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Abstract

The adaptive security of threshold signatures considers an adversary that adaptively corrupts
users to learn their secret key shares and states. Crites, Komlo, and Maller (Crypto 2023)
proposed Sparkle, the first threshold signature scheme in the pairing-free discrete-log setting to
be proved adaptively secure. However, its proof of full adaptive security requires the algebraic
group model (AGM) and is based on an interactive assumption. Bacho, Loss, Tessaro, Wagner,
and Zhu (Eurocrypt 2024) proposed Twinkle, whose full adaptive security can be based on the
standard DDH assumption only.

We propose Dazzle and Dazzle-T, adaptively secure threshold signature schemes based on
DDH without the AGM, the same assumption and model as Twinkle. Our schemes improve
upon Twinkle in signature size, round complexity, and/or security tightness. In particular,
Dazzle and Dazzle-T both have signatures that are shorter than Twinkle by one group element.
Regarding the round complexity and tightness, Twinkle is three-round and non-tight. Our
Dazzle is two-round and has the same security loss as Twinkle, while Dazzle-T is three-round
and fully tight.

We achieve our improvements by optimizing the underlying single-party signature scheme
and showing that the single-party scheme can be transformed to a threshold scheme by a simpler
transformation than that of Twinkle.

Keywords. Threshold Signatures, Adaptive Security, Pairing-Free, Tightness

1 Introduction

A threshold signature scheme [Des90, DF90] distributes a secret key to a group of signers, such that
any t signers can jointly sign a message under the common public key, while any t−1 signers cannot.
Threshold signature schemes have attracted considerable interest in recent years, mainly for their
applications in cryptocurrency. Such new attention has led NIST to put forward the standardization
of threshold signature schemes [BP23].

In this work, we follow the line of research on threshold signatures in the pairing-free discrete-log
setting, including threshold Schnorr signature schemes [KG20, BCK+22, CGRS23, CKM23, Lin24,
KRT24, BLSW24] and other signature schemes [TZ23, BLT+24].1

In the security model of threshold signatures, the adversary is allowed to corrupt signers to
learn their secret key shares and states. Most schemes have been proved secure against static
adversaries who decide which signers to corrupt before any communication. Recent works [CKM23,
BLT+24, KRT24, BLSW24] constructed schemes with adaptive security. An adaptive adversary can
dynamically choose which parties to corrupt based on previous communication and corruptions.

∗University of Ottawa. Email: ychen918@uottawa.ca.
1Here we do not include robust threshold signature schemes, where the generation of valid signatures is guaranteed

even in the presence of misbehaving parties. Achieving this property typically introduces inefficiencies. For further
discussion, see Section 1.3.
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Existing Adaptive Schemes. Crites, Komlo, and Maller [CKM23] proposed Sparkle, the first
threshold signature scheme in the pairing-free discrete-log setting with proofs of adaptive security,
but only in the algebraic group model (AGM) [FKL18] from an interactive assumption. Recently,
Katsumata, Reichle, and Takemure [KRT24] proposed an adaptively secure scheme from the stan-
dard discrete logarithm (DL) assumption without the AGM. The main drawback of their scheme is
the five-round signing protocol, compared to the three-round protocol of Sparkle. Both schemes are
threshold Schnorr signature schemes, which have a small signature size but suffer from loose security
reductions owing to the rewinding technique.

Bacho, Loss, Tessaro, Wagner, and Zhu [BLT+24] proposed Twinkle, a threshold signature scheme
that produces non-Schnorr signatures. The security is based on the standard DDH assumption
without the AGM, and it has three rounds just like Sparkle. Moreover, the non-Schnorr signature
avoids rewinding and thus allows a tighter reduction than Schnorr signature schemes.

We believe that a proof based on DDH without the AGM is satisfactory. However, there is scope
for improving Twinkle in the other dimensions that we have mentioned—namely, signature size,
round complexity, and tightness of the reduction—even though Twinkle already performs as well as
or better than the other two schemes in round complexity and tightness. In more detail:

• Signature size: Twinkle has relatively large signatures compared to Schnorr signatures, con-
sisting of two group elements and three scalars.

• Round complexity: Twinkle has a three-round signing protocol like Sparkle, but the state-of-
the-art statically secure schemes have only two rounds [KG20, TZ23].

• Tightness: Twinkle avoids rewinding-based reductions but still suffers from a security loss that
is linear in the number of signing queries.

1.1 Our Contribution

We propose Dazzle and Dazzle-T, two threshold signature schemes that are adaptively secure based
on DDH without the AGM, the same assumption and model as Twinkle. Our schemes improve upon
the drawbacks of Twinkle as follows.

• Signature size: Dazzle and Dazzle-T both produce signatures that are shorter than Twinkle by
one group element.

• Round complexity: Dazzle has only two rounds. Dazzle-T has three rounds like Twinkle.
• Tightness: Dazzle-T has a tight security reduction. Dazzle has the same security loss as Twinkle.
We can view the construction of Twinkle as comprising two components: a single-party signature

scheme and a transformation from single-party to threshold schemes. We achieve the improvements
by the following modifications to the construction:

• Signature size: We optimize the single-party signature scheme underlying Twinkle.
• Round complexity: In the single-party to threshold transformation, Twinkle introduces an
additional hashing round at the beginning of the signing protocol, similar to Sparkle. We show
that this hashing round is unnecessary for Twinkle and our schemes. A “naive” transformation
to a two-round scheme is already secure.

• Tightness: We transform a tight variant of the single-party scheme into a three-round threshold
scheme, also without the hashing round. To preserve the tightness, we introduce a novel
modification to the naive transformation.

We present more detailed comparisons between our schemes and previous schemes in security
and efficiency in Tables 1 and 2, respectively.2 Notably, Dazzle is the first two-round scheme proved
to be adaptively secure in the literature.

Concurrent Work. About two weeks before we submitted this work, Bacho and Wagner [BW24]
posted a manuscript that presents Twinkle-T, a tightly secure variant of Twinkle. There is no

2Our comparison excludes robust schemes, as they are significantly less efficient. We also omit [Lin24], which
focuses on UC security.
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Scheme Adaptive Assumption AGM Loss

FROST [KG20] % AOMDL % Θ(qh/ε)

TZ [TZ23] % DLOG % Θ(qh/ε)

Sparkle [CKM23] ! AOMDL ! Θ(qh/ε)
3

KRT [KRT24] ! DLOG % Θ(qh/ε)
4

Twinkle [BLT+24] ! DDH % Θ(qs)

Dazzle ! DDH % Θ(qs)

Dazzle-T ! DDH % Θ(1)

Table 1: Comparison between our schemes and existing schemes in security. We compare whether
the security proofs of the schemes are against adaptive adversaries, the algebraic assumptions the
schemes rely on, whether the proofs are in the AGM, and the security loss. Assuming the existence
of an adversary that breaks the unforgeability with advantage ε, the security proof for the scheme
constructs a reduction that breaks the algebraic assumption in roughly the same running time with
advantage ε′. We say the security loss is L if ε and ε′ are related via a bound of ε ≤ L · ε′. We let
qh and qs denote the number of random oracle and signing queries, respectively, and ε denote the
advantage of an adversary against the scheme.

Scheme Round PK Sig. Size Comm.
FROST [KG20] 2 1⟨G⟩ 2⟨Zp⟩ 2⟨G⟩+ 1⟨Zp⟩
TZ [TZ23] 2 1⟨G⟩ 3⟨Zp⟩ 2⟨G⟩+ 2⟨Zp⟩
Sparkle [CKM23] 3 1⟨G⟩ 2⟨Zp⟩ 1⟨G⟩+ 1⟨Zp⟩+ 2λ
KRT [KRT24] 5 1⟨G⟩ 2⟨Zp⟩ 3⟨G⟩+ 1⟨Zp⟩+ 4λ+ ⟨σ⟩
Twinkle [BLT+24] 3 2⟨G⟩ 2⟨G⟩+ 3⟨Zp⟩ 6⟨G⟩+ 2⟨Zp⟩+ 2λ
Dazzle 2 2⟨G⟩ 1⟨G⟩+ 3⟨Zp⟩ 4⟨G⟩+ 2⟨Zp⟩
Dazzle-T 3 2⟨G⟩ 1⟨G⟩+ 3⟨Zp⟩ 4⟨G⟩+ 2⟨Zp⟩

Table 2: Comparison between our schemes and existing schemes in efficiency. We compare the
number of rounds of the signing protocols, the size of public keys, the size of signatures, and the
communication complexity per signer. We let ⟨G⟩ and ⟨Zp⟩ denote the size of a group element and a
scalar, respectively, and λ denote the security parameter. In Sparkle, KRT, and Twinkle, each signer
broadcasts a hash commitment of size 2λ. In KRT, each signer additionally broadcasts a random
string of length 2λ and a single-party signature, for which we use ⟨σ⟩ to denote the size.

essential overlap between their and our contribution. They did not improve signature size or round
complexity. Their tight security reduction uses a different technique, resulting in larger signatures
and higher communication. We construct Dazzle-T from Dazzle, increasing the number of round from
2 to 3. In contrast, they start from three-round Twinkle and achieve tightness without increasing
the round complexity while at the cost of signature size and communication.

