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Abstract. Secure computation enables mutually distrusting parties to jointly compute a func-
tion on their secret inputs, while revealing nothing beyond the function output. A long-running
challenge is understanding the required communication complexity of such protocols – in par-
ticular, when communication can be sublinear in the circuit representation size of the desired
function. While several techniques have demonstrated the viability of sublinear secure compu-
tation in the two-party setting, known methods for the corresponding multi-party setting rely
either on fully homomorphic encryption, non-standard hardness assumptions, or are limited to
a small number of parties. In this work, we expand the study of multi-party sublinear secure
computation by demonstrating sublinear-communication 10-party computation from various
combinations of standard hardness assumptions. In particular, our contributions show:
– 8-party homomorphic secret sharing under the hardness of (DDH or DCR), the superpoly-

nomial hardness of LPN, and the existence of constant-depth pseudorandom generators;
– A general framework for achieving (N +M)-party sublinear secure computation using M -

party homomorphic secret sharing for NC1 and correlated symmetric PIR.
Together, our constructions imply the existence of a 10-party MPC protocol with sublinear
computation. At the core of our techniques lies a novel series of computational approaches
based on homomorphic secret sharing.

1 Introduction

Secure multiparty computation (MPC), introduced in the seminal works of Yao [Yao86] and Goldre-
ich, Micali, and Wigderson [GMW87], allows mutually distrusting parties to evaluate a function on
their secret inputs, while concealing all information beyond the output. While secure computation
was shown to be feasible in the 80s [Yao86,GMW87,BGW88,CCD88], all early secure computation
protocols involved an amount of communication between the parties scaling linearly with the size
of the circuit representing the function.3 In contrast, insecure computation only requires the parties
to exchange their inputs. Bridging the communication gap between secure and insecure computation
remained a major open problem until the breakthrough result of Gentry in 2009 [Gen09], which in-
troduced the first fully homomorphic encryption (FHE), a powerful primitive enabling the evaluation
of arbitrary functions on encrypted data. Using FHE, secure multiparty computation can achieve
essentially optimal communication, proportional only to the input and output size [DFH12,AJL+12].

On the assumptions required for secure computation. While the result of Gentry settled the feasibility
of secure computation with communication sublinear in the circuit size, it only yields a solution under
the restricted set of assumptions known to imply FHE. In the years that followed Gentry’s result,
an important challenge has been to understand whether FHE was really necessary for sublinear
secure computation, or whether it could be achieved from other standard assumptions. The first
breakthrough in this direction came from the work of [BGI16a], which introduced the notion of
homomorphic secret sharing (HSS), and gave a construction of HSS for the class NC1 of log-depth
circuits from the Decisional Diffie-Hellman assumption. Their result implied a 2-party protocol with
communication O(s/ log s) for all size-s circuits with a sufficiently regular “layered” structure.

Following the work of [BGI16a], several other works achieved constructions of HSS from other
assumptions, such as LPN (for constant-depth circuits [BCG+19], or for log log-depth circuits under
3 With a few exceptions that either required exponential computation [BFKR91,NN01], or were limited to

simple functions such as point functions [CGKS95,KO97,CG97].
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the superpolynomial hardness of LPN [CM21]), DCR [OSY21, RS21] (for log-depth circuits) or as-
sumptions based on class groups of imaginary quadratic fields [ADOS22], significantly expanding the
set of assumptions known to imply sublinear secure computation. However, until very recently, all
known constructions (except FHE) were restricted to secure two-party computation; the more chal-
lenging goal of obtaining secure multiparty computation with sublinear communication and without
FHE remained open.

Sublinear MPC without FHE. This state of affairs was recently improved in two papers:
– In [BCM23] (which is the starting point of our work), the authors achieved sublinear secure

computation for N = 3, 4, or 5 parties, under various combinations of assumptions.
– In [DIJL23], the authors achieved sublinear secure computation for any N , under a specific sparse

variant of the LPN assumption.
In summary, as of today, secure computation with sublinear communication is known to exist

either under one of two specific assumptions in the N -party setting for arbitrary N (the existence
of FHE, or the hardness of LPN with very sparse code matrix), or under various combinations of
assumptions for a small number of parties N ≤ 5.

Our contribution. In this work, we introduce new MPC protocols with sublinear communication under
various combinations of assumptions, for any number of parties up to N = 10. Perhaps intriguingly,
our techniques do not extend to protocols with N > 10 parties. For numbers of parties between 3
and 5, for which sublinear MPC protocols were given in [BCM23], our work significantly expands the
set of assumptions that can be used to get sublinear MPC for large classes of layered circuits. We
provide a summary of the new results which we obtain on Table 1.

Table 1: A summary of our new results on sublinear MPC. Communication costs ignore terms de-
pending on the input size, output size, and depth of the circuit. All combinations of assumptions
listed below were previously not known to imply sublinear MPC for the given number of parties.
RLF refers to the one-wayness of Random Local Functions, the assumption underlying the hardness
of Goldreich’s PRG. In all rows that involve superpolynomial hardness assumptions, all assumptions
can be replaced with polynomial hardness at the cost of settling for communication s/k for an arbi-
trary constant k.

Number of Parties Assumptions Communication

4 {DCR ∨ DDH } ∧ {RLF ∨ MQ} O(s/ log log s)

5 {DCR ∨ DDH} ∧ LPN
∧ {RLF ∨ MQ} O(s/ log log s)

8 {DCR ∨ DDH} ∧ superpoly LPN
∧ {RLF ∨ MQ} O(s/ log log s)

9 superpoly ({DCR ∨ DDH} ∧ LPN)
∧ {RLF ∨ MQ} O(s/ log log s)

10 superpoly ({DCR ∨ DDH} ∧ LPN)
∧ {RLF ∨ MQ} O(s/ log log log s)

As can be seen on Table 1, our results for N = 8 parties or more all require superpolynomial
hardness assumptions. This stems from the use of mild complexity leveraging to control the size of
some parameters: typically, the computational cost of some of our building blocks involves a term
of the form λck where λ is the security parameter of some hardness assumption, c is some constant,
and k the quantity we shave in communication (i.e. communicating s/k instead of O(s) for a size-s
circuit). To achieve sublinear communication, we need k = ω(1), which requires setting λ to a suitable
o(λ′), where λ′ is the security parameter controlling the running time of the participants. In turn,
this translates to assuming the superpolynomial hardness of the assumption.
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2 Technical Overview

Our starting point is the recent work of [BCM23], which introduced new sublinear MPC protocol for
N = 3, 4, 5 parties. The results achieved in [BCM23] build upon two technical ingredients: a nesting
strategy and an approach which relies on strong forms of private information retrieval to add one
party to an N -party sublinear protocol. We briefly overview both ingredients below.

2.1 Simple Nesting

Almost all sublinear MPC protocols that do not use FHE build upon homomorphic secret sharing
(HSS). Informally, an N -party HSS scheme allows to share an input x into N shares (x(1), · · · , x(N))←
Share(x) such that any party Pi can evaluate arbitrary functions f from a class F of admissible
functions, and obtain yi ← Eval(i, f, x(i)). Correctness states that the y(i) form additive shares of
y = f(x), and security states that all subsets of N − 1 shares of x computationally hide x. If there
is an efficient protocol ΠHSS to securely distribute Share(x) for a joint input vector x of the parties,
then we immediately get an MPC protocol with sublinear communication for f : the parties use ΠHSS

to securely distribute Share(x), locally obtain additive shares of f(x), and reconstruct the result.
The main limitation of existing sublinear MPC protocol stems from the fact that all known

constructions of HSS (which do not rely on heavy hammers such as indistinguishability obfuscation
or threshold multikey FHE) are restricted to the two-party setting. The nesting approach, originally
introduced in [COSVL23], and later refined in [BCM23], circumvents this limitation by evaluating an
inner HSS scheme within an outer HSS scheme.

The high level idea is the following: assume that there exists an N -party HSS scheme for a function
class F⋆ (the outer scheme), and an N -party HSS scheme (Share,Eval) for a function class F such
that for every party index i and function f ∈ F , the function g⋆ : x→ Eval(i, f, x) (that maps shares
to evaluations) belongs to F⋆. Then one gets an N2-party HSS scheme for F by evaluating the inner
HSS scheme inside the outer HSS scheme. Concretely, on input x:
– Share x into x(1), · · · , x(N) using the inner scheme.
– Share each x(i) into x(i,1), · · · , x(i,N) using the outer scheme, and deal x(i,j) to the (i, j)-th party.
– To evaluate f on a share x(i,j), define g⋆ : x(i) → Evalin(i, f, x

(i)) (where Evalin is the evaluation
algorithm of the inner scheme) and run Evalout((i, j), g

⋆, x(i,j)) (where Evalout is the evaluation
algorithm of the outer scheme).
The scheme was shown to be an N2-party HSS scheme for F in [COSVL23,BCM23].

Compact HSS. If the inner and outer schemes are compact (i.e., a share of x is of size O(|x|)+poly(λ)),
so is the final scheme. However, an important subtlety stems from the fact that compact HSS is
typically obtained using a standard hybrid encryption technique, which we sketch below. Given a
(non-compact) HSS = (Share,Eval), build a compact HSS scheme (Share′,Eval′) as follows:
– Share′(1λ, x) : sample a random seed seed ←r {0, 1}λ and stretch s ←r PRG(seed), where PRG :

{0, 1}λ 7→ {0, 1}|x| is a suitable PRG. Let (seed(1), · · · , seed(N))← Share(1λ, seed). Set z ← x⊕ s

and x(i) ← (seed(i), z) for i = 1 to N . Output (x(1), · · · , x(N)).
– Eval′(i, f, x(i)): parse x(i) as (seed(i), z). Define the function gz : seed→ f(z⊕PRG(seed)). Output

Eval(i, gz, seed
(i)).

Correctness and security of HSS′ follow easily from the correctness and security of HSS, and
the fact that gz(seed) = f(z ⊕ PRG(seed)) = f(x). Compactness is also straightforward: let c be a
constant such that Share(1λ, y) outputs shares of size at most (λ+ |y|)c. Then Share′(1λ, x) outputs
shares of size |x|+(2λ)c. However, this hybrid technique changes the function class: to get a compact
scheme HSS′ for F ′, one need a (non-compact) HSS scheme HSS for the class F = {gz : seed →
f(z ⊕ PRG(seed)) | f ∈ F ′, z ∈ {0, 1}in(f)} (where in(f) denotes the input size of f). Hence, because
the nesting technique outlined above requires the inner HSS to have low complexity (such that its
Eval function fits in the class of functions handled by the outer scheme), one must be careful to use
a sufficiently low complexity PRG such that the class F remains sufficiently simple.

A construction for NC0. Existing HSS schemes [BGI16a,BKS19,OSY21] can typically evaluate the
complexity class NC1 of logarithmic-depth circuits (in fact, they evaluate the slightly larger class of
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restricted-multiplication straight-line programs). Furthermore, the evaluation algorithm of the HSS
scheme of [OSY21] was shown in [COSVL23] to fit in NC1, provided that the function it evaluates is
a constant-degree polynomial. The work of [BCM23] observed that in this setting, one can directly
use nesting to construct a (non-compact) N2-party HSS scheme for the class NC0, and turn it into a
compact N2-HSS for NC0 using the hybrid encryption technique above together with a PRG in NC0,
such as the PRG of Goldreich [Gol00]. The flow of the full construction is depicted on Figure 1.

outer HSS

N -HSS for NC1

inner HSS

N -HSS in NC1

(for NC0)

N2-HSS for NC0

PRG in NC0

compact N2-
HSS for NC0

Fig. 1: Construction of an N2-party compact HSS for NC0 from N -party HSS for the class NC1, N -
party HSS with evaluation function in NC1 for the class NC0, and a PRG in NC0.

Theorem 1 ( [BCM23]). Given an N -party HSS for the class NC1, an N -party HSS for the class
NC0 such that for every i ≤ N and f ∈ NC0, the function g : x→ Eval(i, f, x) is in NC1, and a PRG
in NC0, there exists an N2-party compact HSS for the class NC0.

Then, the work of [BCM23] instantiates both the inner and the outer HSS using the (2-party)
DCR-based scheme of [OSY21], and the PRG in NC0 using the PRG of Goldreich, and obtain the
following corollary:

Corollary 2 ( [BCM23]). Assuming DCR and the security of the PRG of Goldreich, there exists
a compact 4-party HSS for the class NC0.

Furthermore, an important observation from [BCM23] is that using complexity leveraging, the
inner HSS can be boosted to an HSS for the class of logarithmic-degree polynomials with evaluation
in NC1. When instantiating this observation with the DCR-based scheme of [OSY21], this yields a
compact 4-party HSS for the class of all loglog-depth circuits (or even all logarithmic-degree poly-
nomials) under the superpolynomial hardness of DCR and the (polynomial) security of Godreich’s
PRG.

2.2 From N-party HSS to (N + 1)-party sublinear MPC

The second core ingredient of [BCM23] is a strategy to construct (N+1)-party sublinear MPC starting
from an N -party (compact) HSS scheme, and combining it with a strong form of symmetric private
information retrieval. Let C be a loglog-depth circuit (i.e., a circuit of depth at most log log |C|) with
m outputs, and let P0, P1, · · · , PN denote N + 1 parties with inputs (x0, · · · , xN ). At a high level,
the approach of [BCM23] proceeds as follows:

– The N parties P1, · · · , PN consider the residual function C(·, x1, · · · , xN ). Because C is loglog-
depth, each output bit of x 7→ C(x, x1, · · · , xN ) depends on at most log |C| bits of x, hence the
truth-table of Cj(·, x1, · · · , xN ) (which outputs the j-th bit of C(x, x1, · · · , xN )) has polynomial
size. Using N -party HSS, the parties P1, · · · , PN securely compute additive shares of all these
polysize truth tables. We let (Di

1, · · · , Di
m) denote party Pi’s shares of the m databases.

