
Transparent SNARKs over Galois Rings

Yuanju Wei1,2[0009−0008−6778−9794], Xinxuan Zhang1,2[0000−0002−2739−7656], and
Yi Deng1,2[0000−0001−5948−0780]

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{weiyuanju, zhangxinxuan, deng}@iie.ac.cn

Abstract. Recently, there is a growing need for SNARKs to operate
over a broader range of algebraic structures, and one important structure
is Galois ring. We present transparent SNARK schemes over arbitrary
Galois rings. Compared with Rinocchio scheme in Ganesh et al. (J Cryp-
tol 2023), our SNARK schemes do not require a trusted third party to
establish a structured reference string (SRS).

In this paper, we present the expander code over arbitrary Galois
rings, which can be encoded in O(n) time. Using this expander code,
we then extend the Brakedown commitment scheme in Golovnev et al.
(CRYPTO 2023) to Galois rings. By combining the Libra framework in
Xie et al. (CRYPTO 2019), we present a transparent SNARK for log-
space uniform circuits over Galois rings, achieving O(n) prover time,
O(

√
n) proof size, and O(

√
n) verifier time. And by combining Hyper-

Plonk in Chen et al. (EUROCRYPT 2023), we present a transparent
SNARK for NP circuits over Galois rings, with O(n log2 n) prover time,
O(

√
n) proof size, and O(

√
n) verifier time.

Keywords: SNARKs · Galois rings · polynomial commitment.

1 Introduction

Succinct Non-interactive Arguments of Knowledge (SNARK) are cryptographic
protocols that allow a verifier to efficiently check the validity of any NP state-
ment without interacting with the prover [25,27,20,8]. One of the most important
security properties of SNARKs is soundness. Soundness demands that for any
incorrect NP statement, it is infeasible for any prover to generate a proof that
will pass verification. To ensure the soundness property, SNARK protocols are
typically designed for arithmetic circuits over a large prime field Fp. Recently,
there is a growing demand to deploy them over more general algebraic struc-
tures. While arithmetic circuits over large prime fields Fp can simulate various
algebraic structures, such simulation often comes at an expensive efficiency cost.
It is more practical to design SNARKs directly for arithmetic circuits tailored
to specific algebraic structures. Arithmetic circuits over rings are both a natural
extension of field-based arithmetic circuits and hold significant value in vari-
ous applications. One important use case is in Fully Homomorphic Encryption

2 Yuanju Wei, Xinxuan Zhang, and Yi Deng

(FHE), where computations are performed over rings, and the need for SNARKs
to prove correctness in these settings has gained attention. In particular, second-
generation FHE schemes like BGV and (B)FV[11,12] are defined over large in-
teger rings. In this paper, we focus on Galois rings. Galois rings are a type of
finite commutative rings which generalize both the finite fields and the rings of
integers modulo a prime power. According to the Chinese Remainder Theorem,
any integer ring (extension) can be mapped one-to-one to several Galois rings.

SNARKs for arithmetic circuits over rings have garnered significant atten-
tion, but there are relatively few solutions specifically tailored for such settings.
The Rinocchio protocol, proposed by Ganesh et al. [19], is the first complete
SNARK designed for ring-based arithmetic circuits. Rinocchio is a ring version
of the Pinocchio [28] and the Groth16 [23]. These SNARKs are based on Linear
PCP constructions, and they require a trusted setup to generate a structured
reference string (SRS). In recent years, newer SNARK schemes have moved away
from Linear PCP-based constructions, instead adopting a combination of PIOP
and polynomial commitment schemes. Examples include Libra [33], Plonk [18],
Spartan [29], Marlin [16], STARK [4,3,5], Brakedown [22], and Orion [34]. Many
of these do not require a trusted third party to set up an SRS. However, none of
these can be directly applied to arithmetic circuits over rings because, to date,
there are no known polynomial commitment schemes for ring arithmetic.

Current polynomial commitment schemes over finite fields can generally be
classified into three categories. The first category is the KZG commitment scheme
based on pairing structures, proposed by Kate et al. [24]. And it also relies on
an SRS. The second category is based on the hardness of the discrete logarithm
problem, such as Bulletproofs proposed by Bünz et al. [13] and Dory proposed by
Lee [26]. The third category is based on encoding techniques, such as FRI (Fast
Reed-Solomon Interactive Oracle Proof of Proximity) proposed by Ben-Sasson et
al. [3,5], Brakedown proposed by Golovnev et al. [22], and Basefold proposed by
Zeilberger et al. [35]. These polynomial commitment schemes rely on algebraic
structures applicable to finite fields, such as pairing structures, which are difficult
to satisfy over Galois rings. Thus, this naturally leads to the following question:

Is it possible to construct polynomial commitments over Galois rings, and
furthermore, is there a transparent SNARK scheme over Galois rings?

We found that the Brakedown scheme only relies on linear codes with fixed
relative distance. Since linear codes are typically designed for finite fields, and
given the “similarity” between Galois rings and finite fields, the Brakedown
scheme appears to be the most feasible scheme to implement over Galois rings,
and it does not require a trusted setup for generating an SRS. Therefore, we
present the Brakedown commitment scheme over Galois rings and proposes a
SNARK scheme over arbitrary Galois rings without the need for an SRS.

1.1 Our Contribution

We present a polynomial commitment and transparent SNARK schemes over
arbitrary Galois rings in this paper.

Transparent SNARKs over Galois Rings 3

We extend expander codes to arbitrary Galois rings, enabling linear-time
encoding with a fixed relative distance that is a constant depending on the
Galois ring. Then, using this encoding, we present the Brakedown polynomial
commitment scheme over Galois rings. Combining this construction with Libra,
we present a transparent SNARK for log-space uniform circuits over Galois rings,
achieving O(n) prover time, O(

√
n) proof size, and O(

√
n) verifier time. And by

combining HyperPlonk, we present a transparent SNARK for NP circuits over
Galois rings with O(n log2 n) prover time, O(

√
n) proof size, and O(

√
n) verifier

time.

1.2 Technique Overview

We revisit the Brakedown polynomial commitment. A multilinear polynomial f
with l variables can be written as

f(x1, · · · , xl) =
∑

b∈{0,1}l

∏
i∈[1,l]

((1− xi)(1− bi) + xibi) f(b)

The values of f over the hypercube can be viewed as the basis of the poly-
nomial, resulting in 2l basis elements. These 2l elements can be arranged into a
2l/2 × 2l/2 matrix S:


f(0, · · · , 0, 0, · · · , 0) f(0, · · · , 0, 0, · · · , 1) · · · f(0, · · · , 0, 1, · · · , 1)
f(0, · · · , 1, 0, · · · , 0) f(0, · · · , 1, 0, · · · , 1) · · · f(0, · · · , 1, 1, · · · , 1)

...
...

...
...

f(1, · · · , 1, 0, · · · , 0) f(1, · · · , 1, 0, · · · , 1) · · · f(1, · · · , 1, 1, · · · , 1)


To evaluate f at a point r, one computes

f(r1, · · · , rl) =
∑

b∈{0,1}l

∏
i∈[1,l]

((1− ri)(1− bi) + ribi) f(b)

Using matrix S, this calculation involves two vectors, s1 and s2, each of length
2l/2. Specifically,

s1 =
(
(1− r1, r1)⊗ · · · ⊗ (1− rl/2, rl/2)

)
and

s2 =
(
(1− rl/2+1, rl/2+1)⊗ · · · ⊗ (1− rl, rl)

)
Therefore, f(r) = s⊤1 Ss2.

The core of the Brakedown commitment is to ensure that the prover can
correctly compute s⊤1 S using encoding techniques and then send the result to
the verifier, who completes the remaining computation. By employing encoding

4 Yuanju Wei, Xinxuan Zhang, and Yi Deng

methods as described in Ligero (AHIV17)[1], proposed by Ames et al., the verifier
can ensure that the prover correctly forms the linear combination of the encoded
vectors.

Linear Codes over Galois Rings. During the encoding process of expander
codes over large prime fields Fq, a crucial step is performing linear combinations
on k non-zero elements. The linear combinations are performed b(k) times, where
b(k) is a function of k and b(k) = max(k+4, 1.28k). Let z is the probability that a
single linear combination is zero. According to the union bound, the probability
that all b(k) linear combinations of any k non-zero elements are zero is bounded
by:

Pr[b(k) all zeros] ≤ qkzb(k)

To ensure codeword distance, this probability must be negligible. While this is
easily achievable in large prime fields, however, in Galois rings GR(ps, r), zero
divisors significantly increases this probability, braking the code distance.

A key observation to solve this problem is that in a Galois ring GR(ps, r)
all zero divisors reside in the ideal (p), meaning the proportion of zero divisors
is 1

pr . If pr is exponentially large relative to the security parameter λ, then
the proportion of zero divisors becomes negligible. However, the total number
of elements in the Galois ring is psr, and as pr increases, the total number of
elements in the Galois ring grows accordingly. We need that any k non-zero
elements satisfy the distance condition. At this time, z = 1

pr , so we have

Pr[b(k) all zeros] ≤ pksr
(

1

pr

)b(k)

=
pksr

pb(k)r

In this case, as long as s ≥ 2, the probability will not be negligible.
We solve this problem by performing a more refined parameter analysis.

By analyzing the distribution of zero divisors in the Galois ring, we catego-
rize the zero divisors into s classes based on their membership in the ideals
(ps−1), . . . , (p2), (p). Each element is classified according to the smallest ideal it
belongs to. For instance, if an element is in the ideal (pi), it is also contained
in (pi−1), but it is classified as being in the i-th class rather than the (i − 1)-
th class. We then analyze the impact of the zero divisors from each of these s
classes on the code distance. As i increases, the probability that a random linear
combination of elements from the ideal (pi) results in zero increases, thus having
a greater impact on the code’s distance. However, the proportion of such zero
divisors in the entire Galois ring decreases. Through this more detailed parame-
ter analysis, we prove that expander codes can maintain a constant relative code
distance with 1− negligible probability in Galois rings GR(ps, r), provided that
pr is sufficiently large (exponential scale relative to the security parameter λ).

If the Galois ring GR(ps, r) does not satisfy the large condition, we draw in-
spiration from the block-level encoding approach introduced in [17] and adapt it
from binary fields to arbitrary Galois rings. Specifically, if a Galois ring GR(ps, r)
requires an expansion by a factor of k to meet the necessary conditions, we treat
k elements from GR(ps, r) as a single element in GR(ps, kr) during the encoding

Transparent SNARKs over Galois Rings 5

process. We further demonstrate that this encoding method maintains linearity
over GR(ps, r). This construction thus results in a linear code defined over any
Galois ring GR(ps, r).

Polynomial Commitments over Galois Rings. Using the linear codes de-
fined over Galois rings, we apply the Brakedown construction framework to
present a polynomial commitment scheme over Galois rings. Since Brakedown
commitments rely on the linear code detection lemma from AHIV17 [1], we must
first discuss this lemma for arbitrary Galois rings. If a Galois ring GR(ps, r) does
not satisfy the condition that pr is sufficiently large, we can say this ring is a
“small ring”. We need to account for cases where the polynomial to be committed
is defined over a small ring.

Reviewing the construction of the Brakedown polynomial commitment, the
verifier must ensure that the prover correctly performs a linear combination on
each row of the coefficient matrix. In the encoding step, we mentioned that adja-
cent k elements in the small ring are treated as a single element in the extension
ring for encoding. If the verifier directly selects a challenge e from the exten-
sion ring, then e will multiply with the larger element formed by the k elements
from the small ring. This results in the “mixing” of the original k coefficients
of the polynomial, meaning the operation is no longer within the small ring.
In such scenarios, it is preferable for the verifier’s challenge to be selected from
GR(ps, r) to ensure that the coefficients used in the linear combination of the
codewords are drawn from GR(ps, r). However, if the verifier selects challenges
only from the small ring, it cannot guarantee the soundness of the polynomial
commitment.

We employed Interleaved codes and Block-wise relative distance [9] to discuss
the “repetition” version of the lemma over Galois rings to solve this problem: the
verifier can ensure soundness by repeatedly selecting challenges multiple times.
This approach, to some extent, avoids the need for field expansion operations,
leading to an improvement in computational efficiency.

In practical applications of polynomial commitment, it is often encountered
that polynomial coefficients come from a smaller ring GR(ps, r), but for security
reasons, the challenges are drawn from GR(ps, kr), such as sumcheck. In [17], this
issue is solved by using a two-dimensional extension. In this work, we explain the
problem from the perspective of “repetition”, using a more intuitive expression.
When the prover computes s⊤1 S, only s1 comes from GR(ps, kr). Therefore,
each element of s1 can be broken down into k-dimensional vectors, with each
dimension being computed separately. This allows for a more efficient polynomial
commitment process by avoiding the need to pad each element in GR(ps, r) to
the larger ring GR(ps, kr) during the commitment phase.

SNARKs over Galois Rings. We combine polynomial commitments over Ga-
lois rings with PIOP (Polynomial Interactive Oracle Proof) to obtain SNARKs
schemes over Galois rings. While sumcheck protocols over rings have been widely
discussed, such as the extension to infinite non-commutative rings in [30], some
PIOP frameworks those involving set consistency checks, cannot be directly ex-

6 Yuanju Wei, Xinxuan Zhang, and Yi Deng

tended from fields to Galois rings. This issue arises from the presence of zero
divisors in Galois rings, which complicates set consistency checks.

In a field, to determine whether two sets S1 and S2 are identical, we encode
them as polynomials, p1(x) =

∏
a∈S1

(x − a) and p2(x) =
∏

a∈S2
(x − a), and

compare the polynomials. However, in Galois rings, zero divisors can result in
different sets being encoded as identical polynomials. For example, under modulo
8, we have (x− 1)(x− 7) = (x− 5)(x− 3) (mod 8).

So we selected an IOP framework that avoids set consistency checks: Libra
and HyperPlonk. Using Libra, we constructed a transparent SNARK scheme
for log-space uniform circuits over Galois rings, with O(n) prover time, O(

√
n)

proof size, and O(
√
n) verifier time. Similarly, using HyperPlonk, we constructed

a transparent SNARK for NP circuits over Galois rings, achieving O(n log2 n)
prover time, O(

√
n) proof size, and O(

√
n) verifier time.

1.3 Related Work

Proof Systems over Rings. Due to the widespread application of proof sys-
tems, some efforts have been made to extend these systems to broader algebraic
structures. Several works aim to migrate proof systems to arithmetic circuits
over rings. In [15], Chen et al. presented the sumcheck and GKR protocols to fi-
nite commutative rings, where the verifier’s challenges are required to come from
an exceptional set within the ring. In [10], Bootle et al. constructed a sumcheck
protocol over rings and used it to solve the Rank-1 Constraint System (R1CS)
problem over rings. Furthermore, Soria-Vazquez extended the sumcheck proto-
col to infinite non-commutative rings in [30]. These protocols are rooted in the
information-theoretic framework. However, due to the absence of a polynomial
commitment scheme, none of these protocols are complete SNARK schemes.

Ganesh et al. [19] proposed the Rinocchio protocol, the first SNARK scheme
for arithmetic circuits over rings. This protocol is based on the Linear PCP
framework and does not require a polynomial commitment, but it does rely on
a trusted third party to generate a structured reference string (SRS), which can
raise concerns in practical applications. In recent years, new SNARK schemes
have been introduced that eliminate the need for an SRS but instead depend on
polynomial commitments. However, there is no polynomial commitment schemes
over rings. In this paper, we present the Brakedown polynomial commitment
scheme over Galois rings and present a SNARK based on an PIOP + polynomial
commitment framework, differing from Rinocchio. Unlike Rinocchio, the new
SNARKs do not require an SRS.

Code based Polynomial Commitment. Some of the latest polynomial com-
mitment schemes are code-based. Compared to previous approaches, these com-
mitment schemes only rely on collision-resistant hash functions cryptographic
primitive, and they are transparent.

The first representative scheme in this category is the FRI (Fast Reed-
Solomon Interactive Oracle Proof of Proximity) scheme, proposed by Ben-Sasson
et al. [3,5]. FRI-based polynomial commitments exploit the efficient detection of

Transparent SNARKs over Galois Rings 7

Reed-Solomon codes to commit to polynomials. However, this scheme requires
an “FFT-friendly” field and uses an iterative structure similar to FFT, resulting
in a prover time complexity of O(n log n).

Another key scheme based on encoding is the Brakedown scheme, proposed by
Golovnev et al. [22]. The construction of Brakedown is based on linear codes with
fixed relative distances and the only cryptographic primitive used is a collision-
resistant hash function. Brakedown provides linear-time prover efficiency but
with larger proof sizes and slower verifier time.

Additionally, the recently proposed Basefold protocol by Zeilberger et al.
[35] is also based on encoding techniques and serves as a trade-off between FRI
and Brakedown. Although Basefold retains the same asymptotic complexity of
O(n log n), it offers faster prover times compared to FRI and an improved verifier
time of O(log n), whereas Brakedown has a verifier time of O(

√
n). The Basefold

construction depends on foldable linear codes.
Given these comparisons, Brakedown has the minimum coding requirement

and is the most “friendly” for Galois rings, which is why we choose the Brakedown
framework.

