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Abstract. We show that the randomized TFHE bootstrapping technique of Bourse
and Izabechéne provides a form of sanitization which is error-simulatable. This means
that the randomized bootstrap can be used not only for sanitization of ciphertexts
(i.e. to hide the function that has been computed), but that it can also be used in
server-assisted threshold decryption. Thus we extend the server-assisted threshold
decryption method of Passelégue and Stehle (ASIACRYPT ’24) to FHE schemes which
have small ciphertext modulus (such as TFHE). In addition the error-simulatable
sanitization enables us to obtain FuncCPA security for TFHE essentially for free.
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1 Introduction
The problem of threshold decryption for FHE schemes, henceforth called threshold-FHE,
is as old as FHE itself. The problem is for a set of n parties to have a secret sharing of
the underlying FHE secret key, so that they can, between them, decrypt a given FHE
ciphertext correctly, in the case where at most t of the parties are corrupt. Indeed,
Gentry’s original thesis [Gen09] mentioned threshold-FHE as a way of utilizing FHE to
perform a very low round complexity semi-honest MPC protocol. Since Gentry’s thesis a
number of FHE schemes have been proposed including BGV [BGV12], CKKS [CKKS17],
BFV [Bra12, FV12] and TFHE [CGGI16, CGGI20]. In this work we primarily focus on
the TFHE scheme.

At about the time of Gentry’s thesis on FHE in 2009 [Gen09], the first threshold
key generation and decryption for LWE based ciphertexts was also given by Bendlin
and Damgård [BD10]. The methodology of Bendlin and Damgård used replicated secret
sharing1 to split the secret key, a method which requires the numbers of shares per
party to grow as O(

(
n
t

)
). The simpler case of full-threshold, i.e. t = n − 1, decryption

for LWE ciphertexts was combined with SHE and formed the basis of the SPDZ MPC
protocol [DPSZ12]. The same techniques were then used in the context of FHE by Asharov
et al [AJL+12] in the full threshold setting. All of [AJL+12, BD10, DPSZ12] consider a
threshold decryption process which was only semi-honestly secure; i.e. the adversary could
send in invalid shares resulting in an invalid threshold decryption.

Such semi-honest security is not a problem in the applications considered in [AJL+12,
DPSZ12], as the higher level protocols can deal with active adversaries (when needed) by
adopting other defensive measures. However, for some applications one requires robust,
a.k.a. guaranteed output delivery (GOD), protocols for which any adversarially introduced
errors can be overcome by the honest parties executing the threshold decryption process.
In [CLO+13] a robust threshold decryption protocol was presented for the threshold setting
of t < n/3 and the BGV scheme. The work of [CLO+13] was extended to the TFHE
scheme in [DDK+23]. This later paper also optimized the threshold decryption process for
BGV, BFV and TFHE, as well as discussing the case of asynchronous networks, and other
extensions.

To understand the technical problem with threshold-FHE it is worth considering the
“format” of a simple FHE scheme. To explain we utilize the format of BFV/TFHE [FV12,
CGGI16, CGGI20] ciphertexts, but a similar discussion can be provided for other FHE
schemes such as BGV. Consider encrypting an element m ∈ Z/(p), using a standard
Learning-With-Errors (LWE) ciphertext of the form (a, b) with ciphertext modulus q ,
where a ∈ (Z/(q))` and b ∈ Z/(q), using the equation

b = a · s+ e+∆ ·m (mod q)

where ∆ = bq/pc, e is some “noise” term and s ∈ (Z/(q))` is the secret key. Usually, in
the FHE setting, s is chosen to be a vector with small norm, for example s ∈ {0, 1}`.

To enable threshold-FHE we first secret share the secret key s among n parties, a
process which we shall denote by 〈s〉 to signal a sharing modulo q with respect to a
threshold t < n linear secret sharing scheme. On input of the ciphertext (a, b) we can then
locally produce a secret sharing of the value e+∆ ·m by computing

〈p〉 = b− a · 〈s〉 = 〈∆ ·m+ e〉.

We shall call the value p = ∆ ·m+ e the “pre-decryption” value. By opening the value of
〈p〉, all parties can then perform rounding to obtain m. However, this reveals the value of

1Note, a generic thresholdizer for arbitrary protocols was given by Boneh et al. in [BGG+18] using
threshold-FHE. The construction of Boneh et al. utilizes a special form of secret sharing called {0, 1}-LSSS,
which is closely related to replicated sharing; and thus does not scale to more than a few players.
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e, which combined with the ciphertext and the message, will reveal information about the
secret key s.

The prior literature provides four major ways around this problem. The first is to
add a large amount of additional noise into the secret sharing before opening (a process
called noise flooding), the second is to apply techniques based on Renyi divergence, the
third method is to extract the message m from the shared value 〈p〉 using a generic
MPC protocol. A relatively new fourth method is to utilize so-called server assisted
threshold decryption. All of these are troublesome in practice. The first method requires
an increase in the underlying ciphertext modulus q (in the case of TFHE) or a decrease in
the number of available levels (in the case of BGV/BFV), the second results in the loss of
simulation security, the third method requires relatively high round protocols, resulting
in poor performance over a Wide-Area-Network (WAN), whilst the fourth requires a
super-polynomial ciphertext modulus to exist in the first place. We now elaborate on these
four methods in more detail.

Threshold Decryption via Noise Flooding:

In this method the decrypting parties somehow generate an additional secret shared noise
term 〈E〉, and the pre-decryption value which is opened is now

〈p〉 = b− a · 〈s〉+ 〈E〉 = 〈∆ ·m+ e+ E〉.

We require that E should introduce enough randomness to mask the e value after the shared
value 〈p〉 is opened. If E is too small then too much information about e is revealed, if E
is too big then the final rounding will not reveal the correct value of m. Diagrammatically
we can consider this process as approximated by the diagram in Figure 1.

“noise gap”︷ ︸︸ ︷
m e

+
E

=
m E+e

Figure 1: Representation of the noise addition for threshold decryption

To mask, statistically, all information in e we would (naively) require E to be chosen
uniformly from a range which is 2dist larger than e. Thus if we can bound the ciphertext
noise by |e| < B, then we would require E to be chosen uniformly in the range [−2dist ·
B, . . . , 2dist ·B]. This process is dubbed “noise flooding” in the literature. However, this
would mean we require ∆ > 2dist · B, which in turn seems to imply that the ciphertext
modulus q needs to be “large”. The work effort of the adversary to distinguish the
distributions in the underlying security proof is then 2dist. Prudently this would lead us to
select dist = 80.

In [DDK+23] it is shown that by adding an E term on, which is itself the addition
of at least two uniform distributions in the range [−2stat · B, . . . , 2stat · B], the resulting
work effort of the adversary to distinguish the distributions becomes 22·stat. We can, hence,
obtain enough security by selecting stat ≈ 40, and so reduce the need for very much larger
q values. The main benefit is that for “small” values of

(
n
t

)
(say less than 10, 000) one

obtains a simple one round threshold decryption protocol which works over asynchronous
networks. When

(
n
t

)
is “large” the method in [DDK+23] uses a one-round online phase,

but requires an offline phase to pre-prepare secret shared random bits (something which
can be done via generic MPC protocols).
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When using BFV/BGV in an SHE leveled mode the problem of needing a larger q does
not occur. In such schemes each level essentially adds an extra 20-40 bits (depending on
the implementation) into the noise gap. Thus by simply decreasing the number of usable
levels by a small constant (say, one or two) one can obtain a noise gap which is enough
to apply the flooding technique. Thus in such schemes this methodology can be applied,
without any need for prior processing of a ciphertext.

When using BFV/BGV in a mode which enables the use of bootstrapping we also do
not need to increase the size of q. Bootstrapping enables us to reduce the size of the noise e
in the ciphertext (a, b) to be as small as possible. Thus if bootstrapping is performed, and
the FHE scheme is such that the noise gap between e and m in Figure 1 is large enough,
then the noise flooding methodology will work “out-of-the-box”.

Thus the only place where noise flooding is in practice a problem is when the FHE
parameters are such that the noise gap is tiny, even after a bootstrapping operation is
performed. This is exactly the situation in TFHE, where one (usually) selects a relatively
small q value (for example q = 264). This small q value, and associated small LWE
dimension `, requires the size of the noise even after bootstrapping to be around 230 in
order to ensure security. This means the noise gap is too small, but only by tens of bits.
In such a situation we can apply, following the method of [DDK+23], a switch of the
parameters (q, `) to slightly larger ones (q′, `′) with q′ = 2128, and then perform a large
(and hence expensive) bootstrapping operation to squash the noise down; this technique
the authors of [DDK+23] dub SwitchSquash.

Threshold Decryption via The Renyi Divergence:

Even with the optimizations of [DDK+23] we still require a super-polynomial gap between
the bound on the noise term e and the ciphertext modulus, q or q′. Such super-polynomial
blow-ups in other areas of cryptography based on LWE have recently been avoided by
utilizing the Renyi divergence [BLR+18]. This, as an approach to threshold-FHE, was
recently examined by [BS23] and [CSS+22]. The problem with using the Renyi divergence
in the context of distributed decryption, is that the general technique of Renyi divergence
is hard to apply to security problems which are inherently about distinguishing one
distribution from another. In [BS23] and [CSS+22] a way around this was found by
designing special security games for threshold-FHE usage, which enabled the use of the
Renyi divergence. The problem is that these games need to cope with the homomorphic
nature of the underlying encryption scheme, and thus cannot be adaptive. In applications
of threshold FHE we really require a threshold-FHE protocol which is indistinguishable,
to an adversary, from a simulation interacting with an ideal functionality. The security
games presented in [CSS+22] and [BS23] do not allow such a usage. However in [PS24]
it is shown that the methods based on Renyi divergence, such as [BS23], have additional
problems with their security. Indeed currently they can only obtain selective security and
not full blown adaptive simulation based security.

Threshold Decryption via Generic MPC:

Another approach is to apply generic MPC to the problem of threshold decryption of
FHE ciphertexts. This method is most suited for TFHE, as (as we remarked earlier) the
noise-gap issue is not really an issue for BGV and BFV. In this method we take the sharing
of the pre-decryption directly, i.e. we compute

〈p〉 = b− a · 〈s〉.

One then needs to extract the message m from the pre-decryption. The message is encoded
in p, for TFHE, in the following manner:

p = ∆ ·m+ e (mod q).
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As for TFHE one usually has that both q and ∆ = q/p is a power of two, one can extract
the message m via secret sharing based bit-decomposition techniques. Such generic MPC
bit-decomposition methods are well known, see for example [CdH10, DFK+06, NO07, sec09].
Thus using generic MPC, to perform the threshold decryption, we do not need to require
any noise gap. Thus there is no need for any switch to larger parameters, or a large
bootstrapping to produce a large noise gap.

The disadvantage of this method is that we really need to apply the full power of
our MPC engine. The use of such protocols means that threshold decryption requires
a relatively large number of “online phase” rounds (if q = 264 as in TFHE, then this is
16 rounds). In addition, one requires an “offline phase” to generate sets of secret shared
random bits. Thus this method whilst not requiring the large bootstrap, may actually be
slower, if the parties are separated by a network which requires a large ping-time.

Server Assisted Threshold Decryption:

A method to achieve simulation security for threshold LWE without using noise flooding
or generic MPC, was described in [MS25]. However, the technique of [MS25] could only
be applied to traditional LWE public key encryption schemes, i.e. for schemes which do
not allow any form of homomorphic operations. In recent work, [PS24], this method was
extended to the case of threshold FHE. The technique works in two phases; in the first
phase (executed by a trusted server) the ciphertext is flooded with a large amount of
noise, and then the ciphertext is reduced in size via Gaussian rounding. In the second
phase the method of [MS25] is essentially applied, which requires only a small amount of
noise flooding. The authors dub there method “double flood and round”, although, since
the second application of flooding is via a small amount of noise, one could better dub it
“flood, round and bath”.

The need for a trusted server to compute the initial flooding is due to the need for the
randomness used in the first (large) flooding to not be exposed to the threshold decryption
parties. This could produce a major system problem, but it also imposes a constraint on
the parameters; namely the ciphertext modulus to apply the server flooding needs to be
super-polynomially large. This means the method, as given in [PS24], only applies to FHE
schemes such as BGV, BFV and CKKS.