Specific vs. Generic. We present our results differently from Twinkle [BLT+24]. They proposed
a generic construction and then provided two instantiations. The first instantiation is based on the
algebraic one-more computational Diffie-Hellman (AOMCDH), a new interactive assumption, and
the second is based on DDH. In contrast, we go directly to DDH-based specific schemes, as we view
them as the main contribution. Moreover, we think it is easier to see the improved construction

3To be fair, we only consider the security loss without the AGM. The row for Sparkle combines two security results.
Without the AGM, Sparkle is proved partially adaptively secure with a loose reduction. In the AGM, Sparkle is proved
fully adaptively secure with a tight reduction.

4Katsumata et al. state their security theorem with a loss of factor Θ(qh
3/ε) for a stronger security notion. They

note that for the weaker notion considered in this work, the loss is only Θ(qh/ε).
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when looking at the specific schemes. Nevertheless, our improvements also work for Bacho et al.’s
generic construction and therefore the AOMCDH-based scheme. We discuss this in Section 5.

1.2 Technical Overview

The Underlying One-Party Signature Scheme. To construct Dazzle, we thresholdize a suit-
able one-party signature scheme using a simple transformation. At a high level, the transformation
lets each signer produce a normal signature using its secret key share. The individual signatures
are interactively aggregated into a single threshold signature under the main key. This transfor-
mation underlies the whole line of work on threshold signature and multi-signature schemes for
Schnorr(-like) signatures.

To prove the adaptive security of threshold schemes, the security reduction needs to handle
corruption queries, which require it to output secret key shares. Moreover, we aim for security
from non-interactive assumptions, so the reduction cannot handle corruptions by querying oracles.
Therefore, we want the security reduction to know the secret key shares from the beginning. This
property should come from the single-party scheme, as the transformation does not provide it. That
is, we want the reduction of the single-party scheme to know the secret key from the beginning. In
many constructions, including Schnorr signatures, however, the security reduction embeds a hard
problem in the public key and thus does not know the secret key. There have been constructions
with such a property from DDH in the line of research on tightly secure signatures in the multi-user
setting with adaptive corruptions [GJ18, DGJL21]. However, these signatures appear to be difficult
to aggregate.

Our scheme is very similar to Twinkle while is shorter by one group element. We note that a
similar idea also appeared in a ring signature scheme [LPQ18]. It works over a cyclic groupG of prime

order p with generator g. It further takes uniformly random elements h, ĝ, ĥ as public parameters.

The secret key consists of random exponents w, x← Zp. The public key is [WX ] :=
[
g ĝ

h ĥ

][wx ]
, which

denotes
[
gw ĝx

hwĥx

]
. To sign a message µ, the signer hashes µ into group elements (u, û) := H1(µ) and

computes the ephemeral public key Y = uwûx. Then it produces a Schnorr-like non-interactive

proof of knowledge of (w, x) for relation
[
W
X
Y

]
:=

[
g ĝ

h ĥ
u û

][wx ]
. Specifically, the signer samples masking

scalars r, s ← Zp and computes the commitment
[
R
S
T

]
:=

[
g ĝ

h ĥ
u û

][ rs ]
. It computes the challenge as

c = H2(µ, Y,R, S, T ). Then it computes the response [ yz ] := [ rs ] + c · [wx ]. Finally, the signature
is output as σ := (Y, c, y, z), where (c, y, z) is the Schnorr-like proof. The verifier recovers the

commitment as
[
R
S
T

]
:=

[
g ĝ

h ĥ
u û

][ yz ]
·
[
W
X
Y

]−c

and checks if c is the correct hash value.

Now we briefly sketch the security proof of this scheme. Suppose that the adversary forges a
signature that contains ephemeral public key Y ∗ on message µ∗ with (u∗, û∗) = H1(µ

∗). A successful
forgery implies Y ∗ = (u∗)w(û∗)x with overwhelming probability for the following reason. Recall

that a signature contains a proof of knowledge of (w, x) for relation

[
g ĝ

h ĥ
u∗ û∗

][wx ]
=

[
W
X
Y

]
. Since ĝ,

h, ĥ are uniformly random, (g, ĝ) and (h, ĥ) are likely to be non-parallel, i.e., there does not exist

α ∈ Zp such that (h, ĥ)α. In this case, the secret key (w, x) is the only pair of exponents satisfying[
g ĝ

h ĥ

][wx ]
= [WX ]. If Y ̸= (u∗)w(û∗)x, then there exists no (w, x) satisfying the relation to prove, and

by the soundness of Schnorr-like proofs, the adversary is unlikely to forge a proof.
On the other hand, assuming DDH, we can switch to the following indistinguishable hybrid

game. Now h, ĝ, ĥ are not uniformly random. Instead, (h, ĥ) is parallel to (g, ĝ), which means
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(h, ĥ) = (g, ĝ)α for some α ∈ Zp. For every signing query that the game needs to answer, (u, û)
is also parallel to (g, ĝ), but the adversary forges a signature with (u∗, û∗) that is non-parallel to
(g, ĝ). As a result, every possible public key (W,X) corresponds to p possible secret keys (w′, x′)

satisfying
[
g ĝ

h ĥ

][w′

x′

]
= [WX ]. Moreover, for each signing query, all possible secret keys yield the

same Y = uw′
ûx′

. The actual secret key (w, x) is perfectly hidden among the p possible keys by the
witness indistinguishability of Schnorr-like proofs. For the forged signature with (u∗, û∗) non-parallel
to (g, ĝ), each possible secret key (w′, x′) results in a distinct value of (u∗)w

′
(û∗)x

′
. The probability

that Y ∗ = (u∗)w(û∗)x for the perfectly hidden secret key (w, x) is only 1/p. Recall that however,
in the original security game, a valid forgery must contain Y ∗ = (u∗)w(û∗)x. Consequently, the
adversary is unlikely to win the original game.

The security analysis above relies on DDH to transfer between different distributions of g, ĝ, h,
ĥ, u, û, u∗, û∗, but the DDH instances are never embedded in the public key (W,X). The reduction
always knows the secret key (w, x).

From One-Party to Threshold Scheme. Now we show how to transform our one-party scheme
to a two-round threshold scheme, resulting in Dazzle. This simple transformation can be viewed as
the common starting point of most works in threshold signatures and multi-signatures in the pairing-
free discrete-log setting. In the interactive signing protocol, each signer essentially produces a normal
signature with its own secret key share. In the first round, they exchange their commitments. Then
they calculate an aggregated commitment and hash it to a common challenge. The signers produce
and exchange their responses in the second round, and finally an aggregated response is contained
in the signature.

Let us specifically describe our resulting scheme Dazzle. The secret key (w, x) is t-out-of-n
shared. It can be recovered as a linear combination [wx ] =

∑
i∈S λS,i[

wi
xi
] for every set S ⊆ [n] of

size t. Suppose that a set of signers S want to jointly sign a message µ. In the first round of the
signing protocol, each signer (indexed by k) samples rk, sk ← Zp, computes (u, û) := H1(µ) and

then its individual ephemeral public key Yk := uwk ûxk and commitment

[
Rk

Sk

Tk

]
:=

[
g ĝ

h ĥ
u û

][ rksk ]
, and

broadcasts (Yk, Rk, Sk, Tk). Then the aggregated ephemeral key and commitment are calculated as

Ỹ :=
∏

i∈S Yi and

[
R̃
S̃
T̃

]
:=

∏
i∈S

[
Ri

Si

Ti

]
. They are hashed to a challenge c. In the second round, each

signer computes its individual response [ yk
zk ] := [ rksk ] + c · λS,i · [wk

xk
]. The aggregated response is

calculated as
[
ỹ
z̃

]
=

∑
i∈S [

yi
zi ]. The threshold signature is output as (Ỹ , c, ỹ, z̃).

In many previous works, the above transformation results in insecure schemes that are vulnerable
to concurrent attacks [DEF+19, BLL+21], and various techniques have been developed to resolve
this issue. However, in our case, the simple transformation, without any modification, already yields
a secure threshold scheme. Below, we will explain why the security proofs for previous schemes fail
when applying the above transformation and what makes our scheme different.

In the security reduction for many signature schemes in the pairing-free discrete-log setting, in-
cluding Schnorr signatures, a hard problem is embedded in the public key. The reduction does not
know the secret key and applies the honest-verifier zero-knowledge (HVZK) simulator for Schnorr(-
like) proofs to answer signing queries. The HVZK simulator must know the challenge before pro-
ducing the commitment, for which the reduction exploits its ability to program the random oracle.
However, the HVZK simulator fails in the two-round interactive schemes given by the above basic
transformation. The reduction has to output the commitment in the first round. At this point, the
HVZK simulator needs to know the challenge, but the challenge depends on other signers’ commit-
ments, which can be chosen by the adversary and cannot be known in advance. Sparkle and Twinkle
apply a technique from [BN06] to make the HVZK simulator work, resulting in three-round schemes.

