Log-unit lattice,
dropping the need for Heuristic 1.

Lemma 9. Let C = (c1, . . . , cn−1) be an LLL-reduced basis of the Log-unit
lattice Log(O×

L1
). There exists an algorithm that given C and γ̃ ∈ R2n such that

|γ̃j − uj | ≤ 2−λ · |uj | for all 1 ≤ j ≤ 2n, for some u =
∑n−1

j=1 xjcj ∈ Log(O×
L1
)

and some
λ ≥ poly(n, log ∥u∥),

recovers x = (x1, . . . , xn−1) ∈ Zn−1 in polynomial time with respect to λ.
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Proof. The proof follows similarly to the proof of Heuristic Claim 1, but with
Lemma 3 instead of Heuristic 1. ⊓⊔
This now allows us to present a full polynomial-time quantum algorithm for
rank-2 module-LIP when there is at least one real embedding and if the Galois
group of the defining polynomial is 2-transitive.

Theorem 3. Let K1 = Q[x]/(Φ) be a number field with at least one real em-
bedding and such that Gal(Φ) acts 2-transitively on the roots of Φ. Then the
rank-2 module-LIP problem on OK1 can be solved in quantum polynomial-time
in log |∆K1 | and in the input size.10

Proof. Firstly, using Lemma 4 one recovers B⊤B. Given B⊤B we recover the
ideal zOL1 where z = a + bi using Corollary 1. Then Lemmas 7 and 8 gives us
Log(z) up to the required precision. The polynomial-time quantum algorithm
of Theorem 1 gives us a generator g of zOL1

, and thus there exists a unit u ∈ O×
L1

such that Log(u) = Log(z) − Log(g). The latter can be computed because
Log(z) and g are known. The polynomial-time quantum algorithm of Theorem 2
gives us a basis of the Log-unit lattice Log(O×

L1
). We can then apply Lemma 9

to recover the coefficients of Log(u) in the known basis of Log(O×
L1
), from a

sufficiently good approximation of Log(u). This, in turn, can be used to recover
u up to a root of unity, and therefore z = ug up to a root of unity. The time
complexity and required precision at all steps is polynomial in log |∆K1 | and in
the size of the module-LIP instance.

5.5 Gentry–Szydlo

Our previous two attacks both involved the Log-unit lattice and used quantum
algorithms. Note that without any of the quantum steps we can recover the
ideal zOL1

where z = a + bi by the results in Sections 3 and 4. Additionally,
when Gal(Φ) is 2-transitive we can also recover zz̃ as defined in Section 5.3. The
Gentry–Szydlo algorithm is a classical polynomial-time algorithm that recovers
z (up to a root of unity) given such information. The main obstacle for us is that,
so far, this algorithm had only been considered in CM-fields, which our number
field L1 is not. In Appendix A we generalize it to any number field that is what
we call Gentry-Szydlo friendly (or GS-friendly) and Heuristic 2 says that any
field is GS-friendly (although we only really need it for L1). For completeness
we informally recall here the definition of a GS-friendly field and the heuristic.

Heuristic 2 (Informal, see Definition 1 and Heuristic 2). For any number
field K of degree n one can efficiently find large primes p1, p2 ∈ [22n+1, 22n+2]
such that

gcd
(
omax((OK/p1OK)×), omax((OK/p2OK)×)

)
= O(poly(n)).

We call such number fields GS-friendly.

10 Recall that, in this work, our definition of module-LIP is restricted to free modules
represented by a basis.
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In Fig. 6 we show experimentally that if K = K1(i) for K1 an NTRU Prime field,
or if K is a cyclotomic fields or a random field (i.e., a field defined by a random
irreducible polynomial), then K seems to be GS-friendly. For a more extensive
explanation of this heuristic and why it is needed, we refer to Appendix A.3.
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Fig. 6: Plotting the gcd’s as a function of the degree for the three families of
fields

Under Heuristic 2 we can prove the following generalized version of the
Gentry–Szydlo algorithm. We refer to Appendix A for the proof of this heuristic
claim, and extensive treaty of this generalization.

Heuristic Claim 2 (Generalized Gentry–Szydlo) Let K be any number field,
and assume that we know an LLL-reduced Z-basis of OK . Let g ∈ OK \{0}. Un-
der Heuristic 2, there is a probabilistic polynomial time (in its input size and in
log |∆K |) algorithm that takes as input the HNF basis of gOK and the element
σ(g) · σ(g) ∈ σ(K) · σ(K) and outputs gε for some ε ∈ µ(K).