Another issue with the presentation in [PS24], is that the scheme is only suitable for
full threshold access structures. This means that the threshold decryption can only be
passively secure, and one looses robustness.

1.1 Our Contribution
Our core contribution is a new technical result on the ciphertext sanitization strategy
given in [BI22, BdPMW16]. Ciphertext sanitization for FHE schemes was introduced by
Ducas and Stehle in [DS16]. Unlike in threshold decryption, where we are worried about
the noise term e in the pre-decryption value p revealing information about the secret key,
in sanitization we are worried about e revealing information about the function which has
been homomorphically evaluated. Thus the two situations seem similar, except that in
sanitization we are usually trying to protect against an adversary which already knows the
secret key.

The papers [BI22, BdPMW16] introduce a sanitization algorithm that is suitable for
small parameters, but, as opposed to the generic algorithm given in [DS16], requires only one
bootstrapping. We present a way of mapping the sanitization method of [BI22, BdPMW16],
in particular the first paper, over to our situation. In particular, we define a sanitization
algorithm ct′ ← Sanitize(ct) which take as input a TFHE ciphertext (in flattened GLWE
or LWE format) and applies a sanitization algorithm to map ct = (a, b) into a ciphertext
ct′ = (a′, b′) in flattened GLWE format. The output ciphertext ct′ encrypts the same
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message m as ct. We can then produce a sanitized pre-decryption value p′ = b′ − a′ · s.
The combination of the two operations we will denote by p′ ← PD-Sanitize(ct).

Associated to the algorithm PD-Sanitize(ct) (and hence Sanitize(ct)) is a simulator algo-
rithm PD-Simulate(m) which inputs a message m and outputs a simulated pre-decryption
value ps. The key aspect (for use in threshold decryption for TFHE) is that the output
of algorithm PD-Sanitize(ct) is indistinguishable from that of PD-Simulate(m). Thus this
simulation can be directly plugged into the simulation security proof of [DDK+23] without
needing to increase the ciphertext modulus q.

Unpealing a further layer of detail, our sanitization method Sanitize(ct) is inspired
by the standard sanitization method of [BI22], in that it “simply” involves executing a
randomized version of the TFHE bootstrapping algorithm. In particular, the standard
(deterministic) GSW decomposition operation G−1(·) is replaced by a randomized version
G−1

r (·). This is then followed by the addition of a random GLWE encryption of zero. This
results in us being able to show that the noise term e contains no information about the
secret key s (see Figure 4 and Theorem 1 later). Thus we also achieve sanitization in the
sense of [DS16], just as is done in [BI22]2.

1.1.1 Application to Server-Assisted Threshold Decryption:

In this work we mitigate two of the problems with the “double flood and round”/“flood,
round and bath” method of [PS24], in that we first extend it from BGV/BFV/CKKS
style FHE schemes to schemes such as TFHE and we also extend it from full-threshold to
arbitrary threshold access structures.

The extension to TFHE is done by providing a different methodology on the server
end. Instead of flooding and applying Gaussian rounding, the server will apply a method
of ciphertext sanitization which is particularly tailored to the TFHE scheme; namely the
sanitzation method described above. The final threshold decryption is performed in the
same way as in [PS24], by appealing to the yaLWE problem introduced in [MS25, PS24],
via a small amount of additional noise being added (i.e. what we have dubbed above a
“bath”). Thus our method becomes one of “sanitize and bath”.

The major benefit of this new method, in comparison to the TFHE threshold decryption
method from [DDK+23], is that we do not need to increase the ciphertext modulus from
q = 264 to 2128 due to the sanitization algorithm replacing the SwitchSquash algorithm.
A major disadvantage is that the protocol requires the assistance of an honest server to
apply the sanitization step.

We also show how the “bath” part of the algorithm can be applied not only for full thresh-
old access structures (which we only achieve passive security) as is done in [PS24], but also
for threshold access structures. This is done by applying the techniques given in [DDK+23].
This threshold “bath” techniques can also be applied to the BGV/BFV/CKKS situation
as presented in [PS24], and when t < n/3 it enables a robust threshold decryption protocol.
However, this extension to arbitrary thresholds requires a slight modification to the yaLWE
problem. This modification is a new assumption, although closely related to the original
yaLWE problem it is not (unlike the yaLWE problem) implied by the LWE assumption.

We then go on to show how our methodology can be applied to the small parameters
one finds in TFHE, without the need to increase the ciphertext modulus.

1.1.2 Application to funcCPA:

The notion of funcCPA security was introduced in [AGHV22] to capture the security of
client-aided outsourcing protocols. These are protocols, where a client outsources some
computation but assists the server during the evaluation. Typically, this is used to
circumvent the costly bootstrapping operation of FHE schemes, where the client decrypts

2There is a small bug in the definition of sanitization from [DS16], which we discuss in Appendix A.
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the ciphertext to bootstrap, possibly applies a function to the plaintext, encrypts the result
and returns this ciphertext to the server, which may now continue the computation. To
model this kind of protocol in a security game, the funcCPA notion considers a game that
extends the classical IND-CPA security game with a functional re-encryption oracle. The
adversary may query this oracle with arbitrary ciphertext and function and the challenger
provides the corresponding re-encryption. The work of [AGHV22] shows that CPA security
is not sufficient to argue funcCPA security, which means that such protocols instantiated
with IND-CPA secure schemes may be insecure. Constructing funcCPA secure schemes
generically from IND-CPA secure schemes is challenging, see for example [DHW23].

In [AGHV22] a generic construction of a funcCPA secure scheme from a homomorphic
scheme was given relying on ciphertext sanitization. Given a sanitization algorithm, we
can turn an IND-CPA secure FHE scheme into a funcCPA secure scheme: simply run the
sanitization after encryption and after evaluation.3 The idea is that now Enc(f(Dec(ct)))
is indistinguishable from Eval(f, ct) for any ciphertext ct and thus the re-encryption oracle
can be easily simulated using Eval.

The main issue in the context of client-aided outsourcing protocols is efficiency if
sanitization is based on bootstrapping (possibly multiple times as in [DS16]). Following
the construction from [AGHV22], the client needs to run the sanitization once for every
re-encryption query. But this defeats the purpose of client-aided outsourcing protocols,
where the idea usually is to improve efficiency by not running the bootstrapping at all.
Performing bootstrapping-based sanitization during encryption essentially just puts the
burden of computation back on the client.

Efficiently simulatable sanitization offers a solution to this problem. Note that during
encryption, the underlying message is known, so the encryption algorithm can simply run
the simulation and does not need to perform the entire sanitization. In the context of
our work, where we show that sanitized TFHE ciphertexts are statistically close to fresh
LWE encryptions, the encryption algorithm does not need to be changed at all (beyond
adjusting the noise parameter).

Interestingly, in the context of client-aided outsourcing protocols, we need not worry
about the concrete efficiency of the sanitization algorithm, which is in contrast to other
applications of sanitization, including the one of threshold FHE described above. This
is because it is only used for the proof. In fact, we do not even need to publish the
bootstrapping key. The mere existence of the evaluation algorithm suffices to guarantee
funcCPA security. This means we can use parameters that minimize the noise in the output
ciphertext at the “expense” of a larger running time, for example a minimal decomposition
base of two, high precision FFT computations, etc.

2 Preliminaries
2.1 Basic Mathematical Recap
2.1.1 Notation:

Let R = Z[X]/(XN + 1) for N = 2k for some k ∈ N and Rq = R/qR. Thoughout this
work, we assume q = 2k

′ for some k′ ∈ N. Elements in Z, Zq or R will be denoted by
a, vectors by a and matrices by A. Elements in R or Rq will be denoted by a, vectors
and matrices over R and Rq by a and A, respectively. The inner product of two vectors
a, b (or a,b) will be denoted by a · b (or a · b, resp.). As vector spaces R and Rq are
isomorphic to ZN and ZN

q , respectively, via coefficient embedding and we will use them
interchangeably in such contexts. Accordingly, norms of elements in R are defined using
this isomorphism and the norm of a vector v ∈ Rk as ‖v‖2 =

√∑
i ‖vi‖2. Multiplication

3Technically, one also needs to run sanitization on the input ciphertexts before evaluation.
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in R can be viewed as a matrix-vector product over Z, where one of the factors is expanded
to its multiplication matrix and the other factor is viewed as vector over Z via coefficient
embedding, see e.g. [BI22] for a more detailed description. This easily extends to inner
products of vectors over polynomials: simply construct a wide block matrix with each
block being the multiplication matrix of the corresponding element of one of the vectors.

2.1.2 Distributions:

For two distributions X ,Y it is common to use the statistical distance, defined as
SD(X ,Y) = supA |Pr[X ∈ A]− Pr[Y ∈ A]|, to measure distinguishability. If ε = SD(X ,Y),
then a distinguisher requires at least about 1/ε samples to distinguish the two distribution
with high advantage. In this work, it will be convenient to rely on the max-log distance
[MW17], since it more conveniently captures the relative error and allows to obtain tighter
parameters. For two distributions X ,Y with the same support, the max-log distance is
defined as ML(X ,Y) = supa |ln Pr[X = a]− ln Pr[Y = a]|. The max-log distance is closely
related to KL divergence (of order infinity) and the relative error, but, in contrast to these
measures, it is a metric (i.e. symmetric and satisfies triangle inequality). Like the statistical
distance, it satisfies the data processing inequality, i.e. ML(f(X ,Y)) ≤ ML(X ,Y) for any
f , X and Y . If ε = ML(X ,Y) ≤ 1/3, then a distinguisher requires at least about 1/ε2 many
samples to distinguish the two distributions with high advantage. This is due to the fact
that SD(Xn,Yn) ≤

√
n ·ML(X ,Y) (as long as ML(X ,Y) ≤ 1/3) [MW17]. In this work,

we use the notation X
ε
≈ Y to mean that ML(X ,Y) ≤ ε. In contrast, we will use X ≈ Y

to refer to statistical indistinguishability in a more general and informal sense, by which
we mean that there exists a “small enough” ε such that SD(X ,Y) ≤ ε or ML(X ,Y) ≤ ε.

2.1.3 Linear Algebra:

The singular values σ1(A) ≥ σ2(A) ≥ · · · ≥ σd(A) of a matrix A ∈ Rm×n are the square
roots of the first d = min(m,n) eigenvalues of its Gram matrix At · A in non-increasing
order. The spectral norm ‖A‖2 of a matrix is its largest singular value σ1(A). A matrix Σ
is positive semidefinite if and only if it can be written as Σ = S · St for some matrix S; we
write S =

√
Σ, and say that S is a square root of Σ. Note that such a square root is not

unique, because, e.g., −S =
√
Σ as well. We often just write

√
Σ to refer to some arbitrary

but fixed square root of Σ. For any matrix A with full column rank we define A+ as the
pseudo-inverse of A, i.e. A+ = (At ·A)−1 ·At (which simplifies to A−1 if A is invertible).

2.1.4 Norm of Matrix Representation:

We will use the following lemma which bounds the matrix norms of a vector of the matrix
representations of a vector of elements in R in terms of norms of the elements in R.

Lemma 1. Let e ∈ Rk and let E ∈ ZN×k·N be the multiplication matrix of e. Then

‖E‖2 ≤
√
N · ‖e‖2 .

Proof. Recall that ‖A‖2 = max‖x‖2=1 ‖A · x‖2. Observe that

‖A · x‖22 =
∑

ai · x2 ≤
∑
‖ai‖

2
2 · ‖x‖

2
2

by Cauchy-Schwarz. Since we have ‖x‖2 = 1 and, in the special case of A = E, ‖ai‖
2
2 =

‖e‖2, the result follows.
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2.2 Lattices and Gaussians
An n-dimensional lattice Λ is a discrete subgroup of Rn. Every lattice is generated by a
(non-unique) basis B, i.e. Λ = BZk, where B has full column rank. A coset of a lattice Λ
is a set of the form A = Λ+ c = {v+ a | v ∈ Λ} for some c ∈ Rn. The dual Λ∨ of a lattice
Λ is the lattice Λ∨ = {x ∈ span(Λ) | x · Λ ⊂ Z}. A lattice subspace S of Λ is the linear
span of some set of lattice points, i.e. S = span(Λ∩S). For a lattice Λ of rank k and i < k
we denote the i-th minimum λi(Λ) as the smallest r such that a zero centered ball with
radius r contains i linearly independent lattice vectors.