2 Preliminaries

We denote a finite field by F, a security parameter by λ, and a negligible function
with respect to λ by negl(λ). We use PPT to denote probabilistic polynomial
time. For any integer n, we define Poly(F, n) as the set of polynomials with n
variables and coefficients in the field F.

2.1 Galois Rings

In this part, we will focus on discussing certain properties of Galois rings that
will be used later. These properties are fundamental to establishing codes over
Galois rings.

A Galois ring is constructed from the ring Z/psZ similar to how a finite field
Fpm is constructed from Fp [32]. It is a Glaois extension of Z/psZ, when the
concept of Galois extension is generalized beyond the context of fields.

Definition 1. A Galois ring is a commutative ring of characteristic ps which
has prs elements, where p is a prime and s and r are positive integers. It is
usually denoted GR(ps, r). It can be defined as a quotient ring

GR(ps, r) ∼= Z[x]/(ps, f(x))

where f(x) ∈ Z[x] is monic polynomial of degree r which is irreducible modulo p.
Up to isomorphism, the ring depends only on p, n, and r and not on the choice
of f used in the construction.

Every Galois ring is a local ring. The unique maximal ideal is the principal ideal
(p) = pGR(ps, r), consisting of all elements which are multiples of p. Further-
more, (0), (ps−1), · · · , (p), (1) are all the ideals.

8 Yuanju Wei, Xinxuan Zhang, and Yi Deng

If a Galois ring GR(ps, r) does not satisfy the condition that pr is exponential
scale relative to the security parameter λ, we can say this ring is a “small ring”.

Fact 1 All zero divisors in the Galois ring GR(ps, r) are in the ideal (p).

We define a ring homomorphism ϕ

Zps → Fp

c0 + c1p+ · · ·+ cp−1p
s−1 7→ c0

where 0 ≤ ci ≤ p− 1 and its kernel is the ideal (p) of the ring Zps . And the ring
homomorphism can be extended to ψ

Zps [x] → Fp[x]
a0 + a1x+ · · ·+ anx

n 7→ ā0 + ā1x+ · · ·+ ānx
n

where āi = ϕ(ai) and the kernel of ψ is the ideal (p) of the ring Zps [x]. So the
ideal (h(x)) is the ideal (h̄(x)). So we induce a ring homomorphism Φ

Zps [x]/(h(x)) → Fp[x]/(h̄(x))
a0 + a1x+ · · ·+ ar−1x

r−1 + (h(x)) 7→ ā0 + ā1x+ · · ·+ ār−1x
r−1 + (h̄(x))

The kernel of the ring homomorphism Φ is the ideal (p + (h(x))) generated by
p + (h(x)) in (Zps [x]/h(x)). By the fundamental theorem of homomoprphisms
of rings

(Zps [x]/(h(x)))/(p+ h(x)) ≃ Fp/(h̄(x))

From the above series of ring homomorphisms, we observe that the Galois ring is
an algebraic structure closely related to a field. Consequently, many techniques
applicable to fields can be smoothly transferred to rings.

Definition 2. a is an element of ring GR(ps, r) and n is an integer. We define
gcd(a, n) as gcd(a0, · · · , ar−1, n). Where a is represented by a0 + a1x + · · · +
ar−1x

r−1.

Fact 2 Consider elements a and b in the Galois ring GR(ps, r). Let d = gcd(a, ps).
The linear equation ax = b has at most dr solutions within GR(ps, r).

Proof. If gcd(a, ps) = 1, then a is not in the ideal (p). According to the properties
of the Galois ring, a is not a zero divisor in GR(ps, r), implying that a has an
inverse. Therefore, x = b · a−1 has a unique solution.

If gcd(a, ps) = d, then we have

ax = b (mod (ps, f))

The condition for this equation to have a solution is d | bi for all i, 0 ≤ i ≤ r−1,
where bi is the coefficient in b. Thus, we have

a

d
x =

b

d
(mod (ps/d, f))

Transparent SNARKs over Galois Rings 9

where a
d and b

d mean each coefficient in a and b is divided by d. Let a
d = a′

and b
d = b′. Then a′ and b′ are elements of the Galois ring GR(ps/d, r). Since

gcd(a′, ps/d) = 1, a′ is not a zero divisor in the ring GR(ps/d, r), so a′ has an
inverse. Therefore, x has a unique solution in the ring GR(ps/d, r). This solution
is obtained by determining each coefficient of x.

x0 ≡ c0 (mod ps/d)

x1 ≡ c1 (mod ps/d)

· · ·
xr−1 ≡ cr−1 (mod ps/d)

So

x0 ≡ c0 + r0
ps

d
(mod ps), r0 ∈ [0, d− 1]

x1 ≡ c1 + r1
ps

d
(mod ps), r1 ∈ [0, d− 1]

· · ·

xr−1 ≡ cr−1 + rr−1
ps

d
(mod ps), rd−1 ∈ [0, d− 1]

Obviously ri, i ∈ [0, d− 1] has d values, so each coefficient xi of x has at most d
values, and x has at most dr values. ⊓⊔

Fact 3 In the Galois ring GR(ps, r), the probability that a degree-d polynomial
f evaluates to zero at a randomly chosen point is at most d

pr .

Fact 4 If a monic polynomial f is irreducible in the field GF(p, r), then f is
also irreducible in the Galois ring GR(ps, r).

In Appendix A, we provide detailed proofs for 3 and 4.

Definition 3 (Exceptional Set [19]). Let A = {a1, · · · , an} ⊂ R. We say
that A is an exceptional set if ∀i ̸= j, ai − aj ∈ R∗, where R∗ is the set of all
invertible elements in the ring R.

Lemma 1 (Genralized Schwartz-Zippel Lemma [7,19]). Let f : Rn → R
be an n-variate nonzero polynomial. Let A ⊆ R be an finite exceptional set. Let
deg(f) denote the total degree of f . Then:

Pr
a←An

[f(a) = 0] ≤ deg(f)

|A|

2.2 SNARKs

We adapt the definition from Rinocchio [19]. Let R be an efficiently computable
binary relation which consists of pairs of the form (x,w) where x is a statement

10 Yuanju Wei, Xinxuan Zhang, and Yi Deng

and w is a witness. Let L be the language associated with the relation R, i.e.L =
{x|∃w, s.t.R(x,w) = 1}.

A proof or argument system for R consists in a triple of PPT algorithms
Π = (Setup,Prove,Verify) defined as follows:

– Setup(1λ) → (σ, vk): take a security parameter λ and outputs a common
(sturctured) reference string σ together with private verification information
vk.

– Prove(σ, x, w) → π: on input σ, a statement x and witness w, outputs an
argument π.

– Verify(σ, vk, x, π)→ 1/0: on input σ, the private verification key vk, a state-
ment x and a proof π, it outputs either 1 indicating accepting the argument
or 0 for rejecting it.

Definition 4 (SNARK). A triple of polynomial time algorithms (Setup,Prove,
Verify) is a SNARK for an NP relation R, if the following properties are sat-
isfied:

• Completeness. For all (x,w) ∈ R, the following holds:

Pr
[
(σ, vk)← Setup(1λ);π ← Prove(σ, x, w) :

Verify(σ, vk, x, π) = 1

]
= 1.

• Knowledge Soundness. For any PPT adversary A, there exists a PPT algo-
rithm EA such that the following probability is negligible in λ:

Pr
[
(σ, vk)← Setup(1λ); ((x̃, π̃);w′)← A|EA(σ) :

Verify(σ, vk, x̃, π̃) = 1 ∧R(x̃, w′) = 0

]
• A non-interactive argument of knowledge satisfies knowledge is succinct if

the size of proof π and the time to Verify are sublinear in the size of the
statement proven.

If a SNARK does not require a private verification key vk, then the SNARK
scheme is referred to as a public-key SNARK. If a SNARK does not require a
CRS σ, then the SNARK scheme is referred to as transparent.

2.3 Polynomial Commitment Scheme

We adapt the definition from Brakedown [22].

Definition 5 (Polynomial Commitment Scheme). A polynomial commit-
ment scheme for multilinear polynomial over Galois Ring GR(ps, r) is a tuple of
four protocols PC = (Gen,Commit,Open,Eval):

• pp ← Gen(1λ, µ) takes as input µ (the number of variables in a multilinear
polynomial); produces public parameters pp.
• C ← Commit(pp,G, γ): takes any input a µ−variate multilinear polynomial

over a Galois Ring G ∈ Poly(GR(ps, r), µ) and a random string γ produces
a commitment C.

Transparent SNARKs over Galois Rings 11

• b← Open(pp, C,G, γ): verifies the opening of commitment C to the µ−variate
multilinear polynomial G ∈ Poly(GR(ps, r), µ); outputs b ∈ {0, 1}.

• b← Eval(pp, C, z, v, µ,G) is a protocol between a PPT prover P and verifier
V. Both V and P hold a commitment C, the number of variables µ, a scalar
v ∈ GR(ps, r) and z ∈ GR(ps, r)µ. P additionally knows a µ−variate mul-
tilinear polynomial G ∈ Poly(GR(ps, r), µ). P attempts to convince V that
G(z) = v. At the end of the protocol, V outputs b ∈ {0, 1}.

A tuple of four protocol (Gen,Commit,Open,Eval) is an extractable polyno-
mial commitment scheme for multilinear polynomials over Galois Ring GR(ps, r)
if the following conditions hold.

• Completeness. For any multilinear polynomial G ∈Poly(GR(ps, r), µ),

Pr

[
pp→ Gen(1λ, µ); C ← Commit(pp,G, γ) :

Eval(pp, C, r, v, µ,G) = 1 ∧ v = G(r)

]
≥ 1− negl(λ)

• Binding. For any PPT adversary A, size parameter µ ≥ 1,

Pr

 pp← Gen(1λ, µ); C,G0,G1 ← A(pp);
b0 ← Open(pp, C,G0, γ); b1 ← Open(pp, C,G1, γ);

b0 = b1 ̸= 0 ∧ G0 ̸= G1

 ≤ negl(λ)

• Knowledge soundness. Eval is a succinct argument of knowledge for the
following NP relation given pp← Gen(1λ, µ).

REval(pp) = {⟨(C, z, v), (G)⟩ : G ∈ GR(ps, r)[µ] ∧ G(z) = v ∧Open(pp, C,G, γ) = 1}

3 Linear Codes over Galois Rings

In SNARKs, the encoding is typically defined over a large prime field Fq, as this
ensures a large codeword distance and provides the verifier with a large challenge
space. However, in the case of Galois rings, zero divisors can disrupt the code
distance. In this section, we solve this problem and show expander codes over
arbitrary Galois rings.

3.1 Linear Codes over Partial Galois Rings

We utilized the construction framework of expander codes from Brakedown [22]
and use a similar approach when proving the code distance. When analyzing
codeword distances, for lemmas (Lemma 2 and Lemma 3) that are applicable to
large prime fields but not to Galois rings, we provide versions of these lemmas for
Galois rings GR(ps, r) and their proofs. We use the same encoding parameters
as in Brakedown. While the failure probability in Brakedown does not exceed
2−100, we proved that in Galois rings GR(ps, r), the error probability does not
exceed s · 2−100. In practical applications, s typically does not exceed 28, so our
scheme remains secure.

12 Yuanju Wei, Xinxuan Zhang, and Yi Deng

Firstly, we need to define some parameters related to expander codes in
Brakedown: 0 < α < 1, 0 < β < 1, and t > 1+2β

1−α , with cn, dn ≥ 3. Let
Mn,m,d ⊂ GR(ps, r)n×m be a matrix distribution where each row has exactly
d non-zero entries, with these d entries randomly selected from the non-zero
elements of GR(ps, r). For x ∈ [0, 1], H(x) = −x log2(x)− (1− x) log2(1− x).

cn =

⌈
min

(
max (1.28βn, βn+ 4) ,

1

β log2

(
α

1.28β

) (100

n
+H(β) + αH

(
1.28β

α

)))⌉

dn =

⌈
min

((
2β +

(t− 1) + 100/n

log2 (p
r)

)
n,D

)⌉

D =max

(
tαH

(
β
t

)
+ µH

(
ν
µ

)
+ 100

n

αβ log2
(
µ
ν

) ,

tαH
(

β
t

)
+ µH

(
2β+0.03

µ

)
+ 100

n

β log2

(
µ

2β+0.03

) ,

(2β + 0.03)

(
1

αt− β
+

1

αβ
+

1

µ− 2β − 0.03

)
+ 1

)
where µ = t− 1− tα, ν = β + αβ + 0.03.

Algorithm 1: Enc Algorithm: GR(ps, r)n →GR(ps, r)tn

Input: x ∈ GR(ps, r)n

parameter: α, β, t, cn, dn
Output: w ∈ GR(ps, r)tn

1 if n < n0 then
2 w =Mx and return w;

3 Matrices A(n) ←Mn,αn,cn and B(n) ←Mαtn,(t−1−tα)n,dn
for are

choosen in pre-processing;
4 y⊤ = x⊤ ·A(n) ∈ GR(ps, r)αn;
5 z = Enc(y) ∈ GR(ps, r)tαn;
6 v⊤ = z⊤ ·B(n) ∈ R(t−1−tα)n;

7 w =

x
z
v

 ∈ GR(ps, r)tn;

8 return w

Here, n0 is a small constant and M can be any generator matrix that meets
the code rate and distance parameters, such as selecting an Reed-Solomon code

Transparent SNARKs over Galois Rings 13

and using padding zeros to meet the requirements. The Algorithm 1 is the en-
coding algorithm over Galois rings. We prove that by choosing α, β, t, cn, and
dn with the same parameters as in the Brakedown scheme, it can still ensure the
relative code distance over Galois rings with a probability of 1− negl(λ).

Since the proof framework for the relative code distance of expander codes
over Galois rings is similar to that in Brakedown[22], we only highlight the differ-
ences specific to Galois rings here. The complete proof is provided in Appendix
B.

Define the four events E(1)
n,k, E

(2)
n,k, E

(3)
n,k, and E(4)

n,k.
As explained in Brakedown [22], as long as the probability of these four events

occurring does not exceed s · 2−100, Then, the relative code distance holds with
a probability of 1− s · 2−100.

• E(1)
n,k: There exists a set of k coordinates of x ∈ GR(ps, r)n that doesn’t

“expend” into b(k) = max(k + 4, 1.28k) coordinates of x⊤ ·A.
• E(2)

n,k: Given the event that, given that every set of size k expands into a set

of size at least b(k) (that is, conditioned on the complement of E(1)
n,k), there

exists an x of Hamming weight ∥x∥0 = h such that y⊤ = x⊤ ·A = 0.
• E(3)

n,k: There exists a set of k coordinates of z ∈ GR(ps, r)αrn that doesn’t

expand into b′(k) =
(
β + k/n+ (r−1)+110/n

log2 q

)
n coordinates of v⊤ = z⊤ ·B.

• E(4)
n,k: Given that all sets of size k expand into at least b′(k) coordinates, there

exists a z ∈ GR(ps, r)αrn of Hamming weight ∥z∥0 = k which is mapped to
v⊤ = z⊤ ·B of Hamming weight ∥v∥0 < βn.

Next, we demonstrate that by selecting an appropriate parameter r, the
probability of the event E(2)

n,k occurring remains below s · 2−100.

Lemma 2. For every n ≤ 230 and every Galois Ring GR(ps, r) satisfying pr ≥
2127, for every n and k ≤ n, Pr[E(2)

n,k] ≤ s · 2−100.

Proof. Let x be an element in GR(ps, r)n with ∥x∥0 = k, and let K ⊆ [n]
represent the indices of the nonzero elements in x. Let TK be a random variable
denoting the number of columns of A ← Mn,αn,cn with at least one non-zero
element in the rows with indices from K.

The occurrence of the event E(2)
n,k depends on the non-occurrence of the event

E
(1)
n,k, we have that Tk ≥ b(k) = max(k + 4, 1.28k). We have at least Tk coordi-

nates of Ax are non-zero linear combinations of the non-zero coordinates of x
with indices form Kx.

Here, a more complicated analysis than that used in the Brakedown scheme
is necessary. Drawing from the Fact 2, we know that for any two elements a
and b in the Galois ring GR(ps, r), if d = gcd(ps, a), then the linear equation
ax = b has at most dr solutions. If we treat the coefficients of the randomly
selected linear combination as a variable x, and one of the k non-zero elements
as a, then the condition that the random linear combination equals zero means
that for some b, the equation ax = b hold. According to Fact 2, the proportion

14 Yuanju Wei, Xinxuan Zhang, and Yi Deng

of x values that satisfy this condition is dr

psr , which implies that the probability
of the random linear combination being zero does not exceed dr

psr . It is noted
that the likelihood of a random linear combination being zero is influenced by
the element with the smallest greatest common divisor with ps. Therefore, we
can categorize and discuss based on the smallest greatest common divisor of k
elements. Assuming that the k nonzero elements in x have the smallest greatest
common divisor with ps as d, the probability that a random linear combination
is zero is dr

psr . There are b(k) positions in x⊤ · A that are nonzero elements

for the linear combination, thus the probability that all are zero is
(

dr

psr

)b(k)
.