To conclude we can now apply Heuristic Claim 2 to K = L1 using the ideal
zOL1 and the element Log(z) obtained in Lemma 8, to recover the secret element
z up to a root of unity.

Theorem 4. Let K1 = Q[x]/(Φ) be a number field with at least one real embed-
ding and such that Gal(Φ) acts 2-transitively on the roots of Φ. Then there is a
heuristic probabilistic polynomial time classical algorithm that solves the rank-2
module-LIP problem11 on OK1 .

Proof. The algorithm starts by recovering the matrix B⊤B in (classical) poly-
nomial time, using Lemma 4. Then, it recovers the ideal zOL1 where z = a+ bi

11 Recall that our definition of module-LIP is restricted to free modules.
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using Corollary 1, as well as the vector (|σj,±(z)|2)1≤j≤n,±∈{+,−} using Lemma 8
(both computation can be performed in classical polynomial time).

Note that the vector (|σj,±(z)|2)1≤j≤n,±∈{+,−} ∈ R2n is equal to the vector

σ(z)σ(z) ∈ σ(L1)σ(L1). Hence, given enough precision for the real coordinates
of (|σj,±(z)|2)1≤j≤n,±∈{+,−} ∈ R2n, one can recover the element σ(z)σ(z) repre-

sented by a vector of rational coordinates in the fixed basis of σ(L1)σ(L1). The
algorithm then runs the Gentry-Szydlo algorithm on input zOL1

and σ(z)σ(z) ∈
σ(L1)σ(L1), which outputs in classical polynomial time the element z, up to a
root of unity of L1.

Finally, the algorithm enumerates all the poly(n) candidate z by enumer-
ating all the roots of unity of L1 (which can be done in polynomial time, see
preliminaries). For each choice of z = z1 = a′ + ib′, it computes the correspond-

ing z2 = c′ + id′ using Lemma 5. It tests whether the matrix B′ =

(
a′ c′

b′ d′

)
is a

solution to the module-LIP instance, and if it is, it outputs it. We know that at
least one of the candidate z will give the matrix B, hence the algorithm must
successfully output a solution to the module-LIP instance. ⊓⊔
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A A Gentry–Szydlo algorithm for any number field

In [17], Gentry and Szydlo described an algorithm that recovers in polynomial
time a secret element g ∈ OK for a cyclotomic field K, given as input the
ideal gOK generated by g and the element gg ∈ K (which corresponds the
relative norm of g with respect to the maximal totally real subfield of K).12

This algorithm was then extended by Lenstra and Silverberg, first in [20] to
cover a larger class of lattices with symmetries, and later in [21], to cover the
case of all CM number fields K (as well as the more general case of lattices over
a CM order).

In this section, we show that the Gentry–Szydlo algorithm can be extended to
any number field K, provided that this number field is “Gentry–Szydlo friendly”.
This condition requires the existence of appropriate primes in the number field,
and we argue that all number fields are likely to be Gentry–Szydlo friendly (even
though we are not able to formally prove it). We also verify experimentally that
cyclotomic fields, K = K1(i) where K1 is an NTRU Prime field, and random
fields seem Gentry–Szydlo friendly.

The main technicality one faces when extending the Gentry–Szydlo algorithm
to all number fields, is that the definition of g does not have a natural meaning
anymore when K is not CM (CM-fields are by definitions the fields in which
a complex-conjugation-like automorphism exists). We suspect that this is the
reason why previous works never considered extending the Gentry–Szydlo algo-
rithm to a more general class of fields than CM fields. In an arbitrary number
field K, if g ∈ K, there is usually no element g ∈ K satisfying σ(g) = σ(g)
(where we apply complex-conjugation on every coordinate of the vector on the
right hand side of the equality). Yet, such an element exists in KR: for any
σ(g) ∈ σ(K) ⊂ KR, one can define σ(g) ∈ KR by taking complex conjugation
of every coordinate of the vector. We can then define the set σ(K) consisting
of all the complex conjugates (in KR) of elements of σ(K), as well as the set
σ(K) · σ(K), which is a finite dimensional vector space over Q, and in which
the (canonical embedding of the) element gg exists. See Section 2.4 for a formal
definition of these objects.