– At this stage, observe that party P0 can retrieve C(x0, x1, · · · , xN ) as follows: for i = 1 to N , for
j = 1 to m, P0 interacts with Pi to securely recover the entry of Di

j corresponding to x0. This
can be done using a suitable symmetric private information retrieval (SPIR) scheme.

– P0 sums the N tuples of shares recovered this way to reconstruct

(C1(x0, · · · , xN ), · · · , CM (x0 · · ·xN )) = C(x0 · · ·xN ).
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In the above protocol, a naive use of private information retrieval would not result in a proto-
col with sublinear communication: each database Di

j has size 2log |C| ≈ |C|, hence querying the N
databases requires at the very least O(N ·m log |C|) bits of communication. However, a core observa-
tion of [BCM23] is that all queries to the Di

j are highly correlated: they correspond to (public) subsets
of the bits of x0. This suggests to use correlated SPIR, a primitive introduced earlier in [BCM22] by
the same authors. Correlated SPIR achieves just what we want: it allows querying m independent
databases with queries which are subsets of the bits of the “global query” x0, at a communication cost
proportional only to O(m+|x0|). Plugging the efficient construction of correlated SPIR from [BCM22]
(which assumes LPN and any of {DDH,DCR,QR,LWE}) in the framework of [BCM23] yields their
second result. Combined with the first result, that provides 4-party HSS from the superpolynomial
hardness of DCR and a PRG in NC0, they obtain 5-party secure computation with sublinear com-
munication.

2.3 Our first contribution: a better nesting

We revisit the nesting approach of [BCM23]. We first strengthen it by showing how to instantiate
it using HSS with imperfect correctness, and replacing the PRG in NC0 by a PRG evaluated by a
constant-degree polynomial. This immediately yields new instantiations for the nesting framework
of [BCM23], under the DDH assumption (as it implies HSS with imperfect correctness [BGI16a]) and
the Multivariate Quadratic assumption (which implies constant-degree PRGs).

Then, we further improve the nesting framework. At a high level, the simple nesting approach
is limited to a single level of nesting: at each level, the complexity of Eval grows exponentially.
Concretely, given a target function f in a very low complexity class (e.g. constant-depth circuits),
the function g : x → Evalin(i, f, x) is already a log-depth circuit. While this can still be evaluated
within Evalout, the nested evaluation procedure x→ Evalout(i, g, x) has polynomial depth, and cannot
be further evaluated within known HSS, since they cannot handle circuits of superlogarithmic depth.
Furthermore, circumventing this limitations seems to require either designing an HSS scheme where
Eval is in a very low complexity class, or an HSS scheme that can evaluate much more complex
functions. Both seem out of reach of our current knowledge (unless using heavy hammers like spooky
encryption [DHRW16] or indistinguishability obfuscation).

Instead, we take a less direct road. The core observations at the heart of our improved nesting
strategy are twofold:
– Under the hood, recent works on pseudorandom correlation generators [BCG+19, CM21] show

that assuming the LPN assumption, it is possible to transform an N -party distributed point
function (DPF [GI14,BGI16b])4 into an N -party HSS for constant-degree polynomials (the work
of [CM21] extends this further to single-function HSS for loglog-depth circuits by relying on the
superpolynomial hardness of LPN).

– Distributed point functions are much simpler objects than HSS, and can fit in much lower com-
plexity classes.
We note that the work of [BCG+19,CM21] showed that a 2-party DPF implies a 2-party pseudo-

random correlation generator (PCG) for constant-degree polynomials, and proved separately that a
PCG for constant-degree polynomials implies an HSS for constant-degree polynomials. Furthermore,
their construction generalizes immediately to the case of more than 2 parties – their focus on the
2-party case stems from the fact that we only know efficient constructions of DPFs (from the minimal
assumption of one-way functions) in the 2-party case.

This suggests the following improved nesting strategy:
– Start from a very low-complexity two-party distributed point function – say, evaluated by a

constant-degree polynomial.
– Transform it into a 4-party distributed point function with the simple nesting approach (using

HSS to re-share the DPF shares). Note that if the evaluation procedure of the HSS scheme is in
NC1 (when evaluating constant-degree polynomials), then the new 4-party scheme has evaluation
in NC1.

4 A distributed point function allows sharing a point function fα,β (that is, fα,β(α) = β and fα,β(x) = 0 else)
such that (1) the shares computationally hide fα,β , and (2) given shares of fα,β , the parties can locally
obtain additive shares of fα,β(x) for any x.
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– Apply a second level of nesting to the 4-party DPF (which is possible since its evaluation still has
low complexity). This yields an 8-party distributed point function.

– Use the LPN-based approach of [BCG+19,CM21] to convert this 8-party DPF back into an 8-party
HSS.
Furthermore, we also introduce an instantiation of low-complexity DPF (evaluated by constant-

degree polynomials) under the assumption that there exists constant-degree PRGs. Our construction
builds upon the standard PRG-based DPF of [GI14,BGI16b], but reduces its depth by (1) replacing
the PRG with a low-complexity PRG, and (2) flattening the GGM tree. All in all, we obtain an
8-party homomorphic secret sharing under a combination of assumptions: a low-complexity PRG,
HSS for NC1, and LPN.

2.4 Our second contribution: from N-party HSS to (N + 2)-party MPC

Our second main contribution revisits the framework of [BCM23] to construct (N + 2)-party MPC
with sublinear communication from N -party HSS and correlated SPIR. Consider a correlated SPIR
scheme (Query,Answer,Decode) where Query outputs the client query q (and some decoding infor-
mation d), Answer(D, q) outputs the answer a of the server with databases D = (D1, · · · , Dm) on
the batch of correlated queries q, and Decode(a, d) retrieves the m target items. The correlated SPIR
(Query,Answer,Decode) of [BCM22] builds upon a combination of linearly homomorphic encryption
and the LPN assumption. Our core observation is that under the following two conditions:
– the linearly homomorphic encryption scheme is secure against (slightly) superpolynomial-time

adversaries, and
– the size of the databases is bounded by log |C|,

then the algorithms (Query,Decode) can actually be evaluated by a logarithmic-depth circuit. The
first condition is required to reduce the complexity of the correlated SPIR construction using com-
plexity leveraging, and the second condition stems from the fact that the sequential complexity of
the (Query,Decode) algorithms in [BCM22] depends necessarily on the logarithm of the maximum
database size.

With these two modifications, we can immediately improve the framework of [BCM23] as follows:
rather than having a single client running the correlated SPIR with the server, we let M clients
securely emulate a single client holding all their inputs, as follows:
– The M clients securely distribute HSS shares of their inputs;
– The clients use M -party HSS to locally compute shares of the query q and decoding information

d, and send their shares of q to the server;
– Given a, the clients securely distribute HSS shares of d (which they have additive shares of) and

use HSS to locally compute shares of Decode(a, d).
– Eventually, the clients reconstruct the output of Decode.

Using any known 2-party HSS for NC1 in the above template yields a generic method to obtain
(N + 2)-party MPC with sublinear communication from any N -party (compact) HSS scheme. Com-
bining this second result with our 8-party HSS yields a construction of 10-party sublinear MPC.

3 Preliminaries

Let n ∈ N be an integer. We let [n] denote the set {1, . . . , n}. We use λ for the security parameter,
and negl(λ) to denote any function negligible in the security parameter. The computational indistin-
guishability of two distributions is denoted by

c
≈. Let {0, 1}n denote the bitstrings of length n. For

any two strings (x, y) in {0, 1}n, denote by x ⊕ y their bitwise xor. Given any subset S of [n], x[S]
denotes the subsequence of bits of x with indices in x. Vectors are denoted by bold letters; for a vector
x = (x1, . . . , xN ), x[S] denotes the vector (x1[S], . . . , xN [S]).

3.1 Distributed Point Functions

A point function with input domain [D] and outputs in a group G is a function fα,β : [D] 7→ G such
that fα,β(x) = β if x = α, and 0 otherwise. Informally, a DPF is a pair of algorithms (Gen,Eval) which
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shares a point function f into N shares (K1, · · · ,Kn) ← DPF.Gen(1λ, f) such that (correctness) on
any input x, the values (y1, · · · , yN ) defined as yi ← DPF.Eval(i,Ki, x) form additive shares of f(x),
and (security) any subset of N − 1 keys Ki computationally hides (α, β).

Definition 3 (Distributed point functions [GI14, BGI16b]). An N -party distributed point
function (DPF) scheme with input domain [D] and output domain an abelian group (G,+), is a pair
of PPT algorithms DPF = (DPF.Gen,DPF.Eval) with the following syntax:
– DPF.Gen(1λ, α, β), given security parameter λ and description of a point function fα,β, outputs

N keys (K1, · · · ,KN );
– DPF.Eval(i,Ki, x), given party index i ∈ [N ], key Ki, and input x ∈ [D], outputs a group element

yi ∈ G.
The scheme DPF should satisfy the following requirements:
– Correctness: For any (α, β) ∈ [D]×G and x ∈ [D], we have

Pr[(K1, · · · ,KN )←r DPF.Gen(1λ, f) :
∑
i∈[N ]

DPF.Eval(i,Ki, x) = f(x)] = 1.

– Security: For every set of corrupted parties D ⊊ [N ], there exists a PPT simulator Sim such
that for any family fα,β = {fαλ,βλ

: [D(λ)] → Gλ}λ∈N of point functions over domain D(λ) and
group Gλ, the distributions {(K1, · · · ,KN )←r DPF.Gen(1λ, αλ, βλ) : (Kj)j∈D} and {(Kj)j∈D ←r

Sim(1λ, D(λ),Gλ)} are computationally indistinguishable.
Given a DPF scheme (DPF.Gen,DPF.Eval), we denote by DPF.FullEval an algorithm which, on input
a party index i, and an evaluation key Ki, outputs the D-tuple (DPF.Eval(i,Ki, j))j≤D ∈ GD. Even-
tually, we say that a distributed point function DPF is weakly efficient if the running time of DPF.Gen
is allowed to depend polynomially on the domain size D.

A sequence of works [GI14,BGI15,BGI16b] has led to highly efficient constructions of DPF schemes
from any pseudorandom generator (PRG).

Theorem 4 (PRG-based DPF [BGI16b], Theorems 3.3 and 3.4). Given a PRG G : {0, 1}λ →
{0, 1}2λ+2, there exists a DPF for point functions fα,β : [D]→ G with key size logD · (λ+ 2) + λ+

⌈log2 |G|⌉ bits. For m = ⌈ log |G|λ+2 ⌉, the key generation algorithm Gen invokes G at most 2(ℓ+m) times,
the evaluation algorithm Eval invokes G at most logD +m times, and the full evaluation algorithm
FullEval invokes G at most D · (1 +m) times.

3.2 Homomorphic Secret Sharing

Definition 5 (Homomorphic Secret Sharing). An N -party Homomorphic Secret-Sharing (HSS)
scheme (with additive reconstruction) for a class F of functions over a finite field F is a pair of
algorithms HSS = (HSS.Share,HSS.Eval) with the following syntax and properties:
– Share(1λ, x): On input 1λ (the security parameter) and x ∈ Fn(λ) (the input), the sharing algo-

rithm Share outputs N input shares (x(1), . . . , x(N)).
– Eval(i, f, x(i)): On input i ∈ [N ] (the party index), f ∈ F (the function to be homomorphically

evaluated, implicitly assumed to specify input and output lengths n,m), and x(i) (the ith input
share), the evaluation algorithm Eval outputs the ith output share y(i) ∈ Fm.

– Correctness: For any 1λ, input x ∈ Fn(λ), and any function f ∈ F ,

Pr

[
y(1) + · · ·+ y(N) = f(x) :

(x(1), . . . , x(N))←r HSS.Share(1λ, x)

y(i) ←r HSS.Eval(i, f, x(i)), i = 1 . . . N

]
= 1 .

– Security: For every set of corrupted parties D ⊊ [N ], we consider the following game:
1. The adversary A sends inputs (x0, x1) with |x0| = |x1|.
2. The challenger picks b←r {0, 1} and (x(1), · · · , x(N))←r HSS.Share(1λ, xb).
3. The adversary outputs a guess b′ ← A((x(i))i∈D).
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We let Adv(1λ,A,D) denote the advantage |1/2 − Pr[b = b′]| of A. The scheme is secure if for
any D ⊊ [N ] and any PPT adversary A, Adv(1λ,A,D) is negligible.

We say that a homomorphic secret sharing scheme is compact if there exists a fixed polynomial p
such that for every input x, the size (in bits) of each share x(i) of x is at most O(|x|) + p(λ).

3.3 Las Vegas HSS

We recall the notion of Las Vegas HSS from [BGI16a].

Definition 6 (Las Vegas HSS). A Las Vegas N -party homomorphic secret-sharing scheme with
additive reconstruction is defined as above, with the following modification:

1. The algorithm Eval takes as input a failure bound δ, and additionally outputs a confidence flag
flagb ∈ {⊥,⊤} to indicate full confidence (⊤) or a possibility of failure (⊥). Eval can run in time
polynomial in its input length and in 1/δ.

2. The correctness notion is relaxed to the following notion of Las Vegas correctness: for every input
x ∈ Fn, function f ∈ F with input length n, and failure bound δ > 0, we have:

Pr [∃i ≤ N, (flagi = ⊥)] ≤ δ,

and Pr[(∃i ≤ N, (flagi = ⊤) ∧ (⊕i≤ny
(i) ̸= f(x))] = 0,

where the probability is taken over the coins of Gen and Eval(·, ·, ·, δ). We implicitly assume each
execution of Eval to take an additional nonce input, which enables different invocations to have
(pseudo)-independent failure probabilities. (See [BGI16a] for a more long-form discussion.)

