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Abstract

Garbling schemes are a fundamental cryptographic tool for enabling private computations and en-
suring that nothing leaks beyond the output. As a widely studied primitive, significant efforts have been
made to reduce their size. Until recently, all such schemes followed the Lindell and Pinkas paradigm for
Boolean circuits (JoC 2009), where each gate is represented as a set of ciphertexts computed using only
symmetric-key primitives. However, this approach is inherently limited to 𝑂(𝜆) bits per gate, where
𝜆 is the security parameter. Recently, it has been shown that achieving smaller garbled circuit size is
possible under stronger assumptions, such as variants of Learning with Errors (LWE) or Indistinguisha-
bility Obfuscation (iO). In addition to requiring high-end cryptography, none of these constructions is
black-box in the underlying cryptographic primitives, a key advantage of prior work. In this paper, we
present the first approach to garbling Boolean circuits that makes a black-box use of a group and uses
𝑜(𝜆) bits per gate.

Building on a novel application of the Reverse Multiplication-Friendly Embeddings (RMFE) paradigm
(Cascudo et al., CRYPTO 2018), we introduce a new packing mechanism for garbling schemes, that
packs boolean values into integers and leverage techniques for arithmetic garbling over integer rings.
Our results introduce two new succinct schemes that achieve improved rates by a factor of

√︁
log 𝜆,

retaining the black-box usage. (1) Our first scheme is proven in the Generic Group model (GGM) for
circuits with Ω(

√︁
log 𝜆) width, obtaining a garbled circuit size of 𝜆 · |C|/

√︁
log(𝜆). (2) Our second scheme

is proven in the plain model under the Power-DDH assumption, attaining a garbled circuit size of
𝜆 · (|C|/

√︁
log(𝜆) + poly(𝜆) · depth(C), but is restricted to layered circuits. Our schemes are the first to

achieve sublinear (in 𝜆) cost per gate under assumptions that do not imply fully homomorphic encryption;
in addition, our scheme is also the first to achieve this while making a black-box use of cryptography.

1 Introduction

Garbling schemes [Yao86, LP09] are a cryptographic object that enables the oblivious evaluation of com-
putations, ensuring that nothing beyond the output is revealed from the computation’s flow. This strong
privacy guarantee has established garbling schemes as a fundamental cryptographic tool with a wide range
of applications. One of their most prominent applications is in secure two-party computation. In this set-
ting, a garbler creates an encoded version of the function along with encoded inputs. It provides these to an
evaluator, who privately evaluates the encoded computation and learns only the output. The correctness
property of the garbling scheme guarantees that the right output is obtained. The ability to implement
garbling schemes using only symmetric-key cryptography, combined with the garbling algorithm’s depth
complexity independent of the computed circuit’s depth complexity, has made them a highly competitive
technique for achieving constant round secure computation.
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Since their introduction by Yao [Yao86] and formalization by Lindell and Pinkas [LP09], extensive
research has focused on understanding the concrete efficiency of Boolean circuit garbling, e.g., [KS08,
PSSW09, KMR14, ZRE15, RR21]. Building on the gate-by-gate approach introduced in [LP09], this research
culminated in achieving 1.5 times 𝜆 bits per AND gate [RR21], with no communication cost for XOR
gates [KS08], where 𝜆 is the security parameter. This resulted in an 𝑂(𝜆) inflation between the circuit
representation C and the length of the garbled circuit Ĉ. An important feature of this line of work is
the black-box access to the underlying symmetric-key primitive. This abstraction treats cryptographic
operations as an oracle, allowing them to be instantiated with a pseudorandom function (PRF) or a hash
function, resulting in highly practical schemes.

Using black-box access to the underlying cryptographic primitive allows for a modular design ap-
proach, ensuring that the constructions remain independent of specific implementations and rely only
on the input-output behavior of the primitive. This flexibility allows for improved instantiations under
different hardness assumptions. As a result, the construction of black-box schemes is both theoretically
appealing and practically beneficial and has therefore been extensively studied with the goal of under-
standing its power and limitations; see [DI05, PW09, HIMV19, IKSS22] for a few examples. This feature is
also at the focus of our work.

Attempts to explore the limitations of these constructions have provided evidence that current tech-
niques have reached their limits, suggesting that breaking these barriers will require entirely new ap-
proaches [ZRE15]. The source of this limitation lies in the technique from [LP09], which assigns two
labels to each wire and treats each gate as a set of four ciphertexts encrypting the labels associated with
the output wire. Since each label functions as a key to the symmetric-key primitive, its length must scale
with the security parameter to maintain privacy; otherwise, the scheme’s security would be compromised.
Therefore, the question of reducing the rate, the ratio between 𝐶 and Ĉ, while basing security only on
symmetric key primitives, remained unresolved until recently.

A recent and exciting result by Liu et al. [LWYY24] presents the first rate-1 Boolean garbling scheme
based on the Ring Learning with Errors (RLWE) or NTRU assumption, leveraging these to define a some-
what homomorphic encryption scheme. This encryption scheme is used to evaluate a low-depth pseudo-
random generator (PRG) seed, which is subsequently used to derive the garbling material for each gate.
The ciphertext is then decrypted using a key-dependent message (KDM)-secure encryption scheme. The
bulk of the computational complexity arises from homomorphically evaluating the PRG seed, necessitat-
ing the use of a low-depth PRG. Additionally, the scheme is inherently non-black-box in its reliance on the
details of the underlying PRG construction.

Leveraging stronger primitives allows for improved garbling schemes using laconic function evalua-
tion (LFE), a dual primitive to fully homomorphic encryption (FHE), achieving sublinear rates, dependent
on circuit depth, based on LWE or subexponential indistinguishability obfuscation (iO). This is done by
adding a garbling layer on top of the LFE protocol, garbling the LFE encoding function. The combination
of LFE’s succinctness and the privacy of garbling results in a succinct garbling scheme. Recent advance-
ments in LFE [DGM23] eliminate the dependency on the circuit’s depth. This is achieved through standard
(polynomially secure) iO and somewhere statistically binding (SSB) hash functions, instantiated from var-
ious number-theoretic assumptions. In another recent work [HLL23], Hsieh et al. introduced a compact
reusable garbling scheme based on a new circular-secure variant of LWE. Unlike previous constructions,
which are limited to one-time use, their approach enables multiple uses, making it a stronger form of gar-
bling. Finally, succinct randomized encoding for Turing machines [BGL+15], based on iO for P/poly and
one-way functions, grows only polylogarithmically with the program’s running time. However, extend-
ing this technique to a circuit representation of the computed function remains unclear. In Table 1, we
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summarize the current landscape of Boolean garbling schemes.

Ref. |Ĉ | Hardness Assumption Black-Box

[ZRE15] 2𝜆 · |C| RO / RTCCR ✓

[RR21] 1.5𝜆 · |C| RO / RTCCR ✓

[QWW18] poly(𝜆) · depth(C) LWE / Subexponential iO ✗

[DGM23] poly(𝜆) iO + SSB ✗

[HLL23] poly(𝜆) circular LWE1 ✗

[LWYY24] (1 + 𝑜(1)) · |C| RLWE / NTRU ✗

This Work 𝜆 ·𝑂(|C|)/
√︁

log(𝜆) + poly(𝜆) GGM / ap-eTCCR3 ✓

This Work2 𝜆 · 𝑂( | C |)√
log(𝜆)

+ poly(𝜆) · depth(|C|) Power-DDH + eTCR4 ✓

1 Requires a new circular variant of LWE.
2 Restricted to layered circuits.
3 ap-eTCCR stands for Tweakable Circular Correlation Robustness for exponential correlations

with auxiliary powers.
4 eTCR stands for Tweakable Correlation Robustness for exponential correlations.

Table 1: The landscape of garbling schemes for Boolean circuits.

As it stands today, our understanding of Boolean garbling schemes with𝜔(1/𝜆) rates, based on assump-
tions that do not imply FHE, remains highly limited, even without the black-box requirement. This paper
seeks to advance research in this direction by presenting two new sublinear-rate schemes that are black-
box in their use of cryptographic primitives and rely on group-based assumptions for security, reducing
the gap toward existing non-succinct schemes.

It is worth noting that when going beyond Boolean computations into the arithmetic regimes, the
problem becomes simpler for the bounded setting, where the computation is performed over the integers
while a bound 𝐵 bounds the length of the wire values [BLLL23, MORS24, CHHK25]. This simplification
arises from using stronger (non-symmetric-key) tools such as constant-rate additive encryption schemes or
Homomorphic Secret Sharing (HSS). Specifically, the gap between the plain and the encoded data becomes
smaller for larger computation domains, facilitating the construction of primitives with smaller rates. Our
techniques are inspired by this sequence of works for designing arithmetic garbling [BLLL23, MORS24,
CHHK25], building on [AIK11]. In particular, we demonstrate that the techniques developed in [CHHK25]
can also be applied to Boolean circuits when packing the gates into batches of size

√︁
log 𝜆. Our packing

mechanism is based on a novel application of the Reverse Multiplication-Friendly Embeddings (RMFE)
paradigm from [CCXY18] that supports computations over tuples of binary values, where addition and
multiplication are performed coordinate-wise, to be embedded into computations over an extension field.
This technique has previously been only used in secure multi-party computation (MPC) e.g., [CG20, PS21,
EHL+23], which is inherently interactive. To the best of our knowledge, our work is the first to apply
RMFE-based embedding techniques to garbling schemes, which are non-interactive primitives.

More concretely, our first construction is proven under an assumption that is reminiscent of the Tweak-
able Circular Correlation Robust (TCCR) assumption used in [RR21] except that it considers exponential
correlations [BCM+24, CHHK25] (namely, 𝑠𝑥 where 𝑠 ∈ G and 𝑥 ∈ Zord(G)). We prove our construction in
the generic group model (GGM) and the random oracle. Given that the random oracle can be instantiated
in the GGM setting, our result presents the first succinct garbling scheme in the GGM model that retains

3



black-box usage, reducing the garbling size by a factor of 𝑂(
√︁

log(𝜆)). This scheme is proven for circuits
that are not too narrow, requiring a width of

√︁
log(𝜆), a milder restriction than prior MPC work, which

requires in some settings greater width to support packed secret sharing or is restricted to SIMD circuits1.
Informally, we prove that,

Theorem 1 (Informal). In the generic group model, there exists a Boolean garbling scheme GC that garbles
any Boolean circuit C into a garbling Ĉ such that

|Ĉ |= 𝜆√︁
log(𝜆)

·𝑂(|C|) + poly(𝜆).

Our second construction is proven in the standard model under the power-DDH hardness assumption
together with the existence of tweakable correlation robust hash functions for a family of exponential
correlations, which implies a layered version of the TCCR assumption. This variant applies to layered
circuits, where the gate set is partitioned into 𝐷 levels such that gates at level 𝑖 receive inputs from level
𝑖 − 1. Such circuits have been previously studied in the context of HSS [BGI16] and shown to be effective
in overcoming communication barriers. Informally, we prove that.

Theorem 2 (Informal). If there exists a TCR hash for the exponential correlation with respect to a group over
which the power-DDH assumption holds, then there exists a Boolean garbling scheme that garbles layered
circuits C into a garbling Ĉ such that

|Ĉ |= 𝜆√︁
log(𝜆)

·𝑂(|C|) + poly(𝜆) · depth(C).

2 Technical Overview

2.1 Overview of [CHHK25]

Our starting point is the recent work of [CHHK25], that described the first construction (without resorting
to FHE or iO) of a garbling scheme for arithmetic circuits over a small (polynomial) integer ring Z𝐵 with
𝑂(𝜆) bits per gate (independently of 𝐵). At the heart of their construction are two efficient one-round
protocols for computing on authenticated shares.

Concretely, fix a group G of prime order 𝑝 with |𝑝 |= 𝑂(𝜆) and assume that the following assumption
holds: pick a random (secret) ℎ←$G, a secret exponent 𝛼←$Z𝑝 , and compute ℎ𝛼𝑖 for all nonzero 𝑖 from
−𝐵 to 𝐵. Then no efficient adversary should, given these values, be able to distinguish ℎ from random.
Under this variant of the power-DDH assumption, [CHHK25] showed the following:

Lemma 3 (informal). Let G and E be two parties holding additive shares of ∆ · 𝑥 over Z𝑝−1, where ∆ is a
randomMAC key (from Z𝑝−1) known toG, and 𝑥 ∈ {0, · · · , 𝐵} is a value known to E. Fix any (public) function
𝑓 : {0, · · · , 𝐵} → Z𝑝−1. Then there exists a one-message secure protocol where G, holding an input 𝑦 ∈ Z𝑝−1,
sends 𝑂(𝜆) bits to E, and both parties obtain additive shares of 𝑦 · 𝑓 (𝑥 ) mod 𝑝 − 1.

Let us overview briefly how [CHHK25] uses this protocol to garbled a circuit C over Z𝐵 . The parties
always maintain the following invariant: for any gate 𝑢 of C carrying a value 𝑥𝑢 during the computation
of C on an input 𝑥 , the parties will hold

1Circuits that possess multiple repetitions of smaller subcircuits.
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• shares 𝑘𝑢, ℓ𝑢 of 𝑥𝑢 over 𝐵 (ℓ𝑢 ∈ {0, · · · , 𝐵} is E’s share), and

• shares 𝐾𝑢, 𝐿𝑢 of ∆ · ℓ𝑢 over Z𝑝−1.

Now, let us look at a multiplication gate𝑤 (additions are simpler). Let 𝑥𝑢 and 𝑥𝑣 denote the values on the
wires entering the gate, with respective garbler shares (the keys) (𝑘𝑢, 𝐾𝑢 ), (𝑘𝑣, 𝐾𝑣) and evaluator shares (the
labels) (ℓ𝑢, 𝐿𝑢 ), (ℓ𝑣, 𝐿𝑣). We have:

𝑥𝑢𝑥𝑣 = 𝑘𝑢𝑘𝑣 + ℓ𝑢ℓ𝑣 + 𝑘𝑢ℓ𝑣 + 𝑘𝑣ℓ𝑢 .

Above, the values in blue are known to one party and can be locally added to their share; the important
terms are the cross terms in red. Given that they hold (by assumption) shares of ∆ · ℓ𝑢 and of ∆ · ℓ𝑣 , the
parties will simply use two invocations of the protocol from Lemma 3 (setting 𝑓 to the identity function).
The two messages from G will be part of the garbling material attached to this gate in the garbled circuit.
Let us write (⟨𝑘𝑢ℓ𝑣⟩G, ⟨𝑘𝑣ℓ𝑢⟩G) and (⟨𝑘𝑢ℓ𝑣⟩E, ⟨𝑘𝑣ℓ𝑢⟩E) the shares obtained by G and E respectively. We define

𝑘𝑤 := ⟨𝑘𝑢ℓ𝑣⟩G + ⟨𝑘𝑣ℓ𝑢⟩G + 𝑘𝑢𝑘𝑣
ℓ𝑤 := ⟨𝑘𝑢ℓ𝑣⟩E + ⟨𝑘𝑣ℓ𝑢⟩E + ℓ𝑢ℓ𝑣 .

We now turn our attention to the task of building shares of ∆ · ℓ𝑤 . We have

∆ · ℓ𝑤 = ∆ · (⟨𝑘𝑢ℓ𝑣⟩E + ⟨𝑘𝑣ℓ𝑢⟩E + ℓ𝑢ℓ𝑣)
= ∆ · (𝑘𝑢ℓ𝑣 − ⟨𝑘𝑢ℓ𝑣⟩G + 𝑘𝑣ℓ𝑢 − ⟨𝑘𝑣ℓ𝑢⟩G) + (𝐾𝑢 + 𝐿𝑢 )ℓ𝑣
= (∆𝑘𝑢 ) · ℓ𝑣 + (∆𝑘𝑣) · ℓ𝑢 + 𝐾𝑢 · ℓ𝑣 + 𝐿𝑢ℓ𝑣 − ∆ · (⟨𝑘𝑢ℓ𝑣⟩G + ⟨𝑘𝑣ℓ𝑢⟩G),

where again the terms in blue are known to one of the parties, while the terms in red are the product of
a value known to G with a value in {0, · · · , 𝐵} (ℓ𝑢 or ℓ𝑣) known to E. Hence, these three cross terms are
shared using three more instances of the protocol of Lemma 3. Then, G defines𝐾𝑤 as the sum of the shares
of these cross terms minus ∆ · (⟨𝑘𝑢ℓ𝑣⟩G + ⟨𝑘𝑣ℓ𝑢⟩G), and E defines 𝐿𝑤 as the sum of its shares plus 𝐿𝑢ℓ𝑣 , giving
𝐾𝑤 + 𝐿𝑤 = ∆ · ℓ𝑤 , as required.

This overview overlooks important technicalities, which we briefly sketch as they will also show up
in our work. First, there is a size issue: the value ℓ𝑤 computed above does not belong to {0, · · · , 𝐵}, which
is crucial (otherwise, ℓ𝑤 cannot be used as input in the protocol of Lemma 3). Of course, a simple fix is
to reduce it modulo 𝐵 (it is not too hard to guarantee that the shares of the cross terms are shares over
the integers). The problem is that now, denoting ℓ̃𝑤 the original value (before reduction modulo 𝐵) and
ℓ𝑤 = [ℓ̃𝑤 mod 𝐵] the reduced value, we have a modulus mismatch: 𝐾𝑤, 𝐿𝑤 form shares of ∆ · ℓ̃𝑤 , while we
need them to form shares of ∆ · ℓ𝑤 = ∆ · [ℓ̃𝑤 mod 𝐵].

This is where the protocol of Lemma 3 comes to the rescue: the parties will use one last invocation of
this protocol, where E inputs ℓ̃𝑤 and G inputs ∆, setting 𝑓 to be the function “reduction mod 𝐵”, to obtain
shares of ∆ · 𝑓 (ℓ̃𝑤) = ∆ · ℓ𝑤 . However, for this to work, we crucially need ℓ̃𝑤 to be small in the first place!
In [CHHK25], this is solved by introducing a (more complex) variant of the protocol that guarantees that
the shares of 𝑘𝑢ℓ𝑣 and 𝑘𝑣ℓ𝑢 are actually small integers (roughly bounded by 𝐵3). This requires care, as G’s
message will now contain its input (say, 𝑘𝑢 ) masked over the integers by small values, which introduces
some leakage on 𝑘𝑢 . A core technical contribution of [CHHK25] is a way to add a carefully crafted noise
to 𝑘𝑢 to guarantee that the leakage remains harmless with overwhelming probability while letting the
function 𝑓 evaluated on ℓ̃𝑤 remove the noise in the end.
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2.2 Computing on Batches via RMFE

Unfortunately, the methodology of [CHHK25] does not improve over traditional garbling schemes (such
as Yao’s) when the ring is Z2, since it still requires Ω(𝜆) bits for each gate of the circuit. To improve the
garbled circuit size over Z2, our high-level approach is the following: we devise a methodology to pack the
bits carried on multiple values into a single element of a larger ring, and rely on the approach of [CHHK25]
to operate on these “packed ring elements”. Then, to ensure that the computation proceeds according to
the topology of the circuit, we also devise methods to efficiently unpack a batch of wire values and reorder
them cheaply into new batches.

The core ingredient of our approach is the notion of Reverse Multiplication-Friendly Embeddings
(RMFE) [CCXY18]. A (𝑡,𝑚)-RMFE is a pair of F2-linear maps Φ : F𝑡2 → F2𝑚 and Ψ : F2𝑚 → F𝑡2 satis-
fying x ⊙ y = Ψ (Φ(x) · Φ(y)) for all x, y ∈ F𝑡2, where ⊙ denotes the component-wise product. It is not too
hard to see that RMFEs also come with an inverse map Φ−1 (which is not the same as Ψ). The main result
on RMFE that we use is a central lemma from [CCXY18] (restated here as Lemma 4): there exists a family
of (𝑡,𝑚)-RMFE where𝑚 = Θ(𝑡).

For the sake of exposition, assume that we have at hand a “magic protocol” identical to that of Lemma 3,
but that would operate natively over elements of any (small) extension field of F2, such as F2𝑚 . That is,
given inputs 𝑥 ∈ F2𝑚 from E and 𝑦 ∈ F2𝜆 from G, a public function 𝑓 , and shares of ∆ · 𝑦 with ∆ ∈ F2𝜆
known to G (we stress that this is a thought experiment – we do not actually have such a scheme), the
parties could, using one 𝑂(𝜆)-bit message from the garbler to the sender, obtain shares of 𝑦 · 𝑓 (𝑥 ). Then,
we could apply the following approach:

First, divide the Boolean circuit into layers, such that each layer contains gates of a single type (either
AND or XOR) and takes its inputs from previous layers. Any Boolean circuit can be converted into one of
this form with a constant factor blowup [DIK10]. Fix a batch size 𝑡 and break each layer into blocks of 𝑡
bits. Assume that the parties maintain the following invariant: for any gate 𝑢 with a bit 𝑥𝑢 , they will hold
shares 𝑘𝑢 ⊕ ℓ𝑢 = 𝑥𝑢 and shares 𝐾𝑢 +𝐿𝑢 = ∆ · ℓ𝑢 . Now, consider a layer of AND gates. For a given batch B of
𝑡 gates in the layer, let Left and Right denote the size-𝑡 subset of the left-parents and right-parents of the
node in B. The parties G, E execute the following steps:
Packing. Aggregate the shares of 𝑥𝑢 for 𝑢 ∈ Left into a share of an element 𝑥l ∈ F2𝑡 whose bits are the

𝑥𝑢 ’s, and the shares of ∆ · ℓ𝑢 into a share of ∆ · ℓl, where the bits of ℓl ∈ F2𝑡 are the ℓ𝑢 ’s. Do the same
thing for Right, getting shares of 𝑥r and ∆ · ℓr.

RME Encoding. Compute the RMFEs Φ(𝑥l),Φ(𝑥r). Using (two calls to) the “magic protocol” with input ∆
from G and ℓl, ℓr from E and function 𝑓 = Φ, the garbler adds𝑂(𝜆) bits to the garbling material of the
batch B and the parties obtain shares (𝐾l, 𝐿l), (𝐾r, 𝐿r) of ∆ · Φ(ℓl) and ∆ · Φ(ℓr).

Product. The parties use the same equations as before:

Φ(𝑥l) · Φ(𝑥r) = Φ(ℓl) · Φ(ℓr) + Φ(𝑘l) · Φ(𝑘r) + Φ(ℓl) · Φ(𝑘r) + Φ(𝑘l) · Φ(ℓr).

The red cross terms are computed via two calls to the “magic protocol” (with 𝑂(𝜆) bits of added
material) and the evaluator sets

ℓ̃ := ⟨Φ(ℓl) · Φ(𝑘r)⟩E + ⟨Φ(𝑘l) · Φ(ℓr)⟩E + Φ(ℓl) · Φ(ℓr).

The garbler computes a corresponding 𝑘̃ . Then, the parties compute shares of ∆ · ℓ̃ using

∆ · ℓ̃ =(∆Φ(ℓl)) · Φ(𝑘r) + (∆Φ(ℓr)) · Φ(𝑘l) + 𝐾l · Φ(ℓr)
−∆ · (⟨Φ(ℓl) · Φ(𝑘r)⟩G + ⟨Φ(𝑘l) · Φ(ℓr)⟩G) + 𝐿lΦ(ℓr),
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using three calls to the magic protocol to share the cross terms.

Unpacking. Eventually, the parties compute the shares (𝑘𝑢, ℓ𝑢 ) for 𝑢 ∈ B by using the RMFE mapping
Ψ(𝑘̃),Ψ(ℓ̃) (recall that the mapping is F2-linear), obtaining shares of (𝑥𝑢 )𝑢∈Left ⊙ (𝑥𝑢 )𝑢∈Right (which
form the 𝑡 outputs of the batch of gates). It remains to obtain shares of ∆ · ℓ𝑢 for each 𝑢 ∈ B; this
is done using more calls to the magic protocol with input ∆ from G, ℓ̃ from E, and for all functions
𝑓𝑖 = Bit𝑖 ◦ Ψ, where Bit𝑖 outputs the 𝑖-th bit of its input.

The above high-level description successfully maintains the invariant, and circumvents the issue of
handling the topology of the circuit, since all shares are projected back to bitwise-authenticated shares
after each batch of operations. Nevertheless, it suffers from two annoying downside:

1. We are not aware of any “magic protocol” satisfying the requirements listed above, and

2. The projection of ∆ · ℓ̃ to ∆ · ℓ𝑢 for all 𝑢 ∈ B requires 𝑡 calls to the protocol, which incurs an Ω(𝑡 · 𝜆)
overhead in the size of the garbling material, which is too much (as it does not improve over classical
Yao-style garbling).

Below, we explain how to deal with each issue in turn.

2.3 Replacing the “Magic Protocol”

Our strategy is to emulate the features of the magic protocol while relying instead on the protocol from
Lemma 3 (since we do know of an instantiation of this one). The core component of our strategy is the
following (natural) embedding of F2𝑘 over the integers (for any 𝑘): view F2𝑘 as F2[𝑋 ]/𝑃 (𝑋 ) where 𝑃 is an
irreducible polynomial of degree 𝑘 , and parse elements of F2𝑘 as F2-polynomials of degree at most 𝑘 (we
write F2[𝑋 ;𝑘] to denote this set). For any 𝑥 = ∑𝑘−1

𝑖=0 𝑥𝑖 · 𝑋 𝑖 ∈ F2[𝑋 ;𝑘], we embed 𝑥 over the integers by
computing 𝑥 (𝑁 ) = ∑𝑘−1

𝑖=0 𝑥𝑖 · 𝑁 𝑖 ∈ N (for an integer 𝑁 to be specified later), and we further view 𝑥 (𝑁 ) as
an element of Z𝑝−1 via the canonical embedding.

A useful feature of this embedding is that it preserves operations over F2𝑘 to some extent. Given
𝑥,𝑦 ∈ F2𝑘 , if 𝑁 > 𝑘 , then 𝑥 (𝑁 ) · 𝑦(𝑁 ) encodes 𝑥 · 𝑦 in the following sense: denote Mod𝑁 (𝑛, 2) the function
that, on an integer 𝑢, writes 𝑢 in 𝑁 -arry as 𝑢 = ∑

𝑖 𝑢𝑖 · 𝑁 𝑖 and returns ∑
𝑖[𝑢𝑖 mod 2] · 𝑁 𝑖 (that is, it reduces

each coefficient of the 𝑁 -ary decomposition of 𝑢 modulo 2). Then, provided that 𝑁 > 𝑘 , we have 𝑥 · 𝑦 =
Mod𝑁 (𝑥 (𝑁 ) · 𝑦(𝑁 ), 2). Using this embedding, our strategy to emulate the magic protocol is the following:

• For each gate𝑢, in addition to XOR-share (𝑘𝑢, ℓ𝑢 ) of 𝑥𝑢 , the parties will hold shares of ∆ · ℓ𝑢 over Z𝑝−1.

• When packing, the parties will compute linear combinations of their shares of values ∆ · ℓ𝑖 with
powers of 𝑁 , to obtain shares of ∆ · (∑𝑖 ℓ𝑖 · 𝑁 𝑖 ).

• We will make heavy use of the fact that the one-message protocol from Lemma 3 can evaluate
arbitrary functions. For instance, the parties will use an invocation of this protocol to get ∆ · 𝑓 (∑𝑖 ℓ𝑖 ·
𝑁 𝑖 ), where 𝑓 is the function that (1) extracts all the bits (ℓ𝑖 )𝑖 from this encoding; (2) compute Φ((ℓ𝑖 )𝑖 );
(3) re-embed this value onto Z𝑝−1 by viewing it as a polynomial and computing Φ((ℓ𝑖 )𝑖 )(𝑁 ). After
computing a product of embedded values, the parties will again use this feature to evaluate the
Mod𝑁 (·, 2) function, but also to reduce the (embedded) polynomial modulo 𝑃 (in order to obtain an
embedding of the correct product over F2𝑚 ).
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The above sketch hides some very important technicalities. The most important one is the fact that,
as in [CHHK25], maintaining the invariant requires ensuring that the shares of the (embeddings of the)
cross terms Φ(ℓl) · Φ(𝑘r),Φ(𝑘l) · Φ(ℓr) are small, but also, crucially, that the sharing produced by the protocol
of Lemma 3 remains compatible with the (limited) homomorphic properties of the embedding. For instance,
given

Φ(𝑥l) · Φ(𝑥r) = Φ(ℓl) · Φ(ℓr) + Φ(𝑘l) · Φ(𝑘r) + Φ(ℓl) · Φ(𝑘r) + Φ(𝑘l) · Φ(ℓr),

The parties will operate only on integer embeddings (Φ(ℓl)(𝑁 ),Φ(ℓr)(𝑁 ), etc) and will apply the Mod𝑁 (·, 2)
and the mod 𝑃 operations on the shares of the red terms via calls to the protocol. But for this to work, we
need that the outputs indeed sum to (the integer embedding of) ModP(Mod(Φ(𝑥l)(𝑁 ) ·Φ(𝑥r)(𝑁 ), 2)) (where
ModP is the function that extracts the embedded polynomials, reduces it modulo 𝑃 , and embeds the result).
This, in turn, depends on how much the protocol from Lemma 3 blows up the size of the shares.