With this definition, we can properly define the input and expected output
of a generalization of the Gentry–Szydlo algorithm for any number field K.
We then prove that the original algorithm by Gentry and Szydlo [17] can be
easily adapted to this more general context. The proof we provide below follows
almost step by step the proof of the Gentry–Szydlo algorithm as described in [16,
Section 7.3]. We start by describing the so-called polynomial chain computation
in Section A.1. Then we explain how this can be used to recover a small power
of the secret g in Section A.2. And we conclude the proof in Section A.4. The
main difference between our general case and the cyclotomic case is that we do
not have an explicit description of how prime integers split in OK (whereas this

12 The algorithm actually only recovers g up to a root of unity ofK, which is the best we
can hope for given only gOK and gg. This is usually sufficient for any cryptanalytic
application, so we will ignore it in this introductory paragraph.
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is well understood for cyclotomic fields). This is why we need to make some
assumption on the behavior of such primes: this is the purpose of Section A.3.

A.1 Polynomial chain

The first step of the Gentry–Szydlo algorithm is to compute a so-called polyno-
mial chain. This chain will be used to compute a high power of the secret element
g, modulo some prime numbers. The objective of this chain is to maintain a small
size of the objects, thanks to successive calls to the LLL algorithm, which avoid
explosion of the coefficients. Before computing the polynomial chain, we need
the following result, called implicit lattice reduction (see, e.g., [16, Lemma 6]).
It allows us to recover a somewhat small multiple of g, given gOK and gg.

Lemma 10. Let K of degree n and g ∈ K \ {0}. Given the HNF basis of gOK

and the element σ(g) ·σ(g) ∈ σ(K) ·σ(K), we can compute in polynomial time
in log |∆K | and the size of g and element z ∈ gOK such that z = g · a with
a ∈ OK satisfying ∥σ(a)∥ ≤ 2n · √n.

Proof. From the knowledge of the HNF basis of gOK , one can compute in poly-
nomial time (c1, . . . , cn) ∈ Kn that forms a Z-basis of gOK . This implies that
(σ(c1), . . . ,σ(cn)) forms a basis of the lattice σ(gOK). We will not call the LLL
algorithm directly in σ(gOK) but distort it first (to ensure that we recover a
small multiple of g in gOK , and not simply a small element of gOK).

Let us call |σ(g)| = (|σj(g)|)1≤j≤n ∈ KR, and define I = |σ(g)|−1 ·σ(gOK) ⊂
KR (which is a lattice of rank n). We want to call the LLL algorithm in I,
hence we need to compute a basis of I. Such a basis is provided by the set
(|σ(g)|−1 · σ(cj))1≤j≤n, where as usual multiplication is performed coordinate-
wise. We can compute in polynomial time a floating point approximation of these
basis vectors, since we have seen that we know the cj ’s, and we can compute (a

floating point of approximation of) |σ(g)| using the knowledge of σ(g)σ(g).
Once we have computed a basis of I (with sufficient precision), we call the

LLL algorithm to recover (in polynomial time) a vector s ∈ I such that ∥s∥ ≤
2nλ1(I) [19]. We know that the vector |σ(g)|−1 ·σ(g) belongs to I by definition,
and this vectors has euclidean norm

√
n (since all its coordinates have absolute

value 1). Hence, we have λ1(I) ≤
√
n and so ∥s∥ ≤ 2n

√
n.

Since s ∈ I, there must exists a ∈ OK such that s = |σ(g)|−1 ·σ(ga). Writing
s as an integer linear combination of the basis vectors of I allows to recover the
element z = ga ∈ gOK in polynomial time. To conclude that z is as desired, it
only remains to see that σ(a) = s · |σ(g)| · σ(g)−1, so ∥σ(a)∥ = ∥s∥ ≤ 2nλ1(I),
where the inequality comes from the LLL-guarantee on the size of s that we
proved above. ⊓⊔

With this lemma at hand, we can now compute the so-called polynomial
chain. In the original Gentry–Szydlo algorithm (see, e.g., [16, Lemma 7]), the
polynomial chain elements were of the form gkr−jajaj−1

2, where the conjuga-
tion of aj−1 somehow plays the role of inversion, but allows to keep everything
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integral. In our case, conjugation is more costly than inversion (because it re-
quires leaving the field K), so we will instead compute chain elements of the
form gkr−jaja

−2
j−1.