We also consider a modified evaluation algorithm for Las Vegas HSS in the case of multi-output
functions (this modification is taken from [BCM23]): since the definition of Las Vegas HSS guarantees
that the evaluation is verifiably correct with probability 1− δ, for some inverse polynomial bound δ,
w.l.o.g., when homomorphically evaluating multi-output functions, we can assume that each output
fails with independent probability δ: it suffices for this to evaluate individually the function restricted
to each of its output, and to use a nonce in Eval to guarantee (pseudo)-independent failure probabilities
(for more detailed discussions about this, we refer the reader to [BGI16a]). Denoting B a bound on
the total number of outputs of the target function, setting the individual failure bounds δ of each
output to 1/B guarantees an overall expected constant number of failures. Then, by a straightforward
Chernoff bound, one can assume that the total number of ⊥ flags obtained by any party is at most
λ, except with probability negl(λ). Therefore, we define HSS.MultiEval as follows:

Definition 7 (Multi-evaluation). Given a B-output function f = (f1, · · · , fB), we use the notation
HSS.MultiEval(i, f, x(i)) to denote the algorithm which
– evaluates HSS.Eval(i, fj , x

(i), 1/B) for j = 1 to B and

– returns a list T of outputs (y
(i)
1 , · · · , y(i)B ), together with a list flags of all the positions of the lists

for which a ⊥ flag was raised.
Note that |flags| ≤ λ with overwhelming probability.

Single-function HSS. Informally, a single-function HSS is an HSS scheme for a function class F which
allows only to evaluate a single function f⋆ on shares, where f⋆ is an arbitrary function from F passed
as input to Share.

Definition 8 (Single-Function HSS). An N -party single-function HSS for a class F of functions
over a finite field F is defined as an N -party HSS for F over F, with the following modifications:
– The algorithm Share additionally takes as input a function f⋆ ∈ F (and its runtime is allowed to

depend on f⋆)
– Correctness is only guaranteed to hold for the function f∗.

Single-function homomorphic secret sharing scheme is compact if there exists a fixed polynomial p
such that for every input x, the size (in bits) of each share x(i) of x is at most O(|x|) + p(λ). Note,
in particular, that the share size is not allowed to depend on f⋆ (but the runtime of Share might).
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Compared to standard HSS, single-function HSS schemes are much less versatile, and do not en-
able most of the usual applications of HSS. However, compact single-function HSS is still sufficient for
low-communication secure computation (since in this case, the target function f⋆ to compute is fixed
in advance), provided that there exists a secure protocol for distributively computing Share(1λ, x, f⋆)
on an input x (which is typically shared additively between the parties) with communication com-
plexity |x| · poly(λ), independent of f⋆. This does not follow directly by using generic MPC, since the
runtime of Share is allowed to depend on the size of f⋆. However, for all single-function HSS schemes
that we consider in this work, we will show that they come with suitable efficient secure share distri-
bution protocols. In particular, we will rely on a method introduced in [BCM23] that converts any
compact Las Vegas HSS into a compact single-function HSS for the same class of functions, using
distributed point functions. As shown in [BCM23], assuming in addition the existence of a polylog-
communication symmetric private information retrieval scheme, there exists a succinct protocol for
securely distributing the shares of this scheme.

3.4 Assumptions

Quadratic Residuosity Assumption (QR) We say that N is a Blum integer if N = p · q for some
primes p and q such that p (mod 4) ≡ q (mod 4) ≡ 3. We denote by Jn the multiplicative group
of the elements in Z⋆

N with Jacobi symbol +1 and by QRN the multiplicative group of quadratic
residues modulo N with generator g. Note that QRN is a subgroup of Jn, and that QRN and Jn
have order ϕ(N)

4 and ϕ(N)
2 respectively, where ϕ(·) is Euler’s totient function. It is useful to write

Jn : H×QRN , where H is the multiplicative group (±1, ·) of order 2. Note that is N is a Blum integer
then gcd(2, ϕ(N)

4 ) = 1 and −1 ∈ Jn \QRN .

Definition 9 (Quadratic Residuosity Assumption, [GM82]). Let N be a uniformly sampled
Blum integer and let QRN be the multiplicative group of quadratic residues modulo N with generator
g. We say the QR assumption holds with respect to QRN if for any p.p.t. adversary A

| Pr
a←rQRN

[A(N, g, a) = 1]− Pr
a←rQRN

[A(N, g, (−1) · a) = 1]| ≤ negl(λ).

Learning With Errors (LWE)

Definition 10 (Decisional Learning with Errors). Let n ≥ 1 and q ≥ 2 be integers. Let χ be an
error distribution over Z and χsk be a secret key distribution over Zn. For s ←r χsk, define LWEχ,s

to be the distribution obtained by sampling a ←r Zn
q uniformly at random, e ←r χ, and outputting

(a, b = ⟨a, s⟩+ e) ∈ Zn+1
q . The decisional-LWEn,q,χ,χsk

problem asks to distinguish polynomially many
samples (ai, bi)←r LWEχ,s from the same number of samples taken from the uniform distribution on
(Zn

q ,Zp), where the secret s is sampled accordng to χsk.

Learning Parity with Noise (LPN) Our constructions rely on the Learning Parity with Noise assump-
tion [BFKL94] (LPN) over F2 (which is the most standard variant of LPN, but other fields can be
considered), a.k.a. binary LPN. Unlike the LWE assumption, in LPN the noise is assumed to have a
small Hamming weight. Concretely, the noise is 1 in a small fraction of the coordinates and 0 else-
where. Berr(F2) denote the distribution which outputs 1 with probability r, and 0 with probability
1− r.

Definition 11 (Learning Parity with Noise (LPN)). For dimension k = k(λ), number of sam-
ples (or block length) q = q(λ), noise rate r = r(λ), the F2-LPN(k, q, r) assumption states that

{(A,b) | A←r Fq×k, e←r Berr(F2)
q, s←r Fk

2 ,b← A · s+ e}
c
≈{(A,b)| A←r Fq×k

2 ,b←r Fq
2}

Here and in the following, all parameters are functions of the security parameter λ and computa-
tional indistinguishability is defined with respect to λ.

Note that the search LPN problem, of finding the vector can be reduced to the decisional LPN
assumption [BFKL94,AIK09].
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Decisional Diffie-Hellman (DDH)

Definition 12 (Decisional Diffie-Hellman). We say that the Decisional Diffie-Hellman assump-
tion (DDH) holds if there exists a PPT group generator IG with the following properties. The output
of IG(1λ) is a pair (G, g) where G describes a cyclic group of a prime order q (where we use multi-
plicative notations for the group operation) and g describes a group generator. We assume that q is
included in the group description G. We also assume the existence of an efficient algorithm that given
G and descriptions of group elements h1, h2 outputs a description of h1h2. Finally, we require that
for every nonuniform polynomial-time algorithm A there is a negligible function ϵ such that:

|Pr[A(G, g, ga, gb, gab) = 1: (G, g)←r IG; (a, b)←r Z2
q]−

Pr[A(G, g, ga, gb, gc) = 1: (G, g)←r IG; (a, b, c)←r Z3
q]| ≤ ϵ(λ).

Decision Composite Residuosity Assumption Let SampleModulus be a polynomial-time algorithm that
on input the security parameter λ, outputs (N, p, q), where N = pq for λ-bit primes p and q.

Definition 13 (Decision Composite Residuosity assumption, [Pai99]). Let λ be the secu-
rity parameter. We say that the Decision Composite Residuosity ( DCR) problem is hard relative to
SampleModulus if (N, x)

c
≈ (N, xN ) where (N, p, q) ←r SampleModulus(1λ), x ←r Z∗N2 , and xN is

computed modulo N2.

Note that Z∗N2 can be written as a product of subgroups H×NRN , where H = {(1+N)i : i ∈ [N ]}
is of order N , and NRN = {xN : x ∈ Z∗N2} is the subgroup of N -th residues that has order ϕ(N).

Multivariate Quadratic Assumption (MQ), [HLY12] We represent a multivariate polynomial with n
variables over a finite field Fq as Q[x], where

Q[x] =
∑

1≤j≤k≤n

αj,kxjxk +
∑

1≤j≤n

βjxj + γ.

Here x = (x1, . . . , xn) is a vector of n variables, and αj,k, βj , γ ∈ Fq are the coefficients to the
corresponding monomials.

A multivariate quadratic system is a set of multivariate quadratic polynomials. Let R ∈ Fm×n×n

be m n × n matrices, L ∈ Fm×n be a m × n matrix, and d ∈ Fn
q be a vector. We can write each

polynomial as

Qi[x] = xT ·R · x+ Li · x+ di.

We can denote the system by

S[x = R[x] + L[x] + d].

Definition 14 (Multivariate Quadratic Assumption). Let n,m, q be parameters such that q is
a prime, χ is a distribution on Fm×n×n

q and let H ⊆ Fq. We denote by MQ(n,m, q, χ,H) on an
instance (S, S(x)) to be the multivariate quadratic problem, such that the goal of a solver is to output
some x′ ∈ Fn

q such that S(x′) = S(x), where S = (R,L,d) with R ← χ,L ← Fm×n
q ,d ← Fm

q and
x← Hn.

Let λ be the security parameter. For every constant c > 1 ∈ N, every efficiently computable
and polynomially bounded n,m, q : N → N, α : N → [−q/2, q/2] and every − < β ≤ [q/2] such
that m = cn, q is prime, α = O(1), let Φα be the distribution of m × n × n identical independent
discrete Gaussian distributions Dα’s with mean 0, standard deviation α, namely each Dα samples z
(mod q)← N(0, α2), and let Hβ = [−β, β]. Then for every PPT solver A, there exists some function
negl(·) such that the following holds for all sufficiently large λ:

Pr
S←MQ(n,m,q,Φα,Hβ),x←Hn

[x′ ← A(S, S(x)) : S(x′) = S(x)] < negl(λ).
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One-Wayness of Random Local Functions For a d-ary predicate P and positive integers n and m, we
let FP,n,m denote the collection of d-local functions such that each member fG,P : {0, 1}n → {0, 1}m
is specified by an (n,m, d)-hypergraph G and the i-th output of fG,P is computed by applying the
predicate P to the d inputs that are listed in the i-th hyperedge. We sample a function fG,P from
FP,n,m by choosing a random hypergraph G from Gn,m,d.

Definition 15. One-Wayness of Random Local Functions. The inversion problem for FP,n,m is de-
fined as follows:
– Input: a random hypergraph G←r Gn,m,d and an m-bit string y = fG,P (x) where x←r {0, 1}n.
– Output: a preimage x′ of y under fG,P (i.e., fG,P (x

′) = y.
The collection is ϵ hard to invert if every efficient adversary A cannot solve the problem with probability
larger than ϵ. By default, we let ϵ be negl(λ). The hardness assertion states that for proper choice of
predicate P , a random member of the collection is hard to invert.

Candidate constructions of PRGs from random local functions were presented in [Gol00] and
[App12].

4 Nesting Homomorphic Secret Sharing

In this section, we cover various nesting strategies for constructing HSS schemes with more than two
parties. At a high level, nesting refers to the idea of evaluating an inner HSS scheme within an outer
HSS scheme. Intuitively, the outer scheme allows to re-share the shares produced by the inner scheme,
dividing the input into a larger number of shares. A careful choice of the inner and outer schemes is
required to preserve the possibility of homomorphically evaluating programs on the shares. Below, we
revisit the nesting strategy originally introduced in [COSVL23], refine it to derive new consequences,
and introduce a new and improved nesting strategy.

4.1 Simple Nesting, Revisited

We strengthen corollary 2 (taken from [BCM23]) using two simple observations.

First observation. The first observation is that assuming the existence of a PRG in NC0 in Corollary 2
is an overkill: it suffices to have a polynomial-stretch PRG in the class XOR-AND of constant-degree
multivariate polynomials over F2. This stems from the fact that the DCR-based scheme of [OSY21]
can actually evaluate all restricted-multiplication straight-line programs (RMS programs), a superclass
of NC1. An RMS program has the following interface:
– The inputs are initially placed on an input tape. The program also has a memory tape, initialized

with the constant 1.
– An RMS program can perform two operations:(1) add two memory values and write the result

on the memory tape; and (2) multiply an input value with a memory value and write the result
onto the memory tape (note that initializing the tape with 1 allows loading inputs into memory
by multiplying them with 1).
Now, let f ∈ XOR-AND be a constant-degree polynomial. For any string z, the function gz : seed→

f(z ⊕ PRG(seed)) does still belong to XOR-AND if PRG ∈ XOR-AND (the composition of two poly-
nomials of respective constant degrees c1, c2 is a polynomial of degree c1c2). The work of [COSVL23]
showed that for any constant-degree polynomial g, the function x → Eval(i, g, x) (where Eval is the
evaluation algorithm of the DCR-based scheme of [OSY21]) can be evaluated by an RMS program.

The existence of a PRG in XOR-AND is a less restrictive statement than the existence of a PRG in
NC0 (which is strictly contained in XOR-AND). In particular, the former is implied by the Multivariate
Quadratic assumption (MQ), which states that it is hard to solve a random overdetermined system
of quadratic equations. MQ is a relatively old and well-established assumption [MI88,Wol05,BGP06,
AHI+17] which admit a search-to-decision reduction [BGP06]. Via this reduction, MQ implies a
subquadratic-stretch PRG computed by a degree-2 polynomial, which can be boosted to a PRG of
arbitrary stretch evaluated by a constant-degree polynomial by recursively applying the PRG on its
output.