In fact, the protocol does incur a significant blowup – the shares are computed as a sum of 2𝑚 terms,
where each term is a product of embeddings, and one of the embeddings has been perturbated with noise
to protect against leakage. Nevertheless, a careful choice of 𝑁 ensures that the homomorphic properties
are sufficient to support these computations. Increasing the size of 𝑁 this much has a cost, though: the
computational complexity of the protocol will grow as much as 2𝑚2 (instead of the naive 2𝑚 one could
have hoped for). This is the main reason why our result is limited to batching up to 𝑡 =

√︁
log 𝜆 since 2𝑚2

must remain polynomial (and 𝑚 = 𝑂(𝑡 )). We defer the remaining technical details on these issues to the
main body.

2.4 Batch Function Evaluation

We now turn our attention to the second downside of our template: the unpacking procedure has a cost
scaling as𝑂(𝑡 · 𝜆). Here, we make a simple but crucial observation: in the protocol from [CHHK25], when
computing shares of 𝑦 · 𝑓 (𝑥 ) the message from the garbler to the evaluator depends solely on 𝑦, and not on
the function 𝑓 ! The only dependency on 𝑓 appears in the local computation of the parties. A consequence
of this observation is that when 𝑦 stays the same across multiple instances, G and E can reuse the same
𝑂(𝜆)-bit message to compute shares of 𝑦 · 𝑓𝑖 (𝑥 ) for an arbitrary number of functions 𝑓𝑖 . This simple but
powerful observation immediately allows to reduce the cost of unpacking from 𝑂(𝑡𝜆) to 𝑂(𝜆).

2.5 Dealing with Circular Security

We now discuss an important aspect that we have glossed over so far. The protocol claimed in Lemma 3
can be proven secure under power-DDH only if the garbler input𝑦 is independent of ∆. Indeed, abstracting
out some details, recall that power-DDH says that given a secret ℎ←$G, a secret exponent 𝛼←$Z𝑝 , no
efficient adversary should, given the ℎ𝛼𝑖 for all nonzero 𝑖 from −𝐵 to 𝐵, be able to distinguish ℎ from
random. In the protocol of [CHHK25], the evaluator will learn a value of the form 𝑦 + 𝐻 (ℎ𝑧), where 𝑧 is
some value known to the evaluator and 𝐻 is a suitable hash function from G to Z𝑝−1. Then, security is
shown by using power-DDH to replace ℎ with a random group element, effectively replacing 𝐻 (ℎ𝑧) with a
random value, hence hiding 𝑦. However, the secret exponent 𝛼 is tied to the MAC ∆ used in the protocol:
given a generator 𝐺 of Z𝑝 , they satisfy the relation 𝛼 = 𝐺∆ mod 𝑝 . Hence, whenever we decide to set the
garbler’s input to ∆ in this protocol (which we do in several steps), we leak ∆ + 𝐻 (ℎ𝑧) to the evaluator,
where the masked value is now a function of the secret exponent 𝛼 itself, making it impossible to invoke
power-DDH to randomize this term!
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We provide two alternatives to deal with this issue. First, we formalize the exact security notion re-
quired to prove the security of our schemes. In essence, the notion states that terms of the form𝐻 (ℎ𝑧)+∆ ·𝑣
for known (𝑧, 𝑣) should look jointly indistinguishable from random to an adversary knowing the ℎ𝛼𝑖 for
𝑖 ̸= 0. Then, we prove that when modeling the group as a generic group (in Shoup’s variant of the GGM)
and the hash function 𝐻 as a random oracle, this assumption holds unconditionally. Because a random
oracle can be constructed from Shoup’s GGM, this implies that our entire garbling scheme can be proven
secure in the GMM.

Second, we use the same strategy as [CHHK25]: we rely instead on a leveled version, where we use a
different ∆𝑗 for each layer and only use the secretℎ 𝑗 associated with the ∆𝑗 from a layer to mask ∆𝑗+1. With
this change, security can be proven under the power-DDH assumption and the (non-circular) correlation
robustness of the hash function for a suitable family of “exponential correlations”. The price to pay is
twofold: first, we must now include in the garbled circuit a tuple of the form (ℎ𝛼𝑖 )𝑖 for each layer, adding
a term depth(C) × poly(𝜆) to the size of the garbled circuit. Second, and more annoyingly, our packing
procedure crucially requires that all the values being packed are authenticated under the same ∆. This
constrains us to restrict our attention to layered Boolean circuits, where all the parent nodes of a layer
are in the previous layer, ensuring that when evaluating the 𝑗-th layer, all the nodes to be packed are
authenticated with the same ∆𝑗−1.

3 Preliminaries

We begin by introducing the notation that will be used throughout the subsequent sections.

General notation. Given a distribution D (resp. a set 𝑆), we write 𝑥←$D (resp. 𝑥←$ 𝑆) to denote that 𝑥
is sampled from D (resp. that 𝑥 is sampled uniformly over 𝑆). Given an integer 𝐵, we denote by [𝐵] the
set {0, · · · , 𝐵}, by [±𝐵] the set {−𝐵,−𝐵 + 1, · · · , 0, · · · , 𝐵 − 1, 𝐵}, and by [𝐵]∗, [±𝐵]∗ the sets sets [𝐵], [±𝐵]
without 0. When convenient, we let poly denote an unspecified polynomial.

Arithmetic. Given integers 𝑢, 𝑛, we write [𝑢 mod 𝑛] to denote the representative of 𝑢 mod 𝑛 as an element
of [𝑛 − 1] ⊂ N. More generally, if 𝑢 denotes a polynomial, 𝑛 an integer, and 𝑃 a polynomial, we write
[𝑢 mod 2, 𝑃] to denote the representative of (𝑢 mod 2) mod 𝑃 as an element of N[𝑋 ] of degree at most
deg(𝑃 ) − 1 and with coefficients in [𝑛 − 1].

Polynomials. Given a parameter𝑚, we let 𝑃𝑚 denote an irreducible degree-𝑚 over F2. We view elements
of F = F2𝑚 as polynomials over F2[𝑋 ]/𝑃𝑚(𝑋 ). For any ring R, we write R[𝑋 ;𝑚] to denote the set of
polynomials 𝑎 ∈ R[𝑋 ] with deg(𝑎) ≤ 𝑚. Given a polynomial 𝑟 = ∑

𝑖 𝑟 [𝑖] · 𝑋 𝑖 , let Eval𝑁 denote the
procedure that, on input 𝑟 , returns 𝑟 (𝑁 ) = ∑

𝑖 𝑟 [𝑖] ·𝑁 𝑖 . By default, addition (“+”) refers to the addition over
the structure the operands live in. As we often switch between interpretations (e.g., viewing an element
of F2𝑚 ≡ F2[𝑋 ]/𝑃 (𝑋 ) as an element of Z[𝑋 ]), we add clarification whenever there is an ambiguity. We also
sometimes write ⊕ to denote the bitwise-XOR to make it clear that the coefficient-wise addition is done
modulo 2.

Garbling. Throughout this paper, we let G denote the garbler, and E denote the evaluator. We use the
notation ⟨𝑥⟩ for additive (or subtractive) shares of 𝑥 . Since this sharing is frequently between a garbler
and an evaluator, we will use ⟨𝑥⟩G to denote the garbler’s share of 𝑥 and ⟨𝑥⟩E to denote the evaluator’s
share of 𝑥 .

We use the standard definition of garbling schemes from [BHR12], specialized as in previous works
[ZRE15], to the setting of Boolean circuits.
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Definition 1 (Garbling Scheme). A garbling scheme GC for Boolean circuits consists of the following
algorithms.

• GC.Garble(1𝜆, C): A PPT algorithm that on input 1𝜆 and a Boolean circuit C, outputs (Ĉ, e, d) where
Ĉ is a garbled circuit, e is an encoding information, and d is a decoding information.

• GC.Enc(e, 𝑥) : A polynomial time algorithm that on input e and 𝑥 ∈ {0, 1} |𝐼 (C) | , output a garbled
input 𝑥 .

• GC.Eval(Ĉ, 𝑥 ) : A polynomial time algorithm that on input a garbled circuit and a garbled input,
outputs a garbled output 𝑝 .

• GC.Dec(d, 𝑦) : A polynomial time algorithm that on input the decoding information and the garbled
output, outputs 𝑦 ∈ {0, 1} |𝑂(C) | .

A garbling scheme is correct if for every Boolean circuitC, every (Ĉ, e, d) in the support ofGC.Garble(1𝜆, C),
and every input 𝑥 ∈ {0, 1} |𝐼 (C) | , it holds that

GC.Dec(d,GC.Eval(Ĉ,GC.Enc(e, 𝑥))) = C(𝑥 ).

Furthermore, a garbling scheme is private if there exists a simulator SimGC such that for every infinite
family {C𝜆}𝜆∈N of Boolean circuits with |C𝜆 |≤ poly(𝜆) and every infinite family of inputs {𝑥𝜆}𝜆∈N with
|𝑥𝜆 |= |𝐼 (C𝜆)| for every 𝜆 ∈ N, the following distribution families (parameterized with 𝜆) are indistinguish-
able:

{(Ĉ, 𝑥, d)←$ SimGC(1𝜆, C𝜆, C(𝑥𝜆))}
{(Ĉ, 𝑥, d) : (Ĉ, e, d)←$GC.Garble(1𝜆, C), 𝑥←$GC.Enc(e, 𝑥𝜆)}

3.1 Generic Group Model

We rely on Shoup’s generic group model [Sho97] (GGM). For simplicity, we restrict our attention to prime
order groups.

Definition 2 (Shoup’s GGM). Let 𝑝 denote a prime. Fix a set G of cardinality 𝑝 and let 𝜎 denote a random
bijective mapping from Z𝑝 to G. Given 𝑝 (available to all parties), in Shoup’s GGM, all parties have access
to a group oracle OG with the following queries:

• Encode(𝑥 ): given 𝑥 ∈ Z𝑝 , return 𝜎(𝑥 ).

• Add(𝑎, 𝑏, 𝜎(𝑥 ), 𝜎(𝑦)): given 𝑎, 𝑏 ∈ Z𝑝 and 𝜎(𝑥 ), 𝜎(𝑦) ∈ G, set 𝑧 := 𝑎 · 𝑥 + 𝑏 · 𝑦 mod 𝑝 and return 𝜎(𝑧).

We let 𝑔 := Encode(1) denote a fixed generator of G. Note that any party can sample uniformly from
G given one call to Encode. As a shorthand for exponentiations, given 𝑥 ∈ Z𝑝 and ℎ ∈ G, we write 𝑥 • ℎ
to denote Add(𝑥, 0, ℎ, Encode(0)) = Encode(𝑥 · 𝑦) where ℎ = Encode(𝑦).
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3.2 Boolean Circuits

A circuit is a directed acyclic graph. Internal nodes are called gates, nodes of indegree 0 are called input
gates, and nodes of outdegree 0 are called output gates. Edges are called wires. In this work, we consider
polynomial-size Boolean circuits of fan-in 2 over the basis {⊕,∧}. Given a circuit C, we let 𝐷 := depth(C)
denote the depth of C (the length of the longest path from an input to an output), 𝐼 (C) denote the set of
input wires,𝑊 (C) denote the set of all wires,𝑂(C) denote the set of output wires, and Γ(C) denote the set
of gates. We write |C| to denote the size of C (the number of gates in C).
Layered circuits. In a layered boolean circuit C, the set of gates Γ(C) can be partitioned into𝐷 = depth(C)
layers (L1, . . . ,L𝐷 ) such that every wire connects adjacent layers i.e., every edge (𝑢, 𝑣) ∈ C is such that
𝑢 ∈ L𝑖 and 𝑣 ∈ L𝑖+1 for some 𝑖 ∈ [𝐷 − 1]. Thus, the inputs to gates in L1 consist only of the circuit inputs.
Any boolean circuit of size 𝑠 and depth 𝐷 can be computed by a layered circuit of size 𝑠𝐷 , with a lower
bound of 𝑠 log 𝑠 .
Rate of Boolean garbling. The rate of a boolean garbling scheme is a measure of the efficiency of the
scheme.
Definition 3 (Rate of a boolean garbling scheme). Let C be a class of boolean circuits, and let GC be a
boolean garbling scheme for C. The rate of GC is defined as

lim inf
C∈C

min
Ĉ∈S

min
𝑥

|𝐶 |+|𝐼 (C)|
|Ĉ |+|e|

where S = Sup(GC.Garble(1𝜆, C)), the minimum is taken over all admissible inputs to C, and the limit
infimum is taken over C partially ordered by subcircuit inclusion.

For garbling schemes in this work, the size of the garbled circuit Ĉ primarily depends on the size (and
depth) of the circuit C and the size of the encoding information e is O(𝜆 · 𝐼 (C)). In this case, it suffices to
consider the rate as

min
C∈C
𝑥

|C|
|Ĉ |

where Ĉ is the size of the garbled circuit corresponding to C.

3.3 Preliminaries on Power-DDH

We let GrpGen(1𝜆) denote a deterministic algorithm that, on input 1𝜆 , outputs a tuple (G, 𝑝, 𝑔) where G is
a cyclic group of order a prime 𝑝 of length 𝑂(𝜆) bits, and 𝑔 is a generator of G. We recall the variant of
power-DDH introduced in [CHHK25]:
Definition 4 (𝐵-power-DDH assumption). Let 𝐵 = 𝐵(·) be a polynomial. The 𝐵-power-DDH assumptions
holds with respect to GrpGen if for all large enough security parameter 𝜆, denoting (G, 𝑝, 𝑔) := GrpGen(1𝜆),
the following distributions are computationally indistinguishable:

D0 :=
{
(𝑔𝑖 )𝑖∈[±𝐵(𝜆)] : 𝛼←$Z∗𝑝 , ℎ←$G, (𝑔𝑖 )𝑖∈[±𝐵(𝜆)] ← (ℎ𝛼𝑖 )𝑖∈[±𝐵(𝜆)]

}
D1 :=

{
(𝑔𝑖 )𝑖∈[±𝐵(𝜆)] : 𝛼←$Z∗𝑝 , ℎ, 𝑔0←$G, (𝑔𝑖 )𝑖∈[±𝐵(𝜆)]∗ ← (ℎ𝛼𝑖 )𝑖∈[±𝐵(𝜆)]

}
.

As shown in [CHHK25], this formulation of power-DDH is equivalent to the other traditional formu-
lation of the power-DDH assumption [GJM03, CNs07] (where the last term ℎ𝛼

𝐵 is the one that should be
indistinguishable from random), and more generally to the variant where all terms ℎ𝛼𝑖 are replaced by
random, up to a factor-2 loss in the size of 𝐵.
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3.4 Reverse Multiplication-Friendly Embeddings

Reverse Multiplication-Friendly Embeddings (RMFE) [CCXY18] allow computations over tuples of binary
values, where addition and multiplication are performed coordinate-wise, to be embedded into computa-
tions over an extension field. Ideally, such an embedding would be a ring isomorphism that preserves both
addition and multiplication i.e., the embedding would be a map Φ : F𝑡2 → F2𝑡 such that Φ(x+y) = Φ(x)+Φ(y)
and Φ(x · y) = Φ(x) · Φ(y). However, such an isomorphism cannot exist: while F𝑡2 and F2𝑡 are isomorphic
as additive groups, their multiplicative structures differ (e.g., F𝑡2 has zero divisors while F2𝑡 does not). To
circumvent this issue, RMFEs provide a mapping Φ : F𝑡2 → F2𝑚 with a weaker guarantee: it allows em-
bedding a single multiplication over F𝑡2 as multiplication over F2𝑚 . After each multiplication, the result in
F2𝑚 must be mapped back to F𝑡2 using Ψ : F2𝑚 → F𝑡2, then re-embedded into F2𝑚 using Φ before another
multiplication can be performed. We next recall the definition of RMFEs.

Definition 5 (Reverse Multiplication Friendly Embeddings [CCXY18]). Let 𝑞 be a prime power, F𝑞 be a
field of 𝑞 elements, and let 𝑚, 𝑡 ≥ 1 be integers. A pair (Φ,Ψ) is called a (𝑡,𝑚)𝑞-reverse multiplication
friendly embedding (RMFE) if Φ : F𝑡𝑞 → F𝑞𝑚 and Ψ : F𝑞𝑚 → F𝑡𝑞 are two F𝑞-linear maps satisfying

x · y = Ψ (Φ(x) · Φ(y))

for all x, y ∈ F𝑡𝑞 .

Let 1 = (1, . . . , 1) ∈ F𝑡2 and let Φ−1 : F2𝑚 → F𝑡2 be defined as Φ−1(𝑥 ) = Ψ(Φ(1) · 𝑥 ). It then follows that
for all x ∈ F𝑡2, Φ−1(Φ(x)) = Ψ(Φ(1) · Φ(x)) = x, and thus, Φ−1 can be used for decoding an embedded value
𝑥 ∈ F2𝑚 . Moreover, it is easy to see that Φ−1 is also F2-linear.

Our use of RMFEs is motivated by the fact that computation over the extension field F2𝑚 can be ex-
pressed as an arithmetic circuit, making it compatible with efficient techniques for arithmetic garbling.
Consequently, the rate of the embedding, 𝑡/𝑚, is crucial for ensuring that the efficiency of computation
over F2𝑚 translates to computation over F𝑡2. The following lemma from [CCXY18] establishes the existence
of constant rate RMFEs.

Lemma 4 (Constant rate RMFE [CCXY18]). For every finite prime power 𝑞, there exists a family of (𝑡,𝑚)𝑞-
RMFE where𝑚 = Θ(𝑡).

4 Correlation-Robustness for Exponential Correlations

Given a secret 𝑠 , a hash function H is said to be correlation-robust for a class of correlations𝐶 if (informally)
samples of the form H(𝐶(𝑥, 𝑠)) for public inputs 𝑥 ’s are indistinguishable from random. Several classes of
correlations have been commonly used in the literature, such as additive correlations [IKNP03] (𝐶(𝑥, 𝑠) =
𝑥 + 𝑠), affine correlations [SS24] (𝐶((𝑥0, 𝑥1), 𝑠) = 𝑥0 · 𝑠 +𝑥1), group-induced correlations [AMN+18] (𝐶(𝑥, 𝑠) =
𝑥 · 𝑠 where 𝑥, 𝑠 belong to some group (G, ·)) and exponential correlations [BCM+24, CHHK25] (𝐶(𝑥, 𝑠) = 𝑠𝑥
where 𝑠 ∈ G and 𝑥 ∈ Zord(G)).

Tweakable circular correlation-robustness (TCCR). Previous works on garbled circuit typically re-
quire a strengthening of the notion of correlation-robustness:

• A hash function H is tweakable correlation-robust for a class of correlations𝐶 if (informally) samples
of the form H(𝐶(𝑥, 𝑠), 𝑦) are indistinguishable from random given public inputs 𝑥 ’s and public tweaks
𝑦’s (where all pairs (𝑥,𝑦) are distinct).
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• A hash functionH is circularly correlation-robust for𝐶 if (informally) samples of the formH(𝐶(𝑥, 𝑠))+
𝐿(𝑠) are indistinguishable from random, where the 𝑥 ’s are public inputs and the 𝐿’s are public linear
functions. In other words, the hash outputs can be used to mask (linear functions of) the secret
key 𝑠 . If the hash can additionally take a tweak 𝑦 and samples of the form 𝐻 (𝐶(𝑥, 𝑠), 𝑦) + 𝐿(𝑠) are
indistinguishable from random, we say that H is tweakable circular correlation-robust (TCCR) for the
correlation 𝐶 .

Circular correlation-robustness was first defined and studied in [CKKZ12]. Several variants have been
used and refined in subsequent works [ZRE15, GKWY20]. The variant used in our work is closer in spirit
to the notion of tweakable circular correlation-robustness (TCCR) used in [RR21].

Tweakable correlation-robust hashing for exponential correlations. Given a security parameter 𝜆,
fix group parameters (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆) (recall that𝑔 generatesG, and𝐺 generates Z∗𝑝 ). We start by
defining the simplest variant of correlation-robustness considered in this work, where no circular security
is required, and where the adversary is not given access to auxiliary inputs.

Definition 6 (Tweakable correlation-robust hashing for exponential correlations overG). Given a security
parameter 𝜆, let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆). Let H = {H𝜆}𝜆∈N be a family of hash functions H𝜆 : G→ Z𝑝−1.
Given ℎ ∈ G, let OH,ℎ denote the oracle that, on input (𝑥,𝑦) ∈ Z𝑝−1 × {0, 1}∗, returns H(ℎ𝑥 , 𝑦).

We say that the hash family H = {H𝜆}𝜆∈N is a TCR hash for exponential correlations over G if for every
probabilistic polynomial-time adversary A, it holds that���Pr[AH,OH,ℎ (1𝜆) = 1] − Pr[AH,R(1𝜆) = 1]

��� ≤ negl(𝜆),

where the probability is taken over the random choice of ℎ←$G and of a random oracle R : Z𝑝−1 ×
{0, 1}∗ → Z𝑝−1.

The above assumption refers to (tweakable) correlation-robustness for the same correlation as [CHHK25],
where the secret is a random ℎ←$G, and the correlation is given by𝐶(𝑥, ℎ) = ℎ𝑥 for 𝑥 ∈ Z𝑝−1. We call this
correlation the exponential correlation over G.

4.1 Circular Correlation-Robustness in the Generic Group Model

In this work, we rely on (a form of) tweakable circular correlation-robust hash for the exponential corre-
lation over G. In addition, we need a strengthening of the notion where the adversary is given auxiliary
information in the form of group elements ℎ𝑖 := ℎ𝐺𝑖 ·∆ for a random ∆←$Z𝑝−1 and various 𝑖 ̸= 0, and where
circular security must hold with respect to linear functions of ∆.

Definition 7 (TCCR hashing for exponential correlation with auxiliary powers over G). Given a security
parameter 𝜆, let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆). Let H = {H𝜆}𝜆∈N be a family of hash functions H𝜆 : G→ Z𝑝−1.
Given ∆ ∈ Z𝑝−1 and ℎ ∈ G, let OH,ℎ,∆ denote the oracle that, on input (𝑥,𝑦, 𝑧) ∈ Z𝑝−1 × {0, 1}∗ × Z𝑝−1,
returns H(ℎ𝑥 , 𝑦) + 𝑧 · ∆ mod 𝑝 − 1. We say that a list of queries to OH,ℎ,∆ is admissible if for every pair of
queries (𝑥,𝑦, 𝑧), (𝑥 ′, 𝑦′, 𝑧′), if (𝑥,𝑦) = (𝑥 ′, 𝑦′), then 𝑧 = 𝑧′.

Given a polynomial bound 𝐵 = 𝐵(𝜆), we say that the hash family H = {H𝜆}𝜆∈N is a TCCR hash for expo-
nential correlation with 2𝐵 − 1 auxiliary powers over G, denoted (𝐵,G)-ap-eTCCR, if for every probabilistic
polynomial-time adversary A that makes admissible queries, it holds that

Advap-eTCCR
A,1𝜆

:=
���Pr[AH,OH,ℎ,∆ ((ℎ𝑖 )𝑖∈[±𝐵]\{0} ) = 1] − Pr[AH,R((ℎ𝑖 )𝑖∈[±𝐵]\{0} ) = 1]

���
13



is negligible, where the probability is taken over the random choice of (∆, ℎ)←$Z𝑝−1 ×G and of a random
oracle R : Z𝑝−1 × {0, 1}∗ ×Z𝑝−1 → Z𝑝−1, and where the ℎ𝑖 ’s are defined as follows: set 𝛼 := 𝐺∆ mod 𝑝 and
define ℎ𝑖 := ℎ𝛼𝑖 for all 𝑖 ∈ [±𝐵].

The theorem below shows that, when modeling H as a random oracle and G as a generic group, the
assumption of Definition 7 holds unconditionally:

Theorem 5. LetG be modeled via a generic group oracle OG (Definition 2), H be modeled as a random oracle,
and A be an adversary making at most 𝑄G queries to OG, 𝑄H queries to H, and 𝑄O queries to OH,ℎ,∆. Then

Advap-eTCCRA,1𝜆 ≤ (𝑄G +𝑄O)2 + (𝑄O + 1) · (2𝐵 · (𝑄G + 1)2 + (𝑄O − 1) ·𝑄H/2)
𝑝

We note that since a random oracle can be implemented unconditionally in Shoup’s GGM, one can
choose a H such that the resulting assumption can be proven solely in Shoup’s GGM.

Proof. We prove Theorem 5 via a sequence of hybrids.

Hybrid0. This is the real game (in the GGM): the experiment samples ∆←$Z𝑝−1 and ℎ←$ G. It sets
𝛼 := 𝐺∆ mod 𝑝 and defined ℎ𝑖 := 𝛼𝑖 • ℎ for all 𝑖 ∈ [±𝐵]. We let the experiment sample the random oracle
H lazily upon queries of either A or OH,ℎ,∆ to H. On input (ℎ𝑖 )𝑖∈[±𝐵]\{0} , A makes queries to OG, H, and
OH,ℎ,∆, and returns a bit 𝑏. We let Pr[Hybrid0] denote the probability that 𝑏 = 1 in this hybrid.

Hybrid1. In this game, we modify the sampling of 𝜎 (see Definition 2). Instead of sampling an injective
mapping 𝜎 before the game, the experiment maintains a list 𝐿 of pairs (𝑥, 𝜎(𝑥 )). Upon receiving any query
Encode(𝑥 ) from either A or OH,ℎ,∆, if 𝐿 contains a pair (𝑥, 𝜎(𝑥 )), the experiment returns 𝜎(𝑥 ). Otherwise,
the experiment samples 𝑦←$ 𝑆 , adds (𝑥,𝑦) to 𝐿, and returns 𝑦. Conditioned on no collision occurring
during this process, the mapping 𝜎 sampled this way is a uniform injective mapping, and this hybrid is
perfectly indistinguishable from the previous one. Bounding the probability of collisions (pairs (𝑥, 𝑥 ′) with
𝜎(𝑥 ) = 𝜎(𝑥 ′)), we have:

|Pr[Hybrid1] − Pr[Hybrid0]|≤ (𝑄G +𝑄O)2

𝑝
.

Hybrid2. In this game, we slightly modify the sampling of the ℎ𝑖 ’s. Namely, we let the experiment sample
ℎ−𝐵←$ G and define ℎ𝑖 := (𝛼𝐵+𝑖 ) • ℎ−𝐵 for 𝑖 = −𝐵 + 1 to 𝐵. For convenience, we rename ℎ−𝐵 as 𝑓 and ℎ𝑖 as
𝑓𝐵+𝑖 , so that 𝑓𝑖 = 𝛼𝑖 • 𝑓 for 𝑖 = 0 to 2𝐵. Note that ℎ = 𝑓𝐵 is the secret group element. This change is purely
syntactical, and we have

Pr[Hybrid2] = Pr[Hybrid1].

Hybrid3. In this game, we delay the choice of ∆ (and 𝛼) until the first query ofA to OH,ℎ,∆. This is achieved
by simulating the generic group via symbolic computations. At the start of the game, the experiment
defines a formal variable 𝑋 . It samples (𝑓0, 𝑓1, · · · , 𝑓𝐵−1, 𝑓𝐵+1, · · · , 𝑓2𝐵)←$ G2𝐵+1 (note that 𝑓𝐵 is not sampled)
and stores the pairs (𝑋 𝑖 , 𝑓𝑖 ) for all 𝑖 ̸= 𝐵, as well as the pair (1, 𝑔) (recall that 𝑔 is defined as Encode(1)) in
the list 𝐿. Then, it proceeds as follows:

Before the first query to OH,ℎ,∆. The experiment maintains the invariant that 𝐿 is a list of pairs (𝑃,𝑢 ∈ G)
where 𝑃 is a multivariate polynomial (with coefficients over Z𝑝 ) of the form 𝑃 ′(𝑋,𝑋1, · · · , 𝑋𝑛) =∑2𝐵
𝑖=0 𝑐𝑖 · 𝑋 𝑖 + Lin(𝑋1, · · · , 𝑋𝑛), where 𝑐𝐵 = 0 and Lin is a linear multivariate polynomial.
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• Upon receiving a query Encode(𝑥 ), it behaves as in Hybrid2: if 𝐿 contains a pair (𝑥, 𝜎(𝑥 )), it
returns 𝜎(𝑥 ); else, it returns 𝑦←$ G and adds (𝑥,𝑦) to 𝐿.

• Upon receiving a query Add(𝑎, 𝑏,𝑢, 𝑣) with 𝑎, 𝑏 ∈ Z𝑝 and 𝑢, 𝑣 ∈ G, if 𝐿 does not contain a pair
(𝑃𝑢, 𝑢) (resp. a pair (𝑃𝑣, 𝑣)), it defines a new formal variable 𝑋𝑢 and adds (𝑃𝑢 := 𝑋𝑢, 𝑢) to 𝐿 (resp.
it defines 𝑋𝑣 and stores (𝑃𝑣 := 𝑋𝑣, 𝑣)). If 𝐿 contains a pair (𝑎 · 𝑃𝑢 +𝑏 · 𝑃𝑣,𝑤 ), it returns𝑤 . Else, it
returns𝑤←$ G and adds (𝑎 · 𝑃𝑢 + 𝑏 · 𝑃𝑣,𝑤 ) to 𝐿.