LetD be the Gaussian probability measure on Rk (for any k ≥ 1) having density function
defined by ρ(x) = e−π·‖x‖2 , the Gaussian function with total measure

∫
x∈Rk ρ(x) dx = 1.

For any (possibly non-full-rank) matrix S ∈ Rn×k, we define the (possibly non-spherical)
Gaussian distribution4

DS := S · D
as the image of D under S; this distribution has covariance Σ/(2π) where Σ = SSt is
positive semidefinite. Notice that DS depends only on Σ, and not on any specific choice
of the square root S. So, we often write D√

Σ instead of DS . When Σ = s2I is a scalar
matrix, we often write Ds (observe that D = D1).

For any lattice coset A = Λ + c and matrix S, we define the distribution DΛ+c,S

as the (origin-centered) discrete Gaussian distribution given by Pr[x ← DA] :=
ρS(x)/

∑
y∈A ρS(y).

We now recall the notion of the smoothing parameter [MR04] and its generalization to
non-spherical Gaussians [Pei10].

Definition 1. For a lattice Λ and ε ≥ 0, we say ηε(Λ) ≤ 1 if ρ(Λ∨) ≤ 1 + ε. For any
matrix S of full column rank, we write ηε(Λ) ≤ S if Λ ⊂ span(S) and ηε(S+Λ) ≤ 1. When
S = sI is a scalar matrix, we may simply write ηε(Λ) ≤ s.

Lemma 2 ([MR04]). Let Λ be any rank m lattice and ε be any positive real. Then

ηε(Λ) ≤ λm(Λ) ·
√

ln (2 ·m · (1 + 1/ε))

π
.

2.2.1 Convolution over R:

We will base our analysis on the following basic result from [GMPW20].

Lemma 3. For any ε ∈ [0, 1) defining ε̄ = 2 · ε/(1 − ε), matrix S of full column rank,
lattice coset A = Λ + a ⊂ span(S), and matrix T such that ker(T ) is a Λ-subspace and
ηε(Λ ∩ ker(T )) ≤ S, we have

T · DA,S
ε̄
≈ DT ·A,T ·S .

We use the above lemma to provide a simpler proof of the following lemma, which is
for Lemma 9 from [BI22].

Lemma 4. Let ε > 0 and ε̄ = 2ε/(1− ε), Λ ∈ Rν be a rank-νN lattice, S1 ∈ Rk×νN and
S2 ∈ Rk′×N be matrices with full column rank. For any e ∈ Rν

q and any c ∈ Rν
q , let E be

the multiplication matrix corresponding to e. Then if

σ(ν+1)·N

(
S1 0
0 S2

)
≥
(
1 +
√
N · ‖e‖2

)
· λνN (Λ) ·

√
ln(2 · ν ·N · (1 + 1/ε))

π

4There are two slightly different definitions of Gaussian distribution, one with a factor −π in the
exponent and one with the factor −1/2. In the latter, the noise parameter is typically denoted by σ
and is equal to the standard deviation of the distribution, which is a little more intuitive. However, we
choose to use the former definition for consistency with [GMPW20], which we base our analysis on. It is
straight-forward to translate between the parameters of these two definitions using a factor

√
2 · π.
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we have
etDΛ+c,S1 +DR,S2

ε̄
≈ DR,Γ

where

Γ =
√
E · St

1 · S1 · Et + St
2 · S2 .

Proof. Apply Lemma 3 with A = Λ ⊗ R + (c,0) (viewed as a coset of a lattice in

Z(ν+1)·N ), T = [E | I], S =

(
S1 0
0 S2

)
. It is easy to verify that T · (Λ ⊗ R) = R

and T · (c,0) ∈ R, i.e. T · A = R. Note also that T · S is a square root of Γ2, i.e.
(T · S)t · (T · S) = E · St

1 · S1 · Et + St
2 · S2. We now verify the conditions of Lemma 3.

Clearly, Λ⊗ZN ⊂ Z(ν+1)·N ⊂ span(S) since S1 and S2 have full column rank. Further-
more, we have ker(T ) = {(v, w) ∈ Rν·N × RN | E · v = −w}, which has rank ν ·N . Now
take any set of linearly independent lattice vectors in Λ of norm bounded by λν·N and

arrange them in the matrix B. Extend them to B′ =

(
B

−E ·B

)
which is a set of ν ·N

linearly independent vectors that are in Λ⊗ZN and that generate ker(T ). Hence, ker(T ) is
a (Λ⊗ ZN )-subspace. It remains to show that ηε(Λ′) ≤ S, where Λ′ = (Λ⊗ ZN ) ∩ ker(T ).

By definition, this is equivalent to ηε(S+ ·Λ′) ≤ 1. Note that the vectors S+ ·
(
I
−E

)
B ∈ Λ′

are all bounded by c · λν·N (Λ), where c =
∥∥∥∥S+ ·

(
I
−E

)∥∥∥∥
2

. So, λν·N (Λ′) ≤ c · λν·N (Λ) and

by Lemma 2

ηε(S
+Λ′) ≤ c · λν·N (Λ) ·

√
ln (2 · ν · ·N · (1 + 1/ε))

π
.

We conclude by observing that c ≤ ‖S+‖2 ·
∥∥∥∥( I
−E

)∥∥∥∥
2

and ‖S+‖2 ≤ 1/σ(ν+1)·N (S) and∥∥∥∥( I
−E

)∥∥∥∥
2

= 1 + ‖E‖2 ≤ 1 +
√
N · ‖e‖2 by Lemma 1.

Note that by the data processing inequality and triangle inequality, we may replace
the input distributions DΛ+c,S1 and DR,S2 in Lemma 4 by distributions, that approximate
them. The approximation error in max-log distance will at most add to the resulting
approximation error.

Lemma 4 requires that the minimal singular values of S1 and S2 are suitably bounded
from below in order to be applicable. In the the proof of Theorem 1 and Theorem 2 in
Section 4 we will apply Lemma 4 to matrices with a certain structure. In the following
lemma, we show that their minimal singular value can be easily bounded from below.

Lemma 5. Let r > 0 and Ej ∈ RN×m be arbitrary matrices for j ∈ {1, . . . , n} and
E`+1 = IN . Then, for any i ∈ {0, 1, . . . `} there exists a matrix Γ = r ·

√∑`+1
j=i Ej · Et

j

that has full column rank and
σN (Γ) ≥ r .

Proof. Clearly, r2
∑`

i Ei ·Et
i is positive semi-definite and thus all its eigenvalues are greater

than or equal to zero. Then, from the definition of eigenvalues, it follows that the matrix
r2 · (IN +

∑`
i Ei ·Et

i ) has eigenvalues at least greater than or equal to r2 > 0. This means
that the matrix is positive definite and has a root with full column rank given by the
Cholesky decomposition. Furthermore, this also shows that σN (Γ) ≥ r.
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2.3 Hardness Assumptions
We first introduce the standard (G)LWE hardness assumption.

Definition 2. Let k, q ∈ N and X be a “small” distribution over the degree N extension
R of Z. Then, for a fixed s ∈ Rk

q the GLWE distribution GLWE
s
N,q,k,X is defined as

(a,b = a · s+ e) where a is chosen uniformly at random from Rk
q and e is chosen from X .

Let S be some distribution over Rk
q . The GLWE problem GLWES

N,q,k,X is to distinguish
the distribution GLWE

s
N,q,k,X from the uniform distribution over Rk+1

q , where s← S.

The GLWE assumption is that the GLWE problem is considered to be a hard com-
putational problem. Note that, the traditional LWES

q,k,X problem is a special case of
the GLWES

N,q,k,X where N = 1. With suitable choice for the secret distribution S, error
distribution X (e.g. discrete or rounded Gaussian or even bounded uniform distributions
with sufficiently large variance) and ring dimension k the corresponding GLWES

N,q,k,X
problem is considered to be hard.

In the context of threshold LWE and threshold FHE, [MS25, PS24] introduce variants
of “yet another LWE” problem (yaLWE). We will state the version from [PS24] first and
then discuss variants of it.

Definition 3 (The yaLWE Problem [PS24]). Let `, q ∈ N, σ, η ≥ 0 and S denote a
distribution over Z`

q. The yaLWES
q,`,σ,η problem is to distinguish the two distributions

(a, b = a · s+ e, b′ = a · s+ d, ‖s‖) and (a, u, u+ h, ‖s‖),

where a← Z`
q, s← S, e← DZ,σ, d← DZ,η, u← Zq, and h← DZ,

√
σ2+η2 .

The yaLWE assumption is that the yaLWE problem is indeed hard. If the noise and
secret distributions are discrete Gaussians, it was argued in [PS24] (see also [MS25]) that
the yaLWE assumption is implied by the LWE assumption (with approriate parameters).
We assume that the problem is also hard when choosing the uniform binary distribution
as secret distribution S. On the other hand, [MS25] also showed that yaLWE does not
hold if both the variables e and d are drawn from uniform distributions (over polynomially
sized sets). To see this, note that it is trivial to obtain the value e − d from a yaLWE
sample, which leaks the values e and d with noticeable probability. So if considering other
noise distributions, the yaLWE can only plausibly hold if e and d retain some entropy even
conditioned on any possible value for e− d.

We now introduce a variant of the yaLWE assumption, the (ya)2LWE assumption (for
“yet another yaLWE assumption”) that we believe is plausibly secure, for when e is drawn
from a discrete Gaussian and d is drawn from a sum of uniform distributions.

Definition 4 (The (ya)2LWE Problem). Let `, q ∈ N, σ,w,B ≥ 0 and S denote a
distribution over Z`

q. We define Uw,B =
∑w

i=1 U([−B, . . . , B]). The (ya)2LWES
q,`,σ,w,B

problem is to distinguish the two distributions

(a, b = a · s+ e, b′ = a · s+ d, ‖s‖) and (a, u, u+ h, ‖s‖),

where a← Z`
q, s← S, e← DZ,σ, d← Uw,B , u← Zq, and h← DZ,σ + Uw,B .

We conjecture that the (ya)2LWE assumption is secure as long as w and B are chosen
such that LWES

q,`,Uw,B
is hard. The latter can be reasonably argued to be as hard as

LWES
q,`,DZ,r

with r =
√
2π · w ·B · (B + 1)/3, i.e. LWE with a discrete Gaussian with

matching standard deviation.
Note that even for w = 1 (and suitably large B) the attack from [MS25] outlined above

fails, so it is reasonable to assume that such an instantiation is secure. Furthermore, by
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the CLT, Uw,B approaches the (discrete) Gaussian as w grows. So for “large enough” w,
the (ya)2LWE problem matches the yaLWE problem from [PS24].

In summary, even though we will instantiate yaLWE and (ya)2LWE with S being the
binary uniform distribution, we believe there is sufficient evidence that both problems are
computationally as hard as LWE (with appropriate parameters).

2.4 TFHE Recap
We recap here on the TFHE scheme, in as much detail as neeeded to understand this
paper. In the following we try to give a succinct intuitive description of TFHE that we
hope is detailed enough to follow the rest of the work without cluttering it with too much
formal notation.

For a more full and rigorous description, we refer to [CGGI20] and follow up work, or
the survey [Joy22]. The TFHE scheme is an FHE scheme based on the (G)LWE problem.
The basic ciphertexts in TFHE are simple LWE ciphertexts, but the bootstrapping and
sanitization methods use a range of other ciphertexts based on GLWE; namely (G)LWE
ciphertexts, GLev ciphertexts and GGSW ciphertexts.

(G)LWE ciphertexts: Let p, q, k ∈ N, DR,r be GLWE (or simply LWE in case N = 1)
parameters with p < q. For a message m ∈ Rp, we define its (G)LWE encryption to be
(a,b = a · s+ e+∆ ·m), where a ∈ Rk

q is uniformly random, s ∈ Rk
q is chosen from the

uniform binary distribution and e from DR,r, and ∆ = bq/pe. By the hardness of (G)LWE
this is a semantically secure ciphertext. It can be decrypted using s if m represents a
suitable encoding of a message that is robust with respect to the error distribution. In
the context of LWE ciphertexts we typically denote the dimension by ` instead of k. Note
that (G)LWE ciphertexts are additively homomorphic and may be multiplied with “small”
elements in Rq, where smallness is determined such that the resulting ciphertext can still
be correctly decrypted given the error distribution and the encoding. It is trivial to turn
this description into a symmetric encryption scheme, but there are also efficient ways to
construct a public key scheme [Reg05, Joy24]. We note that in either case the structure of
the ciphertexts are the same as in the symmetric scheme.

