
White-Box Watermarking Signatures against
Quantum Adversaries and Its Applications

Fuyuki Kitagawa⋆♢ and Ryo Nishimaki⋆♢

⋆NTT Social Informatics Laboratories, Tokyo, Japan
{fuyuki.kitagawa,ryo.nishimaki}@ntt.com

♢NTT Research Center for Theoretical Quantum Information, Atsugi, Japan

February 18, 2025

Abstract

Software watermarking for cryptographic functionalities enables embedding an arbitrary message (a mark) into a
cryptographic function. An extraction algorithm, when provided with a (potentially unauthorized) circuit, retrieves
either the embedded mark or a special symbol unmarked indicating the absence of a mark. It is difficult to modify
or remove the embedded mark without destroying the functionality of a marked function. Previous works have
primarily employed black-box extraction techniques, where the extraction algorithm requires only input-output access
to the circuit rather than its internal descriptions (white-box extraction). Zhandry (CRYPTO 2021) identified several
challenges in watermarking public-key encryption (PKE) with black-box extraction and introduced the notion of
privacy for white-box watermarking against classical adversaries. Kitagawa and Nishimaki (Journal of Cryptology
37(3)) extended watermarking techniques to pseudorandom functions (PRFs) and PKE in the presence of quantum
adversaries, enabling extraction from pirate quantum circuits but failing to achieve privacy.

In this work, we investigate white-box watermarking for digital signatures secure against quantum adversaries. Our
constructions enable the extraction of embedded marks from the description of a pirate quantum circuit that produces
valid signatures while ensuring that black-box access to a marked signing function does not reveal information about
the embedded mark. We define and construct white-box watermarking signatures that are secure against quantum
adversaries, leveraging the leaning with errors (LWE) assumption and quantum fully homomorphic encryption.
Furthermore, we highlight that privacy concerns are even more critical in the context of signatures than in PKE. We
also present a compelling practical application of white-box watermarking signatures.

Additionally, we explore the concept of universal copy protection for signatures. We define universal copy
protection as a mechanism that transforms any quantumly secure signature scheme into a copy-protected variant
without altering the verification key or verification algorithm. This approach is preferable to developing specific
copy-protected signature schemes, as it allows existing schemes to be secured without modifying their published
verification keys. We demonstrate that universal copy protection for all quantum secure signatures is impossible by
leveraging our white-box watermarking signatures secure against quantum adversaries.

1

Contents
1 Introduction 3

1.1 Background . 3
1.2 Our Results . 4
1.3 Technical Overview . 6
1.4 More on Related Works . 11

2 Preliminaries 12
2.1 Quantum information. 13
2.2 One-Way to Hiding (O2H) Lemma . 15
2.3 Standard Cryptographic Tools . 15

3 After-the-Fact Leakage-Resilient Quantum Unobfuscatable Point Function 22
3.1 Definition . 22

4 Definition of White-Box Watermarking Signature 23
4.1 Pre-Embedded White-Box Watermarking Signature . 23
4.2 White-Box Watermarking Signature . 25

5 Pre-Embedded White-Box Watermarking Signature 27
5.1 Construction . 27
5.2 Proof of Unforegability . 29
5.3 Proof of Strong Correctness . 31
5.4 Proof of Privacy . 33
5.5 Proof of Unremovability . 35

6 Impossibility of Universal Copy Protection for Signatures 37
6.1 Definitions . 37
6.2 Counter Example Construction . 38

7 White-Box Watermarking Signature 40

A FE with Ciphertext Uniformity for OT Functionality 47

B Construction of After-the-Fact Leakage-Resilient Quantum Unobfuscatable Point Function 48
B.1 Preliminaries . 48
B.2 Post-Quantum Secure After-the-Fact Leakage-Resilient SKE . 51
B.3 Construction of After-the-fact Leakage-Resilient Unobfuscatable Point Function 52

C Extended Projective Property of ATI 54

2

1 Introduction

1.1 Background
Watermarking. Software watermarking [BGI+12] for cryptographic functionalities [CHN+18, GKM+19] enables
embedding arbitrary messages (marks) into cryptographic functions modeled as circuits, such as decryption functions
in encryption schemes and signing functions in digital signatures. A marked circuit retains the functionality of the
original unmarked circuit. An extraction algorithm, when provided with a potentially marked circuit C, can retrieve
the embedded mark or indicate that no mark is present (output special symbol unmarked). Importantly, it is difficult to
remove or alter the embedded mark without impairing the circuit’s functionality. Applications of software watermarking
include identifying ownership of objects and tracing unauthorized distributions. For example, (collusion-resistant)
watermarking decryption functions can be seen as a form of traitor tracing, where unique marks are embedded in
individual decryption keys to identify and track unauthorized distributions.1

Black-box extraction. Most cryptographic watermarking schemes (secure against arbitrary strategies) except one
scheme employ black-box extraction methods, where the extraction algorithm relies only input-output behavior rather
than internal circuit descriptions [CHN+18, BLW17, KW21, QWZ18, KW19, GKM+19, YAL+19, YAYX20, Nis20,
GKWW21, BBL24].2 This approach is natural in cryptographic software watermarking, as pirate software may be
obfuscated, making non-black-box analysis challenging.

Public extraction. Public extractability is often preferable to private extractability, where extraction requires a secret
key for extraction. In privately extractable watermarking, the authority that holds the secret extraction key must not be
compromised. Publicly extractable watermarking schemes allow anyone to extract an embedded mark, that is, verify
ownership and detect unauthorized distribution, much like watermarking in perceptual media (e.g., images or cash).
Accordingly, many prior works have explored black-box public extraction schemes [CHN+18, GKM+19, YAL+19,
GKWW21].

Privacy issue in black-box public extraction. Zhandry [Zha21] identified privacy risks in black-box public extrac-
tion. Although his work focused on traitor tracing, similar concerns arise in software watermarking as he referred to in
the future direction section of his work [Zha21, Section 1.3]. A critical issue is that public extraction allows anyone to
retrieve embedded information by observing the functional behavior of cryptographic operations. For instance, to deter
unauthorized distribution and verify ownership, watermarking schemes may embed sensitive personal information such
as bank account numbers into cryptographic keys [NWZ16]. Such watermarking schemes may inadvertently expose
this data to unauthorized observers. To address this, Zhandry [Zha21] identifies a natural scenario where we use traitor
tracing and users can observe other users’ decryption function behavior and break privacy by using black-box public
tracing. Zhandry introduced the concept of white-box traitor tracing to resolve the privacy problem above in the traitor
tracing setting. White-box traitor tracing relies on non-black-box algorithms that analyze the internal structure of
circuits rather their input-output behavior.

White-box watermarking signatures. In this work, we focus on white-box watermarking for signing functions
(white-box watermarking signatures), where extraction requires access to circuit descriptions rather than input-output
behavior. Digital signatures play a fundamental role in authentication and security protocols. Privacy risks are
particularly severe in the signature setting because messages and corresponding signatures are often publicly observable.
A watermarking scheme with black-box public extraction would allow any external observer to extract embedded marks
(potentially sensitive information) from publicly available message-signature pairs, posing a significant privacy threat.
Moreover, ensuring post-quantum security is increasingly important due to advancements in quantum computing.
Thus, our primary research questions are:

1A user decryption key dki is a marked decryption key Mark(dk, µi) where dk is the original decryption key and µi is an embedded mark.
Hence, adversaries could obtain many marked keys and we need to consider collusion-resistant watermarking for public-key encryption in a sense
by Goyal et al. [GKM+19] to achieve traitor tracing. We do not consider the collusion-resistant setting in this work.

2The extraction algorithm of the watermarking PRF by Yang et al. [YYAS22] uses circuit descriptions in a non-black-box way since they use
unobfuscatable PRFs as a building block. However, they did not study the privacy issue of watermarking (explained below).

3

What are the formal definitions of white-box watermarking signatures? And,
Can we achieve white-box watermarking signatures that are secure against quantum adversaries?

Why do we need “white-box” watermarking signatures? A compelling application of white-box watermarking
signatures is as follows. Consider a service that offers discount coupons to users affiliated with a specific organization
(e.g., a university). Each member of the organization receives a signing key sksen-info, which embeds the user’s sensitive
personal information, sen-info.3 The organization registers the corresponding verification key, vk. Users can claim
discounts by submitting a valid signature under vk. It is important to note that white-box watermarking signatures
are not used as e-cash but rather for authentication—specifically, for proving eligibility for certain services. A key
advantage of this approach is that it discourages users from illegally sharing their signing keys outside the designated
group. This deterrence is due to the unremovability property of watermarking: embedded strings sen-info (potentially
sensitive personal information) can be publicly extracted from signing function descriptions, making any unauthorized
key distribution traceable. However, if watermarking signatures were black-box publicly extractable, anyone could
extract sensitive information sen-info simply by analyzing pairs of signatures and messages (i.e., input-output behavior).
This poses a privacy risk, necessitating the privacy-preserving properties of white-box watermarking signatures to
protect users’ sensitive data.

One might initially consider group signatures [Cv91] as a suitable cryptographic alternative. However, group
signatures rely on a central authority (group manager) who has the ability to reveal a user’s identity from their
signatures. In our scenario, we prefer to avoid such a central authority, as it could become a single point of
compromise. Unlike group signatures, white-box watermarking signatures do not allow information extraction from
signatures while still enabling the embedding of arbitrary strings. In contrast, group signatures only disclose a user
index i ∈ [N], where N represents the total number of users, rather than embedding arbitrary data. For these reasons,
white-box watermarking signatures are well-suited for the described application and, and in come cases, may serve
as an alternative to group signatures. Additionally, it is important to recoginize the distinct purposes of these two
cryptographic tools. Group signatures are designed for traceability, enabling authorities to identify individual who
have violated rules (e.g., committed a crime) based on the time and location of a generated signature. White-box
watermarking signatures, on the other hand, primarily serve as a deterrent against unauthorized distribution of signing
keys.

On the impossibility of universal copy-protection for signatures. Interestingly, white-box watermarking against
quantum adversaries is closely related to the impossibility of universal copy-protection. Quantum copy-protection [Aar09]
is a cryptographic primitive that transforms classical programs into quantum states, allowing computation of the same
functionality as the original program while preventing duplication of the quantum state. Previous research has
demonstrated that all learnable functions and certain point functions cannot be copy-protected [Aar09, AL21, AK22].
However, these results do not rule out the possibility of universal copy-protection for signature schemes. A universal
copy-protection scheme for signatures would provide a single method to transform any quantumly secure (EUF-qCMA
secure) signature scheme into one where the signing key is copy-protected, while keeping the verification key and
algorithm unchanged. From a practical perspective, such a universal transformation would be highly desirable [DN21].
Although Liu, Liu, Qian, and Zhandry [LLQZ22] introduced a specific bounded collusion-resistant copy-protection
scheme for signatures, their approach does not provide a universal construction. The question of whether universal
copy-protection for signatures is possible remains an intriguing open question. In this work, we investigate the im-
possibility of universal copy-protection for signatures through the lens of white-box watermarking signatures against
quantum adversaries.

1.2 Our Results
We present two main contributions in this work. First, we introduce the definitions of white-box watermarking signatures
against quantum adversaries and analyze their properties. Second, we construct white-box watermarkable signature

3The organization can provide sksen-info without knowing sen-info by using secure two-party computation. If the organization needs to check
a user embeds valid personal information (e.g., bank account number), another entity (e.g., a bank) joins, and they can use secure three-party
computation.

4

schemes that are secure against quantum adversaries under standard cryptographic assumptions. A a byproduct of our
results, we establish the impossibility of universal copy-protection for signature schemes. Below, we provide a detailed
overview of these contributions.

Definitions. We introduce two types of watermarking signature syntax:

1. Pre-embedded white-box watermarking signatures — The embedded mark is determined during the key gener-
ation phase.

2. Standard watermarking signatures — The embedded mark is assigned after key generation.

A watermarking signatures scheme must satisfy both unforgeability and unremovability, as defined by Goyal et
al. [GKM+19]. We extend these definitions to quantum adversaries by adapting the watermarking PRF framework
against quantum adversaries introduced by Kitagawa and Nishimaki [KN24]. Additionally, we introduce privacy as a
crucial property of white-box watermarking signatures.

Our privacy guarantee ensures that an adversary cannot infer any information about the embedded mark µ, provided
they can only access a signing oracle that returns σ ← Sign(s̃kµ, m) in a black-box manner, where s̃kµ is a marked
signing key and m is the queried message. This formulation is a natural adaptation of privacy in white-box traitor
tracing. In the non-pre-embedded (i.e., standard watermarking signatures) setting, we consider a stronger adversarial
model in which attackers can generate their own verification and signing key pairs (vk, sk). In this setting, privacy
remains intact even against a malicious signature authority.4 Notably, our framework does not require a watermarking
authority, as our constructions do not rely on any secret key for embedding or extracting marks.

We also define strong correctness for watermarking signatures. This property ensures that an adversary cannot
find a message m∗ such that a marked signing function generates an invalid signature for the input m∗. Since marked
signing functions do not exhibit perfect correctness, there exist certain inputs that could potentially cause failure. Our
goal is to prevent adversaries from exploiting this weakness to make a watermarked signing key fail when generating
valid signatures.

Constructions. We propose a pre-embedded white-box watermarking signature scheme constructed from standard
cryptographic tools. All components, except for quantum fully homomorphic encryption (QFHE)5, can be instantiated
under the learning with errors (LWE) assumption. This leads to the following result:

Theorem 1.1 (informal). If the LWE assumption holds and QFHE exists, then a pre-embedded white-box watermarking
signature scheme secure against quantum adversaries exists.

This result represents the first construction of a white-box watermarking signature scheme designed to withstand
quantum adversaries. Notably, achieving pre-embedded white-box watermarking signatures is non-trivial, even against
classical adversaries. This is in contrast to watermarking signatures with black-box extraction. Goyal et al. [GKM+19,
Section B.1.2, in eprint ver.] observed that if the verification key depends on the embedded mark, there is a trivial water-
marking signature scheme that satisfies unremovability. However, this approach fails in the white-box setting because
the mark would be explicitly included in the verification key, immediately violating privacy. Furthermore, constructing
pre-embedded white-box watermarking signatures against quantum adversaries is significantly more challenging than
their classical counterparts (similar to the difficulties in watermarking PRFs against quantum adversaries [KN24]).
This is due to the nature of quantum circuits, where running a circuit may irreversibly alter its quantum state, and
the approximate correctness condition on pirate circuits. We also stress that pre-embedded white-box watermarking
signatures are sufficient for the applications in Section 1.1 if each user generates a key pair.

To achieve white-box watermarking signatures against quantum adversaries, we introduce a fascinating non-black-
box extraction technique. Specifically, we define two new cryptographic primitives.

4A user can receive s̃kµ from an authority who has sk via secure two-party computation without revealing µ and s̃kµ to the authority. Hence,
this setting is meaningful.

5Not leveled QFHE but QFHE. We need to assume circular security of encryption to achieve QFHE [Mah18, Bra18].

5

1. After-the-fact leakage-resilient quantum unobfuscatable point functions — These ensure that quantum black-box
unlearnability holds even if partial information about output messages (i.e., the output corresponding to the
point) is leaked.

2. Functional encryption with ciphertext uniformity — This guarantees that ciphertexts appear random if the
decrypted result is a uniformly random value.

These new primitives serve as essential building blocks in our construction. Beyond their use in this work, they
may have independent cryptographic applications. This technique is an interesting application of leakage-resilient
cryptography. See Section 1.3 for the details.

Additionally, we extend our pre-embedded white-box watermarking signature scheme to a white-box watermarking
signature scheme by employing a non-black-box transformation using standard EUF-CMA secure signatures.

Theorem 1.2 (informal). If the LWE assumption holds and QFHE exists, then a white-box watermarking signature
scheme secure against quantum adversaries exists.

Impossibility of universal copy-protection. To demonstrate the impossibility of universal copy-protection for signa-
tures, we must consider signature schemes secure against quantum superposition attacks (EUF-qCMA) [BZ13]. Boneh
and Zhandry [BZ13] showed that an EUF-CMA secure signature can become completely insecure when subjected
to quantum chosen message attacks, as the classical signing key can be fully recovered. Since an adversary with a
(potentially quantum) description of the signing algorithm can execute it in superposition and extract the singing key,
universal copy-protection for EUF-CMA secure signatures is ruled out. However, this does not immediately preclude
universal copy-protection for EUF-qCMA secure signatures.

We can construct an EUF-qCMA signature scheme whose signing key cannot be copy-protected by combining:

• Standard EUF-qCMA secure signatures

• One-way functions

• Pre-embedded white-box watermarking signatures against quantum adversaries

Since EUF-qCMA secure signatures can be instantiated under the LWE assumption [BZ13], we obtain the following
result:

Theorem 1.3 (informal). If the LWE assumption holds and QFHE exists, then universal quantum copy-protection for
EUF-qCMA secure signatures is impossible.

This result marks the first known impossibility proof for universal copy-protection of signature schemes.

1.3 Technical Overview
Syntax of pre-embedded white-box watermarking signature. We first introduce the syntax of pre-embedded
white-box watermarking signatures against quantum adversaries. A pre-embedded white-box watermarking signature
scheme consists of four algorithms (KeyGen, Sign, Vrfy, Extract). The first three algorithms form a standard digital
signature scheme, except that KeyGen takes a secret message µ as input. Also, we require that Sign be a deterministic
algorithm. Finally, Extract is the extraction algorithm to extract the secret message embedded into the key pair from a
possibly obfuscated quantum signing program generated using the key pair. More concretely, Extract takes as input a
verification key vk, a quantum program C̃ 6, and a threshold parameter ϵ, and outputs some µ′.

6In this work, we treat only quantum programs with classical input and output that consist of a unitary and an initial quantum state. For the
formal definition, see Definition 2.2.

6

Security notions. For white-box watermarking signatures against quantum adversaries, aside from unforgeability
as digital signature, we consider the following three security notions, that is, unremovability, privacy, and strong
correctness.

• We say that a white-box watermarking signature scheme satisfies unremovability if given a pair of verification
key vk and signing key sk that has the embedded secret message µ, any adversary cannot generate a quantum
program C̃ such that it is an “ϵ-good program”, but the extraction algorithm executed with the parameter ϵ fails
to output the embedded secret message µ from it. We roughly define a quantum signing program as an “ϵ-good
program” if it outputs a valid signature for a randomly chosen message with a probability greater than ϵ. More
specifically, to consider the stateful nature of quantum programs, we use the notion of “ϵ-live program” defined
by Zhandry [Zha20] in the context of quantum traitor tracing. Roughly speaking, ”ϵ-live program” is a quantum
program such that if we measure the success probability of it using the method called projective implementation
introduced by Zhandry [Zha20], we obtain the measurement result greater than ϵ with overwhelming probability.
As the name suggests, projective implementation is a method that measures the success probability of a quantum
program in a projective manner, which means if we measure the success probability twice successively, we obtain
the same result.7 We use this simplified definition of ”ϵ-live program” in this overview.

• We say that a white-box watermarking signature scheme is private if any adversary who is given vk and can get
quantum access to the signing oracle Sign(sk, ·) cannot obtain any information of the secret message µ that is
tied to (vk, sk) (i.e., (vk, sk)← KeyGen(1λ, µ).). Quantum access means the adversary is allowed to query two
registers R1 and R2 and the oracle applies the map |a⟩ |b⟩ → |a⟩ |b⊕ Sign(sk, a)⟩8 to the registers and returns
them. We consider an indistinguishability-based notion. Hence, the adversary’s task is to distinguish two secret
messages chosen by the adversary itself.

• We say that a white-box watermarking signature scheme satisfies strong correctness if any adversary who is given
vk and can get access to the signing oracle Sign(sk, ·) cannot find m∗ such that Vrfy(vk, m∗, Sign(sk, m∗)) = 0

Construction strategy for white-box watermarking signature. Our basic idea is to turn a quantum unobfuscatable
function [ABDS21, AL21] into a signature scheme, achieving unremovability. Concretely, we use a non-interactive
zero-knowledge (NIZK) argument and design our scheme so that a signature is a proof of NIZK for a statement related
to the quantum unobfuscatable function. To implement this idea, we also use functional encryption (FE) that satisfies
the newly introduced property ciphertext uniformity. We below explain our main building blocks in detail.

Quantum unobfuscatable point function Quantum unobfuscatable point function UOPF consists of UOPF.Gen and
UOPF.Extract . UOPF.Gen is given a secret message µ as an input and outputs a uniformly generated point
function fα,β : {0, 1}ℓin → {0, 1}ℓout that outputs β if the input is α and 0ℓout otherwise, together with an
auxiliary information aux. UOPF.Extract takes as input a quantum program C̃ and aux, and outputs µ′.
Usually, quantum unobfuscatable point functions satisfy the following correctness and security. The correctness
notion guarantees that if UOPF.Extract is given a quantum program that maps α to β with overwhelming
probability together with aux, it outputs the secret message µ used to generate the point function fα,β and aux.
The security notion guarantees that any adversary cannot compute µ given aux and quantum oracle access to
fα,β.
In this work, we decompose the above security notion into the following indistinguishability of messages and
indistinguishability of points.

Indistinguishability of messages It requires that for any µ0 and µ1, aux0 and aux1 are computationally indis-
tinguishable, where (fα,β, auxb)← UOPF.Gen(1λ, µb) for b ∈ {0, 1}.

Indistinguishability of points It requires that for any µ, α is indistinguishable from a completely independent
random string R← {0, 1}ℓin given aux, where (fα,β, aux)← UOPF.Gen(1λ, µ).

7Projective implementation is an inefficient method. Hence, we use an approximate variant in the actual technical sections. We ignore this issue
in this overview.

8Recall that Sign is deterministic.

7

Indistinguishability of points intuitively ensures that quantum oracle access to fα,β is useless. Then, the
indistinguishability of messages is sufficient to imply the standard security notion of quantum unobfuscatable
functions.

FE with ciphertext uniformity An FE scheme FE consists of four algorithms (FE.Setup, FE.KG, FE.Enc, FE.Dec).
FE.Setup takes as input a security parameter and outputs a public key fe.pk and a master secret key fe.msk.
FE.KG takes as input the master secret key fe.msk and a function f and outputs a functional decryption key
fsk. FE.Enc takes as input fe.pk and an input x, and outputs a ciphertext ct. We can decrypt ct with fsk
using FE.Dec, and obtain f (x). The ciphertext uniformity requires that FE.Enc(fe.pk, x) be computationally
indistinguishable from a uniformly random string even given fsk for a function f , if the value f (x) distributes
uniformly at random.9
In this work, we use FE with ciphertext uniformity for 1-out-of-2 oblivious transfer (OT) functionality

F[β](i, x0, x1) = xβ[i],

where β[i] is the i-th bit of β. We show that FE with ciphertext uniformity for 1-out-of-2 OT functionality can
be achieved from the LWE assumption.

Statistical NIZK argument A statistical NIZK argument NIZK = (NIZK.Prove, NIZK.Vrfy) for a relationR satisfies
three properties completeness, computational soundness, and statistical zero-knowledge. Completeness ensures
that honestly generated proof π ← NIZK.Prove(crs, x, w) for (x, w) ∈ R is always accepted by NIZK.Vrfy,
where crs is the common reference string generated by a trusted third party. The computational soundness
guarantees that any efficient adversary cannot find a valid proof for a statement x outside ofR. Finally, statistical
zero-knowledge guarantees that any computationally unbounded adversary cannot obtain any information from
an honestly generated proof π ← NIZK.Prove(crs, x, w) for (x, w) ∈ R except the fact that x is inR.

