
Clustering Approach for Higher-Order
Deterministic Masking

Vahid Jahandideh, Jan Schoone, and Lejla Batina

Radboud University, Nijmegen, The Netherlands
v.jahandideh@cs.ru.nl,jan.schoone@ru.nl,lejla@cs.ru.nl

Abstract. We present a novel scheme for securely computing the AND
operation, without requiring additional online randomness. Building on
the work of Nikova et al., our construction extends security beyond first
order while ensuring a uniform output distribution and resilience against
glitches up to a specified threshold. This result addresses a longstanding
open problem in side-channel-resistant masking schemes.
Our approach is based on a new method of share clustering, inspired by
finite affine geometry, enabling simultaneous consideration of both secu-
rity and uniformity. Furthermore, we demonstrate how this clustering-
based framework can be applied to higher-order protection of ciphers like
Ascon under a fully deterministic masking regime. By eliminating the
need for online randomness within the protected circuit, our work ex-
pands the practical scope of efficient and higher-order masking schemes
for resource constraint applications.

Keywords: Boolean masking · Cryptography · Finite geometry ·
Multiplication gadgets · Side-channel analysis

1 Introduction

Side-Channel Threat. Implementations of cryptographic algorithms often leak
information through side channels, making them vulnerable to Side-Channel At-
tacks (SCAs). These attacks pose a significant risk even when the underlying
schemes are secure in a black-box model. A prominent countermeasure is mask-
ing, which splits sensitive variables (e.g., keys, plaintexts) into n shares using
offline randomness, and then performs computations on these shares. Whenever
necessary, online randomness is introduced to prevent unintended combination
of shares [4, 8]. Since masking heavily depends on the availability and quality
of randomness, generating large amounts of fresh randomness—especially under
side-channel threats [11,14]—is challenging and expensive. Consequently, exten-
sive research focuses on reducing the reliance on online randomness [6,24,37]. An
extreme case, and the one we pursue, is deterministic masking, which requires
no online randomness [28].

Deterministic Masking. Masking is implemented by replacing basic operations
(e.g., AND, XOR) with small circuits called gadgets, which take n-shared inputs

and produce n-shared outputs. Naively composing these gadgets is functionally
correct but can inadvertently mix shares in a way that poses flaws in security [35].
A common countermeasure is to insert refresh gadgets between gadgets, but
they consume online randomness and thus are avoided in deterministic masking.
Consequently, two challenges arise: (1) designing deterministic gadgets that rely
only on the randomness contained in the shares, and (2) securely composing
them without refresh gadgets.

Deterministic Gadgets. The design of deterministic gadgets has been explored in
several papers. Nikova et al. [31] introduced a deterministic gadget for the AND
operation, while Daemen et al. [18] presented a first-order probing-secure gad-
get for the map χ5 (the source of nonlinearity in several ciphers). Although the
latter solely uses input shares for masking security, it still requires auxiliary ran-
domness. Later, Shamirzadi and Moradi [37] proposed a deterministic masking
scheme for χ5 that avoids auxiliary randomness entirely and mitigates glitch-
based leakages. Moving beyond simple operations, Piccione et al. [33] developed
a systematic method for building deterministic gadgets for bijective S-boxes with
first-order probing security.

Deterministic Composition. A more challenging task is to securely compose de-
terministic gadgets; even combining two individually secure gadgets may reduce
the overall security [15,35]. However, for round-based ciphers such as Ascon [22],
Jahandideh et al. [28] provided a composition rule. As depicted in Figure 1, a
typical round function contains an S-box layer and a diffusion layer. Their main
insight is that this diffusion layer, by mixing the shares of multiple gadgets,
behaves like a refresh gadget and thus enables secure composition of rounds
without online randomness.

S-box S-box · · · S-box

Diffusion

Fig. 1: Round transformation in a cipher.

Probing Security. Ishai et al. [27] formalized the notion of a probing adversary
who can inspect up to d intermediate values during computation. A masking
scheme is called d-probing secure if any set of d or fewer probes reveals no
information about the secrets.

Glitch-Extended Probing. In hardware implementations, transient effects known
as glitches can leak additional information [30]. To address this, Faust et al.

2

[23] proposed glitch-extended probing, wherein a single probe of the form P =
F(Xi, Yj , . . .) reveals all inputs to F within a clock cycle. A standard mitigation
involves inserting synchronization layers to limit how many inputs can interact
at once [10,23], thereby reducing glitch-induced leakage. Notably, this approach
does not depend on online randomness.

1.1 An Open Problem

In masked implementations, most of online randomness is consumed within non-
linear operations. The simplest such operation is the AND function on two vari-
ables. As a fundamental result, Ishai et al. [27] presented a masked AND gadget
that uses n(n − 1)/2 random values to achieve d = ⌊(n − 1)/2⌋ probing secu-
rity. Subsequent works have increased the achievable security to d = n − 1 [36]
while reducing randomness requirements to n2/4 +O(n) [6]. Meanwhile, Belaïd
et al. [6] proved it is impossible to attain d = n− 1 without online randomness.
Their result, however, does not exclude the possibility of achieving d < n − 1
deterministically: Nikova et al. [31] provided a (n = 4, d = 1) deterministic AND
gadget. Yet, whether deterministic AND gadgets exist for higher (n, d) remains
an open problem.

1.2 Our Contribution

We address the longstanding open problem of constructing a deterministic masked
AND operation that achieves d > 1 probing security while preserving glitch resis-
tance and output uniformity—all without requiring online (fresh) randomness.
Unlike prior approaches that rely on exhaustive search, our method systemati-
cally clusters shares using finite affine geometry.

In terms of computational complexity, our multiplication gadget requires n
field multiplications and guarantees d =

√
n − 1 probing security. This is com-

parable to state-of-the-art schemes that achieve d = n − 1 probing security
at the cost of n2 multiplications and n2/4 + O(n) online randomness [6]. For
a detailed comparison of our AND algorithms, see Table 1. Note that in our
case n should be a square of a prime power. Hence, concerning probing se-
curity orders below 10, our approach works for the following values of (n, d):
(4, 1), (9, 2), (16, 3), (25, 4), (49, 6), (64, 7), (81, 8).

In addition, we propose a deterministic masking circuit for the map χm that
achieves up to d =

√
n + 1 probing security. We verify the gadget’s bijectivity

for n = 4 by exhaustive enumeration. This n = 4 case is particularly relevant
because it yields third-order security and applies to χm in Ascon [2, 22] (the
winner of the NIST Lightweight Cryptography competition) as well as other
widely used cryptographic primitives like SHA-3 [1] and Xoodoo [19]. Moreover,
using recent results by Jahandideh et al. [28], we analyze the probing security
of a masked Ascon implementation that incorporates our proposed χm gadget.

For a comparison of our χm masking with existing approaches, see Table 2.
Table 3 contrasts deterministic methods for masking Ascon.

3

AND Algorithm (A) (B) (C) (D) (E) (F) (G) (H)

ISW [27] n n(n−1)
2 ⌊n−1

2 ⌋ ✓ 2(n2 − n) n2 × ✓
Rivain and Prouff [36] n n(n−1)

2 n− 1 ✓ 2(n2 − n) n2 × ✓

Belaïd et al. [6] n ≈ n2+2n
4 n− 1 ✓ ≈ 7n2

4 n2 × ✓
Nikova et al. [31] 4 0 1 ✓ 24 4 ✓ ×
De Cnudde et al. [21] 6 7 2 ✓ 29 36 ✓ ×
SAND-DN [This work] n 0

√
n− 1 × 2(n−

√
n) n ✓ ×

SAND-DU [This work] n 0
√

n− 1 ✓ 2
√

n(n− 1) n ✓ ×

Table 1: Comparison of masking algorithms used for secure computation of AND
operation. The description of the columns is as follows: (A): number of shares;
(B): required online randomness; (C): probing security order; (D): uniform out-
put; (E): number of XORs; (F): number of field multiplications; (G): glitch resis-
tant; (H): does not require input independence.

Candidate (A) (B) (C) (D) (E) (F) (G)

Unprotected [16] 1 0 0 odd m ✓ 2m m
Bilgin et al. [9] 4 0 1 5 ✓ 80 30
Daemen et al. [18] 2 1 bit 1 5 × 22 20
Shahmirzadi and Moradi [37] 3 0 2 5 ✓ 80 45
Sχm [This work] 4 0 3 5 & 3 ✓ 85 (m = 5) 80 (m = 5)

Table 2: Comparison of dedicated masked algorithms for the maps χm. The
description of the columns is as follows: (A): sharing order n; (B): required online
randomness; (C): probing security order; (D): values of m; (E): uniform output
(i.e., mn-bit permutation); (F): number of XORs; (G): number of ANDs.

Candidate (A) (B) (C) (D)

Daemen et al. [18] 2 ✓ 1 Verified for one round (Using maskVerif [3])
Gigerl et al. [26] 3 ✓ 2 Verified for one round (Using CoCo [25])
This work 4 ✓ 3 Proved for two rounds, heuristic reasoning for more

rounds

Table 3: Comparison of deterministic masking of Ascon. The description of the
columns is as follows: (A): sharing order. (B): not requiring online randomness
(C): probing security order. (D): type of the security proof.

A central component of our approach is a novel grouping strategy that simul-
taneously ensures both uniformity and security. Founded in finite geometry, this
technique has the potential to benefit other masking schemes beyond our spe-
cific construction. While Petrides [32] also explored a grouping-based approach,

4

their method was limited to achieving second-order probing security, whereas
our approach generalizes beyond this constraint.

Outline. Section 3 introduces our clustering approach and its properties. Build-
ing on these insights, Sections 4 and 5 details the construction of multiplication
and Toffoli gadgets. Section 6 applies these results to the map χm, and Section 7
outlines our proposal for a third-order deterministic masking of Ascon.

2 Preliminaries

Notation. Uppercase letters (e.g., X) denote Random Variables (RVs), while
lowercase letters (e.g., x) represent parameters and realizations of RVs. Boldface
letters (e.g., X) indicate a list of RVs, such as a list of shares of a secret, or a set
of probes, and blackboard bold letters (e.g., X) denote domains. The probability
that an RV X takes a value x is denoted as Pr(X=x).

In this paper, circuits and functions are denoted with a sans-serif font (e.g.,
X). To refer to the masked counterpart of an algorithm, we append S to its name
(e.g., SX). The notation |X| denotes the length of a list X, and a list of shares
with indices in L is represented as X|L. Given a list X, the i-th element in that
list is denoted by X[i].

2.1 Boolean Masking

Let X be a random variable in the finite field F2u . To achieve a probing security
order d = n − 1, Boolean masking secret-shares X into an n-tuple (or list) of
shares, denoted by

X = [X0, X1, . . . , Xn−1].

Each share Xi is randomly chosen from F2u such that their sum (under ⊕, the
addition in F2u) reconstructs X, i.e.,

X = ⊕n−1
i=0 Xi.

We call X an n-sharing of X. The parameter u denotes the bit-width of the field,
with u = 1 for the binary case F2.

For a circuit C, Boolean masking is applied by n-sharing each input variable
and replacing every gate with its corresponding masked counterpart (commonly
called a gadget). The variables in C can be classified as either secret or native,
where even publicly known values (e.g., nonces or IVs) are still n-shared for
consistency and security.

Gadgets. Consider a gate Y = G(X) corresponding to an affine operation,
such as XOR or NOT. Constructing the corresponding gadget, denoted SG, is

5

straightforward. To obtain an n-sharing Y = [Y0, . . . , Yn−1] from an n-sharing
X = [X0, . . . , Xn−1], we can define

Yi =
{

G(Xi), if i = 0,

G(Xi)⊕ G(0), if 1 ≤ i ≤ n− 1.