GLev Ciphertexts: GLev ciphertexts (where the “Lev” stands for levelled) are a way
to extend (G)LW ciphertexts in order to allow for multiplication with arbitrary constants.
It is based on the standard approach of decomposition: let g = (1, 2β , . . . , 2ν·β)t be the
“standard” gadget vector5, where ν · β = log q. Decomposition, takes as input a value
a ∈ Zq and computes a vector v ∈ Zν such that v · g = a. This is typically done via
a radix decomposition and is easily generalized to vectors by defining G = I ⊗ gt and
performing decomposition componentwise. Similarly, this can be extended to vectors over
R by performing the decomposition coefficientwise and collecting the results in polynomials
again, see e.g. [BI22]. With this decomposition at hand, we define the GLev encryption of
m ∈ Rq with parameters β and ν to be the set of element-wise (G)LWE encryptions of
m · g. Note that, such a ciphertext can be multiplied with an arbitrary element a ∈ Rq

by first computing G−1(a) and taking the inner product with the GLev ciphertext. Since
all components of G−1(a) are small the result is an (G)LWE encryption of a ·m by the
homomorphic properties of the (G)LWE ciphertexts (and assuming suitable parameters).
It is this operation G−1(a) which when generalized to a randomized variant G−1

r (a) that
will form the basis of our sanitization methodology.

5For simplicity, we focus in this work on power of 2 modulus q and decomposition base 2β . Furthermore,
the sanitization in this work does not extend to approximate decomposition, so we only consider exact
decomposition.



14 Error-Simulatable Sanitization for TFHE and Applications

GGSW Ciphertexts: While GLev ciphertexts allow one to multiply encrypted values
with arbitrary constants, we would also like to be able to efficiently multiply encrypted
values with each other. This can be achieved using GGSW ciphertexts (named after
[GSW13]). The idea is to encrypt m as a GLev ciphertext and for each element si of the
secret key s ∈ Rk

q , additionally encrypt m · si as a GLev ciphertext. This set of k + 1
GLev ciphertexts forms the GGSW ciphertext. By the properties of GLev ciphertexts, this
allows one to perform the multiplication while homomorphically decrypting a ciphertext
(a,b = a · s+∆ ·m′+e) by homomorphically computing b ·m and ai · si ·m and using the
additive homomorphism of GLWE ciphertexts. Note that, m should not be too large as
this would blow up the error. In TFHE, the message m is usually a key bit and thus binary,
so clearly small. In summary, a GGSW ciphertext C allows homomorphic multiplication
with a GLWE ciphertext ct, which results in a GLWE ciphertext ct′ encrypting the product
of the two plaintexts (as long as the plaintext in the GGSW ciphertext is sufficiently small).
This operation is typically called the external product and is denoted by ct′ ← ct� C.

We are now in a position to define the main homomorphic operation of the TFHE
scheme, namely the programmable bootstrapping (PBS) operation. The input to the PBS
operation are the following sets of data.

• An LWE ciphertext ct = (a, b = a · s+ e+∆ ·m) ∈ Zk·N+1
q to bootstrap, where the

corresponding secret key is s̃ ∈ {0, 1}k·N (resulting from a flattening of the secret
bootstrapping key s̃ ∈ Rk),

• An element t ∈ Rq that encodes a function6 f : Zp 7→ Zp into the bootstrap,

• A bootstrapping key bsk, which is a collection of GGSW ciphertexts encrypting the
individual bits si ∈ {0, 1} of the secret key s ∈ Z`

q under the bootstrapping secret
key s̃ ∈ Rk

q with binary coefficients, and

• A key switching key ksk, which is a collection of GLev ciphertexts encrypting the
coefficients of the bootstrapping key under the secret key s.

The PBS operation outputs a ciphertext ct′ = (a′, b′ = a′ · s̃ + e′ + ∆ · f(m)), where e′
only depends on bsk and ksk, not on e. For suitable parameters, we have that |e′| < |e|.
Combining this with the additive homomorphism of LWE ciphertexts we obtain a Fully
Homomorphic Encryption scheme. The PBS operation itself consists of four steps: Key
Switch, Mod Switch, Blind Rotation and Flattening, executed (for our purposes) in this
order. We describe each of these in detail.

KeySwitch(ct, ksk): The key switch is a classic LWE type operation that follows from
the observation that GLev ciphertexts can be used to homomorphically decrypt a GLWE
ciphertext. Let ct = (a, b) ∈ Zk·N+1

q be a GLWE ciphertext with corresponding secret key
s̃ ∈ Zk·N

q . We would like to obtain a ciphertext (a′, b′) ∈ Z`+1
q encrypting the same message

as ct but under the secret key s ∈ Z`
q. We can do so by constructing a key switching key ksk

that consists of GLev encryptions of s̃i under s. Then, using the fact that we can multiply
these ciphertexts with arbitrary constants using decomposition, we can homomorphically
compute a ciphertext encrypting b− a · s̃ under s, which yields the desired ciphertext.

ModSwitch(ct): We embed the input ciphertext ct = (a, b) into the group 〈X〉 ⊂ Rq,
which is of size 2 ·N . By this we mean that we map ct to (Xa1 , Xa2 , . . . , Xa` , Xb) and,
looking ahead, this will allow us to homomorphically compute Xb−

∑
i ai·si . So in order

6There is a requirement for the function to be negacyclic, but we omit details since it is irrelevant for
our work.
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to match up the moduli, we first perform a modulus switch. In particular, this outputs
ct′ = (a′, b′) ∈ Z`+1

2·N , where

a′i =

⌊
ai · 2 ·N

q

⌉
and similar for b′.

BlindRotate(ct, bsk, t): The blind rotation is the core of the PBS. We begin its description
by introducing a homomorphic ciphertext multiplexer (CMUX) operation: given two
GLWE ciphertext ct0, ct1 ∈ (Rk+1

q )2 and a GGSW encryption Cµ of a bit µ ∈ {0, 1}, all
under the same key s̃ ∈ Rk

q , we can compute the GLWE ciphertext

ct = (ct1 − ct0)� Cµ + ct0

where � corresponds to the external product described above. By the additive homomor-
phism and the properties of the external product, ct will encrypt the same plaintext as
ctµ.

We are now ready to describe the blind rotation. Let (a, b) ∈ Z`+1
2·N be the ciphertext

after the mod switch. The blind rotation begins by constructing a trivial GLWE ciphertext
(0, X−b · t), where 0 ∈ Rk

q is the all zero vector of size k. Then, it iterates over the
elements ai of a, where the output GLWE ciphertext ct from the previous iteration is
multiplied element-wise by Xai . Note that, since Xai has low norm, this corresponds to
multiplying the plaintext with Xai . The two ciphertexts ct and Xai · ct are input to a
homomorphic CMUX, with the control bit being the corresponding part of bsk, which is a
GGSW ciphertext encrypting si. Accordingly, the result is a ciphertext encrypting the
same plaintext as Xaisi · ct. After executing the full loop, the result is a GLWE ciphertext
encrypting X−b+

∑
i ai·si · t = X−b+a·s · t = X−m−e · t. Note that, in Rq, this corresponds

to a negacyclic rotation of t by m+ e positions. The operation is given in Figure 2, it is
this operation which we will randomize in our sanitization procedure in the corresponding
Figure 4.

BlindRotate(ct, bsk, t)

On input of an LWE ciphertext ct = (a, b) ∈ Z`+1
2·N encrypting message m, a

bootstrapping key bsk = (bski)
`
i=1, and a test polynomial t ∈ Rq this outputs a

GLWE ciphertext ct′ encrypting the plaintext X−m−e · t.

1. z← (0, . . . ,0, t ·X−b) ∈ Rk+1
q .

2. For i = 1 to ` do:
(a) z← z + bski � ((Xai − 1) · z).

3. Return z.

Figure 2: The Blind Rotation Algorithm.

By redundantly embedding the function f into the test polynomial t, we can ensure
that the error e is rounded away and the resulting ciphertext contains an encryption of
∆ · f(m) in its constant coefficient. In our application for sanitization we will use the
identity function for f , and so as the redundant encoding, we use

encid =
∑
i

(∑
k

∆ · i ·Xi·K+k

)
,

where the index k is over the error range (which has size at most K) and i over the
plaintext space.
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Flatten(ct): The goal of flattening (in the literature also often referred to as sample
extraction) is to convert a GLWE ciphertext into an LWE ciphertext encrypting the
constant coefficient of the GLWE ciphertext, and where the key is a vector of bits
corresponding to the concatenation of coefficient vectors in the GLWE secret key. We
describe the special case of k = 1, since the generalization is straight-forward. So, given
(a,b) ∈ R2

q we seek to construct (a′, b′) ∈ ZN+1
q such that (b − a · s̃)0 = b′ − a′ · s̃. We

note that
a · s̃ =

∑
i

a · s̃i ·Xi =
∑
i

(
Xi · a

)
· s̃i .

Since addition in Rq is elementwise, we may set a′i = (Xi · a)0 and b′ = b0 in order to
achieve our goal. Note that the error in the resulting ciphertext is the constant coefficient
of the error in the GLWE ciphertext.

In the “traditional” booststrap operation in TFHE, as introduced in [CGGI16, CGGI20],
the operations are executed in a different order, where the key switch is performed at the
end of the PBS and the linear operations in between the bootstraps are computed on LWE
ciphertexts of dimension `. In [BBB+23, CJP21] the alternative order as outlined above is
introduced, and intermediate operations are applied to LWE ciphertexts of dimension k ·N .
This was done by [BBB+23, CJP21] to produce better parameters and a more efficient
scheme. Looking ahead, we focus on the order of operations given in [BBB+23, CJP21],
not for efficiency reasons, but because we focus on sanitizing the blind rotation. If this
were followed by a keyswitch operation, it would induce a key dependency on the noise
term again. So it is easier to argue about the output distribution of the entire bootstrap
when considering the order of operations given in [BBB+23, CJP21].

In summary TFHE can be defined by four algorithms:

• ({pk, bsk, ksk}, s̃) ← KeyGen(1κ): A randomized key generation algorithm which
produces a public key pk, a bootstrapping key bsk, a key switching key ksk and a
secret key s̃.

• ct← Encpk(m): A randomized algorithm taking a message m ∈ Rp and a public key
pk and outputing a flattened GLWE ciphertext (i.e. an LWE ciphertext of dimension
k ·N) which encrypts the message m in the form ct = (a, b = a · s̃+ e+∆ ·m).

• m ← Decsk(ct): Which takes a flattened GLWE ciphertext ct = (a, b) and a secret
key, and outputs the plaintext m by rounding the value of b− a · s̃ on division by ∆.

• ct′ ← PBSksk,bsk(ct, f) which takes a ciphertext ct encrypting a value m, a function
f : Rp −→ Rp, a keyswitching key ksk and a bootstrapping key bsk, and outputs a
ciphertext ct′ encrypting f(m).

By choosing the various parameters carefully one can obtain a scheme which is semantically
secure (with any desired level of security) and which is correct (again to any desired level
of failure probability).

3 Sanitization
In this section we present our main method for sanitization, we leave the formal proofs and
analysis to the next section; leaving this section for the algorithmic description. The key
idea, as explained before, and as used in [BI22], is a randomized decomposition method.
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3.1 Randomized Decomposition
We can view the decomposition via the map G−1(a) as a lattice algorithm: let Λ⊥

a (G) =

{v ∈ Z`·ν | v ·G = a mod q}, then decomposition computes a short vector in the lattice
coset Λ⊥

a (G). The reason we need this vector to be short is that the resulting error in
the context of an external product will be the inner product of v and the error in the
GGSW ciphertext. The radix decomposition computes the shortest vector in Λ⊥

a (G), but
it is by no means the only possible solution. As shown in [MP12], we can sample from
the discrete Gaussian over Λ⊥

a (G), which will still yield a relatively short vector and gives
better control of the resulting distribution. For completeness, we give the algorithm from
[MP12] in Figure 3, which is a specialization of the sampling algorithm from [Kle00] for
general lattices to the case of Λ⊥(g).

SampleGr,β(a)

On input an element a ∈ Zq this outputs an element distributed according to
DΛ⊥

a (gt),r, where g = (1, 2β , 22β , . . . , 2νβ), ν · β ≥ log q and r ≥ ηε(Λ⊥(gt)).