In addition to the above building blocks, we use length-doubling PRG g and statistically binding commitment
Commit.10 Also, in the actual construction, we use a (quantum-accessible) pseudorandom function to make the signing
algorithm deterministic. However, we omit the de-randomization for simplicity in this overview.

First attempt. We first present a simplified scheme PWMSIG′ that satisfies unremovability but not privacy and even
(existential) unforgeability. The relationR of NIZK in PWMSIG′ is defined as (x = (m, γ, com), w = (fsk, r)) ∈ R
if and only if it holds that

com = Commit(fsk; r) ∧ g(FE.Dec(fsk, m)) ̸= γ.

The descriptions of PWMSIG′.KeyGen, PWMSIG′.Sign, and PWMSIG′.Vrfy are as follows.

PWMSIG′.KeyGen: Given µ as an input, it first generates (fα,β, aux) ← UOPF.Gen(1λ, µ) and γ ← g(α). It also
generates crs of NIZK and (fe.pk, fe.msk) ← FE.Setup(1λ). If finally generates fsk ← FE.KG(fe.msk, F[β])
and its commitment com ← Commit(fsk; r). The verification key is vk = (crs, γ, fe.pk, com, aux) and the
corresponding signing key is sk = (fsk, r). Below, we also assume that sk implicitly includes vk.

PWMSIG′.Sign: Given sk = (fsk, r) and m, it outputs a proof π of NIZK for the statement (m, γ, com) using
sk = (fsk, r) as the witness.

PWMSIG′.Vrfy: Given vk = (crs, γ, fe.pk, com, aux), a message m, and a signature σ = π, it simply outputs the
verification result of NIZK, that is, NIZK.Vrfy(crs, (m, γ, com), π).

The correctness of PWMSIG′ follows from the completeness of NIZK since the condition g(FE.Dec(fsk, m)) ̸= γ is
satisfied for every m with overwhelming probability over the choice of α due to the pseudorandomness of PRG g.

We then move on to the construction of PWMSIG′.Extract . PWMSIG′.Extract basically relies on UOPF.Extract .
To this end, all we have to do is to construct a quantum program that maps α to β with overwhelming probability, using
a live signing quantum program. We introduce the following sub-routine algorithm SearchOutput .

9In the actual definition, we decompose this property into the standard simulation security and the pseudorandomness of the simulator’s output.
10For simplicity, we omit to write the commitment key and its generation algorithm in this overview.

8

SearchOutput : It takes as input vk = (crs, γ, fe.pk, com, aux), a quantum program C̃ , x ∈ {0, 1}ℓin , i ∈ {1, · · · , ℓout},
and the threshold parameter ϵ. It estimates the probability that C̃ outputs a valid signature when it is given a
message that is a ciphertext of FE sampled from the following distribution Di.

Di: Generate u← {0, 1}ℓin and compute fe.ct← FE.Enc(fe.pk, (i, x, u)). Output m := fe.ct.

If the estimation result is smaller than ϵ/2, it outputs β[i] = 0; otherwise, it outputs β[i] = 1.

Then, we define P [C̃](x) as the following quantum program

• It takes x ∈ {0, 1}ℓin as the input.

• It does the following from i = 1 to i = ℓout: Compute β′[i] ← SearchOutput(vk, C̃i, x, i, ϵ), uncompute the
process, and obtain quantum program C̃i+1, where C̃1 := C̃ .

• Outputs β′[1]∥ · · · ∥β′[ℓout].

We are now ready to present the description of UOSIG′.Extract .

PWMSIG′.Extract : Given vk = (crs, γ, fe.pk, com, aux), a quantum program C̃ , and the threshold parameter ϵ, it first
construct P [C̃] and outputs µ′ ← UOPF.Extract(P [C̃], aux).

Unremovability of PWMSIG′ against quantum adversaries. We show the unremovability of PWMSIG′ against
quantum adversaries. Suppose an adversary is given vk = (crs, γ, fe.pk, com, aux) and sk = (fsk, r), and outputs a
quantum program C̃ and the threshold parameter ϵ. We below show that if C̃ is an ϵ-live quantum signing program,
that is, if we measure the success probability of C̃ with respect to random messages, we obtain a measurement result
greater than ϵ with overwhelming probability, the i-th execution of SearchOutput in P [C̃] with the input α outputs β[i]
with overwhelming probability for every i ∈ {1, · · · , ℓout}, which means that P [C̃] maps α to β with overwhelming
probability. Once this is proved, the unremovability of PWMSIG′ follows from the correctness of UOPF.

We consider the case of i = 1. We first consider the case where β[1] = 0. In this case, for every fe.ct ←
FE.Enc(fe.pk, (1, α, u)), it is computationally infeasible to find a valid proof of NIZK for the statement (m =
fe.ct, γ, com) from the fact that g(FE.Dec(fsk, m)) = g(α) = γ and NIZK satisfies computational soundness.
Note that com statistically binds the witness (fsk, r) used to generate the proofs. This means the result of the
estimation computed in SearchOutput(vk, C̃ , x = α, 1, ϵ) should be close to 0 and especially smaller than ϵ/2, and
SearchOutput(vk, C̃ , x = α, 1, ϵ) outputs 0 if β[1] = 0. We next consider the case where β[1] = 1. In this
case, fe.ct ← FE.Enc(fe.pk, (i, α, u)) is computationally indistinguishable from a uniformly random message by the
ciphertext uniformity of FE and the fact that FE.Dec(fsk, fe.ct) = u distributes uniformly at random. This means
the distribution Di defined in the description of SearchOutput is computationally indistinguishable from the uniform
distribution on the message space if β[1] = 1. Zhandry [Zha20] showed that if two distributions are computationally
indistinguishable, the estimated success probability of a quantum program with respect to one distribution is close to
that with respect to the other one. By combining this with the fact that C̃ is an ϵ-live quantum program, the estimated
success probability in SearchOutput(vk, C̃ , x = α, 1, ϵ) should be close to ϵ and especially larger than ϵ/2. This means
SearchOutput(vk, C̃ , x = α, 1, ϵ) outputs 1 if β[1] = 1.

The above argument proves SearchOutput(vk, C̃ , x = α, 1, ϵ) outputs β[1] almost deterministically if C̃ is an
ϵ-live quantum program. This allows us to use gentle measurement lemma [Win99] to argue that the quantum
program C̃2 obtained by uncomputation of SearchOutput(vk, C̃ , x = α, 1, ϵ) is almost the same quantum program
as the original C̃ . By using quantum union bound [Aar06], we can generalize these discussions on the output of
SearchOutput(vk, C̃i, x = α, i, ϵ) and quantum program C̃i+1 obtained by its uncomputation for every i ∈ {1, · · · , ℓout}.
Thus, we can see that the i-th execution of SearchOutput in P [C̃] with the input α outputs β[i] with overwhelming
probability for every i ∈ {1, · · · , ℓout}.

From the above discussions, UOSIG′ satisfies unremovability against quantum adversaries.

9

Proof strategy for privacy and its problem. In the security game of privacy, the adversary can get quantum access
to the signing oracle PWMSIG′.Sign(sk, ·), where (vk, sk) ← PWMSIG′.KeyGen(1λ, µ) for the secret message µ of
the adversary’s choice. We must ensure that the adversary cannot obtain information of α and β through the quantum
oracle access. The knowledge of α and β combined with aux allows the adversary to obtain µ using UOPF.Extract ,
which breaks privacy.

Our strategy towards this is to use the statistical zero-knowledge of NIZK and the security of UOPF. If the
statistical zero-knowledge of NIZK guarantees that the quantum access to PWMSIG′.Sign(sk, ·) essentially does not
leak information of α and β more than black-box access to the point function fα,β, we can argue that the security
of UOPF protects α and β.11 We require statistical zero-knowledge, not computational one because an adversary can
obtain potentially 2ℓ signatures by just a single quantum query to the oracle, where ℓ is the length of signed messages.
We have to ensure that each one of them that is a proof of NIZK does not leak information of α and β.

However, there is a problem in this strategy. The adversary can get information of β from the signing oracle
more than the black-box access to fα,β. Concretely, the adversary can obtain 1-bit information of β “whether
g(FE.Dec(fsk, m)) = γ or not” for any m by querying m to the signing oracle and checking whether the returned
signature is valid or not. (Recall that fsk is a functional decryption key for the 1-out-of-2 OT functionality F[β].)

Our solution: After-the-fact leakage-resilient unobfuscatable point function. Our solution to the above problem
is to require leakage resilience for UOPF. More concretely, we require that the indistinguishability of points holds
even if an adversary can obtain after-the-fact leakage information h(β) of β. After-the-fact means that the adversary
can choose the leakage function h after seeing its challenge input r ∈ {α, R} and aux. The reason why we need it is
that the adversary for the privacy of our construction can obtain leakage information of β through the quantum access
to the signing oracle after given vk that includes γ = g(α) and aux. After-the-fact leakage resilience is defined in
the split state model. Namely, in the security game, β is considered as a concatenation of two strings β1 ∈ {0, 1}ℓout

and β2 ∈ {0, 1}ℓout , and after-the-fact leakage-resilient indistinguishability of points allows an adversary to obtain
any local leakage h1(β1) and h2(β2). We emphasize that h1 takes as input only β1 and h2 takes as input only
β2. Without this restriction on the locality, the after-the-fact leakage immediately allows the adversary to break the
indistinguishability of points.12 Note that the split state model is used only in the definition of indistinguishability of
points. In particular, we do not need to introduce a new syntax for quantum unobfuscatable point functions. Before our
work, after-the-fact leakage resilience in the split state model was considered for encryption schemes [HL11]. In fact,
we achieve an after-the-fact leakage-resilient unobfuscatable point function using an after-the-fact leakage-resilient
encryption scheme.

Final construction. We now present our final construction. In addition to requiring after-the-fact leakage resilience
for the quantum unobfuscatable point function UOPF, we apply the following modifications to PWMSIG′ and obtain
our final scheme PWMSIG.

• We use two instances of FE. Namely, we generate (fe.pk1, fe.msk1) and (fe.pk2, fe.msk2), and generate fsk1 ←
FE.KG(fe.msk1, F[β1]) and fsk2 ← FE.KG(fe.msk2, F[β2]), where β := β1∥β2. According to this change,
com is changed into a commitment of fsk1 and fsk2, that is, com ← Commit(fsk1∥fsk2; r). Moreover, the
verification key is set to vk = (crs, γ, fe.pk1, fe.pk2, com, aux) and the corresponding signing key is set to
sk = (fsk1, fsk2, r).

• The relationR is changed so that (x = (m, γ, com), w = (fsk1, fsk2, r)) ∈ R if and only if it holds that

com = Commit(fsk1∥fsk2; r) ∧ g(FE.Dec(fsk1, m)) ̸= γ ∧ g(FE.Dec(fsk2, m)) ̸= γ.

• SearchOutput takes the additional input d ∈ {1, 2} and uses fe.pkd to compute βd[i]. P [C̃](x) executes
SearchOutput for every d ∈ {1, 2} and i ∈ {1, · · · , ℓout} to compute entire bits of β = β1∥β2 when given
α.

11The verification key vk also has information of α and β, but we can ensure that they do not leak useful information of them that prevents us
from using the security of UOPF, by the security of PRG and commitment. We ignore this issue here for simplicity.

12Concretely, we consider a leakage function h[µ, aux, r] that has µ, aux, and r hardwired. It computes UOPF.Extract(fr,β, aux) and returns 1
if and only if the result is µ. If r = α, h[µ, aux, r](β) is always 1, but if r = R, h[µ, aux, r](β) is not necessarily 1. Thus, we can easily break the
indistinguishability of points under even 1-bit leakage of β. Split state model prevents this attack.

10

We can prove the unremovability of PWMSIG similarly to PWMSIG′. Moreover, thanks to the after-the-fact leakage
resilience of UOPF, we can also prove the privacy of PWMSIG following the above strategy using the statistical zero-
knowledge of NIZK first and then relying on the security of UOPF. We prove that the after-the-fact leakage resilience
against 1-bit leakage for each of β1 and β2 is sufficient to complete the proof. By a similar argument, we can prove the
unforgeability and strong correctness of PWMSIG. For the formal proofs, see Section 5.

Achieving after-the-fact leakage-resilient unobfuscatable point function. We briefly state how to achieve an after-
the-fact leakage-resilient unobfuscatable point function. Our definition requiring indistinguishability of messages and
indistinguishability of points abstracts quantum unobfuscatable point function (with auxiliary information) by Alagic,
Brakerski, Dulek, Schaffner [ABDS21] using quantum FHE [Mah18, Bra18] and lockable obfuscation [GKW17,
WZ17]. By carefully inserting after-the-fact leakage-resilient SKE into the combination of quantum FHE and lockable
obfuscation, we obtain after-the-fact leakage-resilient quantum unobfuscatable point function. The existing after-the-
fact leakage-resilient SKE schemes rely on non-post-quantum assumptions such as the DDH assumption. Thus, we
also propose an after-the-fact leakage-resilient SKE scheme that can be instantiated from post-quantum assumptions
like the LWE assumption. In fact, our construction is based on any PKE scheme.

Removing pre-embedded restriction. We convert our pre-embedded white-box watermarking signature scheme
into a standard one in a non-black-box way by using a standard EUF-CMA secure signature scheme. See Section 7
and Appendix C for the detail.

Impossibility on the universal copy protection for signatures. A copy-protected signature scheme is a digital
signature scheme such that its signing key sigk is a quantum state, and it satisfies the security notion that any adversary
given the signing key sigk cannot generate two quantum programs, both of which can generate valid signatures. We
define universal copy protection for signatures as a primitive that turns any signature scheme into a copy-protected
one without changing the verification key and algorithm. Such a universal copy protection is preferable to a specific
copy-protected signature scheme because it can turn our signing key into copy-protected one without changing the
corresponding already published verification key. The separation between EUF-CMA security and EUF-qCMA
security by Boneh and Zhandry [BZ13] excludes the existence of universal copy protection for EUF-CMA secure
signatures. However, there is still hope that we can have universal copy protection for EUF-qCMA secure signatures.

Unfortunately, we also exclude the existence of universal copy protection for EUF-qCMA secure signatures. More
concretely, we provide a counter-example signature scheme such that

• it satisfies EUF-qCMA security,

• if we have a quantum program that can generate valid signatures, we can generate a classical program having the
ability to generate valid signatures.

Clearly, any process cannot make the signing key of the scheme into a copy-protected one. We realize the counter-
example using our pre-embedded white-box watermarking signature scheme together with standard EUF-qCMA
signature scheme and one-way functions. For the detail, see Section 6.

1.4 More on Related Works
Watermarking. Kitagawa and Nishimaki [KN24] achieved watermarking PRFs and PKE against quantum adver-
saries, and Zhandry [Zha22] achieved collusion-resistant watermarking PKE against quantum adversaries. These
watermarking schemes are neither signature schemes nor white-box. White-box traitor tracing [Zha21] can be seen
as white-box watermarking public-key encryption. However, Zhandry’s work [Zha21] has no implication to white-
box watermarking signatures and did not study security against quantum adveraries. Yang et al. [YYAS22] present
watermarking PRFs with non-black-box extraction. However, they provide neither security proof against quantum
adversaries nor privacy.

11

Robust unobfuscatable functions and impossibility of (quantum) obfuscation. A robust unobfuscatable func-
tion [BP15, YYAS22] has the black-box unlearnability and the non-black-box learnability (a.k.a reverse engineering
property). The former means that if we have only black-box access to the function, we cannot extract any information
about an embedded string in the function. The latter means that if we have the description of the function and it has
approximate correctness, we can extract the embedded string. Approximate correctness means that obfuscated circuits
compute correct outputs on some small (but noticeable) fraction of its inputs.

Pre-embedded white-box watermarking, where a mark is embedded at the function generation phase, is essentially
the same as robust unobfuscatable functions. In white-box watermarking, we cannot extract embedded marks by
observing function’s black-box input and output behavior (corresponding to black-box unlearnability). However,
we can extract them from any (adversarially generated) circuit descriptions that approximately preserve the original
functionality (corresponding to non-black-box learnability). In addition, quantum robust unobfuscatable functions are
essentially the same as white-box watermarking against quantum adversaries. This is because the former means no QPT
algorithm can output a quantum state describing quantum circuit description such that it approximately preserves the
original functionality, and we cannot extract embedded information from the circuit description. Here, the approximate
property of robust unobfuscatable functions is essential for watermarking since watermarking adversaries output a
program with approximate correctness.

Bitansky and Paneth [BP15] constructed publicly verifiable (classical) robust unobfuscatable functions from trap-
door permutations and non-interactive commitments and used them to achieve resettably sound zero-knowledge pro-
tocols. Although no previous work pointed out, we can easily convert their publicly verifiable robust unobfuscatable
functions into a classically robust unobfuscatable signature by using hard-core secret [BP15, Lemma 3.9] and com-
bining standard signatures. We put an embedding string masked by an output of hard-core functions in a verification
key. Hence, we can obtain a pre-embedded white-box watermarking signature against classical adversaries from their
construction.

Alagic et al. [ABDS21] and Ananth and La Placa [AL21] presented (non-robust) quantum unobfuscatable functions.
Later, Bitansky, Kellner, and Shmueli [BKS21] constructed quantum unobfuscatable functions based on post-quantum
resettbaly-sound zero-knowledge arguments for NP and one-way functions. They are neither publicly verifiable, robust,
nor after-the-fact leakage resilient. Their unobfuscatable functions are some sort of point functions or PRGs. Ananth
and Kaleoglu [AK22] (implicitly) presented a quantum robust unobfuscatable point function to show an impossibility
of quantum copy-protection. Their construction is neither signatures, publicly verifiable, nor after-the-fact leakage
resilient. Alagic and Fefferman [AF16] showed that it is impossible to obfuscate quantum circuits into reusable states.

Impossibility of copy-protection. Aaronson [Aar09] observed that achieving copy-protection for black-box learnable
functions is impossible. Ananth and La Placa [AL21] presented the impossibility of copy-protection for point functions
with statistical correctness. Ananth and Kaleoglu [AK22] presented the impossibility of copy-protection for point
functions with approximate correctness (in the classically-accessible random oracle model). None of these results rule
out universal copy-protection for signatures.

2 Preliminaries
Notations and conventions. In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or
Gen) and classical variables (e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic
font and/or the bracket notation for (mixed) quantum states (e.g., q or |ψ⟩).

Let [ℓ] denote the set of integers {1, · · · , ℓ}, λ denote a security parameter, and y := z denote that y is set,
defined, or substituted by z. For a finite set X and a distribution D, x ← X denotes selecting an element from X
uniformly at random, x ← D denotes sampling an element x according to D. Let y ← A(x) and y ← A(x) denote
assigning to y the output of a probabilistic or deterministic algorithm A and a quantum algorithm A on an input x and
x , respectively. When we explicitly show that A uses randomness r, we write y ← A(x; r). PPT and QPT algorithms
stand for probabilistic polynomial-time algorithms and polynomial-time quantum algorithms, respectively. Let negl
denote a negligible function.

If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈ N, we say

12

that X (0) and X (1) are computationally indistinguishable (denoted by X (0) c≈ X (1)) if for any polynomial-time
distinguisher D, there exists a negligible function negl(λ), such that

∣∣∣Pr
[

D(X(0)
λ) = 1

]
− Pr

[
D(X(1)

λ) = 1
]∣∣∣ =

negl(λ). The statistical distance between X (0) and X (1) over a countable set S is defined as SD(X (0),X (1)) :=
1
2 ∑α∈S

∣∣∣Pr
[

X(0)
λ = α

]
− Pr

[
X(1)

λ = α
]∣∣∣. We say that X (0) and X (1) are statistically/perfectly indistinguishable

(denoted by X (0) s≈ X (1)/X (0) p
≈ X (1)) if SD(X (0),X (1)) = negl(λ) and SD(X (0),X (1)) = 0, respectively. We

also say that X (0) is ϵ-close to X (1) if SD(X (0),X (1)) ≤ ϵ.

2.1 Quantum information.
We review some basics of quantum information in this subsection.

Definition 2.1 (Shift Distance). For two distributions D0, D1, the shift distance with parameter ϵ, denoted by
∆ϵ

Shift(D0, D1), is the smallest quantity δ such that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x + ϵ] + δ, Pr[D0 ≥ x] ≤ Pr[D1 ≥ x− ϵ] + δ,
Pr[D1 ≤ x] ≤ Pr[D0 ≤ x + ϵ] + δ, Pr[D1 ≥ x] ≤ Pr[D0 ≥ x− ϵ] + δ.

For two real-valued measurementsM and N over the same quantum system, the shift distance betweenM and N
with parameter ϵ is

∆ϵ
Shift(M,N) := sup

|ψ⟩
∆ϵ

Shift(M(|ψ⟩),N (|ψ⟩)).

Definition 2.2 (Quantum Program with Classical Inputs and Outputs [ALL+21]). A quantum program with
classical inputs is a pair of quantum state q and unitaries {Ux}x∈[N] where [N] is the domain, such that the state of
the program evaluated on input x is equal to UxqU †

x . We measure the first register of UxqU †
x to obtain an output. We

say that {Ux}x∈[N] has a compact classical description U when applying Ux can be efficiently computed given U
and x.

Lemma 2.3 (Gentle Measurement Lemma [Win99]). Suppose a measurement on a mixed state ρ yields a particular
outcome with probability 1− ϵ. Then after the measurement, one can recover a state ρ̃ such that TD(ρ̃, ρ) ≤

√
ϵ.

Lemma 2.4 (Quantum Union Bound [Aar06]). Let ρ be a mixed state, and let Λ1, . . . , ΛT be binary outcome
measurements. Suppose each Λt yields outcome 1 with probability at most ϵ when applied to ρ. Then, if we apply
Λ1, . . . , ΛT in sequence to ρ, the probability that at least one of these measurements yields outcome 1 is at most T

√
ϵ.

Measurement Implementation. We review some notions related to measurement implementations used in the
definition and the security proof.

Definition 2.5 (Projective Implementation [Zha20]). Let:

• D be a finite set of distributions over an index set I .

• P = {Pi}i∈I be a POVM.

• E = {ED}D∈D be a projective measurement with index set D.

We consider the following measurement procedure.

1. Measure under the projective measurement E and obtain a distribution D.

2. Output a random sample from the distribution D.

We say E is the projective implementation ofP , denoted by ProjImp(P), if the measurement process above is equivalent
to P .

13

Theorem 2.6 ([Zha20, Lemma 1]). Any binary outcome POVM P = (P , I −P) has a unique projective implemen-
tation ProjImp(P).

Definition 2.7 (Mixture of Projetive Measurement [Zha20]). Let D : R → I where R and I are some sets. Let
{(Pi, Qi)}∈I be a collection of binary projective measurement. The mixture of projective measurements associated
toR, I , D, and {(Pi, Qi)}∈I is the binary POVM PD = (PD, QD) defined as follows.

PD = ∑
i∈I

Pr[i← D(R)]Pi QD = ∑
i∈I

Pr[i← D(R)]Qi,

where R is uniformly distributed inR.

Definition 2.8 (Threshold Implementation [Zha20, ALL+21]). Let

• P = (P , I −P) be a binary POVM

• E be the projective measurement in the first step of the measurement procedure in Definition 2.5.

• t > 0.

A threshold implementation of P , denoted by TI t(P), is the following measurement procedure.

• Apply E to a quantum state and obtain (p, 1− p) as an outcome.

• Output 1 if p ≥ t, and 0 otherwise.

