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Abstract

How to be assured that a user entered their PIN on their smart-
phone? The question is especially relevant when deploying remotely se-
cured services such as with mobile wallets for digital identity and banking,
which typically deploy a server side backed by a hardware security mod-
ule (HSM). As long as the server can be trusted, authentication can be
performed with high assurance, but it is challenging to guarantee sole
control. This report defines an approach in terms of an abstract security
problem and a concrete solution based on threshold signatures. It can
be applied to use cases such as HSM-backed mobile identity wallets and
other identification means.

1 Introduction

Increasingly, social and economic interactions occur online, increasing the poten-
tial impact of cybersecurity threats including threats to privacy. This requires
enhanced protection of data against unauthorised access and disinformation.
Recent public and private policies therefore require a high assurance level with
regard to the user authentication and control, and take measures to enable high
adoption of secure cryptographic devices among the potential user base.

For example, the European Digital Identity Regulation [12] requires Mem-
ber States to provide all natural and legal persons access to authentic identity
attributes. To ensure large-scale adoption, the regulator aims to leverage the
widespread ownership of smartphones. On these, users install an app providing
a European Digital Identity Wallet, which provides authentication at a high
assurance level according to common baseline specifications [3], as well as sole
control over privileged operations.

A challenge to this adoption is that many common smartphones do not yet
contain sufficiently secure hardware to meet such requirements, and even when
they do, the license to use this hardware may be unavailable. To accelerate
adoption, the app may therefore rely on security functions provided via a secure
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channel by remote hardware, such as a centrally managed hardware security
module (HSM). Such an approach is for example foreseen in the Dutch min-
isterial order on identification means [11], and is common in online banking
to meet Strong Customer Authentication requirements [5]. A well-known ap-
proach to solve the authentication problem is based on public key cryptography:
the HSM protects the user’s private key within its tamper-protected environ-
ment, and only activates the private key upon verification of the secure channel
and rate-limited entry of the user’s PIN. A verifier authenticates the user with
signatures created this way against the user’s enrolled public key.

However, the remotely secured approach can pose new threats to sole control:
the user is not able to monitor the remote server and HSM and detect malicious
modifications to its software. For example, the remote service provider may
maliciously or unknowingly install a backdoor to enable activation of the user’s
private key without requiring entry of the user’s PIN, taking over access to
their protected data. In the example context of government-regulated identity
wallets, such backdoors may be abused for law enforcement or identity fraud,
in both cases disrupting the policy objectives.

This technical report presents an approach to achieve both high assurance
level authentication and sole control using common smartphones backed by
remote servers. Key security features are multi-factor authentication, context
binding, non-repudiation and transparency: each authentication process results
in publicly verifiable evidence that the smartphone was used with the user’s PIN.
The evidence is non-repudiable and potentially bound to application context for
sole control, such as an instruction or an authorization scope.

The first section models the cryptographic capabilities of common smart-
phones and servers which could provide assurance. The second section defines
the approach in abstract terms of a security problem, enabling multiple solu-
tions. The third section presents a solution to this security problem applying
threshold signatures. The fourth section presents example applications of solu-
tions.

2 Related work

A well-known building block for authentication systems is a threshold signa-
ture scheme, such as Flexible Round-Optimized Schnorr Threshold Signatures
(FROST) [9]. However, this is not sufficient for widespread smartphones, since
their hardware does not natively support threshold signing.

A first system design meeting similar goals as in this report is based on
split key ECDSA signatures [18]. However, this approach requires verifiers to
implement low-level group operations to verify homomorphically encrypted ver-
ification data. Without the homomorphic encryption, an adversary with access
to the smartphone could use the credentials to verify guesses at the user’s PIN.

To open up the design space for alternative optimisations, this report con-
tributes an analysis of the security problem and proposes an alternative solution
that optimises for simplicy on the verifier side.
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3 Prerequisites

Common smartphones provide two relevant execution environments: the pro-
grammable application environment, and the static secure area. Examples of the
secure area are on Android-based phones the Trusted Execution Environment
(TEE) and StrongBox, and on iPhone models the Secure Enclave. Applications
can request services from the secure area using common interfaces. Both en-
vironments can perform cryptography, but only the secure area is trusted to
provide non-extractable private or secret keys.

In the context of HSMs, a distinction is made between several execution
environments as well. For simplicity, this report also assumes a static secure
area and a programmable application environment for the local or external client
application.

Regulation typically limits what capabilities can be evaluated for cyberse-
curity. For example, EU Member States rely on SOG-IS agreed cryptographic
mechanisms [15] for cross-border assurance.