1. x← a
2. For i = 1 to ν do:

(a) xi ← D2βZ+x,r

(b) x← (x− xi)/2β

3. Return (x1, x2, . . . , xν).

Figure 3: Sampling algorithm for DΛ⊥
a (gt),r

Note that the only difference between radix decomposition with base 2β and SampleG
is in Step 2a: where radix decomposition would compute xi ← x mod 2β (which can be
viewed as choosing the smallest vector in the lattice coset 2βZ+x), the sampling algorithm
instead chooses a representative using a discrete Gaussian over 2βZ. In the language of
[CGGI20], SampleG is a decomposition algorithm of quality τ · r and precision 0, where τ
is a suitable tailcut parameter.

The algorithm reduces the problem of sampling from DΛ⊥
a (gt),r to sampling from

D2βZ+x,r, i.e. sampling 2β cosets of the integers. For this problem, there are a myriad of
algorithms to choose from [BCG+14, DDLL13, Fol15, Kar16, MW17, PDG14, Wal19]. A
key performance bottleneck of our method will be the generation of such samples in a
suitably efficient manner.

We now describe the generalization of decomposition from Zq to R, since it is not
mentioned in [MP12] nor made explicit in [BI22]. Let g = (1, 2β , . . . , 2νβ)t ∈ Rν as
before, but considered as a vector of (constant) polynomials. We want to show that
Λ⊥(gt) = {v ∈ Rν | v · gt = 0 mod q} is a lattice and that we can generalize SampleG

to this lattice. The set Λ⊥(gt) is indeed a lattice if we identify Rν with Zν·N , since it
is closed under addition and thus a discrete subgroup of Rν·N . In fact, we can write
Λ⊥(Ĝ) = {v ∈ Zν·N | v · Ĝ = 0 mod q} with Ĝ = g ⊗ IN , which is the same lattice. This
is because the multiplication matrix of gi, where gi ∈ Z ⊂ R is just a constant, is the
matrix giIN . Let B be a basis for Λ⊥(gt ∈ Zν). Then B ⊗ IN is a basis for Λ⊥(Ĝ). For
such a structured matrix, the sampling algorithm from [Kle00] reduces to N independent
copies of the same algorithm on each coordinate with base B (as claimed in [BI22]). Hence,
SampleG can be used to sample from DΛ⊥(gt)∈Rν+c,r, provided that r > ηε(Λ

⊥(Ĝ)).
In [MP12] it was shown that all vectors in B have length less than or equal to

√
1 + 2β

and due to the structure of the basis B ⊗ IN it follows that λν·N (Λ⊥(gt ∈ Rν)) =
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λν·N (Λ⊥(Ĝ)) ≤
√
1 + 2β .

The generalization of decomposition to vectors over R now follows in the same way as
generalizing SampleG to vectors over Z. One simply observes that G = Ik ⊗ gt ∈ Rk·ν×k

and apply the randomized R-decomposition algorithm from above on each coordinate. The
following fact follows directly from the structure of the basis for Λ⊥(G) and is useful to
bound its smoothing parameter in our proofs.

Fact 1.
λk·ν·N (Λ⊥(G ∈ Rk·ν×k)) ≤

√
1 + 2β .

3.2 Sanitization Algorithms
Denote by G−1

r (·) the randomized decomposition from Section 3.1. We define �r to be the
external product using G−1

r (·) instead of radix decomposition. This allows us to define a
variant of blind rotation whose output is simulatable; the algorithm being given in Figure 4
and denoted by Sanitized-BR(ct, bsk, t), which is essentially that given in [BI22]. This
algorithm will form the core of our threshold decryption method, as well as our solution to
providing funcCPA security for TFHE. The algorithm is the randomized version of the
traditional Blind Rotation method given in Figure 2.

For the sake of modularity, we present the algorithms here in a form, where they
require access to an oracle that generates fresh GLWE samples for a secret corresponding
to the GLWE secret key in the bootstrapping key bsk. We discuss in Section 3.3 how to
instantiate the oracle by augmenting the bsk.

Sanitized-BROs̃,r()(ct, bsk, t)

On input of an LWE ciphertext ct = (a, b) ∈ Z`+1
2·N encrypting a message m, a

bootstrapping key bsk = (bski)
`
i=1, and a test polynomial t ∈ Rq this outputs a

GLWE ciphertext ct′ encrypting X−m−e · t. Note that Os̃,r() is an oracle that
generates fresh GLWE samples for secret s̃ and Gaussian parameter r ·

√
E · Et + I

for some E of bounded size.

1. z← (0, . . . ,0, t ·X−b) ∈ Rk+1
q .

2. For i = 1 to ` do:
(a) z← z + bski �r ((X

ai − 1) · z).
3. (a′,b′)← Os̃,r().
4. Return z + (a′,b′).

Figure 4: The Sanitized Blind Rotation Algorithm.

The work of [BI22] shows that the version of the blind rotation given by
Sanitized-BR(ct, bsk, pk, t) yields a distribution that only depends on the input plain-
text, not the ciphertext. In Section 4 we will show something stronger: namely, that we
can precisely define the output distribution of Sanitized-BR(ct, bsk, t) and easily simulate
it without having to run the algorithm itself as long as we know the underlying message.
Thus we obtain the simulatable sanitization algorithm in Figure 5.

3.3 Instantiating the GLWE Oracle
The goal of this section is to show how to delegate the generation of GLWE samples
with secret s̃ without revealing s̃. This is similar to the notion of rerandomizers from
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SanitizeOs̃,r()(ct, bsk, ksk, t, pk)

1. If ct is a GLWE ciphertext of dimension k ·N apply ct← KeySwitch(ct, ksk);
otherwise ct is an LWE ciphertext of dimension `.

2. ct← ModSwitch(ct).
3. ct← Sanitized-BROs̃,r()(ct, bsk, pk, t).
4. ct← Flatten(ct).
5. Return ct.

Figure 5: Santization Algorihtm

[BI22, DS16], but with stronger requirements. While [DS16] only requires the rerandomizer
to inject some randomness to slightly bridge the gap between two ciphertexts encrypting
the same message (which is then repeated multiple times to obtain statistical closeness),
[BI22] requires that the mask of the rerandomizer is (statistically or computationally close
to) uniformly random (even in the presence of the secret key s̃). In our case, we also
require the mask to be uniformly random, but we also need the noise distribution to be
statistically close to a Gaussian.

In the following, we will show two methods to instantiate the GLWE oracle, both based
on the work of [BI22]. The first one will produce samples that are statistically close to fresh
GLWE samples, the other will be computationally indistinguishable. In combination with
Sanitize they yield a statistical and a computational sanitization algorithm, respectively.
The two algorithms work in a similar fashion: publishing a set of GLWE samples allows to
generate fresh samples by taking random linear combinations.

3.3.1 Statistical Instantiation:

A statistical version of the GLWE oracle is already implicit in [BI22].

Lemma 6. Let ε, ε′ > 0, `′ = ` · (`+ 1) be such that

`′ ≥ log

(
((N · log q)− 1) · (1 + ε)

4 · ε′2 · (1− ε)
+ `

)
.

For any s̃ ∈ R` and e ∈ R`′ , let (A,b = A · s̃ + e) ∈ R
`′×(`+1)
q , where A ∈ R`′×` is

uniformly random. Let r be such that

r ≥ (1 +
√
N · ‖e‖2) ·

√
ln (2 · `′ ·N · (1 + 1/ε))

π
.

Then
SD ((r ·A, r · b+ e′′), (a,a · s̃+ e)) ≤ ε′ + ε

where r← DR`′ ,r, e′′ ← DR,r, a is uniformly random and e← DR,Γ with

Γ = r ·
√
E · Et + I

and E being the multiplication matrix of e.

3.3.2 Computational Instantiation:

We now extend the approach from [BI22]. We show that their rerandomizer not only yields
pseudorandom masks, but also that the resulting noise distribution is statistically close to
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a (non-spherical) discrete Gaussian. We simplify the technique a little at the expense of
slightly worse parameters by assuming the same distribution for the randomizing terms
below. This is for ease of exposition and can easily be generalized to distributions with
different noise parameters for r, e′ and e.

Lemma 7. For any s̃ ∈ R` and e ∈ R`′ , let (A,b = A · s̃ + e) ∈ R
`′×(`+1)
q , where

A ∈ R`′×` is uniformly random. Let r be such that

r ≥ (1 +
√
N · ‖[̃s | e]‖2) ·

√
ln (2 · (`′ + `) ·N · (1 + 1/ε))

π

and define

r′ =

√
2 · r√

1 +N · ‖[̃s | e]‖22
≥

√
2 · r

1 +
√
N · ‖[̃s | e]‖2

≥
√
2 · ηε

(
Z(`′+`)·N

)
.

Then, assuming the hardness of GLWEN,q,`′,r′ ,

(r ·A+ e′, r · b+ e′′) ≈c (a,a · s̃+ e)

where r← DR`′ ,r, e′ ← DR`,r, e′′ ← DR,r, a is uniformly random and e← DR,Γ with

Γ = r ·
√
E · Et + I

and E being the multiplication matrix of [−s̃ | e].

The proof relies on a lemma from [BI22] reproduced as Lemma 8 below.

Proof. First note that the lower bound on r implies that r′ meets the condition of Lemma 8.
So it remains to show that eu = r · e− e′ · s̃+ e′′ is statistically close to DR,Γ. This follows
directly from Lemma 4 with Λ = R`′+`.

Lemma 8 (adapted from [BI22], Lemma 14). With the notation of Lemma 7, if

r′ ≥
√
2 · ηε

(
Z(`′+`)·N

)
then, assuming the hardness of GLWEN,q,`′,r′ ,

(r ·A+ e′, r · b+ e′′) ≈c (a,a · s̃+ eu)

where eu = r · e− e′ · s̃+ e′′.

4 Analysis of SanitizeOs̃,r()(ct, bsk, ksk, t, pk)

Recall that the bootstrapping key bsk consists of GGSW encryptions of each bit si of the
secret key. These ciphertext are encryption under another secret key, which we will denote
by s̃ throughout this section. We begin with the analysis of Sanitized-BR.

Theorem 1. Let Bbsk be such that ‖ei‖2 ≤ Bbsk for all i, where ei corresponds to the
vector of noise polynomials in the i-th element of the bootstrapping key bsk. Under the
condition that

r ≥
√
1 + 2β · (1 +

√
N ·Bbsk) ·

√
ln (2 · (k + 1) · ν ·N · (1 + 1/ε))

π
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and r satisfies the condition of Lemma 6 or Lemma 7 (for statistical or statistical sanitization,
respectively) we have

Sanitized-BR(ct, bsk, pk, t; ·) ≈ (u,u · s̃+ e′ + t ·X−b+
∑

i ai·si)

where u ∈ Rk
q is uniformly random and e′ ← DR,Γ. Here,

Γ = r ·

√√√√`+1∑
i

Ei · Et
i

with r being the noise parameter of the randomized decomposition algorithm, Ei the
multiplication matrix of ei and E`+1 =

√
E · Et + I is the noise matrix from the LWE

oracle.
The proof is inspired by [BI22].

Proof. Let zt be the state of the accumulator after t iterations. A short derivation shows:

zt = Xat·st · zt−1 + (bski − si ·G)�r ((X
at − 1)zt−1) .

For convenience we define z`+1 = zn + (u, u · s̃+ y) (where y ← DZ,r·E`+1
), i.e. the output

of Sanitized-BR(ct, bsk, t). Following the structure of the proof of Lemma 17 in [BI22], we
show that for all t

z`+1

ε̄t≈ X
∑

j>t aj ·sj · zt + (u, u · s̃+ e)

where for ε̄t = (`+ 1− t) · 2 · ε/(1− ε), u ∈ Rk
q is uniformly random and e← DR,Γt

with

Γt = r ·
√∑

i≥t

Ei · Et
i .

The proof is by induction from `+ 1 to zero. Clearly, the statement is true for `+ 1.
So assume it holds for some t. We have

z`+1

ε̄t≈ X
∑

j>t aj ·sj · zt + (u, u · s̃+ e)

= X
∑

j≥t aj ·sj · zt−1 +X
∑

j>t aj ·sj ·
(
(bskt − st ·G)�r ((X

at − 1) · zt−1)
)

+ (u, u · s̃+ e)

= X
∑

j≥t aj ·sj · zt−1 + (bskt − st ·G)�r (X
∑

j>t aj ·sj (Xat − 1) · zt−1)

+ (u, u · s̃+ e) .