For any quantum state q , we denote by Tr[TI t(P)q] the probability that the threshold implementation applied to q

outputs 1 as Coladangelo et al. did [CLLZ21]. This means that whenever TI t(P) appears inside a trace Tr, we treat
TI t(P) as a projection onto the 1 outcome.

Lemma 2.9 ([ALL+21]). Any binary POVM P = (P , I −P) has a threshold implementation TI t(P) for any t.

Theorem 2.10 ([Zha20, ALL+21]). Let

• t > 0

• P be a collection of projective measurements indexed by some sets

• q be an efficiently constructible mixed state

• D0 and D1 be two efficienctly samplable and computationally indistinguishable distributions over I .

For any inverse polynomial ϵ, there exists a negligible function δ such that

Tr
[
TI t−ϵ(PD1)q

]
≥ Tr

[
TI t(PD0)q

]
− δ,

where PDcoin is the mixture of projective measurements associated to P , Dcoin, and coin ∈ {0, 1}.

Lemma 2.11 ([ALL+21]). For any ϵ, δ, t ∈ (0, 1), any collection of projective measurementsP = {(Pi, I −Pi)}i∈I
where I is some index set, and any distribution D over I , there exists a measurement procedure ATI ϵ,δ

P ,D,t that satisfies
the following.

• ATI ϵ,δ
P ,D,t implements a binary outcome measurement.

• For all quantum state q ,

– Tr
[

ATI ϵ,δ
P ,D,t−ϵq

]
≥ Tr[TI t(PD)q]− δ and

– Tr[TI t−ϵ(PD)q] ≥ Tr
[

ATI ϵ,δ
P ,D,tq

]
− δ.

14

For simplicity, we denote the probability of the measurement outputting 1 on q by Tr
[

ATI ϵ,δ
P ,D,tq

]
.

• For all qunatum state q , let q ′ be the post-measurement state after applying ATI ϵ,δ
P ,D,t on q , and obtaining outcome

1. Then, it holds Tr[TI t−2ϵ(PD)q ′] ≥ 1− 2δ.

• The expected running time is TP ,D · poly(1/ϵ, 1/ log δ), where TP ,D is the combined running time of sampling
according to D, of mapping i to (Pi, I −Pi), and of implementing the projective measurement (Pi, I −Pi).

We can easily obtain the following corollary from Theorem 2.10 and Lemma 2.11.

Corollary 2.12. Let

• γ > 0

• P be a collection of projective measurements indexed by some sets

• q be an efficiently constructible mixed state

• D0 and D1 be two efficienctly samplable and computationally indistinguishable distributions over I .

For any inverse polynomial ϵ, there exists a negligible function δ such that

Tr
[

ATI ϵ,δ
P ,D1,t−3ϵq

]
≥ Tr

[
ATI ϵ,δ

P ,D0,tq
]
− 3δ,

where PDcoin is the mixture of projective measurements associated to P , Dcoin, and coin ∈ {0, 1}.

2.2 One-Way to Hiding (O2H) Lemma
Lemma 2.13 (O2H Lemma [AHU19]). Let G, H : X → Y be functions, z be a string, and S ⊆ X be a set such that
G(x) = H(x) for every x /∈ S. The tuple (G, H, S, z) may have arbitrary joint distribution. Let A be a quantum
oracle algorithm. Then we have∣∣∣Pr

[
A |G⟩(z)→ 1

]
− Pr

[
A |H⟩(z)→ 1

]∣∣∣ ≤ 2q
√

Pr
[
x∗ ∈ S : B |H⟩(z)→ x∗

]
,

where q is the number of queries for G and H made by A , and B is a quantum oracle algorithm that picks i ← [q],
runs A until just before the i-th query made by A , measures the i-th query, and outputs the measurement result.

2.3 Standard Cryptographic Tools
Pseudo-Random Function. We define quantum-accessible pseudo-random function.

Definition 2.14 (Quantum-Accessible Pseudo-Random Function). Let {PRFK : {0, 1}ℓ1 → {0, 1}ℓ2 | K ∈
{0, 1}λ} be a family of polynomially computable functions, where ℓ1 and ℓ2 are some polynomials of λ. We say
that PRF is a quantum-accessible pseudo-random function (QPRF) family if for any QPT adversary A , it holds that

Advprf
A (λ) =

∣∣∣Pr
[

A |PRFK(·)⟩(1λ)→ 1 | K ← {0, 1}λ
]
− Pr

[
A |R(·)⟩(1λ)→ 1 | R← U

]∣∣∣ ≤ negl(λ),

where U is the set of all functions from {0, 1}ℓ1 to {0, 1}ℓ2 .

Theorem 2.15 ([Zha12]). If there exists a OWF, there exists a QPRF.

15

Commitment. We introduce the notion of statistically binding commitment with equivocal mode. This is a relaxation
of injective commitment with equivocal mode introduced by Kitagawa and Nishimaki [KN23].

Definition 2.16 (Statistically Binding Commitment with Equivocal Mode). A statistically binding commitment
scheme Com with equivocal mode for the message spaceM and random coin space R is a tuple of four algorithms
(Setup, Commit, EqSetup, Open).

• The setup algorithm Setup takes as input a security parameter 1λ, and outputs a commitment key ck.

• The commitment algorithm Commit takes as input the commitment key ck, a message m ∈ M, and a random
coin r ∈ R, and outputs a commitment com.

• The equivocation setup algorithms EqSetup takes as input a security parameter 1λ, and outputs a commitment
key ck∗, a commitment com∗, and a trapdoor td.

• The open algorithm Open takes as input the trapdoor td, a message m ∈ M, and a commitment com∗, and
outputs a random coin r∗ ∈ R.

We say that commitment with equivocal mode is secure if it satisfies the following two properties.

Statistically binding: We require that

Pr[∃m1, m2, r1, r2 s.t. m1 ̸= m2 and Commit(ck, m1; r1) = Commit(ck, m2, r2)] = negl(λ),

where ck← Setup(1λ).

Trapdoor Equivocality: For any message m ∈ M, we have

(ck, com, r)
c≈ (ck∗, com∗, r∗),

where ck ← Setup(1λ), r ← R, com ← Commit(ck, m; r), (ck∗, com∗, td) ← EqSetup(1λ), and r∗ ←
Open(td, m, com∗).

We do not explicitly require a hiding property since we do not need it in this work.

Theorem 2.17 ([KN23]). If there exists an injective OWF with evaluation key generation algorithm, there exists
statistically binding commitment with equivocal mode.

Although Kitagawa and Nishimaki considered the injectivity proeprty [KN23, Definition 2.8] instead of the
statistical binding proeprty, their construction immediately implies statistically binding. We can instantiate injective
OWF with evaluation key generation algorithm with the LWE assumption [PW11, AKPW13]. See [KN24] for injective
OWF with evaluation key generation algorithm.

Public-key encryption.

Definition 2.18 (PKE). A PKE scheme PKE is a tuple of three algorithms (KG, Enc, Dec). Below, letX be the message
space of PKE.

KG(1λ)→ (pk, sk): The key generation algorithm takes a security parameter 1λ, and outputs a public key pk and a
secret key sk.

Enc(pk, m)→ ct: The encryption algorithm takes a public key pk and a message m ∈ X , and outputs a ciphertext
ct.

Dec(sk, ct)→ m̃: The decryption algorithm is a deterministic algorithm that takes a secret key sk and a ciphertext
ct, and outputs a value m̃.

16

Correctness: For every m ∈ X , we have

Pr
[
Dec(sk, ct) = m

∣∣∣∣ (pk, sk)← KG(1λ)
ct← Enc(pk, m)

]
= 1− negl(λ).

Definition 2.19 (Ciphertext Pseudorandomness for PKE). Let {0, 1}ℓ be the ciphertext space of PKE. We define
the following experiment Exppr-ct

PKE,A(1
λ, coin) between a challenger and an adversary A .

1. The challenger generates (pk, sk)← KG(1λ). Then, the challenger sends pk to A .

2. A may make polynomially many encryption queries adaptively. A sends m ∈ M to the challenger. Then, the
challenger returns ct← Enc(pk, m) if coin = 0, otherwise ct← {0, 1}ℓ.

3. A outputs coin′ ∈ {0, 1}. The challenger outputs coin′.

We say that PKE is pseudorandom-secure if for any QPT adversary A , we have

Advpr-ct
PKE,A(λ) =

∣∣∣Pr
[
Exppr-ct

PKE,A(1
λ, 0) = 1

]
− Pr

[
Exppr-ct

PKE,A(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

Definition 2.20 (Ciphertext Uniformity for PKE). We say that a PKE scheme PKE = (KG, Enc, Dec) satisfies
uniformity if the distribution Enc(pk, UM) is computationally indistinguishable from a uniform distribution even given
sk, where (pk, sk)← KG(1λ) and UM is the uniform distribution onM.

Remark 2.21 (On the instantiation of PKE with ciphertext pseudorandomness and uniformity). We can easily realize
a PKE scheme satisfying ciphertext pseudorandomness and uniformity. Concretely, a variant of Regev encryp-
tion [Reg09] whose ciphertext is of the form (Ar, Round((s⊺A + e⊺)r) + b) satisfies these two properties, where
Round is a function that outputs 1 if the input is larger than q/2 and otherwise outputs 0, q is the LWE modulus, and
b is the plaintext bit. We use the super polynomial modulus q. Then, this variant satisfies correctness since e⊺ · r
does not affect the result of Round with overwhelming probability. It satisfies ciphertext pseudorandomness due to the
LWE assumption and leftover hash lemma. It also satisfies ciphertext uniformity due to uniform randomness of b and
the leftover hash lemma.

Definition 2.22 (Signature). Let M be a message space. A signature scheme for M is a tuple of algorithms
(Gen, Sign, Vrfy) where:

Gen(1λ)→ (vk, sk): The key generation algorithm takes as input the security parameter 1λ and outputs a verification
key vk and a signing key sk.

Sign(sk, m)→ σ: The signing algorithm takes as input a signing key SK and a message m ∈ MSG and outputs a
signature σ.

Vrfy(vk, m, σ)→ 1 or 0: The verification algorithm takes as input a verification key vk, a message m and a signature
σ and outputs 1 to indicate acceptance of the signature and 0 otherwise.

Correctness: For all λ ∈ N, m ∈ M, (vk, sk) in the range of Gen(1λ), and σ ∈ Sign(sk, m), we have
Vrfy(vk, m, σ) = 1.

Definition 2.23 (EUF-qCMA Security). Let SIG = (Gen, Sign, Vrfy) be a signature scheme. We define the experiment
Expeuf-qcma

SIG,A (1λ) between an adversary A and challenger as follows.

1. The challenger runs (vk, sk)← Gen(1λ), and gives vk to A .

2. A sends a quantum state ρ over registers R1 and R2 to the challenger as a quantum signing query. The challenger
picks a signing random coin r and applies the map

|a⟩R1
|b⟩R2

→ |a⟩R1
|b⊕ Sign(sigk, a; r)⟩R2

to ρ and returns the resulting state to A . A can send polynomially many queries adaptively. Let q be the number
of queries made by A .

17

3. At some point, A outputs q + 1 pairs of message and signature (mi, σi)i∈[q+1] to the challenger.

4. The experiment outputs 1 if Vrfy(vk, mi, σi) = 1 for every i ∈ [q + 1].

We say that SIG EUF-qCMA security if, for any QPT adversary A , it holds that

Adveuf-qcma
SIG,A (λ) := Pr

[
Expeuf-qcma

SIG,A (1λ) = 1
]
= negl(λ).

Non-interactive zero-knowledge. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation.
For (x, w) ∈ R, we call x as the statement and w as the witness. Let L be the corresponding NP language
L = {x | ∃w s.t. (x, w) ∈ R}. Below, we define a non-interactive zero-knowledge proofs for NP languages.

Definition 2.24 (NIZK Arguments (Syntax)). A non-interactive zero-knowledge (NIZK) argument NIZK for the
relationR consists of PPT algorithms (Setup, Prove, Vrfy).

Setup(1λ)→ crs: The setup algorithm takes as input the security parameter 1λ and outputs a common reference
string crs.

Prove(crs, x, w)→ π: The proving algorithm takes as input a common reference string crs, a statement x, and a
witness w and outputs a proof π.

Vrfy(crs, x, π)→ 1/0: The verification algorithm takes as input a common reference string, a statement x, and a
proof π and outputs 1 to indicate acceptance of the proof and 0 otherwise.

Definition 2.25 (Statistical NIZK Argument). A statistical NIZK argument NIZK must satisfy the following require-
ments.

Completeness: For all pairs (x, w) ∈ R, if we run crs← Setup(1λ), then we have

Pr[Vrfy(crs, x, π) = 1 | π ← Prove(crs, x, w)] = 1.

Adaptive Exclusive Soundness: For all QPT adversaries A outputting only x /∈ L, if we run crs← Setup(1λ), then
we have

Pr
[
Vrfy(crs, x, π) = 1 | (x, π)← A(1λ, crs)

]
= negl(λ).

(Strong) Statistical Zero-Knowledge: There exists a QPT simulator Sim = (Sim1, Sim2) such that, for all unbounded
adversaries A , if we run crs← Setup(1λ) and (c̃rs, td)← Sim1(1λ), then we have∣∣∣Pr

[
AO0(crs,·,·)(1λ, crs) = 1

]
− Pr

[
AO1(c̃rs,td,·,·)(1λ, c̃rs) = 1

]∣∣∣ = negl(λ),

where O0(crs, x, w) outputs Prove(crs, x, w) if (x, w) ∈ R and ⊥ otherwise, and O1(c̃rs, td, x, w) outputs
Sim2(c̃rs, td, x) if (x, w) ∈ R and ⊥ otherwise. If A is allowed to send super-polynomially many queries to O0
and O1, we say strong statistical zero-knowledge. (We say strong statistical zero-knowledge with q queries when
we specify the number of queries.)

Theorem 2.26 ([PS19, FR21]). If the LWE assumption holds, there exists a statistical NIZK arguemnt system for all
NP in the common random string model.

Theorem 2.27 ([PS19, FR21]). If the LWE assumption holds, there exists a strong statistical NIZK arguemnt system
for all NP in the common random string model.

Statistical zero-knowledge trivially implies computational zero-knowledge.

18

Remark 2.28 (On strong statistical ZK). Fischlin and Rohrbach [FR21, Section 5.2 in eprint ver.] used a lattice-specific
variant of the well-known Feige-Lapidot-Shamir transformation [FLS99] to obtain multi-theorem statistical ZK from
single-theorem statistical ZK. We use the witness indistinguishability property (implied by ZK) q times to change each
answer from the zero-knowledge oracle O0 one-by-one in the transformation where q is the number of the queries. If
the advantage of the underlying single-theorem statistical ZK is sub-exponentially small (we can achieve this using
long security parameters), we can apply the witness indistinguishability super-polynomially many times by complexity
leveraging with an appropriate parameter setting. Hence, we can obtain Theorem 2.27 (i.e., statistical ZK holds even
with super-polynomially many queries) from the statistical NIZK by Fischlin and Rohrbach [FR21] and Peikert and
Shiehian [PS19].

Remark 2.29 (On adaptive soundness of statistical NIZK). Fischlin and Rohrbach consider two types of adaptive
soundness. One is adaptive penalizing soundness, which is widely used in NIZK definitions. The other is adaptive
exclusive soundness, which considers only adversaries that outputs only false statements given no matter what CRS.
Obviously, adaptive exclusive soundness is weaker than adaptive penalized soundness. The well-known impossibility
of adaptively sound statistical NIZK arguments [AF07, Pas13] holds only for adaptive penalizing soundness as observed
by Fischlin and Rohrbach [FR21]. Canetti et al. [CCH+19]13 claims that their statistical NIZK is non-adaptively sound
and does not achieve adaptive (penalizing) soundness [CLW18, Section 1.1.2]. However, it is easy to observe that their
statistical NIZK achieves adaptive exclusive soundness. As Canetti et al. [CLW18, Footnote 13] observed, the reason
why the adaptive penalizing soundness does not hold for their statistical NIZK is that we cannot efficiently check a part
of the winning condition (the statment output by the adversary is false) in the reduction to the CRS indistinguishability.
However, if adversaries outputs only false statements, we do not need to check a statement is false. Hence, their
reduction work in the adaptive exclusive soundness. Thus, we can obtain Theorem 2.26 from the known results.

When we use NIZK with adaptive exclusive soundness as a building block of some cryptographic scheme, a
reduction to adaptive exclusive soundness (that is, an adversary for adaptive exclusive soundness) must check that a
statement is not in the language by itself as we see in Section 5.5.

Lockable obfuscation. We introduce the notion of lockable obfuscation [GKW17, WZ17].

Definition 2.30 (Lockable Obfuscation). A lockable obfuscation is a tuple of PPT algorithms (LObf, Eval) with a
class of circuits F , an input space X , and a message spaceM.

LObf(1λ, C, lock, m): The obfuscation algorithm takes as input a security parameter 1λ, a circuit C ∈ F , a lock
string lock ∈ {0, 1}p(λ), and a message m ∈ M, and outputs an obfuscated circuit P̃.

Eval(P̃, x): The evaluation algorithm takes as input a obfuscated circuit P̃ and an input x ∈ X , and outputs a string
m′ or ⊥. We frequently use P̃(x) to denote Eval(P̃, x) for ease of notations.

Evaluation correctness: For any λ ∈ N, P ∈ F , x ∈ X , lock ∈ {0, 1}p(λ), and m ∈ M such that P(x) = lock,
we have

Pr
[
Eval(P̃, x) = m

∣∣∣ P̃← LObf(1λ, P, lock, m)
]
= 1.

There exists a negligible function negl(·) such that for any P ∈ F , x ∈ X , lock ∈ {0, 1}p(λ), and m ∈ M such
that P(x) ̸= lock, we have

Pr
[
Eval(P̃, x) = ⊥

∣∣∣ P̃← LObf(1λ, P, lock, m)
]
= 1− negl(λ).

Definition 2.31 (Simulation Security of Lockable Obfuscation). A lockable obfuscation scheme ΣLO = (LObf,
Eval) for a class of circuits F , an input space X , and a message space M is said to be secure if there exists an

13The NIZK construction by Peikert and Shiehian [PS19] is based on the NIZK construction by Canetti et al. [CCH+19]. More specifically,
Peikert and Shiehian instantiated the correlated intractable hash in the work by Canetti et al. with the LWE assumption.

19

algorithm Sim such that for any QPT adversary A , the following holds∣∣∣∣∣∣∣∣Pr

A(P̃(b)) = b

∣∣∣∣∣∣∣∣
(P ∈ F , m ∈ M)← A(1λ)

lock← {0, 1}p(λ), b← {0, 1}
P̃(0) ← LObf(1λ, P, lock, m)

P̃(1) ← Sim(1λ, 1|P|, 1|m|)

− 1
2

∣∣∣∣∣∣∣∣ = negl(λ).

Theorem 2.32 ([GKW17, WZ17]). If the LWE assumption holds, there exists lockable obfuscation.

(Quantum) fully homomorphic encryption.

Definition 2.33 (Quantum Fully Homomorphic Encryption with Classical Ciphertexts [Mah18, Bra18]). A quan-
tum fully homomorphic encryption (QFHE) with classical ciphertexts is a tuple of four algorithms (Gen, Enc, Eval, Dec)
with a class of circuits C.

Gen(1λ): The key generation algorithm takes as input the security parameter 1λ and outputs a public key pk and a
secret key sk. This is a PPT algorithm.

Enc(pk, x): The encryption algorithm takes as input a public key pk and a plaintext x ∈ {0, 1}, and outputs a
ciphertext ct. For multi-bit message x ∈ {0, 1}ℓ, we write Enc(pk, x) to denote the bit-by-bit encryption
(Enc(pk, x1), . . . , Enc(pk, xℓ)). This algorithm is PPT.

Eval (pk, C, ct1, . . . , ctℓin): The evaluation algorithm takes as input a public key pk, a (quantum) circuit C ∈ C,
ciphertexts ct1, . . . , ctℓin where ℓin denotes the input length of the circuit C, and outputs a ciphertext ctC (this
consists of ℓout ciphertexts where ℓout denotes the output length of C). This is a QPT algorithm.

Dec(sk, ct): The decryption algorithm takes as input a secret key sk and a ciphertext ct, and outputs a message x′ or
⊥.

In the case of classical FHE (i.e., C = P/poly), all algorithms are PPT.

Definition 2.34 (Compactness). A classical FHE is compact if its decryption circuit is independent of the evaluated
circuit.

Definition 2.35 (Full Homomorphism). An FHE (or QFHE with classical ciphertexts) scheme is fully homomorphic
if for any C ∈ C, x = (x1, . . . , xℓin) ∈ {0, 1}ℓin ,

Pr

Dec(sk, ctC) = C(x)

∣∣∣∣∣∣
(pk, sk)← Gen(1λ)
cti ← Enc(pk, xi)
ctC ← Eval(pk, C, ct1, . . . , ctℓin)

 = 1− negl(λ).

The scheme is leveled fully homomorphic if Gen takes 1d as additional input, and can only evaluate depth d circuits.
In the QFHE with classical ciphertexts case, we use Eval instead of Eval.

Definition 2.36 (Security of QFHE). A QFHE scheme with classical ciphertexts and a class of circuits C is said to be
IND-CPA secure if for any QPT adversary A and x0, x1 ∈ {0, 1}ℓ, the following holds:

Pr
[

A(1λ, pk, ct) = 1
∣∣∣∣ (pk, sk)← Gen(1λ),

ct← Enc(pk, x0)

]
− Pr

[
A(1λ, pk, ct) = 1

∣∣∣∣ (pk, sk)← Gen(1λ),
ct← Enc(pk, x1)

]
= negl(λ).

We can consider a secret-key variant, where Gen(1λ) outputs only a secret-key sk and Enc uses sk instead of pk.

Theorem 2.37 ([Mah18, Bra18]). If the LWE assumption holds, and assume circular security, there exists QFHE.

20

Functional encryption.

Definition 2.38 (Functional Encryption). An FE scheme FE is a tuple of PPT algorithms (Setup, KG, Enc, Dec, SimEnc).

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ and outputs a public key pk and master
secret key msk.

KG(msk, f)→ fsk: The key generation algorithm KG takes a master secret key msk and a function f , and outputs a
functional decryption key fsk.

Enc(pk, x)→ ct: The encryption algorithm takes a public key pk and an input x, and outputs a ciphertext ct.

Dec(fsk, ct)→ y: The decryption algorithm takes a functional decryption key fsk and a ciphertext ct, and outputs y.

SimEnc(pk, f , y): The simulated encryption algorithm takes a public key pk, a function f , and a value y, and output
a simulated ciphertext ct.

Correctness: We require we have that

Pr

Dec(fsk, ct) = f (x)

∣∣∣∣∣∣
(pk, msk)← Setup(1λ),
fsk← KG(msk, f),
ct← Enc(pk, x)

 = 1− negl(λ).

Definition 2.39 (1-Bounded Simulation Security). We formalize the experiment Exp1-ind
FE,A (1

λ, coin) between an ad-
versary A and a challenger for a FE scheme FE as follows:

1. The challenger runs (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends f and x. The challenger generates fsk← KG(msk, f). Also, the challenger generates ct∗ ← Enc(pk, x)
if coin = 0 and otherwise generate ct∗ ← SimEnc(pk, f , f (x)). The challenger sends fsk and ct∗ to A .