This section models the relevant cryptographic capabilities with assurance.

Cryptographic hash Application environments can implement cryptographic
hash functions using appropriate libraries, providing an algorithm:

� #(msg): outputs a pseudo-random byte string of fixed size.

In the context of smartphones, the most common hash algorithm is SHA-256
[16].

Message authentication Some secure areas implement a keyed-hash mes-
sage authentication code (HMAC) [17], which includes the algorithms:

� SecretGen(): outputs a randomized HMAC secret key k.

� MAC(k,msg): deterministically outputs a fixed-size MAC using secret key
k on message msg.

Prime-order group All common secure areas at least a common group G of
prime order q with base point G ∈ G, such as the P-256 elliptic curve [13]. This
report uses additive notation and denotes the scalar field as F∗

q . Implementations
include at least the following algorithms:

� KeyGen(): outputs a randomized key pair (d, [d]G) ∈ (F∗
q ,G).

Application environments can additionally support additional group and scalar
operations using a cryptographic library. These include the following algorithms
[6]:

� #C(msg): outputs a cryptographic hash in G of byte string msg.

� #F(msg): outputs a cryptographic hash in F∗
q of byte string msg.
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Key agreement The Secure Enclave and some Android secure areas provide
an implementation of Elliptic Curve Key Agreement with the Diffie-Hellman
protocol (ECKA-DH) [14] on G. This includes the following algorithm:

� DH(d, P ): outputs the byte string representation of the x coordinate of
[d]P for scalar d ∈ F∗

q and element P ∈ G. The representation is big-
endian and fixed-size.

Digital signatures All secure areas implement a digital signature algorithm
on G, which can be publicly verified using the following algorithms:

� Verify(D,msg, sig): outputs 1 if sig is a signature over msg for public key
D, 0 otherwise.

The secure area includes, at least for the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) [14] on P-256 with SHA-256 hashing:

� Sign(d,msg): outputs a signature sig such that Verify([d]G,msg, sig) re-
turns 1.

In ECDSA, a signature is modeled as sig = (r, s) ∈ F∗
q × F∗

q . Application en-
vironments can additionally support Schnorr signatures using a cryptographic
library. One variant is the Elliptic Curve-based Schnorr Digital Signature Al-
gorithm (ECSDSA) [14] over P-256 with SHA-256, which models signatures as
sig = (c, s) where c is a fixed-size byte string and s ∈ F∗

q . Another variant
is the Edwards-Curve Digital Signature Algorithm (EdDSA) [8] which models
signatures as sig = (R, s) ∈ G× F∗

q .

4 Security problem

A remotely protected smartphone authenticator for high-assurance authentica-
tion and sole control is modelled as two components with rate-limited commu-
nication:

� client: a smartphone app with user interaction and limited access to the
smartphone secure area;

� server: a rate-limited server application.

Relying on the available cryptographic prerequisites, the problem is to pro-
tect the following primary assets:

� identification data: data that identifies the user, consisting of:

– possession factor: smartphone private key dp ∈ F∗
q in a digital signa-

ture algorithm

– knowledge or inherence factor: high-entropy activation data modelled
as private key da ∈ F∗

q

� context data: byte string ctx representing an application context, for ex-
ample including a login challenge or an access scope to authorize
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The primary objective is to enable any third-party verifier to verify the
identification data in a way that is cryptographically bound to the context
data, relying on secondary assets:

� verification data: to be designed data that enables verification of the iden-
tification data, consisting of:

– credential: a static tuple cred consisting of one or more public keys,
to be designed;

– transcript: a dynamically system-generated tuple tr proving the pos-
session and second factor, bound to the context data, to be designed;

� protection data: high-entropy user-specific private key ds ∈ F∗
q held at

the server, for example derived using dS ← #F(HMAC(k,DP)) using an
HSM-protected secret key k;

� protocol data: to be designed data exchanged between client and server.

Only the user interacts directly with the system, physically protecting dp
and willingly providing da to the smartphone app while being informed about
ctx. For example:

� the user enters a PIN from which the app derives

– da ← #F(HMAC(k,PIN)) using a secure area secret key k; or

– da ← #F(DH(d,#C(PIN))) using a secure area private key d; or

� the smartphone’s secure area evaluates live-recorded biometric data to
enable decryption of da from a local key store.

The system aims to protect against these main threats:

� information disclosure, affecting identification data and protection data
confidentiality;

� transcript forgery, affecting context data, protocol data and verification
data integrity.