Given that x has k nonzero elements, and the greatest common divisor of these
nonzero elements with ps does not exceed d, the number of potential selections

is
(
k
n

)
·
((

ps

d

)r)k
. Consequently, when the k nonzero elements in x have the

smallest common factor with ps as d, the probability of event E(2),d
n,k occurring

does not exceed:(
dr

psr

)b(k)

·
((

ps

d

)r)k

·
(
k

n

)
=

(
k

n

)(
db(k)−k

ps(b(k)−k)

)r

.

It is evident that the larger the value of d, the greater the probability of error.
When d reaches its maximum at ps−1, the error probability attains its highest
value of: (

k

n

)(
1

pb(k)−k

)r

=

(
k

n

)(
1

pr

)b(k)−k

.

for k ≥ 15, n ≤ 230, and pr > 2127,

Pr[E
(2),d
n,k] ≤

(
k

n

)(
1

pr

)b(k)−k

≤
(
k

n

)
(pr)−0.28k ≤

(en
k

)k
· (pr)−0.28k

=

(
en

k(pr)0.28

)k

≤ 2−120.

for k ≤ 14, n ≤ 230, and pr > 2127,

Pr[E
(2),d
n,k] ≤

(
k

n

)(
1

pr

)b(k)−k

≤
(
k

n

)
(pr)−4 ≤

(en
k

)k
· (pr)−4

=
(en
14

)14
≤ 2−120.

Of course, this scenario pertains to when d attains its largest value. The
maximum number of possible values for d is s, which includes 1, p, · · · , ps−1.
According to the union bound, the soundness error can increase by at most s
times. In this case, the error probability remains below s

2100 , a value which is
still negligible. ⊓⊔

Lemma 3. For every n and αβn ≤ k ≤ βn, if 2β + (t−1)+110/n
log2(p

r) ≤ t − 1 − tα,
Pr[E

(4)
n,k] ≤ s · 2−100.

Transparent SNARKs over Galois Rings 15

Proof. Assuming that every set of size k expands to at least

b′(k) =

(
β +

k

n
+

(t− 1) + 110
n

log2(p
r))

)
n

we need to demonstrate that, with overwhelming probability, every element z in
GR(ps, r)αtn with a Hamming weight of ∥z∥0 = k can be mapped to a vector
v = B · z in GR(ps, r)(t−1−tα)n with a Hamming weight ∥v∥0 ≥ βn.

Fix an element z in GR(ps, r) with a Hamming weight ∥z∥0 = k. Given that
the non-zero coordinates of z will expand to at least b′(k) coordinates, there are
at least b′(k) positions in the vector v comprising random linear combinations
of non-zero vectors. As in the previous proof, if the k non-zero elements in x
have the smallest greatest common divisor with ps as d, then the probability of
a random linear combination resulting in zero is dr

psr . Consequently, with z fixed,
the probability that ∥v∥0 ≤ βn is bounded by:(

b′(k)

≥ b′(k)− βn

)(
dr

psr

)b′(k)−βn

≤
(

(t− 1− tα)n
≥ (t− 1− tα)n− βn

)(
dr

psr

)b′(k)−βn

≤ 2(t−1−tα)n
(
dr

psr

)b′(k)−βn

.

assuming b′(k) ≤
(
2β +

(t−1)+ 110
n

log2(p
r))

)
n. For all z in GR(ps, r)αtn that satisfy

∥z∥0 = k and whose greatest common divisor with ps is d, the upper bound is
given by:

Pr[E
(4),d
n,k] ≤

(
tαn

k

)((
ps

d

)r)k

· 2(t−1−tα)n ·
(
dr

psr

)b′(k)−βn

=

(
tαn

k

)
· 2(t−1−tα)n ·

(
dr

psr

)b′(k)−βn−k

.

It is evident that the larger the value of d, the greater the probability of error.
When d reaches its maximum at ps−1, the error probability attains its highest
value of: (

tαn

k

)
· 2(t−1−tα)n ·

(
1

pr

)b′(k)−βn−k

Pr[E
(4),d
n,k] ≤

(
tαn

k

)
· 2(t−1−tα)n ·

(
1

pr

)b′(k)−βn−k

≤ 2tαn+(t−1−tα)n

(pr)b′(k)−βn−k

≤ 2(r−1)n

(pr)

(
(t−1+100/n)

log2(pr)

)
n
<< 2−100.

Of course, this scenario pertains to when d attains its largest value. The
maximum number of possible values for d is s, which includes 1, p, · · · , ps−1.

16 Yuanju Wei, Xinxuan Zhang, and Yi Deng

According to the union bound, the soundness error can increase by at most s
times. In this case, the error probability remains below s

2100 , a value which is
still negligible. ⊓⊔

3.2 Linear Codes over Extensions of Small Galois Rings

In the first part of this section, the encoding was designed for rings GR(ps, r)
where pr is sufficiently large. However, if pr is not exponentially large relative
to the security parameter λ, what can be done? If the parameter pr in a Galois
ring requires a k-fold extension such that pkr becomes exponentially large with
respect to λ, a trivial solution is to perform a k-fold expansion by padding
each element of GR(ps, r) into GR(ps, kr). However, this padding method is
inefficient.

Inspired by the block-level coding approach from the Binius scheme [17], we
treat k consecutive elements from GR(ps, r) as a single element in GR(ps, kr)
for encoding, resulting in higher encoding efficiency.

In [32], Theorem 14.23 proves that the extension of any Galois ring is still a
Galois ring.

Claim 1 ([32] Theorem 14.23) For any Galois ring R = GR(ps, r), h(x) is
a monic irreducible polynomial of degree k over R. Then the residue class ring
R[x]/(h(x)) is a Galois ring of characteristic ps and it has pskr elements and
contains R as a subring. Thus

R[x]/(h(x)) = GR(ps, kr)

Through this claim, we can conclude that the extension of a Galois ring
remains a Galois ring.

In this paper, if the Galois ring G1 = GR(ps, r) does not satisfy the require-
ment that pr is large enough, and an extension G2 = GR(ps, kr) is needed.
At this time, G2 is obtained as an extension of G1 by a degree-k irreducible
polynomial. Elements of G2 can be viewed as polynomials of degree k − 1 with
coefficients in G1. Therefore, an element of G2 can be represented as a vector
consisting of k elements from G1. The multiplication of an element a from G1

with an element b from G2 can be interpreted as performing the multiplication
of a with each entry of the length-k vector corresponding to b. In this paper, the
relationship holds for the corresponding Galois rings GR(ps, r) and GR(ps, kr).

From Fact 4, we conclude that if a monic polynomial is irreducible over
GF(p, r), then it remains irreducible over GF(ps, r). Therefore, we can search
for irreducible polynomials over the Galois field corresponding to the Galois
ring. The method for finding irreducible polynomials of degree d over a general
Galois field has already been provided in [6].

For small Galois rings, the encoding involves two Galois rings. Below is the
definition of the [l, n, d]-k-GR(ps, r) code.

Definition 6. ([l, n, d]-k-GR(ps, r) Code) For a vector of length kn over Ga-
lois Ring GR(ps, r), treat each k consecutive elements as a single element in

Transparent SNARKs over Galois Rings 17

GR(ps, kr)(we treat the adjacent k elements of GR(ps, r) as a k-dimensional
vector.), where the parameters p, k, and r satisfy the condition that 1

pkr is neg-
ligible relative to the security parameter λ. The generator matrix G is an n × l
matrix defined over GR(ps, kr). After encoding, the result is a vector of length
l over GR(ps, kr). Furthermore, for any two distinct vectors of length kn over
GR(ps, r), at least d elements in GR(ps, kr) are different after encoding.

Algorithm 2: Enc′ Algorithm: GR(ps, r)kn → GR(ps, kr)tn

Input: x ∈ GR(ps, r)kn

parameter: α, β, t, cn, dn
Output: w ∈ GR(ps, kr)tn(GR(ps, kr) is obtained as an extension of

GR(ps, r) by a degree-k irreducible polynomial.)
1 Treat the adjacent k elements of GR(ps, r) as a k-dimensional vector.

According to Claim 1, a k-length GR(ps, r) vector is considered an
element of GR(ps, kr). This leads to treating the vector x of length kn
into a vector x′ of length n over GR(ps, kr);

2 Call Enc(x′) to obtain w and output w;

It can be observed that the encoding over GR(ps, r) is essentially an encod-
ing over GR(ps, kr). However, we must demonstrate that Enc′ supports linear
combinations over GR(ps, r); otherwise, it cannot be considered a linear code
over GR(ps, r).

Lemma 4. Enc′ supports linear combinations over GR(ps, r).

Proof. One important point to note is that an element of GR(ps, kr) can be
viewed as a vector of k elements over GR(ps, r). Let a ∈ GR(ps, r) and b ∈
GR(ps, kr). At the same time, a can be considered as an element in GR(ps, kr).

The multiplication a · b in GR(ps, kr) can be understood as the component-
wise multiplication of a with each element of b. Therefore, the dot product of an
element a ∈ GR(ps, r) with a vector of length l over GR(ps, kr) can be viewed
as the dot product of a with a vector of length lk over GR(ps, r).

Let a1, a2 ∈ GR(ps, r), and let b1,b2 ∈ GR(ps, r)kn, with b′1 and b′2 being
the vectors padded to length n over GR(ps, kr). Then we have:

a1 · Enc′(b2) + a2 · Enc′(b2) = a1 · Enc(b′1) + a2 · Enc(b′2)
= Enc(a1 · b′1 + a2 · b′2)
= Enc(a1 · b1 + a2 · b2)

The second equality holds because Enc is a linear code defined over GR(ps, kr),
and a ∈ GR(ps, kr). Therefore, it can be concluded that Enc′ supports linear
combinations over GR(ps, r). ⊓⊔

18 Yuanju Wei, Xinxuan Zhang, and Yi Deng

3.3 Costs

Table 1 is the performance comparison for different parameters. While Brake-
down applies its operations over a large 127-bit prime, our approach utilizes a
Galois ring GR(ps, r). Additionally, in Brakedown, the probability of encoding
failure does not exceed 2−100, while in the Galois ring GR(ps, r), the failure
probability does not exceed s · 2−100. In practical applications, s is almost never
greater than 28, so the scheme remains secure over Galois rings.

Beyond those, the parameters α, β, t, cn, and dn can be selected in a man-
ner consistent with those in the Brakedown scheme. If the encoding length is n,
data from Brakedown suggest that, depending on the selected parameters, en-
coding a vector of length n will require between 13.2n to 25.5n multiplications
on GR(ps, r). We denote this constant as c0, with c0 approximately ranging from
13.2 to 25.5. The cost of the expander code in this work is consistent with that
in Brakedown, except for the difference in the basic computational unit.

Table 1: Linear Code over Galois rings GR(ps, r) performance according to Brakedown [22].

n pr Pr[failure] Run-time Distance Rate α β t cn dn

≤ 230 ≥ 2127 < s · 2−100 13.2n 0.02 0.704 0.1195 0.0284 1.42 6 33
≤ 230 ≥ 2127 < s · 2−100 14.3n 0.03 0.68 0.138 0.0444 1.47 7 26
≤ 230 ≥ 2127 < s · 2−100 15.8n 0.04 0.65 0.178 0.061 1.521 7 22
≤ 230 ≥ 2127 < s · 2−100 17.8n 0.05 0.60 0.2 0.082 1.64 8 19
≤ 230 ≥ 2127 < s · 2−100 20.5n 0.06 0.61 0.211 0.097 1.616 9 21
≤ 230 ≥ 2127 < s · 2−100 25.5n 0.07 0.58 0.238 0.1205 1.72 10 23

4 Linear Time Polynomial Commitment

The Brakedown polynomial commitment relies on the lemma from AHIV17[1],
so our first step is to prove that this lemma holds over arbitrary Galois rings.
So we must consider the case where polynomial coefficients lie in a small ring.
Recall that during encoding, we treat k elements from the small ring as a single
element from the extension ring. If the verifier directly selects a challenge e from
the extension ring, then e will multiply with the larger element formed by the
k elements from the small ring. So the adjacent k coefficients will be mixed
together. However, if the verifier selects challenges only from the small ring, the
soundness cannot be guaranteed.

To solve this issue, we prove a “repetition” version of the AHIV17[1] lemma
over arbitrary Galois rings. In the “repetition” version lemma, the verifier en-
sures soundness by selecting multiple challenges from the small ring, while also
preventing the mixing of the k coefficients. To prove the “repetition” version
lemma, it is necessary to utilize the definitions of Interleaved Codes and Block-
wise Relative Distance.

Transparent SNARKs over Galois Rings 19

Definition 7 (Interleaved code and Block-wise relative distance [9]).
Let C ⊂ Fn be an [n, k, d] linear code over F. We let Cm denote the [mn,mk, d]
(interleaved) code over Fm whose codewords are all m× n matrices A such that
every row Ai of A satisfies Ai ∈ C. For A ∈ Cm and j ∈ [n], we denote by A[j]
the jth symbol of A.

Moreover, we introduce the denifiniton of block-wise distance of (A,Cm):

d(A,Lm) :=
|{j ∈ [n]|∃i s.t. Ai[j] ̸= ci[j]}|

n

where ci denote the closest codeword with Ai in C.

Definition 8 (Interleaved code and Block-wise relative distance over
Galois Rings). Let C ⊂ GR(ps, kr)n be an [n, k, d] linear code over GR(ps, kr).
We let Cm denote the [mn,mk, d] (interleaved) code over GR(ps, kr)m whose
codewords are all m×n matrices A such that every row Ai of A satisfies Ai ∈ C.
For A ∈ Cm and j ∈ [n], we denote by A[j] the jth symbol of A.

Moreover, we give the denifiniton of the block-wise distance of (A,Cm):

d(A,Lm) :=
|{j ∈ [n]|∃i s.t. Ai[j] ̸= ci[j]}|

n

where ci denote the closest codeword with Ui in C.

Claim 2 (Ames, Hazay, Ishai, and Venkitasubramaniam [1], Roth and Zémor)
Fix an arbitrary [n, k, d]-code L ⊂ Fn

q , and a proximity parameter e ∈
{
0, · · · , ⌊d−13 ⌋

}
.

Supposed d(U,Cm) > e. Then for a random w∗ in the row-span of U , we have

Pr[d(w∗, L) ≤ e] ≤ (e+ 1)/|F|

The presence of zero divisors in the Galois ring GR(ps, r) increases the possi-
bility e+1

q . To maintain this probability at a negligible level, we repeatedly select
challenges to reduce it.

Claim 3 (AHIV17 Repetition Version) Fix any k-[l, n, d] code C ⊂ GR(ps,
kr)l over the Galois ring GR(ps, r), and a proximity parameter e ∈

{
0, · · · ,

⌊
d−1
3

⌋}
.

For a matrix U ∈ GR(ps, kr)m×l with d(U,Cm) > e, and a matrix R ∈ GR(ps,
r)k×m where each element of R is randomly chosen from GR(ps, r), let W = RU .
Then we have:

Pr[d(W,Ck) ≤ e] ≤ e+ 1

prk
.

We provide the proof of this claim in the Appendix C.1.
With the verification lemma established above, we can now give a polynomial

commitment over the Galois ring GR(ps, r).
This polynomial commitment is designed to compute a multilinear poly-

nomial f(x1, · · · , xl) defined over GR(ps, r), where polynomial coefficient xi ∈

20 Yuanju Wei, Xinxuan Zhang, and Yi Deng

GR(ps, r). Assume that the encoding over GR(ps, r) uses a k-[l, n, d] code, where
k ≥ 1.

Polynomial Commitment for GR(ps, r):

– Commit Phase
• The prover splits the multilinear polynomial with l variables into a ma-

trix U of size 2l/2×2l/2. Let m = 2l/2. Each row of the matrix is encoded
using a k-[tm,m, d] code to obtain a matrix Û with m rows, Û1, · · · , Ûm,
where Ûi ∈ GR(ps, kr)tm/k, and Ûi[j] represents the element in the i-th
row and j-th column of the matrix Û . The prover constructs a Merkle
Tree to commit to Û .

– Testing Phase
• Verifier → Prover: A random matrix R ∈ (GR(ps, r))k×m, where each

element of R is randomly chosen from GR(ps, r).
• Prover → Verifier: Treat every k adjacent elements in each row of

matrix U as an element in GR(ps, r), and compute V = RU ∈ GR(ps,
kr)k×(m/k) and calims that V = RU . Then, send V to the verifier.

• Verifier: Choose a random set Q of size lQ = Θ(λ), with Q ⊆ [tm/k].
For each j ∈ Q:

- Verifier queries all m entries of the corresponding “column” of Û :
Û1[j], · · · , Ûm[j]. The verifier receives these values and the associated
Merkle Tree paths from the prover. If one of the paths is invalid,
reject.

- For each row Vi of matrix V , the verifier confirms that Enc(Vi)[j] =
m∑
s=1

Ri[s] · Ûs[j], rejecting if the condition is not satisfied.

– Evaluation Phase
• To compute f(r1, · · · , rl), calculate q1 = (1−r1, r1)⊗· · ·⊗(1−rl/2, rl/2) ∈

GR(ps, r)m and q2 = (1−rl/2+1, rl/2+1)⊗· · ·⊗ (1−rl, rl) ∈ GR(ps, r)m.
• The evaluation phase is similar to the testing phase, but with R replaced

by q1 to obtain v.
• If all previous checks pass, the verifier treats v as a vector of length m

over GR(ps, r), and computes f(r1, · · · , rl) = ⟨v,q2⟩.