The last step follows since for any v and i we have Xi · G−1
r (v) = G−1

r (Xi · v) (i.e. we
may first apply a negacyclic shift and then decompose, or first decompose and then apply
the negacyclic shift to all components). Define v = (X

∑
j>t aj ·sj (Xat − 1) · zt−1). We need

to show that
(Ai, Ai · s̃+ ei)�r v + (u, u · s̃+ e)

ε̄′

≈ (u, u · s̃+ e)

(where the distribution of e has standard deviation Γt on the left hand side and Γt−1 on
the right hand side) with ε̄′ = 2 · ε/(1 − ε). Note that ε̄t−1 = ε̄t + ε̄′, so the result will
follow by triangle inequality. We have

(Ai, Ai · s̃+ ei)�r v + (u, u · s̃+ e)

=(Ai �r v + u, (Ai �r v + u) · s̃+ ei �r v + e)

=(u, u · s̃+ ei �r v + e)

where the last step follows from the uniformity of u. We conclude by applying Lemma 4 to
ei�rv+e: Note that the marginal distribution of this term is etDΛ⊥(G)+G−1(v), r·I+DR,Γt

.
Lemma 5 and Fact 1 ensure that Γt meets the conditions of Lemma 4 and thus we conclude
that ei �r v + e

ε̄′

≈ DR,Γt−1 .
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Finally, to obtain an LWE ciphertext from the result of Sanitized-BR(ct, bsk, pk, t), the
algorithm Sanitize(ct, bsk, ksk, t, pk) flattens the GLWE ciphertext.

Theorem 2. Let e ← DR,Γ with r and Γ as in Theorem 1, and X be the marginal
distribution of e1. Then

X
ε̄
≈ DZ,rbr

where ε̄ = 2 · ε/(1− ε), rbr = r ·
√∑

‖e′‖22 and e′ runs over the all noise polynomials in
the bootstrapping key, the possible noise vectors from the GLWE oracle, and the secret key
polynomials s̃ in case of the computational instantiation from Lemma 7.

Proof. Apply Lemma 3 with T = (1, 0, . . . , 0). Note that ker(T ) = 0 ⊗ ZN−1, which is
clearly a lattice subspace of ZN . By Lemma 5 we have that S = Γ has full column rank
and σN (S) ≥ r. Since

ηε
(
ker(T ) ∩ ZN

)
= ηε

(
ZN−1

)
= ηε(Z) ≤

√
ln (2 · (N − 1) · (1 + 1/ε))

π
≤ r,

the result follows from

rbr = r ·
√∑

i

T · Ei · Et
i · T = r ·

√∑
‖e′‖22 .

Note that Theorem 2 implies that we can easily simulate the output distribution of
SanitizeOs̃,r()(ct, bsk, ksk, t, pk; ·) knowing only the message and rbr.

Corollary 1. If t is such that the constant coefficient of t ·X−(m+e) is ∆ ·m for all m in
the message space and r satisfies the conditions in Theorem 1 and Lemma 7, then the output
of SanitizeOs̃,r()(ct, bsk, ksk, t, pk; ·) is indistinguishable from (u, b = u · s̃+ e+∆ ·m) under
the GLWE assumption, where u ∈ ZN

q is uniformly random, e← DZ,rbr , and s̃ corresponds
to the flattening of the GLWE key.

A similar statement can be made using Lemma 6, achieving statistical indistinguisha-
bility.

5 Threshold FHE
The application of our simulatable sanitization method to server assisted threshold TFHE
is now relatively immediate. The protocol and proof follow almost identically to that in
[PS24], except that the large flooding operation in the protocol is now replaced by our
Sanitize procedure. Our protocols are therefore in a system in which we have n+ 1 parties,
consisting of a server S and the threshold parties P1, . . . ,Pn. The assumption is that the
server S is always honest, however up to t of the threshold parties may be (potentially
malicously) dishonest.

5.1 Threshold Decryption Ideal Functionalities
Following [DDK+23] we define the threshold decryption via two ideal functionalities, as
opposed to the game-based definitions in [PS24]. Unlike [DDK+23], as we are in a server
aided situation, the ideal functionalities implicitly assume that the protocol runs between
the parties {S,P1, . . . ,Pn}, for which party S is always an honest party. The first FKeyGen,
in Figure 6, acts as a set-up assumption for our protocol, needed for the UC proof we
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provide. It generates a key pair (where the public key consists of the public encryption key
pk, the bootstrapping key bsk and the keyswitching key ksk), and secret shares the secret s
key for the flattened GLWE ciphertexts among the players using the secret sharing scheme.
It also generates, and returns to the players, the value rbr, since this value will be needed
in our simulator for threshold decryption7. As explained in [DDK+23] one can realize this
functionality (between the parties P1, . . . ,Pn) using a generic MPC protocol relatively
simply; for example using full threshold secret sharing one can implement a non-robust
version of this functionality using the methodology given in [RST+22].

FKeyGen

Init:
1. On input of Init from all parties.
2. Execute ({pk, bsk, ksk}, s)← KeyGen(1κ) for the underlying TFHE en-

cryption scheme.
3. Compute rbr ← r ·

√∑
‖ei‖

2
2.

4. Generate a secret sharing 〈s〉 of the secret key.
5. Send {pk, bsk, ksk, rbr} to all players (including the adversary), and send
〈s〉i to player Pi (including adversarially controlled players).

Figure 6: The ideal functionality for distributed key generation

The key functionality we want to implement is FKeyGenDec given in Figure 7. Note, that
this functionality always returns the correct result. If the adversary is passive then by
definition it will return the correct result. If the adversary is actively malicious (which we
will consider in Section 5.3) then we need the protocol to ensure that the correct result is
returned.

FKeyGenDec

Init:
1. On input of Init from all parties.
2. Execute ({pk, bsk, ksk}, s)← KeyGen(1κ) for the underlying TFHE en-

cryption scheme.
3. Send {pk, bsk, ksk} to all players, including the adversary and store the

value s.
ThreshDec:

1. On input of ThreshDec(ct,U) from all parties, where ct is a valid (i.e.
decryptable) ciphertext and U is a given party who should receive the
plaintext message encrypted by ct.

2. Compute m← Dec(ct, s).
3. If U is adversarially controlled then send (ct,m) to the adversary.
4. Otherwise send m to player U and ct to the adversary.

Figure 7: The ideal functionality for distributed key generation and decryption

7The actual protocol does not need to compute or publish this value. However, publishing this value
does not affect security.
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5.2 Full Threshold Version (Non-Robust)
We assume a threshold secret sharing scheme 〈·〉 which allows us to share values in Zq

amongst n parties. In this section we assume that at most t = n− 1 of these parties can
be passively corrupted. Such a secret sharing scheme can be obtained using a trivial
additive secret sharing scheme; i.e. a secret s ∈ Zk·N

q is secret shared 〈s〉 by giving each
player si ∈ Zk·N

q where
s = s1 + . . .+ sn.

We note that in this situation by adding zero-knowledge proofs to our protocol, much
like as in the protocol in [ABGS23], one can obtain (in our threshold decryption application)
active-with-identifiable-abort security; i.e. the receiving party will know which dishonest
parties tried to add on a non-zero value of Γ to the final decryption result. This modified
protocol is, however, only efficient when a large number of threshold decryptions are
required, and so we will not consider it further here.

ThreshDec(ct, 〈s〉, {pk, bsk, ksk},U)

Init():
1. The parties P1, . . . ,Pn obtain, via a generic MPC protocol, the sharing
〈s〉 of the value s.

ThreshDec(ct, 〈s〉,U):
1. Party S executes (a′, b′ = a · s + ∆ · m + e′) ←

Sanitize(ct, bsk, ksk, encid, pk).
2. Party S sends (a′, b′) to all parties Pi and U .
3. Party Pi samples di ← DZ,η.
4. Party Pi computes pi ← a′ · si + di (mod q).
5. Party Pi sends pi to party U .
6. Party U extracts m from p′ = b′ −

∑n
i=1 pi = ∆ ·m+ e′ −

∑n
i=1 di.

7. Party U returns m.

Figure 8: The Full Threshold Threshold Decryption Protocol

The threshold decryption protocol is then immediate, and given in Figure 8. With the
correctness and security being given by the following theorem.

Theorem 3. In the {FKeyGen}-hybrid model the protocol in Figure 8 implements FKeyGenDec

with computational security against any static passive adversary corrupting I parties, with
|I| ≤ n− 1 assuming:

• TFHE parameters that ensure correctness of the FHE operations.

•
∣∣e′ +∑n

i=1 di
∣∣ < ∆/2 (to ensure correctness of the output of the “bath”-ing opera-

tion)8.

• The noise parameter r of Sanitize satisfies the conditions of Theorem 1 and Lemma 7.

• The hardness of yaLWES
q,k·N,σ,η, where σ = rbr from Theorem 2.

Proof. Correctness follows from the correctness of the TFHE homomorphic operations,
the bound |e′|+

∑
i di < ∆/2 and the correctness of the sanitization procedure.

8This inequality could be rephrased in terms of σ, η, n and a suitably chosen constant derived from the
erfc function.
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Without loss of generality we can assume there is only one honest party, which we will
assume is player Pn. Security of the protocol follows by showing that the output of the
simulator in Figure 9 is computationally indistinguishable, from the output of an adversary
controlling the parties P1, . . . ,Pn−1, in a real execution of the protocol.

Simulator Threshold Decryption

On input of

1. A ciphertext ct = (a, b) and the public keys {pk, bsk, ksk}.
2. The underlying message m encrypted by ct.
3. A set of adversarial parties I with |I| ≤ n− 1.
4. The share values si for i ∈ I.
5. The value σ, which is a publicly known value from the key generation method.

this algorithm outputs the simulated shares {〈p〉j}j 6∈I .

Sim-DistDecrypt:
1. a′ ← Zk·N

q .
2. b′ ← Zq.
3. For i = 1, . . . , n− 1 compute

(a) di ← DZ,η.
(b) pi ← a′ · si + di (mod q).

4. h← DZ,
√

σ2+η2

5. pn = b′ + h−
∑n−1

i=1 a
′ · si −∆ ·m.

6. The simulator outputs {a′, b′, p1, . . . , pn}.

Figure 9: Simulator for ThreshDec(ct, 〈s〉, {pk, bsk, ksk},U)

Note, the values {p1, . . . , pn−1} produced by the simulator are the true decryption
share values produced by the adversary. Our proof of security follows the proof of Theorem
5.1 of [PS24], via a sequence of hybrids. We let Hyb0 denote the situation that the UC
distinguisher sees when the adversary is interacting with the real world.

In Hyb1 we alter the way in which server S produces the values (a′, b′); instead of
calling Sanitize(ct, bsk, ksk, encid, pk) the ciphertext (a′, b′) is generated as follows:

• a′ is sampled at random from Zk·N
q .

• b′ is computed from b′ ← a′ · s+ p where p = ∆ ·m+DZ,σ.

Note, in creating this hybrid we can assume the secret key is known, as we are trying
to show that the distinguisher cannot tell the difference if this change is made. The
indistinguishability of Hyb0 and Hyb1 follows directly from Corollary 1.

In Hyb1 we have that the following equation holds:

∆ ·m+ e′ = b′ −
n∑

i=1

a′ · si,

i.e.

a′ · sn = b′ −
n−1∑
i=1

a′ · si −∆ ·m− e′,
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i.e.

pn − dn = b′ −
n−1∑
i=1

a′ · si −∆ ·m− e′,

i.e.

pn = b′ + dn − e′ −
n−1∑
i=1

a′ · si −∆ ·m.

Thus, in Hyb2 we now make a further change in how the values are sampled

• b′ is sampled at random from Zq.

• pn is sampled via

pn = b′ + h−
n−1∑
i=1

a′ · si −∆ ·m

This last substitution replaces the dn − e′ term with h where h← DZ,σh
with

σh =
√
σ2 + η2.

It is clear that Hyb2 now corresponds to the view of the disginguisher when the adversary
is interacting in the ideal world with the simulator.