3. A outputs a guess coin′ for coin. The challenger outputs coin′.

We say that FE is 1-bounded simulation secure if, for any QPT A , it holds that

Adv1-sim
FE,A (λ) :=

∣∣∣Pr
[
Exp1-sim

FE,A (1λ, 0) = 1
]
− Pr

[
Exp1-sim

FE,A (1λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 2.40 (Ciphertext Uniformity for FE). We say that FE = (Setup, KG, Enc, Dec, SimEnc) satisfies ciphertext
uniformity if for every f , the distribution SimEnc(pk, f , Um) is computationally indistinguishable from the uniform
distribution even given fsk ← KG(msk, f), where (pk, msk) ← Setup(1λ) and Um is the uniform distribution on
{0, 1}m.

We prove the following theorem in Appendix A.

Theorem 2.41. If there exists a PKE scheme that satisfies ciphertext pseudorandomness and ciphertext uniformity,
there exists FE satisfying 1-bounded simulation security and ciphertext uniformity for 1-out-of-2 OT functionality,

F[β](i, x0, x1) = xβ[i].

Since we can realize a PKE scheme satisfying ciphertext pseudorandomness and ciphertext uniformity from the
LWE assumption, we obtain the following theorem.

Theorem 2.42. Assuming the LWE assumption, there exists FE satisfying 1-bounded simulation security and ciphertext
uniformity for 1-out-of-2 OT functionality.

21

3 After-the-Fact Leakage-Resilient Quantum Unobfuscatable Point Func-
tion

In this section, we introduce the notion of after-the-fact leakage-resilient quantum unobfuscatable point function. This
primitive is an essential building block of our quantum robust unobfuscatable signature scheme described in Section 5.

3.1 Definition
We present the definition of quantum unobfuscatable point function and after-the-fact leakage-resilience for it.

Definition 3.1 (Quantum Unobfuscatable Point Function). A quantum unobfuscatable point function UOPF for
secret message space SS , input space {0, 1}ℓin , and output space {0, 1}ℓout is a tuple of two algorithms (Gen, Extract).

Gen(1λ, µ)→ (fα,β, aux): The generation algorithm takes as input the security parameter and a secret message
µ ∈ SS , and outputs a description of point function fα,β and an auxiliary information aux.

Extract(C , aux)→ µ′: The extraction algorithm takes as input a quantum circuit with classical input and output C

and an auxiliary information aux, and outputs µ′ ∈ SS ∪ {⊥}.

Correctness Let µ ∈ SS and (fα,β, aux)← Gen(1λ, µ). Then, it satisfies the followings.

• For any quantum circuit with classical input and output C̃ , we have Pr
[
Extract(C̃ , aux) /∈ {µ,⊥}

]
=

negl(λ).
• For any quantum circuit with classical input and output C̃ that maps α to β with probability 1− negl(λ),

we have Pr
[
Extract(C̃ , aux) = µ

]
= 1− negl(λ).

Indistinguishability of messages For any µ0, µ1 ∈ SS , we have∣∣∣Pr
[

A(1λ, aux) = 1
∣∣∣ (fα,β, aux)← Gen(1λ, µ0)

]
− Pr

[
A(1λ, aux) = 1

∣∣∣ (fα,β, aux)← Gen(1λ, µ1)
]∣∣∣ = negl(λ).

Indistinguishability of points For any µ ∈ SS , we have∣∣∣∣Pr
[

A(1λ, α, aux) = 1
∣∣∣ (fα,β, aux)← Gen(1λ, µ)

]
− Pr

[
A(1λ, R, aux) = 1

∣∣∣∣ (fα,β, aux)← Gen(1λ, µ)

R← {0, 1}ℓin

]∣∣∣∣ = negl(λ).

Definition 3.2 (ℓ-After-the-Fact Leakage-Resilient Indistinguishability of Points). Let UOPF = (Gen, Extract) be
an unobfuscatable point function for the secret message space SS , input space {0, 1}ℓin , and output space {0, 1}2ℓout .
We define the experiment Expatf-lr-uopf

UOPF,A (1λ, ℓ, coin) as follows.

1. The adversary A sends µ to the challenger.

2. The challenger generates (fα,β, aux) ← Gen(1λ, µ) and R ← {0, 1}ℓin . The challenger sends (α, aux) if
coin = 0 and otherwise (R, aux)

3. A sends leakage functions h1, h2 of output length ℓ. The challenger returns h1(β1) and h2(β2), where β = β1∥β2,
β1 ∈ {0, 1}ℓout , and β2 ∈ {0, 1}ℓout .

4. A outputs coin′ ∈ {0, 1}. The challenger outputs coin′.

We say that UOPF is ℓ-after-the-fact leakage-resilient if for any QPT A , we have

Advatf-lr-uopf
UOPF,A (λ, ℓ) :=

∣∣∣Pr
[
Expatf-lr-uopf

UOPF,A (1λ, ℓ, 0) = 1
]
− Pr

[
Expatf-lr-uopf

UOPF,A (1λ, ℓ, 1) = 1
]∣∣∣ ≤ negl(λ).

Theorem 3.3. If the LWE assumption holds and there exists QFHE, there exists 2-after-the-fact leakage resilient
quantum unobfuscatable point function.

We prove this theorem in Appendix B.

22

4 Definition of White-Box Watermarking Signature
In this section, we introduce definitions for watermarking signatures.

4.1 Pre-Embedded White-Box Watermarking Signature
We first consider pre-embedded white-box watermarking signatures, where we need to embed a mark when we generate
a key pair.

Definition 4.1 (Pre-Embedded Watermarking Signature). A pre-embedded watermarking signature PWMSIG for
the mark spaceMS and plaintext spaceMK is a tuple of four algorithms (KeyGen, Sign, Vrfy, Extract).

KeyGen(1λ, µ)→ (vk, sk): The key generation algorithm takes as input the security parameter 1λ and a mark µ and
outputs a verification key vk and a signing key sk.

Sign(sk, m)→ σ: The signing algorithm takes as input a signing key sk and a message m and outputs a signature σ.
We require that this algorithm is deterministic.

Vrfy(vk, m, σ)→ 0/1: The verification algorithm takes as input a verification key vk and a signature σ and outputs
0 or 1.

Extract(vk, C̃ ′, ϵ)→ µ′: The extraction algorithm takes as input a verification key vk, a circuit C̃ ′, and a parameter
ϵ, and outputs µ′ ∈ MK∪ {unmarked}.

Verification Correctness: For any message m ∈ MS and mark µ ∈ MK, we have Vrfy(vk, m, Sign(sk, m)) = 1,
where (vk, sk)← KeyGen(1λ, µ).

Definition 4.2 (Strong Correctness of Marked Keys). We define the game Exptscorrect
A ,PWMSIG(1

λ) as follows.

1. Given 1λ as the initial input, A sends µ ∈ MK to the challenger. The challenger generates (vk, sk) ←
KeyGen(1λ, µ) and sends vk to A . A can get access to the following oracle.

Osign(m): On input m ∈ MS , it returns σ← Sign(sk, m).

2. A outputs m∗ ∈ MS . The challenger outputs 1 if Vrfy(vk, m∗, Sign(sk, m∗)) = 0 and otherwise outputs 0.

We say that PWMSIG satisfies strong correctness of marked keys if for every QPT A , we have

Advscorrect
PWMSIG,A(λ) = Pr

[
Exptscorrect

A ,PWMSIG(1
λ) = 1

]
≤ negl(λ).

Definition 4.3 (Unforgeability). We define the game Expeuf-cma
A ,PWMSIG(λ) as follows.

1. Given 1λ as the initial input, A sends µ to the challenger. The challenger generates (vk, sk)← KeyGen(1λ, µ),
and sends vk to A . A can get access to the following oracle.

Osign(m): On input m ∈ MS , it returns σ← Sign(sk, m). Let Q be the set of the inputs received from A .

2. A outputs (m∗, σ∗). If m∗ /∈ Q, the challenger outputs Vrfy(vk, m∗, σ∗). Otherwise 0.

We say that WMSIG satisfies unforgeability if for every QPT A , we have

Adveuf-cma
WMSIG,A(λ) := Pr

[
Expeuf-cma

WMSIG,A(λ) = 1
]
≤ negl(λ).

Definition 4.4 (Unremovability). Let ϵ ≥ 0. We define the game Expturmv
A ,PWMSIG(1

λ, ϵ) as follows.

1. Given 1λ as the initial input, A sends µ ∈ MK to the challenger. The challenger generates (vk, sk) ←
KeyGen(1λ, µ) and sends (vk, sk) to the adversary A .

23

2. A outputs a “potentially obfuscated” quantum circuit C̃ = (q , U), where C̃ is a quantum program with classical
inputs and outputs U is a compact classical description of {Um}m∈MS .

Let also UVrfy,m be the unitary that maps |a⟩ |b⟩ to |a⟩ |b⊕ Vrfy(vk, m, a)⟩. We also let P = (Pm, Qm)m be a
collection of binary outcome projective measurements, where

Pm = U †
mU †

Vrfy,m(I ⊗ |1⟩ ⟨1|)UVrfy,mUm and Qm = I −Pm.

Moreover, we let UMS be the uniform distribution overMS . We consider the following events.

Live: When applying the measurement TI ϵ(PUMS) to q (and ancilla), we obtain the outcome 1, where PUMS is a
mixture of P with respect to UMS .

GoodExt: When Computing µ′ ← Extract(vk, C̃ , ϵ), it holds that µ′ ̸= unmarked.

BadExt: When Computing µ′ ← Extract(vk, C̃ , ϵ), it holds that µ′ /∈ {µ, unmarked}.

We say that PWMSIG satisfies unremovability if for every ϵ > 0 and QPT A , we have

Pr[BadExt] ≤ negl(λ) and Pr[GoodExt] ≥ Pr[Live]− negl(λ).

Intuitively, (Pm, Qm) is a projective measurement that feeds m to C̃ and checks whether the outcome passes
Vrfy(vk, ·) or not (and then uncomputes). Then, PUMS can be seen as POVMs that results in 0 with the probability that
C̃ outputs a valid signature for a randomly chosen m←MS . This definition says that any QPT algorithm (adversary)
fails to obfuscate the signing function (key) as long as the algorithm outputs a “Live” quantum program.

Remark 4.5. Our definition follows the unremovability definition (for watermarking PRFs) by Kitagawa and Nishi-
maki [KN24], which originates from the traceability definition of traceable PRFs by Goyal et al. [GKWW21].

Definition 4.6 (Privacy). We define the game Exptpriv
A ,PWMSIG(1

λ) as follows.

1. Given 1λ as the initial input, A sends (µ0, µ1) ∈ MK2 to the challenger. The challenger picks coin← {0, 1},
generates (vkcoin, skcoin)← KeyGen(1λ, µcoin), and sends vkcoin to A . A can get access to the following oracle.

Oqsign: On input a quantum state ρ over registers R1 and R2, it applies the signing unitary that maps |a⟩R1
|b⟩R2

to |a⟩R1
|b⊕ Sign(skcoin, a)⟩R2

to ρ and returns the resulting state. Recall that Sign is deterministic.

2. A outputs coin′ ∈ {0, 1}. The challenger outputs coin′.

We say that PWMSIG satisfies privacy if for every QPT A , we have

Advpriv
PWMSIG,A(λ) =

∣∣∣Pr
[
Exptpriv

A ,PWMSIG(1
λ, 0) = 1

]
− Pr

[
Exptpriv

A ,PWMSIG(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

In Definition 4.6, adversaries try to distinguish whether superpositions of signatures are generated by sk0 or sk1
by observing the black-box input and output behavior of Sign(sk0, ·) or Sign(sk1, ·). Hence, this captures privacy for
white-box watermarking signatures.

Remark 4.7 (On quantum-accessible oracle). The reason why we consider the quantum-accessible oracle Oqsign rather
than Osign in Definition 4.3 is that we need the quantum-accessible oracle to prove the impossibility of universal
copy-protection for signatures in Section 6.

24

4.2 White-Box Watermarking Signature
Although pre-embedded white-box watermarking signatures are sufficient for many applications, we might want to
embed a mark after we generate a key pair. We introduce the syntax and security definitions for (non-pre-embedded)
white-box watermarking signatures in this subsection.

Definition 4.8 (White-Box Watermarking Signature (Syntax)). A watermarking signature WMSIG for the signature
message spaceMS and watermarking mark spaceMK is a tuple of five algorithms (KeyGen, Sign, Vrfy, Mark, Extract).

KeyGen(1λ)→ (vk, sk): The key generation algorithm takes as input the security parameter 1λ and outputs a
verification key vk and a signing key sk.

Sign(sk, m)→ σ: The signing algorithm takes as inpuft a signing key sk and a message m and outputs a signature σ.

Vrfy(vk, m, σ)→ 0/1: The verification algorithm takes as input a verification key vk, a message m, and a signature
σ and outputs 0 or 1.

Mark(sk, µ)→ C̃: The mark algorithm takes as input a signing key sk and a mark µ, and outputs a marked signing
circuit C̃.

Extract(vk, C̃ ′, ϵ, (m∗, σ∗))→ µ′: The extraction algorithm takes as input a verification key vk, a circuit C̃ ′, a
parameter ϵ, and a message-signature pair (m∗, σ∗), and outputs µ′ ∈ MK∪ {unmarked}.

Verification Correctness: For any message m ∈ MS , we have Vrfy(vk, m, Sign(sk, m)) = 1, where (vk, sk) ←
KeyGen(1λ).

For any message m ∈ MS and µ ∈ MK, we have Vrfy(vk, m, C̃(m)) = 1, where (vk, sk) ← KeyGen(1λ)

and C̃ ← Mark(sk, µ).

Remark 4.9 (On private marking). White-box watermarking signatures in Definition 4.8 are public marking since
anyone can embed a mark. Private marking (requiring a secret mark key for Mark) is sometimes preferred than public
marking in some settings since we might want to prevent adversaries from forging a watermarked signing key. As
observed by Goyal et al. [GKM+19] and Kitagawa and Nishimaki [KN24], we can generically convert watermarking
signatures with public marking into ones with private marking by using standard signatures.

Remark 4.10 (On inputs for Extract). Definition 4.8 is a natural quantum variant of classical watermarking signatures
except that the extraction algorithm takes as input a message-signature pair (m∗, σ∗) in our syntax. Such a pair is
not used in previous works on watermarking signatures [GKM+19]. We justify using a message-signature pair in the
extraction algorithm as follows.

We need to obtain many pairs of input and output to extract an embedded message from a marked function in almost
all known (classical) watermarking constructions [CHN+18, BLW17, KW21, QWZ18, KW19, YAL+19, GKM+19,
Nis20, BBL24]. However, obtaining such pairs from an adversarially generated quantum circuit is hard since it might
collapse when we run the circuit as Kitagawa and Nishimaki argued [KN24, Section 3.1]. Kitagawa and Nishimaki
introduced a public tag related to an original PRF key in the syntax of their watermarking PRFs against quantum
adversaries to overcome the issue [KN24]. The pair (m∗, σ∗) plays a similar role to the public tags in watermarking
PRFs against quantum adversaries. The pair is supposed to be an input-output pair of C̃ ′, that is, σ∗ = C̃ ′(m∗). In the
watermarking signature setting, it is unrealistic that we try to extract an embedded mark from a possibly pirate signing
program without seeing any message-signature pair because we judge a program is suspicious when we see at least one
suspicious message-signature pair. If we do not see any message-signature pair, we do not have motivation to extract
an embedded mark.

Definition 4.11 (Strong Correctness of Marked Keys). We define the game Exptscorrect
A ,WMSIG(1

λ) as follows.

1. The challenger generates (vk, sk)← KeyGen(1λ) and sends vk to A .

2. A sends µ ∈ MK to the challenger. The challenger generates C̃ ← Mark(sk, µ). A can get access to the
following oracles.

25

Osign(m): On input m ∈ MS , it returns σ← Sign(sk, m).

Omsign(m): On input m ∈ MS , it returns σ← C̃(m).

3. A outputs m∗ ∈ MS . The challenger outputs 1 if Vrfy(vk, m∗, C̃(m∗)) = 0 and otherwise outputs 0.

We say that WMSIG satisfies strong correctness of marked keys if for every QPT A , we have

Advscorrect
WMSIG,A(λ) = Pr

[
Exptscorrect

A ,WMSIG(1
λ) = 1

]
≤ negl(λ).

Definition 4.12 (Unforgeability). We define the game Expeuf-cma
A ,WMSIG(λ) as follows.

1. The challenger generates (vk, sk)← KeyGen(1λ) and sends vk to A . A can access the following oracles.

Osign(m): On input m ∈ MS , it returns σ← Sign(sk, m). Let Qs be the set of the inputs received from A .

Omsign(m, µ): On input (m, µ) ∈ MS ×MK, it generates C̃ ← Mark(sk, µ) and returns σ ← C̃(m). Let
Qm be the set of the inputs (only the message part m) received from A .

2. A outputs (m∗, σ∗). If m∗ /∈ Qs ∪Qm, the challenger outputs Vrfy(vk, m∗, σ∗). Otherwise 0.

We say that WMSIG satisfies unforgeability if for every QPT A , we have

Adveuf-cma
WMSIG,A(λ) := Pr

[
Expeuf-cma

WMSIG,A(λ) = 1
]
≤ negl(λ).

Remark 4.13. The unforgeability definition is stronger than the unforgeability definition by Goyal et al. [GKM+19].
We consider Osign and Omsign while Goyal et al. consider only Osign. Component of signatures generated by a
marked signing key could be different from that of normal signatures (see the construction in Section 7). Hence, it is
natural to allow adversaries to access Omsign.

Note that we do not have the setup phase for generating mark and extraction keys (i.e., no authority) unlike the
definition by Goyal et al. Hence, we do not need to consider unforgeability against malicious watermarking authority.

Definition 4.14 (Unremovability). Let ϵ ≥ 0. We define the game Expturmv
A ,WMSIG(1

λ, ϵ) as follows.

1. The challenger generates (vk, sk)← KeyGen(1λ) and gives vk to the adversary A .

2. A gets access to the following oracles.

Osign: Given m ∈ MS , it returns σ← Sign(sk, m). A can send polynomially many queries to Osign.

Omark: Given µ ∈ MK, it returns C̃′ ← Mark(sk, µ). A can send only one query to Omark.

3. A outputs a “potentially obfuscated” quantum circuit C̃ = (q , U), where C̃ is a quantum program with classical
inputs and outputs and U is a compact classical description of {Um}m∈MS . A also outputs a pair (m∗, σ∗),
which is an input-output pair of C̃ such that Vrfy(vk, m∗, σ∗) = 1. If Vrfy(vk, m∗, σ∗) = 0, the game aborts.

Let UVrfy,m be the unitary that maps |a⟩ |b⟩ to |a⟩ |b⊕ Vrfy(vk, m, a)⟩. We also let P = (Pm, Qm)m be a collection
of binary outcome projective measurements, where

Pm = U †
mU †

Vrfy,m(I ⊗ |1⟩ ⟨1|)UVrfy,mUm and Qm = I −Pm.

Moreover, we let UMS be the uniform distribution overMS . We consider the following events.

Live: When applying the measurement TI ϵ(PUMS) to q (and ancilla), we obtain the outcome 1, where PUMS is a
mixture of P with respect to UMS .

GoodExt: When Computing µ′ ← Extract(vk, C̃ , ϵ, (m∗, σ∗)), it holds that µ′ ̸= unmarked.

26

BadExt: When Computing µ′ ← Extract(vk, C̃ , ϵ, (m∗, σ∗)), it holds that µ′ /∈ {µ} ∪ {unmarked}.

We say that WMSIG satisfies unremovability if for every ϵ > 0 and QPT A , we have

Pr[BadExt] ≤ negl(λ) and Pr[GoodExt] ≥ Pr[Live]− negl(λ).

Remark 4.15. We can consider the setting where A can send polynomially many queries to Omark (collusion-resistant
setting) unlike Definition 4.14, but it is out of scope of this work.

Definition 4.16 (Privacy). We define the game Exptpriv
A ,WMSIG(1

λ, coin) as follows.

1. A sends (vk, sk) and (µ0, µ1) ∈ MK2 to the challenger. The challenger generates C̃coin ← Mark(sk, µcoin).
A can get access to the following oracles.

Osign(m): On input m ∈ MS , it returns σ← C̃coin(m).

2. A outputs coin′. The challenger outputs coin′.

We say that WMSIG satisfies privacy if for every QPT A , we have

Advpriv
WMSIG,A(λ) =

∣∣∣Pr
[
Exptpriv

A ,WMSIG(1
λ, 0) = 1

]
− Pr

[
Exptpriv

A ,WMSIG(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

Remark 4.17. Here, we consider the strong setting where A can select a signature key pair (vk, sk). Hence, our
definition guarantees that even the signature authority cannot break privacy. We do not need to give Omark unlike the
unremovability definition since A has sk and we consider public marking.

5 Pre-Embedded White-Box Watermarking Signature
In this section, we present our pre-embedded white-box watermarking signature scheme and prove its security.

5.1 Construction
We construct PWMSIG = (KeyGen, Sign, Vrfy, Extract). The building blocks are as follows.

• After-the-fact leakage resilient quantum unobfuscatable point function UOPF.(Gen, Extract) with the secret
message space {0, 1}n, the input space {0, 1}ℓin , and the output space {0, 1}ℓout .

• FE scheme FE.(Setup, Enc, KG, Dec, SimEnc) for the 1-ouf-of-2 OT functionality,

F[β](i, x0, x1) = xβ[i].

We let ℓ := |fe.ct| where fe.ct is a ciphertext of FE.

• PRG g : {0, 1}ℓin → {0, 1}2ℓin .

• Statistically binding equivocal commitment Com.(Setup, Commit, EqSetup, Open).

• NIZK NIZK.(Setup, Prove, Vrfy) for (stmt, w) ∈ R. The relationR is defined as follows. ((ck, com, m, γ), (fsk1, fsk2, r)) ∈
R if and only if the followings are satisfied:

Com.Commit(ck, fsk1∥fsk2; r) = com∧ g(FE.Dec(fsk1, m)) ̸= γ ∧ g(FE.Dec(fsk2, m)) ̸= γ.

• Quantum-accesible PRF PRF : {0, 1}ℓ → RNIZK, whereRNIZK is the randomness space of NIZK.Prove.

The construction of PWMSIG is as follows.

27

KeyGen(1λ, µ):

• Generate K ← {0, 1}λ.
• Generate crs← NIZK.Setup(1λ).
• Generate (fα,β, aux)← UOPF.Gen(1λ, µ).
• Let β = β1∥β2 and compute γ← g(α).
• Generate (fe.pkd, fe.mskd)← FE.Setup(1λ) for d ∈ [2].
• Generate fskd ← FE.KG(fe.mskd, βd) for d ∈ [2].
• Generate ck ← Com.Setup(1λ) and r ← RCom, and generate com ← Com.Commit(ck, fsk1∥fsk2; r),

whereRCom is the ranomndess space of Com.Commit.
• Output vk := (crs, γ, fe.pk1, fe.pk2, ck, com, aux) and sk := (vk, fsk1, fsk2, r, K).

Sign(sk, m ∈ {0, 1}ℓ):

• Parse sk = (vk, fsk1, fsk2, r, K) and vk = (crs, γ, fe.pk1, fe.pk2, ck, com, aux).
• If FE.Dec(fskd, m) = α for some d ∈ [2], output ⊥. Otherwise, go to the next step.
• Generate rprv ← PRFK(m).
• Compute π ← NIZK.Prove(crs, x, w; rprv) where x = (ck, com, m, γ) and w = (fsk1, fsk2, r).
• Output σ := π.

Vrfy(vk, m, σ):

• Parse vk = (crs, γ, fe.pk1, fe.pk2, ck, com, aux) and σ = π.
• Output the result of NIZK.Vrfy(crs, stmt, π), where stmt = (ck, com, m, γ).