The Proof of Completeness

Proof. To demonstrate completeness, we first express the matrix U as:

U =


f(0, · · · , 0, 0, · · · , 0) f(0, · · · , 0, 0, · · · , 1) · · · f(0, · · · , 0, 1, · · · , 1)
f(0, · · · , 1, 0, · · · , 0) f(0, · · · , 1, 0, · · · , 1) · · · f(0, · · · , 1, 1, · · · , 1)

...
...

...
...

f(1, · · · , 1, 0, · · · , 0) f(1, · · · , 1, 0, · · · , 1) · · · f(1, · · · , 1, 1, · · · , 1)


To compute f(r1, · · · , rl), we use the formula:

f(r1, · · · , rl) =
∑

b∈{0,1}

∏
i∈[1,l]

((1− ri)(1− bi) + ribi) f(b),

Transparent SNARKs over Galois Rings 21

which can be rewritten as:

f(r1, · · · , rl) = q⊤1 Uq2.

An important observation is that if we treat the i-th row of the matrix U , denoted
Ui, as m/k elements w1, · · · , wm/k in GR(ps, kr), then for a ∈ GR(ps, r), we
have:

a · (w1, · · · , wm/k)

=(a · w1, · · · , a · wm/k)

=(a(w1,1, · · · , w1,k), · · · , a(w(m/k),1, · · · , w(m/k),k))

=(aw1,1, · · · , aw1,k, · · · , aw(m/k),1, · · · , aw(m/k),k)

=a · (Ui[1], · · · , Ui[m]).

Since each wi can be viewed as k elements from GR(ps, r), the compu-
tation is the same whether we treat U as a matrix in GR(ps, r)m×m or in
GR(ps, kr)m×(m/k). Thus, the result of q⊤1 U remains the same in “form” re-
gardless of the interpretation. Therefore, the linear combination of the matrix
can be seen as a linear combination over GR(ps, r), ensuring the completeness
of the polynomial commitment. ⊓⊔

The Proof of Soundness

Proof. The encoded coefficient matrix Û ∈ GR(ps, kr)m×(m/k), where N = m/k,
has a code distance of d and a relative distance of γ = d/N . First, we show
that if the prover can pass the testing phase with a probability greater than
1

pkr +
(
1− γ

3

)lQ , then there must exist a codeword [c1, · · · , cm] ∈ Cm such that:

E := |{j ∈ [N] : ∃i ∈ [m], such that ci,j ̸= Ûi,j}| ≤
(γ
3

)
N.

Let e =
⌊
γN
3

⌋
. If no such codeword [c1, · · · , cm] exists, then we have d(Û , Cm) >

e. According to claim 3, since V = R · Û , the probability that d(V,Ck) is greater
than e is at least 1− e+1

pkr .
Thus, during the testing phase, the probability that the verifier randomly

selects l columns without hitting any columns in ∆(V,Ck) is at most (1− e
3)

lQ =(
1− γ

3

)lQ . Define the event E1 as d(V,Ck) > e, and the event E2 as the verifier
selecting l columns without hitting any in ∆(V,Ck). Then, we have:

Pr[P ∗wins] ≤ Pr[P ∗wins|Ē1] Pr[Ē1] + Pr[P ∗wins|E1] Pr[E1]

≤ Pr[Ē1] + Pr[E2|E1] Pr[E1]

<
1

pkr
+ Pr[E2|E1] =

1

pkr
+ (1− γ

3
)lQ

This contradicts the fact that the prover could pass the testing phase, so
there must exist such a codeword c1, · · · , cm.

22 Yuanju Wei, Xinxuan Zhang, and Yi Deng

We can observe that each ci is the closest codeword to each row Ui of Û ;
otherwise, the distance between two codewords would be less than d. Define

w :=
m∑
i=1

q1,i ·ci. Next, we show that if the prover can pass the testing phase with

a probability greater than e+1
pk +

(
1− d

3

)lQ , and pass the evaluation phase with

a probability greater than
(
1− 2γ

3

)lQ , then let u :=
m∑
i=1

q1,i ·Ui and w = Enc(u).

If w ̸= Enc(u), then w and Enc(v) are two distinct codewords in C, meaning
that the number of positions where they are identical will not exceed (1− γ)N .
Let the set of positions where the two codewords are identical be denoted as
A. If the verifier selects a column j /∈ A ∪ E, then the test will fail because
w and Enc(u) can only match within A ∪ E. We have |A ∪ E| ≤ |A| + |E| ≤
(1 − γ)N +

(
γ
3

)
N =

(
1− 2γ

3

)
N . Since the verifier selects the set of columns

Q randomly, if the prover is cheating, the probability of passing the evaluation
phase will not exceed

(
1− 2γ

3

)lQ .
Thus, if the prover can pass the testing phase with a probability greater

than e+1
pk +

(
1− d

3

)lQ , and the evaluation phase with a probability greater than(
1− 2γ

3

)lQ , the binding property of the scheme is ensured. ⊓⊔

4.1 Extractability

If the committed polynomial has l variables, let m = 2l/2, so the matrix U being
committed is an m× (m/k) matrix over GR(ps, kr). Let N = m/k. The key to
extraction lies in finding an invertible N ×N matrix over the Galois ring. In a
finite field, a matrix formed by selecting N linearly independent non-zero vectors
of length N is invertible. Randomly selecting N vectors of length N results in
a non-negligible probability of the matrix being invertible. However, in a Galois
ring, due to the presence of zero divisors, a set of linearly independent vectors
does not necessarily form an invertible matrix.

We prove that a randomly chosenN×N matrix over the Galois ring GR(ps, r)
is invertible with high probability. First, we consider the case where pr > N and
1− N

pr is non-negligible.

Lemma 5. Assuming that 1 − N
pr > 0 and is non-negligible, then by randomly

selecting an N ×N matrix R from GR(ps, r), there is a probability of 1− N
pr that

R is invertible.

Proof. Using the adjugate matrix method for matrix inversion,

R−1 =
A∗

det(A)
=

1

det(A)

R
∗
11 · · · R∗1N
...

. . .
...

R∗N1 · · · R∗NN


⊤

Let R∗ij represent the algebraic cofactor of matrix R with respect to the (i, j)

entry. We observe that if det(R) is non-zero and not a zero divisor, then R−1

Transparent SNARKs over Galois Rings 23

exists. Now, we calculate the probability that det(R) is non-zero and not a zero
divisor.

det(R) =
∑

σ∈SN

sgn(σ)
N∏
i=1

Ai,σ(i)

where SN is the set of all permutations on {1, 2, · · · , N}, and sgn(σ) denotes the
sign of permutation σ. If σ has an even number of inversions, then sgn(σ) = 1;
otherwise, sgn(σ) = −1. In fact, det(R) can be viewed as a multilinear polyno-
mial in the N2 variables Rij , and the degree of the polynomial is at most N .
Let us define this polynomial as fR.

By a known fact about Galois rings, all zero divisors in GR(ps, r) lie in the
ideal (p). Therefore, we only need to show that fR is non-zero modulo p with a
non-negligible probability. Consider the isomorphism map ψ

Zps → Fp

c0 + c1p+ · · ·+ cp−1p
s−1 7→ c0

For a polynomial f of degree at most d with coefficients in GR(ps, r), we define
a mapping Ψ , where Ψ(f) is derived by applying ψ to each coefficient of f ,
resulting in a polynomial f ′. Clearly, Ψ is a homomorphism. If at some point x,
we have f(x) = 0 (mod p), then it follows that Ψ(f)(ψ(x)) = 0.

Let Ψ(fR) = f ′R. If f ′R evaluates to a non-zero value, then fR will not be a zero
divisor in GR(ps, r). Since the variables Rij are randomly chosen from GR(ps, r),
so ψ(Rij) are randomly chosen from GF(p, r). By the Schwartz-Zippel lemma
for fields, the degree of f ′R is at most N , so the probability that a randomly
chosen point evaluates to 0 is at most N

pr . Therefore, the probability that f ′R is
non-zero is at least 1− N

pr , which is non-negligible. This completes the proof. ⊓⊔

If the ring GR(ps, r) does not satisfy pr > N , then the GR(ps, r) code used
in encoding must be a [l, n, d]−k−GR(ps, r) code, where pkr ≫ N . Choose a k′
such that k′ is a divisor of k and pk

′r > N . At this point, the extractor can send
k′ challenges from GR(ps, r) to simulate a challenge from GR(ps, k′r). Then,
using Lemma 8, we can obtain an invertible N ×N matrix with non-negligible
probability.

If the probability that the matrix is invertible is pi, by repeating the process
poly(1

pi
) times, we can ensure that with probability 1 − negl(λ), the matrix U

can be successfully extracted.

4.2 More Efficient

When using polynomial commitment schemes in SNARKs, it is typically required
that the challenge space for the verifier is exponential in size relative to the
security parameter λ, while the polynomial coefficients may come from a smaller
Galois ring. Suppose the coefficients come from GR(ps, r), while the challenges

24 Yuanju Wei, Xinxuan Zhang, and Yi Deng

come from GR(ps, kr). In this case, when committing to the coefficients, each
coefficient element needs to be treated as an element in GR(ps, kr). This increases
the cost of encoding and hashing by a factor of k.

In Binius [17], a two-dimensional expansion was used to address this issue.
In this work, we explain the problem from the perspective of “repetition”: using
the observations that even though elements are treated as being in GR(ps, kr)
during the encoding phase, the commitment still supports linear combinations
over GR(ps, r). This allows the algebraic structures used during the commitment
and evaluation phases to differ. Below, we present a polynomial commitment
scheme where the coefficients come from GR(ps, r), but the challenges come
from GR(ps, kr).

The polynomial commitment scheme is designed to compute a multilin-
ear polynomial f(x1, · · · , xl) over GR(ps, r), where the coefficients come from
GR(ps, r) and each xi ∈ GR(ps, kr). Assume that the encoding over GR(ps, r)
uses a k-[l, n, d] code, where k ≥ 1.

More Efficient Polynomial Commitment for Small Rings

– Commit Phase
• The prover splits the multilinear polynomial with l variables into a ma-

trix U of size 2l/2×2l/2. Let m = 2l/2. Each row of the matrix is encoded
using a k-[tm,m, d] code to obtain a matrix Û with m rows, Û1, · · · , Ûm,
where Ûi ∈ GR(ps, kr)tm/k, and Ûi[j] represents the element in the i-th
row and j-th column of the matrix Û . The prover constructs a Merkle
Tree to commit to Û .

– Testing Phase
• Verifier → Prover: A random matrix R ∈ (GR(ps, r))k×m, where each

element of R is randomly chosen from GR(ps, r).
• Prover → Verifier: Treat every k adjacent elements in each row of

matrix U as an element in GR(ps, r), and compute V = RU ∈ GR(ps,
kr)k×(m/k) and calims that V = RU . Then, send V to the verifier.

• Verifier: Choose a random set Q of size lQ = Θ(λ), with Q ⊆ [tm/k].
For each j ∈ Q:

- Verifier queries all m entries of the corresponding “column” of Û :
Û1[j], · · · , Ûm[j]. The verifier receives these values and the associated
Merkle Tree paths from the prover. If one of the paths is invalid,
reject.

- For each row Vi of matrix V , the verifier confirms that Enc(Vi) =
m∑
s=1

Ri[s] · Ûs[j], rejecting if the condition is not satisfied.

– Evaluation Phase
• To compute f(r1, · · · , rl), calculate q1 = (1−r1, r1)⊗· · ·⊗(1−rl/2, rl/2) ∈

GR(ps, kr)m and q2 = (1−rl/2+1, rl/2+1)⊗· · ·⊗(1−rl, rl) ∈ GR(ps, kr)m.
• Split each element of q1 into a k-length vector over GR(ps, r). Let q1,i

represent the i-th position of each element. Then, for each q1,i, perform
the evaluation phase to get k vectors v1, · · · ,vk.

Transparent SNARKs over Galois Rings 25

• Combine the k vectors into one m-length element v over GR(ps, kr),
where vi[j] represents the i-th coefficient at the j-th position. The verifier
then computes v⊤q2 to obtain f(r1, · · · , rl).

To demonstrate the completeness of this scheme, we express f(r1, · · · , rl)
as a matrix multiplication: q⊤1 Uq2. When computing q⊤1 , note that only the
elements of q1 come from GR(ps, kr). Thus, when multiplying the elements of
q1 with the elements of U , it can be viewed as multiplying each component of
the elements in U with each component of the elements in q1.

q⊤1 U =

q
⊤
11
...

q⊤1k

U
Thus, the verifier can correctly compute f(r1, · · · , rl). The binding and ex-

tractability properties of this protocol remain consistent with the previous proof.
We now focus on analyzing the prover’s computational cost. The prover needs
to construct a Merkle Tree over 2l

k elements from GR(ps, r), which takes time

t1 = O
(

2l

k

)
. Additionally, the prover needs to perform linear encoding on 2l/2

k

elements from GR(ps, r), requiring c02
l

k multiplications in GR(ps, kr). In the test-
ing phase and evaluation phase, t2lk multiplications in GR(ps, kr) ·GR(ps, r) are
needed, where 1

t is the code rate. Moreover, the prover must open |Q|2l/2 Merkle
Tree nodes, taking time t2.

Let ee represent the time required for one multiplication in GR(ps, kr), and be
represent the time for one multiplication in GR(ps, kr) ·GR(ps, r). The prover’s
total cost is t1 + t2 +

c02
l

k ee+ t2l+1kbe.
Without this commitment scheme, if the prover commits to elements from

GR(ps, r) by directly calculating over GR(ps, kr) in the commitment phase, they
would need to construct a Merkle Tree over 2l elements from GR(ps, r), taking
time kt1 = O

(
2l

k

)
. Then, the prover would perform linear encoding on 2l/2

elements from GR(ps, r), requiring c02
l multiplications in GR(ps, kr). In the

testing phase and evaluation phase, t2l multiplications in GR(ps, kr) are needed.
Additionally, |Q|2l/2 Merkle Tree nodes must be opened, taking time t2. Thus,
the total prover cost is kt1 + t2 + (c0 + 2t)2lee.

It is clear that using this approach results in approximately k times more
ee computations. And the ee operations are significantly more time-consuming
than be and bb operations.

5 Proof Toolboxes over Galois Rings

The sumcheck protocol over rings has been widely discussed, and in [30], the
sumcheck protocol was extended to infinite non-commutative rings. However,
[30] did not propose a corresponding polynomial commitment scheme. In this
section, we explore the sumcheck protocol over Galois rings.

26 Yuanju Wei, Xinxuan Zhang, and Yi Deng

5.1 Sumcheck Over Galois Rings

To ensure the soundness of the sumcheck protocol, the verifier’s challenges can
be selected from the exceptional set of the ring. Therefore, to ensure a sufficiently
large challenge space, the exceptional set must be large enough. An extension
method is typically used to expand the size of the exceptional set. In fact, if a
ring has a sufficiently large exceptional set, it indicates that the proportion of
zero divisors is very small, and in this case, according to Fact 3, the verifier’s
challenge can be selected from the entire Galois ring.

Below, we introduce the sumcheck protocol where the challenges are selected
from the entire Galois ring GR(ps, r), assuming that pr is sufficiently large and
the degree of the polynomial p does not exceed d. As long as the verifier’s chal-
lenges are selected from the ring GR(ps, r), where pr is exponentially large in
relation to the security parameter λ, security can be ensured. Meanwhile, the
coefficients of the polynomial being proven can still come from a “smaller ring”
G1, as long as GR(ps, r) is an extension of G1. This allows arithmetic circuits
defined over a “small ring” to be encoded into polynomials with coefficients that
remain in the smaller ring. This aligns with the scenario mentioned at the end
of the previous section and it can reduce the prover’s time complexity.

Our sumcheck protocol is adapted from the protocol presented in Chapter 4
of the [31]. We use degi(g) to denote the highest degree of the i-th variable of
the polynomial g.

Sumcheck Over Galois Rings Construction

• The prover sends a value H to the verifier, which is equal to∑
x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xl∈{0,1}

g(x1, ..., xl)

• In the first round, the prover sends a univariate polynomial g1(X1) claim to
equal ∑

(x2,...,xl)∈{0,1}n−1

g(X1, x2, ..., xl)

Then verifier checks
H = g1(0) + g1(1)

and g1 is a univarite polynomial of degree at most deg1(g). If not, the verifier
terminates and returns reject.
• The verifier randomly selects a challenge r1 from the GR(ps, r) and sends r1

to the prover.
• In the ith round, 1 < i < n, the prover sends a univariate polynomial pi(Xi)

and claim it is equal to∑
(xi+1,...,xl)∈{0,1}l−i

g(r1, ..., ri−1, Xi, xi+1, ..., xl)

verifier checks whether gi is a univariate polynomial with degree at most
degi(g), and checks gi−1(ri−1) = gi(0) + gi(1). If the check does not hold,
then terminates and rejects.

Transparent SNARKs over Galois Rings 27

• The verifier randomly selects a challenge ri from GR(ps, r) and sends ri to
the prover.