Our key observation is that our scheme (and Twinkle) do not require the HVZK simulator.
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Recall that, in order to achieve adaptive security, our reduction knows the secret key shares from
the beginning. Instead of relying on the HVZK simulator, our reduction can just sign messages
honestly to answer signing queries. We leverage the witness indistinguishability (WI) of Schnorr-like
proofs to show that the secret key is perfectly hidden among p possible ones in the hybrid game. WI
guarantees that different witnesses yield identically distributed proofs, even for adversarially chosen
challenges. Unlike the HVZK simulator, WI can be applied directly in the two-round scheme.

Three-Round Scheme with Tight Security. With a reduction that knows all the secret key
shares from the beginning, the security of Dazzle does not degrade with the number of users and
corruptions, but it suffers from a security loss of factor qs, the number of signing queries. Recall that
in the security analysis for the one-party scheme, we expect the hybrid to answer signing queries
with (u, û) in the same direction of (g, ĝ) but the adversary to forge a signature with (u∗, û∗) in
another direction. We use a standard coin tossing argument [Cor00], which introduces a loss of
factor qs.

A fully tight scheme can be obtained by adopting the idea of the Chevallier-Mames signature
scheme [Che05, KLP17]. We let the signer compute the commitment (R,S) at first. Then it hashes
not only the message µ but also (R,S) to obtain (u, û) := H2(µ,R, S). It computes the ephemeral
public key Y and the remaining commitment T as in the original scheme. Since (R,S) has high
entropy, the internal random oracle query H2(µ,R, S) that the reduction makes to answer a signing
query is likely to be fresh, i.e., the adversary is very unlikely to have made the same hash query
before. Thus, the reduction can answer internal queries H2(µ,R, S) with (u, û) parallel to (g, ĝ) and
answer external queries from the adversary with (u∗, û∗) not parallel to (g, ĝ). We thus avoid the
coin tossing and the resulting security loss.

Next we thresholdize this tightly secure one-party scheme, also with a simple transformation
without the additional hashing round. Now the signers need to exchange (Rk, Sk) before calculat-
ing (u, û), so the resulting threshold scheme becomes three-round. In the first round, the signers
exchange (Rk, Sk) and hash the aggregated commitment (R̃, S̃) to obtain (u, û). They exchange
ephemeral keys Yk and the remaining commitment Tk in the second round and obtain the challenge
c. In the third round, they exchange their responses.

However, this direct construction does not preserve tightness. Recall that the single-party scheme
is tightly secure because the adversary cannot predict (R,S) that the hybrid uses for signing. If we

naively let
[
R̃
S̃

]
:=

∏
i∈S

[
Ri

Si

]
in the interactive setting, the adversary, who decides every (Ri, Si)

except the one output by the hybrid, can fully control (R̃, S̃). It can first query H2(µ, R̃, S̃), then
make a signing query on µ, and force the aggregated commitment to be (R̃, S̃). Consequently, our
reduction has to sign with (u∗, û∗) := H2(µ, R̃, S̃) that is not parallel to (g, ĝ), because H2(µ, R̃, S̃)
was externally made first.

Our solution is to shift (R̃, S̃) by (gb, hb) where b := H1(S, µ, {(Ri, Si)}i∈S). Now the adver-
sary cannot predict (R̃, S̃) that will be used in the signing query before making a corresponding
H1(S, µ, {(Ri, Si)}i∈S) query. The H1 query is also unlikely to be made before a corresponding sign-
ing query on µ, because {(Ri, Si)}i∈S should contain (Rk, Sk) output by the signing oracle. As a
result, for each opened signing session, the reduction can recognize those H2 queries that the signing
oracle will potentially make in the second round, and it answers them with (u, û) parallel to (g, ĝ).

1.3 Other Related Work

Multi-Signatures. Roughly speaking, multi-signature schemes can be viewed as n-out-of-n thresh-
old signature schemes with dynamic groups, where each signer has its own key pair, and any set
of signers can jointly sign a message. Multi-signatures in the pairing-free discrete-log setting also
attract enormous interest for applications in cryptocurrency [BN06, BCJ08, MPSW19, DEF+19,
NRSW20, AB21, NRS21, BD21, TZ23, PW23, PW24]. The technique of an additional hashing
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round used by Sparkle and Twinkle is from the Schnorr multi-signature scheme by Bellare and Neven
[BN06].

Tightly Secure Multi-Signatures. Adopting the Bellare-Neven scheme [BN06] to the Katz-
Wang [KW03] signature scheme gives three-round tightly secure multi-signature and threshold sig-
nature schemes based on DDH [FH21], but only against static adversaries. Recently, Pan and
Wagner [PW23, PW24] proposed tightly secure two-round multi-signature schemes based on DDH
using pseudorandom bit techniques. In their schemes, the verification needs every signer’s public key
instead of a single group key, so their techniques do not apply to threshold signatures. In summary,
our scheme Dazzle-T fills the gap of tightly secure three-round threshold signatures against adaptive
adversaries. For two-round schemes, tight security remains open, even against static adversaries.

Robustness. Robust threshold signature schemes guarantee the generation of valid signatures
in the presence of a bounded number of misbehaving parties. This property was a primary focus
in many early works on threshold signatures [CGJ+99, SS01, AF04, GJKR07]. More recently,
there has also been significant interest in robust schemes, particularly in asynchronous networks
[RRJ+22, Sho23, BHK+24, GS24, BLSW24]. Adaptive security was considered in [CGJ+99, AF04],
and a recent work [BLSW24] presents an asynchronous threshold Schnorr scheme with a proof of
adaptive security based on an interactive assumption in the AGM.

Non-robust yet more efficient threshold signature schemes have also gained considerable attention
in recent years [KG20, BCK+22, CGRS23, CKM23, Lin24, KRT24, BLSW24]. Our work follows
this line of research.

Distributed Key Generation. In this work, key generation is defined as a centralized process. In
principle, one can use general multi-party computation protocols. Specifically designed distributed
key generation (DKG) protocols [Ped92, CGJ+99, JL00, GJKR07, KMS20, DYX+22, KGS23], which
enable more efficient key generation without a trusted dealer, are an important topic.

Readers are referred to [BLT+24] for a list of related work on threshold signatures from different
algebraic structures.

2 Preliminaries

Notations. For a positive number n, [n] denotes {1, . . . , n}. If x is a variable, then y := x denotes
that we assign the value of x to y. If S is a set, then y ← S denotes that we uniformly sample y
from S. If A is a (randomized) algorithm, then y ∈ A(x) denotes that y is a possible output of A on
input x.

If g1, . . . , gm are group elements, x1, . . . , xm are scalars, then we let the inner product

[ g1 ... gm ]

 x1

...
xm


denote multi-exponentiation

∏m
i=1 g

xi
i . If g⃗1, . . . , g⃗n are row vectors of group el-

ements, x⃗ is a column vector of scalars, then we let the matrix multiplication

[
g⃗1

...
g⃗n

]x⃗

denote

 g⃗x⃗
1

...
g⃗x⃗
n

.
Algebraic Assumptions. A group generation algorithm GrGen() takes the security parameter 1λ

as input and outputs a set of group parameters (G, p, g), where G is a cyclic group of prime order p
and g is a generator.
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Exec(S, {ski}i∈S , µ)
1: for j ∈ S do
2: (stj ,msgj)← Sign(S, j, skj , µ)
3: end for
4: for j ∈ S do
5: msg′j ← Sign′(S, j, skj , µ, stj , {msgi}i∈S)
6: end for
7: return σ ← Combine(S, µ, {msgi}i∈S , {msg′i}i∈S)

Figure 1: Procedure Exec for defining the completeness of threshold signature schemes.

Definition 1 (DDH). The DDH problem is (τ, ε)-hard for group generation algorithm GrGen if for
all λ, all τ -time algorithms A,

|Pr[A(G, p, g, h, ga, ha) = 1 : (G, p, g)← GrGen(1λ);h← G; a← Zp]

− Pr[A(G, p, g, h, ĝ, ĥ) = 1 : (G, p, g)← GrGen(1λ);h, ĝ, ĥ← G]| ≤ ε.

Shamir’s Secret Sharing. Shamir’s secret sharing scheme [Sha79] allows sharing a secret over Zp.
On input the number of users n < p, the threshold t ≤ n, and the secret x ∈ Zp, the sharing algorithm
Share(n, t, x) samples t coefficients α0, . . . , αt−1 ← Zp and returns the secret shares {xi}i∈[n] where

xi =
∑t−1

j=0 αji
j . On input {xi}i∈S where |S| = t, the recovering algorithm Rec({xi}i∈S) recovers x

by polynomial interpolation. In particular, x =
∑

i∈S λS,ixi, where the Lagrange coefficient for S is
defined as λS,i =

∏
j∈S,j ̸=i j/(i− j). Shamir’s secret sharing scheme has perfect security.