Extract(vk, C , ϵ):

• Parse vk = (crs, γ, fe.pk1, fe.pk2, ck, com, aux) and C = (q , U).

• Let ϵ′ = ϵ/7, δ′ = 2−λ, and t = ϵ− ϵ′.
• Define P and UMS in the same way as Definition 4.4.

• Compute ATI ϵ′ ,δ′
P ,UMS ,tq and output unmarked if the outcome is 0. Otherwise, letting the post state be q0

1 ,
go to the next step.

• Construct V that is a compact description of {Vx}x, where Vx is a unitary that performs the following
computations coherently when applied to a quantum state q .

1. Set q = q0
1 .

2. Compute (β′1[i], q i
1)← SearchOutput(vk, U , q i−1

1 , x, 1, i, ϵ) for every i ∈ [λ].
3. Compute (β′2[i], q i

2)← SearchOutput(vk, U , q i−1
2 , x, 2, i, ϵ) for every i ∈ [λ], where q0

2 = qλ
1 .

4. Output β′1[1]∥ · · · ∥β′1[λ]∥β′2[1]∥ · · · β′2[λ].
• Construct a quantum program with classical input and output P [C] = (q0

1 , V).
• Output µ′ ← UOPF.Extract(P [C], aux).

28

SearchOutput(vk, U , q , x, d, i, ϵ)

Input: vk, U , q , x, ϵ.

1. Parse vk = (crs, γ, fe.pk1, fe.pk2, ck, com, aux).
2. Let ϵ′ = ϵ/7, δ′ = 2−λ, and t = ϵ− 5ϵ′.

3. Define P in the same way as Definition 4.4.

4. Define Di
d be the following distribution.

• Generate ui
d ← {0, 1}λ.

• Output fe.cti
d ← FE.Enc(fe.pkd, (i, x, ui

d)).

5. Compute β′d[i]← ATI ϵ′ ,δ′

P ,Di
d ,t

q .

6. Uncompute the previous step and output β′d[i] and the resulting state.

Figure 1: The description of SearchOutput

Verification Correctness. Fix m ∈ {0, 1}ℓ and µ ∈ {0, 1}n. The probability that the condition “g(FE.Dec(fsk1, m)) =
γ or g(FE.Dec(fsk2, m)) = γ” is satisfied is negligible over the choice of α, fsk1, and fsk2 from the security of PRG
g, where γ = g(α). Then, from the completeness of NIZK and the security of PRF, the verification correctness of
UOSIG follows.

We need to prove that PWMSIG satisfies the four security requirements. We have the following theorems.

Theorem 5.1. Assume g is a PRG, Com is a statistically binding equivocal commitment, UOPF is an unobfuscatable
point function satisfying 2-after-the-fact leakage resilient indistinguishability of points, and NIZK is a NIZK satisfying
computational zero-knowledge. Then, PWMSIG satisfies unforgeability.

Theorem 5.2. Assume g is an injective PRG, Com is a statistically binding equivocal commitment, UOPF is an
unobfuscatable point function satisfying 2-after-the-fact leakage resilient indistinguishability of points, and NIZK is a
NIZK satisfying computational zero-knowledge. Then, PWMSIG satisfies strong correctness of marked keys.

Theorem 5.3. Assume g is a PRG, Com is a statistically binding equivocal commitment, UOPF is an unobfuscatable
point function satisfying indistinguishability of messages and 2-after-the-fact leakage resilient indistinguishability of
points, and NIZK is a strong statistical NIZK argument for adversaries with 2ℓ queries. Then, PWMSIG satisfies
privacy.

Theorem 5.4. Assume UOPF satisfies correctness, Com is a statistically binding equivocal commitment, NIZK is a
NIZK satisfying adaptive exclusive soundness, and FE is an FE scheme satisfying 1-bounded simulation security and
ciphertext uniformity. Then, PWMSIG satisfies unremovability.

We prove these theorems in the subsequent sections (Sections 5.2 to 5.5). Thus, we obtain the following theorem.

Theorem 5.5. If the LWE assumption holds and QFHE exists, PWMSIG is a pre-embedded white-box watermarking
signature scheme against quantum adversaries.

5.2 Proof of Unforegability
We prove Theorem 5.1. We use the following sequence of experiments.

Hyb0: This is Expeuf-cma
PWMSIG,A(λ).

1. Given 1λ as the initial input, A sends µ to the challenger. The challenger generates vk and sk as follows.
• Generate K ← {0, 1}λ.
• Generate crs← NIZK.Setup(1λ).

29

• Generate (fα,β, aux)← UOPF.Gen(1λ, µ).
• Let β = β1∥β2 and compute γ← g(α).
• Generate (fe.pkd, fe.mskd)← FE.Setup(1λ) for d ∈ [2].
• Generate fskd ← FE.KG(fe.mskd, βd) for d ∈ [2].
• Generate ck← Com.Setup(1λ) and r ← RCom, and generate com← Com.Commit(ck, fsk1∥fsk2; r).
• Set vk := (crs, γ, fe.pk1, fe.pk2, ck, com, aux) and sk := (vk, fsk1, fsk2, r).

The challenger sends vk to A .
2. A can get access to the following Osign.

Osign(m): On input m, it behaves as follows.
• If g(FE.Dec(fskd, m)) = γ for some d ∈ [2], output ⊥. Otherwise, go to the next step.
• Generate rprv ← PRFK(m).
• Compute π ← NIZK.Prove(crs, x, w; rprv) where x = (ck, com, m, γ) and w = (fsk1, fsk2, r).
• Output σ := π.

3. A outputs (m∗, σ∗). If m∗ /∈ Q, the challenger outputs Vrfy(vk, m∗, σ∗), where Q is the list of messages
queried to Osign by A . Otherwise, the challenger outputs 0.

We have Adveuf-cma
PWMSIG,A(λ) = Pr[Hyb0 = 1].

Hyb1: This is the same as Hyb0 except that the challenger generates (ck, com, com.td) ← Com.EqSetup(1λ) and
r ← Com.Open(com.td, fe.fsk1∥fe.fsk2, com).

We have |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ) from the trapdoor equivocal property of Com.

Hyb2: This is the same as Hyb1 except that given m, Osign uses a truly random coin rprv instead of rprv ← PRFK(m)
to generate the answer.

We have |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) from the security of PRF.

Hyb3: This is the same as Hyb2 except that the challenger generates (crs, nizk.td)← NIZK.Sim1(1λ) and Osign returns
π ← NIZK.Sim2(crs, nizk.td, x) for all query m such that g(FE.Dec(fsk1, m)) ̸= γ and g(FE.Dec(fsk2, m)) ̸=
γ, where x = (ck, com, m, γ).

We have |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| = negl(λ) from the zero knowledge of NIZK.

Hyb4: This is the same as Hyb3 except that Osign returns π ← NIZK.Sim2(crs, nizk.td, x) for all query m, where
x = (ck, com, m, γ).

We define the following event BQk.

BQk: In Hybk, A queries m to Osign such that g(FE.Dec(fsk1, m)) = γ or g(FE.Dec(fsk2, m)) = γ.

We have |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = Pr[BQ4] since Hyb4 is the same as Hyb3 if BQ4 does not happen.

Hyb5: This is the same as Hyb4 except that the challenger generates γ← g(R) for R← {0, 1}ℓin .

We have |Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| = negl(λ) from the indistinguishability of points of UOPF. We also
prove that |Pr[BQ4]− Pr[BQ5]| = negl(λ) using the after-the-fact leakage resilient indistinguishability of points of
UOPF. Using A , we construct the following B that attacks the after-the-fact leakage resilient indistinguishability of
points of UOPF.

1. Given input 1λ, B invokes A with the initial input 1λ and receives µ. B forwards µ to its challenger, receives
(r, aux), and generates vk as follows.

30

• Generate (crs, nizk.td)← NIZK.Sim1(1λ).
• Compute γ← g(r).
• Generate (fe.pkd, fe.mskd)← FE.Setup(1λ) for every d ∈ [2].
• Generate (ck, com, com.td)← Com.EqSetup(1λ).
• Set vk := (crs, γ, fe.pk1, fe.pk2, ck, com, aux).

B sends vk to A .

2. B simulates Osign for A as Hyb4 and Hyb5. (The behavior of Osign is the same in these two experiments.) This
can be done by using nizk.td.

3. When When A outputs (m∗, σ∗), B does the following. B outputs leakage functions (h[fe.mskd, γ, List])d∈[2],
where h[fe.mskd, γ, List] is described in Figure 3 and List is the list of all queries to Osign made by A . B receives
leakage information (b1, b2) ∈ {0, 1}2.

4. B outputs 1 if bd = 1 for some d ∈ [2].

Function h[fe.mskd, γ, List](βd)

Constants: fe.mskd, γ, List.
Input: A string βd.

1. Generate fskd ← FE.KG(fe.mskd, βd).

2. Output 1 if there exists m ∈ List such that g(FE.Dec(fskd, m)) = γ. Otherwise, output 0.

Figure 2: The description of h[fe.mskd, γ, List]

B perfectly simulates Hyb4 (resp. Hyb5) if it is given α (resp. R← {0, 1}ℓin). Also, B outputs 1 if and only if the
event BQ4 and BQ5 occur in the simulated experiments. Thus, from the after-the-fact leakage resilient indistinguishability
of points of UOPF, we have |Pr[BQ4]− Pr[BQ5]| = negl(λ).

Hyb6: This is the same as Hyb5 except that the challenger generates γ← {0, 1}2ℓin instead of γ← g(R).

We have |Pr[Hyb5 = 1]− Pr[Hyb6 = 1]| = negl(λ) and |Pr[BQ5]− Pr[BQ6]| = negl(λ) from the security of
PRG g.

In Hyb6 where γ is a uniformly random string, there does not exist x such that γ = g(x) except negligible
probability. Then, we have Pr[BQ6] = negl(λ). To bound Pr[Hyb6 = 1], we introduce one more hybrid experiment.

Hyb7: This is the same as Hyb6 except that the challenger generates crs ← NIZK.Setup(1λ) and Osign returns
π ← NIZK.Prove(crs, x, w) for all query m, where x = (ck, com, m, γ) and w = (fsk1, fsk2, r).

We have |Pr[Hyb6 = 1]− Pr[Hyb7 = 1]| = negl(λ) from the zero knowledge of NIZK. Note that in Hyb6 and
Hyb7, γ does not have a pre-image of g and thus x = (ck, com, m, γ) is a true statement for all m. Therefore, we do
not care about whether a queried m forms a true statement or not, and can use the zero-knowledge of NIZK. Moreover,
we have Pr[Hyb7 = 1] = negl(λ) from the adaptive exclusive soundness of NIZK.

This completes the proof. □

5.3 Proof of Strong Correctness
We prove Theorem 5.2. This proof is almost the same as that of Theorem 5.1. We use the following sequence of
experiments.

Hyb0: This is Exptscorrect
PWMSIG,A(λ).

31

1. Given 1λ as the initial input, A sends µ to the challenger. The challenger generates vk and sk as follows.
• Generate crs← NIZK.Setup(1λ).
• Generate (fα,β, aux)← UOPF.Gen(1λ, µ).
• Let β = β1∥β2 and compute γ← g(α).
• Generate (fe.pkd, fe.mskd)← FE.Setup(1λ) for d ∈ [2].
• Generate fskd ← FE.KG(fe.mskd, βd) for d ∈ [2].
• Generate ck← Com.Setup(1λ) and r ← Rcom, and generate com← Com.Commit(ck, fsk1∥fsk2; r).
• Set vk := (crs, γ, fe.pk1, fe.pk2, ck, com, aux) and sk := (vk, fsk1, fsk2, r).

The challenger sends vk to A .
2. A can get access to the following Osign.

Osign(m): On input m, it behaves as follows.
• If g(FE.Dec(fskd, m)) = γ for some d ∈ [2], output ⊥. Otherwise, go to the next step.
• Generate rprv ← PRFK(m).
• Compute π ← NIZK.Prove(crs, x, w; rprv) where x = (ck, com, m, γ) and w = (fsk1, fsk2, r).
• Output σ := π.

3. A outputs m∗ ∈ MS . The challenger outputs 1 if Vrfy(vk, m∗, Sign(sk, m∗)) = 1 and otherwise outputs
0.

We have Advscorrect
PWMSIG,A(λ) = Pr[Hyb0 = 1].

Hyb1: This is the same as Hyb0 except that the challenger generates (ck, com, com.td) ← Com.EqSetup(1λ) and
r ← Com.Open(com.td, fe.fsk1∥fe.fsk2, com).

We have |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ) from the trapdoor equivocal property of Com.

Hyb2: This is the same as Hyb1 except that given m, Osign uses a truly random coin rprv instead of rprv ← PRFK(m)
to generate the answer.

We have |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) from the security of PRF.

Hyb3: This is the same as Hyb1 except that the challenger generates (crs, nizk.td)← NIZK.Sim1(1λ) and Osign returns
π ← NIZK.Sim2(crs, nizk.td, x) for all query m such that g(FE.Dec(fsk1, m)) ̸= γ and g(FE.Dec(fsk2, m)) ̸=
γ, where x = (ck, com, m, γ).

We have |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| = negl(λ) from the zero knowledge of NIZK.

Hyb4: This is the same as Hyb3 except that Osign returns π ← NIZK.Sim2(nizk.td, x) for all query m, where
x = (ck, com, m, γ).

We define the following event BQk.

BQk: In Hybk, A queries m to Osign such that g(FE.Dec(fsk1, m)) = γ or g(FE.Dec(fsk2, m)) = γ.

We have |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = Pr[BQ4].

Hyb5: This is the same as Hyb4 except that the challenger generates γ← g(R) for R← {0, 1}ℓin .

We have |Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| = negl(λ) and |Pr[BQ4]− Pr[BQ5]| = negl(λ) from the indistinguisha-
bility of points and the after-the-fact leakage resilient indistinguishability of points of UOPF, respectively.

Hyb6: This is the same as Hyb5 except that the challenger generates γ← {0, 1}2ℓin instead of γ← g(R).

32

We have |Pr[Hyb5 = 1]− Pr[Hyb6 = 1]| = negl(λ) and |Pr[BQ5]− Pr[BQ6]| = negl(λ) from the security of
PRG g.

In Hyb6 where γ is a uniformly random string, there does not exist x such that γ = g(x) except negligible probability.
Then, we have Pr[BQ6] = negl(λ). Moreover, we have Vrfy(vk, m∗, Sign(sk, m∗)) = 1 for any m∗ ∈ MS . This is
because Vrfy(vk, m∗, Sign(sk, m∗)) = 0 holds only when g(FE.Dec(fskd, m∗)) = γ holds for some d ∈ {0, 1}, but
now there does not exist x such that γ = g(x). This means we have Pr[Hyb6 = 1] = negl(λ). This completes the
proof. □

5.4 Proof of Privacy
We prove Theorem 5.3. We use the following sequence of experiments.

Hyb0: This is Exptpriv
PWMSIG,A(1

λ, coin) where coin← {0, 1} and the final output of the experiment is 1 if coin′ = coin
and 0 otherwise.

1. Given 1λ as the initial input, A sends µ0, µ1 to the challenger. The challenger generates vk and sk as
follows.

• Generate K ← {0, 1}λ.
• Generate crs← NIZK.Setup(1λ).
• Generate (fα,β, aux)← UOPF.Gen(1λ, µcoin).
• Let β = β1∥β2 and compute γ← g(α).
• Generate (fe.pkd, fe.mskd)← FE.Setup(1λ) for d ∈ [2].
• Generate fskd ← FE.KG(fe.mskd, βd) for d ∈ [2].
• Generate ck← Com.Setup(1λ) and r ← RCom, and generate com← Com.Commit(ck, fsk1∥fsk2; r).
• Set vk := (crs, γ, fe.pk1, fe.pk2, ck, com, aux) and sk := (vk, fsk1, fsk2, r, K).

The challenger sends vk to A .
2. A can get access to the following Oqsign.

Oqsign: On input two registers R1 and R2, it applies the signing unitary that maps |a⟩R1
|b⟩R2

to
|a⟩R1

|b⊕ Sign(sk, a)⟩R2
and returns the resisters, where Sign(sk, m) behaves as follows

• If g(FE.Dec(fskd, m)) = γ for some d ∈ [2], output ⊥. Otherwise, go to the next step.
• Generate rprv ← PRFK(m).
• Compute π ← NIZK.Prove(crs, x, w; rprv) where x = (ck, com, m, γ) and w = (fsk1, fsk2, r).
• Output σ := π.

3. A outputs coin′. The challenger outputs 1 if coin′ = coin and 0 otherwise.

We have Advpriv
PWMSIG,A(λ) = 2

∣∣∣Pr[Hyb0 = 1]− 1
2

∣∣∣.
Hyb1: This is the same as Hyb0 except that the challenger generates (ck, com, com.td) ← Com.EqSetup(1λ) and

r ← Com.Open(com.td, fe.fsk1∥fe.fsk2, com).

We have |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ) from the trapdoor equivocal property of Com.

Hyb2: This is the same as Hyb1 except that Oqsign behaves as follows, where R is a random function.

Oqsign: On input two registers R1 and R2, it applies the signing unitary that maps |a⟩R1
|b⟩R2

to |a⟩R1

∣∣b⊕ Sign′(sk, a)
〉

R2

and returns the resisters, where Sign′(sk, m) behaves as follows

• If g(FE.Dec(fskd, m)) = γ for some d ∈ [2], output ⊥. Otherwise, go to the next step.
• Generate rprv ← R(m).

33

• Compute π ← NIZK.Prove(crs, x, w; rprv) where x = (ck, com, m, γ) and w = (fsk1, fsk2, r).
• Output σ := π.

We have |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) from the security of PRF.

Hyb3: This is the same as Hyb2 except that the challenger generates (crs, nizk.td) ← NIZK.Sim1(1λ) and Oqsign
behaves as follows, where R is a random function.

Oqsign: On input two registers R1 and R2, it applies the signing unitary that maps |a⟩R1
|b⟩R2

to |a⟩R1

∣∣b⊕ Sign′′(sk, a)
〉

R2

and returns the resisters, where Sign′′(sk, m) behaves as follows

• If g(FE.Dec(fskd, m)) = γ for some d ∈ [2], output ⊥. Otherwise, go to the next step.
• Generate rprv ← R(m).
• Compute π ← NIZK.Sim2(crs, nizk.td, x; rprv) where x = (ck, com, m, γ).
• Output σ := π.

An unbounded adversary attacking statistical zero knowledge can simulate Sign′ and Sign′′ by querying the statement
(ck, com, m, γ) and the corresponding witness (fsk1, fsk2, r) for every m ∈ {0, 1}ℓ to its oracle, depending on which
one of the real oracle and the simulated oracle the adversary gets access to. We have |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| =
negl(λ) from NIZK’s strong statistical zero-knowledge for adversaries with 2ℓ queries.

Hyb4: This is the same as Hyb3 except that Oqsign behaves as follows, where R is a random function.

Oqsign: On input two registers R1 and R2, it applies the signing unitary that maps |a⟩R1
|b⟩R2

to |a⟩R1

∣∣b⊕ Sign′′′(sk, a)
〉

R2

and returns the resisters, where Sign′′′(sk, m) behaves as follows

• Generate rprv ← R(m).
• Compute π ← NIZK.Sim2(crs, nizk.td, x; rprv) where x = (ck, com, m, γ).
• Output σ := π.

We assume that the total number of queries to Oqsign made by A is q. We define pk as follows.

pk: We randomly pick i ← [q]. Suppose we simulate Hybk for A until just before A makes the i-th query to Oqsign,
and we measure the i-th query to Oqsign and obtain (a, b). pk is the probability that g(FE.Dec(fskd, a)) = γ is
satisfied for some d ∈ [2] with the measured a.

From Lemma 2.13, we have |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = 2q
√

p4, where q is the number of queries to
Oqsign made by A .

Hyb5: This is the same as Hyb4 except that the challenger generates γ← g(R) for R← {0, 1}ℓin .

We have |Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| = negl(λ) from the indistinguishability of points of UOPF. We also
prove that |p4 − p5| = negl(λ) using the after-the-fact leakage resilient indistinguishability of points of UOPF. Using
A , we construct the following B that attacks the after-the-fact leakage resilient indistinguishability of points of UOPF.

1. Given input 1λ, B invokes A with the initial input 1λ and obtains (µ0, µ1). B picks i ← [q], forwards µcoin to
its challenger, receivers (r, aux), and generates vk as follows.

• Generate (crs, nizk.td)← NIZK.Sim1(1λ).
• Compute γ← g(r).
• Generate (fe.pkd, fe.mskd)← FE.Setup(1λ) for every d ∈ [2].
• Generate (ck, com, com.td)← Com.EqSetup(1λ).

34

• Set vk := (crs, γ, fe.pk1, fe.pk2, ck, com, aux).

B sends vk to A .

2. B simulates Oqsign for A as Hyb4 just before A makes the i-th query. This can be done by using nizk.td.

3. When A outputs the i-th query to Oqsign, B measures it, obtain the measurement result m∗, and does the following.
B outputs leakage functions (h[fe.mskd, γ, m∗])d∈[2], where h[fe.mskd, γ, m∗] is described in Figure 3. B

receives leakage information (b1, b2) ∈ {0, 1}2.

4. B outputs 1 if bd = 1 for some d ∈ [2].

Function h[fe.mskd, γ, m∗](βd)

Constants: fe.mskd, γ, m∗.
Input: A string βd.

1. Generate fskd ← FE.KG(fe.mskd, βd).

2. Output 1 if g(FE.Dec(fskd, m∗)) = γ. Otherwise, output 0.

Figure 3: The description of h[fe.mskd, γ, m∗]

B perfectly simulates Hyb4 (resp. Hyb5) just before the i-th query to Oqsign for randomly chosen i if it is given α

(resp. R← {0, 1}ℓin). Also, B outputs 1 if and only if the measurement result m∗ of the i-th query to Oqsign satisfies
g(FE.Dec(fskd, m∗)) = γ for some d ∈ [2] in the simulated experiments. Thus, from the definition of p4 and p5 and
the after-the-fact leakage resilient indistinguishability of points of UOPF, we have |p4 − p5| = negl(λ).

From the indistinguishability of messages of UOPF, we have
∣∣∣Pr[Hyb5 = 1]− 1

2

∣∣∣ = negl(λ). To bound p5, we
introduce one additional experiment.

Hyb6: This is the same as Hyb6 except that the challenger generates γ← {0, 1}2ℓin instead of γ← g(R).

We have |p5 − p6| = negl(λ) from the security of PRG g. Moreover, we have p6 = negl(λ) since there does not
exist x such that γ = g(x) except negligible probability in Hyb6 where γ is a uniformly random string.

This completes the proof. □

5.5 Proof of Unremovability
We prove Theorem 5.4. Let A be a QPT adversary attacking the unremovability of PWMSIG. The description of
Expturmv

A ,PWMSIG(λ, ϵ) is as follows.

1. Given 1λ as the initial input, A sends µ ∈ {0, 1}n to the challenger. The challenger sends (vk, sk) generated as
follows.

• Generate K ← {0, 1}λ.
• Generate crs← NIZK.Setup(1λ).
• Generate (fα,β, aux)← UOPF.Gen(1λ, µ).
• Let β = β1∥β2 and compute γ← g(α).
• Generate (fe.pkd, fe.mskd)← FE.Setup(1λ) for d ∈ [2].
• Generate fskd ← FE.KG(fe.mskd, βd) for d ∈ [2].
• Generate ck← Com.Setup(1λ) and r ← Rcom, and generate com← Com.Commit(ck, fsk1∥fsk2; r).
• Set vk := (crs, γ, fe.pk1, fe.pk2, ck, com, aux) and sk := (vk, fsk1, fsk2, r, K).