• In the last round, the prover sends a univariate polynomial gn(Xn) to the
verifier and claims equal g(r1, ..., rl−1, Xl) verifier checks whether gl is a
univariate polynomial whose degree does not exceed degl(g) and checks
gl−1(rl−1) = gl(0) + gl(1). If not, terminate and rejects.

• Verifier chooses a random challenge rl from GR(ps, r) and evaluates g(r1, ..., rl)
with a single oracle query to g. Verifier checks gl(rl) = g(r1, ..., rl), if not,
terminate and rejects.

• If all the above checks pass, then the verifier accepts.

Lemma 6. The soundness error of the sumcheck protocol over Galois rings will
not exceed ld

pr .

In Appendix D.1, we provide the proof for this lemma.
In addition to the sumcheck protocol, constructing SNARKs often requires a

ZeroCheck protocol to prove that a polynomial p evaluates to zero on {0, 1}l. We
now present a scheme over the Galois ring GR(ps, r), where pr is exponentially
large with respect to the security parameter λ. Define

eq(x,y) =
∏
i∈[l]

((1− xi)(1− yi) + xiyi) .

ZeroCheck Over Galois Rings Construction

• Statement: For a polynomial f of degree d, we want to assert that f(x) = 0
for all x ∈ {0, 1}l.

• Input: The prover has the polynomial p, and the verifier has an oracle for
evaluating f at any point.

• Procedure:
- The verifier randomly selects an l-length vector a from GR(ps, r) and

sends it to the prover.
- Upon receiving a, the prover and verifier execute the sumcheck protocol

to prove that ∑
x∈{0,1}l

eq(a,x)f(x) = 0,

Lemma 7. The soundness error of the zero-check protocol over the Galois ring
does not exceed l(d+2)

pr .

In Appendix D.2, we provide the proof for this lemma.

6 SNARKs over Galois Rings

With the polynomial commitment scheme, sumcheck protocol, and ZeroCheck
protocol over Galois rings, we can construct transparent SNARK schemes over
Galois rings. In this section, we primarily discuss two SNARK schemes: Libra
and HyperPlonk. Libra is designed for log-space uniform circuits but achieves
a prover runtime of O(n). While HyperPlonk is applicable to arbitrary proof
circuits but has a prover runtime of O(n log2 n).

28 Yuanju Wei, Xinxuan Zhang, and Yi Deng

6.1 Libra Over Galois Rings

In Galois rings, the presence of zero divisors can affect set consistency checks.
In fields, to determine whether two sets S1 and S2 are identical, we encode
them as polynomials: p1(x) =

∏
a∈S1

(x − a) and p2(x) =
∏

a∈S2
(x − a). We

then check if the polynomials are equal to verify the sets’ equality. However,
in Galois rings, due to the influence of zero divisors, it is possible for different
sets S1 and S2 to produce the same polynomial encoding. For example, under
modulo 8, (x − 1)(x − 7) = (x − 5)(x − 3) (mod 8), making it impossible to
distinguish between the sets (1, 7) and (5, 3). Libra targets log-space uniform
circuits, avoiding the need for set consistency checks.

Libra [33] provides a linear IOP construction specifically for log-space uni-
form circuits. According to the discussion in section 5, the challenge must come
from the Galois ring GR(ps, r) that pr is exponential with respect to the secu-
rity parameter λ, and the performance over Galois rings is similar to that over
the Galois field GF(p, r). By using Libra’s IOP framework combining with the
Brakedown polynomial commitment scheme over Galois rings, we can construct
a transparent SNARK with linear prover time for log-space uniform circuits.
This SNARK has O(n) prover time, O(

√
n) proof size, and O(

√
n) verifier time.

If the circuit to be proven is defined over the ring G1 = GR(ps, r), the chal-
lenge needs to be selected from G2 = GR(ps, kr). Let ee denote the cost of
performing a multiplication over the ring G2, be represent the cost of multiply-
ing an element from G1 with an element from G2, and bb signify the cost of
multiplication within G1. Additionally, t1 is the time required for constructing
a Merkle tree, t2 is the time needed to open |Q| positions of the Merkle tree.
Taking parameters that maximize the encoding distance, c0 = 25.5, t = 1.72,
the cost for polynomial commitment is t1 + t2 +

25.5n
k ee+ 3.44nkbe.

Then the total prover time required for the entire protocol is:

t1 + t2 +
25.5 + 19k

k
nee+ (3.44k + 11)nbe

The details of the protocol and analysis of prover’s time is provided in Ap-
pendix E.

6.2 HyperPlonk over Galois Rings

HyperPlonk [14] is capable of handling all NP arithmetic circuits. It has a con-
straint system that is divided into two parts: gate constraints and permutation
constraints. For each gate in the circuit, there are three parts: left input, right
input, and output. Each output wires can become the input wires of another
gates. We encode the wires according to each circuit gate, using a multilinear
polynomial to represent the circuit to be proved. If the circuit has q public input
gates, one output gate, and s remaining circuit gates (including secret input
gates and intermediate calculation gates), let Li represent the left input of the i-
th gate, Ri represent the right input of the i-th gate, and Oi represent the output
of the i-th gate. Define ⟨i⟩ as the binary representation of i. Let the multilinear

Transparent SNARKs over Galois Rings 29

polynomial M be defined such that M(0, 0, ⟨i⟩) = Li, M(0, 1, ⟨i⟩) = Ri, and
M(1, 0, ⟨i⟩) = Oi. Assume q + s+ 1 = 2v, where M is a multilinear polynomial
with v+2 variables. The multilinear polynomial M serves as the witness for the
SNARK.

Gate Constraints. Let S1(x), S2(x) be multilinear polynomials with v vari-
ables. To prove the gate constraint, we need to show that the following polyno-
mial holds for all x ∈ {0, 1}v:

0 = S1(x) · (M(0, 0,x) +M(0, 1,x)) + S2(x) ·M(0, 0,x) ·M(0, 1,x)−
M(1, 0,x) + I(x)

(1)

For different multiplication, addition, and input-output gates, the multilinear
polynomials S1, S2 take on different values.

• for an addition gate: S1(⟨i⟩) = 1, S2(⟨i⟩) = 0, so Li +Ri = Oi.
• for an multiplication gate: S1(⟨i⟩) = 0,S2(⟨i⟩) = 1, so Li ·Ri = Oi.
• when i < q or i = q+ s, S1(⟨i⟩) = 0,S2(⟨i⟩) = 0, this applies to input-output

gates, so Oi = I(⟨i⟩).

By invoking the ZeroCheck protocol over the Galois ring, we can prove that
Equation 1 holds.

Permutation Constraints. We adopted the second permutation constraint
from HyperPlonk. Due to the presence of zero divisors in Galois rings, set con-
sistency check is affected. HyperPlonk’s first approach to prove permutation
constraint needs set consistency check[14]. Similarly, when using the Spartan
IOP framework [29], sparse polynomial processing requires the Sparse technique,
which also involves set consistency checks. Therefore, we ultimately used the ap-
proach in HyperPlonk to express permutation constraints directly in the form
of a sumcheck, thereby avoiding this problem.

Given a permutation σ : {0, 1}l → {0, 1}l, the permutation is to demonstrate
that for any x ∈ {0, 1}l, the equation f(x) = f(σ(x)) holds. The permutation σ
can be decomposed into l bits, resulting in σ̃ = (σ1(x), . . . , σl(x)) : GR(ps, r)l →
GR(ps, r)l, where σi signifies the position of the i-th bit following the permu-
tation. Notably, for all x ∈ {0, 1}l, each σi(x) falls within {0, 1}. Consequently,
the expression to be verified is:

f(σ̃(x))− g(x) = 0, for all x ∈ {0, 1}l.

Since f(σ̃(x)) cannot be easily described using a multilinear polynomial, it is
represented in multilinear form through an equivalence polynomial, denoted as:∑

y∈{0,1}l
(f(y) · eq(σ̃(x),y)− g(y) · eq(x,y)) = 0, for all x ∈ {0, 1}l.

Then use ZeroCheck to introduce eq and random numbers to turn it into a
sumcheck protocol.

30 Yuanju Wei, Xinxuan Zhang, and Yi Deng

∑
x∈{0,1}l

eq(a,x) ·
∑

y∈{0,1}l
(f(y)eq(σ̃(x),y)− g(y)eq(x,y)) = 0

To facilitate better computation, the above expression can be rewritten as∑
x∈{0,1}l

eq(r,x) ·
∑

y∈{0,1}l
(f(y)eq(x, σ̃−1(y))− g(y)eq(x,y)) = 0

σ̃−1 is the inverse of σ̃, and we can split every bit just like σ̃.
If the circuit to be proven is defined over the ring G1 = GR(ps, r), the chal-

lenge needs to be selected from G2 = GR(ps, kr). Let ee denote the cost of
performing a multiplication over the ring G2, be represent the cost of multiply-
ing an element from G1 with an element from G2, and bb signify the cost of
multiplication within G1. Additionally, t1 is the time required for constructing a
Merkle tree, t2 is the time needed to open |Q| positions of the Merkle tree. If the
circuit to be proven has a size of n, in HyperPlonk, the permutation constraints
apply to the polynomial M , where the size of the coefficients of M is 4n, with
2l = 4n.

The total prover time cost of the protocol is:

39k + 2(log n+ 3)2k + 204

k
nee+ (13.76k + 2 log n+ 25)nbe

+ (2(log n+ 4)(log n+ 2) + 7)nbb+ 4t1 + 4t2

The details of the protocol and analysis of prover’s time is provided in Ap-
pendix F.

7 Comparison with Rinocchio

For a circuit with ℓ wires, t addition gates, m multiplication gates and public
input and output x, we provide the following comparison.

Table 2: Comparison with Rinocchio
Rinocchio This work (Libra) This work (HyperPlonk)

circuit type NP circuit log-space uniform circuit NP circuit
prover time O(ℓ+m logm) O(t+m) O((t+m) log2(t+m)))
proof size O(1) O(

√
t+m) O(

√
t+m)

verifier time O(|x|) O(
√
t+m) O(

√
t+m)

SRS length O(ℓ+m) − −

The Rinocchio and our system primarily provide proofs for two-input circuits.
Beyond the initial input gates, each circuit gate corresponds to both a left and
right input wire, hence ℓ is approximately twice (t+m). More details are provided
in G.

Transparent SNARKs over Galois Rings 31

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable suggestions, and we also thank Sihuang Hu, Chong Shangguan, Kaijie
Jiang, Hexiang Huang, Yuanting Shen and others for their valuable discussions
on this work. We are supported by the National Key Research and Development
Project of China (Grant No. 2023YFB4503203), the Strategic Priority Research
Program of Chinese Academy of Sciences (Grant No. XDB0690200) and the
National Natural Science Foundation of China (Grant No. 62372447 and No.
61932019).

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight
sublinear arguments without a trusted setup. In: Thuraisingham, B., Evans, D.,
Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. pp. 2087–2104. ACM (2017), https://doi.org/10.1145/
3133956.3134104

2. Bagad, S., Domb, Y., Thaler, J.: The sum-check protocol over fields of small char-
acteristic. IACR Cryptol. ePrint Arch. p. 1046 (2024), https://eprint.iacr.org/
2024/1046

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx,
D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. LIPIcs,
vol. 107, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018),
https://doi.org/10.4230/LIPIcs.ICALP.2018.14

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. p. 46
(2018), http://eprint.iacr.org/2018/046

5. Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps for
reed-solomon codes. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020.
pp. 900–909. IEEE (2020), https://doi.org/10.1109/FOCS46700.2020.00088

6. Benger, N., Scott, M.: Constructing tower extensions of finite fields for imple-
mentation of pairing-based cryptography. In: Hasan, M.A., Helleseth, T. (eds.)
Arithmetic of Finite Fields, Third International Workshop, WAIFI 2010, Is-
tanbul, Turkey, June 27-30, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6087, pp. 180–195. Springer (2010), https://doi.org/10.1007/
978-3-642-13797-6_13

7. Bishnoi, A., Clark, P.L., Potukuchi, A., Schmitt, J.R.: On zeros of a polynomial in
a finite grid. Comb. Probab. Comput. 27(3), 310–333 (2018), https://doi.org/
10.1017/S0963548317000566

8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: Gold-
wasser, S. (ed.) Innovations in Theoretical Computer Science 2012, Cambridge,
MA, USA, January 8-10, 2012. pp. 326–349. ACM (2012), https://doi.org/10.
1145/2090236.2090263

9. Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification
from tensor codes. In: Pass, R., Pietrzak, K. (eds.) Theory of Cryptography - 18th

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://eprint.iacr.org/2024/1046
https://eprint.iacr.org/2024/1046
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
http://eprint.iacr.org/2018/046
https://doi.org/10.1109/FOCS46700.2020.00088
https://doi.org/10.1007/978-3-642-13797-6_13
https://doi.org/10.1007/978-3-642-13797-6_13
https://doi.org/10.1017/S0963548317000566
https://doi.org/10.1017/S0963548317000566
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263

32 Yuanju Wei, Xinxuan Zhang, and Yi Deng

International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12551, pp. 19–46.
Springer (2020), https://doi.org/10.1007/978-3-030-64378-2_2

10. Bootle, J., Chiesa, A., Sotiraki, K.: Sumcheck arguments and their applications. In:
Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12825,
pp. 742–773. Springer (2021), https://doi.org/10.1007/978-3-030-84242-0_26

11. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7417,
pp. 868–886. Springer (2012), https://doi.org/10.1007/978-3-642-32009-5_50

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014), https://doi.org/10.1145/2633600

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. pp. 315–334. IEEE Computer Society (2018), https://doi.org/
10.1109/SP.2018.00020

14. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14005, pp.
499–530. Springer (2023), https://doi.org/10.1007/978-3-031-30617-4_17

15. Chen, S., Cheon, J.H., Kim, D., Park, D.: Verifiable computing for approximate
computation. IACR Cryptol. ePrint Arch. p. 762 (2019), https://eprint.iacr.
org/2019/762

16. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Pre-
processing zksnarks with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 12105, pp. 738–768. Springer (2020), https://doi.org/10.
1007/978-3-030-45721-1_26

17. Diamond, B.E., Posen, J.: Succinct arguments over towers of binary fields. IACR
Cryptol. ePrint Arch. p. 1784 (2023), https://eprint.iacr.org/2023/1784

18. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptol. ePrint Arch. p. 953 (2019), https://eprint.iacr.org/2019/953

19. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: Snarks for ring arithmetic.
J. Cryptol. 36(4), 41 (2023), https://doi.org/10.1007/s00145-023-09481-3

20. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8
June 2011. pp. 99–108. ACM (2011), https://doi.org/10.1145/1993636.1993651

21. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive
proofs for muggles. J. ACM 62(4), 27:1–27:64 (2015), https://doi.org/10.1145/
2699436

https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-031-30617-4_17
https://eprint.iacr.org/2019/762
https://eprint.iacr.org/2019/762
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436

Transparent SNARKs over Galois Rings 33

22. Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and field-agnostic snarks for R1CS. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 14082, pp. 193–226.
Springer (2023), https://doi.org/10.1007/978-3-031-38545-2_7

23. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9666, pp. 305–326. Springer (2016), https://doi.org/10.
1007/978-3-662-49896-5_11

24. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) Advances in Cryptology - ASI-
ACRYPT 2010 - 16th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6477, pp. 177–194. Springer (2010),
https://doi.org/10.1007/978-3-642-17373-8_11

25. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, May
4-6, 1992, Victoria, British Columbia, Canada. pp. 723–732. ACM (1992), https:
//doi.org/10.1145/129712.129782

26. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Nissim, K., Waters, B. (eds.) Theory of Cryptog-
raphy - 19th International Conference, TCC 2021, Raleigh, NC, USA, November
8-11, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13043,
pp. 1–34. Springer (2021), https://doi.org/10.1007/978-3-030-90453-1_1

27. Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994.
pp. 436–453. IEEE Computer Society (1994), https://doi.org/10.1109/SFCS.
1994.365746

28. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical veri-
fiable computation. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013. pp. 238–252. IEEE Computer Society (2013),
https://doi.org/10.1109/SP.2013.47

29. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 12172, pp. 704–737. Springer (2020), https://doi.org/
10.1007/978-3-030-56877-1_25

30. Soria-Vazquez, E.: Doubly efficient interactive proofs over infinite and non-
commutative rings. In: Kiltz, E., Vaikuntanathan, V. (eds.) Theory of Cryptog-
raphy - 20th International Conference, TCC 2022, Chicago, IL, USA, November
7-10, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13747,
pp. 497–525. Springer (2022), https://doi.org/10.1007/978-3-031-22318-1_18

31. Thaler, J.: Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur.
4(2-4), 117–660 (2022), https://doi.org/10.1561/3300000030

https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-031-22318-1_18
https://doi.org/10.1561/3300000030

34 Yuanju Wei, Xinxuan Zhang, and Yi Deng

32. Wan, Z.X.: Finite fields and Galois rings. World Scientific Publishing Company
(2011)

33. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceed-
ings, Part III. Lecture Notes in Computer Science, vol. 11694, pp. 733–764. Springer
(2019), https://doi.org/10.1007/978-3-030-26954-8_24

34. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover
time. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO
2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV. Lecture Notes in
Computer Science, vol. 13510, pp. 299–328. Springer (2022), https://doi.org/
10.1007/978-3-031-15985-5_11

35. Zeilberger, H., Chen, B., Fisch, B.: Basefold: Efficient field-agnostic polynomial
commitment schemes from foldable codes. In: Reyzin, L., Stebila, D. (eds.) Ad-
vances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part X.
Lecture Notes in Computer Science, vol. 14929, pp. 138–169. Springer (2024),
https://doi.org/10.1007/978-3-031-68403-6_5

https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-68403-6_5

Transparent SNARKs over Galois Rings 35

Appendix

A Galois Rings

Proof. Considering the homomorphism ψ : GR(ps, r)→ GF(p, r), we define the
mapping as follows:

Zps [x] → Fp[x]
a0 + a1x+ · · ·+ anx

n 7→ ā0 + ā1x+ · · ·+ ānx
n

where each coefficient ai in the Galois ring GR(ps, r) is mapped to its corre-
sponding residue āi modulo p.