12 Geoffroy Couteau and Naman Kumar

Second observation. The second observation is that a natural modification of the DDH-based HSS
scheme of [BGI16a] yields a (Las Vegas) HSS scheme whose Eval algorithm fits in NC1. Since instan-
tiating both the inner and the outer HSS schemes with a Las Vegas scheme yields a Las Vegas HSS
(but the Las Vegas property does not introduce any other complications), this yields a compact Las
Vegas 4-party HSS scheme for NC0.

The DDH-based HSS scheme of [BGI16a] and the DCR-based scheme of [OSY21] share the same
structure (later abstracted out and generalized in [ADOS22]):

– Inputs are shared using level-1 shares, which are basically ciphertexts (either ElGamal-style or
Paillier-style);

– Multiplying a memory share with an input share involves a few exponentiations and a distributed
discrete log procedure;

– Memory shares are subtractive shares and can be added together.

When evaluating a degree-c polynomial, the Eval algorithm performs c sequential steps of mul-
tiplications for each monomial, each involving some exponentiations and a distributed discrete log,
followed by an addition of all the memory share of the individual monomials. As long as the expo-
nentiations and the distributed discrete logarithm steps can be implemented by an RMS program,
and if c is a constant, the full procedure can be computed by an RMS program. Now, [COSVL23]
observed that the ciphertexts encrypting the inputs can safely be made public. Given a ciphertext
C, the exponentiation x→ Cx can be reduced to computing

∏
i : xi=1 C

2i =
∏|x|

i=1(xi · C2i + 1− xi).
Now, the C2i terms can be precomputed (as the ciphertext C is public) hence the exponentiation
boils down to a product of |x| public linear functions of each (secret) input bit xi, which can be done
in NC1 (hence by an RMS program). We briefly note that same observation works identically for the
DDH-based scheme of [BGI16a].

The main difference between the schemes of [BGI16a] and [OSY21] is the distributed discrete
logarithm (DDLOG) procedure. In [BGI16a], the DDLOG procedure, which is parametrized by an
inverse-polynomial failure bound 1/2t, works as follows:

– Input: the parties hold elements g0, g1 such that g0 = g1 · gb, where b ∈ {0, 1}.
– Output: the parties obtain substractive shares of b with probability 1− 1/2t.
– Procedure: both parties define any group element h ∈ G to be distinguished if PRFK(h) has t

leading zeroes, where K is a random PRF key known to both parties, and PRF is a pseudorandom
function. Each party σ = 0, 1 constructs the sequence gσ, g · gσ, g2 · gσ, g3 · gσ, · · · until it finds the
first value vσ such that gvσ · gσ is distinguished. Each party outputs vσ.

It was shown in [BGI16a] that this procedure produces a correct output unless b = 1 and g1 is a
distinguished point, which happens with probability at most 1/2t + negl(λ) over the choice of K
under the security of the PRF. Here, we simply observe that a minor modification of the procedure
makes it computable in NC1:

– Set T ← λ · 2t. For i = 1 to T , both parties compute (in parallel) all products gi · gσ. Note that
this involves at most log T sequential multiplications.

– For i = 1 to T , compute all PRF evaluations vi ← PRFK(gi · gσ) ∈ {0, 1}t in parallel, using a
PRF in the class NC1.

– Select the first distinguished string vi. This can be done using a full binary tree where the pair
(i, vi) is placed in the i-th leaf, and given parent nodes (ia, a) and (ib, b), the value on the child
is computed as (ia, a) if a is distinguished, and as (ib, b) otherwise. Each such comparison can
be implemented with a circuit of depth at most log(|ia||a| + |ib||b|) = log(2t + 2 log T ). Hence,
the full selection of the index of the first distinguished element can be done by a circuit of depth
log T · log(2t+ 2 log T ) = O(t · log λ), which is logarithmic in λ (because 2t is a polynomial).

It remains to argue that this modified procedure returns a correct output except with probability
1/2t + negl(λ). Observe that if one of the T values gi · gσ is distinguished, the procedure yields
the exact same output as the DDLOG procedure of [BGI16a]. It only remains to show that the
probability that all values gi · gσ are non-distinguished is negligible. This follows as in [BGI16a] by
a reduction to the PRF security: for any h1, · · · , hT ∈ G and a random function R, PrR[R(h1) ̸=
0 ∧ ·R(hT ) ̸= 0] = (1 − 1/2t)λ·t = 2−O(λ). Therefore, by the security of the PRF, it must hold that
PrK [FK(h1) ̸= 0 ∧ ·FK(hT ) ̸= 0] = negl(λ) (otherwise, one would get a distinguisher for the PRF).
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Overall, the full modified distributed discrete log procedure can be implemented in the class NC1.
Combined with the result of [COSVL23], this implied that there exists a 2-party Las Vegas HSS
scheme for the class XOR-AND whose evaluation procedure can be computed by an RMS program.
We summarize both observations on Figure 2. We immediately get the following corollary:

outer HSS

(Las Vegas) N -
HSS for RMS

inner HSS

(Las Vegas)
N -HSS in RMS
(for XOR-AND)

(Las Vegas) N2-
HSS for NC0

PRG in XOR-AND

(Las Vegas)
compact N2-HSS

for XOR-AND

Fig. 2: Construction of an N2-party compact HSS for XOR-AND from N -party HSS for the class
RMS of RMS programs, N -party HSS with evaluation function in RMS for the class XOR-AND of
constant-degree polynomials, and a PRG in XOR-AND. If the inner and outer HSS are Las Vegas, so
is the resulting scheme.

Corollary 16. Assuming DCR and either the MQ assumption or the PRG of Goldreich, there exists
a compact 4-party HSS for the class XOR-AND. Furthermore, assuming DDH and either of MQ or
Goldreich’s PRG, there exists a compact Las Vegas 4-party HSS for the class XOR-AND.

4.2 Double Nesting

We now introduce a new nesting strategy. Compared with the simple nesting approach outlined above,
our strategy uses additional building blocks and is more complex, but enables one additional level of
nesting. We refer to this approach as a double nesting approach.

The construction. Concretely, assume that we have an N -party DPF in a very low complexity class
– say, XOR-AND. Then using our inner HSS scheme and the same strategy as in the simple nesting
approach, we can construct an N2-party DPF whose evaluation algorithm is an RMS program (here,
the evaluation algorithm of the N -party DPF plays the role of the XOR-AND function f in the simple
nesting). Then, using the outer HSS scheme for RMS program, we can further compile the N2-party
DPF into an N3-party DPF. Eventually, using the LPN-based compiler of [BCG+19, CM21], we
compile the N3-party DPF into an N3-party HSS for the class XOR-AND. As before, this HSS can
be made compact by relying on a PRG in XOR-AND. The flow of the full construction is depicted on
Figure 3

PRG in
XOR-AND

restricted to N = 2

N -DPF in
XOR-AND

inner HSS

N -HSS in RMS
(for XOR-AND)

N2-DPF in NC1

outer HSS

N -HSS for RMS

N3-DPF

LPN

compact N3-HSS
for XOR-AND

Fig. 3: Construction of an N3-party compact HSS for XOR-AND from N -party HSS for the class RMS
of RMS programs, N -party HSS with evaluation function in RMS for the class XOR-AND of constant-
degree polynomials, N -party DPF in XOR-AND, the LPN assumption, and a PRG in XOR-AND.
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Low-complexity DPFs. Our next observation is that the existence of a PRG in the class XOR-AND
(which we must assume anyway to obtain compact HSS) implies a 2-party DPF (with polysize domain
[n]) in the class XOR-AND. At a high level, our 2-party DPF follows the template of the PRG-based
DPF construction of [BGI16b], with two modifications:
– The 2-ary tree is replaced by a λ-ary tree. This blows up the size of the correction words by a

factor λ, but reduces the depth of the tree from log n to log n/ log λ.
– The length-doubling PRG is replaced by a PRG PRG : {0, 1}λ 7→ {0, 1}λ2

in the class XOR-AND.
This enables computing the full λ-ary tree of PRG evaluations in depth O(log n/ log λ). When
n = poly(λ), this yields a DPF which can be evaluated entirely by a constant-degree polynomial.
Plugging our low-complexity 2-party DPF in our compiler, we get the following corollary:

Corollary 17. Assuming DCR and either of MQ or Goldreich’s PRG, there exists an 8-party DPF
for arbitrary polysize domains. Assuming additionally LPN and using the compiler of [BCG+19] yields
a compact 8-party HSS for the class XOR-AND. Furthermore, assuming additionally the superpoly-
nomial hardness of LPN and using the compiler of [CM21] yields a compact single-function 8-party
HSS for the class of loglog-depth circuits.

We formally introduce this low-complexity DPF and the double nesting construction step-by-step
in Section 5, and prove its security.

5 Multi-Party Distributed Point Functions from HSS

The core of our construction relies on constructing multi-party distributed point functions using HSS.

5.1 Low Complexity Distributed Point Functions

A standard HSS scheme for RMS programs with input bound M = 2 allows the homomorphic
evaluation of general circuits of log-depth. To directly apply this HSS to share DPF keys, we require
that the evaluation procedure of the DPF be of low complexity. In this section we describe the
construction of a DPF with an evaluation procedure of constant depth. Our starting point is the
DPF of [BGI16b] for point functions f = [N ] → G. Denoting n ← logN , the construction has key
size n · (λ+2)+ λ+ ⌈log2 |G|⌉ bits with n+ ⌈ log2 |G|

λ+2 ⌉ PRG invocations, and the depth of the FullEval
algorithm is O(n · c), where c is the depth of the PRG.

Two parameters influence the depth: the depth of the evaluation tree itself, which is n, and the
depth of the PRG, which can be superconstant. To mitigate the first parameter, we first replace the
GGM-style binary tree underlying the DPF of [BGI16b] by a λ-ary tree, using a PRG stretching λ
bits into ≈ λ2 bits. When the domain size N of the DPF is a polynomial N = λd (which is the case
in our application to sublinear secure computation), this suffices to reduce the depth of the GGM
tree to logλ(N) = d. As for the second parameter, we instantiate the pseudorandom generator with a
polynomial-stretch constant-depth PRG. This primitive can be constructed from a few cryptographic
assumptions, such as the one-wayness of random local functions [App12, Gol00] or the family of
Multivariate Quadratic (MQ) assumptions [MI88,Wol05,BGP06,AHI+17] and their variants.

Theorem 18. Suppose that G : {0, 1}λ → {0, 1}λ(λ+1) is a pseudorandom generator with polynomial
stretch which can be computed by a depth-c circuit. Then the scheme (Gen,Eval) from Figure 4 is a
DPF for the family of point functions fα,β : [λd]→ G with key size d · λ · (λ+1)+ λ+ ⌈log2 |G|⌉ bits.
Furthermore, Eval can be computed by a depth-c · d circuit.

Proof (Sketch). We provide here a brief sketch of the proof of security, which proceeds near-identically
to that of Theorem 3.3 in [BGI16b]. The argument comprises of a series of hybrids in which each
correction word CW (i) is replaced from being honestly generated within the protocol to being ran-
domly generated. The first hybrid Hyb0 corresponds to an honestly generated key within the scope
of the protocol while the last hybrid Hybd+1 corresponds to a completely randomly generated key.
The proof proceeds by proving indistinguishability of each hybrid Hybi and Hybi+1, contingent on
the security of the pseudorandom generator G.
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There are two key differences between the construction of [BGI16b] and the realization of our
compressed distributed point function. Firstly, the branching factor is λ instead of 2; this has only
a semantic effect on the proof, since the operations carried out on this PRG are identical. Secondly,
for each pair of generated strings (s0b , s

1
b), [BGI16b] uses the string sLose0 ⊕Lose

1 (ie. the label of the
node off the “special evaluation path”) as a pseudorandom mask which ensures that the labels sKeepb

of each tree are random and independent. In doing so this pseudorandomly generated string is reused
to reduce the concrete size complexity of the DPF key. For our applications, however, it is enough
that this mask be randomly sampled (which lends itself to an easier analysis).

With this in mind, the proof of Theorem 18 immediately follows from the proof of Theorem 3.3
of [BGI16b], with the difference that the construction of the PRG adversary B now be an equivalent
construction of a polynomial-stretch constant-depth PRG adversary, and the randomness of sKeepCW no
longer needs to be explicitly argued because our construction samples fresh randomness.

Compressed Distributed Point Function (Gen,Eval)

Parameters: Let G : {0, 1}λ → {0, 1}λ(λ+1) be a constant-depth pseudorandom generator. Let
Convert : {0, 1}λ → G be a map converting any λ-bit string to a pseudorandom group element
of G.

Gen(1λ, α, β,G):

1. Let α = (α1, . . . , αd) ∈ {0, 1}d log λ be the decomposition of α into substrings of length log λ.
2. Sample random s

(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ.

3. Let t
(0)
0 = 0 and t

(0)
1 = 1.

4. For i = 1 to d do
(a) s′

1
0||t10|| . . . ||s′

λ
0 ||tλ0 ← G(s

(i−1)
0 ), s′11||t11|| . . . ||s′

λ
1 ||tλ1 ← G(s

(i−1)
1 ).

(b) Set Keep← αi.
(c) Set sKeepCW

$←− {0, 1}λ and sjCW ← s′
j
0 ⊕ s′

j
1 for all other j.

(d) Set tKeepCW ← tKeep0 ⊕ tKeep1 ⊕ 1 and tjCW ← tj0 ⊕ tj1 for all other j.
(e) CW (i) ← s1CW ||t1CW || . . . ∥sλCW ||tλCW .
(f) s

(i)
b = sKeepb ⊕ t

(i−1)
b · sKeepCW .