For other gates, such as AND, securely computing the output shares is more
challenging. Although several constructions for arbitrary-order SAND exist [7,12,
27,39], these generally require online randomness. The only known deterministic
SAND is the scheme by Nikova et al. [31] for parameters (n, d, u) = (4, 1, 1). In
this scheme, the gadget takes two 4-sharings X = [X0, X1, X2, X3] and Y =
[Y0, Y1, Y2, Y3] of secret random variables X and Y , and produces a 4-sharing
Z = [Z0, Z1, Z2, Z3] such that Z = XY , where Z is the secret shared by Z. The
output shares are computed as follows:

Z0 = (1⊕X2 ⊕X3)(1⊕ Y1 ⊕ Y2)⊕ Y3 ⊕X1,

Z1 = (1⊕X0 ⊕X2)(1⊕ Y0 ⊕ Y3)⊕ Y2 ⊕X3,

Z2 = (X1 ⊕X3)(Y0 ⊕ Y3)⊕ Y1 ⊕X1,

Z3 = (X0 ⊕X1)(Y1 ⊕ Y2)⊕ Y0 ⊕X0.

This gadget satisfies the following key properties:

– Correctness: For all 24 × 24 possible inputs,

3⊕
i=0

Zi =
(3⊕

i=0
Xi

)
·

(3⊕
i=0

Yi

)
.

– Incompleteness: Any (glitch-extended) probe on intermediate variables
(e.g., on Zi) depends on only an incomplete subset of the input shares.

– Uniformity: For inputs (X = x, Y = y), the 4-sharing Z of xy is uniform;
that is, each tuple [Z0, Z1, Z2, Z3] summing to xy has the same number of
preimages.

2.2 Simulation and Probe Propagation

We briefly review the simulation approach and its limitations for deterministic
masking schemes (see [28] for more details). Note that the discussion in this
subsection applies only to standard probes (i.e., not glitch-extended).

Simulation Technique. Directly verifying d-probing security becomes infeasible
for large sharing orders n. In the non-extended probe setting, Ishai et al. [27]
introduced the simulation approach: instead of checking all d-tuples of interme-
diate values, one shows that any d probes can be reproduced (simulated) using
fewer than n input shares. The core idea is that randomness can hide interme-
diate values. Let V1 and V2 be intermediate variables, and let R be an online
randomness variable:

6

– If P = R⊕V1 and R is not used by other probes, then P can be replaced by
an independent random variable R′. In this case, we say that R blinds P .

– If P = V1 ⊕ V2 or P = V1V2, both V1 and V2 are required to simulate P .
Definition 1 (Probe Propagation). If simulating a probe P requires an in-
termediate variable V , we say that P propagates to V , and V is thus a propagated
probe.

In general, probes propagate backward toward the inputs unless they are
blocked by online randomness. Coron [13] formalized this in a probe elimination
rule: if Pi = R ⊕ F (here, F accepts intermediates as inputs) and R is not used
elsewhere, then Pi can be removed from the set of probed values and replaced
by fresh randomness R′.
Example 1. Consider n = 2 with input shares {A1, A2}. Suppose the probed
intermediates are:

P1 = R1 ⊕ (A1A2)⊕R2, P2 = R2 ⊕A1 ⊕A2, P3 = A1.

– Remove P1, since P1 = R1 ⊕ F and R1 does not appear in other probes.
– Next, remove P2, which similarly depends on a randomness R2 not used

elsewhere in the updated list of probes.
Only P3 = A1 remains. Hence, simulating P3 requires only one input share. ⊓⊔

Composition Rules. Barthe et al. [4] introduced Strong Non-Interference (SNI),
a property ensuring that simulating up to a certain number of outputs does not
require any input shares. This prevents probe propagation beyond the gadget
itself. Cassiers and Standaert [12] refined this notion by introducing Probe Iso-
lating Non-Interference (PINI), which guarantees secure composition without
extra refresh steps.

Randomness Requirement. Both probe elimination and SNI/PINI rely on online
randomness. Without it, outputs become deterministic functions of the inputs,
making simulation without input shares impossible.

Limitations of Simulation-Based Security. Probing security requires that any
set of d probes reveals no information about the secrets. This condition can be
more general than simulation. For instance, consider

P = A1 ⊕ (B1B2),
where {A1, A2} are the shares of a secret A and {B1, B2} are the shares of a secret
B. The sets of shares of A and B are linearly independent. A direct analysis shows
that P is independent of A and B. However, a standard simulation argument
would require {A1, B1, B2} to simulate P , suggesting that P is dependent on B.
Hence, while simulation greatly simplifies proofs, it can be more restrictive than
general probing security.

Moreover, this example illustrates how probing security can be maintained by
hiding secret-dependent intermediates (in this case, B1B2) by shares of another
input (in this case, A1). A key prerequisite is that the n-sharings of different
inputs be mutually independent [28].

7

Probe Elimination in Deterministic Masking. We extend the probe elimination
approach by leveraging input shares. Specifically, if a probe Pi satisfies

Pi = Ai ⊕ F,

and the following conditions hold:

1. The share Ai does not appear in any other probes;
2. The set of probes does not contain all shares of A;

then Ai effectively hides F, allowing Pi to be removed from the probe set.

2.3 Incompleteness Implies Glitch Resistance

We now shift our focus to glitch-extended probes. Recall that a glitch-extended
probe reveals all intermediate values used in its computation. Consequently, if
these recovered intermediates form an incomplete set of shares for each input,
then the glitches do not compromise the underlying secret.

We say that a masked gadget is d-order glitch resistant if any collection of
d glitch-extended probes can be computed using at most n − 1 shares of each
secret input.

Glitch Resistance Order vs. Probing Security Order. Glitch resistance and prob-
ing security are not equivalent. Probing security requires that d probed values
be independent of the secrets, whereas d-order glitch resistance requires that the
probed values be computable without the complete set of shares for any secret.

Example 2. Let X = [X0, X1, X2] and Y = [Y0, Y1, Y2] be two independent shar-
ings (with n = 3). Define:

P0 = (X0 ⊕X1)(Y0 ⊕ Y1) and P1 = (X1 ⊕X2)(Y1 ⊕ Y2).

From a standard probing perspective, the set P = {P0, P1} is statistically inde-
pendent of

X = X0 ⊕X1 ⊕X2 and Y = Y0 ⊕ Y1 ⊕ Y2.

If these probes P0, P1 are the only probes the adversary has access to, the probing
security would be 2.

However, if these probes are glitch-extended, they are not incomplete: com-
puting P0 and P1 together requires all shares of X and Y . Hence, the gadget’s
glitch resistance order is less than 2. On the other hand, each individual probe
P0 or P1 depends on only two input shares (i.e., at most n− 1). Thus, the glitch
resistance order is 1.

In general, the glitch resistance order is at most the probing security order.

8

2.4 Composition in Deterministic Masking
Limited Probes and Indistinguishability of Reused Randomness. When an adver-
sary has only a limited number of probes, recycled randomness may be indistin-
guishable from fresh randomness. For instance, with random bits R1 and R2, an
adversary holding two probes cannot distinguish between

{R1, R2, R1 ⊕R2} and {R1, R2, R3},

where R3 is an independent random bit. Jahandideh et al. [28] observed a similar
effect in round-based ciphers (e.g., Ascon) due to diffusion layers.

Bricklayer Design of Ciphers. Modern ciphers often run in multiple rounds,
each comprising a non-linear confusion layer (implemented by parallel S-box
functions) and a linear diffusion layer. Daemen and Rijmen [20] coined the term
bricklayer for architectures that arrange these S-box-based components in paral-
lel. Figure 2 shows a masked bricklayer design without using any refresh gadgets.

SS-box SS-box · · · SS-box

SDiffusion

Fig. 2: Deterministic masking for the bricklayer architecture.

First-Order Probing Security. At sharing order n, if every gadget in a determin-
istic masked circuit is first-order probing secure, then the entire circuit remains
first-order secure provided each gadget’s inputs are n-shared with jointly inde-
pendent sharings (Definition 2) [28]. If these gadgets are also bijective, the overall
bricklayer structure is bijective, ensuring at least first-order security. Higher or-
ders require additional safeguards from the diffusion layer, as we explain next.

Definition 2 (Independence of n-Sharings [28]). A collection of n-sharings
as {X1, . . . , Xm} is called independent if, for any selection of n− 1 shares from
each Xi, the resulting (m× (n− 1)) shares are jointly independent.

Properties of the Diffusion Layer. A diffusion layer is an invertible linear
transformation on a b-bit state S, often described by

S ← S M,

where M is a b × b matrix over F2. Its linear branch number Bl quantifies how
bits mix via XOR:

9

Definition 3 (Linear Branch Number [20]). Let M⊤ be the transpose of a
matrix M. Then

Bl = min
S ̸=0b

[
wt(S) + wt

(
SM⊤)] ,

where wt(·) is the number of non-zero bits in its input.

In Ascon, the diffusion layer has Bl = 4 [22].

Lemma 1 ([28]). If Bl is the linear branch number of the diffusion layer
Diffusion, then placing Bl − 1 probes on the input and output bits of Diffusion
yields independently distributed observations. In the masking domain, any Bl−1
collections of n-sharings at the input and output of SDiffusion also remain jointly
independent.

Higher-Order Probing Security. For a bricklayer cipher using d-secure SS-box
gadgets over multiple rounds (Figure 2), the Composition Theorem from [28]
states:

Lemma 2 (Composition Theorem [28]). Suppose that any set of t SS-boxes
receive jointly independent n-shared inputs. Then the overall cipher’s probing
security order D satisfies

min{d, t} ≤ D ≤ d.

In Ascon, where each S-box input comes from distinct 64-bit rows and Bl =
4, it follows that t ≤ Bl − 1 = 3. Consequently, two consecutive rounds limit t,
and adding more rounds does not see to decrease t further. Thus, a deterministic
masking of Ascon can be secure up to third order.

3 Share Clustering

Before going into the design of masking schemes, we introduce a fundamen-
tal concept for grouping the shares in an n-sharing. This new method lays the
groundwork for ensuring both probing security and uniformity. We focus on the
case where n is a perfect square (the smallest example being n = 4). Conse-
quently, we can write n = s2 and partition the n shares into s lists (or multi-
shares), each containing s elements. We refer to each such partition as a cluster.

Definition 4 (Cluster). Let X = [X0, . . . , Xn−1] be an n-sharing. A cluster
is a partition C = [A0, . . . , As−1] of X into s multi-shares, each containing
exactly s elements. In other words, C satisfies:

– Each multi-share Ai has s elements: |Ai| = s.
– The union of all multi-shares equals the original sharing:

s−1⋃
i=0

Ai = X.

10

– Any two distinct multi-shares Ai and Aj are disjoint:

Ai ∩ Aj = ∅ for i ̸= j.

Example 3 (n = 4). Let X = [X0, X1, X2, X3] be a 4-sharing (so s = 2). One
possible cluster is

C0 =
[

A0
0 = [X0, X1], A0

1 = [X2, X3]
]

. (1a)

Another distinct cluster for the same set of shares is

C1 =
[

A1
0 = [X0, X2], A1

1 = [X1, X3]
]

. (1b)

We will see that these two clusters are Maximally Non-Overlapping (MNO).

Definition 5 (MNO Clusters). Two clusters C1 and C2 are called MNO if,
for every multi-share A1

i in C1 and every multi-share A2
j in C2, their intersection

contains exactly one element:∣∣A1
i ∩ A2

j

∣∣ = 1 for all 0 ≤ i, j < s.