Upon receiving the first query to OH,ℎ,∆. Upon receiving a query (𝑥,𝑦, 𝑧) toOH,ℎ,∆, the experiment sam-
ples ∆←$Z𝑝−1 and sets 𝛼 := 𝐺∆ mod 𝑝 . Then, it does the following:

Storing 𝑥 • 𝑓𝐵 . The experiment samples 𝑣←$ G and adds (𝑥 · 𝑋𝐵, 𝑣) to 𝐿.
Collapsing 𝐿. Let 𝑋,𝑋1, · · · , 𝑋𝑛 denote all formal variables appearing in 𝐿 (where 𝑛 ≤ 𝑄G). The

experiment samples (𝑥1, · · · , 𝑥𝑛)←$Z𝑛𝑝 and substitutes 𝑃𝑢 (𝑋,𝑋1, · · · , 𝑋𝑛) with 𝑃𝑢 (𝛼, 𝑥1, · · · , 𝑥𝑛)
across all pairs (𝑃𝑢, 𝑢) in 𝐿. If a collapse happens, i.e. 𝑃𝑢 (𝛼, 𝑥1, · · · , 𝑥𝑛) = 𝑃𝑣(𝛼, 𝑥1, · · · , 𝑥𝑛) for two
distinct polynomials 𝑃𝑢, 𝑃𝑣 ∈ 𝐿, it raises a flag Fail𝛼 .

Sampling the answer. If a previous query to H of the form H(𝑣,𝑦) had been made, it raises a flag
FailH and returns this answer. Else, it sample 𝑎←$Z𝑝−1, returns 𝑎, and stores H(𝑣,𝑦) := 𝑎 − 𝑧 ·
∆ mod 𝑝 − 1.

For all subsequent queries. The experiment behaves as in Hybrid2.

We prove the following:

Lemma 6.
|Pr[Hybrid3] − Pr[Hybrid2]|≤ 2𝐵 · (𝑄G + 1)2 +𝑄H

𝑝
.

Proof. First, we observe that conditioned on Hybrid3 not failing (i.e. not raising a flag Fail𝛼 or FailH),
Hybrid2 and Hybrid3 are perfectly indistinguishable: all answers of the experiment to queries to OG,H
before the first query to OH,ℎ,∆ are distributed identically to Hybrid2 conditioned on Fail𝛼 not being raised,
and the distribution of H(𝑣,𝑦) := 𝑎−𝑧 ·∆ mod 𝑝−1 for a uniform 𝑎 (conditioned on FailH not being raised) is
identical to the distribution of H(𝑣,𝑦) in Hybrid2. It remains to bound the probability of the failure events.

First, note that 𝛼 = 𝐺∆ mod 𝑝 for ∆←$Z𝑝−1 is uniformly distributed over Z𝑝 . Fix two distinct polyno-
mials 𝑃𝑢, 𝑃𝑣 from 𝐿. Write

𝑃𝑢 (𝑋,𝑋1, · · · , 𝑋𝑛) = 𝑃 ′𝑢 (𝑋 ) + Lin𝑢 (𝑋1, · · · , 𝑋𝑛),
𝑃𝑣(𝑋,𝑋1, · · · , 𝑋𝑛) = 𝑃 ′𝑣(𝑋 )𝑑𝑖 · 𝑋 𝑖 + Lin𝑣(𝑋1, · · · , 𝑋𝑛),

where 𝑃 ′𝑢, 𝑃 ′𝑣 are univariate polynomials of degree at most 2𝐵. Then, let 𝑃 ′ := 𝑃 ′𝑢 −𝑃 ′𝑣 and Lin := Lin𝑣 −Lin𝑢 .
We have

𝑃𝑢 (𝛼, 𝑥1, · · · , 𝑥𝑛) = 𝑃𝑣(𝛼, 𝑥1, · · · , 𝑥𝑛)
⇐⇒ 𝑃 ′(𝛼) = Lin(𝑥1, · · · , 𝑥𝑛).

Now, two cases can occur: either 𝑃 ′ = 0 (as a polynomial), in which case Lin ̸= 0 (as 𝑃𝑢 ̸= 𝑃𝑣) and the
probability (over a random choice of (𝑥1, · · · , 𝑥𝑛)) that Lin(𝑥1, · · · , 𝑥𝑛) = 0 is exactly 1/𝑝 . Or 𝑃 ′ ̸= 0, in which
case 𝑃 ′ has at most 2𝐵 roots (as it has degree at most 2𝐵) and for any (𝑥1, · · · , 𝑥𝑛), the probability (over
the random choice of 𝛼) that 𝑃 ′(𝛼) = Lin(𝑥1, · · · , 𝑥𝑛) is at most 2𝐵/𝑝 . Given that 𝐿 contains at most 𝑄G + 1
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entries (one for each query of A to G, and the pair (𝑥 · 𝑋𝐵, 𝑣)), it follows from a straightforward union
bound that Pr[Fail𝛼 ] ≤ (𝑄G + 1)2 · 2𝐵/𝑝 . For FailH, observe that 𝑣 is sampled uniformly at random from G,
and the probability that any query ofA to H is of the form (𝑣,𝑦) is therefore at most𝑄H/𝑝 . This concludes
the proof. ■

Hybrid3.2. This hybrid is defined identically to Hybrid3, except that it uses symbolic computations before
the second query to OH,ℎ,∆. Upon receiving the first query (𝑥1, 𝑦1, 𝑧1) to OH,ℎ,∆, it does the following:

• It samples 𝑣1←$ G and adds (𝑥1 · 𝑋𝐵, 𝑣1) to 𝐿.

• It returns 𝑎1←$Z𝑝−1 and proceeds with the symbolic emulation of the generic group as before.

Upon receiving the second query (𝑥2, 𝑦2, 𝑧2) to OH,ℎ,∆, it samples ∆←$Z𝑝−1 and executes the steps
storing 𝑥2 • 𝑓𝐵 , collapsing 𝐿, and sampling the answers from Hybrid3, with the following modification
to the first and last steps:

• In the first step, if 𝑥2 = 𝑥1, it simply sets 𝑣2 = 𝑣1.

• In the last step, if (𝑥1, 𝑦1) = (𝑥2, 𝑦2), it sets 𝑎2 := 𝑎1 (note that the security game forces 𝑧1 = 𝑧2 in this
case, as A is restricted to making admissible queries).

It behaves as Hybrid2 (and Hybrid3) for all subsequent queries. Until (and including) the first query
to OH,ℎ,∆, the answers of Hybrid3.2 are distributed identically to that of Hybrid3 (in particular, the answer
𝑎1 to the first query is sampled uniformly in both hybrids). The event Fail𝛼 is defined as in Hybrid3. We
modify the definition of the event FailH as follows:

FailH: the experiment raises FailH if the list of all queries made by A to H contains either a tuple (𝑣1, 𝑦
′)

or (𝑣2, 𝑦
′) for any 𝑦′.

Due to the symbolic evaluation, the answers all queries ofA to OG up to the second query to OH,ℎ,∆ are
totally independent of 𝑣1, 𝑣2, since all queries of A are with respect to tuples (𝑃𝑢, 𝑢) where the coefficient
of 𝑋𝐵 in 𝑃𝑢 is 0 (since A is not given access to the tuple (𝑋𝐵, 𝑓 )). Hence, 𝑣1 and 𝑣2 are perfectly random
and independent from A’s view (with the exception that 𝑣1 = 𝑣2 when 𝑥1 = 𝑥2), and we can bound FailH
by 2𝑄H/𝑝 .

Conditioned on Fail𝛼 and FailH not being raised after the secondOH,ℎ,∆ query,Hybrid3 andHybrid3.2 are
perfectly indistinguishable, and the probability of the failure events can be bounded by the same analysis
as Lemma 24. Note that when FailH is not raised, the answer 𝑎2 to the second query is either equal to 𝑎1,
or uniformly random (and independent of ∆). We get

|Pr[Hybrid3.2] − Pr[Hybrid3]|≤ 2𝐵 · (𝑄G + 1)2 + 2𝑄H

𝑝
.

Hybrid3.𝑖 . For 𝑖 = 3 to 𝑄O , we let Hybrid3.𝑖 be defined as follows: it uses symbolic evaluation up to the
𝑖-th query to OH,ℎ,∆. For 𝑗 = 1 to 𝑖 , it answers queries to OH,ℎ,∆ as follows: if (𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ) = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ) for
some 𝑘 < 𝑗 , it sets 𝑣 𝑗 := 𝑣𝑘 and returns 𝑎𝑘 . Else, it samples 𝑣 𝑗 ←$ G, adds (𝑥 𝑗 · 𝑋𝐵, 𝑣 𝑗 ) to 𝐿, and returns
𝑎 𝑗 ←$Z𝑝−1. After the collapsing 𝐿 and sampling the answers steps, it raises a flag Fail𝛼 if a collision
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occured during collapsing, and a flag FailH if the list of A’s queries to H contain a pair (𝑣 𝑗 , 𝑦′) for any 𝑦′.
It behaves as Hybrid3.(𝑖−1) afterwards. The same analysis as before shows

|Pr[Hybrid3.𝑖] − Pr[Hybrid3.(𝑖−1)]|≤
2𝐵 · (𝑄G + 1)2 + 𝑗 ·𝑄H

𝑝
.

Hybrid4. Observe that from Hybrid3.𝑄O , the oracle OH,ℎ,∆ behaves identically to a random oracle. In
Hybrid4, we replace OH,ℎ,∆ with a random oracle R (this is just a syntactic change at this step). In ad-
dition, the experiment uses the true generic oracle OG instead of using symbolic evaluation. By the same
argument as before, this hybrid is indistinguishable from the previous one unless the event Fail𝛼 is raised,
hence

|Pr[Hybrid4] − Pr[Hybrid3.𝑄O ]|≤ 2𝐵 · (𝑄G + 1)2

𝑝
,

which concludes the proof. ■

4.2 Leveled Circular Correlation-Robustness

We will also consider a leveled version of the assumption. In this version, there are 𝑑 levels. For each
𝑗 ≤ 𝑑 + 1, the security experiment samples (∆𝑗 , ℎ 𝑗 )←$Z𝑝−1 × G and sets 𝛼 𝑗 := 𝐺∆𝑗 mod 𝑝 and ℎ 𝑗,𝑖 := ℎ

𝛼𝑖
𝑗

𝑗

for all 𝑖 ∈ [±𝐵]. The adversary A is restricted to make at most 𝑑 adaptive batches of queries to the oracle,
and the oracle answer the 𝑗-th batch of queries with answers of the form H(ℎ𝑥𝑗 , 𝑦) + 𝑧 · ∆𝑗+1 mod 𝑝 − 1.

Definition 8 (Leveled TCCR hashing for exponential correlation with auxiliary powers over G). Given
a security parameter 𝜆, let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆). Let H = {H𝜆}𝜆∈N be a family of hash functions
H𝜆 : G → Z𝑝−1. Fix a (polynomial) depth parameter 𝑑 = 𝑑(𝜆). Let OH,h,∆ denote the following stateful
oracle:

OH,h,∆
1 : Initialize 𝜂 := 0
2 : parse h = (ℎ1, . . . , ℎ𝑑+1) ∈ G𝑑+1

3 : parse ∆ = (∆1, . . . ,∆𝑑+1) ∈ (Z𝑝−1)𝑑+1

4 : On input S =
{
(𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 )

} |S |
𝑗=1 ⊂ Z𝑝−1 × {0, 1}∗ × Z𝑝−1 :

5 : 𝜂 := 𝜂 + 1

6 : if 𝜂 ≤ 𝑑, return
(
H(ℎ𝑥 𝑗𝜂 , 𝑦 𝑗 ) + 𝑧 𝑗 · ∆𝜂+1 mod 𝑝 − 1

) |S |
𝑗=1

Given a polynomial bound 𝐵 = 𝐵(𝜆), we say that the hash family H = {H𝜆}𝜆∈N is a 𝑑-leveled TCCR hash
for exponential correlation with 2𝐵−1 auxiliary powers per level overG if for every probabilistic polynomial-
time adversary A, it holds that����Pr

[
AH,OH,h,∆

(
(ℎ𝑖, 𝑗 ) 𝑖≤𝑑+1

𝑗∈[±𝐵]∗

)]
− Pr

[
AH,R

(
(ℎ𝑖, 𝑗 ) 𝑖≤𝑑+1

𝑗∈[±𝐵]∗

)] ���� ≤ negl(𝜆),

where the probability is taken over the random choice of (∆𝑖 , ℎ𝑖 )←$Z𝑝−1 × G for 𝑖 ∈ [𝑑] and of a random
oracle R that on input a set 𝑆 of tuples (𝑥,𝑦, 𝑧) ∈ Z𝑝−1 × {0, 1}∗ × Z𝑝−1, outputs (𝑟1, · · · , 𝑟 |𝑆 | )←$ (Z𝑝−1) |𝑆 | ,
and where the ℎ𝑖, 𝑗 ’s are defined as follows: for 𝑖 ∈ [𝑑], set 𝛼𝑖 := 𝐺∆𝑖 mod 𝑝 and define ℎ𝑖, 𝑗 := ℎ

𝛼
𝑗

𝑖

𝑖
for all

𝑗 ∈ [±𝐵]∗.
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While the above definition is somewhat involved, the theorem below shows that under the power-
DDH assumption, any tweakable correlation-robust hash for the exponential correlation over G is also a
leveled TCCR hash for the exponential correlation with auxiliary powers over G.

Theorem 7. Let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆), let H be a family of TCR hash functions for exponential corre-
lation over G (Definition 6), and let 𝐵 = 𝐵(𝜆) be a polynomial bound. Then if the 𝐵-power-DDH assumption
(Definition 4) holds with respect to GrpGen∗, for all polynomial 𝑑 = 𝑑(𝜆), H is a 𝑑-leveled TCCR hash for
exponential correlation with 2𝐵 − 1 auxiliary powers per level over G (Definition 8).

Proof. Consider an arbitrary PPT adversary A against the 𝑑-leveled TCCR security of H. We will show
that A has negligible advantage by a straightforward hybrid argument.

Let O(𝑖)
H,h,∆ be a stateful oracle that is identical to OH,h,∆ except for the following: for all queries S, it

returns |S| uniformly random elements from Z𝑝−1 if 𝜂 ≤ 𝑖; otherwise, it responds as in OH,h,∆. Consider a
sequence of hybrids

Hybrid0,0 , Hybrid0,1 , . . . , Hybrid𝑖,0 , Hybrid𝑖,1 , Hybrid𝑖+1,0 , . . . , Hybrid𝑑,1

defined as follows.

• Hybrid0,0: This hybrid denotes AH,OH,h,∆ ((ℎ𝑖, 𝑗 )𝑖, 𝑗 ) as described in Definition 8.

• Hybrid𝑖,1: For each 𝑖 ∈ [𝑑], Hybrid𝑖,1 denotes AH,O(𝑖)
H,f𝑖 ,∆ ((ℎ𝑖, 𝑗 )𝑖, 𝑗 ) where

f𝑖 = (𝑓1, . . . , 𝑓𝑖+1, ℎ𝑖+2, . . . , ℎ𝑑+1),

(𝑓1, . . . , 𝑓𝑖+1) $←− G𝑖+1, and (h,∆, (ℎ𝑖, 𝑗 )𝑖, 𝑗 ) are distributed as in Hybrid𝑖,0. In other words, Hybrid𝑖,1
corresponds to the output of the adversary when the oracle returns uniformly random elements
from Z𝑝−1 for the first 𝑖 queries and computes the output as in OH,h,∆ for the last 𝑑 − 𝑖 − 1 queries. In
the (𝑖 + 1)-th query, it returns H(𝑓 𝑥𝑖+1, 𝑦) + 𝑧 · ∆𝑖+1 mod 𝑝 − 1 for every (𝑥,𝑦, 𝑧) in the queried input S.

• Hybrid𝑖,0: For each 𝑖 ∈ {1, . . . , 𝑑}, Hybrid𝑖,1 denotes AH,O(𝑖)
H,f𝑖 ,∆ ((ℎ𝑖, 𝑗 )𝑖, 𝑗 ) where

f𝑖 = (𝑓1, . . . , 𝑓𝑖 , ℎ𝑖+1, . . . , ℎ𝑑+1),

(𝑓1, . . . , 𝑓𝑖 )
$←− G𝑖 , and (h,∆, (ℎ𝑖, 𝑗 )𝑖, 𝑗 ) are distributed as in Hybrid𝑖−1,1. In other words, Hybrid𝑖,0 cor-

responds to the output of the adversary when the oracle returns uniformly random elements from
Z𝑝−1 for the first 𝑖 queries and computes the output as in OH,h,∆ for the last 𝑑 − 𝑖 queries.

We next show that, in the sequence of hybrids above, each hybrid is indistinguishable from the next
using the following two claims.

Claim. If the 𝐵-power-DDH assumption holds with respect to GrpGen∗ then for every 𝑖 ∈ [𝑑], Hybrid𝑖,0
c≈

Hybrid𝑖,1.

Proof. Note that Hybrid0 is identical to AH,O(0)
H,h,∆ ((ℎ𝑖, 𝑗 )𝑖, 𝑗 ) since the oracles OH,h,∆ and O(0)

H,h,∆ are equiva-
lent in this case. Thus, for any 𝑖 ∈ [𝑑], the only difference between Hybrid𝑖,0 and Hybrid𝑖,1 is that the
output of the (𝑖 + 1)-th query is computed as H(ℎ𝑥𝑖+1, 𝑦) + 𝑧 · ∆𝑖+1 mod 𝑝 − 1 in Hybrid𝑖,0 and as H(𝑓 𝑥𝑖+1, 𝑦) +
𝑧 · ∆𝑖+1 mod 𝑝 − 1 in Hybrid𝑖,1 for every (𝑥,𝑦, 𝑧) ∈ S. However, under the 𝐵-power-DDH assumption,
the uniformly random 𝑓𝑖+1 is indistinguishable from ℎ𝑖+1 given (ℎ𝑖, 𝑗 )𝑗 . It then immediately follows that
Hybrid𝑖,0

c≈ Hybrid𝑖,1. □
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Claim. IfH is a TCR hash for exponential correlation overG then for every 𝑖 ∈ [𝑑−1],Hybrid𝑖,1
c≈ Hybrid𝑖+1,0.

Proof. For any 𝑖 ∈ [𝑑 − 1], the only difference between Hybrid𝑖,1 and Hybrid𝑖+1,0 is that the output of the
(𝑖 + 1)-th query is computed as H(𝑓 𝑥𝑖+1, 𝑦) + 𝑧 · ∆𝑖+1 mod 𝑝 − 1 for a random group element 𝑓𝑖+1 in Hybrid𝑖,1
while inHybrid𝑖+1,0, the (𝑖+1)-th query’s output is a set of uniformly random elements fromZ𝑝−1. However,
if H is a TCR for exponential correlation then H(𝑓 𝑥𝑖+1, 𝑦) and hence the output of the oracle in Hybrid𝑖,1
are indistinguishable from random values in Z𝑝−1. This implies that Hybrid𝑖,1 is indistinguishable from
Hybrid𝑖+1,0. □

Since 𝑑 is polynomial in the security parameter, it follows from the above claims that Hybrid0,0
c≈

Hybrid𝑑,1. Moreover, observe that the oracle provided to the adversary in Hybrid𝑑,1 is identical to R, as
defined in Definition 8, since it does not use h = (ℎ1, . . . , ℎ𝑑+1) and returns uniformly random elements
from Z𝑝−1 for all 𝑑 queries. Since Hybrid0,0

c≈ Hybrid𝑑,1, we have����Pr
[
AH,OH,h,∆

(
(ℎ𝑖, 𝑗 ) 𝑖≤𝑑+1

𝑗∈[±𝐵]∗

)]
− Pr

[
AH,R

(
(ℎ𝑖, 𝑗 ) 𝑖≤𝑑+1

𝑗∈[±𝐵]∗

)] ���� ≤ negl(𝜆).

■

5 Building Blocks

5.1 Embedding Polynomials into Z𝑝

Given a degree-𝑚 polynomial 𝑎 ∈ F2[𝑋 ], we let (𝑎[𝑖])𝑖∈[𝑚] ∈ F𝑚+1
2 denote the list of its coefficients. In

this work, we manipulate embeddings of polynomials over Z𝑝 . Given parameters 𝑁 ≥ 2 and 𝑚 ∈ N, let
B(𝑁,𝑚) := (𝑁𝑚+1−1)/(𝑁 −1). We encode 𝑎 ∈ F2[𝑋 ] into 𝑎 ∈ [B(𝑁, deg(𝑎))] by interpreting 𝑎 as an element
of Z[𝑋 ] and computing 𝑎 := 𝑎(𝑁 ). When |B(𝑁, deg(𝑎))|< 𝑝 (looking ahead, this will always hold in our
constructions), we slightly abuse the notation and view 𝑎 as an element of Z𝑝 via the natural embedding
from [𝑝] to Z𝑝 . For any 𝑁 ≥ 2,𝑚 ∈ N, we let I𝑁,𝑚 := {𝑎 ∈ Z𝑝 : ∃𝑎 ∈ F2[𝑋 ], deg(𝑎) ≤ 𝑚,𝑎 = 𝑎(𝑁 )} denote
the subset of all valid embeddings of degree-at-most-𝑚 polynomials to Z𝑝 .

Procedures. We introduce below two procedures that are used to manipulate embeddings of polynomials
into Z𝑝 . In the procedures below, Z𝑝 is identified with the subset of integers {0, · · · , 𝑝 − 1}.

• toPoly𝑁 (𝑎) : On input 𝑎 ∈ Z𝑝 , parse 𝑎 = ∑𝑚
𝑖=0 𝑎[𝑖] · 𝑁 𝑖 (the 𝑁 -ary decomposition of 𝑎) and return

𝑎 := ∑𝑚
𝑖=0 𝑎[𝑖] ·𝑋 𝑖 ∈ Z[𝑋 ], a degree-𝑚 integer polynomial with coefficients in {0, 𝑁 − 1}. When 𝑁 is

clear from the context, we write 𝑎 := toPoly(𝑎).

• Mod𝑁 (𝑎,𝑀) : On input 𝑎 ∈ Z𝑝 and a modulus 𝑀 , compute 𝑏 := [toPoly𝑁 (𝑎) mod 𝑀] and return
𝑏 := 𝑏(𝑁 ). When 𝑁 is clear from the context, we write 𝑏 := Mod(𝑎,𝑀).

Above, we let all procedures take variable length inputs: the degree𝑚 is inferred from the input and
𝑁 . Furthermore, we let Mod take as second input either an integer 𝑀 ∈ N (in which case [𝑎 mod 𝑀] =
𝑏 ∈ Z𝑀 [𝑋 ]) or a polynomial 𝑀 ∈ 𝑍 [𝑋 ] (in which case [𝑎 mod 𝑀] = 𝑏 ∈ Z[𝑋 ]/𝑀). We slightly abuse the
notation and write, given an integer 𝑛 and a polynomial 𝑃 , Mod𝑁 (𝑎, (𝑛, 𝑃 )) to denote Mod𝑁 (Mod𝑁 (𝑎, 𝑛), 𝑃 )
(that is, the function that computes the polynomial associated to 𝑎, reduces it modulo 𝑛 and 𝑃 , and embeds
back the polynomial in Z𝑛[𝑋 ]/𝑃 over the integers).
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Input perturbation. We introduce a procedure that perturbates an element 𝑎 ∈ F2[𝑋 ] in the following
sense: the perturbation maps 𝑎 to a polynomial 𝑎′ ∈ Z[𝑋 ] such that 𝑎(𝑁 ) = Mod𝑁 (𝑎′(𝑁 ), 2) (i.e., 𝑎′ pre-
serves the parity of the value of the coefficients of 𝑎, and its coefficients do not overflow 𝑁 ), but 𝑎 can be
masked by a random Z[𝑋 ]-polynomial with small coefficients.

• Pert𝑐 (𝑎) : On input 𝑎 ∈ F2[𝑋 ], sample 𝑐 uniformly random shares (𝑎1, · · · , 𝑎𝑐 ) of 𝑎 over F2[𝑋 ; deg(𝑎)].
Interpret each 𝑎𝑖 as a polynomial over Z[𝑋 ] and return 𝑎′ = ∑𝑐

𝑖=1 𝑎𝑖 (where the sum is computed
over Z[𝑋 ]).

It is immediate to check that for any 𝑁 such that 𝑐 < 𝑁 , it holds that 𝑎(𝑁 ) = Mod𝑁 (𝑎′(𝑁 ), 2). The
following lemma shows that one can statistically hide 𝑎 by masking 𝑎′←$Pert𝑐 (𝑎) with a carefully chosen
element 𝑟 ∈ Z[𝑋 ] with small coefficients such that ∥𝑟 ∥∞ ≤ 𝑐 . We first define the appropriate distribution
over polynomials with small coefficients for integers𝑚,𝑐:

• RandSum𝑚,𝑐 : Sample (𝑟1, · · · , 𝑟𝑐 )←$F2[𝑋 ;𝑚]𝑐 and set 𝑟 := ∑𝑐
𝑖=1 𝑟𝑖 , where the 𝑟𝑖 ’s are interpreted as

polynomials over Z[𝑋 ;𝑚]. Output 𝑟 .

• RandSum𝑚,𝑐 (𝑁 ) : Sample 𝑟 ←$RandSum𝑚,𝑐 and output 𝑟 (𝑁 ).
It is clear from the definition that for any 𝑟 in the support of RandSum𝑚,𝑐 , we have ∥𝑟 ∥∞ ≤ 𝑐 . Equipped

with the above definition, we have the following lemma:

Lemma 8. For any𝑚,𝑐 ∈ N and 𝑎 ∈ F2[𝑋 ;𝑚], denote D(𝑎)
𝑚,𝑐 ≔ {𝑎′ + 𝑟 : 𝑎′←$Pert𝑐 (𝑎), 𝑟 ←$RandSum𝑚,𝑐 }

and D𝑚,𝑐 := {𝑎′ + 𝑟 : 𝑎′, 𝑟 ←$RandSum𝑚,𝑐 }. Then:

SD(D(𝑎)
𝑚,𝑐 ,D𝑚,𝑐 ) ≤

𝑚

2𝑐 .

Using the above procedures, integer encodings can support a limited number of homomorphic addi-
tions and multiplications. Concretely, we will use the following simple lemma:
Lemma 9. Let 𝑚,𝑇, 𝑐, 𝑁 ∈ N be integers. Fix any tuple (𝑎1, · · · , 𝑎𝑇 , 𝑏1, · · · , 𝑏𝑇 ) ∈ F2[𝑋 ;𝑚]2𝑇 and let
𝑏′𝑖 ←$Pert𝑐 (𝑏𝑖 ) for 𝑖 = 1 to 𝑇 . Define

𝑣 :=
𝑇∑︁
𝑖=1

𝑎𝑖 · 𝑏𝑖 , 𝑣 :=
𝑇∑︁
𝑖=1

𝑎𝑖 (𝑁 ) · 𝑏′𝑖 (𝑁 ),

where the left sum is computed over F2[𝑋 ], and the right sum is computed over N. Then, if 𝑁 > 𝑇 · 𝑐 ·𝑚, it
holds that

𝑣 = toPoly𝑁 (Mod𝑁 (𝑣, 2)) .

Mapping to RandSum samples. Given a set 𝑆 , we write U𝑆 to denote the uniform distribution over 𝑆 .
Definition 9. We denote by map : Z𝑝−1 → Z𝑝−1 a mapping such that map(UZ𝑝−1 ) ≈c RandSum𝑚,𝑐 (𝑁 ).

Note that map is implicitly parametrized by (𝑁,𝑚, 𝑐); we write map𝑁,𝑚,𝑐 when we want to make the
dependency explicit. Concretely, constructing map is done as follows:

• On input 𝑥 ∈ Z𝑝−1, set 𝑥 ′ := [𝑥 mod 2𝜆], and parse 𝑥 ′ as an element of {0, 1}𝜆 . Note that over a
uniform choice of 𝑥←$Z𝑝−1, where 𝑝 is a 2𝜆-bit prime, the induced distribution of 𝑥 ′ is 2−𝜆-close to
uniform over {0, 1}𝜆 .

• Let PRG : {0, 1}𝜆 → {0, 1}𝑐 ·(𝑚+1) denote a pseudorandom generator. Compute 𝑦 = PRG(𝑥 ′) and
parse the output as a 𝑐-tuple (𝑦1, · · · , 𝑦𝑐 ) of degree-𝑚 F2-polynomials 𝑦𝑖 ∈ F2[𝑋 ;𝑚].