(g) t
(i)
b = tKeepb ⊕ t

(i−1)
b · tKeepCW .

5. CW (d+1) ← (−1)tλ1 ·
[
β − Convert(s

(λ)
0 ) + Convert(s

(λ)
1 )

]
∈ G.

6. Let kb = s
(0)
b ||CW (1)|| . . . ||CW (d+1).

7. Return (k0, k1).

Eval(b, kb, x):

1. Parse kb = s
(0)
b ||CW (1)|| . . . ||CW (d+1) and let t0 = b.

2. For i = 1 to d do
(a) Parse CW (i) = s1CW ||t1CW || . . . ∥sλCW ||tλCW .
(b) τ (i) ← G(s(i−1))⊕ (t(i−1) · CW (i)).
(c) Parse τ (i) = s′

1||t1|| . . . ||s′λ||tλ.
(d) Set s(i) ← s′

xi and t(i) ← txi .
3. Return (−1)b ·

[
Convert(s(λ) + t(λ) · CW (λ+1))

]
∈ G.

Fig. 4: A low-complexity distributed point function

5.2 N · M-Party Distributed Point Functions from HSS

In this section, we formally introduce a nesting approach for constructing an N · M -party DPF
DPF.Eval from an N -party DPF and an M -party HSS for a class of functions that contains DPF.Eval,
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and prove its security. Afterwards, we derive corollaries obtained by combining this generic construc-
tion with our low-complexity 2-party DPF from Section 5.1 and HSS schemes from the literature.

Theorem 19. Let DPF = (DPF.Gen,DPF.Eval) be an N -party Distributed Point Function for the
family of point functions fα,β : [D]→ G. Let HSS = (HSS.Share,HSS.Eval) be an M -party homomor-
phic secret sharing scheme for a class of functions F such that for every x ∈ [D], i ∈ [N ], the function
fi,x : s 7→ DPF.Eval(i, s, x) belongs to F . Then the scheme DPF⋆ from Figure 5 is an N ·M -party dis-
tributed point function for the family of point functions fα,β : [D]→ G. Furthermore, if for all j ≤M
and g ∈ F , the function k 7→ HSS.Eval(j, g, k) belongs to a class F⋆, then for all (i, j) ∈ [N ] × [M ]
and x ∈ [D], the function k 7→ DPF⋆.Eval((i, j), k, x) belongs to F⋆.

N ·M-Party Distributed Point Function (DPF⋆.Gen,DPF⋆.Eval)

Parameters. Let DPF = (DPF.Gen,DPF.Eval) be an N -party DPF with domain [D], output
group G, and share size ℓ. Let HSS = (HSS.Share,HSS.Eval) be an M -party HSS for a class of
function F such that for every x ∈ [D], i ∈ [N ], the function fi,x : s 7→ DPF.Eval(i, s, x) belongs
to F .

DPF⋆.Gen(1λ, α, β,G): Let (s1, · · · , sN ) ← DPF.Gen(1λ, α, β,G). Then set (ki,1, · · · , ki,M ) ←
HSS.Share(1λ, si) for i = 1 to N and output (ki,j)i≤N,j≤M .

DPF⋆.Eval((i, j), ki,j , x) : Define fi,x : s 7→ DPF.Eval(i, s, x). Output HSS.Eval(j, fi,x, ki,j).

Fig. 5: An N ·M -party distributed point function DPF⋆ from an N -party DPF and an M -party HSS

Proof. Correctness follows immediately from the correctness of DPF and of HSS: for
any i ≤ N ,

∑M
j=1 HSS.Eval(j, fi,x, ki,j) = fi,x(si) = DPF.Eval(i, si, x). Therefore,∑N

i=1

∑M
j=1 HSS.Eval(j, fi,x, ki,j) =

∑N
i=1 DPF.Eval(i, si, x) = fα,β(x).

Regarding security, let D⋆ ⊊ [N ] × [M ] be a subset of corrupted parties. Define the set Ddpf ⊂ [N ]
as follows: i ∈ Ddpf iff (i, j) ∈ D⋆ for every j ≤ m (observe that Ddpf ⊊ [N ] since D⋆ ⊊ [N ] × [M ]).
For every i /∈ Ddpf , let Di

hss ⊂ [M ] denote the set of all indices j such that (i, j) ∈ D⋆ (by definition
of Ddpf , we have Di

hss ⊊ [M ]). Eventually, let D̄ denote the set of i ∈ [N ] \ Ddpf such that Di
hss is not

empty. We build a simulator Sim⋆(1λ, D,G) for DPF⋆ as follows:
– Let Simdpf be the simulator for DPF with respect to the set of corrupted parties Ddpf . Run

(si)i∈Ddpf
← Simdpf(1

λ, D,G).
– For every i ∈ Ddpf , compute (ki,1, · · · , ki,M )←r HSS.Share(1λ, si).
– For every i ∈ D̄, compute (ki,1, · · · , ki,M )←r HSS.Share(1λ, 0ℓ).
– Output (ki,j)(i,j)∈D⋆ .

We show that the distribution of the simulated keys is indistinguishable from keys honestly generated
with DPF.Gen. Let A be a PPT adversary with advantage ε in distinguishing honest keys from
simulated keys (ki,j)(i,j)∈D⋆ . We consider the following sequence of hybrids, where in each hybrid Hi,
we write Advi(A) to denote the distinguishing advantage of A in this hybrid.

Hybrid H0. This is the honest game, with Adv0(A) = ε: sample (ki,j)(i,j)∈[N ]×[M ] ←r

DPF⋆.Gen(1λ, α, β). That is, (s1, · · · , sN ) ← DPF.Gen(1λ, α, β,G) and (ki,1, · · · , ki,M ) ←
HSS.Share(1λ, si) for i = 1 to N . Output (ki,j)(i,j)∈D⋆ .

Hybrid H1. In this game, we run (s1, · · · , sN )← DPF.Gen(1λ, α, β,G). Then, For every i /∈ Ddpf such
that Di

hss is not empty, we compute (ki,1, · · · , ki,M ) ←r HSS.Share(1λ, 0ℓ). The remaining keys ki,j
for i ∈ Ddpf are still computed as (ki,1, · · · , ki,M )← HSS.Share(1λ, si).

Claim. For any i ∈ D̄, for any PPT B, let Advhss(1
λ,B,Di

hss) denote the advantage of B against the
M -party HSS security game with set of corrupted parties Di

hss. Then there exists a PPT adversary B
such that

Adv1(A) ≥ Adv0(A)−
∑
i∈D̄

Advdpf(1
λ,B,Di

hss).
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Proof. Let n← |D̄|, and let (i1, · · · , in) denote an arbitrary ordering of these elements. We consider
intermediate hybrids (H0,0, · · · , H0,n) defined as follows: in hybrid H0,j′ , we run (s1, · · · , sN ) ←
DPF.Gen(1λ, α, β,G). We set (kij ,1, · · · , kij ,M ) ←r HSS.Share(1λ, 0ℓ) for j = 1 to j′ and
(kij ,1, · · · , kij ,M ) ← HSS.Share(1λ, sij ) for j = j′ + 1 to n. Observe that H0,0 = H0 and H0,n = H1.
If δ is such that Adv1(A) ≤ Adv0(A) − δ, then A distinguishes with advantage δ between H0,0

and H0,n. By a standard pigeonhole argument, there necessarily exists some j′ ∈ [n] such that A
distinguishes between H0,j′−1 and H0,j′ with advantage at least δ/n ≥ δ/N . Observe that the differ-
ence between H0,j′−1 and H0,j′ is exactly sampling (kij′ ,1, · · · , kij′ ,M )←r HSS.Share(1λ, sij′ ) versus
(kij′ ,1, · · · , kij′ ,M ) ← HSS.Share(1λ, 0ℓ). Therefore, we can immediately construct an adversary B
against the HSS security with set of corrupted parties Dij′

hss, as follows: B sends (x0, x1) ← (0ℓ, sij′ )
to the challenger and gets (kij′ ,1, · · · , kij′ ,M ). It samples all other keys as in H0,j′−1 and forwards
the keys to A. Depending on whether the challenger shared 0ℓ or sij′ , the key distribution is either
identical to that of H0,j′−1 or to that of H0,j′ . Therefore, the advantage of B is at least δ/N . ⊓⊔

Hybrid H2. Observe that in H1, the shares si for i ∈ D̄ are never used anymore. This hybrid is exactly
the simulated game, where (si)i∈Ddpf

← Simdpf(1
λ, D,G), (ki,1, · · · , ki,M )←r HSS.Share(1λ, si) for all

i ∈ Ddpf , and (ki,1, · · · , ki,M )←r HSS.Share(1λ, 0ℓ) for all i ∈ D̄.

Claim. For any PPT B, let Advdpf(1
λ,B,Ddpf) denote the advantage of B against the N -party DPF

security game with set of corrupted parties Ddpf . Then there exists a PPT B such that

Adv2[A] ≥ Adv1[A]− Advdpf(1
λ,B,Ddpf).

Proof. The only difference between H1 and H2 is that (si)i∈Ddpf
is generated by Simdpf in H2, and by

DPF.Gen in H1. If Adv2[A] ≤ Adv1[A]−δ, we can therefore immediately construct an adversary B with
advantage δ against the DPF security game with corrupted parties Ddpf which receives (si)i∈Ddpf

from
a challenger, samples (ki,1, · · · , ki,M ) ←r HSS.Share(1λ, si) for all i ∈ Ddpf , and (ki,1, · · · , ki,M ) ←r

HSS.Share(1λ, 0ℓ) for all i ∈ D̄, and runs A((ki,j)(i,j)∈D⋆ . ⊓⊔

To conclude, there are PPT adversaries B,B′ such that ε = |Adv2[A]−Adv0[A]| ≤ Advdpf(1
λ,B,Ddpf)+∑

i∈D̄ Advdpf(1
λ,B′,Di

hss). Hence, by the security of the DPF and the HSS, it follows that ε is negli-
gible. ⊓⊔

We now state two corollaries that follow from this general construction and our low-complexity DPF
from Section 5.1.

Corollary 20. Let DPF = (DPF.Gen,DPF.Eval) be a 2-party Distributed Point Function for the
family of point functions fα,β : [λd] → G with key size d · λ · (λ + 1) + λ + ⌈log2 |G|⌉, such that
DPF.Eval has constant depth D = c · d. Let HSS = (HSS.Share,HSS.Eval) be a homomorphic secret
sharing scheme for constant-depth circuits, such that x 7→ HSS.Eval(i, C, x) is in NC1 for any party
index i and constant-depth circuit C. Then there exists a 4-party distributed point function 4DPF with
key size poly(d, λ) = poly(λ) and evaluation in NC1.

Notice that since we started with a DPF in an extremely low complexity class (constant depth
circuits), the 4-party DPF 4DPF obtained in Corollary 20 still enjoys low-complexity evaluation: all
functions fi,x : s 7→ 4DPF.Eval(i, s, x) for i ∈ [4] and x ∈ [D] are in NC1.

Corollary 21. Let 4DPF = (4DPF.Gen, 4DPF.Eval) be the 4-party DPF with evaluation in NC1 given
by Corollary 20. Let HSS = (HSS.Share,HSS.Eval) be a homomorphic secret sharing scheme for NC1.
Then there exists an 8-party distributed point function 8DPF with key size poly(d, λ) = poly(λ).

In particular, using known constructions of 2-party HSS schemes for NC1 whose evaluation algorithm
is itself in NC1 when evaluated on constant-depth circuits, and plugging existing constant-depth PRGs
in our construction of constant-depth 2-party DPF from Section 5.1, we get:

Theorem 22. Assuming either the one-wayness of random local functions [App12] (which follows
from Goldreich’s one-way function [Gol00]) or the hardness of the Multivariate Quadratic assump-
tion [MI88], together with any of the following assumptions:
• the DCR assumption [OSY21],
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• the hardness of the Joye-Libert encryption scheme [ADOS22],
• the DDH and DXDH assumptions over class groups [ADOS22],
• the Hard Subgroup Membership assumption over class groups [CLT22],
• the LWE assumption with super-polynomial modulus-to-noise ratio [BKS19],

there exists an 8-party distributed point function for the family of point functions fα,β : [λd]→ G.

5.3 Extension: Weakly-Efficient DPF from Las Vegas HSS

The construction of Figure 5 assumes that we have an M -party HSS without correctness error. In
this section, we relax this requirement to a Las Vegas HSS. To fix the errors introduced by the HSS,
we take inspiration from the work of [BCM23] and rely on an additional M -party DPF DPF′. At a
high level, the approach is as follows: the DPF⋆.Gen algorithm will internally evaluate HSS.Eval on the
full DPF domain [D], and obtain flags for each outputs where a failure occured. With overwhelming
probability, the total number of flags is bounded by λ ·M . For each flagged output x where the HSS
outputs an incorrect value v, DPF⋆.Gen will sample the keys for an M -party DPF that evaluates
to z − v on input x, where z is the correct value, and add the keys to the shares of the parties.
Intuitively, the parties will use these Mλ DPF keys to obliviously correct during the evaluation all
possible failures introduced by the Las Vegas HSS. Because DPF⋆.Gen must now evaluate the HSS
on the full domain [D], the DPF we obtain only satisfies weak efficiency (see Definition 3), but this
turns out to suffice for our applications. Details follow.