In Example 3, observe how

A0
0 ∩ A1

0 = [X0] and A0
0 ∩ A1

1 = [X1],

demonstrating the MNO property for C0 and C1. Moreover, a third cluster,

C2 =
[

A2
0 = [X0, X3], A2

1 = [X1, X2]
]
, (1c)

can be formed such that any two clusters in the set

C = {C0, C1, C2}

are MNO.

Definition 6 (Simultaneous MNO Clusters). A collection of clusters C =
{C0, C1, . . . , C|C|−1} is called simultaneous MNO (SMNO) if every pair of clusters
in C is MNO.

3.1 Maximum Number of SMNO Clusters

For the smallest non-trivial case n = 4, it is impossible to construct more than
three clusters that remain SMNO. This observation motivates an investigation
into the maximum number of SMNO clusters for larger square values of n.

Example 4 (n = 9). To visualize potential cluster arrangements for n = 9, we
place the nine shares in a 3×3 square, as shown in Figure 3. This representation
aids in identifying how shares can be grouped into clusters that satisfy the SMNO
property.

11

X0 X1 X2

X3 X4 X5

X6 X7 X8




Fig. 3: First multi-share of each of the four SMNO clusters of X for n = 9.

In this 9-sharing scenario, one can construct four SMNO clusters by taking
rows, columns, diagonals, and anti-diagonals of the share square. Specifically,
these clusters are given by:

C0 =
[

[X0, X1, X2], [X3, X4, X5], [X6, X7, X8]
]
, (2a)

C1 =
[

[X0, X3, X6], [X1, X4, X7], [X2, X5, X8]
]
, (2b)

C2 =
[

[X0, X4, X8], [X1, X5, X6], [X2, X3, X7]
]
, (2c)

C3 =
[

[X0, X5, X7], [X1, X3, X8], [X2, X4, X6]
]
. (2d)

Other Values of n. For n = 42 = 16, one can form five SMNO clusters (see
Figure 4). In contrast, for n = 62 = 36, only three SMNO clusters are possi-
ble. The number of SMNO clusters is therefore not a straightforward (or even
monotonic) function of n.

Remark 1. For any n = s2 with s ≥ 2, the clusters formed by rows, columns,
and diagonals of an s × s arrangement always exist and are SMNO. Hence, for
each square n, there are at least three SMNO clusters.

In the following sections, we will make use of all the SMNO clusters in our
design. We, therefore, want to establish the maximum number of such clusters
and to understand how they can be constructed.

A Systematic Clustering Structure. One convenient way to form clusters in an
n-sharing is to lay out the shares in an s×s square, where s =

√
n. Let us denote

the row-based cluster (indexed by 0) as follows:

A0
j =

{
Xl

∣∣ l = i + js, 0 ≤ i ≤ s− 1
}

for 0 ≤ j ≤ s− 1.

Subsequent clusters are generated using

Ah
j =

{
Xl

∣∣ l = is + mod(hi + j − i, s), 0 ≤ i ≤ s− 1
}

,

where h ∈ {1, . . . , s} identifies the cluster, mod(a, b) is the remainder of a divided
by b, and 0 ≤ j ≤ s − 1. This construction yields s + 1 potential clusters1 for
each s.
1 Not necessarily all SMNO.

12

Lemma 3. In an n-sharing with s =
√

n prime, there are exactly s + 1 SMNO
clusters. Furthermore, if s is composite with prime factorization s =

∏r
i=1 pei

i

(where p1 < p2 < · · · < pr), then there exist at least p1 + 1 clusters that are
SMNO.

Proof. See Appendix A for details. ⊓⊔

The SMNO clusters introduced here play a central role in our subsequent dis-
cussion. By organizing shares according to SMNO clusters, we achieve desirable
properties related to both probing security and uniformity.

Interestingly, these constructions also connect to structures in finite affine
geometry, further enriching the theoretical perspective on share clustering.

3.2 Finite Affine Geometry

In this section, we show how to view SMNO clusters through finite affine geom-
etry. For an introduction to the topic see [5]. If the number of shares is n = s2

with s prime, then a maximum set of clusters that is SMNO constitutes a finite
affine plane of prime order s. In such a plane, there are s2 points and s2 + s
lines of s points each. Each point, moreover, lies on s+1 lines. These statements
follow from the axioms for a finite affine plane. The three axioms for a finite
affine plane are:

1. For every two distinct points, there is a unique line that contains both.
2. For each line L and point X not on L, there is precisely one line L′ that

contains X and is disjoint from L.
3. It is possible to choose a set of four points, such that no three of them lie on

a single line.

The second axiom is often called Playfair’s axiom [34] and can be seen as a
replacement of Euclid’s fifth postulate. Verifying the axioms for SMNO clusters
is not hard (see below), and the number of SMNO clusters is then easily deduced
by dividing the number of lines (clusters) s2 +s by the number of points (shares)
on each line s (the number of multi-shares in a cluster), to find the number of
SMNO clusters, s + 1.

Proof of the Properties of a Finite Affine Plane for SMNO Clusters. The first
axiom that there is a unique line that contains both distinct points, is just a
combination of having the union of all multi-shares being X and having all
clusters be SMNO; |Ak

i ∩Al
j | ≤ 1 for all i, j, k, l, provided we do not have i = j

and k = l. The second axiom is already satisfied within a single cluster if the
first line is Ak

i , and X ̸∈ Ak
i , then there is some j ̸= i such that X ∈ Ak

j . The
third axiom works by taking the set of four points to be

{A0
0[1], A0

0[2], A0
1[1], A0

2[1]}.

By design, these are not all on any line A0
j , since A0

j ∩ A0
0 = ∅ for all j ̸= 0.

Furthermore, these four points are not all on any line Ak
j with k ̸= 0, since then

|A0
0 ∩Ak

j | ≥ 2. ⊓⊔

13

From this, we can also easily deduce that the number of shares should be a
square.

Lemma 4. The number of SMNO clusters is 1 if the number of shares is not a
square.

Proof. If we have n ·m shares with n > m, then each multi-share in a cluster
contains a divisor dn of n shares; or a divisor dm of m shares. Assume, without
loss of generality, that each cluster has dm multi-shares. Then each multi-share
in a cluster has em = m

dm
·n shares. Suppose that we have two MNO clusters C =

[c0, c1, . . . , cdm−1] and B = [b0, b1, . . . , bdm−1]. Then we must have |bi ∩ cj | = 1
for all i, j. Since all cj are disjoint, and we have dm of those, we have |bi| = dm, a
contradiction. Hence there cannot be two MNO clusters, if the number of shares
is not a square. ⊓⊔

Remark 2. By Lemma 4, we see that we need to have a square number of shares
to obtain a maximal number of SMNO clusters. A heuristic way to consider this,
is by seeing that for, say, 3rd order security, we need to have at least 3 rows and
at least 3 columns. Therefore, the minimum number of shares is 9.

It is an open conjecture in the field of finite geometry that a finite plane of
order s (such that each line has s points) exists if and only if s is a prime power. In
Lemma 3, s is a prime number, so this follows the theory. As described in [29], we
know that if s is any prime power, we still have s+1 SMNO clusters. The method
to obtain them, however does not follow the descending diagonal construction in
Lemma 3, as that only works for prime numbers and gives a lower bound for the
number of SMNO clusters for composite numbers as described there. We present
an example for s = 4 of the five SMNO clusters that we can have in Figure 4.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15




0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15





0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15





0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15





0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15




Fig. 4: Affine plane of order 16, or, multi-shares of each of the five SMNO clusters
for n = 16.

14

In particular it shows that our clustering approach for designing multi-shares
works as well in the case where s =

√
n is any prime power, instead of s being

a prime number.

3.3 Incompleteness of Multi-Shares

The clustering approach introduced so far facilitates reasoning about the probing
security of masking schemes. In this subsection, we show how clusters remain
robust against a specific probing attack in which each probe (similar to a glitch-
extended probe) recovers one entire multi-share from an n-sharing X. We begin
with a simple case and then state the general result.

A Simple Case. Suppose each probe of the adversary reveals one multi-share of
an n-sharing X, where n = s2. How many such probes are needed to recover
all shares in X? The answer is straightforward: if the s probed multi-shares all
belong to the same cluster, then the adversary will learn every share in X.

A More Involved Case. If the probed multi-shares do not all come from a single
cluster, then more probes are needed. The following lemma establishes that at
least 2s− 1 such probes are required to recover all shares in X when no cluster
is fully covered by those probes.

Lemma 5. Let X be an n-sharing with n = s2. Suppose the adversary probes a
collection of multi-shares such that no single cluster is fully covered (i.e., each
cluster is missing at least one multi-share). Then, if the number of probed multi-
shares is less than 2s− 1, the adversary cannot recover all n shares of X.

Proof. Due to the property that any two multi-shares intersect in exactly one
share, a cluster with s−1 of its multi-shares probed (lacking exactly one) would
require s additional multi-shares from other clusters to cover every element in
that cluster’s missing multi-share. Consequently, fewer than 2s−1 probed multi-
shares cannot reconstruct the complete set of n shares. ⊓⊔

For instance, when n = 9 and the SMNO clusters are given in (2), one can
verify that, to cover all shares of X using at most two multi-shares per cluster,
at least five multi-shares are required in total.

Additional Intuition via Rows and Columns. An intuitive illustration of Lemma 5
can be given by considering two clusters defined by rows and columns of an s×s
square: Assume the adversary knows all row multi-shares except row i in the
row-based cluster. Similarly, the adversary knows all column multi-shares except
column j in the column-based cluster. In that scenario, the share Xis+j (the
intersection of the missing i-th row and j-th column) remains unknown. Hence,
knowing all but one row and all but one column (in total 2(s−1) = 2s−2 multi-
shares) still does not reveal all shares. This shows the need for 2s − 1 probed
multi-shares.

15

3.4 Linear Independence of Clusters

Clusters constructed for odd prime s =
√

n exhibit an algebraic structure that
is instrumental in proving the uniformity of the output shares in our proposed
gadgets. By Lemma 3, there are s + 1 SMNO clusters when s is prime. Each
cluster Ch consists of s multi-shares, and each multi-share Ah

j contains exactly
s individual shares from the n-sharing X. We use the notation

⊕Ah
j

to denote the bitwise sum (i.e., XOR) of all shares in the multi-share Ah
j . For

instance, when n = 9, the expression ⊕A0
0 equals X0 ⊕X1 ⊕X2.

Key Observation: Maximal Linear Independence. Consider the set of sums{
⊕Ah

j

∣∣∣ 0 ≤ h ≤ s, 0 ≤ j ≤ s− 1
}

,

which forms s(s + 1) parity equations. A crucial property is that these sums
exhibit maximal linear independence, with only some dependencies introduced
by the fact that the total sum of each cluster is the same. Concretely, for each
cluster Ch, we have

⊕
Ch =

s−1⊕
j=0

(
⊕Ah

j

)
=

n−1⊕
i=0

Xi = X,

where X is secret of X. Consequently, for any two clusters h1 and h2, one finds

s−1⊕
j=0

(
⊕Ah1

j

)
=

s−1⊕
j=0

(
⊕Ah2

j

)
.

Thus, each additional cluster beyond the first introduces one dependent relation
among the sums. As there are s + 1 clusters, the number of such dependencies
is s. Therefore, the net rank of the system of s(s + 1) parity equations is

(s + 1)s− s = s2 = n.