• Run the RandSum𝑚,𝑐 (𝑁 ) procedure: compute 𝑟 := ∑𝑐
𝑖=1𝑦𝑖 over Z[𝑋 ;𝑚] and output 𝑟 (𝑁 ).
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5.2 VOLE to OLE Procedure

We start by recalling a power-DDH-based puncturable pseudorandom function (PPRF) introduced recently
in [CHHK25], which is at the heart of our construction (we do not recall the formal definition of PPRFs,
as we will directly use the construction below rather than abstracting it out as a PPRF). Let (G, 𝑝, 𝑔,𝐺) :=
GrpGen∗(1𝜆). We let H = {H𝜆 : G × {0, 1}∗ → Z𝑝−1} denote a family of hash functions over G × {0, 1}∗.

F.Setup(1𝜆, 𝐵)
1 : (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆)
2 : (∆, ℎ)←$Z𝑝−1 × G
3 : 𝛼 := 𝐺∆ mod 𝑝
4 : for 𝑖 ∈ [±𝐵], ℎ𝑖 := ℎ𝛼𝑖

5 : mpk :=
(
G, 𝑝,𝐺, (ℎ𝑖 )𝑖∈[±𝐵]∗

)
6 : msk := (mpk,∆, ℎ0)
7 : return (mpk,msk)

F.KeyGen(mpk, ΓG)
1 : parse 𝑝,𝐺 from mpk

2 : return sk = 𝐺ΓG mod 𝑝

F.Punct(mpk, ΓE)
1 : parse 𝑝,𝐺 from mpk

2 : return psk = 𝐺ΓE mod 𝑝

FH(k, 𝑥, salt) := F.EvalH(k, 𝑥, salt)
1 : parse k as (msk, sk)
2 : parse (ℎ𝑖 )𝑖∈[±𝐵] from msk

3 : return H
(
ℎ
sk
𝑥 , salt

)
pFH(k∗, 𝑧, 𝑥, salt) := F.PEvalH(k∗, 𝑧, 𝑥, salt)
1 : parse k∗ as (mpk, psk)
2 : parse (ℎ𝑖 )𝑖 ̸=0 from mpk

3 : return H
(
ℎ
psk
𝑥−𝑧, salt

)
Lemma 10 (Correctness of the PPRF). Fix an arbitrary polynomial modulus 𝐵 and let H = {H𝜆 : G ×
{0, 1}∗ → Z𝑝−1} denote a family of hash functions over G. Let (mpk,msk) be a master key pair in the support
of F.Setup(1𝜆, 𝐵). Parse msk as (mpk,∆, ℎ0). Fix any constraint 𝑧 ∈ {0, · · · , 𝐵}. Then for any ΓE, ΓG ∈ Z𝑝−1
such that ΓE − ΓG = ∆ · 𝑧, denoting sk := F.KeyGen(mpk, ΓG), psk := F.Punct(mpk, ΓE), k := (msk, sk), and
k∗ := (mpk, psk), it holds that for any input 𝑥 ∈ {0, · · · , 𝐵} \ {𝑧} and salt salt ∈ {0, 1}∗,

FH(k, 𝑥, salt) = pFH(k∗, 𝑧, 𝑥, salt).

In [CHHK25], it is shown that if H is a tweakable correlation-robust hash function for exponential
correlations over G and if the power-DDH assumption holds, then the above PPRF satisfies a strong notion
of pseudorandomness: all evaluations FH(k, 𝑧, salt) at the punctured point look pseudorandom given k∗∗,
even when the adversary is allowed to request multiple pairs (k, k∗) for the same master secret key msk. We
do not formally state this security notion here: we will instead directly prove the security of our garbling
scheme constructed from this primitive.

A VOLE-to-OLE procedure. Given a security parameter 𝜆, fix integers 𝑁 = 𝑁 (𝜆), 𝑚 = 𝑚(𝜆) such that
𝑁𝑚 = poly(𝜆). Let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆) and H = {H𝜆 : G × {0, 1}∗ → Z𝑝−1}. Fix a master key
pair (mpk,msk)←$ F.Setup(1𝜆, 𝑁𝑚) and parse msk as (mpk,∆, ℎ0). A core building block of our garbling
scheme is a one-message (from G to E) VOLE-to-OLE protocol where G and E hold respective inputs
(𝑣G, 𝑣E) ∈ Z𝑝−1 × I𝑁,𝑚 and shares of ∆ · 𝑣E, and obtain as output shares of 𝑣G𝑣E.
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VtOH
G(msk, 𝑣G, ⟨∆𝑣E⟩G, salt)

1 : sk := F.KeyGen(msk, ⟨∆𝑣E⟩G)
2 : k := (msk, sk)
3 : shift :=

∑︁
𝑥∈I𝑁,𝑚

FH(k, 𝑥, salt) + 𝑣G

4 : 𝑧G :=
∑︁

𝑥∈I𝑁,𝑚

𝑥 · FH(k, 𝑥, salt)

5 : return (shift, 𝑧G)

VtOH
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift)

1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : 𝑧E :=

∑︁
𝑥∈I𝑁,𝑚

(𝑥 − 𝑣E) · pFH(k∗, 𝑣E, 𝑥, salt) + 𝑣E · shift

4 : return 𝑧E

We will consider two variants of the above procedure. In the first variant, the computation of (shift, 𝑧G, 𝑧E)
is done over the integers, while in the second variant, the computation is done over Z𝑝−1. In the first case,
𝑣G, 𝑣E, and all outputs of H are treated as positive integers in [𝑝 − 2] ⊂ Z. We will write R-VtOH

G(msk, 𝑣G,
⟨∆𝑣E⟩G, salt) and R-VtOH

G(msk, 𝑣G, ⟨∆𝑣E⟩G, salt) to explicitly indicate that computation takes place over a
ring R ∈ {Z,Z𝑝−1}. By default, if no ring is indicated, the computation happens over Z𝑝−1.
Remark 1. The VtO procedure is identical to the VOLE-to-OLE procedure introduced in [CHHK25], up
to a minor difference: instead of summing over all possible inputs 𝑥 between 0 and the bound 𝐵 = 𝑁𝑚 ,
we leverage the fact that the evaluator input 𝑣E will always be the embedding 𝑣(𝑁 ) ∈ I𝑁,𝑚 of some F2-
polynomial 𝑣 ∈ F2[𝑋 ;𝑚]. Since this is known to both parties, they can restrict the sums in the VtO
procedures to be over valid embeddings, which reduces the number of terms in the sum from 𝑁𝑚 to 2𝑚 .
This minor modification is crucial to control the growth of the size of the output share, which in turns
influences the amount of garbling material per gate in our Boolean garbling scheme.

Correctness. The following lemma establishes perfect correctness of VtO:

Lemma 11. For every R ∈ {Z,Z𝑝−1}, every (mpk,msk) in the support of F.Setup with msk := (mpk,∆, ℎ0),
every 𝑣E ∈ I𝑁,𝑚 , every 𝑣G ∈ Z𝑝−1, every salt ∈ {0, 1}∗, and every ⟨∆𝑣E⟩G, ⟨∆𝑣E⟩E such that ⟨∆𝑣E⟩E − ⟨∆𝑣E⟩G =
∆E, denoting (shift, 𝑧G) := R-VtOH

G(msk, 𝑣G, ⟨∆𝑣E⟩G, salt) and 𝑧E := R-VtOH
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift), it

holds that 𝑧E − 𝑧G = 𝑣E𝑣G (over R). Furthermore, if R = Z, then 𝑧G, 𝑧E are positive integers.

The last part of the lemma follows immediately from the definition of 𝑧G and the first part of the lemma.
The proof of the first part is a routine check:

𝑧E =
∑︁

𝑥∈I𝑁,𝑚

(𝑥 − 𝑣E) · pFH(k∗, 𝑣E, 𝑥, salt) + 𝑣E · shift

=
∑︁

𝑥∈I𝑁,𝑚

(𝑥 − 𝑣E) · FH(k, 𝑥, salt) + 𝑣E · shift ⊲ via Lemma 10

= 𝑧G − 𝑣E · (shift − 𝑣G) + 𝑣E · shift = 𝑧G + 𝑣E𝑣G.

Simulating shifts using OH,ℎ0,∆. We define a simulator for VtO, that will be used in our security analysis,
that simulates shift and 𝑧E using only mpk, psk, and calls to the oracle OH,ℎ,∆ from Definition 7. To handle
the case where the garbler input 𝑣G is an affine function of ∆ (as this is the case in some parts of the garbling
procedure), the simulator takes two additional inputs (𝑎, 𝑏) such that 𝑣G = 𝑎 · ∆ + 𝑏. Intuitively, the ∆ · 𝑎
term will be computed within OH,ℎ0,∆, and the simulator adds 𝑏 to the output.

Some of our procedures also use VtOH0 with a hash function H0 defined as H0 := map◦H for a suitable
mapping map. To handle this usecase, we also consider a variant of SimVtO, denoted Sim′VtO, that takes
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as input the map map. As 𝑎 will always be equal to 0 when using this variant, we omit it from the inputs.

Fix integers 𝑁 = 𝑁 (𝜆), 𝑚 = 𝑚(𝜆) such that 𝑁𝑚 = poly(𝜆). Let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆) and
H = {H𝜆 : G × {0, 1}∗ → Z𝑝−1}𝜆 . Fix a master key pair (mpk,msk)←$ F.Setup(1𝜆, 𝑁𝑚) and parse msk
as (mpk,∆, ℎ0). Let O := OH,ℎ0,∆ be the oracle defined in Definition 7.

SimVtOH,O(mpk, 𝑣E, ⟨∆𝑣E⟩E, 𝑎, 𝑏, salt)
1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : for 𝑥 ∈ I𝑁,𝑚 \ {𝑣E} :
4 : 𝑦𝑥 := pFH(k∗, 𝑣E, 𝑥, salt)
5 : shift :=

∑︁
𝑥∈I𝑁,𝑚\{𝑣E }

𝑦𝑥 + O(psk, salt, 𝑎) + 𝑏

6 : 𝑧E := VtOH
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift)

7 : return (shift, 𝑧E)

Sim′VtOH,O(mpk, 𝑣E, ⟨∆𝑣E⟩E,map, 𝑏, salt)
1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : for 𝑥 ∈ I𝑁,𝑚 \ {𝑣E} :

4 : 𝑦𝑥 := map
(
pFH(k∗, 𝑣E, 𝑥, salt)

)
5 : shift :=

∑︁
𝑥∈I𝑁,𝑚\{𝑣E }

𝑦𝑥 + map (O(psk, salt, 0)) + 𝑏

6 : 𝑧E := VtOH0
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift)

7 : return (shift, 𝑧E)

As for VtO, the computation can be performed either over Z or Z𝑝−1; we write R-SimVtO to indicate
the ring explicitly. The following lemma states that SimVtO outputs the exact same shift as VtOH

G and the
same 𝑧E as VtOH

E :
Lemma 12 (Perfect simulation). For every (mpk,msk) in the support of F.Setup(1𝜆, 𝑁𝑚) withmsk := (mpk,
∆, ℎ0), every 𝑣E ∈ I𝑁,𝑚 , every 𝑣G ∈ Z𝑝−1, every pair (𝑎, 𝑏) ∈ Z2

𝑝−1 such that 𝑣G = 𝑎 ·∆ +𝑏, every salt ∈ {0, 1}∗,
and every ⟨∆𝑣E⟩G, ⟨∆𝑣E⟩E such that ⟨∆𝑣E⟩E − ⟨∆𝑣E⟩G = ∆𝑣E, denoting O := OH,ℎ0,∆, denoting (shift, 𝑧E) :=
SimVtOH,O(mpk, 𝑣E, ⟨∆𝑣E⟩E, 𝑎, 𝑏, salt), it holds that

(shift, ) = VtOH
G(msk, 𝑣G, ⟨∆𝑣E⟩G, salt), and

𝑧E = VtOH
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift).

Furthermore, for any map : Z𝑝−1 → {0, 1}∗, setting H0 := map ◦ H and (shift′, 𝑧′E) := Sim′VtOH,O(mpk, 𝑣E,
⟨∆𝑣E⟩E,map, 𝑣G, salt), it holds that

(shift′, ) = VtOH0
G (msk, 𝑣G, ⟨∆𝑣E⟩G, salt), and

𝑧′E = VtOH0
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift).

Proof. Let 𝑘∗ := (mpk, psk) where psk := F.Punct(mpk, ⟨∆𝑣E⟩E). Observe that for shift computed using
VtOH

G(msk, 𝑣G, ⟨∆𝑣E⟩G, salt), we have,

shift =
∑︁

𝑥∈I𝑁,𝑚

FH(k, 𝑥, salt) + 𝑣G

=
∑︁

𝑥∈I𝑁,𝑚\{𝑣E}
pFH(k∗, 𝑣E, 𝑥, salt) + FH(k, 𝑥, salt) + 𝑎∆ + 𝑏 ⊲ via Lemma 10

=
∑︁

𝑥∈I𝑁,𝑚\{𝑣E}
pFH(k∗, 𝑣E, 𝑥, salt) + O(psk, salt, 𝑎) + 𝑏 ⊲ via Definition 7

where the last expression is equal to shift as computed in SimVtOH,O(mpk, 𝑣E, ⟨∆𝑣E⟩E, 𝑎, 𝑏, salt). It then
immediately follows that 𝑧E, as computed by SimVtOH,O , is equal to 𝑧E output by VtOH

E , since SimVtOH,O

simply runs VtOH
E using the shift it computes. It is easy to see that a similar argument shows that shift′ and

𝑧′E, as output by Sim′VtOH,O , are identical to shift′ and 𝑧′E output by VtOH0
G and VtOH0

E respectively. ■
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5.3 Batch Function Evaluation on Authenticated Shares

We now introduce a second core procedure. It builds upon the following observation from [CHHK25] (a
similar observation was also made in previous works, e.g., [Hea24]): the VtO procedure can be modified to
convert shares of ∆ · 𝑣E into shares of 𝑣G · 𝑓 (𝑣E) for an arbitrary function 𝑓 (known to the parties): it suffices
to compute instead 𝑧G := ∑

𝑥 𝑓 (𝑥 ) · FH(k, 𝑥, salt) and 𝑧E := ∑
𝑥 (𝑓 (𝑣E)− 𝑓 (𝑥 )) · pFH(k∗, 𝑣E, 𝑥, salt) + 𝑓 (𝑣E) · shift.

A useful implication of this functional VtO procedure is that the parties can evaluate an arbitrary
function on authenticated shares: given shares of ∆ · 𝑣E, they can obtain shares of ∆ · 𝑓 (𝑣E) by letting G set
∆ to be its input to the functional VtO procedure. In this work, we make an additional observation which,
while very simple in hindsight, proves to be very powerful: this “functional authentication” procedure can
be generalized to allow the evaluation of an arbitrary-size tuple of functions 𝑓1, 𝑓2, · · · on an authenticated
share without any penalty in communication. Indeed, the shift transmitted from G to E depends solely on its
input 𝑣G (set here to ∆), and not on the target function 𝑓 . Hence, if G and E want to obtain shares of ∆ · 𝑓𝑖 (𝑣E)
for many functions 𝑖 , they can run arbitrarily many parallel executions of the functional authentication
procedure using the transmission of a single shift from G to E, independent of the number of functions.
We describe the procedure below.

The batch functional authentication procedure. For 𝑖 = 1 to 𝑞, let 𝑓𝑖 : I𝑁,𝑚 → Z𝑝−1 denote a public
function. We let 𝑞 unspecified and assume that BatchfAuth takes variable-length inputs.

BatchfAuthHG(msk,∆′, ⟨∆𝑣E⟩G, (𝑓1, · · · , 𝑓𝑞), salt)
1 : sk := F.KeyGen(msk, ⟨∆𝑣E⟩G)
2 : k := (msk, sk)
3 : shift :=

∑︁
𝑥∈I𝑁,𝑚

FH(k, 𝑥, salt) + ∆′

4 : for 𝑖 = 1 to 𝑞 :
5 : 𝑧G[𝑖] :=

∑︁
𝑥∈I𝑁,𝑚

𝑓𝑖 (𝑥 ) · FH(k, 𝑥, salt)

6 : return (shift, 𝑧G)

BatchfAuthHE (mpk, 𝑣E, ⟨∆𝑣E⟩E, (𝑓1, · · · , 𝑓𝑞), salt, shift)
1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : for 𝑥 ∈ I𝑁,𝑚 \ {𝑣E} :
4 : 𝑦𝑥 := pFH(k∗, 𝑣E, 𝑥, salt)
5 : for 𝑖 = 1 to 𝑞 :
6 : 𝑧E[𝑖] :=

∑︁
𝑥∈I𝑁,𝑚

(𝑓𝑖 (𝑥 ) − 𝑓𝑖 (𝑣E)) · 𝑦𝑥 + 𝑓𝑖 (𝑣E) · shift

7 : return 𝑧E

We will also use a variant of BatchfAuth, denoted 𝑆-BatchfAuth, where the set I𝑁,𝑚 of the summands
is replaced with another set 𝑆 (that is, the sums for shift, 𝑧G[𝑖], and 𝑧E[𝑖] are over all 𝑥 ∈ 𝑆).

Correctness. The following lemma establishes perfect correctness of the BatchfAuth procedure:

Lemma 13. For every (mpk,msk) in the support of F.Setup(1𝜆, 𝑁𝑚) with msk := (mpk,∆, ℎ0), every 𝑣E ∈
I𝑁,𝑚 , every ∆′ ∈ Z𝑝−1, every ⟨∆𝑣E⟩G, ⟨∆𝑣E⟩E such that ⟨∆𝑣E⟩E − ⟨∆𝑣E⟩G = ∆ · 𝑣E mod 𝑝 − 1, every 𝑞 ≥ 1,
every 𝑞-tuple (𝑓1, · · · , 𝑓𝑞) of functions 𝑓𝑖 : I𝑁,𝑚 → Z𝑝−1, and every salt ∈ {0, 1}∗, denoting (shift, 𝑧G) :=
BatchfAuthHG(msk,∆′, ⟨∆𝑣E⟩G, (𝑓1, · · · , 𝑓𝑞), salt) and 𝑧E := BatchfAuthHE (mpk, 𝑣E, ⟨∆𝑣E⟩E, (𝑓1, · · · , 𝑓𝑞), salt, shift),
for all 𝑖 ≤ 𝑞, it holds that

𝑧E[𝑖] − 𝑧G[𝑖] = ∆′ · 𝑓𝑖 (𝑣E) mod 𝑝 − 1.

The proof is again routinely checked using the correctness of the PPRF at all points 𝑥 ̸= 𝑣E, and using
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the fact that 𝑓 (𝑥 ) − 𝑓 (𝑣E) = 0 when 𝑥 = 𝑣E:

𝑧E =
∑︁

𝑥∈I𝑁,𝑚

(𝑓 (𝑥 ) − 𝑓 (𝑣E)) · pFH(k∗, 𝑣E, 𝑥, salt) + 𝑓 (𝑣E) · shift

=
∑︁

𝑥∈I𝑁,𝑚

(𝑓 (𝑥 ) − 𝑓 (𝑣E)) · FH(k, 𝑥, salt) + 𝑓 (𝑣E) · shift ⊲ via Lemma 10

= 𝑧G − 𝑣E ·
∑︁

𝑥∈I𝑁,𝑚

FH(k, 𝑥, salt) + 𝑓 (𝑣E) ·
( ∑︁
𝑥∈I𝑁,𝑚

FH(k, 𝑥, salt) + 𝑣G

)
= 𝑧G + 𝑣G · 𝑓 (𝑣E).

Simulating shifts usingOH,ℎ0,∆. We outline a simulator for (shift, 𝑧E) for the case ∆′ = ∆ (used in our main
construction). The case where ∆′ is independent of ∆ (used for our result in the standard model) is discussed
afterwards. Fix integers 𝑁 = 𝑁 (𝜆),𝑚 = 𝑚(𝜆) such that 𝑁𝑚 = poly(𝜆). Let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆) and
H = {H𝜆 : G × {0, 1}∗ → Z𝑝−1}. Fix a master key pair (mpk,msk)←$ F.Setup(1𝜆, 𝑁𝑚) and parse msk as
(mpk,∆, ℎ0). Let O := OH,ℎ0,∆ be the oracle defined in Definition 7.

SimBatchfAuthH,O(mpk, 𝑣E, ⟨∆𝑣E⟩E, (𝑓1, · · · , 𝑓𝑞), salt)
1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : shift :=

∑︁
𝑥∈I𝑁,𝑚\{𝑣E }

pFH(k∗, 𝑣E, 𝑥, salt) + O(psk, salt, 1)

4 : 𝑧E := BatchfAuthHE (mpk, 𝑣E, ⟨∆𝑣E⟩E, (𝑓1, · · · , 𝑓𝑞), salt, shift)
5 : return (shift, 𝑧E)

As for BatchfAuth, we let 𝑆-SimBatchfAuthH,O denote the variant where the sum is computed over
𝑆 \ {𝑣E}. The following lemma states that SimVtO outputs the exact same shift as VtOH

G and the same 𝑧E
as VtOH

E :

Lemma14 (Perfect simulation). For every (mpk,msk) in the support of F.Setup(1𝜆, 𝑁𝑚)withmsk := (mpk,∆, ℎ0),
every 𝑣E ∈ I𝑁,𝑚 , and every ⟨∆𝑣E⟩G, ⟨∆𝑣E⟩E such that ⟨∆𝑣E⟩E − ⟨∆𝑣E⟩G = ∆𝑣E, every 𝑞 ≥ 1, every 𝑞-
tuple (𝑓1, · · · , 𝑓𝑞) of functions 𝑓𝑖 : I𝑁,𝑚 → Z𝑝−1, and every salt ∈ {0, 1}∗, denoting O := OH,ℎ0,∆, denoting
(shift, 𝑧E) := SimBatchfAuthH,O(mpk, 𝑣E, ⟨∆𝑣E⟩E, (𝑓1, · · · , 𝑓𝑞), salt), it holds that

shift = BatchfAuthHG(msk,∆, ⟨∆𝑣E⟩G, (𝑓1, · · · , 𝑓𝑞), salt), and
𝑧E = BatchfAuthHE (mpk, 𝑣E, ⟨∆𝑣E⟩E, (𝑓1, · · · , 𝑓𝑞), salt, shift).

The straightforward proof, which is essentially identical to that of Lemma 12, is omitted.
Remark 2. The case where BatchfAuth uses a ∆′ independent of ∆, as in our standard model construction,
is obtained as a simple variant of the above procedure by letting SimBatchfAuthH,O additionally take ∆′
as input and computing instead shift as

shift :=
∑︁

𝑥∈I𝑁,𝑚\{𝑣E}
pFH(k∗, 𝑣E, 𝑥, salt) + O(psk, salt, 0) + ∆′.
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6 𝜔(1/𝜆)-Rate Boolean Garbling Scheme from Generic Groups

We prove in this section the following theorem:
Theorem 15. There exists a polynomial 𝐵(𝜆) = poly(𝜆) such that, given a group G of order 𝑝 (whose elements
are of size 𝑂(𝜆) bits), if there exists a TCCR hashing H for exponential correlation with 𝐵 auxiliary powers
over G, then there exists a Boolean garbling scheme GC = (GC.Garble,GC.Enc,GC.Eval,GC.Dec) such that
for each circuit C whose layers contain at least

√︁
log 𝜆 gates, it holds that

|Ĉ |= 𝜆√︁
log(𝜆)

·𝑂(|C|) + poly(𝜆).

For extremely narrow circuits, the above cost can grow by up to an additive 𝑂(𝜆 · 𝐷) factor.

6.1 High Level Structure

For convenience, we first describe the garbling procedure by abstracting out the gadgets used to compute
the keys and labels for batches of XOR and AND gates and for packing/unpacking keys and labels into
batches. The garbling scheme uses the following parameters:

• 𝑡 : the number of bits in a batch. Concretely, we will set 𝑡 =
√︁

log 𝜆.

• 𝑚: the degree of the extension field F2𝑚 where batches of 𝑡 bits are embedded via the (𝑡,𝑚)2-RMFE
(Φ,Ψ). Using Lemma 4, we have𝑚 = 𝑂(𝑡 ).

• 𝑐: a statistical security parameter for hiding perturbed polynomials. Our construction guarantees
security up to a poly(𝜆)/2𝑐 statistical leakage probability. Concretely, we will set 𝑐 to 2

√
log𝜆 .

• 𝑁 : a size parameter for embedding polynomials into integers without overflows. Our construction
requires 𝑁 > 2𝑐 ·𝑚 · (2𝑚 +1), and 𝑁𝑚 ≤ poly(𝜆). Using our parameters𝑚 = 𝑂(

√︁
log 𝜆) and 𝑐 = 2

√
log𝜆

yields 𝑐𝑚 · (𝑚 · (2𝑚 + 1))𝑚 = poly(𝜆), as required.

Parameters. Let (G, 𝑝, 𝑔,𝐺) := GrpGen∗(1𝜆). Let 𝑡 =
√︁

log 𝜆 denote the batch parameter and (Φ,Ψ) be a
(𝑡,𝑚)2-reverse multiplication friendly embedding with𝑚 = 𝑂(𝑡 ). Let 𝑐 = 𝜔(1) denote a statistical security
parameter with 𝑐 ≤ 2

√
log𝜆 and set 𝑁 = 2𝑐 ·𝑚 · (2𝑚 + 1) + 1 (note that 𝑁𝑚 = poly(𝜆)). Let H = {H𝜆 :

G × {0, 1}∗ → Z𝑝−1}𝜆∈N denote a TCCR hash family for exponential correlation with auxiliary powers
over G. Let H0 := map ◦ H, where map = map𝑁,𝑚,𝑐 is the mapping from Definition 9.
Input. The input to GC.Garble is a boolean circuit C with |C|= 𝑠 gates, 𝑛 = |𝐼 (C)| inputs, and depth
depth(C) = 𝐷 . Without loss of generality, we assume that the gates of C are divided into 𝐷 layers, denoted
L1, · · · ,L𝐷 , where each layer contains either only AND gates or only XOR gates. All incoming wires of
gates in a layer are connected to inputs or to gates from previous layers (in particular, the gates in L1 are
only connected to input gates). Each layer L𝑑 is partitioned into 𝑛𝑑 := ⌈|L𝑑 |/𝑡⌉ batches (B𝑑,1, · · · ,B𝑑,𝑛𝑑 )
containing at most 𝑡 gates each. For 𝑑 = 1 to 𝐷 , let salt𝑑,1, · · · , salt𝑑,𝑛𝑑 denote unique identifiers for each
batch of gate, and write salt𝑑,𝑖, 𝑗 := salt𝑑,𝑖 | | 𝑗 for 𝑗 = 0, 1, 2, 3. We assume that all these data can be parsed
from the description C of the circuit.
Algorithms. The algorithms (GC.Garble,GC.Enc,GC.Eval,GC.Dec) are represented below. The algo-
rithms GC.Garble and GC.Eval rely on subprocedures, respectively (PackHG,BatchAND

H
G,UnpackAND

H
G,

BatchXORH
G,UnpackXOR

H
G) and (PackHE ,BatchAND

H
E ,UnpackAND

H
E ,BatchXOR

H
E ,UnpackXOR

H
E ), that are

described afterwards.
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Algorithm GC.Garble(1𝜆, C)

Input. A boolean circuit C with |C|= 𝑠 gates and depth depth(C) = 𝐷 represented as described
in Section 6.1. The input gates are indexed from 1 to 𝑛.

Initialization.

• Sample (mpk,msk)←$ F.Setup(1𝜆, 𝑁𝑚). Parse msk := (mpk,∆, 𝑔0).
• For each input wire 𝑖 , sample (𝑘𝑖 , 𝐾𝑖 )←$ {0, 1} × Z𝑝−1.

Procedure. The garbling proceeds in a layer-by-layer fashion, from L1 to L𝐷 . After evaluating a
layer L𝑑 , it labels each gate 𝑢 in the layer with a pair (𝑘𝑢, 𝐾𝑢 ) and stores a garbling L̂𝑑 of L𝑑 .

On layer L𝑑 . For 𝑖 = 1 to 𝑛𝑑 ,

• Let Left𝑑,𝑖 (resp. Right𝑑,𝑖 ) denote the multisets of gates that are the left parent (resp. right
parent) of a gate in B𝑑,𝑖 . Retrieve the pairs (𝑘𝑢, 𝐾𝑢 ) labeling each 𝑢 ∈ Left𝑑,𝑖 ∪Right𝑑,𝑖 and
compute

(𝑘l, 𝐾l, shiftl,𝑑,𝑖 ) := PackHG(msk, (𝑘𝑢, 𝐾𝑢 )𝑢∈Left𝑑,𝑖 , salt𝑑,𝑖,0)
(𝑘r, 𝐾r, shiftr,𝑑,𝑖 ) := PackHG(msk, (𝑘𝑢, 𝐾𝑢 )𝑢∈Right𝑑,𝑖 , salt𝑑,𝑖,1).