2.1 Threshold Signatures

We define two-round threshold signature schemes. The key generation in our syntax is assumed
to be trusted but can be implemented by a distributed protocol in practice. The signing protocol
is described by three algorithms that each signer runs locally. The first stage of signing returns a
secret state and a protocol message. After exchanging the protocol messages with each other, each
signer runs the second stage of signing to obtain the second protocol message. The last stage is a
combining algorithm that takes all the previous protocol messages as inputs and outputs the final
threshold signature. The combining algorithm does not take any secret state as input and can be
executed by any designated party. An honest execution of the signing protocol is described as the
procedure Exec in Fig. 1, which we use to define completeness. The syntax can be easily adapted to
three-round schemes, so we omit it.

Definition 2 (Two-Round Threshold Signature Schemes). A two-round threshold signature scheme
TS consists of the following algorithms:

• Setup(1λ) → par: On input the security parameter 1λ, the setup algorithm Setup outputs
global parameters par. All algorithms related to TS implicitly take par as input.

• KGen(n, t) → (pk, {ski}i∈[n]): On inputs a signer group size n and a threshold t, the key
generation algorithm KGen outputs a public key pk and n secret key shares {ski}i∈[n]. Each
secret key share implicitly indicates n and t.

• The signing protocol consists of three algorithms:
– Sign(S, k, skk, µ) → (st,msg): On inputs a set of signer indices S, a signer index k, a

secret key share skk, and a message µ, the first-round signing algorithm Sign outputs a
state st and a protocol message msg.
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– Sign′(S, k, skk, µ, st,M) → msg′: On inputs a set of signer indices S, a signer index k,
a secret key share skk, a message µ, a state st, and a set of protocol messages M, the
second-round signing algorithm Sign′ outputs a protocol message msg′.

– Combine(S, µ,M,M′)→ σ: On inputs a set of signer indices S, a message µ, two sets of
protocol messagesM,M′, the combining algorithm outputs a signature σ.

• Vf(pk, µ, σ)→ 0/1: On inputs a public key pk, a message µ, and a signature σ, the verification
algorithm Vf outputs 0 or 1.

For completeness, we require that for all n and t that the scheme supports, all (pk, {ski}i∈[n]) ∈
KGen(n, t), all subsets of signers S ⊆ [n] with |S| = t, and all messages µ, we have

Pr[Vf(pk, µ, σ) = 1 | σ ← Exec(S, {ski}i∈S , µ)] = 1,

where the procedure Exec, which models an honest execution of TS, is defined in Fig. 1.

Security Model. We define the (fully) adaptive security of two-round threshold signature schemes.
The adversary is given the public parameters, a public key, and oracles that allow corrupting and
querying signatures from the signers. It can concurrently open many signing sessions with each
signer. When the adversary corrupts a signer, it learns not only the secret key share but also the
secret state produced in the first round of each signing session. We set up a counter for each signer
which is used to set up session identifiers to keep track of signing sessions. The goal of the adversary
is to forge a signature on some message that it has never queried to the signing oracle.

Our security definition models an adversary with fully control over the communication channels.
In particular, we do not assume authenticated channels. As the inputs to the second-stage signing
oracle, the adversary decides every protocol message, even on behalf of the honest parties. In fact,
honest signers will not realize the signing sessions of other signers. The adversary needs not ensure
consistency of protocol messages sent to different signers.

We also do not assume secure erasure. When the adversary corrupts a signer, it learns all random
coins generated by the signer in signing sessions. To account for this, we implicitly require that the
state st output by Sign includes all random coins it used.5

Definition 3 (Adaptive Security of Threshold Signature Schemes.). A threshold signature scheme
TS is (qs, τ, ε)-adaptively secure if for all adversaries A that makes at most qs = qs(λ) signing
queries and is of running time at most τ = τ(λ), for all n and t that the scheme supports,
Pr[adp-UFA

TS(λ, n, t) = 1] ≤ ε = ε(λ), where the security game adp-UF is defined in Fig. 2.

3 Two-Round Scheme from DDH

We describe our scheme Dazzle below. We give a formal pseudocode description in Fig. 3. The
scheme is defined with respect to a group generation algorithm GrGen. It supports all practical
(polynomially bounded) n and t.

Setup. The global parameters consist of group parameters (G, p, g) generated by GrGen and uni-

formly random group elements ĝ, h, ĥ.

Key Generation. On inputs n and t, the key generation algorithm uniformly samples w and x

from Zp. The public key is computed as [WX ] :=
[
g ĝ

h ĥ

][wx ]
. The secret key shares {(wi, xi)}i∈[n] are

t-out-of-n Shamir’s secret shares of w and x.

5If Sign′ is randomized, then the random coins should also be output when the signer is corrupted. We omit this
definitional complication, as the last-round signing algorithms of our schemes are deterministic.
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adp-UFA
TS(λ, n, t)

1: Q := ∅, C := ∅
2: for i ∈ [n] do
3: ctri := 0
4: end for
5: par← Setup(1λ)
6: (pk, {ski}i∈[n])← KGen(n, t)

7: (µ∗, σ∗)← ASign,Sign′,Corr(pk)
8: return Jµ∗ /∈ Q ∧ Vf(pk, µ∗, σ∗) = 1K

Corr(k)
9: if |C| ≥ t then

10: return ⊥
11: end if
12: C := C ∪ {k}
13: return (skk, {stk,i}i∈[ctrk])

Sign(S, k, µ)
14: if k ∈ C then

15: return ⊥
16: end if
17: Q := Q∪ {µ}
18: ctrk := ctrk + 1
19: sid := ctrk
20: (st,msg)← Sign(S, k, skk, µ)
21: stk,sid := st
22: st′k,sid := (S, µ)
23: roundk,sid := 1
24: return msg

Sign′(k, sid,M)
25: if k ∈ C ∨ roundk,sid ̸= 1 then
26: return ⊥
27: end if
28: (S, µ) := st′k,sid
29: msg′ ← Sign′(S, k, skk, µ, stk,sid,M)
30: roundk,sid := 2
31: return msg′

Figure 2: The adp-UF security for defining the adaptive security of threshold signature schemes.

Signing Protocol. Suppose a group S of signers want to jointly sign a message µ. In the first
stage, each participant (whose index is denoted by k) hashes the message to obtain (u, û) := H1(µ).

It computes its ephemeral public key Yk := uwk ûxk and commitment

[
Rk

Sk

Tk

]
:=

[
g ĝ

h ĥ
u û

][ rksk ]
where rk,

sk ← Zp. It sends (Yk, Rk, Sk, Tk) as its protocol message.
In the second stage, the signer aggregates all protocol messages it receives into the aggregated

ephemeral public key Ỹ :=
∏

i∈S Yi and the aggregated commitment

[
R̃
S̃
T̃

]
:=

∏
i∈S

[
Ri

Si

Ti

]
. It hashes

them and the message µ to get the challenge c := H2(µ, Ỹ , R̃, S̃, T̃ ). It computes its response
[ yk
zk ] := [ rksk ] + c · λS,k · [wk

xk
], where λS,k is the corresponding Lagrange coefficient for S. It sends the

response as its protocol message.
The last stage can be run by a designated combiner without any secret key and state. The

combiner aggregates the first-round protocol messages to recompute the ephemeral public key Ỹ
and the challenge c. It also aggregates the second-round protocol messages into the aggregated
response

[
ỹ
z̃

]
:=

∑
i∈S [

yi
zi ]. It outputs the threshold signature σ := (Ỹ , c, ỹ, z̃).

Verification. The verifier recovers the commitment as

[
R̃
S̃
T̃

]
:=

[
g ĝ

h ĥ
u û

][ ỹ
z̃

]
·
[
W
X
Ỹ

]−c

and checks if

c = H2(µ, Ỹ , R̃, S̃, T̃ ).