Example 5. (Case n = 9, s = 3) Recall the clusters from (2). Since s = 3 is
an odd prime, we expect a total rank of 9. We construct the following set of 9
independent equations, omitting one relation from each new cluster (after the
first) to avoid introducing linear dependence:

X0 ⊕X1 ⊕X2 = ⊕A0
0, X3 ⊕X4 ⊕X5 = ⊕A0

1, X6 ⊕X7 ⊕X8 = ⊕A0
2,

X0 ⊕X3 ⊕X6 = ⊕A1
0, X1 ⊕X4 ⊕X7 = ⊕A1

1, X0 ⊕X4 ⊕X8 = ⊕A2
0,

X1 ⊕X5 ⊕X6 = ⊕A2
1, X0 ⊕X5 ⊕X7 = ⊕A3

0, X1 ⊕X3 ⊕X8 = ⊕A3
1.

These nine equations are linearly independent, giving the system a rank of 9. ⊓⊔

16

General Case for Odd Prime s. This linear independence argument applies for
all odd prime powers s = pk. The formal statement appears below.

Lemma 6. Let s be an odd prime power, and let n = s2. Consider all sums

⊕Ah
j for 0 ≤ h ≤ s, 0 ≤ j ≤ s− 1,

obtained from the SMNO clusters of an n-sharing X. Then the rank of the cor-
responding system of parity relations is n.

Proof. For each share Xi in X, we identify a specific subset of these parity sums
that reconstructs Xi. Exclude the row cluster (C0) and let Bi be the set of all
remaining multi-shares that contain Xi:

Bi =
{

Ah
j

∣∣ 1 ≤ h ≤ s, 0 ≤ j ≤ s− 1, Xi ∈ Ah
j

}
.

Since Xi appears in exactly one multi-share of each of these s clusters, Bi has
s elements. Any two multi-shares in Bi intersect exactly in [Xi], so combining
all elements of Bi yields s copies of Xi and one copy of each additional share in
the relevant rows. Let j0 be such that Xi ∈ A0

j0
in the row cluster. Because s is

odd, we obtain

Xi =
(s−1⊕

j=0
j ̸=j0

⊕A0
j

)
⊕
(⊕

Ah
j

∈ Bi

⊕Ah
j

)
. (3)

Since each Xi can be expressed in this manner, the system of all sums ⊕Ah
j

must have rank at least n. On the other hand, there are only n variables total,
so the rank is exactly n. ⊓⊔

Even Prime Case (s = 2). For example, when s = 2, the rank of the correspond-
ing system of parity sums is 3, and for s = 4, it is 9. However, the statement
of Lemma 6 for odd prime powers is sufficient for our constructions in the next
section.

Example 6. (Detail for n = 9, X5) Referring again to the clusters in (2), consider
the share X5. The set

B5 = {A1
2, A2

1, A3
0}

collects all multi-shares from clusters 1, 2, 3 that contain X5. Summing their
parities,

⊕B5 = (⊕A1
2)⊕ (⊕A2

1)⊕ (⊕A3
0) = X2 ⊕X5 ⊕X8 ⊕X1 ⊕X6 ⊕X0 ⊕X7.

Since X5 lies in the row-based multi-share A0
1, equation (3) for i = 5 becomes

X5 = (⊕A0
0) ⊕ (⊕A0

2) ⊕ (⊕B5).

Hence, X5 can be recovered from the row cluster (excluding its own row) and
the parity sums in B5. ⊓⊔

17

4 Higher-Order Deterministic Multiplication

With our building blocks in place, we now turn to designing gadgets that perform
higher-order deterministic AND operation. We start with a simpler gadget that
is glitch resistant but is not uniform.

A SAND gadget takes two n-sharings X and Y as inputs and computes an
n-sharing Z such that the native value Z satisfies Z = XY .

Binomial Grouping. Given input n-sharings X = [X0, . . . , Xn−1] and Y =
[Y0, . . . , Yn−1], for the native X and Y we can write:

Z = XY =
n−1⊕
i=0

Xi

n−1⊕
j=0

Yj =
n−1⊕
i=0

n−1⊕
j=0

XiYj
(I)=

n−1⊕
k=0

Zk. (4)

Our goal is to partition the n2 products {XiYj} into n disjoint bins, each assigned
to a share Zk. Intuitively, by carefully grouping these products into each Zk, we
aim to maximize the gadget’s glitch-extended probing security order.

Maximizing the Probing Security Order. Let Lk be the set of all pairs (i, j) such
that XiYj is included in Zk. In other words,

Zk =
⊕

(i,j)∈Lk

Xi Yj ,

and the partitioning condition implies
n−1⋃
k=0

Lk = {0, . . . , n− 1}2 and Lk ∩ Lk′ = ∅ (for k ̸= k′).

A glitch-extended probe on Zk reveals all pairs {Xi, Yj | (i, j) ∈ Lk}. Denoting

Ik = { i | ∃ j with (i, j) ∈ Lk} and Jk = { j | ∃ i with (i, j) ∈ Lk} ,

we have |Lk| ≤ |Ik| · |Jk|. Summing over all k, we get

n2 =
n−1∑
k=0
|Lk| ≤

n−1∑
k=0
|Ik| |Jk|. (5)

To ensure high security order, we want each |Lk| to be as small as possi-
ble—equivalently, we want |Ik| and |Jk| to be bounded. Setting

I = max
0≤k≤n−1

|Ik| and J = max
0≤k≤n−1

|Jk|,

it follows from (5) that

n2 ≤
n−1∑
k=0
|Ik| |Jk| ≤ n I J ≤ n (max{I, J})2 =⇒

√
n ≤ max{I, J}. (6)

Hence, to maximize the order of security, we want max{I, J} =
√

n.

18

A Clustering-Based Construction. To achieve max{I, J} =
√

n, we use the
SMNO clustering approach from Section 3. Recall that n is a perfect square,
say n = s2. We define, for each k ∈ {0, . . . , n− 1},

Lk = Ik × Jk,

where
α = ⌊k/s⌋, X

∣∣
Ik

= Ah1
α (X),

β = mod(k, s), Y
∣∣
Jk

= Ah2
β (Y).

(7)

Here, h1 and h2 index two distinct SMNO clusters; for example, one might use
the “row” cluster for X and the “column” cluster for Y. The parameters α and
β range over all possible values in {0, . . . , s − 1}, ensuring a complete covering
of the s× s square.

As a result, we obtain |Ik| = |Jk| = s. Hence,

I = J = s =
√

n,

and we achieve equality in (6). Defining each share Zk as

Zk = Ah1
α (X) ⊗ Ah2

β (Y)

def=
s−1⊕
i=0

s−1⊕
j=0

(
Ah1

α (X)[i]
)(

Ah2
β (Y)[j]

)

=
(s−1⊕

i=0
Ah1

α (X)[i]
)
·
(s−1⊕

j=0
Ah2

β (Y)[j]
)

,

(8)

we obtain an n-sharing Z = [Z0, . . . , Zn−1] that satisfies correctness by construc-
tion, while also maximizing the probing security order under glitch-extended
probes.

4.1 The SAND-DN Gadget

The output Z of the multiplication described in this section is not uniformly
distributed. For future reference, we denote this gadget by SAND-DN, where
“D” stands for “deterministic” and “N” indicates “non-uniform.”

Algorithm 1 presents the SAND-DN gadget for input clusters h1 and h2. As
an example, for s = 2 and (h1, h2) = (0, 1) following Example 3, the shares of Z
are given by 

Z0 = (X0 ⊕X1) (Y0 ⊕ Y2),
Z1 = (X0 ⊕X1) (Y1 ⊕ Y3),
Z2 = (X2 ⊕X3) (Y0 ⊕ Y2),
Z3 = (X2 ⊕X3) (Y1 ⊕ Y3).

Further details for the case s = 3 are worked out in Appendix B.

19

Algorithm 1 The SAND-DN gadget
Input: X, Y ∈ (F2u)n; cluster indices h1, h2
Output: Z ∈ (F2u)n such that Z = XY

1: for k = 0 to n− 1 do
2: α← ⌊k/s⌋
3: β ← mod(k, s)
4: Zk ← Ah1

α (X) ⊗ Ah2
β (Y)

5: return Z = [Z0, Z1, . . . , Zn−1]

Correctness. To verify Z = XY , observe that the pair (α, β) =
(
⌊k/s⌋, mod(k, s)

)
for 0 ≤ k ≤ n − 1 systematically spans all combinations of multi-shares from
clusters h1 and h2 under the ⊗ operation. As a result, each product term Xi Yj

(for 0 ≤ i, j < n) appears exactly once in one of the Zk. Hence,
n−1⊕
k=0

Zk =
n−1⊕
i=0

n−1⊕
j=0

(
Xi Yj

)
= X Y,

so the gadget preserves correctness of the multiplication.

4.2 Properties of the Proposed SAND-DN Gadget
Probing Security. In this gadget, any collection of up to d = s − 1 (glitch-
extended) probes only exposes an incomplete set of input shares, thanks to the
clustering approach. Consequently, these probes remain independent of X and
Y , and hence of Z. However, a set of d + 1 glitch-extended probes can reveal the
entire X and Y to the adversary.

Concretely, with d + 1 probes, the adversary can learn

P = {Zks+k | 0 ≤ k < s}.

From (8), each probed share is

Pk = Zks+k =
(s−1⊕

i=0
Ah1

k (X)[i]
)
·
(s−1⊕

i=0
Ah2

k (Y)[i]
)

. (9)

Hence, the adversary learns the two sums
s−1⊕
i=0

Ah1
k (X)[i] and

s−1⊕
i=0

Ah2
k (Y)[i],

for 0 ≤ k < s. Summing over all k then reveals
s−1⊕
k=0

s−1⊕
i=0

Ah1
k (X)[i] = X and

s−1⊕
k=0

s−1⊕
i=0

Ah2
k (Y)[i] = Y.

If X and Y are independent, then the gadget is secure up to d = s − 1 glitch-
extended probes. Each probe reveals only one multi-share of X (or Y), so fewer
than s probes cannot fully recover X or Y .

20

Non-Uniformity of the Output Shares. For the binary field F2, each individual
output share Zk of the SAND-DN gadget is biased. Specifically, for 0 ≤ k ≤ n−1,
we have

Pr
(
Zk = 0

)
= 3

4 .

Proof: From (8), we can write

Zk =
(s−1⊕

i=0
Ah1

⌊k/s⌋(X)[i]
)
·
(s−1⊕

i=0
Ah2

mod(k,s)(Y)[i]
)

.

In F2, each of these two sums is an independent, uniform random bit, so their
product is zero except in the one case when both bits are 1. Therefore, the
probability that Zk = 0 is 3

4 .
Although the marginal distribution of each output share is biased, this gad-

get serves primarily as a stepping stone to our main construction, which will
address uniformity. The primary motivation here is to demonstrate the funda-
mental clustering strategy and its impact on probing security, before tackling
the uniformity issue in the next subsection.

4.3 A Uniform Deterministic Multiplication Gadget: SAND-DU

Nikova et al. [31] introduced the first known example of a first-order, glitch-
extended probing-secure, and uniform multiplication circuit (see also Section 2.1).
Extending their method to higher orders remains an open problem. In this sec-
tion, we contribute to this line of work by constructing a multiplication gadget
denoted SAND-DU, showing that for prime s, the gadget achieves both unifor-
mity and (t = s− 1)-order probing security (including glitch resistance).

Notion of r-Uniformity. Before detailing our construction, we clarify what
level of uniformity a non-bijective map such as AND can achieve.

Definition 7 (r-Uniformity). A list of shares Z ∈ (F2u)n is called r-uniform
if any sub-list Z|L of size |L| = r is distributed uniformly in

(
F2u

)r.

Since AND is not bijective over F2u × F2u , its output Z may be biased, even
when inputs X and Y are uniform. In particular, knowledge of the entire sharing
Z reveals the underlying native value Z, which is itself non-uniform. Thus, no
SAND construction can achieve n-uniformity.