• If L𝑑 is an AND layer:
– (𝑘out, 𝐾out, 𝑆𝑑,𝑖 )←$BatchANDH

G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r),∆, salt𝑑,𝑖,2)
– ((𝑘[ 𝑗], 𝐾𝑗 )0≤𝑖≤𝑡−1, shiftout,𝑑,𝑖 ) := UnpackANDH

G(msk, 𝑘out, 𝐾out, salt𝑑,𝑖,3)
– (𝑘𝑢, 𝐾𝑢 )𝑢∈B𝑑,𝑖 := (𝑘[ 𝑗], 𝐾 𝑗 )0≤ 𝑗≤ |B𝑑,𝑖 |−1

• If L𝑑 is a XOR layer:
– (𝑘out, 𝐾out, 𝑆𝑑,𝑖 )←$BatchXORH

G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r),∆, salt𝑑,𝑖,2)
– ((𝑘[ 𝑗], 𝐾 𝑗 )0≤ 𝑗≤𝑡−1, shiftout,𝑑,𝑖 ) := UnpackXORH

G(msk, 𝑘out, 𝐾out, salt𝑑,𝑖,3)
– (𝑘𝑢, 𝐾𝑢 )𝑢∈B𝑑,𝑖 := (𝑘[ 𝑗], 𝐾 𝑗 )0≤ 𝑗≤ |B𝑑,𝑖 |−1

• Label each 𝑢 ∈ B𝑑,𝑖 with the key pair (𝑘𝑢, 𝐾𝑢 ).

Set L̂𝑑 := (shiftl,𝑑,𝑖 , shiftr,𝑑,𝑖 , 𝑆𝑑,𝑖 , shiftout,𝑑,𝑖 )𝑖≤𝑛𝑑 .

Output. Return e := ((𝑘𝑖 , 𝐾𝑖 )𝑖≤𝑛,∆), Ĉ := (C,mpk, (L̂𝑑 )𝑑≤𝐷 ), and d := (𝑘𝑜 )𝑜∈𝑂(C).

Algorithm 1: Garbling procedure of the Boolean garbling scheme

Algorithm GC.Enc(e, 𝑥)

Input. Encoding information e and input 𝑥 ∈ {0, 1}𝑛 . Parse e := ((𝑘𝑖 , 𝐾𝑖 )𝑖≤𝑛,∆).

Procedure. For 𝑖 = 1 to 𝑛, set (ℓ𝑖 , 𝐿𝑖 ) := (𝑘𝑖 ⊕ 𝑥𝑖 , 𝐾𝑖 + ∆ · ℓ𝑖 mod 𝑝 − 1).

Output. Return 𝑥 := (ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 .
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Algorithm 2: Encoding procedure of the Boolean garbling scheme

We now describe the evaluation procedure. It maintains the invariant that on each gate 𝑢 carrying a
value 𝑦𝑢 , the keys and labels computed by the garbler and evaluator respectively satisfy (ℓ𝑢, 𝐿𝑢 ) = (𝑘𝑢 ⊕
𝑦𝑢, 𝐾𝑢 + ∆ · ℓ𝑢 mod 𝑝 − 1).

Algorithm GC.Eval(Ĉ, 𝑥 )

Inputs. Parse Ĉ as (C,mpk, (L̂𝑑 )𝑑≤𝐷 ) and 𝑥 as (ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 ∈ (F2 × Z𝑝−1)𝑛 .

Procedure. The evaluation proceeds in a layer-by-layer fashion, from L1 to L𝐷 . After evaluating a
layer L𝑑 , it labels each gate 𝑢 in the layer with a pair (ℓ𝑢, 𝐿𝑢 ).

On layer L𝑑 . For 𝑖 = 1 to 𝑛𝑑 ,

• Parse L̂𝑑 as L̂𝑑 := (shiftl,𝑑,𝑖 , shiftr,𝑑,𝑖 , 𝑆𝑑,𝑖 )𝑖≤𝑛𝑑 , shiftout,𝑑,𝑖 ).
• Let Left𝑑,𝑖 (resp. Right𝑑,𝑖 ) denote the multisets of gates that are the left parent (resp. right

parent) of a gate in B𝑑,𝑖 . Retrieve the pairs (ℓ𝑢, 𝐿𝑢 ) labeling each 𝑢 ∈ Left𝑑,𝑖 ∪ Right𝑑,𝑖 and
compute

(ℓl, 𝐿l) := PackHE (mpk, (ℓ𝑢, 𝐿𝑢 )𝑢∈Left𝑑,𝑖 , salt𝑖,𝑑,0, shiftl,𝑑,𝑖 )
(ℓr, 𝐿r) := PackHE (mpk, (ℓ𝑢, 𝐿𝑢 )𝑢∈Right𝑑,𝑖 , salt𝑖,𝑑,1, shiftr,𝑑,𝑖 ).

• If L𝑑 is an AND layer:
– (ℓout, 𝐿out) := BatchANDH

E (mpk, (ℓl, 𝐿l), (ℓr, 𝐿r), salt𝑑,𝑖,2, 𝑆𝑑,𝑖 )
– (ℓ[ 𝑗], 𝐿 𝑗 )0≤ 𝑗≤𝑡−1 := UnpackANDH

E (mpk, ℓout, 𝐿out, salt𝑑,𝑖,3, shiftout,𝑑,𝑖 )
– (ℓ𝑢, 𝐿𝑢 )𝑢∈B𝑑,𝑖 := (ℓ[ 𝑗], 𝐿𝑗 )0≤ 𝑗≤ |B𝑑,𝑖 |−1

• If L𝑑 is a XOR layer:
– (ℓout, 𝐿out) := BatchXORH(mpk, (ℓl, 𝐿l), (ℓr, 𝐿r), salt𝑑,𝑖,2, 𝑆𝑑,𝑖 )
– (ℓ[ 𝑗], 𝐿 𝑗 )0≤𝑖≤𝑡−1 := UnpackXORH

E (mpk, ℓout, 𝐿out, salt𝑑,𝑖,3, shiftout,𝑑,𝑖 )
– (ℓ𝑢, 𝐿𝑢 )𝑢∈B𝑑,𝑖 := (ℓ[ 𝑗], 𝐿𝑗 )0≤𝑖≤ |B𝑑,𝑖 |−1

• Label each 𝑢 ∈ B𝑑,𝑖 with (ℓ𝑢, 𝐿𝑢 ).

Output. Return 𝑦 := (ℓ𝑜 )𝑜∈𝑂(C).

Algorithm 3: Evaluator algorithm of the Boolean garbling scheme

Algorithm GC.Dec(d, 𝑦)

Input. Decoding information d and garbled output 𝑦. Parse d := (𝑘𝑜 )𝑜∈𝑂(C) and 𝑦 := (ℓ𝑜 )𝑜∈𝑂(C).

Output. Return 𝑦 := (ℓ𝑜 ⊕ 𝑘𝑜 )𝑜∈𝑂(C).
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Algorithm 4: Decoding procedure of the Boolean garbling scheme

Padding. For convenience, given values (𝑣𝑢 )𝑢∈B either in F | B |2 or in Z | B |
𝑝−1 where B is a subset of in-

dices of size at most 𝑡 , we write (𝑣[0], · · · , 𝑣[𝑡 − 1]) := pad𝑡 ((𝑣𝑢 )𝑢∈B) to denote the procedure that assigns
(𝑣𝑢0, · · · , 𝑣𝑢 |B|−1 ) to (𝑣[0], · · · , 𝑣[|B|−1]), where 𝑢0 · · ·𝑢 | B |−1 is an ordering (e.g., lexicographic) of the ele-
ments of B, and assigns 0 to the remaining 𝑣[𝑖]’s for 𝑖 = |B| to 𝑡 − 1. That is, pad𝑡 pads a list of values with
zeroes to get an element of F𝑡2 or Z𝑡𝑝−1 (we slightly abuse our notations and do not distinguish between
padding with 0 ∈ F2 or with 0 ∈ Z𝑝−1).

6.2 Efficiency and Correctness

Efficiency. Let Ĉ := GC.Garble(1𝜆, C). We have

|Ĉ |= |C|+|mpk|+
𝐷∑︁
𝑑=1
|L̂𝐷 |.

The size of |mpk| is 2𝑁𝑚 + 1 elements of G, which translates to𝑂(𝜆 · (2𝑐𝑚2𝑚)𝑚) bits. Using𝑚 = 𝑂(
√︁

log 𝜆)
yields |mpk|= poly(𝜆), where poly is a fixed polynomial independent of C. The size of each garbled layer
L̂𝑑 is 𝑂(𝜆 · 𝑛𝑑 ), as it contains 𝑛𝑑 constant-length tuples of shifts (4 for a batch of XORs, 9 for a batch of
ANDs), where each shift is 𝑂(𝜆)-bit long. This yields

|Ĉ |= |C|+𝑂(𝜆) ·
𝐷∑︁
𝑑=1
⌈|L𝑑 |/𝑡⌉ + poly(𝜆).

For circuits that are not too narrow (where the layers contain more than
√︁

log 𝜆 gates), this translates
to 𝑂(𝜆/

√︁
log(𝜆)) · |C|+poly(𝜆) bits. In the worst-case, for extremely narrow circuits, |Ĉ | can grow to

𝑂(𝜆/
√︁

log(𝜆)) · |C|+𝑂(𝜆 · 𝐷) + poly(𝜆) bits.

Correctness. Let 𝑥 denote an input to C. For each gate 𝑢, let 𝑥𝑢 denote the bit output by this gate in the
computation of C(𝑥 ). Given a batch B of gates, let 𝑥B := (𝑥𝑢 )𝑢∈B . The proof of correctness relies on the fact
that all the procedures maintain a suitable invariant throughout the computation. The required invariant
for each procedure is guaranteed by a correctness lemma:

• Lemma 16 for PackH

• Lemma 17 for UnpackH

• Lemma 19 for BatchANDH

• Lemma 18 for BatchXORH

At the start of the procedure, for each input gate 𝑖 , we have 𝑘𝑖 ⊕ ℓ𝑖 = 𝑥𝑖 and 𝐿𝑖 −𝐾𝑖 = ∆ · ℓ𝑖 mod 𝑝 − 1 by
definition of GC.Enc. Then, fix a layer 𝑑 and a batch 𝑖 ≤ 𝑛𝑑 and assume that before running the procedures
on L𝑑 , it holds that 𝑥𝑢 = 𝑘𝑢 ⊕ ℓ𝑢 and 𝐿𝑢 − 𝐾𝑢 = ∆ · ℓ𝑢 mod 𝑝 − 1 for all 𝑢 ∈ Left𝑑,𝑖 ∪ Right𝑑,𝑖 . Then,

• By Lemma 16, it holds after running the PackH procedures that 𝑘l + ℓl = Φ(pad𝑡 (𝑥Left𝑑,𝑖 )), 𝑘r + ℓr =
Φ(pad𝑡 (𝑥Right𝑑,𝑖 )), 𝐿l−𝐾l = ∆·ℓl(𝑁 ) mod 𝑝−1, and 𝐿r−𝐾r = ∆·ℓr(𝑁 ) mod 𝑝−1. Let 𝑥l := Φ(pad𝑡 (𝑥Left𝑑,𝑖 ))
and 𝑥r := Φ(pad𝑡 (𝑥Right𝑑,𝑖 )).
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• IfL𝑑 is an AND layer, by Lemma 19, it holds after running theBatchANDH procedure that𝑘out+ℓout =
𝑥l · 𝑥r and 𝐾out − 𝐿out = ∆ · ℓout(𝑁 ) mod 𝑝 − 1.

• If L𝑑 is an AND layer, by Lemma 17, it holds after running the UnpackH procedure that (𝑘[𝑖] ⊕
ℓ[𝑖])𝑖≤𝑡−1 = Ψ(𝑥l · 𝑥r) and 𝐾[𝑖] − 𝐿[𝑖] = ∆ · ℓ[𝑖] mod 𝑝 − 1 for 𝑖 = 0 to 𝑡 − 1.

• By an identical reasoning, if L𝑑 is a XOR layer, by Lemma 18 and Lemma 17, it holds after running
the BatchXORH and UnpackH procedures that (𝑘[𝑖] ⊕ ℓ[𝑖])𝑖≤𝑡−1 = Φ−1(𝑥l ⊕ 𝑥r) and 𝐾[𝑖] − 𝐿[𝑖] =
∆ · ℓ[𝑖] mod 𝑝 − 1 for 𝑖 = 0 to 𝑡 − 1.

It follows that after each AND layer, the gates inB𝑑,𝑖 are labeled with the first |B𝑑,𝑖 | entries of Ψ(Φ(pad𝑡 (𝑥Left𝑑,𝑖 ))·
Φ(pad𝑡 (𝑥Right𝑑,𝑖 ))). By definition of the RMFE maps (Definition 5), this value equal to pad𝑡 (𝑥Left𝑑,𝑖 )⊙pad𝑡 (𝑥Right𝑑,𝑖 ),
hence its first |B𝑑,𝑖 | entries are exactly the products 𝑥𝑢l · 𝑥𝑢r , where 𝑢l, 𝑢r denote the left and right parents
of each gate 𝑢 ∈ B𝑑,𝑖 respectively. Similarly, after each XOR layer, each gate 𝑢 of the layer gets labeled
with 𝑥𝑢l ⊕ 𝑥𝑢r . Eventually, after all layers have been computed, it holds that 𝑘𝑜 ⊕ ℓ𝑜 = 𝑥𝑜 for each output
gate 𝑜 , and we have (𝑥𝑜 )𝑜∈𝑂(C) = 𝑦 = C(𝑥 ).

6.3 Packing Procedures

Given 𝑥 ∈ N, let us write |𝑥 |:= ⌈log2(𝑥 )⌉. Let toBits : N→ F∗2 denote the function that, on input an integer
𝑥 ∈ N, output the bit decomposition 𝑥[1], · · · , 𝑥[|𝑥 |] of 𝑥 , viewed as an element of F |𝑥 |2 .

Algorithm PackHG(msk, (𝑘𝑢, 𝐾𝑢 )𝑢∈B, salt)

Input. Master secret key msk. Wire keys (𝑘𝑢, 𝐾𝑢 )𝑢∈B ∈ ({0, 1} × Z𝑝−1) | B | for a batch of gates B of
size |B|≤ 𝑡 . Salt salt. Parse msk as (mpk,∆, ℎ0).

Procedure.

• 𝑘out := Φ(pad𝑡 ((𝑘𝑢 )𝑖∈B))
• (𝐾[0], · · · , 𝐾[𝑡 − 1]) := pad𝑡 ((𝐾𝑢 )𝑖∈B)
• 𝐾 ← ∑𝑡−1

𝑖=0 𝐾[𝑖] · 2𝑖 mod 𝑝 − 1 ⊲ 𝐾 = ⟨∆ ·∑𝑡−1
𝑖=0 ℓ[𝑖] · 2𝑖⟩G

• (shift, 𝐾out) := [2𝑡 ]-BatchfAuthHG(msk,∆, 𝐾, Eval𝑁 ◦ Φ ◦ toBits, salt)

Output. (𝑘out, 𝐾out, shift)

Algorithm 5: Garbler packing procedure. Given ordered indices (𝑢0, · · · , 𝑢 | B |−1), it packs multiples shares
(𝑘𝑢𝑖 , ℓ𝑢𝑖 ) of bits 𝑥𝑖 ∈ F2, and Z𝑝−1-shares (𝐾𝑢𝑖 , 𝐿𝑢𝑖 )𝑖 of ∆ · ℓ𝑢𝑖 , into F2𝑚 -shares of Φ((𝑥0, · · · , 𝑥 | B |−1) and
Z𝑝−1-shares of ∆ · Eval𝑁 (Φ(ℓ𝑢0, · · · , ℓ𝑢 |B|−1 )).

Algorithm PackHE (mpk, (ℓ𝑢, 𝐿𝑢 )𝑢∈B, salt, shift)

Input. Wire labels (ℓ𝑢, 𝐿𝑢 )𝑢∈B ∈ ({0, 1} × Z𝑝−1) | B | for a batch of gates B of size |B|≤ 𝑡 , garbling
material shift.

Procedure.
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• ℓout := Φ(ℓ[0], · · · , ℓ[𝑡 − 1]) = Φ(pad𝑡 ((ℓ𝑢 )𝑖∈B))
• (𝐿[0], · · · , 𝐿[𝑡 − 1]) := pad𝑡 ((𝐿𝑢 )𝑖∈B)
• ℓ̃out := ∑𝑡−1

𝑖=0 ℓ[𝑖] · 2𝑖

• 𝐿 ← ∑𝑡−1
𝑖=0 𝐿[𝑖] · 2𝑖 mod 𝑝 − 1 ⊲ 𝐿 = ⟨∆ · ℓ̃out⟩E

• 𝐿out := [2𝑡 ]-BatchfAuthHE (mpk, ℓ̃out, 𝐿, Eval𝑁 ◦ Φ ◦ toBits, salt, shift)

Output. (ℓout, 𝐿out)

Algorithm 6: Evaluator packing procedure. Given ordered indices (𝑢0, · · · , 𝑢 | B |−1), it packs multiples shares
(𝑘𝑢𝑖 , ℓ𝑢𝑖 ) of bits 𝑥𝑖 ∈ F2, and Z𝑝−1-shares (𝐾𝑢𝑖 , 𝐿𝑢𝑖 )𝑖 of ∆ · ℓ𝑢𝑖 , into F2𝑚 -shares of Φ((𝑥0, · · · , 𝑥 | B |−1) and Z𝑝−1-
shares of ∆ · Eval𝑁 (Φ(ℓ𝑢0, · · · , ℓ𝑢 |B|−1 )).

Lemma 16 (Correctness of packing). Fix (mpk,msk, (ℓ𝑢, 𝐿𝑢, 𝑘𝑢, 𝐾𝑢 )𝑢∈B, salt) where msk := (mpk,∆, ℎ0).
Assume that for each 𝑢 ∈ B, it holds that 𝐿𝑢 − 𝐾𝑢 = ∆ · ℓ𝑢 mod 𝑝 − 1. Then, denoting

(𝑥𝑢 )𝑢∈B := (𝑘𝑢 ⊕ ℓ𝑢 )𝑢∈B
(𝑘out, 𝐾out, shift) := PackHG(msk, (𝑘𝑢, 𝐾𝑢 )𝑢∈B, salt)

(ℓout, 𝐿out) := PackHE (mpk, (ℓ𝑢, 𝐿𝑢 )𝑢∈B, salt, shift),

it holds that

𝑘out + ℓout = Φ(pad𝑡 ((𝑥𝑢 )𝑢∈B))
𝐿out − 𝐾out = ∆ · Eval𝑁 (ℓout) mod 𝑝 − 1.

Proof. The first part of Lemma 16 follows immediately from the linearity of Φ ◦ pad𝑡 . As for the second
part, we have

𝐿 − 𝐾 =
𝑡−1∑︁
𝑖=0

(𝐿[𝑖] − 𝐾[𝑖]) · 2𝑖 mod 𝑝 − 1

= ∆ ·
𝑡−1∑︁
𝑖=0

ℓ[𝑖] · 2𝑖 = ∆ · ℓ̃out mod 𝑝 − 1 ⊲ by assumption of Lemma 16

Hence, the conditions of Lemma 13 are satisfied. Applying Lemma 13, we get

𝐿out − 𝐾out = ∆ · Eval𝑁 (Φ(toBits(ℓ̃out))) mod 𝑝 − 1,

and we conclude by observing that pad𝑡 ((ℓ𝑢 )𝑢∈B) = toBits(ℓ̃out) by construction, hence ℓout = Φ(toBits(ℓ̃out)).
■

6.4 Unpacking Procedures

We also introduce unpacking procedures for the garbler and the evaluator. We let Bit𝑖 denote the function
that, given a value 𝑣 ∈ F𝑡2, outputs the 𝑖-th co-efficient 𝑣[𝑖] of 𝑣 . Given an operation ✪ ∈ {+, ·} (bitwise-
XOR or bitwise-AND), the procedures convert shares (𝑘, ℓ) of Φ(𝑥 ) ✪ Φ(𝑦) ∈ F2𝑚 and ∆ · ℓ(𝑛) back to bitwise
shares of 𝑓 (Φ(𝑥 ) ✪ Φ(𝑦)) ∈ F𝑡2 and of (∆ · 𝑓 (ℓ)[𝑖])𝑖≤𝑡 (that is, ∆-authenticated substractive shares of each bit
of Φ−1(ℓ) over Z𝑝−1). Depending on the operation ✪ , we use a different “inverse mapping” 𝑓 :
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• If ✪ = + (when unpacking the output of a batch-XOR), we set 𝑓 = Φ−1, since Φ−1(Φ(𝑥 )+Φ(𝑦)) = 𝑥 ⊕𝑦
(by linearity of Φ).

• If ✪ = · (when unpacking the output of a batch-AND), we set 𝑓 = Ψ, since Ψ(Φ(𝑥 ) · Φ(𝑦)) = 𝑥 ⊙ 𝑦 (by
definition of RMFEs).

We define the general procedures below.

Algorithm UnpackHG(𝑓 ,msk, 𝑘, 𝐾, salt)

Input. Function 𝑓 ∈ {Φ−1,Ψ}. Master secret key msk, packed keys (𝑘, 𝐾 ) ∈ F2𝑚 × Z𝑝−1, salt salt.
Parse msk := (mpk,∆, ℎ0).

Procedure.

• (𝑘[0], · · · , 𝑘[𝑡 − 1]) := 𝑓 (𝑘)
• (shift, 𝐾0, · · · , 𝐾𝑡−1) := BatchfAuthHG(msk,∆, 𝐾, (Bit𝑖 ◦ 𝑓 ◦ toPoly𝑁 )0≤𝑖≤𝑡−1)

Output. ((𝑘[𝑖], 𝐾𝑖 )𝑖≤𝑡−1, shift)

Algorithm 7: Garbler procedure for unpacking the result of a batch evaluation. The procedure toPoly𝑁
returns an element of N[𝑋 ], but in our context, toPoly𝑁 will always take as input an integer embedding of
a polynomial in F2[𝑋 ]/𝑃 (𝑋 ), hence its output is guaranteed to be a polynomial in F2[𝑋 ;𝑚] with coefficients
in {0, 1}. We interpret this polynomial as an element of F2𝑚 when evaluating 𝑓 .

Algorithm UnpackHE (𝑓 ,mpk, ℓ, 𝐿, salt, shift)

Input. Function 𝑓 ∈ {Φ−1,Ψ}. Master public key mpk, packed labels (ℓ, 𝐿) ∈ F2𝑚 × Z𝑝−1, salt salt,
garbling material shift.

Procedure.

• (ℓ[0], · · · , ℓ[𝑡 − 1]) := 𝑓 (ℓ)
• (𝐿0, · · · , 𝐿𝑡−1) := BatchfAuthHE (mpk, ℓ(𝑁 ), 𝐿, (Bit𝑖 ◦ 𝑓 ◦ toPoly𝑁 )0≤𝑖≤𝑡−1)

Output. (ℓ[𝑖], 𝐿𝑖 )𝑖≤𝑡−1

Algorithm 8: Evaluator procedure for unpacking the result of a batch evaluation. The procedure toPoly𝑁
returns an element of N[𝑋 ], but in our context, toPoly𝑁 will always take as input an integer embedding
of a polynomial in F2[𝑋 ]/𝑃 (𝑋 ), hence its output is guaranteed to always be a polynomial in F2[𝑋 ;𝑚]. We
interpret this polynomial as an element of F2𝑚 when evaluating 𝑓 .
Lemma 17 (Correctness of unpacking). Fix 𝑓 ∈ {Φ−1,Ψ} and (mpk,msk, (𝑘, 𝐾, ℓ, 𝐿), salt) where msk :=
(mpk,∆, ℎ0). Assume that 𝐿 − 𝐾 = ∆ · Eval𝑁 (ℓ) mod 𝑝 − 1. Then, denoting

𝑥 := 𝑘 + ℓ ⊲ over F2𝑚

((𝑘[𝑖], 𝐾[𝑖])𝑖≤𝑡−1, shift) := UnpackHG(𝑓 ,msk, 𝑘, 𝐾, salt)
(ℓ[𝑖], 𝐿[𝑖])𝑖≤𝑡−1 := UnpackHE (𝑓 ,mpk, ℓ, 𝐿, salt, shift),
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it holds that

(𝑘[𝑖] ⊕ ℓ[𝑖])𝑖≤𝑡−1 = 𝑓 (𝑥 )
(𝐾[𝑖] − 𝐿[𝑖])𝑖≤𝑡−1 = (∆ · ℓ[𝑖] mod 𝑝 − 1)𝑖≤𝑡−1

Proof. The first part of Lemma 17 follows immediately from the linearity of 𝑓 : F2𝑚 → F𝑡2. As for the
second part, since we have 𝐿 −𝐾 = ∆ · Eval𝑁 (ℓ) mod 𝑝 − 1 by assumption, the conditions of Lemma 13 are
satisfied. Applying Lemma 13 with 𝑞 = 𝑡 , we get for 𝑖 = 0 to 𝑡 − 1:

𝐿[𝑖] − 𝐾[𝑖] = ∆ · Bit𝑖 (𝑓 (toPoly𝑁 (Eval𝑁 (ℓ)))) mod 𝑝 − 1
= ∆ · Bit𝑖 (𝑓 (ℓ)) = ∆ · ℓ[𝑖] mod 𝑝 − 1

■

Eventually, we define UnpackXORH and UnpackANDH as the above general procedures with 𝑓 set to
either Φ−1 or Ψ and hardcoded in the function:

• UnpackXORH
G(msk, 𝑘, 𝐾, salt) := UnpackHG(Φ−1,msk, 𝑘, 𝐾, salt)

• UnpackXORH
E (mpk, ℓ, 𝐿, salt, shift) := UnpackHE (Φ−1,mpk, ℓ, 𝐿, salt, shift)

• UnpackANDH
G(msk, 𝑘, 𝐾, salt) := UnpackHG(Ψ,msk, 𝑘, 𝐾, salt)

• UnpackANDH
E (mpk, ℓ, 𝐿, salt, shift) := UnpackHE (Ψ,mpk, ℓ, 𝐿, salt, shift)

6.5 Batch-XOR Gadget

The procedures below are used by the garbler and the evaluator, who hold as inputs F2𝑚 -shares (𝑘l, ℓl) of 𝑥l ∈
F2𝑚 , F2𝑚 -shares (𝑘r, ℓr) of 𝑥r ∈ F2𝑚 , and Z𝑝−1-shares (𝐾l, 𝐿l) and (𝐾r, 𝐿r) of ∆ ·𝑥l(𝑁 ) and ∆ ·𝑥r(𝑁 ) respectively.
The procedure outputs F2𝑚 -shares (𝑘out, ℓout) of 𝑥l +𝑥r, and Z𝑝−1-shares (𝐾out, 𝐿out) of ∆ · Eval𝑁 (𝑥l ⊕ 𝑥r). Let
𝑆𝑁,𝑚 denote the set of sums of two elements from I𝑁,𝑚 .

Algorithm BatchXORH
G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt)

Input. Master secret key msk. Packed keys (𝑘l, 𝐾l), (𝑘r, 𝐾r). Salt salt. Parse msk := (mpk,∆, ℎ0).

Procedure.

• 𝑘out := 𝑘l + 𝑘r ⊲ Over F2𝑚

• 𝐾̃out := 𝐾l + 𝐾r mod 𝑝 − 1
• (shift, 𝐾out) := 𝑆𝑁,𝑚-BatchfAuthHG(msk,∆, 𝐾̃out,Mod𝑁 (·, 2), salt)

Output. ((𝑘out, 𝐾out), shift)

Algorithm 9: Garbler batch-XOR gadget
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Algorithm BatchXORH
E (mpk, (ℓl, 𝐿l), (ℓr, 𝐿r), salt, shift)

Input. Master public key mpk. Packed keys (𝑘l, 𝐾l), (𝑘r, 𝐾r). Salt salt, garbling material shift.

Procedure.