Thus we only need to show that Hyb1 and Hyb2 are indistinguishable. This follows
from the yaLWES

q,k·N,σ,η hardness assumption of Definition 3. To see this, recall that
in Hyb1 the view of the environment is9 (a′, b′, pn), where a′ is uniformly random, b′ =∑n

i=1 a
′ · si +∆ ·m+ e′ and pn = a′ · sn + dn. Since the adversary knows ∆ ·m and si for

all i < n, we may remove the term α =
∑n−1

i=1 a
′ · si +∆ ·m from the second component

and are left with (a′, a′ · sn + e′, a′ · sn + dn). By the yaLWE assumption (cf. Definition 3),
this is indistinguishable from (a′, u, u+ h), where u is uniformly random and h← DZ,σh

.
Setting b′ ← u+ α, we have that (a′, b′, u+ h = b′ − α+ h) corresponds to the view of the
environment in Hyb2, which shows that the two hybrids are indistinguishable under the
assumption made in Definition 3.

5.3 Extension to Thresholds t < n/2 and t < n/3

A natural question is whether one can apply the above methods when up to t < n can be
corrupted. The main difference between the full threshold case, i.e. t = n − 1, and the
general case is how the “bathing” terms di are added on. In the full threshold version
above the values di are selected by each player. They are small enough not to affect the
correctness, but they are large enough to ensure secrecy of each players secret share si,
and hence of the entire secret s. However, using such player dependent masking terms di
would result in the secret sharing scheme being invalid in the case of other forms of secret
sharing, since the share recovery equation for other secret sharing schemes is not the sum
of all other players partial decryptions.

Thus, following [DDK+23], we produce a single, player independent, mask value d
using either a Pseudo-Random Secret Sharing (PRSS) scheme (when

(
n
t

)
is “small”), or

using an offline MPC phase (when
(
n
t

)
is “large”). We descibe the PRSS based method

here, and refer the reader to [DDK+23] for the offline MPC based approach.

9We ignore pi for i < n since they are generated identically in both hybrids and independently of b′ and
pn.
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5.3.1 Shamir Sharing over Rings:

Secret sharing, for an arbitrary threshold t < n, for secrets in the ring Zq, as explained
in [DDK+23], can be accomplished by (potentially) taking a Galois ring extension and
applying Shamir sharing over this extension in a relatively standard manner; see [ACD+19,
Feh98, JSvL22] for more details. The important point to note is, the interpolation points
for the Shamir Secret Sharing scheme {γ1, . . . , γn} form an exceptional set in the underlying
Galois ring extension.

The underlying secret key s ∈ Zk·N
q for our flattened GLWE ciphertexts of dimension

k ·N we can then assume to be secret shared using the Shamir secret sharing scheme with
threshold t. We shall denote this sharing of the vector s by 〈s〉.

If t < n/3 then, using a method going back to [BCG93], the n parties can send their
shares to a given party U , who can then robustly reconstruct an underlying value x which
has been secret shared via 〈x〉; i.e. the party U can recover x irrespective of the malicious
behaviour of the dishonest parties. The robust reconstruction protocol, which we shall
denote by RobustOpen(〈x〉,U) is a one round protocol and it works in both the synchronous
and asynchronous network settings.

We note, but will not consider further in this paper, that if t < n/2 then the RobustOpen
procedure can be replaced (trivially) by a procedure which provides active-with-abort
security; i.e. the receiving honest party will abort if a malicious party sends an incorrect
value. With this change the following robust methodology of threshold decryption for
t < n/3 becomes an active-with-abort threshold decryption for t < n/2.

5.3.2 Pseudo-Random Secret Sharing:

Pseudo-Random Secret Sharing (PRSS) was introduced in [CDI05]. It enables parties to
non-interactively generate a sharing of a random value. In [DDK+23], following an idea
first introduced in [CLO+13], this is extended to generating a sharing of a “small” value
as follows.

The algorithms for our PRSS are defined in Figure 10. The algorithm PRSS.Init()
iterates over all sets A of size n− t. Thus the complexity of PRSS.Init(), i.e. the number
of sets A we need to deal with, depends on

(
n
t

)
, which can become very large for large n

and t. The PRSS makes use of a PRF ψ of the form

ψ :

{
{0, 1}sec × S −→ Z

(κ, cnt) 7−→ ψ(κ, cnt)

where {0, 1}sec is the keyspace and S is a set of counters. The output of the function ψ is
assumed to be uniform in the range [−B, . . . , B]. The shared value which is output by the
PRSS.Next() invocation is then the sharing of the value

E ←
∑
A

ψ(rA, cntPRSS),

and it is sampled from the distribution formed by the sum of
(
n
t

)
uniformly random

values in [−B, . . . , B]. However, from the adversarial point of view the adversary knows
upto

(
n
t

)
− 1 of these values, and so there is potentially only one uniformly random value

unknown to the adversary.

5.3.3 Robust Threshold Decryption when t < n/3:

We refer to Figure 11 as to how our threshold decryption protocol is modified. It is
parametrized by a parameter w, which controls the generation of the bathing value 〈d〉.
In particular d can be written as da + dh where da is known to the adversary, and dh
is unknown to the adversary. The value dh is the sum of (at least) w unknown (to the
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PRSS

PRSS.Init(): For every set A ⊆ {1, . . . , n} of size n− t:

1. S ← {Pi}i∈A.
2. Players Pi with i ∈ A agree on a shared secret random value rA; see the

full version of [DDK+23] for how this can be done.
3. Define fA(X) ∈ Zq[X] = Z/(2k)[X] to be the polynomial of degree t

such that fA(0) = 1 and fA(γi) = 0 for all i 6∈ A. Each party Pi only
needs store fA(γi) though.

4. cntPRSS ← 0.

PRSS.Next():

1. Party Pi computes, where the sum is over every set A containing i,

〈E〉i ←
∑

A:i∈A

ψ(rA, cntPRSS) · fA(γi).

2. cntPRSS ← cntPRSS + 1.
3. Return 〈E〉.

Figure 10: Pseudo-Random Secret Sharing PRSS

ThreshDec(ct, 〈s〉, {pk, bsk, ksk},U)

Init():
1. The parties P1, . . . ,Pn obtain, via a generic MPC protocol, the sharing
〈s〉 of the value s.

2. The parties execute PRSS.Init().
ThreshDec(ct, 〈s〉,U):

1. Party S executes (a′, b′ = a · s + ∆ · m + e′) ←
Sanitize(ct, bsk, ksk, encid, pk).

2. Party S sends (a′, b′) to all parties Pi and U .
3. Parties P1, . . . ,Pn execute 〈d〉 ←

∑w
i=1 PRSS.Next().

4. Parties P1, . . . ,Pn compute 〈p〉 ← b′ − a′ · 〈s〉+ 〈d〉 (mod q).
5. p← RobustOpen(〈p〉,U).
6. Party U extracts m from p = ∆ ·m+ e′ + d.
7. Party U returns m.

Figure 11: The Threshold Decryption Protocol

adversary) uniform random variables in the range [−B, . . . , B], whereas da is the sum of
values known to the adversary. In total d consists of the sum of w ·

(
n
t

)
uniform random

variables in the range [−B, . . . , B].
Note that, unlike [DDK+23], we do not apply the PRSS masking operation twice in

Figure 11, but we apply it w times. This is because we reduce security to our modified
yaLWE computational assumption, as opposed to the statistical distance argument applies
in [DDK+23]. The use of w applications means that the distribution we add on is the sum
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of at least w, unknown to the adversary, uniform random variables in [−B, . . . , B].
In particular, since we would reasonably expect security for (ya)2LWE when√
2 · π · w ·B · (B + 1)/3 ≈ η, for the η parameter from the yaLWE problem, and this

η is relatively small, the value of B can itself be very small. This should be contrasted
with [DDK+23], where, due to the use of the statistical noise flooding argument, the value
of B needs to be very large indeed. Also note that for fixed η we can increase w and hence
decrease B so as to make the (ya)2LWE problem become more like the yaLWE problem.

We can then prove the following theorem.

Theorem 4. In the {FKeyGen}-hybrid model the protocol in Figure 8 implements FKeyGenDec

with computational security against any static active adversary corrupting I parties, with
|I| ≤ t < n/3 assuming:

• TFHE parameters that ensure correctness of the FHE operations.

• |e′| + w ·
(
n
t

)
· B < ∆/2 (to ensure correctness of the output of the “bath”-ing

operation)10.

• The noise parameter r of Sanitize satisfies the conditions of Theorem 1 and Lemma 7.

• The hardness of modified (ya)2LWES
q,k·N,σ,w,B, where σ = rbr from Theorem 2.

Proof. Correctness follows, even in the presence of t < n/3 fully malicious parties, on
noticing that, if sanitization does not create an invalid ciphertext, then, the correct value
will be returned due to the robust nature of the RobustOpen procedure and the bound
|e′|+ w ·

(
n
t

)
·B < ∆/2.

Security of the protocol follows by showing that the output of simulator in Figure 12 is
computationally indistinguishable, from the output of an adversary controlling I parties,
with |I| ≤ t < n/3, in a real execution of the protocol.

Note, the values {〈pr〉j}j∈I produced by the simulator are the true decryption share
values of the real pre-decryption value pr produced by the adversary which the adversary
should broadcast (even if he does not) if they acted honestly. Note that the simulated value
ps encodes the original message correctly. This means that the Lagrange interpolation in
the simulation will recover the shares for the honest players {〈ps〉j}j 6∈I as required. By
the properties of Shamir secret sharing the values {〈pr〉j}j∈I are also valid shares of ps,
i.e. we can equate {〈pr〉j}j∈I with {〈ps〉j}j∈I .

In a real execution of the protocol the shares output by the honest players are consistent
and are enough to allow the honest parties to decrypt correctly, since t < n/3. The
simulation has exactly the same properties.

The proof of security then is very much the same as in Theorem 3, except we replace
the appeal to the hardness of yaLWE with an appeal to the hardness of (ya)2LWE.

10This inequality could be rephrased in terms of σ, w, B, n, t and a suitably chosen constant derived
from the erfc function.
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Simulator Threshold Decryption

On input of

1. A ciphertext ct = (a, b) and the public keys {pk, bsk, ksk}.
2. The underlying message m encrypted by ct.
3. A set of adversarial parties I with |I| ≤ t.
4. The share values 〈s〉i for i ∈ I.
5. The value σ, which is a publicly known value from the key generation method.

this algorithm outputs the simulated shares {〈p〉j}j 6∈I .

Sim-DistDecrypt:
1. a′ ← Zk·N

q .
2. b′ ← Zq.
3. The simulator computes da (which the adversary knows, and the simula-

tor can also compute) and samples dh according to the correct distribu-
tion (i.e. dh is the sum of w uniformly random variables in [−B, . . . , B]),
and sets d← da + dh. As a by-product the simulator knows 〈d〉i for all
i ∈ I.

4. The simulator computes, for i ∈ I, the share values 〈pr〉i = b′−a′ · 〈s〉i+
〈d〉i.

5. The simulator computes ps = ∆ ·m+DZ,σ + d.
6. The simulator generates the decryption shares {〈ps〉j}j 6∈I via Lagrange

interpolation (and possibly generating random shares if |I| < t) from ps
and the values {〈pr〉i}i∈I = {〈ps〉i}i∈I .

7. The simulator outputs {〈ps〉j}j 6∈I .

Figure 12: Simulator for ThreshDec(ct, 〈s〉, {pk, bsk, ksk},U)

5.4 Parameters

To demonstrate that our approach indeed yields a threshold FHE scheme with small,
TFHE-like parameters, we now provide a workable set of such parameters in Table 1 for
the full threshold variant. These are adjusted from a typical TFHE parameter set that
satisfies 132 bits of IND-CPA security and has failure probability < 2−64. Our adjusted
parameters provide around 124 bits of security and below we analyze the failure probability.
Note that we do not claim optimality. In contrast to typical TFHE instantiations, which
use a binary secret bootstrapping key, we use a secret bootstrapping key that is sampled
from a bounded uniform(-like) distribution.

In typical applications, where we might use TFHE with a precision of 4 bits and a
padding bit, we will have ∆ = 259. Thus to ensure correctness, i.e. that a ciphertext
decrypts correctly, we need to ensure that any error term is less than 258.