However, as we demonstrate below, it is possible to achieve (n−1)-uniformity.
Building on the clustering approach from Section 3, we present an (n−1)-uniform
multiplication gadget.

Achieving a Uniform Z. The central idea is to construct an n-sharing R whose
secret is 0 and add it to Z without degrading the gadget’s probing security. Our
proofs of probing security rely on incompleteness, so we must ensure that any
multi-share appearing in Zk also appears in Rk. In this way, adding R does not
allow an adversary to “complete” any missing shares from X or Y .

21

To guarantee that R indeed shares the secret value 0, each share Xi (or Yi)
should appear an even number of times across the different Rk. Consequently,
each Xi (or Yi) cancels itself out when all shares of R are summed.

This procedure ensures that each individual Zk + Rk is marginally uniform.
Yet, for (n− 1)-uniformity, we also need the shares of R to be jointly uniform.
In other words, these Rk random variables must be sufficiently (linearly) inde-
pendent.2 We achieve this by carefully designing R so that no unintended de-
pendencies arise among its components, thus preserving joint uniformity across
the entire n-sharing.

In the next subsection, we detail how to construct R and integrate it with
the non-uniform gadget from Section 4.1 to obtain our final SAND-DU gadget
with (n− 1)-uniformity and higher-order probing security.

Design of SAND-DU Given the input n-sharings X and Y, the gadget com-
putes each output share Zk as the XOR of two terms: a multiplication term
Wk and an auxiliary share Rk. Unlike the simpler SAND-DN construction, this
gadget uses more than two clusters. Concretely, for 0 ≤ k < n:

α = ⌊k/s⌋,
β = mod(k, s),

Rk =
s−1⊕
i=0

(
A0

α(X)[i] ⊕ Aα+1
β (X)[i] ⊕ A0

α(Y)[i] ⊕ Aα+1
β (Y)[i]

)
,

Wk = A0
α(X) ⊗ Aα+1

β (Y),

Zk = Rk ⊕ Wk.

(10)

Recall that Ah
j (·) denotes the j-th multi-share from the SMNO cluster with

index h. By Lemma 3, if s is prime, there exist s + 1 mutually SMNO clusters.

Example 7 (Case n = 4). Using the four-share clusters from Example 3, the
output shares of SAND-DU are:

Z0 =
(
X0 ⊕X1

) (
Y0 ⊕ Y2

)
⊕ X1 ⊕X2 ⊕ Y1 ⊕ Y2,

Z1 =
(
X0 ⊕X1

) (
Y1 ⊕ Y3

)
⊕ X0 ⊕X3 ⊕ Y0 ⊕ Y3,

Z2 =
(
X2 ⊕X3

) (
Y0 ⊕ Y3

)
⊕ X0 ⊕X2 ⊕ Y0 ⊕ Y2,

Z3 =
(
X2 ⊕X3

) (
Y1 ⊕ Y2

)
⊕ X1 ⊕X3 ⊕ Y1 ⊕ Y3.

In Appendix B, we detail an instance for s = 3.

Algorithm and Correctness. Algorithm 2 describes the SAND-DU construction.
Its correctness (i.e., that Z = X Y) follows from two main observations:
2 If there exists a subset of R with r elements that sum to zero, then R can only be

at most r-uniform.

22

– W = [W0, . . . , Wn−1] is an n-sharing of XY .
– R = [R0, . . . , Rn−1] is an n-sharing of 0.

We postpone the full correctness proof to Appendix C.

Algorithm 2 The SAND-DU gadget
Input: X, Y ∈ (F2u)n

Output: Z ∈ (F2u)n such that Z = X Y

1: for k = 0 to n− 1 do
2: α← ⌊k/s⌋
3: β ← mod(k, s)
4: Rk ← 0

▷ Compute the zero-sharing Rk.
5: for i = 0 to s− 1 do
6: Rk ← Rk ⊕ A0

α(X)[i] ⊕ Aα+1
β (X)[i] ⊕ A0

α(Y)[i] ⊕ Aα+1
β (Y)[i]

▷ Compute the multiplication share Wk.
7: Wk ← A0

α(X) ⊗ Aα+1
β (Y)

8: for k = 0 to n− 1 do
9: Zk ←Wk ⊕ Rk

10: return Z = [Z0, . . . , Zn−1]

4.4 Properties of the Proposed SAND-DU Gadget

Probing Security. We show that the SAND-DU gadget is secure up to glitch-
extended probing order d = s − 1, assuming X and Y are independent. Owing
to the clustering approach, the proof is relatively straightforward.

The key observation is that computing up to d probed values requires only an
incomplete set of shares from X. Since this set is incomplete, the probed values
remain independent of the native value X. The same argument applies to Y.

From Algorithm 2, each probed value Zk depends on two multi-shares indexed
by α and β. Notably, these multi-shares lie in different clusters: multi-share α is
from cluster 0, whereas multi-share β is from cluster α+1, and we have α+1 > 0.

By Lemma 5, a collection of fewer than 2s − 1 multi-shares across different
clusters is incomplete. To ensure incompleteness, the following bound must hold
for d:

2d < 2s− 1 =⇒ d ≤ s− 1. (11)

Thus, when probing d = s − 1 values, the adversary cannot fully probe all the
n shares of X and Y, preserving the incompleteness property and thereby the
privacy of X and Y.

Uniformity of SAND-DU. For s ∈ {2, 3}, one can directly verify uniformity via
exhaustive enumeration. Specifically, by constructing a truth table of all possible
inputs and outputs and counting the frequency of each output Z, one checks that:

23

– All Z with secret Z = ⊕n−1
i=0 Zi = 0 appear with the same frequency.

– All Z with secret Z = 1 also appear with the same frequency.

This shows (n−1)-uniformity of the output shares. As discussed earlier, achieving
n-uniformity is impossible because Z (the product of inputs) is inherently biased.

For larger s, enumerating all possible inputs grows infeasible. Instead, we
use an indirect counting method. We prove that any subset of Z of size n − 1
(denoted Z1) is uniformly distributed over (F2u)n−1. Concretely, for each fixed
realization z1, the number of input pairs (X, Y) that produce Z1 = z1 is the
same, regardless of z1.

The main difficulty is that Z depends on X, Y via a non-linear mapping.
To overcome this, we introduce a technique to linearize the relevant parity rela-
tions, allowing us to apply linear algebra arguments to compute the number of
preimages for any given z1. The full proof can be found in Appendix D.

5 Higher-Order Deterministic SToffoli Gadget

To demonstrate how the ideas developed thus far can be extended to determin-
istically mask a cipher, we introduce additional gadgets. Our target cipher is
Ascon, which uses χ5 as its core non-linearity. In the next section, we will focus
on Sχ5. Here, we present a finer building block of χ5 that is most naturally
described by a Toffoli gate [38]. A Toffoli gate maps (X, Y, Z) ∈ (F2u)3 to

(X, Y, W = Z ⊕X Y).

Correspondingly, an SToffoli gadget takes three n-sharings [X, Y, Z] and com-
putes an n-sharing of W, preserving

W = Z ⊕X Y.

Construction. Leveraging the clustering framework, we propose a SToffoli gad-
get as given in Algorithm 3. The scheme uses three (SMNO) clusters, assigning
one to each input. By Lemma 3, for any s, it is possible to select such SMNO
clusters. For brevity, we omit the correctness proof here, as it closely parallels
that of SAND-DN.

5.1 Properties of the SToffoli Gadget

We analyze probing security separately in the standard and glitch-extended set-
tings.

Probing Security (Standard Probes). For any 0 ≤ k < n, a probe P targeting
the intermediate computations of Wk has the form P = Zk ⊕ F. If no other
probe targets this same Wk, the share Zk blinds the information in F, allowing a
simulator to replace P with an independent random variable (see Section 2.2).

24

Algorithm 3 The SToffoli gadget
Input:

[
X, Y, Z

]
∈
(
Fn

2u

)3, cluster indices (hX , hY , hZ)
Output: X, Y, W ∈

(
F2u

)n such that W = Z ⊕X Y

1: for k = 0 to n− 1 do
2: α← ⌊k/s⌋, β ← mod(k, s)
3: AhZ

α (W)[β]← AhZ
α (Z)[β]

4: for i = 0 to s− 1 do
5: for j = 0 to s− 1 do
6: AhZ

α (W)[β] ← AhZ
α (W)[β] ⊕

(
AhX

α (X)[i] · AhY
β (Y)[j]

)
7: return [X, Y, W]

However, if two or more probes target the same Wk, those probes can be
simulated by revealing all variables in the computation of Wk. Consequently,
two or more probes on a single Wk together yield:

{one share from Z} and {one multi-share from X and Y}.

Since X and Y each have s multi-shares and are assumed to be independent, up
to ⌊d

2

⌋
< s =⇒ d ≤ 2s− 1

probes can still be simulated using incomplete sets of input shares. Observe that
each probe reveals at most one share from Z, keeping the required Z shares
incomplete as well.

For n = 4 (i.e., s = 2), we get d ≤ 3, which is optimal in the sense that no
deterministic (or even randomized) masking scheme can exceed a probing order
d = n− 1.3 For larger n, the achievable order becomes lower compared to n− 1.
For example, with n = 9, s = 3, we get d ≤ 5.

Glitch-Extended Probing Security. The above simulator-based argument omits
glitches, focusing only on standard probing. For glitch-extended probes, a probe
on Wk automatically includes one share of Z and one multi-share from both X
and Y. Consequently, one obtains d ≤ s− 1 for glitch-extended security.

The SAND-XOR Gadget. A Toffoli gate outputs three values (X, Y, Z ⊕
X Y), copying the first two inputs to the output directly. In some applications
(including those in the next section), only the combination Z ⊕X Y is needed
at the output. Thus, we define the SAND-XOR gadget simply by omitting the
X and Y outputs from the SToffoli gadget. Formally, it maps three n-sharings
[X, Y, Z] into one n-sharing for [Z⊕X Y], using the same cluster arrangement
and inheriting the security properties just described.
3 An adversary with n probes can directly learn all n input shares of an n-sharing.

25

6 Case Study on χm

Building on the previous sections, we now propose a deterministic higher-order
probing secure masking scheme for χm. Our construction achieves a standard
probing security order of d =

√
n+1. Due to computational constraints, we verify

the uniformity of this scheme only for the specific cases (n = 4, m = 5) and (n =
4, m = 3). These choices correspond to the smallest square number of shares and
the instances of χm used in Ascon [22], SHA-3 [1], and Xoodoo [19]. Notably,
the combination n = 4 and d =

√
n + 1 = 3 is practically relevant because even

with online randomness, no masking technique can surpass a probing security
order of d = 3 for n = 4.

Uniformity Challenge for Masking χm. For odd m, χm is a permutation, imply-
ing that Sχm can, in principle, be a bijection of size mn. Thus, one might expect
that if the inputs are mn-uniform, then the output could also be mn-uniform.
However, a straightforward application of the Nikova et al. [31] multiplication
(for n = 4) does not yield an mn-uniform construction of Sχm. Early determin-
istic and uniform masking attempts for χm did not show promise [9].

To address this challenge, Daemen [17] proposed the “changing of the guards”
technique, using randomness from adjacent Sχm instances to uniformize the cur-
rent instance’s output. In separate work, Shahmirzadi and Moradi [37] performed
an exhaustive search to find a first- and second-order probing-secure χ5 gadget
that is also uniform. Here, we build on these ideas and present constructions
for Sχ5 and Sχ3 that achieve third-order probing security while also ensuring
uniformity for n = 4.