Theorem 23. Let DPF and DPF′ be respectively an N -party and an M -party Distributed Point Func-
tion for the family of point functions fα,β : [D]→ G. Let HSS = (HSS.Share,HSS.Eval,HSS.MultiEval)
be a Las Vegas M -party homomorphic secret sharing scheme for a class of functions F such that for
every i ∈ [N ], the function fi : s 7→ (DPF.Eval(i, s, x))x∈[D] belongs to F . Then the scheme DPF⋆ from
Figure 5 is a weakly-efficient N ·M -party distributed point function for the family of point functions
fα,β : [D]→ G.
Furthermore, if for all j ≤M , all g ∈ F , and all x ∈ [D], the functions k 7→ HSS.MultiEval(j, g, k) and
t 7→ DPF′.Eval(j, t, x) belong to a class of functions F⋆ that contains NC1, then for all (i, j) ∈ [N ]×[M ]
and x ∈ [D], the function k 7→ DPF⋆.Eval((i, j), k, x) belongs to F⋆.

Weakly-Efficient N ·M-Party Distributed Point Function (DPF⋆.Gen,DPF⋆.Eval)

Parameters. Let DPF and DPF′ be respectively N -party and M -party DPFs with domain
[D], output group G, and share size ℓ. Let HSS = (HSS.Share,HSS.Eval,HSS.MultiEval) be an
M -party Las Vegas HSS for a class of function F such that for every i ∈ [N ], the function
fi : s 7→ (DPF.Eval(i, s, x))x∈[D] belongs to F .

DPF⋆.Gen(1λ, α, β,G): Let (s1, · · · , sN ) ← DPF.Gen(1λ, α, β,G). For i = 1 to N , let
(si,1, · · · , si,M )← HSS.Share(1λ, si). Then, for every (i, j) ∈ [N ]× [M ]:

1. sample a random seed seedi,j and generate from seedi,j a random tape Ri,j ← PRG(seedi,j)
for HSS.MultiEval.

2. Set (Ti,j , flagsi,j)← HSS.MultiEval(j, fi, si,j ;Ri,j). We assume that |flagi,j | = λ (|flagi,j | ≤ λ
with overwhelming probability, and we pad with dummy indices if |flagi,j | < λ).

3. Let Fi,j ← fi(si,j), viewed as a table Fi,j = (Fi,j [1], · · · , Fi,j [D]).
4. For every m ∈ [λ],

– Set βi,j,m ← Fi,j [flagsi,j [m]]− Ti,j [flagsi,j [m]].

– Sample (ti,j1,m, · · · , ti,jM,m)← DPF′.Gen(1λ, flagsi,j [m], βi,j,m,G)

5. Set ki,j ← (si,j , seedi,j , (t
i,j′

j,m)j′∈[M ],m≤λ).

Output (ki,j)i≤N,j≤M .

DPF⋆.Eval((i, j), ki,j , x) :

1. Parse ki,j as (si,j , seedi,j , (t
i,j
j′,j,m)j′∈[M ],m≤λ).
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2. Set (Ti,j , flagsi,j)← HSS.MultiEval(j, fi, si,j ;Ri,j), and let

T ′i,j [x]← Ti,j [x] +

M∑
j′=1

λ∑
m=1

DPF′.Eval(j, ti,j
′

j,m, x).

3. Output T ′i,j [x].

Fig. 6: A weakly-efficient N ·M -party distributed point function DPF⋆ from N -party DPF, M -party
DPF, and an M -party Las Vegas HSS.

Proof. We first deal with correctness. Fix any i ≤ N and x ∈ [D]. Denoting (Ti,j , flagsi,j) ←
HSS.Eval(j, fi, si,j ;Ri,j) for j = 1 to M , we have

M∑
j=1

DPF⋆.Eval((i, j), ki,j , x)

=

M∑
j=1

Ti,j [x] +

M∑
j′=1

λ∑
m=1

DPF′.Eval(j, ti,j
′

j,m, x)


=

M∑
j=1

Ti,j [x] +

M∑
j′=1

λ∑
m=1

fflagsi,j′ [m],βi,j′,m
(x)

=βi,j′,m iff x=flagsi,j′ [m]

=

M∑
j=1

Ti,j [x] +

λ∑
m=1

∑
j′:x=flagsi,j′ [m]

βi,j′,m

=

M∑
j:∀m,x ̸=flagsi,j [m]

Ti,j [x]

=Fi,j [x]

+

M∑
j:∃m,x=flagsi,j [m]

Ti,j [x] +

λ∑
m=1

∑
j′:x=flagsi,j′ [m]

βi,j′,m

=

M∑
j:∀m,x ̸=flagsi,j [m]

Fi,j [x] +

λ∑
m=1

∑
j′:x=flagsi,j′ [m]

Fi,j′ [flagsi,j′ [m]]

def of βi,j′,m

=

M∑
j=1

Fi,j [x] = DPF.Eval(i, si,j , x)

def of Fi,j

,

where the equality Ti,j [x] = Fi,j [x] when x ̸= flagsi,j [m] for all m comes from the correctness guarantee
of the Las Vegas HSS scheme, and the second equality comes from the correctness of DPF′. Then, using
the correctness of DPF, we have

∑N
i=1

∑M
j=1 DPF

⋆.Eval((i, j), ki,j , x) =
∑N

i=1 DPF.Eval(i, si,j , x) =
fα,β(x). This concludes the proof of correctness.
For security, notice that a share ki,j contains (si,j , seedi,j , (t

i,j′

j,m)j′∈[M ],m≤λ). The security proof is
almost identical to the proof of Theorem 19. Define D⋆ ⊊ [N ]× [M ] the subset of corrupted parties.
Define Ddpf ⊂ [N ] such that i ∈ Ddpf iff (i, j) ∈ D⋆ for every j ≤ m, and let Di

hss ⊂ [M ] denote the
set of all indices j such that (i, j) ∈ D⋆ for every i /∈ Ddpf . Let D̄ denote the set of i ∈ [N ] \Ddpf such
that Di

hss is not empty. The simulator Sim⋆(1λ, D,G) for DPF⋆ proceeds as follows:
– For every (i, j) ∈ D⋆, sample seedi,j ←r {0, 1}λ.
– Let Simdpf be the simulator for DPF with respect to the set of corrupted parties Ddpf . Run

(si)i∈Ddpf
← Simdpf(1

λ, D,G).
– For every i ∈ Ddpf , compute (ki,1, · · · , ki,M ) as in the protocol of Figure 6.
– For every i ∈ D̄, run (si,1, · · · , si,M ) ← HSS.Share(1λ, 0ℓ) and for every j ≤ M and m ≤ λ, set

(ti,jj′,m)j′∈Di
hss
← Sim′dpf(1

λ, D,G), where Sim′dpf is the simulator for DPF′.

– Output (ki,j)(i,j)∈D⋆ ← (si,j , seedi,j , (t
i,j′

j,m)j′∈[M ],m≤λ).



20 Geoffroy Couteau and Naman Kumar

Let A be a PPT adversary with advantage ε in distinguishing honest keys from simulated keys
(ki,j)(i,j)∈D⋆ . The security analysis proceeds with a sequence of hybrids identical to the proof of
Theorem 19, where in each intermediate hybrid (H0,1, · · · , H0,n), we add M ·λ sub-hybrids to replace
one by one the tuples (ti,jj′,m)j′∈Di

hss
with simulated tuples. This allows to conclude the existence of

PPT adversaries B,B′,B′′ such that

ε = |Adv2[A]− Adv0[A]|

≤ Advdpf(1
λ,B,Ddpf) +

∑
i∈D̄

(
Advdpf(1

λ,B′,Di
hss) +Mλ · Advdpf′(1λ,B′′,Di

hss)
)
,

which concludes the proof. ⊓⊔

Equipped with this construction, we get a similar corollary as in Section 5.2:

Corollary 24. Let DPF = (DPF.Gen,DPF.Eval) be a constant-depth 2-party DPF. Let HSS =
(HSS.Share,HSS.Eval) be a Las Vegas 2-party homomorphic secret sharing scheme for NC1 whose
evaluation algorithm is itself in NC1 when evaluated on constant-depth circuits. Then there exists an
8-party weakly-efficient distributed point function 8DPF with key size poly(d, λ) = poly(λ).

In particular, using the modified construction of the 2-party Las Vegas HSS schemes for NC1

from [BGI16a] which we introduced in Section 4.1, and plugging existing constant-depth PRGs in our
construction of constant-depth 2-party DPF from Section 5.1, we get:

Theorem 25. Assuming either the one-wayness of random local functions [App12] (which follows
from Goldreich’s one-way function [Gol00]) or the hardness of the Multivariate Quadratic assump-
tion [MI88], together with the DDH assumption, for any constant d, there exists an 8-party weakly-
efficient distributed point function for the family of point functions fα,β : [λd]→ G.

5.4 From N-party DPF to N-party HSS

The work of [BCG+19] showed that assuming the LPN assumption, it is possible to transform an
N -party DPF into an N -party HSS, with share size n + poly(λ) for size-n inputs, for constant-
degree polynomials. This is stated explicitly as Corollary 31 in [BCG+19] for the case of N = 2.
We observe that the construction and its analysis generalize immediately to arbitrary values of N
(the restriction to N = 2 in [BCG+19] stemmed only from the lack of efficient DPF constructions
for N > 2). Furthermore, the work of [CM21] extended this result further to single-function HSS for
loglog-depth circuits with share size n + o(n) by relying on the superpolynomial hardness of LPN
(see Main Theorem 1 in [CM21]). We make the additional (easy) observation that if the DPF used
in the construction is only weakly-efficient, then the Share algorithm of the resulting HSS scheme is
also weakly-efficient (i.e., the runtime of Share can depend polynomially on the size of the circuit).

Securely distributing HSS share. Sublinear secure computation from HSS requires an efficient proto-
col to securely distribute HSS shares of the parties’ inputs. Such protocols are known for essentially
all known constructions of HSS. However, we point out an important subtlety: in general, securely
distributing HSS shares for a weakly efficient scheme might require an amount of communication that
grows with the size of the circuit (since the runtime of Share depends on it). Fortunately, the work
of [BCM23] introduced (in Appendix E.2) a protocol which can be used to securely distribute shares
of the weakly efficient DPF from Figure 6. In turn, this immediately implies an efficient protocol
for securely distributing the shares of the N -party weakly-efficient HSS obtained by compiling an
N -party weakly efficient DPF via the approach of [CM21]. At a high level, it builds upon (symmet-
ric) private information retrieval (with polylogarithmic communication) to let the parties obliviously
recover shares of all erroneous positions flagsi,j [m] and values Ti,j [flagsi,j [m]]. Then, the parties re-
compute HSS shares of the erroneous position flagsi,j [m] and use λ parallel instances of Las Vegas
HSS to compute shares of Fi,j [flagsi,j [m]]. Some of these instances might contain new errors, but with
overwhelming probability, a majority of them do not; the parties can therefore a run a generic MPC
protocol to securely compute share of the majority value Fi,j [flagsi,j [m]]. This lets the parties obtain
shares of βi,j,m = Fi,j [flagsi,j [m]] − Ti,j [flagsi,j [m]]. These shares (and the shares of flagsi,j [m]) are
used as input to a generic MPC protocol securely distributing the DPF keys. Overall, this yields a
protocol whose communication grows only polylogarithmically in D.



10-Party Sublinear MPC from Standard Assumptions 21

6 (N +M)-Party Sublinear Secure Computation from N -Party FSS and
M -Party HSS

In this section we describe and instantiate a general technique for building (N + M)-party sublin-
ear secure computation from an N -party additive function secret sharing scheme and an M -party
homomorphic secret sharing scheme. Our approach involves a careful modification of the technique
introduced in [BCM23] to accommodate for (N +M) parties.

The approach of [BCM23]. We recall here the approach, which requires the additive FSS to have the
following properties:
– N -Party Share Distribution: N servers generate FSS shares of some function of their inputs.
– Two Party Oblivious Share Evaluation: There is a low-communication protocol to let a client

obliviously evaluate an FSS share held by a server.
Taken together, the strategy reduces to a simple computation: suppose the parties want to compute
a circuit C(x0, . . . , xN ). Then if there exists an N -party FSS for this function class which admits a
share distribution scheme, the parties P1, . . . , PN can securely generate FSS shares ki for the function
C(·, x1, . . . , xn). Once this is done, each of the parties Pi can individually run the oblivious share
evaluation protocol in tandem with P0, outputting FSS.Eval(i, ki, x0) to P0. P0 can then add each of
the obliviously received shares

∑N
i=1 FSS.Eval(i, ki, x0) = C(x0, . . . , xn) and in turn send this output

to each of the parties. Assuming that both the share distribution as well as the share evaluation can
be carried out with low-enough communication, this scheme achieves sublinear secure computation
for the function class corresponding to C.

Our approach. We now see how this template can be expanded to accomodate for N + M parties.
At a high level, N of the parties perform exactly the same procedure as before, generating FSS
shares of the ‘curried’ circuit with their inputs while the other M -parties generate HSS shares of
their input using a scheme for the function class corresponding to FSS.Eval. Then the M parties can
perform a homomorphic evaluation of FSS.Eval(i, ki, ·) with each of the N parties, and on receiving
additive shares of the outputs can simply distribute them to recover C(x1, . . . , xN+M ). Formally, we
introduce a protocol ΠC for securely computing a circuit C with N + M parties given access to
(1) a functionality FFSS

SD for securely distributing FSS shares of the parties inputs (using a suitable
FSS scheme), and (2) a functionality FFSS

OME which allows M clients with inputs (x1, · · · , xM ) and N
holding FSS shares (k1, · · · , kN ) to obliviously compute and reveal to the client additive shares of
FSS.Eval(j, kj , (x1, · · · , xM )).

6.1 Functionalities and protocol

We recall here the ideal functionalities FFSS
SD and FFSS

OHE for share distribution and homomorphic share
evaluation respectively, the former of which is taken directly from [BCM23]. Our modified protocol
is covered in Fig. 6.4.