For a polynomial f of degree at most d with coefficients in GR(ps, r), we
define a mapping Ψ , where Ψ(f) is derived by applying ψ to each coefficient
of f , resulting in a polynomial f ′. Clearly, Ψ is a homomorphism. If at some
point x, we have f(x) = 0, then it follows that Ψ(f)(ψ(x)) = 0, because the
computation of f(x) modulo ps is equivalent to computing Ψ(f)(ψ(x)) modulo
p.

Under modulo p calculations within the field Fp, the degree of Ψ(f) remains
the same as that of f , which does not exceed d. Thus, Ψ(f) has at most d roots in
Fp. For each root in Fp, there are at most p(s−1)r preimages under ψ in GR(ps, r).
Therefore, the number of roots of f in GR(ps, r) does not exceed dp(s−1)r.

Consequently, the probability of randomly selecting a root of f is at most
dp(s−1)r

psr = d
pr . ⊓⊔

Proof. Proof by contradiction: Suppose f is reducible in the ring GR(ps, r). Then
it can be expressed as

f = a× b (mod ps)

where (a) and (b) both belong to Zps [x]. Since the above equation holds modulo
(ps), it must also hold modulo p. Thus, we have

f = ā× b̄ (mod p)

where ā and b̄ are polynomials obtained by reducing each coefficient in a and b
modulo p. This contradicts the fact that f is irreducible in GF(pr). Therefore,
the proof is complete. ⊓⊔

B The Proofs of Expander Code over Galois Rings

The following holds with all but negligible probability over the choices of random
matrices A,B:

(1) for every 0 < ∥x∥0 < βn,y⊤ = x⊤ ·A ̸= 0;
(2) for every αβn ≤ ∥z∥0 < βn,v⊤ = z⊤ ·B has ∥v∥0 ≥ βn.

36 Yuanju Wei, Xinxuan Zhang, and Yi Deng

Assuming that these two properties hold, one can show that Encn has dis-
tance β , that is , for every x ̸= 0,w = Encn(x) satisfies ∥w∥0 ≥ βn. To this
end, we consider the following three cases.

1 ∥x∥0 ≥ βn. In this case, w =

x
z
v

 trivially satisfies ∥w∥0 ≥ ∥x∥0 ≥ βn.

2 z⊤ = Encαn(x⊤ ·A) satisfies ∥z∥0 ≥ βn. Again, since w contains z, we have
∥w∥0 ≥ ∥z∥0 ≥ βn.

3 0 < ∥x∥0 < βn and ∥z∥0 < βn. In this case, by Property (1) above, we
have that y⊤ = x⊤ · A ̸= 0. By the code property of Encαn, we have that
every non-zero vector y is mapped to z = Encαn(y) of Hamming weight
∥z∥ ≥ αβn. Now we have that αβn ≤ ∥z∥ < βn, and by the Property (2)
above, ∥v∥0 ≥ βn, which finishes the proof.

It remains to choose the values of the parameters α, β, t, cn, dn such that the
Property (1) and (2) are satisfied with probability at least 1− s · 2−100 over the
choice of matrices A and B.

The probability of the occurrence of events E(1)
n,k and E(3)

n,k is less than 2−100.
Because both probabilities are independent of whether they are related to a ring
or a field, so the proof aligns with the proof of the Brakedown scheme [22] Claim
1 and Claim 3 in section 5, and is not discussed further here. However, proving
events E(2)

n,k and E
(4)
n,k in the context of the ring is more difficult, due to the

impact of zero divisors. The zero divisors affect the probability that elements
of the ring GR(ps, r) will be zero after a random linear combination, which is
not simply 1

prs as might be expected. In the worst-case scenario, this probability
may reach 1

pr .
Since the encoded elements are from the Galois ring GR(ps, r), the total

number of possible of k non-zero elements is pksr. The probability of events
E

(2)
n,k and E

(4)
n,k occurring will significantly increase based on the union bound.

The solution follows a similar approach to the Basefold scheme when analyzing
codeword distance: not all elements in a Galois ring have the same probability of
a random linear combination equaling zero, which is not always 1

pr . The higher
the probability that a random linear combination equals zero, the fewer such
elements there are in the Galois ring. We need to leverage the properties of
Galois rings and classify the elements into s categories based on the probability
of a random linear combination equaling zero, then calculate the probabilities
for each category separately.

C The Proofs of Polynomial Commitment over Galois
Rings

C.1 The Proof of AHIV17 Repetition Version

Claim 4 (AHIV17 Repetition Version) Fix any k-[l, n, d] code C ⊂ GR(ps, kr)l

over the Galois ring GR(ps, r), and a proximity parameter e ∈
{
0, · · · ,

⌊
d−1
3

⌋}
.

For a matrix U ∈ GR(ps, kr)m×l with d(U,Cm) > e, and a matrix R ∈ GR(ps,

Transparent SNARKs over Galois Rings 37

r)k×m where each element of R is randomly chosen from the GR(ps, r), let W =
RU . Then we have:

Pr[d(W,Ck) ≤ e] ≤ e+ 1

prk
.

We say that ∆(v, C) represents the set of positions where v differs from the
closest codeword in C, and ∆(V,Cm) =

⋃
i∈[m]∆(Vi, C

m), where Vi is the i-th
row of matrix V .

Proof. Let W be the distribution of all possible values of W . We first prove
that not all W satisfy d(W,Ck) ≤ e. Using proof by contradiction, assume
that for all W ∈ W, we have d(W,Ck) ≤ e. Then we can select a specific
W ∗ ∈ W such that for all W ∈ W, d(W ∗, Ck) ≥ d(W,Ck). And we still have
d(W ∗, Ck) ≤ e. From the conditions of the theorem, we know that d(U,Cm) > e,
which implies that there exists a submatrix U∗ consisting of some rows of U .
We assume U∗ consists of m′ rows such that ∆(U∗, Cm′

) \∆(W ∗, Ck) ̸= ∅ and
∆(U∗, Cm′

) ∪∆(W ∗, Ck) ≥ e+ 1.
Let each row of the matrix W ∗ be W ∗i , and each row of U∗ be U∗i . The

closest codeword to W ∗i is denoted as Li, and we have W ∗i = Li +Ai. Similarly,
the closest codeword to U∗i is denoted as Mi, and we have U∗i = Mi + Bi.
The matrices formed by Li, Mi, Ai, and Bi are denoted as L, M , A, and B,
respectively. Thus, we can write W ∗ = L + A and U∗ = M + B. Additionally,
we know that ∆(A,0k) ≤ e and ∆(Bi,0) ≤ e, otherwise, this would contradict
our previous assumption.

Randomly select k vectors r1, · · · , rk, each of lengthm′, with elements chosen
from GR(ps, r). Define the vector W ′i =W ∗i + ri[1]U

∗
1 + · · ·+ ri[m

′]U∗m′ . Then,

W ′i = Li +Ai + ri[1]U
∗
1 + · · ·+ ri[m

′]U∗m′

= Li +Ai + ri[1](M1 +B1) + · · ·+ ri[m
′](Mm +Bm)

= (Li + ri[1]M1 + · · ·+ ri[m
′]Mm′) + (Ai + ri[1]B1 + · · ·+ ri[m

′]Bm′)

The k rows W ′i form the matrix W ′. We now consider each column of the
matrix W ′. Let t ∈ (∆(U∗, Cm). In the t-th column, there must exist a row
where Bi∗ [t] ̸= 0. Therefore, in the j-th row and t-th column of W ′,

W ′j [t] = (Lj + rj[1]M1[t] + · · ·+ rj[m
′]Mm′ [t])

+((Aj + rj[1]B1[t] + · · ·+ rj[m
′]Bm′ [t]))

To make the expression ((Aj + rj[1]B1[t] + · · ·+ rj[m
′]Bm′ [t])) equal to zero,

there is a term rj [i
∗]Bi∗ [t], where we treat rj[i

∗] as a variable, and it becomes a
univariate polynomial in terms of this variable. In order for this term to equal
a specific value. According to Fact 2, the solutions constitute at most 1

pr of the
total possible values. For a particular row j, if every row evaluates to zero, each
row has a solution set of size 1

pr . This applies to a specific row j. If all rows are
zero, the proportion of solutions for each row is 1

pr . Given that all k rows need
to statisfy the condition, the combined proportion of solutions over all possible

values is
(

1
pr

)k
= 1

pkr .

38 Yuanju Wei, Xinxuan Zhang, and Yi Deng

Since ∆(U∗, Cm) < l, as long as l
pkr < l, there must exist a set of random

values such that not every column of W ′ in ∆(U∗, Cm) is zero. Let L̂ be the
matrix where each row is defined as Li + ri[1]M1 + · · · + ri[m

′]Mm′ . Because
∆(U∗, Cm′

) \∆(W ∗, Ck) ̸= ∅, so ∆(W ′, L̂) ≥ d(W ∗, Ck) + 1. At this point, we
need to demonstrate that there is no other codeword C0 such that d(C0,W

′) ≤
d(W ∗, Ck). If such a codeword C0 exists, then we have

d ≤ d(C0, L̂)

≤ d(C0,W
′) + d(W ′, L̂)

≤ d(W ∗, Ck) + e ≤ e+ e < d

We assume d(W ′, L̂) < e based on the initial assumption that for all W ∈ W,
we have d(W,Ck) ≤ e. At this point, we obtain d(W ′, Ck) > d(W ∗, Ck), which
contradicts the definition of W ∗. Therefore, we conclude that not all W satisfy
d(W,Ck) ≤ e.

Claim 5 Consider a fixed [l, n, d] code C ⊂ GR(ps, kr)l over the Galois ring
GR(ps, r), and a proximity parameter e ∈

{
0, · · · , ⌊d−13 ⌋

}
. For any matrices

W ∈ GR(ps, kr)k×l and V ∈ GR(ps, kr)k×l, we define an “affine transforma-
tion” as follows. Let S ∈ GR(ps, r)k×k be a k × k matrix where each element
Si[j] (representing the element in the i-th row and j-th column) is randomly
chosen from GR(ps, r). The elements Wi[j] and Vi[j] denote the (i, j) elements
of matrices W and V , respectively. Define a matrix L such that each row of L is
given by Li =Wi +

∑
j∈[k](Si[j]Vj). In matrix notation, we have L =W + SV .

The distribution of all possible values of L is denoted by LW,V . Then, either (1)
for all L ∈ LW,V , we have d(L,Ck) ≤ e, or (2) at most a proportion of e+1

pkr of
the possible values of L satisfy d(L,Ck) ≤ e.

Proof. As demonstrated in AHIV17, we observe that for any distribution LW,V ,
there exist N points within a Ck-distance of at most e if and only if the distri-
bution LW+C0,V+C1

also contains N points within a Ck-distance of at most e,
where C0 and C1 are arbitrary codewords in Ck.

Now, consider the case when S takes the value S0, where a point P =W+S0V
is within a distance of less than d from a point C ′ ∈ Ck. It follows that the
distributions of P + SV and W + SV are identical. Additionally, the number of
points in LP,V and LP−C′,V that are within a Ck-distance of at most e is the
same, and we have d(P − C ′,0k) ≤ e. Therefore, it suffices to consider only the
case where d(W,0) ≤ e.

At this point, if d(V,0k) ≥ e + 1 and the closest point in Ck to V is Ĉ, let
V = V ′ + Ĉ, then we have |V ′| ≥ e + 1. Additionally, ∆(V,C0) ∩ ∆(W,Ck) ≤
∆(W,Ck) = e. Let L = W + SV = W + SV ′ + SĈ. For the t-th column in
∆(V,C0) ∩∆(W,0k), there must exist a row q∗ such that V ′q∗ [t] ̸= 0. In the i-th

Transparent SNARKs over Galois Rings 39

row and t-th column of L, we have

Li[t] =Wi[t] + Si[1]V1[t] + · · ·+ Si[k]Vk[t]

=Wi[t] + (Si[1]V
′
1 [t] + · · ·+ Si[k]V

′
k[t])

+ (Si[1]Ĉ1[t] + · · ·+ Si[k]Ĉk[t])

If the t-th column of L is not in ∆(L,Ck), then for all i ∈ [k], we have Wi[t] =
Si[1]V

′
1 [t] + · · · + Si[k]V

′
k[t]. This equation for the i-th row can be viewed as a

linear equation in the variable Si[q
∗]. According to Fact 2, since V ′q∗ [t] ̸= 0, the

number of solutions to this equation is at most 1
pr . Therefore, in the i-th row of

matrix S, at most 1
pr values satisfy the condition. Since this must hold for all i,

there are at most 1
pr satisfying values per row, and for k rows, only

(
1
pr

)k
= 1

pkr

values satisfy the condition.
We also need to prove that only SĈ can satisfy d(L, SĈ) ≤ e as the closest

codeword. There cannot be another codeword Ĉ ′ ∈ Ck such that d(Ĉ ′, L) ≤ e.
Otherwise, we would have

d(SĈ, Ĉ ′) ≤ d(SĈ, L) + d(L, Ĉ ′)

≤ e+ e = 2e < d

which leads to a contradiction.
For a given column, the probability is 1

pkr , and the total number of possible
columns is bounded by |∆(V,C0) ∩ ∆(W,Ck)| ≤ |∆(W,Ck)| = e. According
to the union bound, we have at most e

pkr points that satisfy d(L,Ck) ≤ e.
Additionally, if all elements in S are set to zero, this also satisfies d(L,Ck) ≤ e.
Therefore, the total probability does not exceed

e

pkr
+

1

pskr
≤ e+ 1

pkr
.

At this point, we only need to consider the cases where d(W,0k) ≤ e and
d(V,0) ≤ e:

1 |Support(W) ∪ Support(V)| ≤ e. This means that all points are contained
within a “ball” centered at 0k with radius e. Naturally, this ensures that for
all L ∈ LW,V , we have d(L,Ck) ≤ e.

2 |Support(W) ∪ Support(V)| ≥ e+ 1. Since d(W,0k) ≤ e and d(V,0) ≤ e, it
follows that ∆(W,0k) ∩ ∆(V,0) ≤ e − 1. For each column t ∈ ∆(W,0k) ∩
∆(V,0), there must exist a row q∗ such that Vq∗ [t] ̸= 0. In the i-th row and
t-th column of L, we have:

Li[t] =Wi[t] + Si[1]V1[t] + · · ·+ Si[k]Vk[t]

If the t-th column of L is not in ∆(L,Ck), then for all i ∈ [k], we have
Wi[t] = Si[1]V1[t] + · · · + Si[k]Vk[t]. For the i-th row, this equation can be

40 Yuanju Wei, Xinxuan Zhang, and Yi Deng

viewed as a linear equation in the variable Si[q
∗]. According to Fact 2, since

Vq∗ [t] ̸= 0, the proportion of solutions to this equation will not exceed 1
pr .

In the i-th row of matrix S, at most 1
pr values satisfy this condition. Since

this condition must hold for all i, there are at most 1
pr satisfying values per

row, and for k rows, only
(

1
pr

)k
= 1

pkr values will satisfy this condition.

Because ∆(W,0k)∩∆(V,0) ≤ e−1, using the union bound, the total number
of points that satisfy d(L,Ck) ≤ e is at most e−1

pkr .
Additionally, if all elements of S are set to zero, this also satisfies d(L,Ck) ≤
e. Therefore, the total probability does not exceed

e− 1

pkr
+

1

pskr
≤ e

pkr
.

Therefore, LW,V contains at most a proportion of e
pkr points within a “ball”

centered at 0k with radius e.
Next, we show that no other points in Ck are within a distance of e from
any point in LW,V . If there exists some C ′ ∈ Ck such that there is a point
L ∈ LW,V with d(C ′, L) ≤ e, then we have:

d(C ′,0k) ≤ d(C ′, L) + d(L,0)

≤ e+ |Support(W)|+ |Support(V)| ≤ e+ 2e = 3e

This contradicts the fact that d(C ′,0k) ≥ d. Therefore, such a C ′ cannot
exist, and at most e points satisfy d(L,Ck) ≤ e. This holds.

⊓⊔

In conclusion, we have:

Pr[d(W,Ck) ≤ e] ≤ e+ 1

prk
.