• ℓ̃out := ℓl + ℓr ⊲ Over Z[𝑋 ]
• ℓout := ℓ̃out mod 2 ⊲ ℓout ∈ F2𝑚

• 𝐿̃out := 𝐿l + 𝐿r mod 𝑝 − 1
• 𝐿out := 𝑆𝑁,𝑚-BatchfAuthHE (mpk, ℓ̃out(𝑁 ), 𝐿̃out,Mod𝑁 (·, 2), salt, shift)

Output. (ℓout, 𝐿out)

Algorithm 10: Evaluator batch-XOR gadget

Lemma18 (Correctness of batch-XOR). Fix (mpk,msk, (𝑘l, 𝐾l, ℓl, 𝐿l), (𝑘r, 𝐾r, ℓr, 𝐿r), salt)wheremsk := (mpk,∆, ℎ0).
Assume that for 𝑢 ∈ {l, r}, 𝐿𝑢 − 𝐾𝑢 = ∆ · Eval𝑁 (ℓ𝑢 ) mod 𝑝 − 1. Then, denoting

𝑥𝑢 := 𝑘𝑢 + ℓ𝑢 for 𝑢 ∈ {l, r} ⊲ over F2𝑚

((𝑘out, 𝐾out), shift) := BatchXORH
G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt)

(ℓout, 𝐿out) := BatchXORH
E (mpk, (ℓl, 𝐿l), (ℓr, 𝐿r), salt, shift),

it holds that

𝑘out + ℓout = 𝑥l + 𝑥r ⊲ over F2𝑚

𝐾out − 𝐿out = ∆ · Eval𝑁 (ℓout)) mod 𝑝 − 1

Proof. The first part of Lemma 18 follows immediately from the fact that ℓout = ℓ̃out mod 2 with ℓ̃out = ℓl + ℓr
over Z[𝑋 ], hence ℓout = ℓl + ℓr over F2𝑚 . As for the second part, since we have

𝐿̃out − 𝐾̃out = (𝐿l − 𝐾l) + (𝐿r − 𝐾r) mod 𝑝 − 1
= ∆ · (Eval𝑁 (ℓl) + Eval𝑁 (ℓr)) mod 𝑝 − 1 ⊲ by assumption of Lemma 18
= ∆ · Eval𝑁 (ℓl + ℓr) mod 𝑝 − 1 ⊲ sum over Z[𝑋 ], since 𝑁 ≫ 2
= ∆ · ℓ̃out(𝑁 ) mod 𝑝 − 1

hence the conditions of Lemma 13 are satisfied. Applying Lemma 13, we get:

𝐿out − 𝐾out = ∆ ·Mod𝑁 (ℓ̃out(𝑁 ), 2) mod 𝑝 − 1
= ∆ · Eval𝑁 (ℓout) mod 𝑝 − 1 ⊲ by definition of Mod𝑁 (·, 2).

■

6.6 Batch-AND Gadget
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Algorithm BatchANDH
G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt)

Input. Master secret key msk. Packed keys (𝑘l, 𝐾l), (𝑘r, 𝐾r). Salt salt. Parse msk := (mpk,∆, ℎ0). For
𝑖 = 1 to 6, let salt𝑖 := salt| |𝑖 .

Procedure.

• (𝑘 ′l , 𝑘
′
r)←$Pert𝑐 (𝑘l) × Pert𝑐 (𝑘r)

• (shift𝑎, 𝑎G) := Z-VtOH0
G (msk, 𝑘 ′l (𝑁 ), 𝐾r, salt1)

⊲ 𝑎G = ⟨𝑘 ′l (𝑁 )ℓr(𝑁 )⟩G
• (shift𝑏, 𝑏G) := Z-VtOH0

G (msk, 𝑘 ′r(𝑁 ), 𝐾l, salt2)
⊲ 𝑏G = ⟨𝑘 ′r(𝑁 )ℓl(𝑁 )⟩G

• 𝑎G := [toPoly𝑁 (𝑎G) mod 2, 𝑃] ⊲ 𝑎G ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• 𝑏G := [toPoly𝑁 (𝑏G) mod 2, 𝑃] ⊲ 𝑏G ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• 𝑘out := 𝑘l𝑘r + 𝑎G + 𝑏G ⊲ over F2𝑚

• (shift𝛼 , 𝛼G) := VtOH
G(msk,∆𝑘 ′l (𝑁 ), 𝐾r, salt3)

⊲ 𝛼G = ⟨∆𝑘 ′l (𝑁 ) · ℓr(𝑁 )⟩G
• (shift𝛽 , 𝛽G) := VtOH

G(msk,∆𝑘 ′r(𝑁 ), 𝐾l, salt4)
⊲ 𝛽G = ⟨∆𝑘 ′r(𝑁 ) · ℓl(𝑁 )⟩G

• (shift𝛾 , 𝛾G) := VtOH
G(msk, 𝐾l, 𝐾r, salt5) ⊲ 𝛾G = ⟨𝐾l · ℓr(𝑁 )⟩G

• 𝐾̃out := 𝛼G + 𝛽G − 𝛾G + ∆(𝑎G + 𝑏G) ⊲ 𝐾̃out = ⟨∆ℓ̃out⟩G
• (shift𝐾 , 𝐾out) := [𝑁𝑚]-BatchfAuthHG(msk,∆, 𝐾̃out,Mod𝑁 (·, 2, 𝑃 ), salt6) ⊲ 𝐾out = ⟨∆ℓout⟩G
• 𝑆out := (shift𝑎, shift𝑏, shift𝛼 , shift𝛽 , shift𝛾 , shift𝐾 )

Output. ((𝑘out, 𝐾out), 𝑆out)

Algorithm 11: Garbler batch-AND gadget. Unlike the other gadgets, BatchANDH
G is a randomized proce-

dure.

Algorithm BatchANDH
E (msk, (ℓl, 𝐿l), (ℓr, 𝐿r), salt, 𝑆)

Inputs. Master public key mpk. Packed labels (ℓl, 𝐿l), (ℓr, 𝐿r), salt salt and garbling material 𝑆 . Parse
𝑆 := (shift𝑎, shift𝑏, shift𝛼 , shift𝛽 , shift𝛾 , shift𝐾 ). For 𝑖 = 1 to 6, let salt𝑖 := salt| |𝑖 .

Procedure.

• 𝑎E := Z-VtOH0
E (mpk, ℓr(𝑁 ), 𝐿r, salt1, shift𝑎)

⊲ 𝑎E = ⟨𝑘 ′l (𝑁 )ℓr(𝑁 )⟩E
• 𝑏E := Z-VtOH0

E (mpk, ℓl(𝑁 ), 𝐿l, salt2, shift𝑏 ) ⊲ 𝑏E = ⟨𝑘 ′r(𝑁 )ℓl(𝑁 )⟩E
• ℓ̃out := ℓl(𝑁 )ℓr(𝑁 ) + 𝑎E + 𝑏E
• 𝑎E := [toPoly𝑁 (𝑎E) mod 2, 𝑃] ⊲ 𝑎E ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚
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• 𝑏E := [toPoly𝑁 (𝑏E) mod 2, 𝑃] ⊲ 𝑏E ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• ℓout := ℓlℓr + 𝑎E + 𝑏E ⊲ ℓout = Mod𝑁 (ℓ̃out) ∈ F2𝑚

• 𝛼E := VtOH
E (mpk, ℓr(𝑁 ), 𝐿r, salt3, shift𝛼 )

⊲ 𝛼E = ⟨∆𝑘 ′l (𝑁 ) · ℓr(𝑁 )⟩E
• 𝛽E := VtOH

E (mpk, ℓl(𝑁 ), 𝐿ℓ , salt4, shift𝛽 )
⊲ 𝛽E = ⟨∆𝑘 ′r(𝑁 ) · ℓl(𝑁 )⟩E

• 𝛾E := VtOH
E (mpk, ℓr(𝑁 ), 𝐿r, salt5, shift𝛾 ) ⊲ 𝛾E = ⟨𝐾l · ℓr(𝑁 )⟩E

• 𝐿̃out := 𝛼E + 𝛽E − 𝛾E + 𝐿lℓr(𝑁 ) ⊲ 𝐿̃out = ⟨∆ℓ̃out⟩E
• 𝐿out := [𝑁𝑚]-BatchfAuthHE (mpk, ℓ̃out, 𝐿̃out,Mod𝑁 (·, 2, 𝑃 ), salt6, shift𝐾 ) ⊲ 𝐿out = ⟨∆ℓout⟩E

Output. (ℓout, 𝐿out)

Algorithm 12: Evaluator batch-AND gadget

Lemma19 (Correctness of batch-AND). Fix (mpk,msk, (𝑘l, 𝐾l, ℓl, 𝐿l), (𝑘r, 𝐾r, ℓr, 𝐿r), salt)wheremsk := (mpk,∆, ℎ0).
Assume that for 𝑢 ∈ {l, r}, 𝐿𝑢 − 𝐾𝑢 = ∆ · Eval𝑁 (ℓ𝑢 ) mod 𝑝 − 1. Then, denoting

𝑥𝑢 := 𝑘𝑢 + ℓ𝑢 for 𝑢 ∈ {l, r} ⊲ over F2𝑚

((𝑘out, 𝐾out), 𝑆) := BatchANDH
G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt)

(ℓout, 𝐿out) := BatchANDH
E (mpk, (ℓl, 𝐿l), (ℓr, 𝐿r), salt, 𝑆),

it holds that

𝑘out + ℓout = 𝑥l · 𝑥r ⊲ over F2𝑚

𝐾out − 𝐿out = ∆ · Eval𝑁 (ℓout)) mod 𝑝 − 1

Proof. Using the assumptions of Lemma 19, the conditions of Lemma 11 are satisfied. Hence, we have
by Lemma 11 that

𝑎E − 𝑎G = ℓr(𝑁 ) · 𝑘 ′l (𝑁 )
𝑏E − 𝑏G = ℓl(𝑁 ) · 𝑘 ′r(𝑁 ).

Then since 𝑁 > 𝑐 ·𝑚, using Lemma 8 with 𝑇 = 1, we get

ℓr · 𝑘l := toPoly𝑁 (Mod𝑁 (ℓr(𝑁 ) · 𝑘 ′l (𝑁 ), 2))
ℓl · 𝑘r := toPoly𝑁 (Mod𝑁 (ℓl(𝑁 ) · 𝑘 ′r(𝑁 ), 2)),

where the products on the left are computed over F2[𝑋 ]. Furthermore, by definition of VtOG, we have

𝑎G =
∑︁

𝑥∈I𝑁,𝑚

𝑥 · FH0 (k, 𝑥, salt1)

𝑏G =
∑︁

𝑥∈I𝑁,𝑚

𝑥 · FH0 (k, 𝑥, salt2),
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where each term FH0 (k, 𝑥, salt𝑖 ) is a term of the form map
(
H

(
ℎ
sk
𝑥 , salt𝑖

))
. By definition of map, each such

term is of the form 𝑟 (𝑁 ) where 𝑟 ∈ Z[𝑋 ;𝑚] is a polynomial with coefficients bounded by ∥𝑟 ∥∞ ≤ 𝑐 . Then,
applying Lemma 8 using𝑇 = |I𝑁,𝑚 |+1 = 2𝑚 +1 (which is possible because 𝑁 = 2𝑐 ·𝑚 · (2𝑚 +1)+1 > 𝑐 ·𝑚 ·𝑇 ),
we get

toPoly𝑁 (𝑎E) = toPoly𝑁 (ℓr(𝑁 ) · 𝑘 ′l (𝑁 ) + 𝑎G) = ℓr · 𝑘 ′l + toPoly𝑁 (𝑎G)
toPoly𝑁 (𝑏E) = toPoly𝑁 (ℓl(𝑁 ) · 𝑘 ′r(𝑁 ) + 𝑏G) = ℓl · 𝑘 ′r + toPoly𝑁 (𝑏G),

and since the map [·, 2, 𝑃] is linear, we obtain

𝑎E = ℓr · 𝑘l + 𝑎G ⊲ over F2𝑚 = F2[𝑋 ]/𝑃 (𝑋 )
𝑏E = ℓl · 𝑘r + 𝑏G ⊲ over F2𝑚 = F2[𝑋 ]/𝑃 (𝑋 ),

and therefore (note that + and − coincide over F2𝑚 )

ℓout + 𝑘out = (𝑘r𝑘l + 𝑎G + 𝑏G) + (𝑘l𝑘r + 𝑎E + 𝑏E)
= 𝑘r𝑘l + 𝑘rℓl + 𝑘lℓr + ℓrℓl
= (𝑘r + ℓr) · (𝑘l + ℓl) = 𝑥l · 𝑥r. ⊲ over F2𝑚 = F2[𝑋 ]/𝑃 (𝑋 )

Moving on to the last part of Lemma 19, we start by observing that

ℓout = ℓlℓr + 𝑎E + 𝑏E
= [toPoly𝑁 (ℓr(𝑁 ) · 𝑘 ′l (𝑁 )) + toPoly𝑁 (𝑎E) + toPoly𝑁 (𝑏E) mod 2, 𝑃]
= [toPoly𝑁 (ℓ̃out) mod 2, 𝑃],

where the second equality is by linearity of the map [·, 2, 𝑃], and the last is by applying Lemma 8 with
𝑇 = 2𝑚+1 + 1, using this time the fact that 𝑁 = 2𝑐 · 𝑚 · (2𝑚 + 1) + 1 > 𝑐 · 𝑚 · 𝑇 . We therefore have
ℓout(𝑁 ) = Mod𝑁 (ℓ̃out, 2, 𝑃 ).

Then, using the assumptions of Lemma 19, the conditions of Lemma 11 are satisfied. Hence, we have
by Lemma 11 that

𝛼E − 𝛼G = ℓr(𝑁 ) · (∆𝑘 ′l (𝑁 ))
𝛽E − 𝛽G = ℓl(𝑁 ) · (∆𝑘 ′r(𝑁 ))
𝛾E − 𝛾G = ℓr(𝑁 ) · 𝐾l.

Then,

𝐿̃out − 𝐾̃out = 𝛼E + 𝛽E − 𝛾E + 𝐿lℓr(𝑁 ) − (𝛼G + 𝛽G − 𝛾G + ∆(𝑎G + 𝑏G))
= (𝛼E − 𝛼G) + (𝛽E − 𝛽G) − (𝛾E − 𝛾G) + ∆(𝑎G + 𝑏G) + 𝐿lℓr(𝑁 )
= ∆ · (ℓr(𝑁 ) · 𝑘 ′l (𝑁 ) + ℓl(𝑁 ) · 𝑘 ′r(𝑁 )) − ℓr(𝑁 ) · 𝐾l

+ ∆(𝑎E − ℓr(𝑁 ) · 𝑘 ′l (𝑁 ) + 𝑏E − ℓl(𝑁 ) · 𝑘 ′r(𝑁 )) + 𝐿lℓr(𝑁 )
= ∆ · (𝑎E + 𝑏E) + ℓr(𝑁 ) · (𝐿l − 𝐾l)
= ∆ · (𝑎E + 𝑏E + ℓr(𝑁 ) · ℓl(𝑁 )) ⊲ 𝐿l − 𝐾l = ∆ · ℓl(𝑁 )
= ∆ · ℓ̃out,
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and the conditions of Lemma 13 are satisfied. Applying Lemma 13, we get:

𝐿out − 𝐾out = ∆ ·Mod𝑁 (ℓ̃out, 2, 𝑃 ) mod 𝑝 − 1
= ∆ · ℓout(𝑁 ) mod 𝑝 − 1,

which concludes the proof. ■

7 Security Analysis

In this section, we prove the following theorem:

Theorem 20. The garbling scheme of Section 6 is private.

Fix a security parameter 𝜆, a circuit C, and an input 𝑥 . We prove privacy through a sequence of games.
The initial game samples (Ĉ, e, d)←$GC.Garble(1𝜆, C), 𝑥←$GC.Enc(e, 𝑥𝜆), and outputs (Ĉ, 𝑥, d).

7.1 The Hybrids

Hybrid1. In the first hybrid, we describe a simulator SimGC1(1𝜆, C, 𝑥). The simulator is obtained by making
a few simple changes to GC.Garble:

• During the initialization phase of GC.Garble(1𝜆, C), instead of sampling (𝑘𝑖 , 𝐾𝑖 )←$ {0, 1} × Z𝑝−1
for each input wire 𝑖 ≤ 𝑛, SimGC1 samples labels (ℓ𝑖 , 𝐿𝑖 )←$ {0, 1} × Z𝑝−1 for 𝑖 = 1 to 𝑛 and sets
(𝑘, 𝐾𝑖 ) := (ℓ𝑖 ⊕𝑥𝑖 , 𝐿𝑖 −∆ · ℓ𝑖 mod 𝑝 −1). This is the only place where SimGC1 uses the input 𝑥 . Observe
that (𝑘𝑖 , 𝐾𝑖 )𝑖≤𝑛 is distributed exactly as in the initial game, and furthermore GC.Enc(e, 𝑥) = (ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 .

• SimGC1 runs the rest of the simulation identically to GC.Garble to compute (Ĉ, d), and sets 𝑥 :=
(ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 . It outputs (Ĉ, 𝑥, d).

The change between Hybrid1 and the initial game is purely cosmetic, and the games are distributed
identically.

Hybrid2. In this game, we replace SimGC1(1𝜆, C, 𝑥) with SimGC2(1𝜆, C, 𝑥). At a high level, SimGC2 com-
putes (Ĉ, 𝑥, d) without using msk anymore. Instead, SimGC2 receives mpk from the challenger for the
security game of the TCCR hash for exponential correlations with 2𝑁𝑚 − 1 auxiliary powers over G (Defi-
nition 7). Whenever msk is required in a procedure to compute a value, SimGC2 computes the same value
using instead a call to the oracle O := OH,∆,ℎ0 defined in Definition 7. While the full description of the
game hop is involved (as it requires adapting all the subprocedures of GC.Garble), the change is purely
syntactical: when executed with the same random tape 𝑅, SimGC1(1𝜆, C, 𝑥) and SimGC2(1𝜆, C, 𝑥) compute
exactly the same functionality and produce the same output:

Lemma 21. For every Boolean circuit C and input 𝑥 ∈ {0, 1}𝑛 , for every random tape 𝑅, it holds that

SimGC1(1𝜆, C, 𝑥 ;𝑅) = SimGC2(1𝜆, C, 𝑥 ;𝑅).

We defer the full description of SimGC2 and the proof of Lemma 21 to Section 7.2.

Hybrid3. In this game, the oracle O is replaced with a random oracle R : Z𝑝−1 × {0, 1}∗ × Z𝑝−1 → Z𝑝−1.
We denote SimGC3 the resulting algorithm. We have the following immediate lemma:
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mSimVtOH,R(mpk, 𝑣E, ⟨∆𝑣E⟩E, 𝑎, 𝑏, salt)
1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : for 𝑥 ∈ I𝑁,𝑚 \ {𝑣E} :
4 : 𝑦𝑥 := pFH(k∗, 𝑣E, 𝑥, salt)
5 : shift←$Z𝑝−1

6 : 𝑧E := VtOH
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift)

7 : return (shift, 𝑧E)

mSim′VtOH,R(mpk, 𝑣E, ⟨∆𝑣E⟩E,map, 𝑏,salt)
1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : for 𝑥 ∈ I𝑁,𝑚 \ {𝑣E} :

4 : 𝑦𝑥 := map
(
pFH(k∗, 𝑣E, 𝑥, salt)

)
5 : 𝑠←$D𝑚,𝑐 ⊲ defined in Lemma 8
6 : shift :=

∑︁
𝑥∈I𝑁,𝑚\{𝑣E }

𝑦𝑥 + 𝑠

7 : 𝑧E := VtOH0
E (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift)

8 : return (shift, 𝑧E)

mSimBatchfAuthH,,R(mpk, 𝑣E, ⟨∆𝑣E⟩E, salt)
1 : psk := F.Punct(mpk, ⟨∆𝑣E⟩E)
2 : k∗ := (mpk, psk)
3 : for 𝑥 ∈ I𝑁,𝑚 \ {𝑣E} :
4 : 𝑦𝑥 := pFH(k∗, 𝑣E, 𝑥, salt)
5 : shift←$Z𝑝−1

6 : 𝑧E := BatchfAuthHE (mpk, 𝑣E, ⟨∆𝑣E⟩E, salt, shift)
7 : return (shift, 𝑧E)

Figure 1: Modifications of SimVtO, Sim′VtO, and SimBatchfAuth used by SimGC4, with changes compared
to the original procedures highlighted in red.

Lemma 22. Assume that H is a TCCR hash for exponential correlations with 2𝑁𝑚 − 1 auxiliary powers over
G (Definition 7). Then Hybrid2 is computationally indistinguishable from Hybrid1.

The straightforward reduction is given access to an oracle O? that is either O or R, and given a dis-
tinguisher for the TCCR game with advantage 𝜀, runs SimGCH,O?

2 and distinguishes between Hybrid2 and
Hybrid3 with advantage exactly 𝜀. Note that the condition that all queries (𝑥,𝑦, 𝑧) to O have distinct (𝑥,𝑦)
is enforced by the fact that all calls to O in all procedures used by SimGC2 use a unique and distinct salt.

Hybrid4. In this game, we define the algorithm SimGC4 identically to SimGC3, except that we modify the
procedures SimVtO, Sim′VtO, and SimBatchfAuth that it uses internally. We replace them with modified
procedures, where the changes compared to the original procedures are highlighted in red, represented
on Figure 1

• On line 5 of mSimVtOH, shift is sampled uniformly at random. This is distributed exactly as in
SimVtOH,R , where shift is masked by the output of R on a query that involves a unique salt (hence
is never repeated).

• On line 6 ofmSim′VtOH, shift is computed as ∑
𝑥∈I𝑁,𝑚\{𝑣E} map(pFH(k∗, 𝑣E, 𝑥, salt))+𝑠 , where 𝑠←$D𝑡,𝑐 .

In Sim′VtOH,R , the only difference is that 𝑠 is computed asmap (O(psk, salt, 0))+𝑏. As salt is a unique
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salt, map (O(psk, salt, 0))+𝑏 is distributed as a random sample fromD(𝑏)
𝑡,𝑐 . By Lemma 8, the statistical

distance between D(𝑏)
𝑡,𝑐 and D𝑡,𝑐 is at most 𝑡/2𝑐 .

• Eventually, on line 5 of mSimBatchfAuthH, shift is sampled uniformly at random. This is distributed
exactly as in SimBatchfAuthH,R , where shift is masked by the output of R on a query that involves
a unique salt.

To conclude, we observe that the procedures SimVtO, Sim′VtO, and SimBatchfAuth are called at most
9 times in total for a given batch, of which there are at most |C|/𝑡 . We therefore have the following lemma:

Lemma 23. No (possibly unbounded) distinguisher can distinguish between Hybrid3 and Hybrid4 with ad-
vantage better than 𝑡 · |C|/(𝑡 · 2𝑐 ).

Hybrid5. In this game, we observe that from Hybrid4, the values 𝑘𝑢 are not required anymore by SimGC4,
because the modified procedures mSimVtO and mSim′VtO do not expects inputs (𝑎, 𝑏) anymore. For-
mally, we define SimGC5 as SimGC4 by removing the parts denoted in blue from all procedures described
in Section 7.2. Then, to compute d, it sets

d := (ℓ𝑜 ⊕ 𝑦𝑜 )𝑜∈𝑂(C)),

where 𝑦 = C(𝑥 ). Using the invariant lemmas for each of the subprocedures (Lemma 26, Lemma 27,
Lemma 28, and Lemma 29), it follows from an analysis identical to the correctness analysis in Section 6.2
that (ℓ𝑜 ⊕ 𝑦𝑜 )𝑜∈𝑂(C)) is identical to the values (𝑘𝑜 )𝑜∈𝑂(C) computed by SimGC4, hence Hybrid5 is perfectly
indistinguishable from Hybrid4. Notice that SimGC5 does not use the input 𝑥 anymore; this concludes the
proof of Theorem 20.

7.2 Lemmas and Proofs for Hybrid2

As for GC.Garble, we first describe the high-level structure of SimGC2, and the main lemma, before intro-
ducing and analyzing the subprocedures it uses.

Algorithm SimGC2(1𝜆, C, 𝑥)

Input. A Boolean circuit C with |C|= 𝑠 gates and depth depth(C) = 𝐷 represented as described
in Section 6.1; an input 𝑥 ∈ {0, 1} |𝐼 (C) | .

Initialization. The parts in blue are omitted in Hybrid5.

• Receive (ℎ𝑖 )𝑖∈[±𝑁𝑚]\{0} from a challenger for the security game of the TCCR hash for ex-
ponential correlations with 2𝑁𝑚 − 1 auxiliary powers over G (Definition 7).

• Set mpk :=
(
G, 𝑝,𝐺, (ℎ𝑖 )𝑖∈[±𝑁𝑚]\{0}

)
• Let O := OH,ℎ0,∆ denote the oracle of the TCCR security game.
• For each input wire 𝑖 receiving an input bit 𝑥𝑖 , sample (ℓ𝑖 , 𝐿𝑖 )←$ {0, 1} × Z𝑝−1 and set
𝑘𝑖 := ℓ𝑖 ⊕ 𝑥𝑖 .

Procedure. The simulation proceeds in a layer-by-layer fashion, from L1 to L𝐷 . After evaluating a
layer L𝑑 , it labels each gate 𝑢 in the layer with a triple (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 ) and stores a garbling L̂𝑑 of
L𝑑 . The parts in blue are omitted in Hybrid5.
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On layer L𝑑 . For 𝑖 = 1 to 𝑛𝑑 ,

• Let Left𝑑,𝑖 (resp. Right𝑑,𝑖 ) denote the multisets of gates that are the left parent (resp. right
parent) of a gate in B𝑖,𝑑 . Retrieve the triples (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 ) labeling each 𝑢 ∈ Left𝑑,𝑖 ∪ Right𝑑,𝑖
and compute

(ℓl, 𝐿l, 𝑘l,shiftl,𝑑,𝑖 ) := SimPackH,O(mpk, (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈Left𝑖,𝑑
, salt𝑖,𝑑,0)

(ℓr, 𝐿r, 𝑘r,shiftr,𝑑,𝑖 ) := SimPackH,O(mpk, (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈Right𝑖,𝑑 , salt𝑖,𝑑,1).

• If L𝑑 is an AND layer:
– (ℓout, 𝐿out, 𝑘out,𝑆𝑑,𝑖 ) := SimBatchAndH,O(mpk, (ℓl, 𝐿l, 𝑘l), (ℓr, 𝐿r, 𝑘r), salt𝑑,𝑖,2)
– ((ℓ[ 𝑗], 𝐿 𝑗 , 𝑘[ 𝑗])0≤ 𝑗≤𝑡−1, shiftout,𝑑,𝑖 ) := SimUnpackH,O(Ψ,mpk, ℓout, 𝐿out, 𝑘out, salt𝑑,𝑖,3)
– (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈B𝑑,𝑖 := (ℓ[ 𝑗], 𝐿𝑗 , 𝑘[ 𝑗])0≤ 𝑗≤ |B𝑑,𝑖 |−1

• If L𝑑 is a XOR layer:
– (ℓout, 𝐿out, 𝑘out, 𝑆𝑑,𝑖 ) := SimBatchXorH,O(mpk, (ℓl, 𝐿l, 𝑘l), (ℓr, 𝐿r, 𝑘r), salt𝑑,𝑖,2)
– ((ℓ[ 𝑗], 𝐿 𝑗 , 𝑘 𝑗 )0≤ 𝑗≤𝑡−1, shiftout,𝑑,𝑖 ) := SimUnpackH,O(Φ−1,mpk, ℓout, 𝐿out, salt𝑑,𝑖,3)
– (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈B𝑑,𝑖 := (ℓ[ 𝑗], 𝐿 𝑗 , 𝑘[ 𝑗])0≤ 𝑗≤ |B𝑑,𝑖 |−1

• Label each 𝑢 ∈ B𝑑,𝑖 with (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 ).

Set L̂𝑑 := (shiftl,𝑑,𝑖 , shiftr,𝑑,𝑖 , 𝑆𝑑,𝑖 , shiftout,𝑑,𝑖 )𝑖≤𝑛𝑑 .

Output. Return Ĉ = (C,mpk, (L̂𝑑 )𝑑≤𝐷 ), 𝑥 := (ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 , and d := (𝑘𝑜 )𝑜∈𝑂(C)).

Algorithm 13: Garbling procedure of the Boolean garbling scheme

The lemma below shows that Hybrid1 and Hybrid2 are perfectly indistinguishable (in fact, it shows an
even stronger result):

Lemma 24. For any Boolean circuit C with |C|= 𝑠 gates and depth depth(C) = 𝐷 represented as described
in Section 6.1, any input 𝑥 ∈ {0, 1} |𝐼 (C) | , and any random tape 𝑅, it holds that

SimGC1(1𝜆, C, 𝑥 ;𝑅) = SimGC2(1𝜆, C, 𝑥 ;𝑅).

Proof. Fix a Boolean circuit C, an input 𝑥 ∈ {0, 1} |𝐼 (C) | , and a random tape 𝑅. We consider a parallel
run of SimGC1(1𝜆, C, 𝑥 ;𝑅) and SimGC2(1𝜆, C, 𝑥 ;𝑅). Both algorithms share a similar structure, up to the
following distinction: whenever SimGC1 invokes a procedure Proc(msk, (k,K), salt), SimGC2 invokes a
corresponding simulated procedure SimProc(mpk, (ℓ, L, k), salt). We state a meta-lemma that captures the
invariant that these procedures jointly maintain:

Lemma25. (Meta invariant lemma) LetProc ∈ {PackHG,BatchANDH
G,UnpackAND

H
G,BatchXOR

H
G,UnpackXOR

H
G},

and let SimProc ∈ {SimPackH,O, SimBatchAndH,O, SimUnpackH,O(Ψ, ·), SimBatchXorH,O, SimUnpackH,O(Φ−1,
·)} denote the corresponding simulated procedure. Let (msk, (k,K), salt) denote the input toProc and (mpk, (ℓ, L, k), salt)
denote the input to SimProc (note that we require that both algorithms receive the same k as input). Fix a
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random tape 𝑅. Let Emb, Emb′ denote the input and output embeddings defined by Proc. Denote

(k1,K1, 𝑆1) := Proc(msk, (k,K), salt;𝑅)
(ℓ2, L2, k2, 𝑆2) := SimProc(mpk, (ℓ, L, k), salt;𝑅).