Functionality FSS Share Distribution FFSS
SD

Parameters: The ideal functionality FFSS
SD is parameterised by a number of parties

N , a function class C = {fα1,...,αN
}(α1,...,αN )∈Fℓ1×···×FℓN , and an additive FSS scheme

FSS = (FSS.Gen,FSS.Eval) for C.

FFSS
SD interacts with the N parties P1, . . . , PN in the following manner.

Input: Wait to receive (input, i, xi) where xi ∈ {0, 1}ℓi from each party Pi (for 1 ≤ i ≤ N).

Output: Run (k1, . . . , kN )
$←− FSS.Gen(1λ, f̃x1,...,xN

), where f̃x1,...,xN
is a description of fx1,...,xN

;
Output ki to each party Pi (for 1 ≤ i ≤ N).
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Fig. 7: Ideal functionality FFSS
SD for generation of FSS keys of a distributed function, adapted from

[BCM23].

Functionality Oblivious Multi-Client Evaluation of FSS Shares FFSS
OME

Parameters: The ideal functionality FFSS
OME is parameterised by a number of parties N , a

number of parties M , and an additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for some function
class C.

FFSS
OME interacts with M + 1 parties (the “server” P0 and the “clients” (Pi)i∈[1,M ]) as follows.

Input: Wait to receive (Client, i, xi) from each party Pi for i ∈ [1,M ] and (Server, j, kj) from
P0.

Output: Set x = x1∥ . . . ∥xM . Output yi,j to Pi, where {yi,j}i∈[M ] are additive shares of
FSS.Eval(j, kj ,x).

Fig. 8: Ideal functionality FFSS
OME for multi-party evaluation of FSS shares.

Functionality FSFE(C)

The functionality is parameterised with a number N and an arithmetic circuit C with
n = ℓ1 + · · ·+ ℓN+M inputs and m outputs over a finite field F.

Input: Wait to receive (input, i, xi) from each party Pi (1 ≤ i ≤ N +M), where xi ∈ Fℓi , and
set x← x1∥ . . . ∥xN+M .

Output: Compute y← C(x); Output y to all parties P1, . . . , PN+M .

Fig. 9: Ideal functionality FSFE for N +M party secure function evaluation.

Protocol ΠC

Parties: P1, . . . , PN+M

Parameters: The protocol is parameterised with a number of parties (N +M), an arithmetic
circuit C : Fn → Fm with n = ℓ1+· · ·+ℓN+M , an additive FSS scheme FSS = (FSS.Gen,FSS.Eval)
for the following function family of “partial evaluations of C”:{

gα :

{
Fℓ1···+ℓM → Fm

x 7→ C(x,α)
: α ∈ FℓM+1+···+ℓN+M

}
.

and an HSS scheme HSS = (HSS.Share,HSS.Eval) for some function class that includes
FSS.Eval(i, ki, ·). (sid1,M+1, . . . , sidM,N ) are MN distinct session ids.

Hybrid Model: The protocol is defined in the (FFSS
SD ,FFSS

OME)-hybrid model.

Input: Each party Pi holds input xi ∈ Fℓi .

The Protocol:

1. Each party Pi for M + 1 ≤ i ≤M +N sends (input, i, xi) to FFSS
SD (C), and waits to receive

ki.
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2. For each i = M + 1, . . . , N and j = 1, . . . ,M :
(a) Party Pj sends (sidi,j , Client, xj) to FFSS

OME(C) and Pi sends (sidi, Server, i, ki) to
FFSS

OME(C).
(b) Party Pj waits to receive (sidi,j , yi,j) from FFSS

OME(C).
3. Party Pj for 1 ≤ j ≤M sets yj ← yM+1,j + · · · yM+N,j , and sends yj to all parties.
4. Every party outputs y = y1 + · · ·+ yM .

Fig. 10: Sublinear secure computation protocol in the (FFSS
SD ,FFSS

OME)-hybrid.

Theorem 26 (Template for (N +M)-Party Sublinear MPC from N-Party FSS). Let
N,M ≥ 2. Let C : Fn → Fm be an arithmetic circuit with n = ℓ1 + · · · + ℓN+M inputs over a finite
field F, and let FSS = (FSS.Gen,FSS.Eval) be an (additive) FSS scheme for the following function
family of “partial evaluations of C”:{

gα :

{
Fℓ1···+ℓM → Fm

x 7→ C(x,α)
: α ∈ FℓM+1+···+ℓN+M

}
.

The protocol ΠC provided in 6.4 UC-securely implements the (N + M)-party functionality FSFE(C)
in the (FFSS

SD (C),FFSS
OME(C))-hybrid model, against a static passive adversary corrupting at most N out

of (N +M) parties. The protocol uses NM ·m · log |F| bits of communication, and additionally makes
one call to FFSS

SD (C) and N calls to FFSS
OME(C).

Proof. The proof is a straightforward generalization of the proof of Theorem 17 of [BCM23] to M
clients.

6.2 Instantiating the FSS scheme

Our starting point is the single-client two-round oblivious evaluation protocol of [BCM23] for the
class of log log-depth Boolean circuits with indegree 2, where we say that a circuit C : Fn

2 → Fm
2 is

a log log-depth circuit if the depth of C is bounded by c · log log n for some constant c. The protocol
involves M = 1 client (P1, · · · , PM ) with input x, and N servers (PM+1, · · · , PM+N ) with inputs
α = (α1, · · · , αN ) ∈ FℓM+1+···+ℓM+N

2 . Consider a Boolean circuit C : Fn
2 → Fm

2 with n = ℓ1 + · · ·+ ℓN
inputs. For every N -tuple α = (α1, · · · , αN ) ∈ FℓM+1+···+ℓM+N

2 , define the function gα : x 7→ C(x,α),
and let giα denote the function computing the i-th output bit of gα (hence gα = (g1α, · · · , gmα )). In
the following we
– recall the approach of [BCM23] for constructing an FSS scheme for the class of functions {gα :

x 7→ C(x,α)} (for all possible input vectors α of the server) that supports oblivious evaluation
on the FSS shares,

– recall at an abstract level the oblivious evaluation protocol introduced in [BCM23] for this FSS
scheme, and finally

– introduce our extension to M -client oblivious FSS share evaluations, for M > 1, using homomor-
phic secret sharing on top of the 1-client oblivious evaluation protocol of [BCM23].

The FSS scheme. We recall three observations from [BCM23]:
– Since C is a log log-depth circuit, for every i ≤ m, the function giα : x 7→ C(x,α) depends on

O(log n) bits of x. Let us denote Si the subset of the bits of x that influence giα. The size of the
truth table T i

α of giα is bounded by 2|Si| = 2O(logn) = poly(n).
– The function F : α 7→ F (α) which, on input α, outputs the list (T 1

α, · · · , Tm
α ) of the truth tables

of (g1α, · · · , gmα ), is itself computable by a log log-depth Boolean circuit.
– Given F (α) = (T 1

α, · · · , Tm
α ) and an input vector x, the output gα(x) = C(x,α) can be computed

as (T 1
α[x[S1]], · · · , Tm

α [x[Sm]]).
Given these observations, [BCM23] instantiate the FSS scheme FSS⋆ with a trivial FSS scheme:

– FSS⋆.Gen(1λ, gα) simply output N additive shares (F1, · · · , FN ) of the truth tables F (α) =
(T 1

α, · · · , Tm
α ) of the giα’s.
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– FSS⋆.Eval(i, Fi,x): parse Fi as (T 1
i , · · · , Tm

i ) and output (T 1
i [x[S1]], · · · , Tm

i [x[Sm]]).

Security holds perfectly (since the scheme essentially outputs shares of the truth table of the function)
and correctness can be checked routinely.

Succinct FSS share distribution protocol. The shares of FSS⋆ can be very large, of size m · poly(n).
However, because the function F : α 7→ F (α) is itself computable by a low-depth circuits and because
the outputs of FSS⋆.Gen(1λ,α) are simply additive shares of F (α), it is relatively straightforward to
succinctly generate the shares: let HSS = (HSS.Gen,HSS.Eval) be an N -party homomorphic secret
sharing scheme with additive reconstruction for a function class F that contains all log log-depth
Boolean circuits, and which admits a procedure to securely generate shares of ℓ-bit inputs using O(ℓ)+
poly(λ) bits of communication (this property is satisfied by all known HSS schemes, e.g., [BGI16a,
ADOS22,CLT22,BKS19]). Then the parties proceed as follows:
– they securely distribute shares (x(1), · · · , x(N)) ← HSS.Share(1λ,α) using O(n) + poly(λ) bits of

communication;
– each party PM+i sets Fi ← HSS.Eval(i, F, x(i)) to obtain additive shares (F1, · · · , FN ) of F (α).

6.3 Instantiating the oblivious evaluation functionality

It remains to explain how a client with input x can obliviously recover FSS⋆.Eval(i, Fi,x) =
(T 1

i [x[S1]], · · · , Tm
i [x[Sm]]) by interacting with the server PM+i holding Fi. Here, the core obser-

vation is that computing each output T j
i [x[Sj ]] can be done using (symmetric) private information

retrieval, where the client queries x[Sj ] and retrieve the corresponding entry from the database T j
i

held by the server.
Unfortunately, using symmetric PIR in a blackbox way does not suffice here: even if the PIR had
optimal communication, the total size of all queries would be at least

∑
j |x[Sj ]| = Ω(n · log n) in

general, which is already too large to achieve secure computation with sublinear communication (this
is due to the redundancy between the queries, as the subsets Sj can overlap). Instead, [BCM23] relies
on the stronger notion of correlated symmetric PIR (corrSPIR) introduced in [BCM22]. Informally, a
correlated symmetric PIR allows precisely to make a batch of m correlated queries (x[S1], · · · ,x[Sm])
to m independent databases (D1, · · · , Dm) held by the server, such that the total communication
remains bounded by O(n+m)+poly(λ). We recall on Figure 11 the functionality for correlated sym-
metric PIR from [BCM22]. Compared to the description in [BCM22], we note that our description
sacrifices generality (the work of [BCM22] parametrized the functionality with a type of correlation
and separately specified a template for the “mix and match” correlation of interest for their construc-
tion; in contrast, we directly “hardcode” the correlation of interest in our description) in exchange
for a much simpler (and intuitive) description. We also extend the functionality to the multi-client
setting in the natural ways, since we will require this generalization later on.

Functionality FcorrSPIR(M)

The functionality FcorrSPIR(M) is parameterised by the number m of databases (D1, · · · , Dm), a
bound B on the size of each database, the length n of the query vector x, and the number M of
receivers (where we assume M = 1 if it is not specified). Furthermore, it is parameterised by a list
of m subsets (S1, · · · , Sm) of [n] such that |Sj | = log |Dj | ≤ logB for j = 1 to m. FcorrSPIR(M)
interacts with an ideal sender S and M ideal receivers (R1, · · · ,RM) via the following queries.

1. On input (sender,D = (D1, · · · , Dm) from S (where |Dj | = 2|Sj |), store D.
2. On input (receiver, i,xi)) from all receivers Ri (where xi ∈ {0, 1}n), check if a

tuple of databases D has already been recorded; if so, set x ←
∑M

i=1 xi, output
(D1[x[S1]], · · · , Dm[x[Sm]]) to (R1, · · · ,RM), and halt.

If the functionality receives an incorrectly formatted input, it aborts.

Fig. 11: The functionality for correlated symmetric PIR from [BCM22], simplified and generalized to
the multi-client setting.
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To simplify the presentation of our result, we define the following algorithms for a two-round correlated
SPIR (this template is essentially a reformulation of Definition 14 from [BCM22]):

Definition 27. A two-round correlated symmetric PIR for m databases, global input length n, and
subsets (S1, · · · , Sm) is a triple of algorithms (Query,Answer,Decode) with the following template:
– Query(x) : outputs a query qx and a decoding information dx,
– Answer(D, qx) : given m databases D = (D1, · · · , Dm) and a query qx, output an answer a,
– Decode(dx, a) : given the decoding information dx and an answer a, output a bistring y ∈ {0, 1}m,

such that the two-round protocol obtained by letting the receiver use (Query,Decode) to compute its
first message and its output respectively, and the server use Answer to answer the receiver query,
securely instantiates the functionality FcorrSPIR = FcorrSPIR(1).

The following lemma rephrases Theorem 15 from [BCM22]:

Lemma 28. Assume the hardness of LPN (with inverse polynomial noise) and any of
{DDH,DCR,QR,LWE}. Then for large enough n,m, there exists a two-round correlated symmetric
PIR for m databases with global input length n, with total communication |qx|+ |a| = O(n+m).

6.4 Oblivious multi-client evaluation

We now generalize the oblivious evaluation of FSS shares from the previous section to the setting
of multi-client oblivious evaluation. Via the construction of [BCM23] which we covered above, this
reduces to the following question: can we construct a multi-client correlated SPIR, i.e., a protocol
which involves M receivers (R1,RM ) with additive shares (x1, · · · ,xM ) of the query vector x =∑M

i=1 xi, and that securely instantiates the functionality FcorrSPIR(M)?
We answer this question affirmatively. At the heart of our construction is the observation that with
two simple modifications, the functions x 7→ Query(x) and (dx, a) 7→ Decode(dx, a) can be evaluated
in the complexity class NC1. In turn, this allows us to let M clients (R1, · · · ,RM ) jointly emulate
the behavior of a single client R with input x =

∑M
i=1 xi by relying on M -party homomorphic secret

sharing for NC1 to distribute the evaluation of Query and Decode, while maintaining the amount of
communication between the receivers proportional to M ·O(n+m).

