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Abstract. In the last decade, the introduction of advanced crypto-
graphic protocols operating on large finite fields Fq has raised the need for
efficient cryptographic primitives in this setting, commonly referred to
as Arithmetization-Oriented (AO). The cryptanalysis of AO hash func-
tions is essentially done through the study of the CICO problem on the
underlying permutation. Two recent works at Crypto 2024 and Asiacrypt
2024 managed to solve the CICO problem much more efficiently than
traditional Gröbner basis methods, using respectively advanced Gröbner
basis techniques and resultants.
In this paper, we propose an attack framework based on resultants that
applies to a wide range of AO permutations and improves significantly
upon these two recent works. Our improvements mainly come from an
efficient reduction procedure that we propose and rigorously analyze,
taking advantage of fast multivariate multiplication. We present the most
efficient attacks on Griffin, Arion, Anemoi, and Rescue. We show that
most variants of Griffin, Arion and Anemoi fail to reach the claimed
security level. For the first time, we successfully break a parameter set
of Rescue, namely its 512-bit security variant. The presented theory and
complexity estimates are backed up with experimental attacks. Notably,
we practically find CICO solutions for 8 out of 10 rounds of Griffin, 11
out of 20 rounds of Anemoi, 6 out of 18 rounds of Rescue, improving by
respectively 1, 3 and 1 rounds on the previous best practical attacks.

1 Introduction

Cryptographic protocols for zero-knowledge (ZK) proofs, multi-party compu-
tation (MPC) and fully homomorphic encryption (FHE) offer strong privacy-
preserving functionalities. Real-world implementations of these protocols will
often have to operate in conjunction with symmetric primitives such as encryp-
tion schemes and hash functions. However, ZK, MPC and FHE protocols tend to
operate over large prime fields, and their efficiency is often linked to the number



and type of non-linear operations the protocol has to perform. As a result, the
standard symmetric primitive choices of AES and SHA-3 – which work over bi-
nary fields and have been designed with a different efficiency paradigm in mind
– tend to be slow when run as a part of these protocols.

Numerous “ZK-/MPC-/FHE-friendly” symmetric ciphers and hash functions
have been designed in recent years to address this problem. Depending on the
target use case, these primitives often work over particular prime fields, and
try to limit the number of non-linear operations to perform when executing the
primitive. The implementation cost of such primitives varies depending on the
protocol where they are used. In FHE-friendly designs, where the output of one
multiplication is used as an input for the next, the multiplicative depth—defined
as the number of sequential multiplications required—is the most important
factor. In MPC-friendly primitives, however, this quantity is irrelevant; what
matters is the total number of multiplications, as each of them increases the
communication cost between the parties. Such subtleties mean there is not one
single optimal primitive, and also explain the large number of new proposals.
Schemes in this category are often referred to as Arithmetization-Oriented (AO).

Security of AO hash functions. A series of recent works have focused on
designing AO permutations F : Ft

q → Ft
q (where Fq is a finite field), which are

turned into hash functions via the sponge construction [6]. Examples of this
trend include Poseidon [16,17], Rescue [1], Griffin [15], Arion [20], Anemoi [7]
and XHash8/12 [2]. The security of these constructions against algebraic attacks
is measured with the Constrained-Input Constrained-Output (CICO) problem,
which is the typical setting for studying the security of hash functions in sponge
mode [6]. We focus on the following variant, which has received the most atten-
tion in the literature.

Definition 1 (The CICO-1 Problem). Let t ≥ 2 and F : Ft
q −→ Ft

q be a

permutation. The goal is to find x ∈ {0} × Ft−1
q such that F (x) ∈ {0} × Ft−1

q .

The CICO-1 problem can be solved generically in approximately q permutation
calls, and many AO permutation designs claim to be resistant to CICO-1 attacks
up to q equivalent permutation computations. In the case of Poseidon, which is
composed of r rounds having a small degree d, one can symbolically evaluate
the permutation F in the single indeterminate x. Solving the CICO problem in
this case boils down to finding the root of a univariate polynomial in degree at
most dr, which should be considerably smaller than q for the attack to succeed.

However, in the cases of Rescue, Griffin, Arion and Anemoi, the round func-
tion contains high-degree components of the form y 7→ y1/α for some small
integer α > 1. These so-called α-inversions are of very high degree and make
the straightforward symbolic evaluation of F infeasible. Instead, one typically
adopts a multivariate polynomial modeling by introducing a new variable for
each α-inversion and applies a two-stage approach to find a low-degree univari-
ate polynomial representing the CICO solutions. First, a grevlex Gröbner basis
of the polynomial ideal is computed, typically using F4/F5 [12,14], and second,
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it is converted into a lex Gröbner basis which contains a univariate polynomial,
typically using FGLM [13]. This approach is currently the most efficient tech-
nique to solve generic multivariate systems. However, systems arising from the
modeling of the CICO problem on AO permutations are all but generic, and two
recent works exploited their structure to reduce further the complexity of the
CICO attack on different primitives: the FreeLunch attack [3] and the Resultant
attack [24].