2. The adversary outputs C̃ = (q , U).

We define the three events Live, GoodExt, and BadExt in the same way as Definition 4.4.

35

The proof of Pr[BadExt] ≤ negl(λ). Pr[BadExt] ≤ negl(λ) directly follows from the description of Extract and
the correctness of UOPF. ■

The proof of Pr[GoodExt] ≥ Pr[Live]− negl(λ). We define the event NotAbort as the event that when running
Extract(vk, C̃ , ϵ), ATI ϵ′ ,δ′

P ,UMS ,ϵ−ϵ′q computed in the 4-th line of Extract results in the outcome 1. From Lemma 2.11, we
have Pr[NotAbort] ≥ Pr[Live]− negl(λ). We prove that if the event NotAbort occurs, P [C̃] = (q0

1 , V) constructed
when running Extract(vk, C̃ , ϵ) is a quantum program with classical input and output that maps α to β = β1∥β2 with
overwhelming probability, where q0

1 is the state after applying ATI ϵ′ ,δ′
P ,UMS ,ϵ−ϵ′ to q .

We show the following lemma.

Lemma 5.6. Suppose NotAbort occurs and we apply the following computations to q0
1 .

1. Compute (β′1[i], q i
1)← SearchOutput(vk, U , q i−1

1 , α, 1, i, ϵ) for every i ∈ [λ].

2. Compute (β′2[i], q i
2)← SearchOutput(vk, U , q i−1

2 , α, 2, i, ϵ) for every i ∈ [λ], where q0
2 = qλ

1 .

3. Output β′1[1]∥ · · · ∥β′1[λ]∥β′2[1]∥ · · · β′2[λ].

Note that they are the same as the computations done by Vα. Then, for every d ∈ [2] and i ∈ [ℓout], we have
β′d[i] = βd[i] with overwhelming probability.

Proof of Lemma 5.6. We prove this lemma using Lemma 2.4. To this end, we below show that for any d ∈
[2] and i ∈ [ℓout], ATI ϵ′ ,δ′

P ,Di
d ,ϵ−5ϵ′

applied to q0
1 results in βd[i] with overwhelming probability. (Recall that

SearchOutput(vk, U , q i−1
1 , α, d, i, ϵ) outputs the result of ATI ϵ′ ,δ′

P ,Di
d ,ϵ−5ϵ′

applied to the input state q i−1
d .)

Let d ∈ [2] and i ∈ [ℓout] be arbitrary. If βd[i] = 0, from the statistical binding property of Com, for a sample
fe.cti

d ← FE.Enc(fe.pkd, (i, α, ui
d)) generated by Di

d, the statement x = (ck, com, m = fe.cti
d, γ) is a false statement

since FE.Dec(fskd, fe.cti
d) = α holds. Suppose Tr

[
TI ϵ−6ϵ′(PDi

d
)q0

1

]
is not negligible. This means that if we give

a randomly generated fe.cti
d ← FE.Enc(fe.pkd, (i, α, ui

d)) to the quantum program with classical input and output
(q0

1 , U), we can obtain a proof π with non-negligible probability for the false statement x = (ck, com, m = fe.cti
d, γ)

such that NIZK.Vrfy(crs, x, π) = 1, which contradict to the adaptive exclusive soundness of NIZK.14 Therefore, we

have Tr
[

TI ϵ−6ϵ′(PDi
d
)q0

1

]
= negl(λ). Then, from Lemma 2.11, we have Tr

[
ATI ϵ′ ,δ′

P ,Di
d ,ϵ−5ϵ′

q0
1

]
= negl(λ). This

means β′d[i] that is the result of ATI ϵ′ ,δ′

P ,Di
d ,t

q0
1 is 0 with overwhelming probability if βd[i] = 0.

If βd[i] = 1, from the 1-bounded simulation security and ciphertext uniformity of FE, randomly generated fe.cti
d ←

FE.Enc(fe.pkd, (i, α, ui
d)) is indistinguishable from a uniformly random message since ui

d = FE.Dec(fskd, fe.cti
d) and

ui
d is a uniformly random string. In other words, if βd[i] = 1, Dd

i is indistinguishable from UMS . By combining this
fact with Theorem 2.10 and Lemma 2.11, we have

Tr
[

ATI ϵ′ ,δ′

P ,Di
d ,ϵ−5ϵ′

q0
1

]
≥ Tr

[
TI ϵ−4ϵ′(PDd

i
)q0

1

]
− negl(λ)

≥ Tr
[

TI ϵ−3ϵ′(PUMS)q0
1

]
− negl(λ)

≥ 1− negl(λ).

For the third inequality, we use the third item of Lemma 2.11. This means β′d[i] that is the result of ATI ϵ′ ,δ′

P ,Di
d ,ϵ−5ϵ′

q0
1 is

1 with overwhelming probability if β1[1] = 1.

14The reduction in this step can always output (x, π) such that x is a false statement since the reduction can generate (ck, com, fe.msk, fα,β, aux, γ).
Thus, it is a valid adversary for the adaptive exclusive soundness.

36

The above combined with Lemma 2.4 proves the lemma, by considering a sequence of binary outcome measurements
where (d− 1) · ℓout + i-th one is a measurement that results in 1 if the result of ATI ϵ′ ,δ′

P ,Di
d ,ϵ−5ϵ′

is βd[i]. This completes
the proof.

From the above discussions, we see that if the event NotAbort occurs, P [C̃] = (q0
1 , V) maps α to β = β1∥β2 with

overwhelming probability. Then, from the correctness of UOPF, Extract(vk, C̃ , ϵ) outputs µ correctly in this case.
This means Pr[GoodExt] ≥ Pr[NotAbort]− negl(λ) ≥ Pr[Live]− negl(λ) holds. ■

We prove Pr[BadExt] ≤ negl(λ) and Pr[GoodExt] ≥ Pr[Live] − negl(λ). Hence, we complete the proof of
unremovability. □

6 Impossibility of Universal Copy Protection for Signatures
In this section, we show the impossibility of universal copy protection for signatures. We first formally define the
notion of universal copy protection for signatures, and then prove its impossibility.

6.1 Definitions
Definition 6.1 (Copy Protected Signature). A copy protected signature scheme with the message spaceM is a tuple
of quantum algorithms (Gen , Sign , Vrfy).

Gen(1λ)→ (vk, sigk): The key generation algorithm takes as input the security parameter 1λ and outputs a verification
key vk and quantum signing key sigk .

Sign(sigk , m)→ σ: The signing algorithm takes as input sigk and a message m ∈ M and outputs a signature σ.

Vrfy(vk, m, σ)→ 0/1: The verification algorithm takes as input vk, m, and σ, and outputs 0 or 1.

Verification Correctness: For any m ∈ M, it holds that

Pr
[
Vrfy(vk, m, σ) = 1

∣∣∣∣ (vk, sigk)← Gen(1λ)
σ← Sign(sigk , m)

]
= 1− negl(λ).

Remark 6.2. A copy protected signature scheme would need to satisfy reusability that ensures that a quantum signing
key can be used many times to generate signatures. Since our focus is impossibility, we do not require reusability and
work with a weaker definition, which makes our impossibility strong.

Definition 6.3 (Anti-Piracy for Copy Protected Signature). Let CPSIG = (Gen , Sign , Vrfy) be a copy protected
signature scheme with the message spaceM. We consider the following security experiment Expanti-piracy

CPSIG,A (1λ), where
A = (A0, A1, A2).

1. The challenger generates (vk, sigk)← Gen(1λ) and sends (vk, sigk) to A0.

2. A0 creates a bipartite state q over registers R1 and R2. A sends q [R1] and q [R2] to A1 and A2, respectively.

3. The challenger samples m1, m2 ←M and sends m1 to A1 and m2 to A2. A1 and A2 respectively output σ1 and
σ2. If Vrfy(vk, mi, σi) = 1 for i ∈ {1, 2}, the challenger outputs 1, otherwise outputs 0.

We say that CPSIG satisfies anti-piracy if for any QPT A , it holds that

Advanti-piracy
CPSIG,A (λ) := Pr

[
Expanti-piracy

CPSIG,A (1λ) = 1
]
≤ negl(λ).

We now define universal copy protection for signatures.

37

Definition 6.4 (Universal Copy Protection for Signatures). A universal copy protection scheme for signatures is a
tuple of quantum algorithms (UTG , USign).

UTG(sigk)→ sigk : The universal token generation algorithm takes as input a classical signing key of a signature
scheme sigk and outputs a quantum signing key sigk .

USign(sigk , m)→ σ: The universal signing algorithm takes as input sigk and a message m ∈ M and outputs a
signature σ.

Universal Copy Protection: For any signature scheme SIG = (Gen, Sign, Vrfy) satisfying EUF-qCMA security,
(Gen [Gen, UTG], USign , Vrfy) is a copy protected signature scheme satisfying anti-piracy, where Gen [Gen, UTG]

is a quantum algorithm that takes 1λ as input, run (vk, sigk) ← Gen(1λ) and sigk ← UTG(sigk), and outputs
(vk, sigk).

6.2 Counter Example Construction
We construct CESIG = (CE.Gen, CE.Sign, CE.Vrfy). The building blocks are as follows.

• An EUF-qCMA secure signature scheme qCMASIG = (qCMA.Gen, qCMA.Sign, qCMA.Vrfy).

• A pre-embedded white-box watermarking signature scheme PWMSIG = (PWMSIG.Gen, PWMSIG.Sign,
PWMSIG.Vrfy, PWMSIG.Extract).

• A OWF f : {0, 1}n → {0, 1}m.

The construction of CESIG is as follows.

CE.Gen(1λ):

• Generate (qcma.vk, qcma.sigk)← qCMA.Gen(1λ).
• Generate x ← {0, 1}n and compute y← f (x).
• Generate (pwm.vk, pwm.sigk)← PWMSIG.Gen(1λ, x).
• Output ce.vk := (qcma.vk, pwm.vk, y) and ce.sigk := (qcma.sigk, pwm.sigk).

CE.Sign(ce.sigk, m):

• Parse ce.sigk = (qcma.sigk, pwm.sigk).
• Generate qcma.σ← qCMA.Sign(qcma.sigk, m) and pwm.σ← PWMSIG.Sign(pwm.sigk, m).
• Output ce.σ := (qcma.σ, pwm.σ).

CE.Vrfy(ce.vk, m, ce.σ):

• Parse ce.vk = (qcma.vk, pwm.vk, y) and output 1 if f (ce.σ) = y. Otherwise, parse ce.σ = (qcma.σ, pwm.σ)
and go to the next step.

• Output 1 if qCMA.Vrfy(qcma.vk, m, qcma.σ) = 1 and PWMSIG.Vrfy(pwm.vk, m, pwm.σ) = 1, and
otherwise output 0.

Theorem 6.5. Assuming qCMASIG is EUF-qCMA secure, PWMSIG satisfies privacy, and f is OWFs, CESIG is
EUF-qCMA secure.

Theorem 6.6. Assume PWMSIG satisfies unremovability. Let (UTG , USign) be a pair of quantum algorithms such that
it meets the syntactical requirement in Definition 6.4 and (Gen [CE.Gen, UTG], USign , CE.Vrfy) satisfies verification
correctness as copy protected signature scheme, where Gen [CE.Gen, UTG] is a quantum algorithm that takes as input 1λ,
runs (ce.vk, ce.sigk)← CE.Gen(1λ) and sigk ← UTG(ce.sigk), and outputs (ce.vk, sigk). Then, (Gen [CE.Gen, UTG],
USign , CE.Vrfy) does not satisfy anti-piracy for copy protected signature.

38

Proof of Theorem 6.5. We use the following sequence of experiments.

Hyb0: This is Expeuf-qcma
CESIG,A (1λ).

We have Adveuf-qcma
CESIG,A (λ) = Pr[Hyb0 = 1].

Hyb1: This is the same as Hyb0 except that the challenger generates (pwm.vk, pwm.sigk) as (pwm.vk, pwm.sigk) ←
PWMSIG.Gen(1λ, 0n) instead of (pwm.vk, pwm.sigk)← PWMSIG.Gen(1λ, x).

From the privacy of PWMSIG, we have |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ).
In Hyb1, the probability that f (ce.σi) = y holds for some i ∈ [q + 1] is negligible from the one-wayness of f ,

where q is the number of queries made by A and (mi, ce.σi)i∈[q+1] is the final output of A . Then, we can directly obtain
Pr[Hyb1 = 1] = negl(λ) from the EUF-qCMA security of qCMASIG.

Proof of Theorem 6.6. We define the following event.

FindPreimage: We execute (ce.vk, sigk) ← Gen [CE.Gen, UTG](1λ), where ce.vk := (qcma.vk, pwm.vk, y). Next,
we sample m←M and generate σ← USign(sigk , m). Then, it holds that f (σ) = y.

We consider the following two cases separately.

The case Pr[FindPreimage] is not negligible. Consider the following adversary A = (A0, A1, A2) for the anti-piracy
of (Gen [CE.Gen, UTG], USign , CE.Vrfy).

A0: Given ce.vk and sigk , it samples m←M, computes σ← USign(sigk , m), and sends σ to A1 and A2.

Ai(i ∈ {1, 2}): Given σ from A0 and the challenge message mi, it outputs σ.

If the event FindPreimage happens in the security game, A wins since if f (σ) = y, CE.Vrfy(ce.vk, m, σ) = 1 for
any m ∈ M. Since we assume Pr[FindPreimage] is not negligible, A breaks the anti-piracy of (Gen [CE.Gen, UTG],
USign , CE.Vrfy).

The case Pr[FindPreimage] is negligible. In this case, from the fact that (Gen [CE.Gen, UTG], USign , CE.Vrfy)
satisfies verification correctness as a copy protected signature scheme, we have

E
(qcma.vk,qcma.sigk)←qCMA.Gen(1λ)

x←{0,1}n

(pwm.vk,pwm.sigk)←pwm.Gen(1λ ,x)
ce.sigk:=(qcma,sigk,pwm.sigk)

sigk←UTG(ce.sigk)

Pr

pwm.Vrfy(pwm.vk, m, pwm.σ) = 1

∣∣∣∣∣∣
m←M
σ← Sign(sigk , m)
Parse σ = (qcma.σ, pwm.σ)



= 1− negl(λ). (1)

Consider the following adversary B = (B0, B1, B2) for the anti-piracy of (Gen [CE.Gen, UTG], USign , CE.Vrfy).

A0: Given ce.vk and sigk , it constructs U = {Um}m∈MS , where Um is the unitary that when applied to sigk

and |0...0⟩, computes σ ← USign(sigk , m) and writes σ to the first register of the ancilla. It then computes
x′ ← pwm.Extract(pwm.vk, (sigk , U), 2/3)15 and sends x′ to A1 and A2.

Ai(i ∈ {1, 2}): Given x′ from A0 and the challenge message mi, it outputs x′.

From Equation (1) and the unremovability of PWMSIG, f (x′) = y holds with overwhelming probability, where
ce.vk = (qcma.vk, pwm.vk, y). Thus, A breaks the anti-piracy of (Gen [CE.Gen, UTG], USign , CE.Vrfy).

Overall, (Gen [CE.Gen, UTG], USign , CE.Vrfy) does not satisfy anti-piracy.
15The choice of the threshold parameter 2/3 is arbitrary. We can use any constant between 0 and 1.

39

7 White-Box Watermarking Signature
In this section, we present a non-black-box conversion from a pre-embedded white-box watermarking signature scheme
constructed in Section 5 into a white-box watermarking signature scheme.

We construct WMSIG = WMSIG.(KeyGen, Sign, Vrfy, Extract) using the following building blocks.

• Standard signature SIG.(KeyGen, Sign, Vrfy).

• Pre-embedded white-box watermarking signature PWMSIG.(KeyGen, Sign, Vrfy, Extract) presented in Sec-
tion 5.

We can use (PWMSIG.KeyGen, PWMSIG.Sign, PWMSIG.Vrfy) in a black-box way. However, we cannot use
PWMSIG.Extract in a black-box way, so we need to write down the algorithm of PWMSIG.Extract in WMSIG.Extract .

WMSIG.KeyGen(1λ):

• Generate (sig.vk, sig.sk)← SIG.KeyGen(1λ).
• Output vk := sig.vk and sk := sig.sk.

WMSIG.Sign(sk, m):

• Parse sk = sig.sk.
• Generate sig.σ← SIG.Sign(sig.sk, 0∥m).
• Output (⊥,⊥, sig.σ).

WMSIG.Vrfy(vk, m, σ):

• Parse vk = sig.vk and σ = (pwm.vk, pwm.σ, sig.σ).
• If pwm.vk = ⊥, output SIG.Vrfy(sig.vk, 0∥m, sig.σ). Otherwise, go to the next step.
• Output 1 if PWMSIG.Vrfy(pwm.vk, m, pwm.σ) = 1 and SIG.Vrfy(sig.vk, 1∥pwm.vk, sig.σ) = 1, and

otherwise output 0.

WMSIG.Mark(sk, µ):

• Parse sk = sig.sk.
• Generate (pwm.vk, pwm.sk)← PWMSIG.KeyGen(1λ, µ).
• Generate sig.σ← SIG.Sign(sig.sk, 1∥pwm.vk).
• Output the circuit C̃[sig.σ, pwm.vk, pwm.sk] that behaves as follows.

1. Take as input m.
2. Generate pwm.σ← PWMSIG.Sign(pwm.sk, m).
3. Output (pwm.vk, pwm.σ, sig.σ).

WMSIG.Extract(vk, C , ϵ, (m∗, σ∗)):

• Let ϵ′ = ϵ/11, δ′ = 2−λ, t = ϵ− ϵ′, and t̃ = ϵ− 4ϵ′.
• Parse vk = sig.vk, σ∗ = (pwm.vk∗, pwm.σ∗, sig.σ∗), and C = (q , U).

• Let Ṽrfy(vk, m, σ) be defined as follows: It parses vk = sig.vk and σ = (pwm.vk, pwm.σ, sig.σ),
and outputs 1 if pwm.vk = pwm.vk∗, PWMSIG.Vrfy(pwm.vk, m, pwm.σ) = 1, and SIG.Vrfy(sig.vk,
1∥pwm.vk, sig.σ) = 1. Otherwise, it outputs 0. If Ṽrfy(vk, m∗, σ∗) = 0, output unmarked.

40

• We letP = (Pm, Qm)m and P̃ = (P̃m, Q̃m)m be collections of binary outcome projective measurements,
where

Pm = U †
mU †

WMSIG.Vrfy,m(I ⊗ |1⟩ ⟨1|)UWMSIG.Vrfy,mUm, Qm = I −Pm

P̃m = U †
mU †

Ṽrfy,m(I ⊗ |1⟩ ⟨1|)UṼrfy,mUm, Qm = I − P̃m.

We also let UMS be the uniform distribution overMS .

• Compute ATI ϵ′ ,δ′
P ,UMS ,tq and output unmarked if the outcome is 0. Otherwise, letting the post state be q ′, go

to the next step.

• Compute ATI ϵ′ ,δ′

P̃ ,UMS ,t̃
q ′ and output unmarked if the outcome is 0. Otherwise, letting the post state be q0

1 ,
go to the next step.

• Construct V that is a compact description of {Vx}x, where Vx is a unitary that performs the following
computations coherently when applied to a quantum state q .

1. Set q = q0
1 .

2. Compute (β′1[i], q i
1)← SearchOutput(pwm.vk∗, U , q i−1

1 , x, 1, i, ϵ) for every i ∈ [λ].
3. Compute (β′2[i], q i

2)← SearchOutput(pwm.vk∗, U , q i−1
2 , x, 2, i, ϵ) for every i ∈ [λ], where q0

2 = qλ
1 .

4. Output β′1[1]∥ · · · ∥β′1[λ]∥β′2[1]∥ · · · β′2[λ].
• Construct a quantum program with classical input and output P [C] = (q0

1 , V).
• Output µ′ ← UOPF.Extract(P [C], aux).

SearchOutput(pwm.vk, U , q , x, d, i, ϵ)

Input: pwm.vk, U , q , x, ϵ.

1. Parse pwm.vk = (crs, γ, fe.pk1, fe.pk2, ck, com, aux).
2. Let ϵ′ = ϵ/8, δ′ = 2−λ, and t = ϵ− 6ϵ′.

3. Define Di
d be the following distribution.

• Generate ui
d ← {0, 1}λ.

• Output fe.cti
d ← FE.Enc(fe.pkd, (i, x, ui

d)).

4. Compute β′d[i]← ATI ϵ′ ,δ′

P̃ ,Di
d ,t

q .

5. Uncompute the previous step and output β′d[i] and the resulting state.

Figure 4: The description of SearchOutput

The construction idea is simple. We generate a fresh key pair of PWMSIG for each mark µ and authenticate
the verification key of PWMSIG by generating a signature of SIG. Each security property except unremovability
easily follow from the corresponding security property of PWMSIG and the EUF-CMA security of SIG since those
security properties do not use the extraction algorithm. The analysis of unremovability requires care. We provide
some extended properties of ATI for signatures whose verification consists of two verification steps in Appendix C to
prove the unremovability of the construction above. The intuition is as follows. The adversary given a marked circuit
cannot forge a signature under sig.vk, and a pirate circuit generated by the adversary must generate a signature passing
Ṽrfy that is essentially the same verification algorithm of PWMSIG. Hence, we can use the same extraction strategy as
PWMSIG.

We prove the following theorem.

Theorem 7.1. Assume SIG is an EUF-CMA secure signature scheme and PWMSIG is a pre-embedded white-box
watermarking signature scheme against quantum adversaries, WMSIG is a white-box watermarking signature scheme
against quantum adversaries.

41

We need to prove the following theorems to prove Theorem 7.1.

Theorem 7.2. Assume PWMSIG satisfies strong correctness of marked keys. Then, WMSIG satisfies strong correctness
of marked keys.

Theorem 7.3. Assume SIG is EUF-CMA and PWMSIG is unforgeable. Then, WMSIG is unforgeable.

Theorem 7.4. Assume SIG is EUF-CMA and PWMSIG satisfies unremovability. Then, WMSIG satisfies unremovability.

Theorem 7.5. PWMSIG satisfies privacy. Then, WMSIG satisfies privacy.

We prove these theorems below.

Proof of Theorem 7.2. We construct an algorithm B that attacks the strong correctness of marked keys of PWMSIG by
using an adversary A that attacks the strong correctness of marked keys of WMSIG. B proceeds as follows.

1. B generates (sig.vk, sig.sk)← SIG.KeyGen(1λ) and passes sig.vk to A .

2. When A sends µ as a challenge, B forwards it to its challenger and receives pwm.vk. B also generates
sig.σ← SIG.Sign(sig.sk, 1∥pwm.vk).

3. When A sends a query mi to Osign, B generates sig.σi ← SIG.Sign(sig.sk, 0∥mi), and sends (⊥,⊥, sig.σi) to A .

4. When A sends a query mi to Omsign, B forwards mi to its signing oracle and receives pwm.σi ← PWMSIG.Sign(pwm.sk, mi).
Then, B sends (pwm.vk, pwm.σi, sig.σ) to A .