Theorem 1. If DDH is (τddh, εddh)-hard for GrGen, then Dazzle is (qs, τuf, εuf)-adaptively secure in
the random oracle model against any adversary that makes at most qh hash queries, where essentially
τddh ≈ τuf and

εddh ≥
1

4qs
· (εuf −

qh + qs + 2

p
)− qh + 3

p
.
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Setup(λ)

1: (G, p, g)← GrGen(1λ)

2: ĝ, h, ĥ← G
3: return (G, p, g, ĝ, h, ĥ)

KGen(n, t)
4: w, x← Zp

5: [WX ] :=
[
g ĝ

h ĥ

][wx ]
6: {wi}i∈[n] ← Share(n, t, w)
7: {xi}i∈[n] ← Share(n, t, x)
8: pk := (W,X)
9: for i ∈ [n] do

10: ski := (wi, xi)
11: end for
12: return (pk, {ski}i∈[n])

Sign(S, k, skk, µ)
13: (wk, xk) := skk
14: (u, û) := H1(µ)
15: Yk := uwk ûxk

16: rk, sk ← Zp

17:

[
Rk

Sk

Tk

]
:=

[
g ĝ

h ĥ
u û

][ rksk ]
18: st := (rk, sk)
19: msg := (Yk, Rk, Sk, Tk)
20: return (st,msg)

Sign′(S, k, skk, µ, st,M)
21: (wk, xk) := skk
22: (rk, sk) := st
23: {msgi}i∈S :=M

24: for i ∈ S do
25: (Yi, Ri, Si, Ti) := msgi
26: end for
27: Ỹ :=

∏
i∈S Yi

28:

[
R̃
S̃
T̃

]
:=

∏
i∈S

[
Ri

Si

Ti

]
29: c := H2(µ, Ỹ , R̃, S̃, T̃ )
30: [ yk

zk ] := [ rksk ] + c · λS,k · [wk
xk

]
31: return (yk, zk)

Combine(S, µ,M,M′)
32: {msgi}i∈S :=M
33: {msg′i}i∈S :=M′

34: for i ∈ S do
35: (Yi, Ri, Si, Ti) := msgi
36: (yi, zi) := msg′i
37: end for
38: Ỹ :=

∏
i∈S Yi

39:

[
R̃
S̃
T̃

]
:=

∏
i∈S

[
Ri

Si

Ti

]
40: c := H2(µ, Ỹ , R̃, S̃, T̃ )
41:

[
ỹ
z̃

]
:=

∑
i∈S [

yi
zi ]

42: return (Ỹ , c, ỹ, z̃)

Vf(pk, µ, σ)
43: (W,X) := pk
44: (Ỹ , c, ỹ, z̃) := σ
45: (u, û) := H1(µ)

46:

[
R̃
S̃
T̃

]
:=

[
g ĝ

h ĥ
u û

][ ỹ
z̃

]
·
[
W
X
Ỹ

]−c

47: return Jc = H2(µ, Ỹ , R̃, S̃, T̃ )K

Figure 3: Scheme description of Dazzle.
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Proof. Toward the contradiction, we assume that some adversary A breaks the (qs, τuf, εuf)-adaptive
security of Dazzle. We will define a series of hybrids, also shown in Fig. 4.

G0-G3

1: Q := ∅, C := ∅
2: for i ∈ [n] do
3: ctri := 0
4: end for
5: (G, p, g)← GrGen(1λ)

▷ —KGen(n, t)—

6: h, ĝ, ĥ← G ▷ G0–G2

7: h← G ▷ G3

8: α← Zp ▷ G3

9: ĝ := gα, ĥ := hα ▷ G3

10: w, x← Zp

11: [WX ] :=
[
g ĝ

h ĥ

][wx ]
12: {wi}i∈[n] ← Share(n, t, w)
13: {xi}i∈[n] ← Share(n, t, x)
14: pk := (W,X)

▷ ——
15: (µ∗, σ∗)← ASign,Sign′,Corr,H1,H2(pk)
16: return Jµ∗ /∈ Q ∧ Vf(pk, µ∗, σ∗) = 1K

Corr(k)
17: if |C| ≥ t− 1 then
18: return ⊥
19: end if
20: C := C ∪ {k}
21: return ((wk, xk), {stk,i}i∈[ctrk])

Sign(S, k, µ)
22: if k ∈ C then
23: return ⊥
24: end if
25: Q := Q∪ {µ}
26: ctrk := ctrk + 1
27: sid := ctrk

▷ —Sign(S, k, skk, µ)—
28: (u, û) := H1(µ)
29: Yk := uwk ûxk

30: rk, sk ← Zp

31:

[
Rk

Sk

Tk

]
:=

[
g ĝ

h ĥ
u û

][ rksk ]

32: st := (S, µ, rk, sk)
▷ ——

33: stk,sid := st
34: st′k,sid := (S, µ)
35: roundk,sid := 1
36: return (Yk, Rk, Sk, Tk)

Sign′(k, sid,M)
37: if k ∈ C ∨ roundk,sid ̸= 1 then
38: return ⊥
39: end if
40: (S, µ) := st′k,sid

▷ —Sign′(S, k, skk, µ, stk,sid,M)—
41: (rk, sk) := stk,sid
42: {msgi}i∈S\{k} :=M
43: for i ∈ S \ {k} do
44: (Yi, Ri, Si, Ti) := msgi
45: end for
46: Ỹ :=

∏
i∈S Yi, R̃ :=

∏
i∈S Ri

47: S̃ :=
∏

i∈S Si, T̃ :=
∏

i∈S Ti

48: c := H2(µ, Ỹ , R̃, S̃, T̃ )
49: [ yk

zk ] := [ rksk ] + c · λS,k · [wk
xk

]
▷ ——

50: roundk,sid := 2
51: return (yk, zk)

H1(µ)
52: if T (µ) =⊥ then
53: With prob. qs

qs+1 : B(µ) := 1 ▷ G1–G3

54: Otherwise B(µ) := 0 ▷ G1–G3

55: T (µ)← G2 ▷ G0–G1

56: if B(µ) = 1 then ▷ G2–G3

57: d, e← Zp ▷ G2–G3

58: u := gdhe, û := ĝdĥe ▷ G2–G3

59: T (µ) := (u, û) ▷ G2–G3

60: else ▷ G2–G3

61: T (µ)← G2 ▷ G2–G3

62: end if ▷ G2–G3

63: end if
64: return T (µ)

Figure 4: Hybrid games G0–G3. H2 is a normal random oracle.
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G0. Let G0 denote the original security game adp-UF against Dazzle. Suppose that A outputs
message µ∗ and forged signature σ∗ = (Ỹ ∗, c∗, ỹ∗, z̃∗). Let event Win indicate the winning of A (i.e.
the event that adp-UFA

TS(λ, n, t) returns 1). By the assumption, we have Pr[Win | G0] = εuf. Let
event CorrectY indicate that Ỹ ∗ = (u∗)w(û∗)x, where (u∗, û∗) = H1(µ

∗).

Claim. εuf ≤ Pr[Win ∧CorrectY | G0] + (qh + qs + 2)/p.

Proof of Claim. DefineBadChal as the following event: there exists a hash query c = H2(µ, Ỹ , R̃, S̃, T̃ )
that has been made and satisfies:

• Ỹ ̸= uwûx; and

• there exists (ỹ, z̃) such that

[
R̃
S̃
T̃

]
=

[
g ĝ

h ĥ
u û

][ ỹ
z̃

]
·
[
W
X
Ỹ

]−c

,

where (u, û) = H1(µ).

Let us bound the probability of BadChal. We claim that: if (g, ĝ, h, ĥ) is not a DH tuple, and
Ỹ ̸= uwûx, then there is at most one value of c that makes the second condition holds. Therefore,
each query satisfies the two conditions with probability at most 1/p. There are at most qh + qs + 1
queries to H2, including at most qh external queries from A and at most qs + 1 internal queries in
Sign and the final verification. The probability that (g, ĝ, h, ĥ) is a DH tuple is 1/p. By the union
bound, we have Pr[BadChal | G0] ≤ (qh + qs + 2)/p.

To see the above claim, assume that there are two such values c ̸= c′. Then there exist (ỹ, z̃) and
(ỹ′, z̃′) such that R̃S̃

T̃

 =

g ĝ

h ĥ
u û


ỹ
z̃


·

WX
Ỹ

−c

=

g ĝ

h ĥ
u û


ỹ′
z̃′


·

WX
Ỹ

−c′

.

It follows that g ĝ

h ĥ
u û


y
z


=

WX
Ỹ

 ,

where y = (ỹ− ỹ′)/(c− c′), z = (z̃− z̃′)/(c− c′). Since (g, ĝ, h, ĥ) is not a DH tuple,
[
g ĝ

h ĥ

][ yz ]
= [WX ]

implies (y, z) = (w, x). Therefore, we have Ỹ = uwûx.
On the other hand, if A wins, and Ỹ ∗ ̸= (u∗)w(û∗)x, then event BadChal must occur. To see

this, just note that the second condition is necessary to pass the final verification. Therefore, we
have

εuf ≤ Pr[Win ∧CorrectY ∨BadChal | G0] ≤ Pr[Win ∧CorrectY | G0] +
qh + qs + 2

p
.

G1. In G1, for each fresh hash query H1(µ), a biased coin coin(µ) is tossed, with probability ρ to
be 1 and 1− ρ to be 0. Since this modification does not change the view of A, we have

Pr[Win ∧CorrectY | G1] = Pr[Win ∧CorrectY | G0] (1)

Define GoodTosses as the event that: for each µ that A makes signing queries on, coin(µ) = 1,
while coin(µ∗) = 0. Note that Win requires that A has never made signing queries on µ∗. In this
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case, GoodTosses requires the at most qs coins corresponding to signing queries to be 1 and a
different coin B(µ∗) to be 0. Therefore,

Pr[Win ∧CorrectY ∧GoodTosses | G1]

= Pr[GoodTosses | G1,Win] · Pr[Win ∧CorrectY | G1]

≥ ρqs(1− ρ) · Pr[Win ∧CorrectY | G1].

We set ρ = qs/(qs + 1) to maximize ρqs(1− ρ) to

ρqs(1− ρ) =
1

qs
(1− 1

qs + 1
)qs+1 ≥ 1

4qs
.