⊓⊔

C.2 The Proof of Completeness

Proof. To demonstrate completeness, we first express the matrix U as:

U =


f(0, · · · , 0, 0, · · · , 0) f(0, · · · , 0, 0, · · · , 1) · · · f(0, · · · , 0, 1, · · · , 1)
f(0, · · · , 1, 0, · · · , 0) f(0, · · · , 1, 0, · · · , 1) · · · f(0, · · · , 1, 1, · · · , 1)

...
...

...
...

f(1, · · · , 1, 0, · · · , 0) f(1, · · · , 1, 0, · · · , 1) · · · f(1, · · · , 1, 1, · · · , 1)


To compute f(r1, · · · , rl), we use the formula:

f(r1, · · · , rl) =
∑

b∈{0,1}

∏
i∈[1,l]

((1− ri)(1− bi) + ribi) f(b),

Transparent SNARKs over Galois Rings 41

which can be rewritten as:

f(r1, · · · , rl) = q⊤1 Uq2.

An important observation is that if we treat the i-th row of the matrix U , denoted
Ui, as m/k elements w1, · · · , wm/k in GR(ps, kr), then for a ∈ GR(ps, r), we
have:

a · (w1, · · · , wm/k)

=(a · w1, · · · , a · wm/k)

=(a(w1,1, · · · , w1,k), · · · , a(w(m/k),1, · · · , w(m/k),k))

=(aw1,1, · · · , aw1,k, · · · , aw(m/k),1, · · · , aw(m/k),k)

=a · (Ui[1], · · · , Ui[m]).

Since each wi can be viewed as k elements from GR(ps, r), the compu-
tation is the same whether we treat U as a matrix in GR(ps, r)m×m or in
GR(ps, kr)m×(m/k). Thus, the result of q⊤1 U remains the same in “form” re-
gardless of the interpretation. Therefore, the linear combination of the matrix
can be seen as a linear combination over GR(ps, r), ensuring the completeness
of the polynomial commitment. ⊓⊔

C.3 The Proof of Soundness

Proof. The encoded coefficient matrix Û ∈ GR(ps, kr)m×(m/k), where N = m/k,
has a code distance of d and a relative distance of γ = d/N . First, we show
that if the prover can pass the testing phase with a probability greater than
1

pkr +
(
1− γ

3

)lQ , then there must exist a codeword [c1, · · · , cm] ∈ Cm such that:

E := |{j ∈ [N] : ∃i ∈ [m], such that ci,j ̸= Ûi,j}| ≤
(γ
3

)
N.

Let e =
⌊
γN
3

⌋
. If no such codeword [c1, · · · , cm] exists, then we have d(Û , Cm) >

e. According to claim 3, since V = R · Û , the probability that d(V,Ck) is greater
than e is at least 1− e+1

pkr .
Thus, during the testing phase, the probability that the verifier randomly

selects l columns without hitting any columns in ∆(V,Ck) is at most (1− e
3)

lQ =(
1− γ

3

)lQ . Define the event E1 as d(V,Ck) > e, and the event E2 as the verifier
selecting l columns without hitting any in ∆(V,Ck). Then, we have:

Pr[P ∗wins] ≤ Pr[P ∗wins|Ē1] Pr[Ē1] + Pr[P ∗wins|E1] Pr[E1]

≤ Pr[Ē1] + Pr[E2|E1] Pr[E1]

<
1

pkr
+ Pr[E2|E1] =

1

pkr
+ (1− γ

3
)lQ

This contradicts the fact that the prover could pass the testing phase, so
there must exist such a codeword c1, · · · , cm.

42 Yuanju Wei, Xinxuan Zhang, and Yi Deng

We can observe that each ci is the closest codeword to each row Ui of Û ;
otherwise, the distance between two codewords would be less than d. Define

w :=
m∑
i=1

q1,i ·ci. Next, we show that if the prover can pass the testing phase with

a probability greater than e+1
pk +

(
1− d

3

)lQ , and pass the evaluation phase with

a probability greater than
(
1− 2γ

3

)lQ , then let u :=
m∑
i=1

q1,i ·Ui and w = Enc(u).

If w ̸= Enc(u), then w and Enc(v) are two distinct codewords in C, meaning
that the number of positions where they are identical will not exceed (1− γ)N .
Let the set of positions where the two codewords are identical be denoted as
A. If the verifier selects a column j /∈ A ∪ E, then the test will fail because
w and Enc(u) can only match within A ∪ E. We have |A ∪ E| ≤ |A| + |E| ≤
(1 − γ)N +

(
γ
3

)
N =

(
1− 2γ

3

)
N . Since the verifier selects the set of columns

Q randomly, if the prover is cheating, the probability of passing the evaluation
phase will not exceed

(
1− 2γ

3

)lQ .
Thus, if the prover can pass the testing phase with a probability greater

than e+1
pk +

(
1− d

3

)lQ , and the evaluation phase with a probability greater than(
1− 2γ

3

)lQ , the binding property of the scheme is ensured. ⊓⊔

C.4 The Proof of Extractability

We prove that a randomly chosen N×N matrix over the Galois ring GR(ps, r) is
invertible with high probability. This allows us to solve for the coefficient matrix
U .

First, we consider the case where pr > N and 1− N
pr is non-negligible.

Lemma 8. Assuming that 1 − N
pr > 0 and is non-negligible, then by randomly

selecting an N ×N matrix R from GR(ps, r), there is a probability of 1− N
pr that

R is invertible.

Proof. Using the adjugate matrix method for matrix inversion,

R−1 =
A∗

det(A)
=

1

det(A)

R
∗
11 · · · R∗1N
...

. . .
...

R∗N1 · · · R∗NN


⊤

Let R∗ij represent the algebraic cofactor of matrix R with respect to the (i, j)

entry. We observe that if det(R) is non-zero and not a zero divisor, then R−1

exists. Now, we calculate the probability that det(R) is non-zero and not a zero
divisor.

det(R) =
∑

σ∈SN

sgn(σ)
N∏
i=1

Ai,σ(i)

Transparent SNARKs over Galois Rings 43

where SN is the set of all permutations on {1, 2, · · · , N}, and sgn(σ) denotes the
sign of permutation σ. If σ has an even number of inversions, then sgn(σ) = 1;
otherwise, sgn(σ) = −1. In fact, det(R) can be viewed as a multilinear polyno-
mial in the N2 variables Rij , and the degree of the polynomial is at most N .
Let us define this polynomial as fR.

By a known fact about Galois rings, all zero divisors in GR(ps, r) lie in the
ideal (p). Therefore, we only need to show that fR is non-zero modulo p with a
non-negligible probability. Consider the isomorphism map ψ

Zps → Fp

c0 + c1p+ · · ·+ cp−1p
s−1 7→ c0

For a polynomial f of degree at most d with coefficients in GR(ps, r), we define
a mapping Ψ , where Ψ(f) is derived by applying ψ to each coefficient of f ,
resulting in a polynomial f ′. Clearly, Ψ is a homomorphism. If at some point x,
we have f(x) = 0 (mod p), then it follows that Ψ(f)(ψ(x)) = 0.

Let Ψ(fR) = f ′R. If f ′R evaluates to a non-zero value, then fR will not be a zero
divisor in GR(ps, r). Since the variables Rij are randomly chosen from GR(ps, r),
so ψ(Rij) are randomly chosen from GF(p, r). By the Schwartz-Zippel lemma
for fields, the degree of f ′R is at most N , so the probability that a randomly
chosen point evaluates to 0 is at most N

pr . Therefore, the probability that f ′R is
non-zero is at least 1− N

pr , which is non-negligible. This completes the proof. ⊓⊔

If the ring GR(ps, r) does not satisfy pr > N , then the GR(ps, r) code used
in encoding must be a [l, n, d]−k−GR(ps, r) code, where pkr ≫ N . Choose a k′
such that k′ is a divisor of k and pk

′r > N . At this point, the extractor can send
k′ challenges from GR(ps, r) to simulate a challenge from GR(ps, k′r). Then,
using Lemma 8, we can obtain an invertible N ×N matrix with non-negligible
probability.

If the probability that the matrix is invertible is pi, by repeating the process
poly(1

pi
) times, we can ensure that with probability 1 − negl(λ), the matrix U

can be successfully extracted.

D The Proofs of Toolboxes over Galois Rings

D.1 The Proof of Sumcheck over Galois Rings

Proof. If the prover cheats, then there must exist at least one round i where the
prover’s univariate polynomial pi(Xi) does not equal the following polynomial:

si(Xi) =
∑

(xi+1,··· ,xl)∈{0,1}l−i

g(r1, · · · , ri−1, Xi, xi+1, · · · , xl).

However, si(ri) = gi(ri) is still satisfied. For each round, both si and gi have a
degree at most d. According to the fact 3, the probability of randomly choosing
ri from GR(ps, r) such that si(ri) = gi(ri) is at most d

pr . Since the protocol
involves l rounds, the soundness error, by the union bound, does not exceed
ld
pr . ⊓⊔

44 Yuanju Wei, Xinxuan Zhang, and Yi Deng

D.2 The Proof of ZeroCheck over Galois Rings

Proof. Note that g(a) =
∑

x∈{0,1}l eq(a,x)f(x) is a multilinear polynomial in
the variables a, and its value on {0, 1}l is identical to that of f . A multilinear
polynomial is uniquely determined by its values on {0, 1}l. If f is zero on all
points in {0, 1}l, then g is the zero polynomial and evaluates to zero at any
point. If f is not zero everywhere on {0, 1}l, then g is not the zero polynomial.
Moreover, the degree of g does not exceed l, according to fact 3, the probability
that g evaluates to zero at a random point is at most l

pr . During the sumcheck
protocol, since the eq function involves each variable only once and each round’s
univariate polynomial has a degree at most d + 1, the soundness error of the
sumcheck protocol is at most l(d+1)

pr . Therefore, the overall soundness error of

the protocol does not exceed l(d+1)+l
pr = l(d+2)

pr . ⊓⊔

E Prover Cost of Libra over Galois Ring

Firstly we review the GKR protocol [21].
For a log-space uniform circuit defined over a Galois ring GR(ps, r), the

circuit is divided into l layers from top to bottom, with the input layer as the l-
th layer. The i-th layer contains ni circuit gates, where ni = 2si . The values in the
arithmetic circuit of the i-th layer are encoded as a polynomial Vi, where Vi(x)
represents the value of the gate at index x, and x ∈ {0, 1}si . The multilinear
extension of Vi is denoted as Ṽi(x).

We define two polynomials, addi and multi : {0, 1}si−1+2si → {0, 1}. The
first input to these polynomials is the index of a gate in the (i − 1)-th layer,
denoted by z ∈ {0, 1}si−1 , and the other two inputs are the indices of gates in
the i-th layer, x,y ∈ {0, 1}si . The polynomial addi outputs 1 if the gate z is
an addition gate and x, y are its left and right inputs, respectively; otherwise,
it outputs 0. Similarly, multi constrains the multiplication relationship between
the i-th layer and the (i− 1)-th layer.

Thus, we have:

Vi(z) =
∑

x,y∈{0,1}si+1

(addi+1(z, x, y))(Vi+1(x) + Vi+1(y))

+ multi+1(z, x, y)(Vi+1(x)Vi+1(y))

Thus, Vi can be computed from Vi+1, which implies that the multilinear
extension Ṽi can also be computed from Ṽi+1. If we wish to compute Ṽi(g), we
have:

Ṽi(g) =
∑

x,y∈{0,1}si+1

(˜addi+1(z, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(z, x, y)(Ṽi+1(x)Ṽi+1(y))

Transparent SNARKs over Galois Rings 45

Let the Galois ring GR(ps, r) be G1, and GR(ps, kr) be G2, where pkr is
exponential in the security parameter λ. Let the circuit C : Gn

1 → Gs
1 be a

circuit of depth l. The i-th layer contains ni gates, where ni = 2si . The prover
aims to prove that out = C(in).

• Encode out as a multilinear polynomial Ṽ0. The verifier randomly selects
g ∈ Gs0

2 and sends it to the prover; both parties then compute Ṽ0(g).
• The prover and verifier execute the sumcheck protocol, with the randomness

drawn from Gs1
2 , to prove that

Ṽ0(g) =
∑

x,y∈{0,1}s1

˜mult1(g, x, y)(Ṽ1(x)Ṽ1(y)) + ˜add1(g, x, y)(Ṽ1(x) + Ṽ1(y)).

In the final round of the sumcheck protocol, the prover sends Ṽ1(u(1)) and
Ṽ1(v

(1)) to the verifier. The verifier computes ˜mult1(g, u(1), v(1)) and ˜add1(g,
u(1), v(1))v and checks that the last round of the sumcheck is satisfied.
• For each i ∈ [l − 1]:

- The verifier randomly selects α(i) and β(i) and sends them to the prover.
- The prover and verifier execute the sumcheck protocol, with randomness

drawn from G
si+1

2 , to check that

α(i)Ṽi(u
(i)) + β(i)Ṽi(v

(i)) =∑
x,y∈{0,1}si+1

(
α(i) ˜multi+1(u

(i), x, y) + β(i) ˜multi+1(v
(i), x, y)

)
(Ṽi+1(x)Ṽi+1(y))

+
(
α(i) ˜addi+1(u

(i), x, y) + β(i) ˜addi+1(v
(i), x, y)

)
(Ṽi+1(x) + Ṽi+1(y))

- In the final round of the sumcheck, the prover sends Ṽi+1(u
(i+1)) and

Ṽi+1(v
(i+1)) to the verifier, who then computes ˜multi+1(u

(i), u(i+1), v(i+1)),
˜multi+1(v

(i), u(i+1), v(i+1)), ˜addi+1(u
(i), u(i+1), v(i+1)), and ˜addi+1(v

(i)

,u(i+1), v(i+1)), verifying the last round of the sumcheck. In the next
round, the sumcheck protocol is used to verify that Ṽi+1(u

(i+1)) and
Ṽi+1(v

(i+1)) are correct.
• In the final layer l, the prover uses a polynomial commitment scheme to open
Ṽl(u

(l)) and Ṽl(v(l)).

Using the linear techniques from Libra [33], it is possible to perform a sum-
check protocol in linear time for expressions of the form∑

x,y∈{0,1}l
f1(g, x, y)f2(x)f3(y)

provided that f1(g, x, y) satisfies a sparsity property, where it is non-zero in
approximately O(2l) positions. Clearly, the functions ˜addi and ˜multi fulfill this
sparsity condition.

46 Yuanju Wei, Xinxuan Zhang, and Yi Deng

In Libra, the expression
∑

x,y∈{0,1}l
f1(g, x, y)f2(x)f3(y) is first rewritten in the

following way:

∑
x,y∈{0,1}l

f1(g, x, y)f2(x)f3(y) =
∑

x∈{0,1}l
f2(x)

∑
y∈{0,1}l

f1(g, x, y)f3(y)

=
∑

x∈{0,1}l
f2(x)hg(x),

where hg(x) =
∑

y∈{0,1}l
f1(g, x, y)f3(y).

The sumcheck protocol is then conducted in two phases. In the first phase, the
protocol runs for l rounds, reducing

∑
x∈{0,1}l

f2(x)hg(x) to evaluating f2(u)hg(u),

where u ∈ Gl
2. In the second phase, the protocol verifies

∑
y∈{0,1}l

f1(g, u, y)f3(y).

In the first phase, both f2 and hg are multilinear polynomials in x. In the second
phase, f2(u) is a constant, and f1(g, u, y) and f3(y) are multilinear polynomials
in y.

For multilinear polynomials, it suffices to determine their values over {0, 1}l,
allowing the sumcheck protocol to be completed in O(n) time. According to
Libra, the evaluation of hg(x) and f1(g, u, y) on the hypercube {0, 1}l is known as
the initialization process. Let Af denote the array of values that the multilinear
polynomial f takes on {0, 1}l. The operation Precompute(g) evaluates G[z] =

eq(g, z) =
l∏

i=1

((1− gi)(1− zi) + gizi) for all z ∈ {0, 1}l.

Algorithm 3: PhaseOne Initialization
Input: Multilinear f1 and f3, initial bookkeeping tabels Af3 ,random

g = g1, · · · , gl
Output: Bookkeeping table Ahg

1 G← Precompute(g);
2 Set G[0] = 1;
3 for i = 1 to l − 1 do
4 for b ∈ {0, 1}i do
5 G[b, 0] = G[b] · (1− gi+1);
6 G[b, 1] = G[b] · gi+1;

7 ∀x ∈ {0, 1}l, set Ahg
[x] = 0;

8 for every (z, x, y) such that f1(z, x, y) is no-zero do
9 Ahg

[x] = Ahg
[x] +G[z] · f1(z, x, y) ·Af3 [y];

10 return Ahg ;

Transparent SNARKs over Galois Rings 47

Algorithm 4: PhaseTwo Initialization
Input: Multilinear f1 random g = g1, · · · , gl and u = u1, · · · , ul
Output: Bookkeeping table Af1

1 G← Precompute(g);
2 U ← Precompute(u);
3 ∀y ∈ {0, 1}l, setAf1 [y] = 0;
4 for every (z, x, y) such that f1(z, x, y) is non-zero do
5 Af1 [y] = Af1 [y] +G[z] · U [x] · f1(z, x, y);
6 return Af1 ;

According to the Libra protocol, the sumcheck computation is divided into
four phases: Initialization1, Sumcheck1, Initialization2, and Sumcheck2. The
prover’s computational costs are analyzed separately for each of these phases.
Let the cost of a multiplication within the ring G1 be denoted as bb, the cost of
multiplying an element from G1 with an element from G2 as be, and the cost of
a multiplication within G2 as ee.