5. When A outputs m∗, B outputs m∗.

B perfectly simulates the challenger of the security game played by A . Let (pwm.vk, pwm.sk)← PWMSIG.KeyGen(1λ, µ)
be the key pair of PWMSIG generated by the challenger of the security game played by B. When we generate
(pwm.vk, pwm.σ, sig.σ) ← C̃[sig.σ, pwm.vk, pwm.sk](m∗), whether (pwm.vk, pwm.σ, sig.σ) is valid or not depends
only on whether pwm.σ is valid or not since sig.σ ← SIG.Sign(sig.sk, 1∥pwm.vk) and pwm.vk ̸= ⊥. This means
Advscorrect

PWMSIG,B(λ) is the same as Advscorrect
WMSIG,A(λ). This completes the proof.

Proof of Theorem 7.3. Let Reuse be an event that the adversary A outputs a valid forgery (m∗, (pwm.vk∗, pwm.sig∗, sig.σ∗))
such that pwm.vk∗ ̸= ⊥ and pwm.vk∗ = pwm.vki for some i, which was generated by Omsign. First, we show Pr[Reuse]
is negligible. Suppose Pr[Reuse] is non-negligible. We construct an algorithm B that breaks the unforgeability of
PWMSIG by using the adversary A in the unforgeability game of WMSIG. B proceeds as follows.

1. B chooses i∗ ← [qm] where qm is the total number of queries to Omsign.

2. B generates (sig.vk, sig.sk)← SIG.KeyGen(1λ) and sends sig.vk to A .

3. When A sends a signing query mi, B generates sig.σi ← SIG.Sign(sig.sk, 0∥mi) and returns (⊥,⊥, sig.σi) to A .

4. When A send a marked signing query (mi, µi), B does the following.

• If it is the i∗-th marked signing query, B forwards µi∗ to its challenger, receives pwm.vki∗ , sends
mi∗ to its signing oracle, receives pwm.sigi∗ ← PWMSIG.Sign(pwm.ski∗ , mi∗), generates sig.σi∗ ←
SIG.Sign(sig.sk, 1∥pwm.vki∗), and returns (pwm.vki∗ , pwm.sigi∗ , sig.σi∗) to A .

• Otherwise, B generates (pwm.vki, pwm.ski)← PWMSIG.KeyGen(1λ, µi), pwm.sigi ← PWMSIG.Sign(pwm.ski, µi),
and sig.σi ← SIG.Sign(sig.sk, 1∥pwm.vki), and returns (pwm.vki, pwm.σi, sig.σi) to A .

5. When A outputs (m∗, (pwm.vk∗, pwm.σ∗, sig.σ∗)), B outputs (m∗, pwm.σ∗).

42

If Reuse happens, pwm.vk∗ = pwm.vki∗ holds with probability 1/qm. In addition, it holds that m∗ ̸= mi for
all i and PWMSIG.Vrfy(pwm.vk∗, m∗, pwm.σ∗) = 1 by the condition of the unforgeability game of WMSIG since
pwm.vk∗ ̸= ⊥. Thus, (m∗, pwm.σ∗) is valid forgery in the unforgeability game of PWMSIG, and Pr[Reuse] must be
negligible.

Next, we show that we can construct an algorithm B that breaks EUF-CMA of SIG by using an adversary A that
breaks unforgeability of WMSIG. B proceeds as follows.

1. B is given sig.vk, and sends sig.vk to A .

2. When A sends a signing query mi, B sends 0∥mi to its signing oracle and receives sig.σi ← SIG.Sign(sig.sk, 0∥mi).
Then, B returns (⊥,⊥, sig.σi) to A .

3. When A sends a marked signing query (mi, µi), B generates (pwm.vki, pwm.ski)← PWMSIG.KeyGen(1λ, µi),
sends 1∥pwm.vki to its signing oracle, receives sig.σi ← SIG.Sign(sig.sk, 1∥pwm.vki). Then, B returns
(pwm.vki, pwm.ski, sig.σi) to A .

4. When A outputs (m∗, (pwm.vk∗, pwm.sig∗, sig.σ∗)), B outputs (0∥m∗, sig.σ∗) or (1∥pwm.vk∗, sig.σ∗).

We consider two cases. One is that the forgery (m∗, (pwm.vk∗, pwm.sig∗, sig.σ∗)) is valid and pwm.vk∗ = ⊥ holds.
The other is that the forgery (m∗, (pwm.vk∗, pwm.sig∗, sig.σ∗)) is valid and pwm.vk∗ ̸= ⊥ holds.

In the former case, SIG.Vrfy(sig.vk, 0∥m∗, sig.σ∗) = 1 should hold. Then, (0∥m∗, sig.σ∗) is a valid forgery in the
EUF-CMA game of SIG since m∗ should be different from all queries mi by A due to the condition of unforgeability
of WMSIG. Recall that B sends {0∥mi}i and {1∥pwm.vki}i to its signing oracle.

In the latter case, SIG.Vrfy(sig.vk, 1∥pwm.vk∗, sig.σ∗) = 1 should hold. Then, (1∥pwm.vk∗, sig.σ∗) is a valid
forgery in the EUF-CMA game of SIG since B sends {0∥mi}i and {1∥pwm.vki}i to its signing oracle and 1∥pwm.vk∗ ̸=
0∥mi for all i due to the prefix bit and pwm.vk∗ ̸= pwm.vki for all i (Pr[Reuse] is negligible). This completes the
proof.

Proof of Theorem 7.4. WMSIG.Extract takes as input vk C = (q , U), ϵ, and (m∗, σ∗), and first applies ATI ϵ′ ,δ′
P ,UMS ,t to

q and then applies ATI ϵ′ ,δ′

P̃ ,UMS ,t̃
to q ′, where q ′ is the post state of ATI ϵ′ ,δ′

P ,UMS ,tq . Proposition C.1 guarantees that if the
former results in 1, then the latter also results in 1 with overwhelming probability, and we can obtain a (ϵ− 4ϵ′)-live
quantum program with respect to Ṽrfy that is essentially the verification algorithm of PWMSIG. Then, we can prove
Theorem 7.4 almost the same way as Theorem 5.4. We omit the details.

Proof of Theorem 7.5. Suppose that A breaks the privacy of WMSIG. We construct an adversary B that breaks
the privacy of PWMSIG. When A sends (sig.vk, sig.sk) and (µ0, µ1), B sends (µ0, µ1) to its challenger, receives
pwm.vk, generates sig.σ ← SIG.Sign(sig.sk, 1∥pwm.vk). When A sends a signing query m, B sends |m⟩ |0⟩ to its
signing oracle, receives |m⟩ |pwm.sig⟩, measure pwm.sig, and returns (pwm.vk, pwm.σ, sig.σ). B outputs whatever
A outputs. B perfectly simulate the view for A since if the challenger for B chooses coin ← {0, 1}, it holds that
(pwm.vk, pwm.sk) ← PWMSIG.KeyGen(1λ, µcoin) and pwm.sig ← PWMSIG.Sign(pwm.sk, m). Hence, B breaks
the privacy of PWMSIG if A breaks the privacy of WMSIG.

References
[Aar06] Scott Aaronson. Qma/qpoly \subseteq pspace/poly: De-merlinizing quantum protocols. In Proceedings

of the 21st Annual IEEE Conference on Computational Complexity, CCC 2006, 16-20 July 2006, Prague,
Czech Republic, pages 261–273. IEEE Computer Society, 2006. (Cited on page 9, 13.)

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In Proceedings of the 24th Annual IEEE
Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 229–242.
IEEE Computer Society, 2009. (Cited on page 4, 12.)

43

[ABDS21] Gorjan Alagic, Zvika Brakerski, Yfke Dulek, and Christian Schaffner. Impossibility of quantum virtual
black-box obfuscation of classical circuits. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 497–525, Virtual Event, August 2021. Springer, Cham. (Cited on
page 7, 11, 12.)

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Salil P. Vadhan, editor,
TCC 2007, volume 4392 of LNCS, pages 118–136. Springer, Berlin, Heidelberg, February 2007. (Cited
on page 19.)

[AF16] Gorjan Alagic and Bill Fefferman. On quantum obfuscation. CoRR (arXiv), abs/1602.01771, 2016.
(Cited on page 12.)

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-classical
oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 269–295. Springer, Cham, August 2019. (Cited on page 15.)

[AK22] Prabhanjan Ananth and Fatih Kaleoglu. A note on copy-protection from random oracles. Cryptology
ePrint Archive, Report 2022/1109, 2022. (Cited on page 4, 12.)

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, revisited -
new reduction, properties and applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 57–74. Springer, Berlin, Heidelberg, August 2013. (Cited on
page 16.)

[AL21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 501–530. Springer,
Cham, October 2021. (Cited on page 4, 7, 12.)

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches for quantum
copy-protection. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS,
pages 526–555, Virtual Event, August 2021. Springer, Cham. (Cited on page 13, 14.)

[BBL24] Estuardo Alpirez Bock, Chris Brzuska, and Russell W. F. Lai. Simple watermarking pseudorandom
functions from extractable pseudorandom generators. IACR Communications in Cryptology, 1(2), 2024.
(Cited on page 3, 25.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6:1–6:48, 2012.
(Cited on page 3.)

[BKS21] Nir Bitansky, Michael Kellner, and Omri Shmueli. Post-quantum resettably-sound zero knowledge.
In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I, volume 13042 of LNCS, pages 62–89.
Springer, Cham, November 2021. (Cited on page 12.)

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In Serge
Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer, Berlin, Heidelberg,
March 2017. (Cited on page 3, 25.)

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its applications. International
Journal of Number Theory, 1:1–32, 2005. (Cited on page 51.)

[BP15] Nir Bitansky and Omer Paneth. On non-black-box simulation and the impossibility of approximate
obfuscation. SIAM Journal on Computing, 44(5):1325–1383, 2015. (Cited on page 12.)

[Bra18] Zvika Brakerski. Quantum FHE (almost) as secure as classical. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 67–95. Springer, Cham,
August 2018. (Cited on page 5, 11, 20.)

44

[BZ13] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a quantum computing
world. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
361–379. Springer, Berlin, Heidelberg, August 2013. (Cited on page 6, 11.)

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019. (Cited on page 19.)

[CHN+18] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs. Watermarking
cryptographic capabilities. SIAM Journal on Computing, 47(6):2157–2202, 2018. (Cited on page 3, 25.)

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and applications to
unclonable cryptography. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 556–584, Virtual Event, August 2021. Springer, Cham. (Cited on page 14.)

[CLW18] Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-Shamir: From practice to theory, part II (NIZK
and correlation intractability from circular-secure FHE). Cryptology ePrint Archive, Report 2018/1248,
2018. (Cited on page 19.)

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 257–265. Springer, Berlin, Heidelberg, April 1991. (Cited on page 4.)

[DN21] Nico Döttling and Ryo Nishimaki. Universal proxy re-encryption. In Juan Garay, editor, PKC 2021,
Part I, volume 12710 of LNCS, pages 512–542. Springer, Cham, May 2021. (Cited on page 4.)

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008. (Cited
on page 48, 49.)

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under general
assumptions. SIAM Journal on Computing, 29(1):1–28, 1999. (Cited on page 19.)

[FR21] Marc Fischlin and Felix Rohrbach. Single-to-multi-theorem transformations for non-interactive statistical
zero-knowledge. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 205–234.
Springer, Cham, May 2021. (Cited on page 18, 19.)

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J. Wu. Watermarking public-key
cryptographic primitives. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 367–398. Springer, Cham, August 2019. (Cited on page 3, 5, 25,
26.)

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans, editor, 58th
FOCS, pages 612–621. IEEE Computer Society Press, October 2017. (Cited on page 11, 19, 20.)

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. Beyond software watermarking: Traitor-tracing
for pseudorandom functions. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III,
volume 13092 of LNCS, pages 250–280. Springer, Cham, December 2021. (Cited on page 3, 24.)

[HL11] Shai Halevi and Huĳia Lin. After-the-fact leakage in public-key encryption. In Yuval Ishai, editor,
TCC 2011, volume 6597 of LNCS, pages 107–124. Springer, Berlin, Heidelberg, March 2011. (Cited on
page 10, 49, 50, 51, 52.)

[HLWW16] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient cryptography
from minimal assumptions. Journal of Cryptology, 29(3):514–551, July 2016. (Cited on page 49, 51,
52.)

45

[KN23] Fuyuki Kitagawa and Ryo Nishimaki. One-out-of-many unclonable cryptography: Definitions, construc-
tions, and more. Cryptology ePrint Archive, Report 2023/229, 2023. (Cited on page 16.)

[KN24] Fuyuki Kitagawa and Ryo Nishimaki. Watermarking prfs and PKE against quantum adversaries. J.
Cryptol., 37(3):22, 2024. (Cited on page 5, 11, 16, 24, 25.)

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger security via extractable PRFs. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 335–366. Springer, Cham, August 2019. (Cited on page 3, 25.)

[KW21] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard lattice assump-
tions. Journal of Cryptology, 34(3):28, July 2021. (Cited on page 3, 25.)

[LLQZ22] Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry. Collusion resistant copy-protection for
watermarkable functionalities. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I,
volume 13747 of LNCS, pages 294–323. Springer, Cham, November 2022. (Cited on page 4.)

[Mah18] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In Mikkel Thorup, editor,
59th FOCS, pages 332–338. IEEE Computer Society Press, October 2018. (Cited on page 5, 11, 20.)

[Nis20] Ryo Nishimaki. Equipping public-key cryptographic primitives with watermarking (or: A hole is to
watermark). In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS,
pages 179–209. Springer, Cham, November 2020. (Cited on page 3, 25.)

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How to embed arbitrary
information in a key. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 388–419. Springer, Berlin, Heidelberg, May 2016. (Cited on page 3.)

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable commitments. In
Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 334–354. Springer, Berlin, Heidelberg,
March 2013. (Cited on page 19.)

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 89–114. Springer, Cham, August 2019. (Cited on page 18, 19.)

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM Journal on
Computing, 40(6):1803–1844, 2011. (Cited on page 16.)

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs under standard assumptions:
Public marking and security with extraction queries. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 669–698. Springer, Cham, November 2018. (Cited on
page 3, 25.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM, 56(6):34:1–34:40, 2009. (Cited on page 17.)

[Win99] A. Winter. Coding theorem and strong converse for quantum channels. IEEE Transactions on Information
Theory, 45(7):2481–2485, 1999. (Cited on page 9, 13.)

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE. In Chris
Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society Press, October 2017. (Cited on
page 11, 19, 20.)

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Collusion resistant watermarking
schemes for cryptographic functionalities. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part I, volume 11921 of LNCS, pages 371–398. Springer, Cham, December 2019. (Cited
on page 3, 25.)

46

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion resistant watermarkable PRFs from
standard assumptions. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I,
volume 12170 of LNCS, pages 590–620. Springer, Cham, August 2020. (Cited on page 3.)

[YYAS22] Rupeng Yang, Zuoxia Yu, Man Ho Au, and Willy Susilo. Public-key watermarking schemes for pseudo-
random functions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 637–667. Springer, Cham, August 2022. (Cited on page 3, 11, 12.)

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679–687. IEEE
Computer Society Press, October 2012. (Cited on page 15.)

[Zha20] Mark Zhandry. Schrödinger’s pirate: How to trace a quantum decoder. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 61–91. Springer, Cham, November
2020. (Cited on page 7, 9, 13, 14.)

[Zha21] Mark Zhandry. White box traitor tracing. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 303–333, Virtual Event, August 2021. Springer, Cham. (Cited
on page 3, 11.)

[Zha22] Mark Zhandry. New constructions of collapsing hashes. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages 596–624. Springer, Cham, August 2022.
(Cited on page 11.)

A FE with Ciphertext Uniformity for OT Functionality
We construct a FE scheme with ciphertext uniformity for the 1-out-of-2 oblivious transfer (OT) functionality

F[β](i, x0, x1) = xβ[i].

Building blocks.

• PKE PKE = PKE.(KG, Enc, Dec) with ciphertext pseudorandomness and ciphertext uniformity.

Construction.

Setup(1λ) :

• Generate (pkj,b, skj,b)← PKE.KG(1λ) for every j ∈ [n] and b ∈ {0, 1}.
• Output pk = (pkj,b)j,b and msk = (skj,b)j,b.

Enc(pk, (i, x0, x1)) :

• Parse (pkj,b)j,b ← pk.

• Generate sj ← {0, 1}λ for every j ∈ [n] \ {i} and compute pke.ctj,b ← PKE.Enc(pkj,b, sj) for every
j ∈ [n] \ {i} and b ∈ {0, 1}.

• Set si,b := xb ⊕
⊕

j∈[n]\{i} sj and compute pke.cti,b ← PKE.Enc(pki,b, si,b) for every b ∈ {0, 1}.
• Return ct := (pke.ctj,b)j,b.

KG(msk, β) :

• Parse (skj,b)j,b)← msk.

• Return fsk := (β, (skj,β[j])j).

47

Dec(fsk, ct) :

• Parse (β, (ski)i)← fsk and (pke.ctj,b)j,b ← ct.
• Compute sj ← PKE.Dec(skj, ctj,β[j]) for every j ∈ [n].
• Output

⊕
j∈[n] sj.

SimEnc(pk, β, y) :

• Parse (pkj,b)j,b ← pk.

• Generate sj ← {0, 1}λ for every j ∈ [n] \ {i} and si := y⊕⊕j∈[n]\{i} sj.

• For every j ∈ [n], compute pke.ctj,β[j] ← PKE.Enc(pkj,β[j], sj).

• For every j ∈ [n], compute pke.ctj,1−β[j] ← {0, 1}ℓ.
• Return ct := (pke.ctj,b)j,b.

Correctness. By the definition of Enc and the correctness of PKE, we have PKE.Dec(ski,β[i],cti,β[i]
) = si,β[i] for

j = i and PKE.Dec(skj,b, ctj,b) = sj for j ∈ [n] \ {i}. Hence, Dec(fsk, ct) outputs xβ[i] since Enc sets si,b =
xb
⊕

j∈[n]\{i} sj.

1-bounded simulation security. 1-bounded simulation security follows from the fact that given fsk = (β, (skj,β[j])j)

and ct := (pke.ctj,b)j,b, any adversary cannot distinguish pke.ctj,1−β[j] from a uniformly random string for every
j ∈ [n] due to the ciphertext pseudorandomness of PKE.

Ciphertext Uniformity. Suppose we run SimEnc(pk, β, y) with uniformly random y. Then, from the ciphertext
uniformity of PKE, pke.ctj,β[j] ← PKE.Enc(pkj,β[j], sj) distributes uniformly at random for every j ∈ [n] even given
{skj,β[j]}j. This completes the proof since {pke.ctj,1−β[j]}j are uniformly random strings in SimEnc(pk, β, y).

B Construction of After-the-Fact Leakage-Resilient Quantum Unobfuscat-
able Point Function

We show how to realize unobfuscatable point function with after-the-fact leakage resilience. We present how to
construct after-the-fact leakage-resilient SKE from any standard PKE in Appendix B.2, which is a crucial building
block. Then, we present how to construct after-the-fact leakage-resilient quantum unobfuscatable point function
in Appendix B.3.

B.1 Preliminaries
We use several building blocks to achieve after-the-fact leakage-resilient unobfuscatable functions. We introduce the
definitions of them in this subsection.

Leakage-resilient encryption.

Definition B.1 (Average Min-Entropy [DORS08]). The average min-entropy is defined as follows.

H̃∞(A | B) := − log E
y←B

[max
x

Pr[A = x | B = y]]

= − log E
y←B

[2−H∞(A|B=y)].

48

Definition B.2 ((k, ϵ)-extractor [DORS08]). A function Ext : {0, 1}n × {0, 1}r → {0, 1}m is an average-case
(k, ϵ)-extractor if for all pairs of random variables A and B such that A ∈ {0, 1}n and H̃∞(A | B) ≥ k, it holds that

SD((Ext(A, S), S, B), (Um, S, B)) ≤ ϵ,

where S is uniform over {0, 1}r.

Definition B.3 (Weak Hash Proof System [HLWW16]). A weak hash proof system (wHPS) with output space K is a
tuple of four PPT algorithms (Gen, Encap, Encap∗, Decap).

Gen(1λ)→ (pk, sk): The key generation algorithm takes a security parameter 1λ and outputs a public key pk and a
secret key sk.

Encap(pk)→ (ct, key): The key encapsulation algorithm takes a public key pk and outputs a valid ciphertext ct
encapsulating key ∈ K.

Encap∗(pk)→ ct∗: The invalid key encapsulation algorithm takes a public key pk and outputs an invalid ciphertext
ct∗.

Decap(sk, ct)→ key′: The decapsulation algorithm takes a secret key sk and a ciphertext ct and outputs a key
key′ ∈ K.

We require a wHPS to satisfy the followings.

Correctness: For all (pk, sk) in the range of Gen(1λ),

Pr[Decap(ct, sk) = key | (ct, key)← Encap(pk)] = 1− negl(λ).

Ciphertext Indistinguishability: If we generate (pk, sk)← Gen(1λ), (ct, key)← Encap(pk), and ct∗ ← Encap∗(pk),
it holds that

(pk, sk, ct)
c≈ (pk, sk, ct∗).

Smoothness: If we generate (pk, sk) ← Gen(1λ), ct∗ ← Encap∗(pk), key← K, and set key∗ ← Decap(sk, ct∗), it
holds that

(pk, ct∗, key∗)
p
≈ (pk, ct∗, key).

That is, key∗ ← Decap(sk, ct∗) is uniformly random over K.

Theorem B.4 ([HLWW16]). Assume the existence of IND-CPA secure PKE. Then, for any arbitrarily large polynomial
ℓ = ℓ(λ), there exists a wHPS with output space K = {0, 1}ℓ(λ).

We introduce entropic security against after-the-fact leakage attacks by Halevi and Lin [HL11].

Definition B.5 ((k, ℓpre, ℓpost)-Entropic Leakage-Resilient Encryption [HL11]). Let Σ = (KG, Enc, Dec) be a PKE
scheme. We introduce the following real game to define the view ViewReal

A (Σ) as follows.

1. The parameters (k, ℓpre, ℓpost) are given. The challenger chooses a random message m ← Uk, generates
(pk, sk)← KG(1λ), and returns pk to A .

2. A sends a pre-challenge leakage query hpre. If the output length of hpre is at most ℓpre, the challenger returns
hpre(sk). Else if, the challenger returns nothing.

3. If A sends a challenge query, the challenger returns ct← Enc(sk, m) to A .

4. A sends a post-challenge leakage query hpost. If the output length of hpost is at most ℓpost, the challenger returns
hpost(sk). Else if, the challenger returns nothing.

49

Let (rand, pk+, hpre(sk), ct, hpost(sk)) be the random variable describing the view of the adversary A in the game
above, where rand is the randomness by A and pk+ is pk and all the ciphertexts given by the encryption queries. We
denote the message given at the beginning of the game by mReal.

The simulated game is the same as the real one except that Sim is given a uniformly chosen message mSim as input
and interacts with A instead of the challenger. We denote the view of A interacting with Sim by ViewSim

A (Sim).
Let δ be another slackness parameter. We say that Σ is (k, ℓpre, ℓpost)-entropic leakage-resilient if there exists a

simulator Sim such that, for any QPT A , we have the following two conditions.

• Indistinguishability:

(mReal, ViewReal
A (Σ))

c≈ (mSim, ViewSim
A (Sim))

• Average min-entropy of mSim given ViewSim
A (Sim):

H̃∞(mSim | ViewSim
A (Sim)) ≥ k− ℓpost − δ

We introduce 2-split-state PKE by Halevi and Lin [HL11].

Definition B.6 (2-split-state PKE [HL11]). A 2-split-state encryption is a public-key encryption scheme Σ =
(KG, Enc, Dec) that has the following structure.

• The secret key consists of a pair of strings sk = (sk1, sk2), and the public key also consists of a pair pk =
(pk1, pk2).