Lemma 11. Let g ∈ K \ {0}, p ∈ Z be a prime integer, and let k =
∑r

j=0 kj2
j

be a positive integer, with r = ⌊log2(k)⌋. There is a polynomial time algorithm
(in the size of g, log |∆K | and log k) that takes as input the HNF basis of gOK ,
the element σ(g) · σ(g) ∈ σ(K) · σ(K), k, and p, and returns a list of non-zero
elements z0, . . . , zr ∈ K such that there exists a0, . . . , ar ∈ OK coprime with p,
and a−1 = 1 satisfying

– zj = gkr−j · aj · a−2
j−1 for 0 ≤ j ≤ r

– ∥σ(aj)∥ ≤ 2n · √n for −1 ≤ j ≤ r.

Proof. For 0 ≤ j ≤ r, let us write hj = gkr−j · a−2
j−1. We will prove by induction

on j that for all j ∈ {0, . . . , r}, we can compute in polynomial time the ideal
hjOK , the element σ(hj)·σ(hj), and the element zj . This will prove in particular
that we can compute z0, . . . , zr in polynomial time, as desired.
Initialization. Let j = 0, then h0 = gkra−2

−1 = g (because kr is the most significant

bit of k so it has to be 1). Computing h0OK and σ(h0)·σ(h0) can then be done in
polynomial time from the input gOK and σ(g) ·σ(g). In order to compute z0, we
call the algorithm from Lemma 10 on input gOK and σ(g)σ(g), and we obtain
some z0 as output. By Lemma 10,this element satisfies z0 = g ·a0 = gkr ·a0 ·a−2

−1

and ∥σ(a0)∥ ≤ 2n
√
n as desired.

Induction step. Let j ≥ 1, and assume by induction hypothesis that hj−1OK ,

σ(hj−1) ·σ(hj−1), zj−1 have already been computed. Recall also that gOK and

σ(g)σ(g) are assumed to be given as input to the algorithm (hence they are
known).

Note that by definition of the hj ’s and zj ’s, it holds that hj = gkr−j · a−2
j−1 =

gkr−j · h2
j−1 · z−2

j−1. Hence, from the knowledge of gOK , hj−1OK , and zj−1, one

can compute hjOK = (gOK)kr−j · (hj−1OK)2 · (zj−1OK)−2 in polynomial time
(by performing basic operations on fractional ideals of K). Similarly, from the
knowledge of σ(g)σ(g), σ(hj−1) · σ(hj−1), and zj−1, one can compute σ(hj) ·
σ(hj) = (σ(g)σ(g))kr−j ·(σ(hj−1)·σ(hj−1))

2·(σ(zj−1)·σ(zj−1))
−2 in polynomial

time. Here, we use the fact that multiplication in σ(K)·σ(K) and inversion of an
elementary product (such as σ(zj−1) ·σ(zj−1)) can be performed in polynomial
time.

It remains to compute zj . Observe that hj is non-zero since g and the aj ’s

are non-zero. Moreover, we have just seen that hjOK and σ(hj) · σ(hj) can be
computed in polynomial time. Using Lemma 10, we can compute in polynomial
time zj ∈ hjOK such that zj = hj · aj with ∥σ(aj)∥ ≤ 2n · √n (and aj ∈ OK).
Hence zj and aj satisfy the two conditions of the lemma.13 This concludes the
induction step.

13 If we are unlucky and aj is not coprime with p, we can resample it until it is the
case.
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Conclusion. The above induction shows that computing the quantities at step
j + 1 can be done in polynomial time from the quantities at step j. Since the
number of steps is r = O(log(k)), the overall complexity remains polynomial.
We note also that the size of the objects manipulated during the successive steps
of the computation does not increase, since we always have ∥σ(aj)∥ ≤ 2n · √n,
which provides an absolute upper bound on the size of the aj ’s (independent on
the index j of the iteration step). ⊓⊔

A.2 Computing a small power of the secret

In this section, we will use the polynomial chain from the previous section to
compute a (somewhat) small power of the secret element g. Before proving this,
we will need the following lemma, which tells us that if we know some element
a ∈ OK modulo mOK for some m ∈ Z large enough, then we can recover a
exactly. In the original Gentry–Szydlo algorithm over power-of-two cyclotomic
fields, the analogous result was easily proved because the basis (1, X, . . . ,Xn−1)
formed an orthogonal basis of σ(OK). In the general case, we use our known
LLL-reduced basis of OK and the bound is slightly less favorable (but this will
not appear in the final statement).

Lemma 12. Let K be a number field of degree n. Let a ∈ OK and m ≥ 0 be
an integer such that m ≥ 2n+1/

√
n · ∥σ(a)∥. Assume that an LLL-reduced basis

(b1, . . . , bn) of OK is known (LLL-reduced for the norm induced by the canonical
embedding). Given a mod m ∈ OK/mOK , one can recover a ∈ OK exactly in
time polynomial in log |∆K | and logm.