6.1 The Sχm Gadget

The map χm. Given m binary inputs (X0, . . . , Xm−1), χm produces m outputs
(Y 0, . . . , Y m−1), where

Y i = Xi ⊕
(
1⊕Xi+1)Xi+2, (12)

with indices taken modulo m. Correspondingly, Sχm takes m input n-sharings[
X0, . . . , Xm−1] and computes m output n-sharings preserving the relation (12)

among the native values.
When working over an n-sharing X of a secret X, it is straightforward to

obtain an n-sharing for (1⊕X) by simply adding 1 to exactly one share of X, say
X0. With that, each output sharing Yi can be computed using the SAND-XOR
gadget, as shown in Algorithm 4. An example for the case (n = 4, m = 3) is
provided in Appendix B.

This gadget requires three distinct SMNO clusters. Each n-sharing of the
input appears in three separate SAND-XOR gadgets, each associated with a dif-
ferent cluster. The shake function does not affect correctness or probing security
order; it simply reverses the index order of the shares within each multi-share of
the specified cluster. Without shake, the output of Sχm would not be uniform.

26

Algorithm 4 The Sχm gadget
Input: [X0, . . . , Xm−1] ∈

(
Fn

2
)m

, cluster indices {h0, h1, h2}
Output: [Y0, . . . , Ym−1] ∈

(
Fn

2
)m

1: function neg(U)
2: V← U
3: V0 ← 1⊕ U0
4: return V

5: function shake(U, h)
6: V← U
7: for j = 0 to s− 1 do
8: for i = 0 to s− 1 do
9: Ah

j (V)[s− 1− i] ← Ah
j (U)[i]

10: return V
▷ Compute outputs Yi.

11: for i = 0 to m− 2 do
12: Yi ← SAND-XOR

(
Xi+2, neg

(
Xi+1), Xi

)
▷ Implements

Y i = Xi ⊕ (1⊕Xi+1) Xi+2.
13: Ym−1 ← SAND-XOR

(
X1, neg

(
X0), shake

(
Xm−1, h2

))
14: return [Y0, . . . , Ym−1]

While our motivation for shake is heuristic, we confirmed it produces mn-uniform
results for (n = 4, m = 5) and (n = 4, m = 3). Determining its effectiveness for
other cases remains an open problem for future work.

Probing Security (Standard Probes). Assume the input n-sharings are mutually
independent and their clusters h0, h1, h2 are distinct. From Algorithm 4, each Xi

appears in exactly three consecutive SAND-XOR gadgets, each time used under
a different cluster index. The intermediates in these gadgets take the following
form:

D1 = Ah2
j1

(
Xi
)
[j2] ⊕

(⊕r1
l1=0

⊕r2
l2=0 Ah0

j1
(Xi+1)[l1] Ah1

j2
(Xi+2)[l2]

)
,

D2 = Ah2
j3

(
Xi−1)[j4] ⊕

(⊕r3
l1=0

⊕r4
l2=0 Ah0

j3

(
Xi
)
[l1] Ah1

j4

(
Xi+1)[l2]

)
,

D3 = Ah2
j5

(
Xi−2)[j6] ⊕

(⊕r5
l1=0

⊕r6
l2=0 Ah0

j5

(
Xi−1)[l1] Ah1

j6

(
Xi
)
[l2]
)

,

(13)

where {r1, . . . , r6, j1, . . . , j6} ⊆ {0, . . . , s − 1} label the relevant multi-share in-
dices, consistent with Algorithm 3. For brevity, the effects of neg and shake are
omitted in this illustration.
Single-Probe Case. A single probe targeting an intermediate such as D3 be-
comes

D3 = Ah2
j5

(
Xi−2)[j6]︸ ︷︷ ︸

blinding term

⊕ . . .

27

The additive share from cluster h2 (here, Ah2
j5

(Xi−2)[j6]) acts as a blinding
term, ensuring that if no other probe discloses this same share, the simulator
can replace D3 with fresh randomness (Section 2.2).

Two or More Probes. With a second probe, simulation needs at most one
multi-share from two other inputs. For example, by two probes on D3 type
intermediates, simulation requires a share of Xi−2 along with one multi-share
each of Xi−1 and Xi.

Upon learning one multi-share of a cluster Xi−1, the adversary may choose
the subsequent probes from type D2. As such, the blinding term might have
already been required for the simulation. Therefore, from the third probe on,
we assume that any new probe will require one multi-share of Xi (the targeted
n-sharing) for the simulation.

The first two probes only require one multi-share of Xi from cluster h1.
Subsequent probes require one multi-share from cluster h0. Since h0 and h1 are
pointing to two distinct (SMNO) clusters, fewer than

2 + (s− 1) =
√

n + 1

probes will not need all shares of Xi for the simulation, and this proves the
claimed probing order d =

√
n + 1.

Glitch-Extended Probing Security. Using only the incompleteness argument (with-
out relying on additive blinding), each intermediate in the Sχ5 gadget depends on
at most one multi-share of each secret. Thus, the scheme resists glitch-extended
probing up to t =

√
n− 1. Concretely, for n = 4, this provides first-order glitch

resistance.

7 Application to Ascon

We now illustrate how our proposed Sχ5 can be used to implement a masked
version of the Ascon cipher [22] without any online randomness.

Ascon Overview. Ascon is an authenticated encryption scheme based on a
sponge construction, featuring a 128-bit key, tag, and nonce. As shown in Fig-
ure 5, its encryption algorithm runs in four stages:

1. Initialization: The 320-bit state is seeded with the key K and nonce N .
2. Associated Data Processing: The state is updated with blocks of associated

data Ai.
3. Plaintext Processing: Plaintext blocks Pi are injected into the state to pro-

duce ciphertext blocks Ci.
4. Finalization: The key K is re-injected, and the tag T is extracted for au-

thentication.

28

IV∥K∥N

pa

Initialization

0∗∥K

A1

pb

As

pb

Associated Data

0∗∥1

P1 C1

pb

Pt−1 Ct−1

pb

Plaintext

Pt Ct

K∥0∗

pa

Finalization

K

T

Fig. 5: Ascon. pa and pb are application of the permutation p in a and b rounds.

The Ascon Permutation. Ascon’s permutation p repeatedly applies a round
transformation to a 320-bit state, represented as a 5×64 array s = [s1, . . . , s5]⊤.
Each round consists of:

1. Add Round Constant: A byte-sized constant is XORed into the state.
2. Non-linear Layer: A 5-bit S-box (see Figure 6) is applied in parallel across

all 64 bit positions (columns).
3. Diffusion Layer: Each 64-bit word sj is updated by XORing rotations of

itself:

sj ← sj ⊕ (sj ≪ θj) ⊕ (sj ≪ θ′
j),

where the rotations θj and θ′
j are specified in [22].

Ascon’s S-box. Figure 6 shows the 5-bit S-box, which is χ5 interleaved with
small linear and affine layers. Each round contains 64 such S-box instances, one
per bit column.

s1[i]

s2[i]

s3[i]

s4[i]

s5[i]

χ5

1

s1[i]

s2[i]

s3[i]

s4[i]

s5[i]

Fig. 6: Ascon’s S-box.

7.1 A Deterministic SAscon

The only non-linear step in Ascon is the χ5 function. In our deterministic
masking approach, we replace χ5 with the Sχ5 gadget from Section 6, while the
diffusion layer and the linear/affine parts of the S-box are each masked directly
without using any refresh gadgets or online randomness. This design follows the

29

work of Daemen et al. [18] and Giger et al. [26], which address first- and second-
order probing security, respectively.4 Our proposed Sχ5 extends these methods
to third-order probing security.

Probing Security of Composition. For Ascon, the diffusion layer has linear
branch number Bl = 4 (Definition 3). Lemma 1 implies that any Bl − 1 n-
sharings in a single row (i.e., the si row lists) are jointly independent (Defini-
tion 2). In each application of the diffusion layer, rows partition the state so
that the independence property is preserved for the entire state. By Lemma 2, if
any three SS-boxes receive jointly independent n-sharings, then the composition
remains secure up to third-order probing, provided only two consecutive rounds
are probed. As discussed in [28], the main independence bottleneck arises in
two consecutive rounds; subsequent rounds introduce more S-box combinations,
making it much more likely that the n-sharings remain independent.

Probing Security of SS-box. Let the n-sharings entering Sχ5 be [A, B, C, D, E].
In Ascon, each S-box input is

[A⊕D⊕E, B, C⊕B, D, E⊕D],

which is just the inverse of the preceding linear layer (see Figure 6). Conse-
quently, every intermediate can be written in the form of (13), combined with
output affine terms. The key observation is that each output incorporates distinct
blinding terms, allowing arguments similar to those used for Sχ5 in Section 6.

Probing Environment. In typical software implementations, glitches are less of
a concern, so we focus here on standard probing security. To mitigate potential
glitch-related vulnerabilities, one could introduce synchronization layers that
ensure the blinding terms remain valid in each intermediate, without requiring
additional randomness. We omit these details, as our primary goal is to illus-
trate the feasibility of higher-order deterministic masking through the clustering
framework developed in this work.

8 Conclusion

We introduced a systematic clustering approach for shares and demonstrated its
effectiveness in designing gadgets under the extreme constraints of deterministic
masking, where randomness is limited to the initial input sharing. Using this
method, we constructed a higher-order secure AND gadget, addressing a long-
standing open problem. To further illustrate the use of clustering, we applied it
to the deterministic protection of Ascon. Our results show that higher-order
deterministic masking is feasible for both individual gadgets and larger crypto-
graphic circuits. However, ensuring probing security in arbitrary compositions
may be impossible without incorporating online randomness.
4 The widely cited deterministic software masking of Ascon at https://github.com/

ascon/simpleserial-ascon also follows these approaches for first and second order.

30

https://github.com/ascon/simpleserial-ascon
https://github.com/ascon/simpleserial-ascon

References

1. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions
(2015-08-04 2015). https://doi.org/10.6028/NIST.FIPS.202

2. Ascon-Based Lightweight Cryptography Standards for Constrained Devices, (NIST
initial public draft) (2024), https://csrc.nist.gov/pubs/sp/800/232/ipd

3. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.: Ver-
ified Proofs of Higher-Order Masking. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology – EUROCRYPT 2015. pp. 457–485. Springer Berlin Heidelberg,
Berlin, Heidelberg (2015)

4. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong Non-Interference and Type-Directed Higher-Order Masking.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 116–129 (2016)

5. Batten, L.M.: Combinatorics of Finite Geometries. Cambridge University Press
(1997)

6. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness Complexity of Private Circuits for Multiplication. In: Fischlin,
M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9666, pp. 616–648. Springer (2016)

7. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private Multiplication over Finite Fields. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology – CRYPTO 2017. pp. 397–426. Springer International Publishing
(2017)

8. Belaïd, S., Goudarzi, D., Rivain, M.: Tight Private Circuits: Achieving Probing
Security with the Least Refreshing. In: Peyrin, T., Galbraith, S. (eds.) Advances
in Cryptology – ASIACRYPT 2018. pp. 343–372. Springer International Publishing
(2018)

9. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Efficient
and First-Order DPA Resistant Implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) Smart Card Research and Advanced Applications. pp. 187–199.
Springer International Publishing (2014)

10. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.X.: Hardware Private Circuits:
From Trivial Composition to Full Verification. IEEE Transactions on Computers
70(10), 1677–1690 (2021). https://doi.org/10.1109/TC.2020.3022979

11. Cassiers, G., Masure, L., Momin, C., Moos, T., Moradi, A., Standaert, F.X.: Ran-
domness Generation for Secure Hardware Masking – Unrolled Trivium to the
Rescue. IACR Communications in Cryptology 1(2) (2024). https://doi.org/10.
62056/akdkp2fgx