Then, if it holds that L − K = ∆ · Emb(ℓ), the following holds:

k1 = k2, 𝑆1 = 𝑆2, L2 − K1 = ∆ · Emb′(ℓ2).

The above lemma is a template “meta-lemma”: we will prove a corresponding formal lemma for each
of the procedures. Then, we observe that the invariant is guaranteed at the input level: SimGC1 and
SimGC2 first sample identical input labels (ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 (as they use the same random tape) and define 𝑘𝑖 :=
ℓ𝑖 ⊕ 𝑥𝑖 ; SimGC1 additionally sets 𝐾𝑖 := 𝐿𝑖 − ∆ · ℓ𝑖 (via the canonical embedding of F2 into Z𝑝−1). It follows
immediately that SimGC1 and SimGC2 output the same garbled input 𝑥 := (ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 .

From there, the invariant lemma guarantees that the invariant propagates throughout the entire eval-
uation of SimGC1 and SimGC2, maintaining the same wire key 𝑘𝑢 on each wire 𝑢 and producing the same
sets of shifts 𝑆𝑑,𝑖 for each batch B𝑑,𝑖 . Therefore, SimGC1 and SimGC2 output identical Ĉ and e. ■

To finish the proof, we introduce each of the simulated procedures, and formally state and prove the
corresponding invariant lemma.
Simulator for the packing procedure. The parts in blue are omitted in Hybrid5.

Algorithm SimPackH,O(mpk, (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈B, salt)

Input. Master public key mpk. Wire labels and keys (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈B ∈ ({0, 1} × Z𝑝−1 × {0, 1}) | B | for a
batch of gates B of size |B|≤ 𝑡 . Salt salt.

Procedure.

• Order the elements of B lexicographically as (𝑢0, · · · , 𝑢 | B |−1), and set (ℓ[𝑖], 𝐿[𝑖]) := (ℓ𝑢𝑖 , 𝐿𝑢𝑖 )
for 𝑖 = 0 to |B|−1. For 𝑖 = |B| to 𝑡 − 1, set (ℓ[𝑖], 𝐿[𝑖]) := (0, 0).

• 𝑘out := Φ(𝑘[0], · · · , 𝑘[𝑡 − 1])
• ℓout := Φ(ℓ[0], · · · , ℓ[𝑡 − 1])
• ℓ̃out := ∑𝑡−1

𝑖=0 ℓ[𝑖] · 2𝑖

• 𝐿 ← ∑𝑡−1
𝑖=0 𝐿[𝑖] · 2𝑖 mod 𝑝 − 1 ⊲ 𝐿 = ⟨∆ · ℓ̃out⟩E

• (shift, 𝐿out) := [2𝑡 ]-SimBatchfAuthH,O(mpk, ℓ̃out, 𝐿, Eval𝑁 ◦ Φ ◦ toBits, salt, shift)

Output. (ℓout, 𝐿out, 𝑘out, shift)

Algorithm 14: Simulator procedure for packing wire labels before a batch evaluation.

Lemma26 (Invariant lemma for packing). Fix (mpk,msk, (ℓ𝑢, 𝐿𝑢, 𝑘𝑢, 𝐾𝑢 )𝑢∈B, salt)wheremsk := (mpk,∆, ℎ0).
Assume that for each 𝑢 ∈ B, it holds that

𝐿𝑢 − 𝐾𝑢 = ∆ · ℓ𝑢 mod 𝑝 − 1.
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Then, denoting

(ℓout, 𝐿out, 𝑘out, shift) := SimPackH,O(mpk, (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈B, salt)
(𝑘 ′out, 𝐾 ′out, shift′) := PackHG(msk, (𝑘𝑢, 𝐾𝑢 )𝑢∈B, salt)

It holds that 𝑘out = 𝑘 ′out, shift = shift′, and 𝐿out − 𝐾out = ∆ · Eval𝑁 (ℓout) mod 𝑝 − 1.

Proof. Both SimPackH,O(mpk, (ℓ𝑢, 𝐿𝑢, 𝑘𝑢 )𝑢∈B, salt) and PackHG(msk, (𝑘𝑢, 𝐾𝑢 )𝑢∈B, salt) compute 𝑘out identi-
cally as 𝑘out := Φ(𝑘[0], · · · , 𝑘[𝑡 − 1]). By construction, we also have

𝐿 − 𝐾 =
𝑡−1∑︁
𝑖=0

(𝐿[𝑖] − 𝐾[𝑖]) · 2𝑖 = ∆ ·
𝑡−1∑︁
𝑖=0

ℓ[𝑖] · 2𝑖 = ∆ · ℓ̃out ⊲ by assumption.

Then, by Lemma 14, denoting 𝑓 := Eval𝑁 ◦ Φ ◦ toBits, given (shift, 𝐿out) := SimBatchfAuthH,O(mpk, ℓ̃out, 𝐿,
𝑓 , salt, shift), we have

shift = BatchfAuthHG(msk,∆, 𝐾, 𝑓 , salt), and
𝐿out = BatchfAuthHE (mpk, ℓ̃out, 𝐿, 𝑓 , salt, shift).

Eventually, by correctness of BatchfAuth ( Lemma 13), it holds that 𝐿out − 𝐾out = ∆ · 𝑓 (ℓ̃out) mod 𝑝 − 1,
hence 𝐿out − 𝐾out = ∆ · Eval𝑁 (ℓout) mod 𝑝 − 1 (by definition of 𝑓 and ℓout). This concludes the proof. ■

Simulator for the unpacking procedure. The parts in blue are omitted in Hybrid5.

Algorithm SimUnpackH,O(𝑓 ,mpk, ℓ, 𝐿, 𝑘, salt)

Input. Function 𝑓 ∈ {Φ−1,Ψ}. Master public key msk, packed labels (ℓ, 𝐿) ∈ F2𝑚 × Z𝑝−1, packed key
𝑘 , salt salt.

Procedure.

• (𝑘[0], · · · , 𝑘[𝑡 − 1]) := 𝑓 (𝑘)
• (ℓ[0], · · · , ℓ[𝑡 − 1]) := 𝑓 (ℓ)
• (shift, 𝐿0, · · · , 𝐿𝑡−1) := SimBatchfAuthH,O(mpk, ℓ(𝑁 ), 𝐿, (Bit𝑖 ◦ 𝑓 ◦ toPoly𝑁 )0≤𝑖≤𝑡−1)

Output. ((ℓ[𝑖], 𝐿𝑖 , 𝑘[𝑖])𝑖≤𝑡−1, shift)

Algorithm 15: Simulator procedure for unpacking the result of a batch evaluation.

Lemma 27 (Invariant lemma for unpacking). Fix (𝑓 ,mpk,msk, ℓ, 𝐿, 𝑘, 𝐾, salt) where 𝑓 ∈ {Φ−1,Ψ} and
msk := (mpk,∆, ℎ0). Assume that it holds that

𝐿 − 𝐾 = ∆ · Eval𝑁 (ℓ𝑢 ) mod 𝑝 − 1.
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Then, denoting

((ℓ[𝑖], 𝐿𝑖 , 𝑘[𝑖])𝑖≤𝑡−1, shift) := SimUnpackH,O(𝑓 ,mpk, ℓ, 𝐿, 𝑘, salt)
((𝑘 ′[𝑖], 𝐾 ′𝑖 )𝑖≤𝑡−1, shift′) := UnpackHG(𝑓 ,msk, 𝑘, 𝐾, salt)

It holds that 𝑘[𝑖] = 𝑘 ′[𝑖] for all 𝑖 ≤ 𝑡 − 1, shift = shift′, and 𝐿𝑖 − 𝐾𝑖 = ∆ · (ℓ[𝑖]) mod 𝑝 − 1 for all 𝑖 ≤ 𝑡 − 1.

Proof. The first equality follows immediately, as 𝑘[𝑖], 𝑘 ′[𝑖] are computed identically in SimUnpackH,O and
UnpackH. Then, using the assumptions of Lemma 27, we can invoke the perfect simulation of SimBatchfAuth
to get

(shift, ) = BatchfAuthHG(msk,∆, 𝐾, (Bit𝑖 ◦ 𝑓 ◦ toPoly𝑁 )0≤𝑖≤𝑡−1)
(𝐿0, · · · , 𝐿𝑡−1) = BatchfAuthHE (mpk, ℓ(𝑁 ), 𝐿, (Bit𝑖 ◦ 𝑓 ◦ toPoly𝑁 )0≤𝑖≤𝑡−1),

and we conclude using the perfect correctness of UnpackH (Lemma 17). ■

Simulator for the batch-XOR gadget. The parts in blue are omitted in Hybrid5. 𝑆𝑁,𝑚 denote the set of
sums of two elements from I𝑁,𝑚 .

Algorithm SimBatchXorH,O(mpk, (ℓl, 𝐿l), (ℓr, 𝐿r), 𝑘l, 𝑘r, salt)

Input. Master public key mpk. Packed labels (ℓl, 𝐿l), (ℓr, 𝐿r), keys (𝑘l, 𝑘r), and salt salt.

Procedure.

• ℓ̃out := ℓl + ℓr ⊲ Over Z[𝑋 ]
• 𝑘out := 𝑘l + 𝑘r ⊲ Over F2𝑚

• ℓout = ℓ̃out mod 2 ⊲ ℓout ∈ F2𝑚

• 𝐿̃out := 𝐿l + 𝐿r mod 𝑝 − 1
• (shift, 𝐿out) := 𝑆𝑁,𝑚-SimBatchfAuthH,O(mpk, ℓ̃out, 𝐿̃out,Mod𝑁 (·, 2), salt)

Output. (ℓout, 𝐿out, 𝑘out,shift)

Algorithm 16: Simulator for the batch-XOR gadget

Lemma 28 (Invariant lemma for batch-XOR). Fix (mpk,msk, ℓl, 𝐿l, ℓr, 𝐿r, 𝑘l, 𝐾l, 𝑘r, 𝐾r, salt) where msk :=
(mpk,∆, ℎ0). Assume that for 𝑢 ∈ {l, r}, it holds that

𝐿𝑢 − 𝐾𝑢 = ∆ · Eval𝑁 (ℓ𝑢 ) mod 𝑝 − 1.

Then, denoting

(ℓout, 𝐿out, 𝑘out, shift) := SimBatchXorH,O(mpk, (ℓl, 𝐿l, 𝑘l), (ℓr, 𝐿r, 𝑘r), salt)
(𝑘 ′out, 𝐾 ′out, shift′) := BatchXORH

G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt),

it holds that 𝑘out = 𝑘 ′out, shift = shift′, and 𝐿out − 𝐾out = ∆ · Eval𝑁 (ℓout) mod 𝑝 − 1.
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Proof. ℓ̃out, ℓout, and 𝐿̃out are computed identically in BatchXORH
E . Denoting 𝐾̃ ′out the value computed in

BatchXORH
G as 𝐾l + 𝐾r mod 𝑝 − 1, we established in the proof of Lemma 18 that

𝐿̃′out − 𝐾̃ ′out = ∆ · ℓ̃ ′out(𝑁 ) mod 𝑝 − 1

and we can therefore invoke the perfect simulation of SimBatchfAuth to get

(shift, ) = BatchfAuthHG(msk,∆, 𝐾̃out,Mod𝑁 (·, 2), salt)
𝐿out = BatchfAuthHE (mpk, ℓ̃out(𝑁 ), 𝐿̃out,Mod𝑁 (·, 2), salt, shift),

and we conclude using the perfect correctness of BatchXORH (Lemma 18). ■

Simulation for the batch-AND gadget. The parts in blue are omitted in Hybrid5; because Z-Sim′VtO
and SimVtO expect an input there, but this input is not used anymore by the modified subprocedures
mSim′VtO and mSimVtO, an arbitrary dummy input (e.g. 0) can be passed as input instead.

Algorithm SimBatchAndH,O(mpk, (ℓl, 𝐿l, 𝑘l), (ℓr, 𝐿r, 𝑘r), salt)

Input. Master public key mpk. Packed labels (ℓl, 𝐿l), (ℓr, 𝐿r), keys (𝑘l, 𝑘r), and salt salt. For 𝑖 = 1 to 6,
we let salt𝑖 := salt| |𝑖 .

Procedure.

• (𝑘 ′l , 𝑘
′
r)←$Pert𝑐 (𝑘l) × Pert𝑐 (𝑘r)

• (shift𝑎, 𝑎E) := Z-Sim′VtOH,O(mpk, ℓr(𝑁 ), 𝐿r,map, 𝑘 ′l (𝑁 ),salt1)

• (shift𝑏, 𝑏E) := Z-Sim′VtOH,O(mpk, ℓl(𝑁 ), 𝐿l,map, 𝑘 ′r(𝑁 ),salt2)
• ℓ̃out := ℓl(𝑁 )ℓr(𝑁 ) + 𝑎E + 𝑏E
• 𝑎E := [toPoly𝑁 (𝑎E) mod 2, 𝑃] ⊲ 𝑎E ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• 𝑏E := [toPoly𝑁 (𝑏E) mod 2, 𝑃] ⊲ 𝑏E ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• ℓout := ℓlℓr + 𝑎E + 𝑏E ⊲ ℓout = Mod𝑁 (ℓ̃out) ∈ F2𝑚

• 𝑘out := ℓout + (ℓl + 𝑘l) · (ℓr + 𝑘r) ⊲ over F2𝑚

• (shift𝛼 , 𝛼E) := SimVtOH,O(mpk, ℓr(𝑁 ), 𝐿r, 𝑘 ′l (𝑁 ),0, salt3)
• (shift𝛽 , 𝛽E) := SimVtOH,O(mpk, ℓl(𝑁 ), 𝐿l, 𝑘 ′r(𝑁 ), 0,salt4)
• (shift𝛾 , 𝛾E) := SimVtOH,O(mpk, ℓr(𝑁 ), 𝐿r,−𝑘l(𝑁 ),𝐿l, salt5)
• 𝐿̃out := 𝛼E + 𝛽E − 𝛾E + 𝐿lℓr(𝑁 ) ⊲ 𝐿̃out = ⟨∆ℓ̃out⟩E
• (shift𝐾 , 𝐿out) := [𝑁𝑚]- SimBatchfAuthH,O(mpk, ℓ̃out, 𝐿̃out,Mod𝑁 (·, 2, 𝑃 ), salt6)
• 𝑆out := (shift𝑎, shift𝑏, shift𝛼 , shift𝛽 , shift𝛾 , shift𝐾 )

Output. (ℓout, 𝐿out, 𝑘out,𝑆out)

Algorithm 17: Simulation for the batch-AND gadget
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Lemma 29 (Invariant lemma for batch-AND). Fix (mpk,msk, ℓl, 𝐿l, ℓr, 𝐿r, 𝑘l, 𝐾l, 𝑘r, 𝐾r, salt) where msk :=
(mpk,∆, ℎ0). Assume that for 𝑢 ∈ {l, r}, it holds that

𝐿𝑢 − 𝐾𝑢 = ∆ · Eval𝑁 (ℓ𝑢 ) mod 𝑝 − 1.

Then, denoting

(ℓout, 𝐿out, 𝑘out, shift) := SimBatchAndH,O(mpk, (ℓl, 𝐿l, 𝑘l), (ℓr, 𝐿r, 𝑘r), salt)
(𝑘 ′out, 𝐾 ′out, shift′) := BatchANDH

G(msk, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt),

it holds that 𝑘out = 𝑘 ′out, shift = shift′, and 𝐿out − 𝐾out = ∆ · Eval𝑁 (ℓout) mod 𝑝 − 1.

Proof. The second and third equality can be tracked down by going through the procedures BatchANDH
G,

BatchANDH
E , and SimBatchAndH,O , and relying on the perfect simulation lemmas forVtO andBatchfAuth.

Concretely, fix (mpk,msk, ℓl, 𝐿l, ℓr, 𝐿r, 𝑘l, 𝐾l, 𝑘r, 𝐾r, salt) and consider a run of SimBatchAndH,O(mpk, (ℓl, 𝐿l,
𝑘l), (ℓr, 𝐿r, 𝑘r), salt). Using perfect simulation of Sim′VtO (the second part of Lemma 12) together with the
assumptions of Lemma 29 yields

(shift𝑎, ) = Z-VtOH0
G (msk, 𝑘 ′l (𝑁 ), 𝐾r, salt1)

𝑎E = Z-VtOH0
E (mpk, ℓr(𝑁 ), 𝐿r, salt1, shift𝑎)

(shift𝑏, ) = Z-VtOH0
G (msk, 𝑘 ′r(𝑁 ), 𝐾l, salt2)

𝑏E = Z-VtOH0
E (mpk, ℓl(𝑁 ), 𝐿l, salt2, shift𝑏 ).

From there, the computation of (𝑎E, 𝑏E, ℓ̃out, ℓout) proceeds identically to BatchANDH
E . Hence, denoting

(ℓ ′out, 𝐿′out) := BatchANDH
E (msk, (ℓl, 𝐿l), (ℓr, 𝐿r), salt, 𝑆), we get ℓ ′out = ℓout. By correctness of BatchANDH

(Lemma 19), 𝑘 ′out + ℓout = (ℓl + 𝑘l) · (ℓr + 𝑘r), and it follows that 𝑘out = 𝑘 ′out.
Using now perfect simulation of SimVtO (the first part of Lemma 12) together with the assumptions

of Lemma 29 yields

(shift𝛼 , ) = VtOH
G(msk,∆𝑘 ′l (𝑁 ), 𝐾r, salt3)

𝛼E = VtOH
E (mpk, ℓr(𝑁 ), 𝐿r, salt3, shift𝛼 )

(shift𝛽 , ) = VtOH
G(msk,∆𝑘 ′r(𝑁 ), 𝐾l, salt4)

𝛽E = VtOH
E (mpk, ℓl(𝑁 ), 𝐿ℓ , salt4, shift𝛽 )

(shift𝛾 , ) = VtOH
G(msk, 𝐾l, 𝐾r, salt5)

𝛾E = VtOH
E (mpk, ℓr(𝑁 ), 𝐿r, salt5, shift𝛾 ).

Then, the computation of 𝐿̃out proceeds identically to BatchANDH
E . In particular, denoting 𝐾̃ ′out, 𝐿̃′out the

values computed in BatchANDH
G and BatchANDH

E respectively, we get 𝐿̃′out = 𝐿̃out. Furthermore, in the
proof of Lemma 19, we established

𝐿̃′out − 𝐾̃ ′out = ∆ · ℓ̃out mod 𝑝 − 1.

Therefore, the assumptions of Lemma 14 are satisfied and we can invoke perfect simulation of SimBatchfAuthH,O

(Lemma 14) to get

(shift𝐾 , ) = BatchfAuthHG(msk,∆, 𝐾̃out,Mod𝑁 (·, 2, 𝑃 ), salt6)
𝐿out = BatchfAuthHE (mpk, ℓ̃out, 𝐿̃out,Mod𝑁 (·, 2, 𝑃 ), salt6, shift𝐾 ),

which concludes the proof. ■
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8 𝜔(1/𝜆)-RateBooleanGarbling for LayeredCircuits in the StandardModel

In this section, we describe a boolean garbling scheme that achieves a rate of 𝜆/
√︁

log 𝜆, with security re-
ducing to the power-DDH assumption (Definition 4) and a TCR hash function for exponential correlations
(Definition 6). Thus, compared to the garbling scheme in Section 6, the security of this scheme no longer
requires the GGM. However, this comes at the cost of supporting only layered circuits and incurring an
overhead in the concrete size of the garbled circuit.

In more detail, the garbling scheme follows the same template as the one presented in Section 6, except
that it uses the leveled TCCR hash function from Definition 8. As a result, unlike the GGM-secure TCCR
hash (Definition 7), we can no longer “encrypt” linear functions of the PPRF secret key using PPRF eval-
uations. This, in turn, implies that we cannot directly use the PPRF secret key as input to the BatchfAuth
procedure in our garbling gadgets. To circumvent this issue, we adopt a standard key-switching technique:
the garbler samples multiple PPRF keys and the evaluator’s share for the output of gates at each level are
authenticated using a fresh key. It is easy to see that security then follows immediately from our definition
of the leveled TCCR hash. However, since our garbling scheme packs multiple boolean values together
when evaluating each gate, the key-switching technique requires that all of the packed values are authen-
ticated under the same key. Consequently, we can only support layered circuits (see Section 3), where
every wire in the circuit is between gates at consecutive layers. Moreover, the garbler must now send 4𝐷
PPRF public keys, where 𝐷 is the depth of the circuit, adding an overhead to the size of the garbled circuit.
However, for circuits that are sufficiently wide, this does not impact the rate. We note that layered cir-
cuits are expressive enough to capture a variety of useful computations, including FFT circuits, symmetric
cryptographic primitives like block ciphers, and dynamic programming algorithms like longest common
subsequence. We refer the reader to [Cou19] for a more detailed discussion.

Next, we describe the parameters and algorithms used in the garbling scheme and then proceed to
present the complete description of the scheme.

Parameters. We use the same parameters as the garbling scheme in Section 6. Specifically, let (G, 𝑝, 𝑔,𝐺) :=
GrpGen∗(1𝜆). Let 𝑡 =

√︁
log 𝜆 denote the batch parameter and (Φ,Ψ) be a (𝑡,𝑚)2-reverse multiplication

friendly embedding with 𝑚 = 𝑂(𝑡 ). Let 𝑐 = 𝜔(1) denote a statistical security parameter with 𝑐 ≤ 2
√

log𝜆

and set𝑁 = 2𝑐 ·𝑚 ·(2𝑚+1)+1 (note that𝑁𝑚 = poly(𝜆)). Let H = {H𝜆 : G×{0, 1}∗ → Z𝑝−1}𝜆∈N denote a TCR
hash family for exponential correlation with auxiliary powers over G (Definition 6). Let H0 := map ◦ H,
where map = map𝑁,𝑚,𝑐 is the mapping from Definition 9.

Algorithms. As discussed earlier, employing the leveled TCCR hash necessitates the use of multiple PPRF
keys. However, this does not require any modification to (PackHE ,UnpackAND

H
E ,BatchXOR

H
E ,UnpackXOR

H
E )

from Section 6, as these procedures take the PPRF public key as input and only use it to authenticate the
evaluator’s share in a call to BatchfAuth. During evaluation, we simply invoke them with different keys
as needed. On the other hand, we modify the garbler’s algorithms (PackHG,UnpackAND

H
G,BatchXOR

H
G,

UnpackXORH
G) to additionally take as input ∆out, which is the PPRF secret key for the next layer. These

algorithms then invoke BatchfAuth(msk,∆out, ·, ·, ·) in the last step when authenticating the evaluator’s
share. Finally, since the gadget used for garbling and evaluating AND gates makes multiple use of the
PPRF key, we modify them to use a different PPRF key for intermediate computations. The modified vari-
ants are described in Algorithms 18 and 19.
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Algorithm BatchANDH
G(msk,msk′,∆out, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt)

Input. Master secret keys msk and msk′, and ∆out ∈ Z𝑝−1. Packed keys (𝑘l, 𝐾l), (𝑘r, 𝐾r). Salt salt.
Parse msk := (mpk,∆, ℎ0) and msk′ := (mpk′,∆′, ℎ′0). For 𝑖 = 1 to 7, let salt𝑖 := salt| |7.

Procedure.

• (𝑘 ′l , 𝑘
′
r)←$Pert𝑐 (𝑘l) × Pert𝑐 (𝑘r)

• (shift𝑎, 𝑎G) := Z-VtOH0
G (msk, 𝑘 ′l (𝑁 ), 𝐾r, salt1)

⊲ 𝑎G = ⟨𝑘 ′l (𝑁 )ℓr(𝑁 )⟩G
• (shift𝑏, 𝑏G) := Z-VtOH0

G (msk, 𝑘 ′r(𝑁 ), 𝐾l, salt2)
⊲ 𝑏G = ⟨𝑘 ′r(𝑁 )ℓl(𝑁 )⟩G

• 𝑎G := [toPoly𝑁 (𝑎G) mod 2, 𝑃] ⊲ 𝑎G ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• 𝑏G := [toPoly𝑁 (𝑏G) mod 2, 𝑃] ⊲ 𝑏G ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• 𝑘out := 𝑘l𝑘r + 𝑎G + 𝑏G ⊲ over F2𝑚

• (shift𝛼 , 𝛼G) := VtOH
G(msk,∆′𝑘 ′l (𝑁 ), 𝐾r, salt3)

⊲ 𝛼G = ⟨∆′𝑘 ′l (𝑁 ) · ℓr(𝑁 )⟩G
• (shift𝛽 , 𝛽G) := VtOH

G(msk,∆′𝑘 ′r(𝑁 ), 𝐾l, salt4)
⊲ 𝛽G = ⟨∆′𝑘 ′r(𝑁 ) · ℓl(𝑁 )⟩G

• (shift𝐾 ′, 𝐾 ′l ) := VtOH
G(msk,∆′, 𝐾l, salt5)

⊲ 𝐾 ′l = ⟨∆′ℓ̃l⟩G
• (shift𝛾 , 𝛾G) := VtOH

G(msk, 𝐾 ′l , 𝐾r, salt6) ⊲ 𝛾G = ⟨𝐾 ′l · ℓr(𝑁 )⟩G
• 𝐾̃out := 𝛼G + 𝛽G − 𝛾G + ∆′(𝑎G + 𝑏G) ⊲ 𝐾̃out = ⟨∆′ℓ̃out⟩G
• (shift𝐾 , 𝐾out) := [𝑁𝑚]-BatchfAuthHG(msk′,∆out, 𝐾̃out,Mod𝑁 (·, 2, 𝑃 ), salt7)

⊲ 𝐾out = ⟨∆outℓout⟩G
• 𝑆out := (shift𝑎, shift𝑏, shift𝛼 , shift𝛽 , shift𝐾 ′, shift𝛾 , shift𝐾 )

Output. ((𝑘out, 𝐾out), 𝑆out)

Algorithm 18: Garbler batch-AND gadget using the leveled TCCR hash. We highlight the changes from
Algorithm 11 in red.

Algorithm BatchANDH
E (mpk,mpk′, (ℓl, 𝐿l), (ℓr, 𝐿r), salt, 𝑆)

Inputs. Master public keys mpk and mpk′. Packed labels (ℓl, 𝐿l), (ℓr, 𝐿r), salt salt and garbling material
𝑆 . Parse 𝑆 := (shift𝑎, shift𝑏, shift𝛼 , shift𝛽 , shift𝐾 ′, shift𝛾 , shift𝐾 ). For 𝑖 = 1 to 7, let salt𝑖 := salt| |𝑖 .

Procedure.

• 𝑎E := Z-VtOH0
E (mpk, ℓr(𝑁 ), 𝐿r, salt1, shift𝑎)

⊲ 𝑎E = ⟨𝑘 ′l (𝑁 )ℓr(𝑁 )⟩E
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• 𝑏E := Z-VtOH0
E (mpk, ℓl(𝑁 ), 𝐿l, salt2, shift𝑏 ) ⊲ 𝑏E = ⟨𝑘 ′r(𝑁 )ℓl(𝑁 )⟩E

• ℓ̃out := ℓl(𝑁 )ℓr(𝑁 ) + 𝑎E + 𝑏E
• 𝑎E := [toPoly𝑁 (𝑎E) mod 2, 𝑃] ⊲ 𝑎E ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• 𝑏E := [toPoly𝑁 (𝑏E) mod 2, 𝑃] ⊲ 𝑏E ∈ F2[𝑋 ]/𝑃 (𝑋 ) ∼= F2𝑚

• ℓout := ℓlℓr + 𝑎E + 𝑏E ⊲ ℓout = Mod𝑁 (ℓ̃out) ∈ F2𝑚

• 𝛼E := VtOH
E (mpk, ℓr(𝑁 ), 𝐿r, salt3, shift𝛼 )

⊲ 𝛼E = ⟨∆′𝑘 ′l (𝑁 ) · ℓr(𝑁 )⟩E
• 𝛽E := VtOH

E (mpk, ℓl(𝑁 ), 𝐿l, salt4, shift𝛽 )
⊲ 𝛽E = ⟨∆′𝑘 ′r(𝑁 ) · ℓl(𝑁 )⟩E

• 𝐿′l := VtOH
E (mpk, ℓl(𝑁 ), 𝐿l, salt5, shift𝐾 ′ ) ⊲ 𝐿′l = ⟨∆′ℓ̃l⟩E

• 𝛾E := VtOH
E (mpk, ℓr(𝑁 ), 𝐿r, salt6, shift𝛾 ) ⊲ 𝛾E = ⟨𝐾l · ℓr(𝑁 )⟩E

• 𝐿̃out := 𝛼E + 𝛽E − 𝛾E + 𝐿′l ℓr(𝑁 ) ⊲ 𝐿̃out = ⟨∆′ℓ̃out⟩E
• 𝐿out := [𝑁𝑚]-BatchfAuthHE (mpk′, ℓ̃out, 𝐿̃out,Mod𝑁 (·, 2, 𝑃 ), salt7, shift𝐾 )

⊲ 𝐿out = ⟨∆outℓout⟩E

Output. (ℓout, 𝐿out)

Algorithm 19: Evaluator batch-AND gadget using the leveled TCCR hash. We highlight the changes from
Algorithm 12 in red.