Proof. Let t = a +mx with a, x ∈ OK be any representative of a mod mOK .
We aim to recover the element a ∈ OK given the target t ∈ a + mOK using
Babai’s nearest plane algorithm. By Lemma 1 (applied to the lattice σ(mOK))
a sufficient condition for this is that ∥σ(a)∥ < 2−n ·λ1(σ(mOK)). In the prelim-
inaries we have seen that λ1(σ(OK)) ≥ √n. The condition on m then implies
that 2−n · λ1(σ(mOK)) ≥ 2−nm

√
n ≥ 2∥σ(a)∥ > ∥σ(a)∥ as desired. So Babai’s

nearest plane algorithm efficiently recovers σ(a). Given enough precision in those
floating point computation, one can then recover exactly the integer coefficients
of a ∈ OK in the basis (σ(b1), . . . ,σ(bn)). ⊓⊔

In the following lemmas, we will compute powers of the secret element g,
where the exponent depends on the quantity omax((OK/pOK)×) for some prime
integer p ∈ Z. Recall that, for a finite multiplicative group G, the integer omax(G)
is the least common multiple of the orders of all the elements of G. For p ∈
Z a prime number not dividing |∆K |,14 we then want to prove that one can
compute omax((OK/pOK)×) in polynomial time. To do so, we first factor the
ideal pOK =

∏r
j=1 p

ej
j (with the pj ’s distinct prime ideals). This factorization

can be computed in (classical) polynomial time [8, Section 6.2.5]. Moreover, since
p does not divide ∆K , we know that each ej is equal to 1. Hence, by Chinese

14 Equivalently, p does not ramify in K.
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remainder theorem, it holds that (OK/pOK)× =
∏r

j=1(OK/pj)
×. Each of the

OK/pj is a finite field of cardinality N (pj), which implies that (OK/pjOK)× is
a cyclic group of cardinality N (pj)− 1. Hence we obtain omax((OK/pOK)×) =
lcmj(N (pj)− 1), which can be computed in polynomial time from the pj ’s.

The lemma below proves that one can compute a large power of the secret
element g modulo (almost) any prime q. The fact that the computation is per-
formed modulo q here is important if we want a polynomial time algorithm,
because the power of g we compute is so large that computing it exactly would
be too costly.

Lemma 13. Let p ∈ Z be a prime number satisfying p ≥ 22n+1 and g ∈ OK be
invertible modulo p. Given the prime p, another prime integer q, the HNF basis
of gOK and the element σ(g) ·σ(g), we can compute (for almost all choice of q)
the element

gomax((OK/pOK)×) mod qOK

in polynomial time in log |∆K |, the size of g, log(p) and log(q). The computation
succeeds, except for polynomially (in log(p) and n) many values of q.

Proof. Let k = omax((OK/pOK)×). Recall from preliminaries that this quantity
can be computed in polynomial time given p and a basis of OK . Since g lies in
(OK/pOK)×, then we know that gk = 1 mod p, which will be useful later on in
the proof.

Let us write r = ⌊log2(k)⌋ and k =
∑r

j=0 kj2
j as in Lemma 11. Using

Lemma 11, we can compute in polynomial time a list of non-zero elements
z0, . . . , zr ∈ K of the form zj = gkr−j · aj · a−2

j−1, for some aj ∈ OK coprime

with p satisfying a−1 = 1 and ∥σ(aj)∥ ≤ 2n · √n for all j. Since both the aj ’s
and g are coprime with p, then one can reduce the zj ’s modulo p and obtain an

element zj mod p ∈ (OK/pOK)×. One can then compute
∏r

j=0 z
2r−j

j mod p in
polynomial time, by repeated squaring. Expending the product, we have

r∏
j=0

z2
r−j

j mod p =

r∏
j=0

(gkr−jaj · a−2
j−1)

2r−j

mod p

= ar · a−2r+1

−1 ·
r∏

j=0

g2
r−jkr−j mod p

= ar · gk mod p = ar mod p.