12. Cassiers, G., Standaert, F.X.: Trivially and Efficiently Composing Masked Gadgets
With Probe Isolating Non-Interference. IEEE Transactions on Information Foren-
sics and Security pp. 2542–2555 (2020). https://doi.org/10.1109/TIFS.2020.
2971153

13. Coron, J.S.: Formal Verification of Side-Channel Countermeasures via Elementary
Circuit Transformations. In: Preneel, B., Vercauteren, F. (eds.) Applied Cryptog-
raphy and Network Security. pp. 65–82. Springer International Publishing, Cham
(2018)

31

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/pubs/sp/800/232/ipd
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.62056/akdkp2fgx
https://doi.org/10.62056/akdkp2fgx
https://doi.org/10.62056/akdkp2fgx
https://doi.org/10.62056/akdkp2fgx
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153

14. Coron, J.S., Greuet, A., Zeitoun, R.: Side-Channel Masking with Pseudo-Random
Generator. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EURO-
CRYPT 2020. pp. 342–375 (2020)

15. Coron, J.S., Prouff, E., Rivain, M., Roche, T.: Higher-Order Side Channel Security
and Mask Refreshing. In: Moriai, S. (ed.) Fast Software Encryption. pp. 410–424.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

16. Daemen, J.: Cipher and Hash Function Design Strategies based on linear and
differential cryptanalysis. Ph.D. thesis, Katholieke Universiteit Leuven (1995),
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf

17. Daemen, J.: Changing of the Guards: A Simple and Efficient Method for Achieving
Uniformity in Threshold Sharing. In: Fischer, W., Homma, N. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10529, pp. 137–153. Springer (2017)

18. Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.:
Protecting against Statistical Ineffective Fault Attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(3), 508–543 (2020). https://doi.org/10.13154/
TCHES.V2020.I3.508-543

19. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak,
a lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020)

20. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020). https://doi.org/10.1007/978-3-662-60769-5

21. De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-Order
Threshold Implementation of the AES S-Box. In: Homma, N., Medwed, M. (eds.)
Smart Card Research and Advanced Applications. Springer International Publish-
ing (2016)

22. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
Authenticated Encryption and Hashing. Journal of Cryptology 34 (2021). https:
//doi.org/10.1007/s00145-021-09398-9

23. Faust, S., Grosso, V., Merino Del Pozo, S., Paglialonga, C., Standaert, F.X.: Com-
posable Masking Schemes in the Presence of Physical Defaults & the Robust Prob-
ing Model. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2018(3), 89–120 (Aug 2018). https://doi.org/10.13154/tches.v2018.i3.
89-120

24. Faust, S., Paglialonga, C., Schneider, T.: Amortizing Randomness Complexity in
Private Circuits. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2017. pp. 781–810. Springer International Publishing (2017)

25. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: Co-Design and
Co-Verification of Masked Software Implementations on CPUs. In: Bailey, M.D.,
Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021. pp. 1469–1468. USENIX Association (2021), https://www.
usenix.org/conference/usenixsecurity21/presentation/gigerl

26. Gigerl, B., Mendel, F., Schläffer, M., Primas, R.: Efficient Second-Order Masked
Software Implementations of Ascon in Theory and Practice, NIST LWC Workshop
(2023)

27. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
463–481. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

32

https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://doi.org/10.13154/TCHES.V2020.I3.508-543
https://doi.org/10.13154/TCHES.V2020.I3.508-543
https://doi.org/10.13154/TCHES.V2020.I3.508-543
https://doi.org/10.13154/TCHES.V2020.I3.508-543
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl

28. Jahandideh, V., Mennink, B., Batina, L.: Higher-Order Deterministic Masking
with Application to Ascon. Cryptology ePrint Archive, Paper 2025/179 (2025),
https://eprint.iacr.org/2025/179

29. Laywine, C.F., Mullen, G.L.: Discrete Mathematics Using Latin Squares. John
Wiley & Sons (1998)

30. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Se-
crets of Smart Cards (Advances in Information Security). Springer-Verlag, Berlin,
Heidelberg (2007)

31. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information
and Communications Security. pp. 529–545. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

32. Petrides, G.: On Non-Completeness in Threshold Implementations. In: Proceedings
of ACM Workshop on Theory of Implementation Security Workshop. p. 24–28.
TIS’19, Association for Computing Machinery, New York, NY, USA (2019). https:
//doi.org/10.1145/3338467.3358951

33. Piccione, E., Andreoli, S., Budaghyan, L., Carlet, C., Dhooghe, S., Nikova, S.,
Petrides, G., Rijmen, V.: An Optimal Universal Construction for the Threshold
Implementation of Bijective S-Boxes. IEEE Trans. Inf. Theory 69(10), 6700–6710
(2023)

34. Playfair, J.: The element of geometry. W.E. Dean (1836)
35. Reparaz, O.: A note on the security of Higher-Order Threshold Implementations.

Cryptology ePrint Archive, Paper 2015/001 (2015), https://eprint.iacr.org/
2015/001

36. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.X. (eds.) Cryptographic Hardware and Embedded Systems,
CHES 2010. pp. 413–427. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

37. Shahmirzadi, A.R., Moradi, A.: Second-Order SCA Security with almost no Fresh
Randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 708–755
(2021)

38. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) Au-
tomata, Languages and Programming. pp. 632–644. Springer Berlin Heidelberg,
Berlin, Heidelberg (1980)

39. Wang, W., Ji, F., Zhang, J., Yu, Y.: Efficient Private Circuits with Precomputa-
tion. IACR Transactions on Cryptographic Hardware and Embedded Systems (2),
286–309 (Mar 2023). https://doi.org/10.46586/tches.v2023.i2.286-309

33

https://eprint.iacr.org/2025/179
https://doi.org/10.1145/3338467.3358951
https://doi.org/10.1145/3338467.3358951
https://doi.org/10.1145/3338467.3358951
https://doi.org/10.1145/3338467.3358951
https://eprint.iacr.org/2015/001
https://eprint.iacr.org/2015/001
https://doi.org/10.46586/tches.v2023.i2.286-309
https://doi.org/10.46586/tches.v2023.i2.286-309

A Proof of Lemma 3

In this section, we give a proof of Lemma 3, that at the same time gives a
construction on how to create SMNO clusters in an easy way. The construction
of a finite affine plane does not necessarily give the same SMNO clusters.

Proof of Lemma 3: We arrange shares in a square of side length s (as il-
lustrated in Figure 3). The rows form one cluster. For this cluster, the shares
0 ≤ i ≤ s− 1 in the j-th multi-share are denoted by:

A0
j [i] = Xi+js. (14)

Subsequent clusters are formed as follows:

Ah
j [i] = Xis+mod(hi+j−i,s). (15)

Here, each h ∈ {1, . . . , s} defines a cluster.

Clusters Covering X. We show that each cluster covers all shares in X. For a
given h, any share Xl with 0 ≤ l < s2 must be in one multi-share of this cluster.
Setting l = is+mod(hi+j−i, s) yields i = ⌊l/s⌋ and mod(l, s) = mod(hi+j−i, s).
This leads to a unique j = mod(l − hi + i, s) for each h.

SMNO Property. We prove that each multi-share from cluster h1 intersects ex-
actly once with each multi-share from cluster h2: |Ah1

j1
∩Ah2

j2
| = 1. For any two

multi-shares j1 and j2, there exists a pair of indices (i1, i2) satisfying:

i1s + mod(h1i1 + j1 − i1, s) = i2s + mod(h2i2 + j2 − i2, s). (16)

Applying ⌊./s⌋ to both sides gives i1 = i2. Replacing i1 and i2 with i, we get:

is + mod(h1i + j1 − i, s) = is + mod(h2i + j2 − i, s). (17)

Solving for i yields

i = (h1 − h2)−1(j2 − j1) mod s.

With s being prime, (h1 − h2)−1 is always unique, leading to:

|Ah1
j1
∩Ah2

j2
| = 1.

Furthermore, the rows cluster and each cluster defined by (15) are MNO. The
r-th multi-share in the rows cluster, which is the r-th row, contains shares from
indices rs to rs+s−1. Each multi-share from other clusters includes exactly one
share in the range rs to rs+s−1, located at index i = r. Thus, each multi-share
from the rows cluster intersects exactly once with each multi-share from other
clusters.

34

There Are No Other SMNO Clusters. For the sake of contradiction, assume there
exists an unaccounted cluster C′, and B′ is one of its multi-shares. Imagine shares
in a square of side length s. B′ must have one intersection with the first row
and one with the second row. Let c1 and c2 be the respective column indices of
these intersections. Using the structure defined in (15), we can show that in the
cluster with h = mod(c2 − c1 + 1, s), the first two members of c1-th multi-share
coincide with B0. Consequently,

|Amod(c2−c1+1,s)
c1

∩B0| > 1.

This contradiction indicates that no additional cluster C′ exists outside the de-
fined structure.

Composite s. For non-prime s, we seek an as large as possible set T where
gcd(h1−h2, s) = 1 for any distinct h1, h2 ∈ T, ensuring that h1−h2 is invertible
modulo s. We always have 0, 1 ∈ T. A third value h is in T if gcd(h, s) = 1
and gcd(h − 1, s) = 1. Hence, if 2 does not divide s, then 2 ∈ T. Following
up on this, let p be the smallest prime factor of a composite s. Then all values
up to the smallest p are included in T, incrementally. Let k < p be such that
0, 1, . . . , k− 1 ∈ T. Then we need gcd(k− 0, s) = gcd(k− 1, s) = gcd(k− 2, s) =
. . . = gcd(k− (k−1), s) = 1. gcd(k, s) = 1 is obvious, since k < p. All other gcds
in the above line are because k− 1, k− 2, . . . , 1 ∈ T. Any value h in T defines an
MNO cluster per (15). That h1−h2 is invertible modulo s for distinct h1, h2 ∈ T
ensures that these clusters are SMNO. ⊓⊔

Example 8. For instance, with n = 16, we have s = 22 and p1 = 2. Hence, the
number of SMNO clusters, that we can create with the method from Lemma 3
is 3. In general, since 2 is the smallest prime, we have at least three clusters that
are SMNO for any value s. This gives a different argument to the one in Remark
1 for having at least 3 SMNO clusters. (We saw that with finite affine geometry,
we can create five SMNO clusters for n = 16.)