• The key generation algorithm KG consists of two subroutines KG1 and KG2, where KGi outputs (pki, ski) for
i ∈ {1, 2}.

• The decryption algorithm Dec also consists of two partial decryption subroutines Dec1 and Dec2 and a combining
subroutine CombDec. Each Deci takes as input the ciphertext and ski and outputs partial decryption pi. The
combining subroutine CombDec takes the ciphertext and the pair (p1, p2) and recovers the plaintext.

Definition B.7 (After-the-Fact (ℓpre, ℓpost)-Leakage-Resilience in the Split-State Model). We define the following
experiment Explr-split

Σ,A (1λ, ℓpre, ℓpost, coin) as follows.

1. The challenger chooses uniformly random r1, r2 ∈ {0, 1}∗, generates (pki, ski)← KG(1λ; ri) for i = 1, 2, and
passes (pk1, pk2) to A .

2. A can send an arbitrary number of leakage queries (hpre
1,i , hpre

2,i) adaptively. The challenger returns (hpre
i,1 (sk1), hpre

i,2 (sk2))
for the i-th query if the total output length of all the pre-challenge queries so far does not exceed ℓpre in each
coordinate. Else if the challenger returns nothing.

3. A sends a pair (m0, m1) ∈ {0, 1}u. The challenger returns ctcoin ← Enc(pk, mcoin).

4. A can send an arbitrary number of leakage queries (hpost
1,i , hpost

2,i) adaptively. The challenger returns (hpost
i,1 (sk1), hpost

i,2 (sk2))
for the i-th query if the total output length of all the post-challenge queries so far does not exceed ℓpost in each
coordinate. Else if the challenger returns nothing.

5. A outputs coin′ ∈ {0, 1}. The challenger outputs 1 if coin = coin′, otherwise 0.

We say that a 2-split-state encryption scheme Σ is (ℓpre, ℓpost)-leakage-resilient in the split state model if for any QPT
A , we have

Advlr-split
Σ,A (λ, ℓpre, ℓpost) :=

∣∣∣Pr
[
Explr-split

Σ,A (1λ, ℓpre, ℓpost, 0) = 1
]
− Pr

[
Explr-split

Σ,A (1λ, ℓpre, ℓpost, 1) = 1
]∣∣∣ ≤ negl(λ).

50

Theorem B.8 ([HL11]). If there exist a (t, ℓpre, ℓpost)-entropic leakage-resilient PKE scheme, there exists a 2-split-state
PKE scheme that is (ℓ′pre, ℓ′post)-leakage-resilient in the split-state model such that

ℓ′pre ≤ ℓpre and ℓ′post ≤ min(ℓpost − u, t− v− 1).

Halevi and Lin use the two source extractor by Bourgain [Bou05] to achieve the average-case (v, ϵ)-two-source
extractor16 with ϵ = 2−u−ω(log λ) and v = γt such that γ < 1/2, which is a building block for the theorem above.
However, we do not need any computational assumption for two source extractors.

B.2 Post-Quantum Secure After-the-Fact Leakage-Resilient SKE
In this subsection, we present how to construct 2-split-state SKE/PKE that is after-the-fact leakage-resilient in the
split-state model from any PKE. Although Halevi and Lin showed after-the-fact leakage-resilient PKE, they use hash
proof systems [HL11]. Currently, we do not know how to instantiate hash proof system with post-quantum assumptions
such as the LWE assumption.

Construction. We need entropic leakage-resilient PKE (Definition B.5) to achieve after-the-fact leakage-resilient
PKE (Definition B.7). We construct a (k, ℓpre, ℓpost)-entropic leakage-resilient PKE scheme from weak hash proof
system. Our construction is essentially the same as that by Halevi and Lin [HL11] or by Hazay et al. [HLWW16].17

Ingredients.

• A wHPS wHPS = wHPS.(Gen, Encap, Encap∗, Decap) with output space K := {0, 1}t1 .

• Average-case (t4, δ)-strong extractor Ext : {0, 1}t1 × {0, 1}t2 → {0, 1}t3 .

Our entropic leakage-resilient PKE scheme Σentrp = (KG, Enc, Dec) is as follows.

KG(1λ):

• Generate (whps.pk, whps.sk)← wHPS.Gen(1λ).
• Output (pk, sk) := (whps.pk.whps.sk).

Enc(pk, m):

• Parse pk = whps.pk.
• Generate (whps.ct, whps.key)← wHPS.Encap(whps.pk).
• Sample a random seed s ∈ {0, 1}t2 and compute ψ := Ext(whps.key, s)⊕m.
• Output ct := (whps.ct, s, ψ).

Dec(sk, ct):

• Parse sk = whps.sk and ct = (whps.ct, s, ψ).
• Compute whps.key′ ← wHPS.Decap(whps.sk, whps.ct).
• Output m′ := ψ⊕ Ext(whps.key′, s).

Theorem B.9. The PKE scheme Σentrp is (k, ℓpre, ℓpost)-entropic leakage-resilient for δ′ as long as these parameters
satisfy the following conditions.

ℓpre ≤ log |K| − t4 and δ′ ≤ t3 − log
1

2−t3 + δ
.

16We omit the definitions of (average-case) two source extractors since they are not essential here.
17Halevi and Lin constructed entropic leakage-resilient PKE from hash proof system. Hazay et al. constructed leakage-resilient PKE from wHPS.

51

The proof is almost the same as that by Halevi and Lin [HL11]. However, we write the proof for confirmation since
we use weak hash proof systems instead of hash proof systems.

Proof of Theorem B.9. Our simulator Sim is as follows. It works almost identically to the challenger in the real game
except that it generates an invalid ciphertext for the challenge.

• It is given mSim, generates (whps.pk, whps.sk)← wHPS.Gen(1λ) and passes whps.pk to A .

• It can answer pre/post-leakage queries hpre(·) and hpost(·) since it has whps.sk.

• It computes whps.ct∗ ← wHPS.Encap∗(whps.pk) for a challenge query from A and returns ct∗ := (whps.ct∗, s∗, ψ∗)
where s∗ ← {0, 1}t2 and ψ∗ := Ext(Decap(whps.sk, whps.ct∗), s)⊕mSim.

We can immediately obtain the indistinguishability of Σentrp from the ciphertext indistinguishability of wHPS.
In the rest of this proof, we prove the min-entropy condition. From the smoothness of wHPS, the encapsulated

key whps.key∗ := Decap(whps.sk, whps.ct∗) has log |K| = t1 bits of min-entropy even given pk and ct∗. Hence,
(t1− ℓpre) ≥ t4 bits of min-entropy is left in whps.key∗ even given pk = whps.pk, ct∗, and the pre-challenge leakage.
By Definition B.2, Ext(whps.key∗, s) is δ-close to a uniform t3-bit string even given pk = whps.pk, ct∗, the pre-
challenge leakage, the seed s∗, and ψ∗. Hence, the message mSim has at least t3− δ′ ≥ log 1

2−t3+δ
bits of min-entropy

before the post-challenge leakage. By the post-challenge leakage, t3 − δ′ − ℓpost bits of average min-entropy is left in
mSim. This completes the proof.

As Halevi and Lin observed, we can use an extractor with δ < 2−t3 , so δ′ < 1. Since we can see a PKE scheme as
an SKE scheme, the SKE scheme derived from the result of Halevi and Lin (Theorem B.8) [HL11] and our entropic
PKE scheme above satisfies the following syntax.

Definition B.10 (2-split-state SKE). A 2-split-state encryption is a secret-key encryption scheme Σ = (Enc, Dec) that
has the following structure.

• The secret key consists of a pair of uniformly random strings sk = (sk1, sk2). Hence, Σ does not have a key
generation algorithm.

• The decryption algorithm Dec also consists of two partial decryption subroutines Dec1 and Dec2 and a combining
subroutine CombDec. Each Deci takes as input the ciphertext and ski and outputs partial decryption pi. The
combining subroutine CombDec takes the ciphertext and the pair (p1, p2) and recovers the plaintext.

A key pair of wHPS by Hazay et al. [HLWW16] consists of a number of key pairs of standard PKE. In addition,
randomness for key generation can be seen as a secret key in standard PKE without loss of generality (and the
corresponding public key is deterministically derived from the secret key). Hence, the secret key of our entropic PKE
scheme can be uniformly random strings. It is easy to see that the split-state PKE scheme by Halevi and Lin inherits
this property. Thus, our 2-split-state SKE scheme has the syntax above. In the secret-key variant of Definition B.7, the
adversary can access the encryption oracle Enc(sk, ·) that returns a ciphertext Enc(sk, m) for a query m through the
game.

From Theorems B.4, B.8 and B.9, we obtain a 2-split-state SKE scheme that is leakage-resilient in the split state
model from any PKE scheme by setting appropriate parameters.

Corollary B.11. Assume the existence of IND-CPA secure PKE. Then, there exists 2-split-state SKE that is after-the-fact
(0, 2)-leakage-resilient in the split-state model.

In the construction derived from entropic PKE, the leakage ration to the secret key size is bad. However, we need
only 2-bit after-the-fact leakage resilience for our purpose in Section 5. We can obtain it by using a slightly long seed
length for the two extractor in the construction by Halevi and Lin (say, the seed length of the two source extractor is
larger than 2|lock|+ 6 where lock is the lock value of lockable obfuscation described in Appendix B.3).

B.3 Construction of After-the-fact Leakage-Resilient Unobfuscatable Point Function
We construct ℓ-after-the-fact leakage-resilient unobfuscatable point function.

52

Ingredients.

• 2-split-state SKE scheme 2SKE = 2SKE.(Enc, Dec).

• Lockable obfuscation ΣLO = (LObf, Eval) with simulator Sim.

• QFHE scheme QFHE = QFHE.(Gen, Enc, Dec, Eval).

Scheme description. Our unobfuscatable point function UOPF for the secret message space SS , input space
{0, 1}ℓin , and output space {0, 1}2ℓout is as follows.

UOPF.Gen(1λ, µ):

• Generate α← {0, 1}ℓin and β1, β2 ← {0, 1}ℓout and set β = β1∥β2.
• Generate lock← {0, 1}λ.
• Generate (qfhe.pk, qfhe.sk)← QFHE.Gen(1λ).
• Generate qfhe.ct← QFHE.Enc(qfhe.pk, α).
• Generate ske.ct← 2SKE.Enc(β, lock).
• Generate P̃← LObf(1λ, QFHE.Dec(qfhe.sk, ·), lock, µ).

• Output fα,β and aux = (qfhe.pk, qfhe.ct, ske.ct, P̃).

UOPF.Extract(C , aux):

• Parse aux = (qfhe.pk, qfhe.ct, ske.ct, P̃) and C = (q , U).
• Construct V that is a compact description of {Vx}x, where Vx is a unitary that performs the following

computations coherently when applied to a quantum state q .
1. Apply Ux to q , measure the first register, and obtain the result β′.
2. Output lock′ ← 2SKE.Dec(β′, ske.ct).

• Construct a quantum program with classical input and output Q [C , ske.ct] = (q , V).
• Compute qfhe.ct′ ← qfhe.Eval(qfhe.pk, Q [C , ske.ct], qfhe.ct).
• Output µ′ ← LO.Eval(P̃, qfhe.ct′).

Theorem B.12. If 2SKE is (0, ℓpost)-leakage-resilient in the split state model, ΣLO is simulation secure, and QFHE is
IND-CPA secure, UOPF above is an ℓpost-after-the-fact leakage-resilient quantum unobfuscatable point function.

Proof. We prove the three requirements (after-the-fact leakage-resilient indistinguishability of points implies indistin-
guishability of points).

Correctness: Let µ ∈ SS and (fα,β, aux) ← UOPF.Gen(1λ, µ). For any quantum circuit with classical input and
ouput C , the output of UOPF.Extract(C , aux) is µ or ⊥ due to the design of UOPF.Extract and the evaluation
correctness of ΣLO. Next, let C be a quantum circuit with classical input and output that maps α to β with
overwhelming probability. Then, when we execute UOPF.Extract(C , aux), qfhe.ct′ should be a ciphertext of
lock with overwhelming probability. Thus, we have Pr[UOPF.Extract(C , aux) = µ] = 1− negl(λ) from the
correctness of ΣLO.

Indistinguishability of messages: We can prove the indistinguishability of messages based on the security of 2SKE
and ΣLO. Concretely, we can argue that the information of lock is hidden from the security of 2SKE. Note that
β is never used except as the secret key of 2SKE. Then, the indistinguishability of messages of UOPF follows
from the simulation security of ΣLO since lock was erased from ske.ct in the previous step. Note that in this
proof, 2SKE need to satisfy only standard (one-time) indistinguishability.

53

ℓpost-after-the-fact leakage-resilient indistinguishability of points: We can prove that if 2SKE is a 2-split-state
SKE scheme that is after-the-fact (0, ℓpost)-leakage-resilient in the split-state model, ΣLO is a secure lockable
obfuscation, and QFHE is a secure QFHE, then UOPF satisfies ℓpost-after-the-fact leakage-resilient indistin-
guishability of points. The proof is similar to that for indistinguishability of messages. We first argue that the
information of qfhe.sk is hidden by the after-the-fact (0, ℓpost)-leakage-resilience of 2SKE and the simulation
security of ΣLO. That is, we erase lock from ske.ct by the after-the-fact (0, ℓpost)-leakage-resilience of 2SKE,
then we erase qfhe.sk from P̃ by the simulation security of ΣLO. Then, the ℓpost-after-the-fact leakage-resilient
indistinguishability of points of UOPF follows from the security of QFHE.

By Theorems 2.32, 2.37 and B.12 and Corollary B.11, we complete the proof of Theorem 3.3.

C Extended Projective Property of ATI
We prove a new property of ATI to prove the unremovability of the construction in Section 7. We can see Ṽrfy appeared
below as a sub-step of WMSIG.Vrfy in Section 7.

Notations. The following Proposition C.1 considers a signature scheme SIG = (KG, Sign, Vrfy) for a message
space MS with deterministic Vrfy, a modified deterministic verification algorithm Ṽrfy, and a sampler Sample for
a quantum program with classical input and output. Let UVrfy,m (resp. UṼrfy,m) be the unitary that maps |a⟩ |b⟩

to |a⟩ |b⊕ Vrfy(vk, m, a)⟩ (resp. |a⟩
∣∣∣b⊕ Ṽrfy(vk, m, a)

〉
). For an output (|ψ⟩ , {Um}m∈M)) of Sample, we let

P = (Pm, Qm)m and P̃ = (P̃m, Q̃m)m be collections of binary outcome projective measurements, where

Pm = U †
mU †

Vrfy,m(I ⊗ |1⟩ ⟨1|)UVrfy,mUm, Qm = I −Pm

P̃m = U †
mU †

Ṽrfy,m(I ⊗ |1⟩ ⟨1|)UṼrfy,mUm, Qm = I − P̃m.

Finally, we let UMS be the uniform distribution overMS , and we define PUMS and P̃UMS as the mixture of P and
P̃ with respect to UMS .

Proposition C.1. Let SIG = (KG, Sign, Vrfy) be a signature scheme, where Vrfy is deterministic. Let Ṽrfy and Sample

be a deterministic algorithm and a QPT algorithm, respectively, with the following constraints.

• For any vk, m, and σ, if Ṽrfy(vk, m, σ) = 1 holds, then Vrfy(vk, m, σ) = 1 also holds.

• Any QPT algorithm A given vk and the classical oracle access to Sign(sk, ·) cannot find (m, σ)with the following
conditions with non-negligible probability, where (vk, sk)← KG(1λ).

– Vrfy(vk, m, σ) = 1 and Ṽrfy(vk, m, σ) = 0.
– A did not query query m to the oracle Sign(sk, ·).

• Tr
[

ATI ϵ,δ
P ,UMS ,γ |ψ⟩

]
= 1/poly(λ) holds, where (|ψ⟩ , {Um}m∈M)) ← SampleSign(sk,·)(vk) and (vk, sk) ←

KG(1λ).

Consider the following process.

1. Generate (vk, sk)← KG(1λ) and execute (|ψ⟩ , {Um}m∈M))← SampleSign(sk,·)(vk).

2. Apply ATI ϵ,δ
P ,UMS ,γ to |ψ⟩ and obtain the outcome β and the post-measurement state |ψ′⟩.

54

Suppose we obtain the outcome 1 and the post-measurement state |ψ′⟩ in the second item. Then, we have

Tr
[

TI γ−3ϵ(P̃UMS)
∣∣ψ′〉] = 1− negl(λ).

Proof of Proposition C.1. Let {
∣∣ψp
〉
}p and {

∣∣ψ̃q
〉
}q be the set of orthonormal eigenvectors of PUMS and P̃UMS ,

respectively. Then, we can write |ψ′⟩ = ∑p ap ·
∣∣ψp
〉
, where ∑p

∣∣ap
∣∣2 = 1 and ∑p<γ−2ϵ

∣∣ap
∣∣2 = negl(λ).

The latter condition comes from the fact that if we apply TI γ−2ϵ(PUMS) to |ψ′⟩, we obtain the outcome 1
with overwhelming probability (we use the third condition in the proposition and Lemma 2.11). For simplic-
ity, we assume we can write |ψ′⟩ = ∑p≥γ−2ϵ ap ·

∣∣ψp
〉
. We can also write |ψ′⟩ = ∑p≥γ−2ϵ ap ·

∣∣ψp
〉

=

∑p≥γ−2ϵ ap ·∑q bp,q
∣∣ψ̃q
〉
= ∑q(∑p≥γ−2ϵ ap · bp,q)

∣∣ψ̃q
〉
, where ∑q

∣∣bp,q
∣∣2 = 1 for every p. Our goal is to prove that

∑q<γ−3ϵ

∣∣∣∑p≥γ−2ϵ ap · bp,q

∣∣∣2 = negl(λ).

Lemma C.2. Pr
[∥∥∥PUMS |ψ′⟩ − P̃UMS |ψ′⟩

∥∥∥ = negl(λ)
]
= 1− negl(λ).

We prove Lemma C.2 later and proceed the proof using it for now. We have

PUMS

∣∣ψ′〉 = ∑
p≥γ−2ϵ

ap · p
∣∣ψp
〉

= ∑
p≥γ−2ϵ

ap · p ∑
q

bp,q
∣∣ψ̃q
〉

= ∑
q

(
∑

p≥γ−2ϵ

ap · p · bp,q

) ∣∣ψ̃q
〉

and

P̃UMS

∣∣ψ′〉 = P̃UMS ∑
q

(
∑

p≥γ−2ϵ

ap · bp,q

) ∣∣ψ̃q
〉

= ∑
q

(
∑

p≥γ−2ϵ

ap · bp,q

)
· q
∣∣ψ̃q
〉

.

From Lemma C.2, we have ∑q

∣∣∣∑p≥γ−2ϵ ap · (p− q) · bp,q

∣∣∣2 = negl(λ) and thus have ∑q<γ−3ϵ

∣∣∣∑p≥γ−2ϵ ap · (p− q) · bp,q

∣∣∣2 =

negl(λ) with overwhelming probability. Since we have p− q > ϵ for p ≥ γ− 2ϵ and q < γ− 3ϵ, we have ϵ2 ·

∑q<γ−3ϵ

∣∣∣∑p≥γ−2ϵ ap · bp,q

∣∣∣2 = negl(λ). Since ϵ is inverse polynomial, we obtain ∑q<γ−3ϵ

∣∣∣∑p≥γ−2ϵ ap · bp,q

∣∣∣2 =

negl(λ). This completes the proof assuming Lemma C.2.

Proof of Lemma C.2. We finally prove Lemma C.2. For any vk and m, we define the following three sets.

Avk,m: The set of strings σ such that Vrfy(vk, m, σ) = 1.

Ãvk,m: The set of strings σ such that Ṽrfy(vk, m, σ) = 1.

Rvk,m: The set of strings σ such that Vrfy(vk, m, σ) = 0.

From the constraints on Vrfy and Ṽrfy, we have Ãvk,m ⊆ Avk,m. For any vk and m, we can write

Um
∣∣ψ′〉 = ∑

σ∈Avk,m\Ãvk,m

αvk,m,σ |σ⟩ |ϕvk,m,σ⟩+ ∑
σ∈Ãvk,m

αvk,m,σ |σ⟩ |ϕvk,m,σ⟩+ ∑
σ∈Rvk,m

αvk,m,σ |σ⟩ |ϕvk,m,σ⟩ .

55

We define ∣∣∣Avk,m \ Ãvk,m
〉
= ∑

σ∈Avk,m\Ãvk,m

αvk,m,σ |σ⟩ |ϕvk,m,σ⟩ ,

∣∣∣Ãvk,m
〉
= ∑

σ∈Ãvk,m

αvk,m,σ |σ⟩ |ϕvk,m,σ⟩ ,

|Rvk,m⟩ = ∑
σ∈Rvk,m

αvk,m,σ |σ⟩ |ϕvk,m,σ⟩ .

We have

U †
Vrfy,m |1⟩ ⟨1|UVrfy,m

∣∣∣Avk,m \ Ãvk,m
〉
=
∣∣∣Avk,m \ Ãvk,m

〉
,

U †
Ṽrfy,m |1⟩ ⟨1|UṼrfy,m

∣∣∣Avk,m \ Ãvk,m
〉
= 0,

U †
Vrfy,m |1⟩ ⟨1|UVrfy,m

∣∣∣Ãvk,m
〉
=
∣∣∣Ãvk,m

〉
,

U †
Ṽrfy,m |1⟩ ⟨1|UṼrfy,m

∣∣∣Ãvk,m
〉
=
∣∣∣Ãvk,m

〉
,

U †
Vrfy,m |1⟩ ⟨1|UVrfy,m |Rvk,m⟩ = 0,

U †
Ṽrfy,m |1⟩ ⟨1|UṼrfy,m |Rvk,m⟩ = 0.

Thus, we obtain

PUMS

∣∣ψ′〉− P̃UMS

∣∣ψ′〉 = 1
|M| ∑

m∈M
U †

m(
∣∣∣Avk,m \ Ãvk,m

〉
+
∣∣∣Ãvk,m

〉
)− 1
|M| ∑

m∈M
U †

m

∣∣∣Ãvk,m
〉

=
1
|M| ∑

m∈M
U †

m

∣∣∣Avk,m \ Ãvk,m
〉

.

For overwhelming fraction of m,
∥∥∥∣∣∣Avk,m \ Ãvk,m

〉∥∥∥ = negl(λ) on average, from the fact that it is computationally

hard to find (m, σ) such that σ ∈ Avk,m \ Ãvk,m without querying m to the signing oracle Sign(sk, ·). Then, we have∥∥∥∥∥ 1
|M| ∑

m∈M
U †

m

∣∣∣Avk,m \ Ãvk,m
〉∥∥∥∥∥

2

=
1

|M|2 ∑
m,m′∈M

〈
Avk,m \ Ãvk,m

∣∣∣UmU †
m′
∣∣∣Avk,m′ \ Ãvk,m′

〉
≤ 1

|M|2 ∑
m,m′∈M

∥∥∥U †
m

∣∣∣Avk,m \ Ãvk,m
〉∥∥∥ · ∥∥∥U †

m′
∣∣∣Avk,m′ \ Ãvk,m′

〉∥∥∥
=

1

|M|2 ∑
m,m′∈M

∥∥∥∣∣∣Avk,m \ Ãvk,m
〉∥∥∥ · ∥∥∥∣∣∣Avk,m′ \ Ãvk,m′

〉∥∥∥
= negl(λ).

We use Cauchy-Schwarz for the inequality (second line).

56