Then we have

Pr[Win ∧CorrectY ∧GoodTosses | G1] ≥
1

4qs
· Pr[Win ∧CorrectY | G1]. (2)

G2. In G2, we change the way to answer H1(µ) queries depending on coin(µ). If coin(µ) = 0, we
still uniformly sample (u, û) ← G2 . However, if coin(µ) = 1, then we sample a, b ← Zp and let

[ u û ] =
[
g ĝ

h ĥ

][ ab ]
. If (g, ĝ, h, ĥ) is not a DH tuple, which is true except with probability 1/p, then

(u, û) sampled in this way is still uniformly distributed over G2, so G2 is identical to G1. Thus, we
have

Pr[Win ∧CorrectY ∧GoodTosses | G2]

≥ Pr[Win ∧CorrectY ∧GoodTosses | G1]−
1

p
.

(3)

G3. In G3, we sample (ĝ, h, ĥ) such that (g, ĝ, h, ĥ) is a DH tuple. We can construct a distinguisher

against DDH that uses the input tuple as (g, ĝ, h, ĥ), performs the games, and verifies the occurrence
of event Win ∧CorrectY ∧GoodTosses. It follows that

Pr[Win ∧CorrectY ∧GoodTosses | G3]

≥ Pr[Win ∧CorrectY ∧GoodTosses | G2]− εddh.
(4)

Combining the following claim and Eqs. (1) to (4) completes this proof.

Claim. Pr[Win ∧CorrectY ∧GoodTosses | G3] ≤ (qh + 2)/p.

Proof of Claim. We continue defining more hybrids. Our final target is a hybrid where the sampling
of w and x are deferred to the end of the game, which makes CorrectY unlikely. The arguments
will be all statistical, so the hybrids are not necessary to be efficient. Fig. 5 shows these hybrids.

G4. In G4, we change the way to answer signing queries and corruption queries. Recall that
(g, ĝ, h, ĥ) is a DH tuple, and suppose that (ĝ, ĥ) = (gα, hα). We let the signing oracles use δk =
wk + αxk, instead of directly use (wk, xk), to sign. However, they can only answer queries that do
not violate event GoodTosses, i.e. signing queries on message µ with coin(µ) = 1.

Since coin(µ) = 1, (u, û) is parallel to (g, ĝ). Suppose u = gβ and û = ĝβ = gαβ . Oracle Sign
returns (Yk, Rk, Sk, Tk) = (gδkβ , gγ , hγ , uγ) with γ ← Zp. Oracle Sign′ of the same signing session
returns zk ← Zp and yk = γ + c · λS,k · δk − αzk.

Note that now the secret state of signing sessions, (rk, sk), are missing. We change the corruption
oracle Corr accordingly to generate (rk, sk) for each signing session at the time of corruption. If the
signing session is already completed, then (rk, sk) is computed as (yk− c ·λS,k ·wk, zk− c ·λS,k ·xk).
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G4–G5

1: Q := ∅, C := ∅
2: for i ∈ [n] do
3: ctri := 0
4: end for
5: (G, p, g)← GrGen(1λ)
6: h← G
7: α← Zp

8: ĝ := gα, ĥ := hα

9: w, x← Zp ▷ G4

10: [WX ] :=
[
g ĝ

h ĥ

][wx ]
▷ G4

11: {wi}i∈[n] ← Share(n, t, w) ▷ G4

12: {xi}i∈[n] ← Share(n, t, x) ▷ G4

13: for i ∈ [n] do ▷ G4

14: δi := wi + αxi ▷ G4

15: end for ▷ G4

16: δ ← Zp ▷ G5

17: [WX ] := [ gh ]
δ

▷ G5

18: {δi}i∈[n] ← Share(n, t, δ) ▷ G5

19: pk := (W,X)
20: (µ∗, σ∗)← ASign,Sign′,Corr,H1,H2(pk)
21: x← Zp ▷ G5

22: w ← δ − αx ▷ G5

23: return Jµ∗ /∈ Q ∧ Vf(pk, µ∗, σ∗) = 1K

Corr(k)
24: if |C| ≥ t− 1 then
25: return ⊥
26: end if
27: C := C ∪ {k}
28: xk ← Zp ▷ G5

29: wk := δk − αxk ▷ G5

30: for i ∈ ctrk do
31: if roundk,sid = 2 then
32: (yk, zk) := rspk,sid
33: (S, µ) := st′k,sid
34: rk := yk − c · λS,k · wk

35: zk := zk − c · λS,k · xk

36: else

37: sk ← Zp

38: rk := γ − αsk
39: end if
40: stk,sid := (rk, sk)
41: end for
42: return ((wk, xk), {stk,i}i∈[ctrk])

Sign(S, k, µ)
43: if k ∈ C then
44: return ⊥
45: end if
46: Q := Q∪ {µ}
47: ctrk := ctrk + 1
48: sid := ctrk
49: (u, û) := H1(µ)
50: Yk := uδk

51: γ ← Zp

52:

[
Rk

Sk

Tk

]
:=

[ g
h
u

]γ
53: st′k,sid := (S, µ, γ)
54: roundk,sid := 1
55: return (Yk, Rk, Sk, Tk)

Sign′(k, sid,M)
56: if k ∈ C ∨ roundk,sid ̸= 1 then
57: return ⊥
58: end if
59: (S, µ, γ) := st′k,sid
60: {msgi}i∈S\{k} :=M
61: for i ∈ S \ {k} do
62: (Yi, Ri, Si, Ti) := msgi
63: end for
64: Ỹ :=

∏
i∈S Yi, R̃ :=

∏
i∈S Ri

65: S̃ :=
∏

i∈S Si, T̃ :=
∏

i∈S Ti

66: c := H2(µ, Ỹ , R̃, S̃, T̃ )
67: zk ← Zp

68: yk := γ + c · λS,k · δk − αzk
69: roundk,sid := 2
70: rspk,sid := (yk, zk)
71: return (yk, zk)

Figure 5: Hybrid games G4–G5. H1 and H2 are the same as in G3.

If the session is incomplete, i.e., only the first round is finished, then Corr samples sk ← Zp and
computes rk = γ − αsk.

We show that G4 is identical to G3 until GoodTosses is violated. First, we show that if
coin(µ) = 1, then the output of the signing oracles in G3 and G4 are identically distributed, where
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the randomnesses are (rk, sk) and (α, zk) in each signing session, respectively.
In G3, Sign returns Yk = uwk ûx

k = gβwk ĝβxk = gδkβ , the same as G4. It also returns

Rk

Sk

Tk

 =

g ĝ

h ĥ
u û


rk
sk


=

gh
u

rk+αsk

.

Since rk is uniformly distributed over Zp, (Rk, Sk, Tk) is identically distributed as (gγ , hγ , uγ) in G4.
Moreover, sk is independent of the output of Sign. Therefore, Sign′ returns zk = sk + cλS,kxk

which is uniformly distributed over Zp and independent of the output of Sign. Then

yk = rk + cλS,kwk = γ − αsk + cλS,k(δk − αxk)

= γ + cλS,kδk − α(sk + cλS,kxk) = γ + cλS,kδk − αzk,

so (yk, zk) is also identically distributed as in G4.
Then we show the outputs of the corruption oracle in G3 and G4 are also identical. For completed

sessions this is clear. For each incomplete session, this is true because sk is independent of the output
of Sign.

Since G3 and G4 only differ after GoodTosses is violated, we have

Pr[Win ∧CorrectY ∧GoodTosses | G4] = Pr[Win ∧CorrectY ∧GoodTosses | G3]. (5)

G5. In G5, we change the initialization of the game. We already let Sign use δk instead of the
secret share (wk, xk). Now the secret key shares are only used in Corr. In this game, we only
generate δ and its shares {δi}i∈[n] at the beginning. The generation of secret key shares is deferred
to the corresponding corruption queries, and the generation of the secret key will be deferred to the
end of the game.

At the beginning, the game samples δ ← Zp and shares it as {δi}i∈[n] ← Share(n, t, δ). It sets

(W,X) = (gδ, hδ). To answer a valid corruption query Corr(k), the game samples xk ← Zp and
calculates wk = δk − αxk. At the end of the game, it samples x← Zp and computes w = δ − αx.