For the last equality, we used the fact that gk = 1 mod p, and in the previous
equality we used the fact that a−1 = 1. Summing up, we can compute ar mod p
in polynomial time from the zj ’s. Now, observe that from the condition in the
lemma statement and using the fact that ∥σ(ar)∥ ≤ 2n

√
n, it holds that p ≥

22n+1 ≥ 2n+1/
√
n · ∥σ(ar)∥. Using Lemma 12, we conclude that we can recover

ar ∈ OK in polynomial time from ar mod p (and the LLL-reduced basis of OK

that we assumed we know in all this section).
From the knowledge of ar, let us now explain how to compute gk mod q

in polynomial time. In order to do so, we want to ensure that all the aj ’s are
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invertible modulo q, i.e., that q does not divide the algebraic norm N (aj) of any
of the aj ’s. Note that for each j, it holds that |N (aj)| ≤ ∥σ(aj)∥n ≤ (2n · √n)n.
Hence, N (aj) is divisible by at most log2(N (aj)) = poly(n) prime factors. Since
we have r + 1 = poly(log k) such aj ’s, we conclude that the number of q that
are not allowed (because they are not coprime with at least one of the aj ’s) is at
most polynomial in log k and n. Finally, observe that k = omax((OK/pOK)×) is
upper bounded by |OK/pOK | = pn, so log k = poly(n, log p). This means that
we exclude at most poly(n, log p) choices of q, as stated in the lemma.

From now on, we then assume that q is such that all the aj ’s are invertible
modulo q. Using the same reasoning and algorithm as above, we can compute
in polynomial time the element

∏r
j=0 z

2r−j

j mod q = ar · gk mod q ∈ OK/qOK ,
by repeated squaring and multiply. Since ar has been computed before and it is
invertible modulo q, we can divide by ar and obtain gk mod q as desired. ⊓⊔

We are now ready to prove the main lemma of this section, which states that
one can compute a (somewhat) small power of the secret element g in polynomial
time. The idea of the algorithm is to compute two large powers of g modulo the
same q using Lemma 13 above, then combine these powers to obtain a smaller
power of g modulo q. If this power is sufficiently small and q is large enough, we
can then use Lemma 12 to recover the power of g in OK .

Lemma 14. Let p1, p2 ∈ Z be prime numbers satisfying 22n+1 ≤ p1, p2 ≤ 22n+2

and g ∈ OK be invertible modulo p1 and p2. Let r = gcd
(
omax((OK/p1OK)×),

omax((OK/p2OK)×)
)
. Given p1, p2, the HNF basis of gOK and the element

σ(g) · σ(g), we can compute the element gr ∈ OK in time polynomial in r,
log |∆K | and the size of g.

Proof. The algorithm first uses the knowledge of σ(g) · σ(g) to compute (a
floating point approximation of) ∥σ(g)∥ ∈ R. Then, it sets B = 2n+1 ·⌈∥σ(g)∥r⌉,
and it samples q ∈ {B, . . . , 2B} until q is prime and until q is a valid prime
for applying Lemma 13 with p1 and with p2. We know that there are only
poly(n) many bad primes for applying Lemma 13 with p1, and similarly for p2.
So the probability to find a good q when sampling it uniformly in {B, . . . , 2B}
is Ω(1/ log(B)) − poly(n)/B = Ω(1/ log(B)). This means that the expected
number of iteration needed to find a suitable q is polynomial in log(B), which is
itself polynomial in r, log |∆K | and the size of g.

Once we have found a suitable prime q, we call the algorithm from Lemma 13
twice: once on input p1, q, gOK and σ(g)·σ(g), and once on input p1, q, gOK and
σ(g)·σ(g). The algorithm can be run in polynomial time according to Lemma 13
(using the fact that log(p1), log(p2) and log(q) are all poly(log |∆K |, r, size(g))).
The algorithm outputs the two elements h1 = gk1 mod q and h2 = gk2 mod q,
where kj = omax((OK/pjOK)×).

Using the extended gcd algorithm, we then compute u, v ∈ Z such that
uk1 + vk2 = gcd(k1, k2) = r. And we finally compute h := hu

1 · hv
2 mod q =

gr mod q. This computation can be performed in polynomial time in log(u),
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log(v), log(q) and log |∆K |, which are all polynomial in r, log |∆K | and the size
of g.

To conclude the proof, we use the fact that

∥σ(gr)∥ ≤ √n · ∥σ(gr)∥∞ ≤
√
n · ∥σ(g)∥r∞ ≤

√
n · ∥σ(g)∥r.