B Instances of SAND-DN, SAND-DU, and Sχ3

B.1 SAND-DN

In the n = 9 configuration, there are four possible clusters that are SMNO.
These clusters are identified in (2). To work out an instance of SAND-DN, we
choose clusters indexed by h1 = 0 and h2 = 1. The shares in Z are computed
using Algorithm 1 as follows:

Z0 = (X0 ⊕X1 ⊕X2) · (Y0 ⊕ Y3 ⊕ Y6) Z5 = (X3 ⊕X4 ⊕X5) · (Y2 ⊕ Y5 ⊕ Y8)
Z1 = (X0 ⊕X1 ⊕X2) · (Y1 ⊕ Y4 ⊕ Y7) Z6 = (X6 ⊕X7 ⊕X8) · (Y0 ⊕ Y3 ⊕ Y6)
Z2 = (X0 ⊕X1 ⊕X2) · (Y2 ⊕ Y5 ⊕ Y8) Z7 = (X6 ⊕X7 ⊕X8) · (Y1 ⊕ Y4 ⊕ Y7)
Z3 = (X3 ⊕X4 ⊕X5) · (Y0 ⊕ Y3 ⊕ Y6) Z8 = (X6 ⊕X7 ⊕X8) · (Y2 ⊕ Y5 ⊕ Y8)
Z4 = (X3 ⊕X4 ⊕X5) · (Y1 ⊕ Y4 ⊕ Y7)

35

B.2 SAND-DU

For SAND-DU, we need all four clusters. For these clusters. we use the same
indexes as in (2). The output shares computed with Algorithm 2 are as follows:

Z0 = (X0 ⊕X1 ⊕X2) · (Y0 ⊕ Y3 ⊕ Y6)⊕X1 ⊕X2 ⊕X3 ⊕X6 ⊕ Y1 ⊕ Y2 ⊕ Y3 ⊕ Y6

Z1 = (X0 ⊕X1 ⊕X2) · (Y1 ⊕ Y4 ⊕ Y7)⊕X0 ⊕X2 ⊕X4 ⊕X7 ⊕ Y0 ⊕ Y2 ⊕ Y4 ⊕ Y7

Z2 = (X0 ⊕X1 ⊕X2) · (Y2 ⊕ Y5 ⊕ Y8)⊕X0 ⊕X1 ⊕X5 ⊕X8 ⊕ Y0 ⊕ Y1 ⊕ Y5 ⊕ Y8

Z3 = (X3 ⊕X4 ⊕X5) · (Y0 ⊕ Y4 ⊕ Y8)⊕X0 ⊕X3 ⊕X5 ⊕X8 ⊕ Y0 ⊕ Y3 ⊕ Y5 ⊕ Y8

Z4 = (X3 ⊕X4 ⊕X5) · (Y1 ⊕ Y5 ⊕ Y6)⊕X1 ⊕X3 ⊕X4 ⊕X6 ⊕ Y1 ⊕ Y3 ⊕ Y4 ⊕ Y6

Z5 = (X3 ⊕X4 ⊕X5) · (Y2 ⊕ Y3 ⊕ Y7)⊕X2 ⊕X4 ⊕X5 ⊕X7 ⊕ Y2 ⊕ Y4 ⊕ Y5 ⊕ Y7

Z6 = (X6 ⊕X7 ⊕X8) · (Y2 ⊕ Y4 ⊕ Y6)⊕X2 ⊕X4 ⊕X7 ⊕X8 ⊕ Y2 ⊕ Y4 ⊕ Y7 ⊕ Y8

Z7 = (X6 ⊕X7 ⊕X8) · (Y1 ⊕ Y3 ⊕ Y8)⊕X1 ⊕X3 ⊕X6 ⊕X7 ⊕ Y1 ⊕ Y3 ⊕ Y6 ⊕ Y7

Z8 = (X6 ⊕X7 ⊕X8) · (Y0 ⊕ Y5 ⊕ Y7)⊕X0 ⊕X5 ⊕X6 ⊕X8 ⊕ Y0 ⊕ Y5 ⊕ Y6 ⊕ Y8

B.3 Sχ3

For an instance of Sχ3 with n = 4, we choose clusters indexed 0 to 2 in ac-
cordance with Example 3. By application of Algorithm 4 and based on input
n-sharings [X0, X1, X2], we obtain the following descriptions for the output n-
sharings [Y0, Y1, Y2] of Sχ3:

Y
0

0 = X
0
0 ⊕ X1

0 X
2
0 ⊕ X1

0 X
2
2 ⊕ X

1
1 X

2
0 ⊕ X

1
1 X

2
2 Y

0
1 = X

0
3 ⊕ X1

0 X
2
1 ⊕ X1

0 X
2
3 ⊕ X

1
1 X

2
1 ⊕ X

1
1 X

2
3

Y
0

2 = X
0
1 ⊕ X

1
2 X

2
0 ⊕ X

1
2 X

2
2 ⊕ X

1
3 X

2
0 ⊕ X

1
3 X

2
2 Y

0
3 = X

0
2 ⊕ X

1
2 X

2
1 ⊕ X

1
2 X

2
3 ⊕ X

1
3 X

2
1 ⊕ X

1
3 X

2
3

Y
1

0 = X
1
0 ⊕ X2

0 X
0
0 ⊕ X2

0 X
0
2 ⊕ X

2
1 X

0
0 ⊕ X

2
1 X

0
2 Y

1
1 = X

1
3 ⊕ X2

0 X
0
1 ⊕ X2

0 X
0
3 ⊕ X

2
1 X

0
1 ⊕ X

2
1 X

0
3

Y
1

2 = X
1
1 ⊕ X

2
2 X

0
0 ⊕ X

2
2 X

0
2 ⊕ X

2
3 X

0
0 ⊕ X

2
3 X

0
2 Y

1
3 = X

1
2 ⊕ X

2
2 X

0
1 ⊕ X

2
2 X

0
3 ⊕ X

2
3 X

0
1 ⊕ X

2
3 X

0
3

Y
2

0 = X
2
3 ⊕ X0

0 X
1
0 ⊕ X0

0 X
1
2 ⊕ X

0
1 X

1
0 ⊕ X

0
1 X

1
2 Y

2
1 = X

2
0 ⊕ X0

0 X
1
1 ⊕ X0

0 X
1
3 ⊕ X

0
1 X

1
1 ⊕ X

0
1 X

1
3

Y
2

2 = X
2
2 ⊕ X

0
2 X

1
0 ⊕ X

0
2 X

1
2 ⊕ X

0
3 X

1
0 ⊕ X

0
3 X

1
2 Y

2
3 = X

2
1 ⊕ X

0
2 X

1
1 ⊕ X

0
2 X

1
3 ⊕ X

0
3 X

1
1 ⊕ X

0
3 X

1
3

Here, Xi
j denotes 1⊕Xi

j . Order of XOR (that is from left to right) is relevant to
the probing security.

C Correctness of SAND-DU

We first show that Rk for 0 ≤ k ≤ n − 1 is an n-sharing of zero. That is
⊕n−1

k=0Rk = 0. In the following, we demonstrate this property for X. The steps
for Y are similar. We have:

n−1⊕
k=0

Rk =
n−1⊕
k=0

s−1⊕
i=0

(
A0

α(X)[i]⊕Aα+1
β (X)[i]

)
(18)

Since there is a one to one map between k and (α, β), we can decompose a
summation over k into summations over α and β. That is ⊕n−1

k=0(.) = ⊕s−1
α=0⊕

s−1
β=0

36

(.) = ⊕s−1
β=0 ⊕

s−1
α=0 (.). So, we can rewrite (18) as:

n−1⊕
k=0

Rk =

(
s−1⊕
β=0

s−1⊕
α=0

s−1⊕
i=0

A0
α(X)[i]

)
⊕

(
s−1⊕
α=0

s−1⊕
β=0

s−1⊕
i=0

Aα+1
β (X)[i]

)
(I)=

(
s−1⊕
β=0

X

)
⊕

(
s−1⊕
α=0

X

)
= 0

(19)

The right-hand-side of (I) is obtained by the identity ⊕s−1
j=0 ⊕

s−1
i=0 Ah

j (X)[j] = X
that is valid for any cluster h.

For the summation of the Wk terms, we have:
n−1⊕
k=0

Wk =
n−1⊕
k=0

(
A0

α(X)⊗Aα+1
β (Y)

)
=

n−1⊕
k=0

[(
s−1⊕
i=0

A0
α(X)[i]

)(
s−1⊕
i=0

Aα+1
β (Y)[i]

)]

=
s−1⊕
α=0

s−1⊕
β=0

[(
s−1⊕
i=0

A0
α(X)[i]

)(
s−1⊕
i=0

Aα+1
β (Y)[i]

)]

=
s−1⊕
α=0

[(
s−1⊕
i=0

A0
α(X)[i]

)(
s−1⊕
β=0

s−1⊕
i=0

Aα+1
β (Y)[i]

)]

=
s−1⊕
α=0

[(
s−1⊕
i=0

A0
α(X)[i]

)
Y

]
=

(
s−1⊕
α=0

s−1⊕
i=0

A0
α(X)[i]

)
Y = XY

(20)

Note that Z = ⊕n−1
k=0Zk = (⊕n−1

k=0Wk) ⊕ (⊕n−1
k=0Rk) = XY , and this completes

the proof of correctness. ⊓⊔

D Proof of the Uniformity of SAND-DU.

Shares in Z are non-linearly related to X and Y. To work around this, let us
fix the summations of the shares in the multi-shares of cluster 0 of X. These
summations, i.e., values ⊕A0

i (X), are the only terms creating non-linear depen-
dencies. With this trick, Z will be linearly related to X and Y, and consequently,
we can determine the shape of its distribution.

Let, for 0 ≤ i < s, the sum of shares in the i-th multi-share of cluster 0 of X
be fixed as:

θi = ⊕s−1
j=0A0

i (X)[j] def= ⊕A0
i (X).

By substituting the values θi into (10), for Zk, 0 ≤ k ≤ n− 1, we have:

α = ⌊k/s⌋, β = mod(k, s),

Zk = θα

(
⊕Aα+1

β (Y)
)
⊕ θα ⊕

(
⊕Aα+1

β (X)
)
⊕
(
⊕A0

α(Y)
)
⊕
(
⊕Aα+1

β (Y)
)

.
(21)

The resulting system of relations is linear in both X and Y. We now show
that for each (n − 1)-element set Z1 ⊂ Z with realization z1 and any values

37

{θ0, . . . , θs−1}, there are exactly 2u(n−s+1) tuples (x, y) that map to z1. Recall
that u is the bit-width of the underlying field.
We demonstrate that the collection of all equations of the form ⊕A0

i (X) = θi

and at most n− 1 of the equations Zk are linearly independent.
In Equation (21), if we just care about X, Zk has only one parity sum:⊕Aα+1

β (X).
By Lemma 6, we know that among s2 + s parity relations in the system of equa-
tions: {⊕Aα+1

β (X),⊕A0
i (X)} there are s2 independent relations. Specifically, the

following set of parity equations are linearly independent.

BX = {⊕Aα+1
β (X),⊕A0

i (X) | 0 ≤ α, i < s, 0 ≤ β < s− 1}

BX is defined by omitting the last multi-share of clusters > 0 that are clusters
other than the rows cluster. Therefore, we have |BX | = s(s− 1) + s = s2.

Summing properly chosen Zk equations, we build other s−1 linear equations
that annihilate the X-shares and, consequently, are independent of BX . We call
the set of these equations BY . We will show that s − 1 of these equations are
linearly independent of each other. BY is as follows.

BY =


s−1⊕
k=0

Zk,

2s−1⊕
k=s

Zk, . . . ,

s2−1⊕
k=s2−s

Zk

 .

For 0 ≤ i < s, the i-th parity relation in BY is

BY [i] =
(i+1)s−1⊕

k=is

Zk = θiY ⊕ θi ⊕X ⊕
(
⊕A0

i (Y)
)
⊕ Y.

Note that X = ⊕s−1
i=0 θi. Hence, BY [i] only has variables of Y as its unknowns.

This makes BX and BY linearly independent.
What remains is to show that there are s − 1 independent relations in BY

for any set of θi values. If there was no term such as θiY ⊕ Y = (1 ⊕ θi)Y in
the BY [i] relations, then the required independence relation was obvious, since
each BY [i] is using one multi-share of Y and these multi-shares are disjoint (they
are all from the same cluster). Addition of (1⊕ θi)Y term can at most decrease
the rank of BY by one. Therefore, we identified s2 + s − 1 = n + s − 1 linearly
independent equations for given {θ0, . . . , θs−1} and n− 1 values of z1 based on
2n variables in X and Y. So, there 2n− (n + s− 1) = n− s + 1 free variables in
X and Y. That implies there are 2u(n−s+1) preimages for any set {θ0, . . . , θs−1}
and values of z1. Considering only preimages of z1, we can conclude that for any
realization z1, there are 2us2u(n−s+1) = 2u(n+1) preimages, a number which is
independent of actual values of z1, and this proves the aimed uniformity. ⊓⊔

38

	Clustering Approach for Higher-Order Deterministic Masking