The model assumes that:

� dp is well-protected by the smartphone hardware;

� da is well-protected by the user and the rate-limiting mechanism;

� prot is well-protected by the server provider’s security controls, for example
relying on a hardware security module (HSM);

� cred is well-protected against forgery and includes the appropriate public
keys;

� ctx includes replay attack prevention data if needed, such as a nonce or a
timestamp.
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The system has the following security objectives. To meet a high authenti-
cation assurance level, objectives are derived from the common baseline spec-
ifications [3] on the electronic identification means characteristics and design
(Annex, Section 2.2.1) and on the authentication mechanism (Annex, Section
2.3.1). To meet a high sole control assurance level (SCAL), objectives are de-
rived from the European Standard [1] on trustworthy systems supporting server
signing. While the standard defines two levels SCAL1 and SCAL2 based on a
substantial authentication assurance level, the set of requirements in this section
can be considered a higher level SCAL3 [2].

Multi-factor The verification transcript is highly likely to be created during a
single process during which all identification data were available. That is, given
oracles that output dp signatures, protocol data and transcripts, an efficient
adversary is highly unlikely to forge new protocol data and verification data;
and given da, protocol data and transcripts, an efficient adversary is highly
unlikely to new protocol data or verification data.

Context-bound The context data is highly unlikely to be modified after au-
thentication. That is, given an oracle that outputs transcripts, an efficient
adversary is highly unlikely to forge new context data that can be verified suc-
cessfully.

Non-repudiable It is highly unlikely that anyone, including the server, has
forged verification data without control over all identification data components.
That is, given oracles that output protocol data and transcripts, an efficient
adversary is highly unlikely to forge new verification data.

Transparent The verification data can safely be provided to anyone for ver-
ification, not just to the server, without compromising protection against the
main threats. That is, given access to a credential and to the smartphone app,
an efficient adversary is highly unlikely to guess the PIN.

5 Applying threshold signatures*

This report presents the following solution to the security problem. It applies
FROST [9] [4] as an extension to digital signature algorithm ΣA = (Sign,Verify),
including the following algorithms:

� Commit(): probabilistically outputs ((d, e), (D,E)), a pair of nonces d, e ∈
F∗
q and commitment shares ([d]G, [e]G).

� AggregateFirst(msg, P, C): deterministically outputs the first part of the
group signature on message msg verifiable with group public key P ∈ G
based on commitment list C, which is a tuple of tuples (i,Di, Ei) with
participant index i and commitment shares Di, Ei ∈ G.

*Patent NL2037022 pending.
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Client(pp, id = (dP, dA), cred = (DP, DA), ctx) Server(pp, dS, cred)

(c1, C1)←$ Challenge(pp)

C1 = (D1, E1)

(C2, att)←$ Pass(pp, id, cred, C1, ctx)

C2 = (D2, E2), att = (DB, z2, σP, σB), ctx

r ← Prove(pp, dS, cred, (c1, C1), C2, att, ctx)

Figure 1: The authentication protocol applying threshold signatures, resulting
in activation signature r = σA or rejection r = ⊥. Each challenge tuple C1

can be used only once, and access to the Prove endpoint is rate-limited after
verification of possession signature σP using cred. Integrity of each attempt att
is protected using binding signature σB, to be verified using DB.

� SignShare(msg, s, (d, e), C): deterministically outputs z, a signature share
on message msg using signing key share s, nonces d, e ∈ F∗

q and commit-
ment list C, which is a tuple of tuples (i,Di, Ei) with participant index i
and commitment shares Di, Ei ∈ G.

� Aggregate(msg, C, Z): deterministically outputs a “FROSTy” Schnorr sig-
nature on message msg using a commitment list C and a signature share
list Z, which is a tuple of tuples (i, zi) with participant index i and signa-
ture share zi ∈ F∗

q .

After initial setup, the solution consists of two protocol steps between client
and server, after which any verifier can check the authentication. The protocol
steps are illustrated in Figure 1 and specified along with the setup and check
algorithms in Figure 2. In this solution, the credential consists of the public keys
cred = (DP, DA) and the transcript of tr = (DB, dgst, σP, σB, σA). A prototype
is available at [2].

The remainder of this section presents arguments demonstrating that the
solution meets the objectives.

Proposition. The solution meets the Multi-factor objective.