Hence, by choice of B and q, it holds that q ≥ B ≥ 2n+1/
√
n · ∥σ(gr)∥. Using

Lemma 12, we can then recover gr ∈ OK exactly in polynomial time from
gr mod q (using the known LLL-reduced basis of OK). ⊓⊔

A.3 Finding good primes

In order to obtain an efficient algorithm, we would like that the exponent r
from Lemma 14 is of polynomial size (and ideally as small as possible). Hence,
the main question remaining is whether there exist suitable primes p1 and p2

for which r := gcd
(
omax((OK/p1OK)×), omax((OK/p2OK)×)

)
is polynomially

bounded (let’s say polynomial in n), and if yes, how easily computable are these
suitable primes p1 and p2. Below, we define the notion of Gentry–Szydlo friendly
fields, which are fields for which we have a positive answer to the two questions
above: it is possible to efficiently find two primes p1 and p2 such that r is poly-
nomial. We then argue that all number fields are likely to be Gentry–Szydlo
friendly fields.

Definition 1. Let β, δ ≥ 1. We say that a number field K of degree n is (β, δ)-
Gentry–Szydlo friendly (or GS-friendly for short) if

Pr
p1,p2

$←−P∩[22n+1,22n+2]

(
gcd

(
omax((OK/p1OK)×), omax((OK/p2OK)×)

)
≤ β

)
≥ 1/δ,

where P is the set of all prime integers, and p1, p2 are sampled independently.

Remark 1. There is no fundamental reason why we consider only two primes
p1 and p2, and not a constant number of primes (or even a polynomial number
of primes). Lemma 14 could be adapted to more primes, resulting only in a
polynomial dependency in the running time on the number of primes considered.
Considering more primes could be useful if finding two primes with a small
gcd happens to be hard: the more prime we use, the smaller their gcd will be.
Experiments seem to indicate however that only two primes are usually sufficient
to obtain a relatively small gcd, hence we do not pursue this idea of using more
than two primes.

We make the following heuristic assumption, which we justify theoretically
and experimentally below.

Heuristic 2. There exists some polynomial functions β(n), δ(n) such that any
number field K of degree n is (β(n), δ(n))-Gentry–Szydlo friendly.
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Justification. First, we argue that the gcd over all sufficiently large primes p of
omax((OK/pOK)×) is likely to be equal to |µ(K)|, the number of roots of unity
in K. Indeed, if p is large enough such that all the elements of µ(K) are distinct
modulo p, then the image of µ(K) modulo p provides a cyclic group of cardinality
|µ(K)| in (OK/pOK)×, and so it holds that |µ(K)| divides omax((OK/pOK)×).
Reciprocally, assume that d > 0 divides all omax((OK/pOK)×) (at for p large
enough). Then it means that the group (OK/pOK)× contains an element of
order n. In other words, for any p (sufficiently large), the polynomial Xn−1 has
a root in OK/pOK . Then, it seems reasonable to assume that if this polynomial
has a root locally modulo each prime p, then it also has a global root in OK . If
this is the case, then this root it a primitive n-th root of unity in K, and so it
implies that n divides |µ(K)|.

Combining this argument and the fact that |µ(K)| ≤ 2n2 justifies the heuris-
tic claim for β(n) = 2n2. The fact that taking only two random primes is suffi-
cient to obtain this gcd (or a gcd not much bigger) with non-negligible probability
is justified by the experiments.

We provide experimental data in Fig. 6 and Figs. 7 to 9 for three families of
fields: K = K1(i) where K1 is an NTRU Prime field, for cyclotomic fields, and
number fields defined by a random irreducible polynomial of a given degree (we
call the latter ones “random fields” from now on). For NTRU Prime fields K1,
the number of roots of unity in K = K1(i) is always 4. For random number fields
we expect only two roots of unity. For cyclotomic fields, the number of roots of
unity is larger than 2, and can be efficiently computed. For these three families
of fields, we computed the gcd over 100 random primes p (between 22n+1 and
22n+2) of the quantity omax((OK/pOK)×). We observe that this gcd over 100
primes almost always matches the number of roots of unity in K for all families
of field considered (and when it does not match it, it is off by a multiplicative fac-

tor 2 or 3). We also computed gcd
(
omax((OK/p1OK)×), omax((OK/p2OK)×)

)
for only two random primes (between 22n+1 and 22n+2). We sampled 50 pairs
of random primes and kept the smallest gcd among all the ones we obtained.
When doing so, we obtained a gcd which is, most of the time, not much larger
than the number of roots of unity of K. More importantly, the ratio between the
gcd we obtain and the number of roots of unity of K does not seem to increase
significantly with the degree of K. △

A.4 Concluding the proof

We are now ready to state and prove a generalization of the Gentry–Szydlo
algorithm to all Gentry–Szydlo friendly fields.