We show that G5 is identical to G4. In G4, δ = w+αx, which is uniformly random so identically
distributed as in G5. Then from the linearity of Shamir’s secret sharing, δi = wi + αxi for i ∈ [n]
are also identically distributed to that in G5. Moreover, δ and δi are independent of x and xi,
respectively. The property of Shamir’s secret sharing guarantees that x and the at most t− 1 shares
of xi output by Corr are mutually independent. Therefore, those corrupted xi and x are also
identical to that in G5. In conclusion, we have

Pr[Win ∧CorrectY ∧GoodTosses | G5] = Pr[Win ∧CorrectY ∧GoodTosses | G4]. (6)

Finally, we show that Pr[Win ∧ CorrectY ∧ GoodTosses | G5] ≤ (qh + 2)/p. It suffices to
show Pr[CorrectY | G5,GoodTosses] ≤ (qh+2)/p. For each hash query H1(µ) with coin(µ) = 0,
(u, û) is uniformly sampled from G2, which is not parallel to (g, ĝ) except with probability 1/p.
Hence, except with probability at most (qh + 1)/p, every query on µ with coin(µ) = 0 that is made
by A or in the final verification return (u, û) not parallel to (g, ĝ). If GoodTosses occurs, then
µ∗ corresponds to one of such queries, and (u∗, û∗) = H1(µ

∗) is not parallel to (g, ĝ). Suppose
û∗ = (u∗)αv with v ̸= 1. At the end of the game, x ← Zp and w = δ − αx are generated. Then
(u∗)w(û∗)x = (u∗)w((û∗)αv)x = (u∗)δvx. Each x ∈ Zp yields a distinct value of (u∗)w(û∗)x, so
the probability that Y ∗ = (u∗)w(û∗)x is 1/p. It follows by the union bound that Pr[CorrectY |
G5,GoodTosses] ≤ (qh + 2)/p.
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4 Three-Round Scheme from DDH with Fully Tight Security

We describe our scheme Dazzle-T below. We give a formal pseudocode description in Fig. 6. The
scheme is defined with respect to a group generation algorithm GrGen.

Setup, Key Generation, and Verification. Same as Dazzle.

Signing Protocol. Suppose a group S of signers want to jointly sign a message µ. In the first
stage, each participant (whose index is denoted by k) samples rk, sk ← Zp and sends its partial

commitment
[
Rk

Sk

]
:=

[
g ĝ

h ĥ

][ rksk ]
as its protocol message.

In the second stage, the signer hashes the signer group S, the message µ, and all protocol
messages {(Ri, Si)}i∈S it receives into a public mask b := H1(S, µ, {(Ri, Si)}i∈S). It aggregates all

protocol messages it receives with the public mask to get the partial aggregated commitment
[
R̃
S̃

]
=

[ gh ]
b ·

∏
i∈S

[
Ri

Si

]
. Then it hashes the message together with (R̃, S̃) to obtain (u, û) := H2(µ, R̃, S̃).

It computes its ephemeral public key Yk := uwk ûxk and the remaining commitment Tk := urk ûsk as
its protocol message.

In the third stage, the signer aggregates all the protocol messages into the aggregated ephemeral
public key Ỹ :=

∏
i∈S Yi and the aggregated remaining commitment, also masked by b, T̃ :=

ub ·
∏

i∈S Ti. It hashes the aggregated ephemeral public key, the commitment, and the message to

get the challenge c := H3(µ, Ỹ , R̃, S̃, T̃ ). It computes its response [ yk
zk ] := [ rksk ] + c · λS,k · [wk

xk
], where

λS,k is the corresponding Lagrange coefficient for S. It sends the response as its protocol message.

In the last stage, a designated combiner recompute b, R̃, S̃ based on the first-round protocol
messages. Then it aggregates the second-round protocol messages to recompute Ỹ , T̃ , and c. Finally,
it aggregates the second-round protocol messages with the public mask into the aggregated response[
ỹ
z̃

]
:= [ b0 ] +

∑
i∈S [

yk
zk ]. It outputs the threshold signature σ := (Ỹ , c, ỹ, z̃).

Theorem 2. If DDH is (τddh, εddh)-hard for GrGen, then Dazzle-T is (qs, τuf, εuf)-adaptively secure in
the random oracle model against any adversary that makes at most qh hash queries, where essentially
τddh ≈ τuf and

εddh ≥ εuf −
(qh + 2qs)(qh + qs) + 2qh + qs + 5

p
.

Proof. Assume that there exists an adversary A that breaks the adp-UF security of Dazzle-T. We
will define a series of hybrid games.

G0. Let G0 be the original security game adp-UF against Dazzle-T. Suppose that A outputs message
µ∗ and forged signature σ∗ = (Ỹ ∗, c∗, ỹ∗, z̃∗), and commitments R̃∗, S̃∗ are recovered during the final
verification. Let event Win indicate the win of A. By the assumption, we have Pr[Win | G0] = εuf.
Let event CorrectY indicate that Ỹ ∗ = (u∗)w(û∗)x, where (u∗, û∗) = H2(R̃

∗, S̃∗, µ∗). For the
same reason as in the proof of Theorem 1, we have

εuf ≤ Pr[Win ∧CorrectY | G0] +
qh + qs + 2

p
. (7)

G1. In G1, we set a coin when answering H2 query. We make the following definitions:
• For any H1 query H1(µ,S, {(Ri, Si)}i∈S), let b be the returned value, R̃ = gb

∏
i∈S Ri, S̃ =

hb
∏

i∈S Si. We call this H1 query a preceding hash query to the query H2(µ, R̃, S̃).
• For any Sign query Sign(k,S, µ), let (Rk, Sk) be the returned value. We call this Sign
query a preceding signing query to any query in form of H1(µ,S, {(Ri, Si)}i∈S) if the input list
{(Ri, Si)}i∈S contains (Rk, Sk) at index k.
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Setup(λ)

1: (G, p, g)← GrGen(1λ)

2: ĝ, h, ĥ← G
3: return (G, p, g, ĝ, h, ĥ)

KGen(n, t)
4: w, x← Zp

5: [WX ] :=
[
g ĝ

h ĥ

][wx ]
6: {wi}i∈[n] ← Share(n, t, w)
7: {xi}i∈[n] ← Share(n, t, x)
8: pk := (W,X)
9: for i ∈ [n] do

10: ski := (wi, xi)
11: end for
12: return (pk, {ski}i∈[n])

Sign(S, k, skk, µ)
13: (wk, xk) := skk
14: rk, sk ← Zp

15:
[
Rk

Sk

]
:=

[
g ĝ

h ĥ

][ rksk ]
16: st := (rk, sk)
17: msg := (Rk, Sk)
18: return (st,msg)

Sign′(S, k, skk, µ, st,M)
19: (wk, xk) := skk
20: (rk, sk) := st
21: {msgi}i∈S :=M
22: for i ∈ S do
23: (Ri, Si) := msgi
24: end for
25: b := H1(S, µ, {Ri, Si}i∈S)

26:

[
R̃
S̃

]
:= [ gh ]

b ·
∏

i∈S
[
Ri

Si

]
27: (u, û) := H2(µ, R̃, S̃)
28: Yk := uwk ûxk

29: Tk := urk ûsk

30: st′ := (rk, sk, R̃, S̃, b)
31: msg′ := (Yk, Tk)
32: return (st′,msg′)

Sign′′(S, k, skk, µ, st,M′)
33: (wk, xk) := skk
34: (rk, sk, R̃, S̃, b) := st′

35: {msg′i}i∈S :=M′

36: for i ∈ S do
37: (Yi, Ti) := msg′i
38: end for
39: Ỹ :=

∏
i∈S Yi

40: T̃ := ub ·
∏

i∈S Ti

41: c := H3(µ, Ỹ , R̃, S̃, T̃ )
42: [ yk

zk ] := b · [ rksk ] + c · λS,k · [wk
xk

]
43: return (yk, zk)

Combine(S, µ,M,M′,M′′)
44: {msgi}i∈S :=M
45: {msg′i}i∈S :=M′

46: {msg′′i }i∈S :=M′′

47: for i ∈ S do
48: (Ri, Si) := msgi
49: (Yi, Ti) := msg′i
50: (yi, zi) := msg′′i
51: end for
52: b := H1(S, µ, {Ri, Si}i∈S)
53: Ỹ :=

∏
i∈S Yi

54:

[
R̃
S̃

]
:= [ gh ]

b ·
∏

i∈S
[
Ri

Si

]
55: (u, û) := H2(µ, R̃, S̃)
56: T̃ := ub ·

∏
i∈S Ti

57: c := H3(µ, Ỹ , R̃, S̃, T̃ )
58:

[
ỹ
z̃

]
:= [ b0 ] +

∑
i∈S [

yi
zi ]

59: return (Ỹ , c, ỹ, z̃)

Vf(pk, µ, σ)
60: (W,X) := pk
61: (Ỹ , c, ỹ, z̃) := σ
62: (u, û) := H1(µ)

63:

[
R̃
S̃
T̃

]
:=

[
g ĝ

h ĥ
u û

][ ỹ
z̃

]
·
[
W
X
Ỹ

]−c

64: return Jc = H3(µ, Ỹ , R̃, S̃, T̃ )K

Figure 6: Scheme description of Dazzle-T.

• If a signing query precedes a H1 query that precedes a H2 query, then we also say the signing
query is a preceding signing query to the H2 query.
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Now we specify how to set the coin. On each H2(µ, R̃, S̃) query, if a preceding signing query has
been made, then we set coin(µ, R̃, S̃) = 1. Otherwise, we set coin(µ, R̃, S̃) = 0.