Input. The input to GC.Garble is a layered boolean circuit C with |C|= 𝑠 gates and 𝑛 = |𝐼 (C)| inputs
such that the gates can be partitioned into layers (L1, . . . ,L𝐷 ), where every wire only connects adjacent
layers. Let Land

𝑑
and Lxor

𝑑
denote the set of AND gates and XOR gates in the 𝑑-th layer. In each layer L𝑑 ,

we separately partition the set of AND gates and XOR gates into 𝑛𝑑 := ⌈|Land
𝑑
|/𝑡⌉ + ⌈|Lxor

𝑑
|/𝑡⌉ batches

(B𝑑,1, · · · ,B𝑑,𝑛𝑑 ) containing at most 𝑡 gates each. For 𝑑 = 1 to 𝐷 , let salt𝑑,1, · · · , salt𝑑,𝑛𝑑 denote unique
identifiers for each batch of gate, and write salt𝑑,𝑖, 𝑗 := salt𝑑,𝑖 | | 𝑗 for 𝑗 ∈ {0, 1, 2, 3}. We assume that all these
data can be parsed from the description C of the circuit.

Garbling scheme. We next proceed to describe the leveled garbling scheme. The encoding and decoding
algorithms GC.Enc and GC.Dec are identical to those described in Section 6, namely Algorithms 2 and 4.
We present GC.Garble and GC.Eval in Algorithms 3 and 13, respectively.

Algorithm GC.Garble(1𝜆, C)

Input. A layered boolean circuit C with |C|= 𝑠 gates and depth depth(C) = 𝐷 . The input gates are
indexed from 1 to 𝑛.

Initialization.

• Sample (mpk0,msk0), . . . , (mpk4𝐷 ,msk4𝐷 )←$ F.Setup(1𝜆, 𝑁𝑚). Parse each msk𝑖 :=
(mpk𝑖 ,∆𝑖 , 𝑔0).

• For each input wire 𝑖 , sample (𝑘𝑖 , 𝐾𝑖 )←$ {0, 1} × Z𝑝−1.
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Procedure. The garbling proceeds in a layer-by-layer fashion, from L1 to L𝐷 . After evaluating a
layer L𝑑 , it labels each gate 𝑢 in the layer with a pair (𝑘𝑢, 𝐾𝑢 ) and stores a garbling L̂𝑑 of L𝑑 .

On layer L𝑑 . For 𝑖 = 1 to 𝑛𝑑 ,

• Let Left𝑑,𝑖 (resp. Right𝑑,𝑖 ) denote the multisets of gates that are the left parent (resp. right
parent) of a gate in B𝑑,𝑖 . Retrieve the pairs (𝑘𝑢, 𝐾𝑢 ) labeling each 𝑢 ∈ Left𝑑,𝑖 ∪ Right𝑑,𝑖 and
compute

(𝑘l, 𝐾l, shiftl,𝑑,𝑖 ) := PackHG(msk4𝑑−4,∆4𝑑−3, (𝑘𝑢, 𝐾𝑢 )𝑢∈Left𝑑,𝑖 , salt𝑑,𝑖,0)
(𝑘r, 𝐾r, shiftr,𝑑,𝑖 ) := PackHG(msk4𝑑−4,∆4𝑑−3, (𝑘𝑢, 𝐾𝑢 )𝑢∈Right𝑑,𝑖 , salt𝑑,𝑖,1).

• If B𝑑,𝑖 is a batch of AND gates:
– (𝑘out, 𝐾out, 𝑆𝑑,𝑖 )←$BatchANDH

G(msk4𝑑−3,msk4𝑑−2,∆4𝑑−1, (𝑘l, 𝐾l), (𝑘r, 𝐾r),∆, salt𝑑,𝑖,2)
– ((𝑘[ 𝑗], 𝐾𝑗 )0≤𝑖≤𝑡−1, shiftout,𝑑,𝑖 ) := UnpackANDH

G(msk4𝑑−1,∆4𝑑 , 𝑘out, 𝐾out, salt𝑑,𝑖,3)
– (𝑘𝑢, 𝐾𝑢 )𝑢∈B𝑑,𝑖 := (𝑘[ 𝑗], 𝐾𝑗 )0≤ 𝑗≤ |B𝑑,𝑖 |−1

• If B𝑑,𝑖 is a batch of XOR gates:
– (𝑘out, 𝐾out, 𝑆𝑑,𝑖 )←$BatchXORH

G(msk4𝑑−3,∆4𝑑−1, (𝑘l, 𝐾l), (𝑘r, 𝐾r),∆, salt𝑑,𝑖,2)
– ((𝑘[ 𝑗], 𝐾𝑗 )0≤ 𝑗≤𝑡−1, shiftout,𝑑,𝑖 ) := UnpackXORH

G(msk4𝑑−1,∆4𝑑 , 𝑘out, 𝐾out, salt𝑑,𝑖,3)
– (𝑘𝑢, 𝐾𝑢 )𝑢∈B𝑑,𝑖 := (𝑘[ 𝑗], 𝐾𝑗 )0≤ 𝑗≤ |B𝑑,𝑖 |−1

• Label each 𝑢 ∈ B𝑑,𝑖 with the key pair (𝑘𝑢, 𝐾𝑢 ).

Set L̂𝑑 := (shiftl,𝑑,𝑖 , shiftr,𝑑,𝑖 , 𝑆𝑑,𝑖 , shiftout,𝑑,𝑖 )𝑖≤𝑛𝑑 .

Output. Return e := ((𝑘𝑖 , 𝐾𝑖 )𝑖≤𝑛,∆0), Ĉ := (C,
{
mpk𝑖

}4𝐷
𝑖=0, (L̂𝑑 )𝑑≤𝐷 ), and d := (𝑘𝑜 )𝑜∈𝑂(C).

Algorithm 20: Garbling procedure of the leveled Boolean garbling scheme. We highlight the key changes
to Algorithm 13 in red.

Algorithm GC.Eval(Ĉ, 𝑥 )

Inputs. Parse Ĉ as (C,
{
mpk𝑖

}4𝐷
𝑖=0, (L̂𝑑 )𝑑≤𝐷 ) and 𝑥 as (ℓ𝑖 , 𝐿𝑖 )𝑖≤𝑛 ∈ (F2 × Z𝑝−1)𝑛 .

Procedure. The evaluation proceeds in a layer-by-layer fashion, from L1 to L𝐷 . After evaluating a
layer L𝑑 , it labels each gate 𝑢 in the layer with a pair (ℓ𝑢, 𝐿𝑢 ).

On layer L𝑑 . For 𝑖 = 1 to 𝑛𝑑 ,

• Parse L̂𝑑 as L̂𝑑 := (shiftl,𝑑,𝑖 , shiftr,𝑑,𝑖 , 𝑆𝑑,𝑖 )𝑖≤𝑛𝑑 , shiftout,𝑑,𝑖 ).
• Let Left𝑑,𝑖 (resp. Right𝑑,𝑖 ) denote the multisets of gates that are the left parent (resp. right

parent) of a gate in B𝑑,𝑖 . Retrieve the pairs (ℓ𝑢, 𝐿𝑢 ) labeling each 𝑢 ∈ Left𝑑,𝑖 ∪ Right𝑑,𝑖 and
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compute

(ℓl, 𝐿l) := PackHE (mpk4𝑑−4, (ℓ𝑢, 𝐿𝑢 )𝑢∈Left𝑑,𝑖 , salt𝑖,𝑑,0, shiftl,𝑑,𝑖 )
(ℓr, 𝐿r) := PackHE (mpk4𝑑−4, (ℓ𝑢, 𝐿𝑢 )𝑢∈Right𝑑,𝑖 , salt𝑖,𝑑,1, shiftr,𝑑,𝑖 ).

• If B𝑑,𝑖 is a batch of AND gates:
– (ℓout, 𝐿out) := BatchANDH

E (mpk4𝑑−3,mpk4𝑑−2, (ℓl, 𝐿l), (ℓr, 𝐿r), salt𝑑,𝑖,2, 𝑆𝑑,𝑖 )
– (ℓ[ 𝑗], 𝐿 𝑗 )0≤ 𝑗≤𝑡−1 := UnpackANDH

E (mpk4𝑑−1, ℓout, 𝐿out, salt𝑑,𝑖,3, shiftout,𝑑,𝑖 )
– (ℓ𝑢, 𝐿𝑢 )𝑢∈B𝑑,𝑖 := (ℓ[ 𝑗], 𝐿𝑗 )0≤ 𝑗≤ |B𝑑,𝑖 |−1

• If L𝑑 is a XOR layer:
– (ℓout, 𝐿out) := BatchXORH(mpk4𝑑−3, (ℓl, 𝐿l), (ℓr, 𝐿r), salt𝑑,𝑖,2, 𝑆𝑑,𝑖 )
– (ℓ[ 𝑗], 𝐿 𝑗 )0≤𝑖≤𝑡−1 := UnpackXORH

E (mpk4𝑑−1, ℓout, 𝐿out, salt𝑑,𝑖,3, shiftout,𝑑,𝑖 )
– (ℓ𝑢, 𝐿𝑢 )𝑢∈B𝑑,𝑖 := (ℓ[ 𝑗], 𝐿 𝑗 )0≤𝑖≤ |B𝑑,𝑖 |−1

• Label each 𝑢 ∈ B𝑑,𝑖 with (ℓ𝑢, 𝐿𝑢 ).

Output. Return 𝑦 := (ℓ𝑜 )𝑜∈𝑂(C).

Algorithm 21: Evaluator algorithm of the leveled Boolean garbling scheme. We highlight the key changes
to Algorithm 3 in red.

Theorem 30. Let 𝜆 be the security parameter and 𝑁 := 𝑁 (𝜆) and𝑚 := 𝑚(𝜆) be integer valued functions as
described above. If the 𝑁𝑚-power DDH assumption (Definition 4) holds with respect to GrpGen and if H is
a TCR hash for the exponential correlation with respect groups generated by GrpGen (Definition 6) then GC
is a boolean garbling scheme for polynomial size layered circuits. Moreover, there exists a polynomial poly(·)
such that for any layered circuit C of depth 𝐷 , the garbled circuit Ĉ ← GC.Garble(1𝜆, C) satisfies

|Ĉ |∈ O
(
𝜆 · |C|√︁

log 𝜆
+ poly(𝜆) · 𝐷

)
.

Proof sketch. We first discuss efficiency, then correctness, and finally argue security of the construction.
Efficiency. Let G be the group output by GrpGen on input 1𝜆 . From the description of Ĉ, we have

|Ĉ |= |C|+4𝐷 · |mpk| +
𝐷∑︁
𝑑=1
|L̂𝑑 |,

where |mpk| is the size of a PPRF public key and L̂𝑑 is the shifts sent for the 𝑑-th layer. The size of |mpk| is
2𝑁𝑚+1 elements ofG, which is polynomial in 𝜆 since𝑚 = O

(√︁
log 𝜆

)
, 𝑐 = 2

√
𝜆 and𝑁 = O(2𝑐 ·𝑚 · (2𝑚 + 1)).

The size of each L̂𝑑 is O(𝜆 · 𝑛𝑑 ) since it contains 𝑛𝑑 constant-length tuples of shifts, and each shift is O(𝜆).
Thus, there exists a polynomial poly′(·) such that

|Ĉ | = |C|+4𝐷 · poly′(𝜆) + O(𝜆) |C|
𝑡

+ O(𝜆) · 𝐷 · 𝑡

≤ |C|+𝐷 · poly(𝜆) + O(𝜆) |C|√︁
log 𝜆
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where poly ∈ 𝜔(𝜆 · log 𝜆).

Correctness. The proof of correctness closely follows the one discussed in Section 6.2 since most of the
subprocedures remain largely similar. The primary difference is that the garbling maintains a slightly
modified invariant where a different PPRF key is used for authenticating the output of gates in each layer.
We first discuss the invariant in more detail and then focus on proving the correctness of the BatchANDH

gadget. The proof of correctness for the rest of the gadgets follows almost immediately from the proofs of
the corresponding lemmas in Section 6.

Let 𝑥 denote an input C. For each gate𝑢, let 𝑥𝑢 denote the bit output by this gate in computation of C(𝑥 ).
Given a batch B of gates, let 𝑥B := (𝑥𝑢 )𝑢∈B . The garbling scheme then maintains the following invariant
for every layerL𝑑 : for each 𝑖 ≤ 𝑛𝑑 , 𝑥𝑢 = 𝑘𝑢 ⊕ ℓ𝑢 and 𝐿𝑢−𝐾𝑢 = ∆4𝑑 ·ℓ𝑢 mod 𝑝−1, for all𝑢 ∈ Left𝑑,𝑖∪Right𝑑,𝑖 .
As the base case, for each input gate 𝑖 , we have 𝑘𝑖 ⊕ℓ𝑖 = 𝑥𝑖 and 𝐿𝑖−𝐾𝑖 = ∆0ℓ𝑖 mod 𝑝 − 1 from the description
of e and GC.Enc. Now, assuming the invariant holds for a layer 𝑑 − 1, we have the following.

• It follows directly from the proof of Lemma 16 that after running the PackH procedures, 𝑘l + ℓl =
Φ(pad𝑡 (𝑥Left𝑑,𝑖 )), 𝑘r + ℓr = Φ(pad𝑡 (𝑥Right𝑑,𝑖 )), 𝐿l − 𝐾l = ∆4𝑑−3 · ℓl(𝑁 ) mod 𝑝 − 1, and 𝐿r − 𝐾r = ∆4𝑑−3 ·
ℓr(𝑁 ) mod 𝑝 − 1. Let 𝑥l := Φ(pad𝑡 (𝑥Left𝑑,𝑖 )) and 𝑥r := Φ(pad𝑡 (𝑥Right𝑑,𝑖 )).

• For each batch of AND gates inL𝑑 , it follows from the claim below, that after running theBatchANDH

procedure 𝑘out + ℓout = 𝑥l · 𝑥r and 𝐿out − 𝐾out = ∆4𝑑−1 · ℓout(𝑁 ) mod 𝑝 − 1.

• For each batch of AND gates inL𝑑 , it follows from the proof of Lemma 17 that running the UnpackH
procedure outputs (𝑘[𝑖]⊕ ℓ[𝑖])𝑖≤𝑡−1 = Ψ(𝑥l ·𝑥r) and 𝐿[𝑖]−𝐾[𝑖] = ∆4𝑑 · ℓ[𝑖] mod 𝑝 − 1 for 𝑖 = 0 to 𝑡 − 1.

• Similarly, for each batch of XOR gates in L𝑑 , by the proof of Lemma 18 and Lemma 17, it that
after running the BatchXORH and UnpackH procedures that (𝑘[𝑖] ⊕ ℓ[𝑖])𝑖≤𝑡−1 = Φ−1(𝑥l ⊕ 𝑥r) and
𝐿[𝑖] − 𝐾[𝑖] = ∆4𝑑 · ℓ[𝑖] mod 𝑝 − 1 for 𝑖 = 0 to 𝑡 − 1.

It follows that after each AND layer, the gates inB𝑑,𝑖 are labeled with the first |B𝑑,𝑖 | entries of Ψ(Φ(pad𝑡 (𝑥Left𝑑,𝑖 ))·
Φ(pad𝑡 (𝑥Right𝑑,𝑖 ))). By definition of the RMFE maps (Definition 5), this is value equal to pad𝑡 (𝑥Left𝑑,𝑖 ) ⊙
pad𝑡 (𝑥Right𝑑,𝑖 ), hence its first |B𝑑,𝑖 | entries are exactly the products 𝑥𝑢l · 𝑥𝑢r , where 𝑢l, 𝑢r denote the left and
right parents of each gate 𝑢 ∈ B𝑑,𝑖 respectively. Similarly, after each XOR layer, each gate 𝑢 of the layer
gets labeled with 𝑥𝑢l ⊕ 𝑥𝑢r . Eventually, after all layers have been computed, it holds that 𝑘𝑜 ⊕ ℓ𝑜 = 𝑥𝑜 for
each output gate 𝑜 , and we have (𝑥𝑜 )𝑜∈𝑂(C) = 𝑦 = C(𝑥 ).

We are left to prove that the invariant indeed holds for the output of BatchANDH.

Claim. Fix (mpk,msk,mpk′,msk′,∆out, (𝑘l, 𝐾l, ℓl, 𝐿l), (𝑘r, 𝐾r, ℓr, 𝐿r), salt)wheremsk := (mpk,∆, ℎ0) andmsk′ :=
(mpk′,∆′, ℎ′0). Assume that for 𝑢 ∈ {l, r}, 𝐿𝑢 − 𝐾𝑢 = ∆ · Eval𝑁 (ℓ𝑢 ) mod 𝑝 − 1. Then, denoting

𝑥𝑢 := 𝑘𝑢 + ℓ𝑢 for 𝑢 ∈ {l, r} ⊲ over F2𝑚

((𝑘out, 𝐾out), 𝑆) := BatchANDH
G(msk,msk′,∆out, (𝑘l, 𝐾l), (𝑘r, 𝐾r), salt)

(ℓout, 𝐿out) := BatchANDH
E (mpk,mpk′, (ℓl, 𝐿l), (ℓr, 𝐿r), salt, 𝑆),

it holds that

𝑘out + ℓout = 𝑥l · 𝑥r ⊲ over F2𝑚

𝐿out − 𝐾out = ∆out · Eval𝑁 (ℓout)) mod 𝑝 − 1
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Proof. Since the computation of ℓout and𝑘out in Algorithms 18 and 19 remains identical to that in Algorithms 11
and 12, it follows from the proof of Lemma 19 that

ℓout + 𝑘out = 𝑥l · 𝑥r. ⊲ over F2𝑚 = F2[𝑋 ]/𝑃 (𝑋 )

Similarly, we have

𝛼E − 𝛼G = ℓr(𝑁 ) · (∆′𝑘 ′l (𝑁 ))
𝛽E − 𝛽G = ℓl(𝑁 ) · (∆′𝑘 ′r(𝑁 )).

Now, since the conditions of Lemma 11 are satisfied, we have

𝐿′l − 𝐾
′
l = ∆′ · ℓl(𝑁 ),

which in turn implies that
𝛾E − 𝛾G = 𝐾 ′l · ℓr(𝑁 ).

Thus, we have

𝐿̃out − 𝐾̃out = 𝛼E + 𝛽E − 𝛾E + 𝐿′l ℓr(𝑁 ) − (𝛼G + 𝛽G − 𝛾G + ∆′(𝑎G + 𝑏G))
= (𝛼E − 𝛼G) + (𝛽E − 𝛽G) − (𝛾E − 𝛾G) + ∆(𝑎G + 𝑏G) + 𝐿′l ℓr(𝑁 )
= ∆′ · (ℓr(𝑁 ) · 𝑘 ′l (𝑁 ) + ℓl(𝑁 ) · 𝑘 ′r(𝑁 )) − ℓr(𝑁 ) · 𝐾 ′l

+ ∆(𝑎E − ℓr(𝑁 ) · 𝑘 ′l (𝑁 ) + 𝑏E − ℓl(𝑁 ) · 𝑘 ′r(𝑁 )) + 𝐿′l ℓr(𝑁 )
= ∆′ · (𝑎E + 𝑏E) + ℓr(𝑁 ) · (𝐿′l − 𝐾

′
l )

= ∆′ · (𝑎E + 𝑏E + ℓr(𝑁 ) · ℓl(𝑁 )) ⊲ 𝐿l − 𝐾l = ∆′ · ℓl(𝑁 )
= ∆′ · ℓ̃out,

Consequently, apply Lemma 13, we have

𝐿out − 𝐾out = ∆out ·Mod𝑁 (ℓ̃out, 2, 𝑃 ) mod 𝑝 − 1
= ∆out · ℓ̃out(𝑁 ) mod 𝑝 − 1.

□

Security. The proof of security closely follows the one discussed in Section 7 and we only highlight
the differences. In more detail, Hybrid1 remains identical, while in Hybrid2 we modify the simulator
SimBatchAndH,O to simulate 𝐿′l using SimVtO and compute 𝐿̃out := 𝛼E + 𝛽E −𝛾E + 𝐿′l ℓr(𝑁 ). In the simulator
for each gadget, we modify use the modified variant of SimBatchfAuthH,O as discussed in Remark 2. Using
a similar argument as the one used in Section 7, it follows that Hybrid1 is identical to Hybrid2. In Hybrid3,
we replace the oracle O with a random oracle R. Observe that calls by SimBatchfAuthH,O to O, under
the same PPRF public key mpk, can be batched and can thus be computed using the leveled TCCR hash
of Definition 8. This is because simulating the shift and evaluator’s output share for PackH only requires
the evaluator’s shares computed as the output of the previous layer. Similarly, simulating BatchXORH and
UnpackH only requires the evaluator’s share computing using PackH, and BatchANDH or BatchXORH in
the current layer. Finally, it is easy to see that this is true for BatchANDH too since shift𝛼 , shift𝛽 , shift𝐾 ′
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and 𝛼E, 𝛽E, and 𝐿′l can be simulated in parallel. It then follows from Theorem 7 that Hybrid3 is indistin-
guishable from Hybrid2. The proof then proceeds similarly to that in Section 7.1 where in Hybrid4, SimVtO
and SimBatchfAuthH,O are modified to not require the garbler’s shares and subsequently, in Hybrid5, we
rely on the correctness of the scheme to set d := (ℓ𝑜 ⊕ 𝑦𝑜 )𝑜∈𝑂(C)). It follows that the garbling scheme is
secure. ■

The following corollary immediately follows from Theorem 30 and the definition of rate of a boolean
garbling scheme.

Corollary 31. Let 𝜆 be the security parameter. If for every integer-valued polynomial B := B(𝜆) the B-power
DDH holds with respect to a group generator and there exists a TCR hash for the exponential correlation with
respect to this group generator, then there exists a boolean garbling scheme for polynomial size layered circuits
with rate 𝜆√

log𝜆
.
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A Security Proofs for the Building Blocks

A.1 Proof of Lemma 8

Proof. We first consider the case of constant polynomials, that is, when 𝑚 = 0, and then generalize to
an arbitrary𝑚 ∈ N. It is easy to see that the support of Pert𝑐 (𝑎) and RandSum0,𝑐 is contained in [𝑐] and
consequently, the support ofD(𝑎)

0,𝑐 andD0,𝑐 is contained in [2𝑐]. Moreover, the output of RandSum0,𝑐 is the
binomial distribution Binomial(𝑐, 1/2). Next, observe that the output of Pert𝑐 (𝑎) is distributed identically to
that of RandSum0,𝑐 conditioned on the latter outputting a value congruent to 𝑎 mod 2 i.e., for any 𝑢 ∈ [𝑐],

Pr𝑎′ ←$Pert𝑐 (𝑎) [𝑎′ = 𝑢] = Pr𝑎′ ←$RandSum0,𝑐

[
𝑎′ = 𝑢

��𝑎′ ≡ 𝑎 mod 2
]
.

Therefore, for any 𝑢 ∈ [2𝑐], we have���Pr
𝑎′+𝑟∼D(𝑎)

0,𝑐
[𝑎′ + 𝑟 = 𝑢] − Pr𝑎′+𝑟∼D0,𝑐 [𝑎′ + 𝑟 = 𝑢]

���
=

��Pr𝑎′+𝑟∼D0,𝑐

[
𝑎′ + 𝑟 = 𝑢

��𝑎′ ≡ 𝑎 mod 2
]
− Pr𝑎′+𝑟∼D0,𝑐 [𝑎′ + 𝑟 = 𝑢]

��
= 1

2 |Pr[𝑎′ + 𝑟 = 𝑢 | 𝑎′ ≡ 𝑎 mod 2 ] − Pr[𝑎′ + 𝑟 = 𝑢 | 𝑎′ ̸≡ 𝑎 mod 2 ] |

(1)

where the second equality follows from the fact that Pr[𝑎′ ≡ 𝑎 mod 2] = 1/2 when 𝑎′←$RandSum0,𝑐 .
When 𝑢 is odd, we have

Pr[𝑎′ + 𝑟 = 𝑢 | 𝑎′ ≡ 𝑎 mod 2 ] − Pr[𝑎′ + 𝑟 = 𝑢 | 𝑎′ ̸≡ 𝑎 mod 2 ]

=
∑︁
𝑣∈[𝑢]

𝑣≡𝑎 mod 2

1
22𝑐 ·

(
𝑐

𝑣

)
·
(
𝑐

𝑢 − 𝑣

)
−

∑︁
𝑣∈[𝑢]

𝑣 ̸≡𝑎 mod 2

1
22𝑐 ·

(
𝑐

𝑣

)
·
(
𝑐

𝑢 − 𝑣

)
= 0,

where the first equality follows from the fact that 𝑎′ and 𝑟 are distributed as Binomial(𝑐, 1/2) and the second
equality follows from recognizing that the summation is the co-efficient of 𝑋𝑢 in (1 − 𝑋 )𝑐 · (1 + 𝑋 )𝑐 =
(1 − 𝑋 2)𝑐 .

Similarly, when 𝑢 is even, we have

|Pr[𝑎′ + 𝑟 = 𝑢 | 𝑎′ ≡ 𝑎 mod 2 ] − Pr[𝑎′ + 𝑟 = 𝑢 | 𝑎′ ̸≡ 𝑎 mod 2 ] | = 1
22𝑐 ·

(
𝑐

𝑢/2

)
.

In summary, Equation (1) simplifies to���Pr
𝑎′+𝑟∼D(𝑎)

0,𝑐
[𝑎′ + 𝑟 = 𝑢] − Pr𝑎′+𝑟∼D0,𝑐 [𝑎′ + 𝑟 = 𝑢]

��� =
{

0 if 𝑢 is odd,
1

22𝑐 ·
(
𝑐
𝑢/2

)
otherwise

.

Consequently,

SD
(
D(𝑎)

0,𝑐 ,D0,𝑐
)

= 1
2 ·

2𝑐∑︁
𝑢=0

���Pr
𝑎′+𝑟∼D(𝑎)

0,𝑐
[𝑎′ + 𝑟 = 𝑢] − Pr𝑎′+𝑟∼D0,𝑐 [𝑎′ + 𝑟 = 𝑢]

���
= 1

2

𝑐∑︁
𝑢=0

1
22𝑐 ·

(
𝑐

𝑢/2

)
= 1

2𝑐+1
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To conclude the proof, observe that for all𝑚 ∈ N, every coefficient in the output of D(𝑎)
𝑚,𝑐 and D𝑚,𝑐 is

independently and identically distributed to D(𝑎)
0,𝑐 and D0,𝑐 respectively. It follows that

SD
(
D(𝑎)
𝑚,𝑐 ,D𝑚,𝑐

)
= 1 −

(
1 − 1

2𝑐+1

)𝑚
≤ 𝑚2𝑐 .

■

A.2 Proof of Lemma 9

Proof. Intuitively, the proof follows from the fact that when 𝑁 > 𝑇 · 𝑐 ·𝑚, the sum used to compute 𝑣 does
not produce any carries when viewed as a base-𝑁 integer.

More formally, let𝑢 = ∑𝑇
𝑖=1 𝑎𝑖 ·𝑏′𝑖 where the sum is computed by interpreting each 𝑎𝑖 and 𝑏′𝑖 as elements

of N[𝑋 ]. Observe that for every 𝑖 ∈ [2𝑚], the co-efficient 𝑢[𝑖] of 𝑋 𝑖 in 𝑢, is of the form

𝑢[𝑖] =
𝑇∑︁
ℓ=1

min(𝑖,𝑚)∑︁
𝑗=max(0,𝑖−𝑚)

𝑎ℓ[ 𝑗] · 𝑏′ℓ[𝑖 − 𝑗],

where 𝑎ℓ[ 𝑗] and 𝑏′ℓ[𝑖 − 𝑗] denote the co-efficients of 𝑋 𝑗 and 𝑋 𝑖− 𝑗 in 𝑎ℓ and 𝑏′ℓ respectively. Since each
𝑎ℓ[ 𝑗] and 𝑏′ℓ[𝑖 − 𝑗] are non-negative integers such that 𝑎ℓ[ 𝑗] ≤ 1 and 𝑏′ℓ[𝑖 − 𝑗] ≤ 𝑐 , it follows that 𝑢[𝑖] is a
non-negative integer with 𝑢[𝑖] ≤ 𝑇 · 𝑐 ·𝑚 < 𝑁 . In particular, this means that (𝑢[𝑖])𝑖∈[2𝑚] represents the
unique 𝑁 -ary decomposition of 𝑢(𝑁 ). It then immediately follows that 𝑣 = toPoly𝑁 (Mod𝑁 (𝑣, 2)) since,
by definition, 𝑢 ≡ 𝑣 mod 2 and 𝑢(𝑁 ) = 𝑣 . ■
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