Theorem 5. Let β, δ ≥ 1 be integers. Let K be a (β, δ)-Gentry–Szydlo friendly
number field, and assume that we know an LLL-reduced Z-basis of OK (for the
canonical embedding). Let g ∈ OK \ {0}. Given the HNF basis of gOK and
the element σ(g) · σ(g) ∈ σ(K) · σ(K) (represented as in Section 2.4), we can
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recover g up to multiplication by a root of unity of K (i.e., we recover gε for
some ε ∈ µ(K)) in time polynomial in the size of g, in log |∆K |, in β, and in δ.

Under Heuristic 2, all number fields are (β, δ)-Gentry–Szydlo friendly for
some polynomial values of β and δ. Hence, the above algorithm can be applied
to all number fields and we obtain the following heuristic claim.

Heuristic Claim 2 (Generalized Gentry–Szydlo) Let K be any number field,
and assume that we know an LLL-reduced Z-basis of OK . Let g ∈ OK \{0}. Un-
der Heuristic 2, there is a probabilistic polynomial time (in its input size and in
log |∆K |) algorithm that takes as input the HNF basis of gOK and the element
σ(g) · σ(g) ∈ σ(K) · σ(K) and outputs gε for some ε ∈ µ(K).

Proof (Proof of Theorem 5). The algorithm sets B = 22n+1 and samples ran-
domly and independently p1 and p2 in {B, . . . , 2B} until they are both prime,
both coprime to the ideal gOK , and until we have gcd

(
omax((OK/p1OK)×),

omax((OK/p2OK)×)
)
≤ β. By definition of (β, δ)-Gentry–Szydlo friendly fields,

we know that these conditions will be met with probability Ω(1/(δ · (logB)2)),15

so the expectation of the number of iterations needed to find suitable primes p1
and p2 satisfying the above condition is polynomial in log(B) = poly |∆K | and
in δ.

We then call the algorithm from Lemma 14 on input p1, p2, gOK and σ(g) ·
σ(g), and we recover gr ∈ OK in time poly(r, log |∆K |, size(g)), where r :=
gcd

(
omax((OK/p1OK)×), omax((OK/p2OK)×)

)
satisfies r ≤ β.

Last, we use the algorithm from Lemma 2 to compute the roots of the poly-
nomial Xr − gr in K and return any of these roots. We know that g has to be
among the set of roots, so the set is non-empty. We also know that any other
root α satisfies α = g · ε for some ε ∈ K such that εr = 1. In particular, ε is a
root of unity in K, and so α has the desired shape. Our algorithm is correct, and
all its steps can be performed in polynomial time in the size of g, in log |∆K |, in
β, and in δ. ⊓⊔

15 Note that there are at most log2 |N (g)| prime integers not coprime with the ideal
gOK .
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degree of
the field

gcd of omax((OK/pOK)×)
over 100 random primes

gcd of omax((OK/pOK)×)
over 2 random primes
(best among 50 trials)

14 4 4

34 4 4

58 4 16

82 8 4

106 4 4

134 4 4

158 24 4

178 4 48

202 4 4

226 4 56

254 4 24

274 8 240

298 4 240

Fig. 7: Experimental results validating Heuristic 2 for K1(i) where K1 is an
NTRU Prime field.

degree of
the field

number of roots
of unity in K

gcd of omax((OK/pOK)×)
over 100 random primes

gcd of omax((OK/pOK)×)
over 2 random primes
(best among 50 trials)

4 10 10 10

18 54 54 54

20 44 44 44

24 78 78 78

48 112 112 112

48 180 180 180

60 122 122 366

72 190 190 190

72 146 146 1022

84 258 258 258

92 282 282 282

106 214 214 214

120 248 248 248

120 462 462 462

162 326 326 326

196 394 394 394

208 530 530 530

264 598 598 598

Fig. 8: Experimental results validating Heuristic 2 for Cyclotomic fields.
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degree of
the field

gcd of omax((OK/pOK)×)
over 100 random primes

gcd of omax((OK/pOK)×)
over 2 random primes
(best among 50 trials)

10 2 2

27 2 4

44 2 4

61 2 2

78 2 4

95 2 2

112 2 10

129 2 14

146 2 2

163 2 48

180 2 4

197 2 14

214 2 2

231 2 12

248 2 2

265 2 4

282 2 2

299 2 2

Fig. 9: Experimental results validating Heuristic 2 for random fields (i.e., fields
whose defining polynomial is sampled randomly).
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