Table 1: Parameters for Full Threshold Version

q N k Bs Be β ` log2 r log2 σ log2 η

264 2048 1 8 2048 14 879 31.08 55.05 46
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Full Threshold Threshold Decryption: The final error term in this case is given by
e′ +

∑n
i=1 di (cf. Theorem 3), and this term follows the distribution DZ,σ +

∑n
i=1DZ,η ≈s

DZ,
√

σ2+n·η2 . So the term
∣∣e′ +∑n

i=1 di
∣∣ is bounded by τ ·

√
σ2 + n · η2 with probability 1−

erfc(
√
π ·τ). For our parameters in Table 1 and, say, n = 1024, we have 258/

√
σ2 + n · η2 ≈

13.7 resulting in a failure probability of < 2−858.

General Threshold Threshold Decryption: We now analyse the parameters for
threshold FHE scheme with general threshold. We aim to set w and B such that√
2 · π · w ·B · (B + 1)/3 = η (where η is as in Table 1) for security. Using the most

aggressive version of our (ya)2LWE assumption, we set w = 1 which gives B ≈
√

3
2·π · η.

In order for the ciphertext to decrypt correctly, we need again |e′|+ w ·
(
n
t

)
·B < 258, or,

equivalently, |e′| < 258 −
(
n
t

)
·w ·B. For example, using the same parameters as in Table 1

(except for dropping the use of η) we find with w = 1 that B ≈ 245.47 and so we require
|e′| < 257.4 if

(
n
t

)
≤ 2048. Thus, since e′ follows the distribution DZ,σ, we will have such a

bound with probability 1− erfc(
√
π · 257.4/σ). Thus we have a failure probability of 2−374.

6 FuncCPA
Our second application is to obtain funcCPA security, which is defined by the following
security game.

Definition 5 (funcCPA Security, [AGHV22]). A PKE E = (Gen,Enc,Dec) is funcCPA
secure if for all PPT adversaries A it holds that∣∣∣∣∣∣∣2 · Pr

b = b′

∣∣∣∣∣∣∣
(pk, sk)← Gen(1λ)
b← U({0, 1})

b′ ← AOb
Encpk

,Ore
(pk,sk)(pk)

− 1

∣∣∣∣∣∣∣ = negl(λ)

where Ob
Encs

(m0,m1) is the oracle that returns Encpk(mb) (if |m0| = |m1|) and may only
be queried once, and Ore

(pk,sk)(f, ct) is the oracle returns Encpk(f(Decsk(ct))).

The work of [AGHV22] shows that sanitization allows to transform an IND-CPA
secure scheme into a funcCPA secure one. For this it builds on the following definition of
sanitization given in [DS16].

Definition 6. An algorithm Sanitize is sanitizing for a scheme E = (Gen,Enc,Dec), if for
all (ct1, ct2) ∈ C2 we have

• Decsk(ct1) = Decsk(Sanitize(ct1)) (message preservation); and

• Decsk(ct1) = Decsk(ct2) implies (Sanitize(ct1), pk, sk) ≈s (Sanitize(ct2), pk, sk) (saniti-
zation).

with overwhelming probability over the choice of (pk, sk)← Gen(1λ).

An FHE scheme E = (Gen,Enc,Dec,Eval) can then be transformed into a funcCPA
secure one by defining E ′ = (Gen,Enc′,Dec,Eval′) with Enc′pk(m) = Sanitize(Encpk(m)) and

Eval′(f, ct1, ct2, . . . , ct`)

= Sanitize(Eval(f, Sanitize(ct1),Sanitize(ct2), . . . , Sanitize(ct`)) .

Lemma 9 ([AGHV22]). If E is a IND-CPA secure FHE scheme with sanitization algorithm
Sanitize then E ′ is funcCPA secure.
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The key idea is that re-encryptions can be simulated using Eval′ and due to the
properties of sanitization, this does not change the success probability of the adversary
significantly. Note that Definition 6 requires statistical indistinguishability and accordingly
Lemma 9 only holds with respect to statistical sanitization. If the sanitization property
only holds computationally, we would need to argue security using a hybrid argument. The
key difficulty here, as already observered in [AGHV22, DHW23], is that this requires one
to simulate the re-encryption oracle without knowing the secret key and it is unclear how
to do that. Statistical sanitization allows us to circumvent this issue, since we may switch
out a (product) distribution for another and argue security using the data processing
inequality.

We now present another definition of sanitization used in [BI22] (slightly generalized
to the public key setting).

Definition 7. An algorithm Sanitize is simulatably sanitizing for a scheme E =
(Gen,Enc,Dec), if there exists a simulation algorithm Sim such that for all ct ∈ C we
have

• Decsk(ct) = Decsk(Sanitize(ct)) (message preservation); and

• (Sim(Decsk(ct)), pk, sk) ≈ (Sanitize(ct), pk, sk) (simulatable sanitization).

with overwhelming probability over the choice of (pk, sk)← Gen(1λ).

Clearly, this latter definition is stronger than the former, as the simulation only
depends on the plaintext and so we have Sanitize(ct1) ≈ Sim(m) ≈ Sanitize(ct2) for ct1, ct2
encrypting the same plaintext m. But this stronger property allows us to replace Sanitize
in Enc′ by the simulation Sim, since the encryption algorithm gets the message as input.

Theorem 5. If E is a IND-CPA secure FHE scheme with simulatable sanitization algorithm
Sanitize then E ′′, where Eval′′ = Eval′ and Enc′′pk(m) = Sim(m), is funcCPA secure.

Proof. The sanitization property of simulatable sanitization ensures that E ′ and E ′′ are
indistinguishable, so Lemma 9 implies that E ′′ is funcCPA secure.

Note that if simulation is much more efficient than sanitization, Theorem 5 results in a
much more efficient encryption algorithm.

Secret-Key Encryption: We now instantiate Theorem 5 using a secret-key version of
TFHE, where we rely on the efficiently simulatable sanitization algorithm Sanitize. Note
that in this setting, we may provide the simulation algorithm the secret key, since it is
also input to the encryption algorithm.

• KeyGen(1λ): This algorithm generates secret keys s̃ ∈ Rk
q and s ∈ Z` with binary

coefficients, and then computes a corresponding bootstrapping bsk and key switching
key ksk as in standard TFHE. It also computes GLWE samples (A,b) with secret
s̃ as required for Lemma 6 and appends them to bsk. It then computes r such
that it satisfies the conditions of Theorem 1 and Lemma 6 and rbr from r, as in
Theorem 2. Finally the algorithm publishes the evaluation key (bsk, ksk, r) and
returns sk = (s̃, s, rbr).

• Encsk(m): Consider s̃ as a flattened LWE key. Choose uniform a ∈ ZkN
q and

e← DZ,rbr and return (a, a · s̃+ e+∆ ·m).

• Decsk(ct): Perform ct′ ← KeySwitch(ct, ksk) and ct′′ ← ModSwitch(ct′, ksk) and de-
crypt ct′′ using s.
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Table 2: Parameters for funcCPA secure encryption. rms is the noise parameters from the
mod switch.

q N k Be β ` log2 r log2 σ log2 rms

264 4096 1 4 1 879 16.9 38.6 54.9

The algorithm Enc statistically simulates Sanitize by Corollary 1 and thus Theorem
5 shows that this version of TFHE is funcCPA secure. It might seem odd at first sight
that Dec performs the KeySwitch and ModSwitch operations before decryption. This is
due to a technicality that has been overlooked in [AGHV22, DS16]: we need to ensure that
Sanitize satisfies message preservation for maliciously chosen ciphertexts. Since Sanitize
applies these two (deterministic) operations that incur some noise, we need to perform
these as well during decryption to ensure that a sanitized ciphertext decrypts to the same
message as the original ciphertext. We discuss this issue in more detail in Appendix A.

Public-Key Encryption: We now outline how to obtain a funcCPA public-key version
of TFHE. The difference is in the encryption algorithm: since it does not receive the secret
key as input, it is not immediately clear how to compute the LWE sample required to
mask the (encoding of the) message ∆ ·m. Luckily, the solution is already at hand: simply
use the statistical instantiation of the GLWE oracle (Lemma 6) to obtain a GLWE sample
and perform Flatten to obtain an LWE sample. Then add the remaining part of the noise
and ∆ ·m. Since Flatten is linear, this is equivalent to the encryption in the secret-key
version.

Final Remarks: For the proof it is sufficient that there exists an (asymptotically) efficient
Eval algorithm such that evaluation and functional re-encryption are indistinguishable. In
practice, this algorithm need not be run at all, since client-aided outsourcing protocols
typically rely on the client to provide the functional re-encryption “oracle”. This is
independent of other potential evaluation algorithms, for example using more efficient
(not-sanitizing) bootstrapping parameters or for a restricted circuit family (e.g. linear
functions). This has the interesting consequence that the optimization target for parameter
optimization differs in this application of sanitization from other typical applications, like
circuit privacy or threshold FHE. For funcCPA-security, we need not worry too much about
the concrete efficiency of the sanitization, but rather about the simulation. In the case of
our simulation of Sanitize, this means we can set parameters to minimize the output noise
σ of the sanitization rather than maximize concrete performance, such that the encryption
incurs a minimal amount of noise.

Parameters We provide parameters for the funcCPA secure encryption scheme presented
above in Table 2. As is common when setting parameters for FHE, we heuristically assume
that the combined noise from sanitization, mod switch and key switch follows a Gaussian
distribution. We conservatively assume that the key switch noise is bounded by the mod
switch noise. The parameters in Table 2 provide > 128 bits of security. Assume that the
protocol performs up to n additions of independent ciphertexts in between re-encryption
queries. Then the final noise can be estimated to be a Gaussian with noise parameter√
n · σ + 2 · rms. For example, if n ≤ 230 and ∆ = 259 (for a message space of 4 bits), the

resulting ciphertext will decrypt correctly except with probability < 2−153.
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A Definitional Issues of Sanitization
As hinted at in Section 6, there is a technical issue in the definition of sanitization. For
convenience, we now reproduce the definition from Section 6 (which is the one given in
[DS16]) to make the discussion easier to follow.

Definition 8. An algorithm Sanitize is sanitizing for a scheme E = (Gen,Enc,Dec), if for
all (ct1, ct2) ∈ C2 we have

• Decsk(ct1) = Decsk(Sanitize(ct1)) (message preservation); and

• Decsk(ct1) = Decsk(ct2) implies (Sanitize(ct1), pk, sk) ≈s (Sanitize(ct2), pk, sk) (saniti-
zation).

with overwhelming probability over the choice of (pk, sk)← Gen(1λ).

The main focus of this section is on the message preservation property. Note that it needs
to hold over all ciphertexts, i.e. even maliciously chosen ciphertext. Lemma 3.2 of [DS16]
claims that the generic sanitization algorithm based on bootstrapping (i.e. the Refresh
operation) is message-preserving, which “follows from the definitions”. This overlooks the
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fact that bootstrapping is only required to be correct for honestly generated ciphertexts.
From this it follows that the message preservation property (and thus sanitization) only
holds for honestly generated ciphertexts. We stress that this does not invalidate the results
of [DS16] with respect to their main application, namely honest-but-curious circuit privacy.
In that setting, all ciphertexts are honestly generated and such a version of sanitization
suffices. So one can view the definition of sanitization in [DS16] as too strong: it is neither
required for the application nor achieved by the construction.

The paper [BI22] uses a simulatable sanitization definition similar to Definition 7,
but where for each secret key, the set of ciphertexts associated to a message µ is defined
explicitly and denoted by Cµ. Message preservation then requires that for each ciphertext
in Cµ the result of sanitization is also in Cµ. Initially, Cµ is defined as the set of all
ciphertexts that decrypt to µ. However, [BI22] observes that the ModSwitch operation in
the bootstrap introduces noise, which could yield incorrect decryptions for maliciously
generated ciphertexts and thus violate sanitization. They then re-define Cµ to essentially
be the set of ciphertexts that decrypt to µ after a ModSwitch, without explicitly re-defining
decryption. One could argue that the adjustment of Cµ implicitly re-defines decryption,
which would mean they resolve the issue in a similar way as we do. Again, for their
application of honest-but-curious privacy, this is irrelevant, so a relaxed definition of
sanitization may have provided a simpler and cleaner solution in their case.

This is in contrast to the application of sanitization to funcCPA security, as in [AGHV22].
Here, sanitization is indeed required to hold over all ciphertexts in the ciphertext space.
[AGHV22] seems to suggest that the work of [DS16] can be readily plugged in, but, as we
saw, this is not necessarily the case. The work of [BI22] (with re-defined decryption) can
be plugged into [AGHV22] to yield a funcCPA secure scheme (with costly encryption).
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