Define GoodCoins as the event that:
• for each signing session that has completed the second round, coin(µ, R̃, S̃) = 1, where µ is the
message and (R̃, S̃) are the aggregated commitments computed in the second round; and

• coin(µ∗, R̃∗, S̃∗) = 0.
By the following claim we have

Pr[Win ∧CorrectY ∧GoodCoins | G1]

≥ Pr[Win ∧CorrectY | G1]−
(qh + 2qs)(qh + qs)

p
.

(8)

Claim. Pr[¬GoodCoins | G1,Win] < (qh + 2qs)(qh + qs)/p.

Proof of Claim. For A to win, it must not have made any signing query on µ∗. Thus, query
H2(µ

∗, R̃∗, S̃∗) does not have a preceding signing query, so the coin would be set as 0.
It remains to consider the coin corresponding to each signing query. From the scheme description,

we can see that the query H2(µ, R̃, S̃) corresponding to each signing query must have a preceding
H1 query and a preceding signing query being made throughout the game. For the coin to be set to
0, one of the following must hold when answering H2(µ, R̃, S̃):

• No preceding H1 query has been made.
• A preceding H1 query has been made, but no preceding signing query has been made.
The first implies that there exists a query H1(µ,S, {Ri, Si}i∈S) = b such that R̃ = gb

∏
i∈S Ri

and S̃ = hb
∏

i∈S Si hit an earlier query H2(µ, R̃, S̃). Since b is independently, uniformly chosen,
each H1 query hits an earlier H2 query with probability at most (qh + qs)/p. In total, such an event
occurs throughout the game with probability at most (qh + qs)

2/p.
The second implies that there exists a query Sign(S, k, µ) with output (Rk, Sk) that hits an

earlier query H1(µ,S, {Ri, Si}i∈S). Each Sign query hits an earlier H1 query with probability at
most (qh + qs)/p. In total this occurs with probability at most qs(qh + qs)/p.

G2. In G2, we answer H2(µ, R̃, S̃) query based on coin(µ, R̃, S̃). If coin(µ, R̃, S̃) = 0, we still return

(u, û)← G2. If coin(µ, R̃, S̃) = 1, we let (u, û) be a uniform linear combination of (g, ĝ) and (h, ĥ),

i.e. (u, û) = (gdhe, ĝdĥe) with d, e ← Zp. Unless (g, ĝ, h, ĥ) is a DH tuple, which occurs with
probability 1/p, this modification does not change the view of A. Thus, we have

Pr[Win ∧CorrectY ∧GoodCoins | G2] ≥ Pr[Win ∧CorrectY ∧GoodCoins | G1]−
1

p
. (9)

G3. In this game, we let (g, ĝ, h, ĥ) be a uniform DH tuple instead of independent group elements.
A distinguisher against DDH can simulate G2/G3 and verify event Win∧CorrectY∧GoodCoins.
Thus

Pr[Win∧CorrectY∧GoodCoins | G3] ≥ Pr[Win∧CorrectY∧GoodCoins | G2]−εddh. (10)

Combining Eqs. (7) to (10) and the following claim, we can conclude this proof.

Claim. Pr[Win ∧CorrectY ∧GoodCoins | G3] ≤ (qh + 2)/p.

The proof of this claim is almost identical to the final claim in the proof of Theorem 1, so we
omit it.
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5 Generic Construction And AOMCDH-Based Scheme

Bacho et al. [BLT+24] presented Twinkle as a generic construction for linear functions and provided
two instantiations based on AOMCDH and DDH, respectively. In this section, we briefly discuss how
our improvements apply to the generic construction and the AOMCDH-based scheme.

Bacho et al.’s AOMCDH-Based Scheme. The one-party scheme underlying their AOMCDH-
based instantation is the Chaum-Pedersen signature scheme [CP93]. It works over a cyclic group G
of prime order p with generator g. The public key is X = gx, where x is the secret key. To sign
a message µ, the signer hashes µ into element h := H1(µ). It computes the ephemeral public key
Y = hx and produces a Schnorr-like proof of knowledge of x satisfying [XY ] := [ gh ]

x
. The signature

is output as σ := (Y, c, z), where (c, z) is the proof. The Chaum-Pedersen scheme can be proved
secure based on CDH with a rewinding-free reduction.

By applying the simple one-party to threshold transformation to the Chaum-Pedersen scheme, we
can obtain the following two-round threshold signature scheme. The secret key x is distributed using
t-out-of-n Shamir’s secret sharing. Suppose that a set of signers S want to jointly sign a message
µ. In the first round of the signing protocol, each signer (indexed by k) calculates h := H1(µ)
and computes its individual ephemeral public key Yk := hxk and commitment

[
Rk

Sk

]
:= [ gh ]

rk with
rk ← Zp and broadcasts them. Then the aggregated ephemeral key and commitment are calculated

as Ỹ :=
∏

i∈S Yi and
[
R̃
S̃

]
:=

∏
i∈S

[
Ri

Si

]
. In the second round, the signer calculates the challenge as

c := H2(µ, Ỹ , R̃, S̃) and computes its individual response zk := rk + c · λS,k · xk. Finally, a combiner

computes the aggregated response z̃ :=
∑

i∈S zi and outputs (Ỹ , c, z̃) as the signature.
The CDH-based reduction for the Chaum-Pedersen scheme embeds an instance of CDH in the

public key X. As a result, the reduction does not know the secret key x. To prove the adaptive
security of the threshold scheme, Bacho et al. introduced the algebraic one-more computational
Diffie-Hellman (AOMCDH) assumption. Given uniformly random generator g and elements h, gα1 ,
. . . , gαm , the m-AOMCDH problem is to output hα1 , . . . , hαm with (m−1)-time access to a discrete
logarithm oracle. Every query to the discrete-log oracle is required to be represented as a linear
combination of the input elements. The reduction for the threshold scheme embeds gα1 , . . . , gαt in
the public key shares {Xi}i∈[n] = {gxi}i∈[n]. The reduction handles each corruption by querying Xk

to the discrete-log oracle. The t−1 queries to the discrete-log oracle and the forgery of the adversary
provide t equations with unknown hα1 , . . . , hαt , which allows the reduction to solve t-AOMCDH.

Improved AOMCDH-Based Scheme. The above reduction does not know the secret key shares
from the beginning. It may be asked to sign under some public key share with unknown discrete
logarithm. Bacho et al. turned to a three-round scheme with an additional hashing round, where the
reduction applies the HVZK simulator to produce signatures. However, like Dazzle, the two-round
scheme is already secure.

Our key observation is that, instead of applying the HVZK simulator, the signing queries can
also be handled with the discrete-log oracle. We embed AOMCDH inputs not only in public key
shares but also in the commitment Rk for each signing query. For every µ it needs to sign, the
reduction knows the discrete logarithm w of H1(µ) = gw, so it can compute the ephemeral public
key Yk = Xw

k and the remaining commitment Sk = Rw
k in the first round. To respond to challenge c

in the second round, it queries RkX
c·λS,k

k to the oracle to obtain zk. When user k is corrupted, the
reduction should also output rk for each signing query. If the signing session is completed, then it
can compute rk as zk− c ·λS,kxk. Else, it simply queries Rk to the discrete-log oracle. Each signing
session is handled by one query to the discrete-log oracle, either when it is completed or when the
signer is corrupted. At the end, a total of qs+ t− 1 queries to the discrete-log oracle and the forgery
of the adversary provide qs + t equations, which allow the reduction to solve (qs + t)-AOMCDH.
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Answering signing queries in this way does not require fixing the challenge c in advance, so it works
perfectly in the two-round scheme.

To construct a tight variant, we can just replace the Chaum-Pedersen scheme with the Chevallier-
Mames scheme [Che05, KLP17], i.e., let h := H1(µ,R) instead of h := H1(µ). Then it can be turned
to a three-round threshold scheme, with our technique to preserve the tightness.

Improved Generic Construction. Starting from the AOMCDH-based scheme, we can achieve
Bacho et al.’s generic construction by replacing group exponentiation gx with a generic tagged linear
function T(g, x). The above improvements in round complexity and tightness directly apply to the
generic construction. It only remains to discuss how to modify the generalization, such that the
DDH-based instantiation has shorter signatures like ours.

Their DDH-based instantiation is obtained by choosing tagged linear function T
([

g ĝ

h ĥ

]
, [wx ]

)
=[

g ĝ

h ĥ

][wx ]
. They showed that for this function, the generic AOMCDH assumption tightly reduces to

DDH. Their ephemeral public key contains two group elements like the real public key.
We observe that the construction can be further generalized by using different linear functions

for the real public key and the ephemeral public key. In Dazzle, the real public key is computed

by T
([

g ĝ

h ĥ

]
, [wx ]

)
=

[
g ĝ

h ĥ

][wx ]
, while the ephemeral public key is computed by another function

T′ ([ u û ], [wx ]) = [ u û ][
w
x ], which yields shorter ephemeral keys. Accordingly, the generic AOMCDH

assumption should be defined asymmetrically: given a tag g for T, a tag h for T′, and T(g, α1), . . . ,
T(g, αm), output T′(h, α1), . . . , T

′(h, αm). For our choice of T and T′, this asymmetric AOMCDH
assumption also tightly reduces to DDH.
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