Proof. Consider the scenarios of individual authentication factor compromise.
If only dP access is compromised, the adversary is highly unlikely to forge

transcripts since these would require either a new FROSTy signature σ∗
A over

fresh D∗
B, or knowledge of the discrete logarithm of a previous DB, both of which

are highly unlikely.
If only dA access is compromised, the adversary is also highly unlikely to forge

transcripts since these would involve fresh server nonces and commitments, so
σA,1 would be different, and the adversary is highly unlikely to forge the proof
of possession σ∗

P over this data.
If access to both dA and dS is compromised, the adversary could only effi-

ciently succeed by replaying a previous σP, and is thereby bound to σA,1. But
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Setup(1λ)

1 : pp← (ΣP,ΣB,ΣA,#)

2 : return pp

Check(pp, (DP, DA), DB, dgst, σP, σB, σA, ctx)

1 : cP ← ΣP.Verify(DP, σA,1∥dgst, σP)

2 : cB ← ΣB.Verify(DB, σP,1∥σP,2, σB)

3 : cA ← ΣA.Verify(DA, ctx∥DB, σA)

4 : return c← cP ∧ cB ∧ cA

Challenge(pp)

1 : ((d1, e1), (D1, E1))←$ Commit()

2 : return ((d1, e1), (D1, E1))

Pass(pp, (dP, dA), (DP, DA), (D1, E1), ctx)

1 : ((d2, e2), (D2, E2))←$ Commit()

2 : (dB, DB)←$ KeyGen()

C = ((1, D1, E1), (2, D2, E2))

3 : z2 ← SignShare(ctx∥DB, dA, (d2, e2), C)

4 : σA,1 ← AggregateFirst(msg, DA, C)

5 : dgst← #(z2)

6 : σP ←$ Sign(dP, σA,1∥dgst)
7 : σB ←$ Sign(dB, σP)

8 : return ((D2, E2), (DB, z2, σP, σB))

Prove(pp, dS, (DP, DA), ((d1, e1), (D1, E1)), (D2, E2), (DB, z2, σP, σB), ctx)

1 : C = ((1, D1, E1), (2, D2, E2))

z1 ← SignShare(ctx∥DB, dS, (d1, e1), C)

2 : σA ← Aggregate(msg, C, (z1, z2))

3 : dgst← #(z2)

4 : c← Check(pp, (DP, DA), DB, dgst, σP, σB, σA, ctx)

5 : return if c = 1 then σA else ⊥

Figure 2: The algorithms for the patent-pending authentication method apply-
ing threshold signatures.

this first component of the FROSTy signature is computed using the crypto-
graphic hash of the ctx∥DB, and it is highly unlikely the adversary finds a second
preimage of this hash. So the adversary could only use dA and dS to arrive at
the same signature σA, and not a successful forgery.

Proposition. The solution meets the Context-bound objective.

Proof. Integrity of the context data ctx is protected by σA and subsequently by
σP.

Proposition. The solution meets the Non-repudiable objective.

Proof. By security of FROSTy signatures, even an efficient adversary with ac-
cess to dS could not forge σ∗

A. Therefore the adversary is bound to DB, of which
it is infeasible to find the discrete logarithm, and therefore the adversary is
bound to σB and therefore σP.

Proposition. The solution meets the Transparent objective.
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Proof. Even with access to DA and the method to derive a candidate d′A, for
example using the smartphone’s message authentication or key agreement key,
an adversary would need information about dS to verify if they have found the
discrete logarithm dA + dS of DA. But the server only returns zero-knowledge
proofs, so it is unlikely that a single guess provides sufficient information to
inform a second guess. In practice, the rate-limiting also limits the amount of
PIN attempts, therefore minimising the risk.

6 Example applications

The remotely protected smartphone authenticator can be applied in systems
where the verifier is the server, and performs privileged operations upon au-
thorization. Examples are a qualified signature creation device [1] or a wallet
secure cryptographic application, both of which protect the user’s private keys.

An alternative application is distributed: the verification data is verified
as evidence by a third device. For example, the authentication server may be
part of a high-assurance authorization server such as in OAuth [7], recording
the evidence for auditing. Either the associated resource servers could perform
such auditing automatically, or it can be performed in a separate process by a
separate entity.

In another application, the verification data is recorded in transparency logs,
such as in Certificate Transparency [10]. This enables users to monitor whether
all verification data are recorded, and claim damage when finding evidence of a
privileged operation without finding recorded verification data that authorizes
that operation. Instead of a public record, the log may be protected or only
be shared in the case of actual disputes. This principle is further elaborated in
[18].

7 Conclusion

This report proposes a formalisation of the security problem involved with ap-
plying widespread smartphones for assurance level high authentication and sole
control. It demonstrates that this problem can be solved at least by applying
threshold signatures. This contributes a solution that optimises for simplicy on
the verifier side.
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