In practical application, the prover aims to prove that

f1(g, x, y)f2(x)f3(y) = (α(i) ˜multi+1(u
(i))+β(i) ˜multi+1(v

(i), x, y))(V̂i+1(x)V̂i+1(y)),

where f1(g, x, y) = α(i) ˜multi+1(u
(i)) + β(i) ˜multi+1(v

(i), x, y), f2(x) = V̂i+1(x),
and f3(y) = V̂i+1(y).

Initialization1 To initialize hg(x), while computing the array G, it requires
ni+1 multiplications within G2 (denoted as ee). Then, when calculating the array
Ahg

, since there are at most ni+1 non-zero positions, Ahg
needs to be updated

at most 2si+1 times. Each update involves first calculating f1(z, x, y) · Af3 [y],
which requires one multiplication between elements from G1 and G2 (denoted
as be), and then multiplying the result by G[z], which requires one ee operation.
Therefore, the total cost to initialize Ahg is 2 · ni+1ee+ ni+1be.

Sumcheck1 In the first phase of the sumcheck protocol, the process can be
viewed as performing sumcheck on the product of two multilinear polynomials.
One polynomial has coefficients from the ring G1, while the other has coefficients
from G2, and the challenges are chosen from G2. Let the univariate polynomial
sent by the prover in the i-th round be denoted as si. According to the method
described in [2], in the first round of sumcheck, the prover requires ni+1 multi-
plications between elements from G1 and G2 (denoted as be) to compute s1(0)
and s1(1). Then, s1(2) can be computed using ni+1

2 additional be operations.
Moreover, ni+1

2 ee operations are required to update the array Ahg , and ni+1

2 be
operations are needed to update the array Af2 .

During the j-th round, where j ≥ 2, ni+1

2j ee operations are needed to compute
si(0), and si(1) can be derived by subtraction. Additionally, ni+1

2j ee operations
are required to compute si(2). Furthermore, updating the arrays Af2 and Ahg

each requires ni+1

2j ee operations. Hence, the j-th round requires a total of 2ni+1

2j

ee operations.

48 Yuanju Wei, Xinxuan Zhang, and Yi Deng

The total cost of performing the sumcheck protocol across all rounds is
5ni+1

2 ee+ 2ni+1be.

Initialization2 To initialize the array for f1(g, u, y), since the array G has
already been computed in the previous step, there is no need to recompute it.
Only the array U needs to be calculated, which requires ni+1 multiplications
within G2 (denoted as ee). As f1(z, x, y) has only ni+1 non-zero positions, and
each position requires 2 multiplications, the computation of f1(g, u, y) involves
a total of 2ni+1 ee operations.

Sumcheck2 In the second phase of the sumcheck protocol, the process is similar
to the first phase: performing sumcheck on the product of two multilinear poly-
nomials. One polynomial has coefficients from the ring G1, and the other from
G2, with challenges chosen from G2. Therefore, the second round of sumcheck
also requires 5ni+1

2 ee+ 2ni+1be operations.
The total cost of performing this sumcheck is 9ni+1ee+ 5ni+1be.
The prover also needs to demonstrate that:

f1(g, x, y)f2(x)f3(y) = (α(i) ˜addi+1(u
(i)) + β(i) ˜addi+1(v

(i), x, y))V̂i+1(x)

The handling of this equation is similar, except here f3(y) = 1, which is a
constant polynomial.

Initialization1 When initializing the array Ahg , there is no need to recompute
the array G. Therefore, this process only requires ni+1 operations of ee and be.

Sumcheck1 During the first round of the sumcheck protocol, it similarly in-
volves performing a sumcheck over the product of two multilinear polynomials.
One polynomial has coefficients in the ring G1, while the other has coefficients
in G2, with challenges chosen from G2. The total computational cost for this
step is 5ni+1

2 ee+ 2ni+1be.

Initialization2 For the second round of computation, the initialization of the
array Af1 for f1(g, u, y) is required. Since the arrays G and U have already been
computed previously, no recomputation is needed. The array Af1 requires only
ni+1 updates, with a computational cost of 2ni+1 operations of ee.

Sumcheck2 During the second round of the sumcheck protocol, since both f2
and f3 are constants, the sumcheck is only performed over f1(g, u, y). Each round
requires updating only the array Af1 , which has a total cost of ni+1 operations
of ee.

Therefore, the total cost of performing this sumcheck is 13ni+1

2 ee+ 3ni+1be.
Finally, the prover also needs to prove

f1(g, x, y)f2(x)f3(y) = (α(i) ˜addi+1(u
(i)) + β(i) ˜addi+1(v

(i), x, y))(V̂i+1(y)),

where f2(x) = 1 is a constant polynomial.

Initialization1 During the initialization of the array Ahg
, there is no need to

recompute the G array. Additionally, while performing the previous sumcheck,

Transparent SNARKs over Galois Rings 49

the non-zero values of f1(z, x, y) multiplied by G[z] can be precomputed and
stored. The only remaining step is to multiply these values by Af3(y), which
requires a total of ni+1 operations of be.

Sumcheck1 During the first round of the sumcheck protocol, since f2(x) = 1 is
a constant, the sumcheck is effectively over a single multilinear polynomial. Each
round only requires updating the array Ahg

, which involves ni+1 operations of
ee.

Initialization2 For the second round, it is necessary to initialize the array
Af1 for f1(g, u, y). Since the same random numbers are used as in the previous
sumcheck, the array Af1 from the previous sumcheck can be backed up and
reused.

Sumcheck2 The second round of the sumcheck protocol involves the product of
two multilinear polynomials. One polynomial has coefficients from the ring G1,
while the other has coefficients from G2, and the challenges are selected from
G2. This sumcheck requires 5ni+1

2 operations of ee and 2ni+1 operations of be.
Therefore, the total computational cost for this sumcheck is 7

2ni+1ee+3ni+1be.

To execute the i-th round of the Libra protocol, the computational cost is at
least:

9ni+1ee+5ni+1be+
13ni+1

2
ee+3ni+1be+

7

2
ni+1ee+3ni+1be = 19ni+1ee+11ni+1be

Since n1+ · · ·+nl < n0+n1+ · · ·+nl = n, the prover needs to perform at most
19ni+1ee+ 11ni+1be computations to execute the sumcheck protocol, excluding
the cost of the polynomial commitment.

Table 3: Prover Cost of Libra over Galois Ring without Polynomial Commitment
Phase ˜mult(z, x, y)Ṽ (x)Ṽ (y) ˜add(z, x, y)Ṽ (x) ˜add(z, x, y)Ṽ (y) all

Initialization1 2nee+ nbe nee+ nbe nbe 3nee+ 3nbe
Sumcheck1 5n

2
ee+ 2nbe 5n

2
ee+ 2nbe nee 6nee+ 4nbe

Initialization2 2nee 2nee 4nee
Sumcheck2 5n

2
ee+ 2nbe nee 5n

2
ee+ 2nbe 6nee+ 4nbe

all 9nee+ 5nbe 13n
2

ee+ 3nbe 7
2
nee+ 3nbe 19nee+ 11nbe

The polynomial commitment only needs to be made for the content of the
last layer of circuit gates, with ni ≤ n, considering the polynomial’s size as n.
According to the analysis in Section 4, the cost to commit and open a polynomial
of size n, where coefficients are in G1 and challenges are in G2, is t1+t2+ c0n

k ee+
t2nkbe. Here, t1 is the time required for constructing a Merkle tree, t2 is the time
to open |Q| positions of the Merkle tree, c0 is the time for encoding, and t−1 is
the code rate.

Taking parameters that maximize the encoding distance, c0 = 25.5, t = 1.72,
the cost for polynomial commitment is t1 + t2 +

25.5n
k ee+ 3.44nkbe.

50 Yuanju Wei, Xinxuan Zhang, and Yi Deng

The total prover time required for the entire protocol is:

t1 + t2 +
25.5 + 19k

k
nee+ (3.44k + 11)nbe

F Prover Cost of HyperPlonk over Galois Rings

F.1 Gate Constraints.

0 = S1(x) · (M(0, 0,x) +M(0, 1,x)) + S2(x) ·M(0, 0,x) ·M(0, 1,x)−
M(1, 0,x) + I(x)

To prove the sumcheck protocol, the prover can divide it into four parts:
S1(x)M(0, 0,x), S1(x)M(0, 1,x), S2(x)M(0, 0,x)M(0, 1,x), and M(1, 0,x) +
I(x). Treating the left input, right input, and output as three polynomials, the
sumcheck involves six polynomials in total. Let 2v = n. The coefficients of these
polynomials are from the ring G1, while the challenges are from the ring G2.
Each polynomial requires n

2 be+
n
2 ee for updating arrays during sumcheck.

In the first round, with d multilinear polynomials being multiplied in the
sumcheck protocol, the univariate polynomial is of degree d, so d+1 points need
to be sent. This requires (d+1)(d−1)n

2 bb operations. Substituting d = 2, 2, 3, 1
yields 3·n

2 ,
3·n
2 ,

8·n
2 , 0 bb operations respectively. Additionally, updating arrays

for the six multilinear polynomials requires 6·n
2 be operations.

In the j-th round, where j ≥ 2, the sent univariate polynomial is of degree
d, thus requiring d + 1 points. Each point calculation requires (d−1)n

2j ee op-

erations, and computing all d points needs d(d−1)2l
2j ee operations. Substituting

d = 2, 2, 3, 1, this results in n
2j ,

n
2j ,

3·n
2j , 0 ee operations respectively. Furthermore,

updating arrays for the six multilinear polynomials each round requires 6·n
2j ee

operations. Therefore, the total cost for round j is 11·n
2j ee operations.

Overall, the sumcheck for gate constraints requires 11 ·nee+3 ·nbe+7 ·nbb.

F.2 Permutation Constraints.

We can use a similar technique to Libra. Let h(x) =
∑

y∈{0,1}l
(f(y)eq(x, σ̃−1(y))−

g(y)eq(x,y)). In the first sumcheck phase, reduce
∑

x∈{0,1}l
eq(r,x)h(x) to∑

x∈{0,1}l
eq(r,u)h(u), and then in the second phase, prove

∑
y∈{0,1}l

eq(r,y)(f(y)eq(u, σ̃−1(y))− g(y)eq(u,y))

Initialization1 Initialize the values of h(x) over {0, 1}l. For each x ∈ {0, 1}l,
there is only one corresponding y such that eq(x,y) = 1, with all other values

Transparent SNARKs over Galois Rings 51

being zero. Similarly, there is only one y for which eq(σ̃−1(y),x) = 1, with all
other values being zero. While initializing the array Ah for the function h, since
the values of eq are in {0, 1}, no multiplication is required; only 2l additions are
necessary. Initializing the array Aeq for eq(r,x) requires 2l multiplications in ee.

Sumcheck1 During the first stage of the sumcheck protocol, two multilinear
polynomials are multiplied, where the coefficients of eq(g, x) come from G2, and
the coefficients of h come from G1. Therefore, the computational cost is 5·2l

2
operations in ee and 2 · 2l operations in be.

Initialization2 In the second stage, we prove
∑

y∈{0,1}l
eq(g,u)(f(y)eq(u, σ̃−1(y))−

g(y)eq(u,y)), where eq(g,u) is a constant. Initializing eq(u,g) requires 2l op-
erations in ee.

Sumcheck2 The expression g(y) · eq(u,y) can be seen as the product of two
multilinear polynomials, with one polynomial’s coefficients in G1 and the other
in G2. Since the challenge is in G2, performing sumcheck requires 5·2l

2 ee+2 ·2lbe.
The expression f(y) ·eq(u, σ̃−1(y)) can be seen as the product of l+1 multi-

linear polynomials during sumcheck. All the polynomials’ coefficients come from
G1. In the first round, computing s1(0), · · · , s1(l + 1) requires (l+2)l·2l

2 opera-

tions in bb. Additionally, updating the arrays Af , Aσ̃1
, · · · , Aσ̃l

requires (l+1)·2l
2

operations in be.
In the j-th round (j ≥ 2), the calculations involve computing sj(1), · · · , sj(l),

where sj(0) is derived by subtracting sj(1) from the sum sj(0)+sj(1). Calculat-
ing each sj(u), u ∈ [1, l+1] requires l·2l

2j operations in ee, and calculating all l+1

values requires l(l+1)·2l
2j . Additionally, updating the arrays Af , Aσ̃1 , · · · , Aσ̃l

re-

quires (l+1)·2l
2j operations in ee, thus the j-th round requires (l+1)2·2l

2j operations
in total. Therefore, performing sumcheck for the product of l + 1 multilinear
polynomials requires (l+1)2·2l

2 ee+ (l+1)·2l
2 be+ l(l+1)·2l

2 bb.

The total time required for the second stage is ((l+1)2+7)·2l
2 ee + (l+5)·2l

2 be +
l(l+1)·2l

2 bb.
The overall time cost for handling permutation constraints is:

((l + 1)2 + 14) · 2l

2
ee+

(l + 9) · 2l

2
be+

l(l + 2) · 2l

2
bb.

Now, consider the computational cost required for polynomial commitment.
According to prior calculations, committing to a polynomial incurs the following
cost:

t1 + t2 +
25.5

k
· nee+ 3.44k · nbe.

In the constraints of HyperPlonk, the polynomials S1, S2, σ1, · · · , σl need
to be committed only once during the preprocessing phase. For each instance,
the polynomials M(0, 0,x),M(0, 1,x),M(1, 0,x), I(x) require a commitment as

52 Yuanju Wei, Xinxuan Zhang, and Yi Deng

well. If the circuit to be proven has a size of n, in HyperPlonk, the permutation
constraints apply to the polynomial M , where the size of the coefficients of M
is 4n, with 2l = 4n. Thus, committing to these four polynomials will require the
following total cost:

4t1 + 4t2 +
102

k
· nee+ 13.76k · nbe.

Table 4: HyperPlonk over Galois Ring Prover Cost
Phase Cost

Gate Constraints 11 · nee+ 3nbe+ 7 · nbb

Permutation Constraints ((logn + 3)2 + 14) · 2nee + (logn + 11) ·
2nbe+ (logn+ 4)(logn+ 2)2nbb

Polynomial Commitment 4t1 + 4t2 +
102·n

k
ee+ 13.76nkbe

The total prover time cost of the protocol is:

39k + 2(log n+ 3)2k + 204

k
nee+ (13.76k + 2 log n+ 25)nbe

+ (2(log n+ 4)(log n+ 2) + 7)nbb+ 4t1 + 4t2

G Comparison with Rinocchio

The Rinocchio protocol [19] is based on a Linear PCP construction, adapted
from the Pinocchio [28] and Groth16 [23] for ring settings. The Groth16 protocol
relies on bilinear groups and the generic group model. However, such models
and assumptions do not exist in the ring setting, so Rinocchio uses linear-only
encoding to replace the bilinear groups and the generic group model in the
field setting. In Rinocchio, the linear-only encoding is instantiated as (R)LWE
ciphertexts. For an arithmetic circuit with wire size ℓ and m multiplication
gates, according to Rinocchio’s description in Section 6, Figure 3 of the paper
[19], during the SRS generation phase, a trusted third party needs to encode
ℓ + 2m + 2 elements over the ring. In the proof generation phase, the prover
needs to perform linear combinations on these ℓ+2m+2 encodings. The prover
must perform linear operations on the encoded elements for the computation of
A, B, and C, requiring m+1, m+1, and about ℓ+m operations, respectively. In
total, there are ℓ+3m+2 linear operations (since computing C does not involve
public inputs or outputs, the number of linear operations does not exceed ℓ+m).
In addition, when computing the polynomial h(x), the prover needs to multiply
two degree-m polynomials, which requires O(m logm) operations.

In Rinocchio, if the exceptional set of the ring is not large enough, an exten-
sion is required to ensure a sufficiently large exceptional set. For a Galois ring
GR(ps, r), the size of the exceptional set is pr, so the required extension size is

Transparent SNARKs over Galois Rings 53

the same as in this paper. However, during the SRS generation phase, Rinocchio
encodes challenges as (R)LWE ciphertexts. RLWE can encrypt a polynomial,
and whether the ring is original or extended, it will be encrypted as an RLWE
ciphertext.

For a circuit with ℓ wires, t addition gates, m multiplication gates and public
input and output x, we provide the following comparison.

Table 5: Comparison with Rinocchio
Rinocchio This work (Libra) This work (HyperPlonk)

circuit type NP circuit log-space uniform circuit NP circuit
prover time O(ℓ+m logm) O(t+m) O((t+m) log2(t+m)))
proof size O(1) O(

√
t+m) O(

√
t+m)

verifier time O(|x|) O(
√
t+m) O(

√
t+m)

SRS length O(ℓ+m) − −

The Rinocchio and our system primarily provide proofs for two-input circuits.
Beyond the initial input gates, each circuit gate corresponds to both a left and
right input wire, hence ℓ is approximately twice (t+m).

	Transparent SNARKs over Galois Rings