From correlated SPIR to dec-OT. The work of [BCM22] constructs correlated SPIR from a notion of
decomposable (batch) oblivious transfer, a strong flavor of oblivious transfer (OT) that they introduce
and instantiate from the batch OT protocol of [BBDP22]. While the construction of correlated SPIR
introduces significant complications on top of the decomposable batch-OT (dec-OT) protocol, the
circuit depth of the Query and Answer algorithms turns out to be closely related to that of the
underlying dec-OT. Concretely, the construction of [BBDP22] proceeds in two steps:
– From the dec-OT, construct a decomposable batch-OT with repetitions (rep-OT), a strengthening

of dec-OT that handles (bounded) repetitions among the OT entries in the batch. The reduc-
tion requires only carefully reordering and duplicating the inputs (which can easily be done in
NC1), and invoking multiple instances of dec-OT in parallel. The primitive rep-OT has three algo-
rithms: the receiver message (rep-OTR), the sender message (rep-OTS), and the receiver decoding
algorithm (rep-OTD).

– From the rep-OT, the correlated SPIR is constructed (see Figure 7 of [BBDP22]). The construction
involves again a careful parsing and reordering of the inputs, as well as a single batch of parallel
invocations of rep-OTR for the Query algorithm, and logB sequential batches of invocations of rep-
OTD for the Answer algorithm. Note that the description of [BBDP22, Figure 7] interleaves these
sequential invocations to rep-OTD with sorting and partitioning steps; however, these sorting and
partitioning depend solely on the parameters of the correlated SPIR (the subsets S1, · · · , Sm) and
can be executed all in parallel ahead of time (the interleaved description being only used to ease
the presentation).

The dec-OT protocol from [BBDP22, Figure 13]. We recall here the rate-1 Batch-OT protocol of
[BBDP22], which is used as the starting point for the construction of corrSPIR in [BCM22]. At a
high level, the receiver encrypts each of its selection bits b using a linearly-homomorphic encryption
scheme (LHE), which can be used by the sender (with inputs (m0,m1)) to homomorphically compute
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a new ciphertext that serves as a fresh encryption of mb. The receiver can then decrypt this new
ciphertext to obtain mb.
To achieve optimal download rate, the sender message (which consists of n LHE ciphertexts) is
encrypted as a series of compressed batched LHE ciphertexts, which allows for asymptotically op-
timal amortized communication cost. In turn, compressing LHE ciphertexts relies on the shrinking
methodology introduced in [DGI+19,BBD+20], and boils down to a batch of parallel invocations of
the distributed discrete logarithm procedures from [BGI16a] (for DDH-based LHE) or [OSY21] (we
discussed the task of implementing these procedures using low depth in Section 4.1, and observed in
particular that a low-depth implementation of DDLOG exists for the DDH-based LHE).
Unfortunately, once a ciphertext has been compressed, it loses all homomorphic properties and hence
the same procedure cannot be used to compress the receiver’s message leading to asymptotically
optimal upload rate. To get beyond this, the receiver can encrypt its selection vector with a scheme
that has a linear decryption algorithm; in particular, assuming the hardness of the Learning Parity
with Noise (LPN) assumption, the receiver can sample a public matrix A

$←− Zm×n
2 , a random vector

s
$←− Zn

2 and a Bernoulli-distributed error vector e ∈ Zm
2 to obtain an encryption d = As + e +

b of the n-length selection vector b. Sending an LHE encryption of s then allows the receiver to
homomorphically compute f(LHE.Enc(s)), where f(x) = d − Ax, revealing an approximate LHE
encryption of the selection vector.
Eventually, it remains for the two parties to obliviously fix the inverse-polynomial fraction of erroneous
oblivious transfer outputs. This is achieved via a combination of distributed point functions and
private information retrieval. Let t be a bound on the number of nonzero entries in e. Then, using t
DPFs,5 the parties let the sender add a random mask of its choice to each OT message pair (m0,m1)
that will be incorrectly transmitted due to an error term from e (note that “incorrectly transmitted”
refers to the receiver getting m1−b when they should get mb, which would break sender security)
without revealing to the sender the position of this pair (which would leak e and therefore break
receiver security). Finally, using t instances of PIR, the receiver retrieves the missing items from the
sender, using t · polylog(n) amounts of communication for a batch of n OTs.

Correlated SPIR in low depth. From the above description, running Query amounts to computing a
batch of LPN encryptions and LHE encryptions, as well as distributing DPF keys, all of which can
easily be implemented in NC1. As for Answer, the dominant contribution to the sequential runtime
stems from the logB sequential invocations of batches of distributed discrete logarithm procedures.
Indeed, the DDLOG procedure for DCR- or QR-based LHE can be executed in NC1 (this was first
explicitly observed in [COS+22]), and so does the DDLOG protocol of [BGI16a] for DDH-based LHE
(using our observations from Section 4.1). However, for any superconstant value of B, logB sequential
invocations of an NC1 procedure does not result in an NC1 procedure anymore.
We circumvent the above issue using a combination of two ideas:

1. The DDLOG procedures require depth logarithmic in the length of their input. Fortunately, each
input to a DDLOG procedure in the ciphertext compression protocol of [DGI+19,BBD+20] has
size that depends solely on the security parameter of the LHE scheme. In particular, the size
of the input to each DDLOG procedure is independent of n and m. This implies that, at the
cost of assuming the superpolynomial security of the underling LHE, we can make the depth
sub-logarithmic in n+m (e.g. log(n+m)/ log log(n+m)).

2. The database size bound B is a tunable parameter. It was set to poly(|C|) in [BCM22] to achieve a
sublinearity factor of log logB = log logC. However, setting B = log(n+m) suffices to achieve si-
multaneously a superconstant sublinearity factor of log logB = log log log(n+m) = log log log |C|,
while guaranteeing logB = log log(n+m). With this choice of parameters, logB sequential invo-
cations of the dec-OTD procedure require depth proportional to log(n+m), which is in NC1.

We elaborate on the first item above. Each invocation of DDLOG takes as input a component of an
LHE ciphertext, which is either an element of Z(pq)2 for the DCR-based LHE scheme (the Paillier
encryption scheme [Pai99]) or an element of Zpq for the QR-based scheme (the Goldwasser-Micali
encryption scheme [GM82]), or an element of a DLOG-hard prime-order group G for the DDH-
based LHE (the ElGamal scheme [ElG84]). Let κ denote the bitsize of the ring or group elements.
5 Since the receiver knows the positions of the noise, using a puncturable pseudorandom function actually

suffices. Using the Doerner-shelat protocol [Ds17], securely distributing the punctured key of a puncturable
PRF can be done in two rounds.
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We set κ ← λ1/ log log(n+m) = λ1/(log log+O(1)) (as n(λ),m(λ) = poly(λ)).Then, we have log κ =
log λ/ log log(n +m); therefore, the DDLOG algorithms can be executed in depth log λ/ log log(n +
m) = O(log(n+m)/ log log(n+m)). The price to pay is to assume that the LHE are secure against
adversaries running in time poly(λ) = poly(κlog log(n+m)) = poly(κlog log κ). That is, we require security
against mildly superpolynomial time adversaries. Alternatively, if we set B to be an arbitrarily large
constant, it suffices to assume the polynomial hardness of either DCR, DDH, or QR. In conclusion,
we get:

Lemma 29. Let m be the number of databases, n be the length of the query vector, and B ← log(n+
m) (resp. B is an arbitrary constant) be a bound on the size of the databases. Then assuming the
hardness of LPN with inverse-polynomial noise together with the superpolynomial hardness (resp.
polynomial hardness) of (any of) DDH, DCR, LWE, or QR (against adversaries running in time
κO(log log κ)), there exists a 2-round (single-client) correlated symmetric PIR (Query,Answer,Decode)
such that for any a in the support of Answer, the functions f : x 7→ Query(x) and ga : dx 7→
Decode(dx, a) can be computed by circuits of depth O(log(n+m)).

Wrapping-up: multi-client correlated SPIR from correlated SPIR and HSS. We describe below
a simple construction of M -client correlated SPIR from a single-client 2-round correlated SPIR
(Query,Answer,Decode), and an M -party HSS scheme for the functions (Query,Decode). Intuitively,
the M clients will simply emulate the role of a single client in the 2-round correlated SPIR, using
homomorphic secret sharing to distributively compute its query and decode the sever answer using
minimal communication overhead. The construction is represented on Figure 12.

Protocol ΠcorrSPIR(M)

Parameters: The protocol is parameterised by the number m of databases (D1, · · · , Dm), a
bound B on the size of each database, the length n of the query vector x, and the number M of
receivers (where we assume M = 1 if it is not specified). Furthermore, it is parameterised by a
list of m subsets (S1, · · · , Sm) of [n] such that |Sj | = log |Dj | ≤ logB for j = 1 to m, and by an
M -party compact HSS scheme HSS = (HSS.Share,HSS.Eval) for a function class F that includes
the functions f : x 7→ Query(x) and ga : dx 7→ Decode(dx, a), where (Query,Answer,Decode) is a
two-round correlated SPIR for m databases parameterised with the subsets (S1, · · · , Sm).

Parties: a database owner P , and M clients R1, . . . , RM

Input: The receivers hold additive shares of a vector x ∈ Fn
2 .

The Protocol:

1. The receivers run a secure protocol ΠHSS to distribute shares (x(1), · · · , x(M)) ←
HSS.Share(1λ,x).

2. Each receiver Ri computes (qi, di) ← HSS.Eval(i, f, x(i)) and broadcasts qi. All parties re-
construct qx =

∑M
i=1 qi.

3. The database owner P computes a← Answer(D, qx). P broadcasts a.
4. The receivers run ΠHSS to distribute shares (d(1), · · · , d(M))← HSS.Share(1λ,

∑M
i=1 di).

5. Each receiver Ri computes yi ← HSS.Eval(i, ga, d
(i)) and sends it to all receiver. The receivers

reconstruct y←
∑M

i=1 yi and halt.

Fig. 12: Protocol ΠcorrSPIR(M) for M -client correlated SPIR from single-client 2-round correlated SPIR
and homomorphic secret sharing.

Theorem 30. Assume that (Query,Answer,Decode) is a secure (single client) 2-round correlated
SPIR for m databases and vector length n parameterised with (S1, · · · , Sm), and that ΠHSS is a
secure protocol for distributively generating M -party HSS shares of additively shared inputs. Then the
protocol ΠcorrSPIR(M) of Figure 12 securely instantiates the functionality FcorrSPIR(M).
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Proof (Sketch). We sketch the straightforward security analysis, which follows immediately from the
security of the HSS and that of the single-client correlated SPIR. Consider an adversary A corrupting
a strict subset of {P,R1, · · · , RM}. We distinguish two cases:
– If A corrupts (R1, · · · , RM ), then P is honest. Upon receiving (q1, · · · , qM ) from the receivers,

Sim reconstructs qx ←
∑M

i=1 qi and relies on the simulator Sim1 for the single-client correlated
SPIR to emulate the answer a of P . The indistinguishability of the simulation from the real game
follows immediately from the security of the single-client correlated SPIR.

– Otherwise, there is at least one uncorrupted receiver Ri. Sim relies on the simulator SimHSS for
ΠHSS to securely emulate the share distribution of x and

∑M
i=1 di respectively. If P is uncorrupted,

Sim uses Sim1 as above to emulate a. Security follows immediately from the security of ΠHSS,
that of the single client correlated SPIR, and the fact that protocol composition is secure in the
passive setting [Gol09, Section 7.3.1].

We now combine this theorem with Lemma 29 and known constructions of 2-party HSS for NC1:

Corollary 31. Let m be the number of databases, n be the length of the query vector, and B ←
log(n+m) be a bound on the size of the databases. Then assuming the hardness of LPN with inverse-
polynomial noise together with the superpolynomial hardness of (any of) DCR or LWE, (against
adversaries running in time κO(log log κ)), there exists a 2-client correlated symmetric PIR with pa-
rameters (m,n,B).

We are now ready to conclude. We set M = 2. Using the above corollary, we instantiate the oblivious
multi-client evaluation of FSS shares funtionality FFSS

OME by plugging this 2-client correlated SPIR into
the oblivious evaluation protocol of [BCM23] for the FSS scheme FSS⋆. To securely distribute the
FSS-shares of FSS⋆(required to instantiate FFSS

SD in Theorem 26), we rely on the 8-party HSS scheme
constructed in Section 5.4. Using the correlated SPIR parameters of [BCM23], this yields:

Corollary 32. Let C be a boolean circuit of size s with n inputs, m outputs, and depth log log log s.
Then, assuming the hardness of LPN with inverse-polynomial noise, the hardness of (any of) MQ or
random local functions, together with the superpolynomial hardness of (any of) DDH, DCR, or LWE,
there exists a 10-party secure computation protocol with communication O(n+m+

√
s · poly(λ) · (n+

m)2/3). Alternatively, if the depth of C is a constant k, there exists a 10-party secure computation
protocol with communication O(n+m+

√
s · poly(λ) · (n+m)2/3) (where the constant in the O(·) is

independent of k) assuming the polynomial hardness of LPN + (MQ or RLF) + (DDH or DCR or
LWE).

Plugging this corollary in the construction of sublinear secure computation protocols for layered
circuits from secure computation of low-depth circuits from [BCM23], we get a 10-party secure com-
putation protocol for any layered boolean circuit of size s, depth d, with n inputs and m outputs,
with communication either
– O(s/ log log log s+d1/3 ·s2(1+ε)/3 ·poly(λ)) assuming the hardness of LPN with inverse-polynomial

noise, the hardness of (any of) MQ or random local functions, together with the superpolynomial
hardness of (any of) DDH, DCR, or LWE, or

– s/k+O(d1/3 · s2(1+ε)/3 · poly(λ)) (for an arbitrary constant k) assuming the polynomial hardness
of the same assumption set.
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