FreeLunches and Resultants. The FreeLunch attack of [3] derives custom-
made monomial orders for which the given multivariate polynomial system is al-
ready a Gröbner basis G, which allows for side-stepping the first step mentioned
above. The bottleneck of the attack lies in computing a univariate polynomial
in the ideal generated by G; it can be performed by generating the multiplica-
tion matrix with respect to one variable and then computing its characteristic
polynomial, without computing a second Gröbner basis as in the lex order. The
Resultant attack of [24] is an altogether different approach that eliminates vari-
ables from the multivariate system by the successive computation of resultants.
Following this strategy produces a univariate polynomial in the ideal generated
by the polynomial system.

Both attacks have proved effective in their own right, with each breaking
several instances of AO hash functions previously thought to be secure. However,
at the current state of the art, it is unclear if (and how) the two approaches
compare on these primitives or even relate to each other from a more theoretical
perspective. Indeed, the two papers consider to some extent different targets,
with [3] focusing on Griffin, Arion, Anemoi and XHash8, while [24] focuses on
Rescue, Jarvis and Anemoi. In the case of Anemoi, practical experiments on
scaled-down versions show the Resultant method to be more efficient than its
FreeLunch counterpart, but the eventual complexity estimates of both attacks
are comparable5.

Our Contributions. In this paper, we improve upon the resultant method
by introducing a new efficient polynomial reduction method that exploits fast
multivariate multiplication. We strive to keep our approach general, so it is
readily applicable to as many AO hash functions as possible.

We complement our new method with a thorough complexity analysis, bor-
rowing some tools from the FreeLunch attack. We show that our attack typically
lowers the complexity of solving the CICO problem by 10–40 bits for primitives
like Griffin, Arion, Rescue, and Anemoi. We also experimentally run the attack
and solve the CICO problem for 8 rounds of Griffin, 11 rounds of Anemoi, and
6 rounds of Rescue, improving upon the literature by respectively 1,3 and 1
rounds.

5 [24, Table 6] use ω = 2.376 while [3, Table 1] use ω = 2.81. Comparing both theo-
retical estimates with the same ω gives similar attack complexities.
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Outline. Section 2 introduces the necessary background on Gröbner bases and
resultants, and briefly describes [3,24]. Section 3 presents our attack at a high
level and analyzes the efficient reduction method. Using this first analysis, Sec-
tion Section 4 provides complexity estimates for the different attack steps. Fi-
nally, Section 5 applies these estimates on selected permutations and reports on
the practical experiments.

2 Background

Notation. Let q = pe for p prime and e ∈ N>0, where p is either odd and
greater than 2λ with e = 1, or p = 2 and e ≥ λ. Let Fq denote the finite field
with q elements.

We consider a multivariate polynomial ring of the form R = Fq[x, z1, . . . , zn].
We will also use the notation Ri for the subring Fq[x, z1, . . . , zi] for 0 ≤ i ≤ n.
For h ∈ R, we denote by degx(h) (resp. degzi(h)) the partial degree of h with
respect to x (resp. zi). Any set of polynomials P = {h1, . . . , hm} ⊂ R is implicitly
associated to the system {h1 = 0, . . . , hm = 0}, and we write I = ⟨P⟩ for the
ideal generated by P.

The complexities of our algorithms will be given in terms of Fq-operations
and will be expressed using either the big-O notation O(·) or the soft-O notation

Õ(·) where logarithmic factors are omitted.

2.1 Preliminary Theory

Gröbner bases, normal forms and weighted orders. We refer to [11]
for details on the theory of Gröbner bases and we only introduce the notation
needed to present our algorithms. We write ≺ for a monomial order, ≺lex for a
lexicographical monomial order, and LT(h), LM(h) and LC(h) respectively for
the leading term, leading monomial and leading coefficient of h once such an
order is fixed. We extend this notation to an arbitrary subset P of R endowed
with ≺, for example LM(P) = {LM(h1),LM(h2), . . . }.

Definition 2 (Gröbner basis). A Gröbner basis of an ideal I with respect to
a monomial order is any finite set G such that ⟨G⟩ = I and ⟨LM(G)⟩ = LM(I).

Definition 3 (Reduced Gröbner basis). The reduced Gröbner basis G of
an ideal I with respect to a monomial order is the unique G such that i) ∀h ∈
G, LC(h) = 1; and ii) ∀h ∈ G,no monomial of h belongs to ⟨LM(G \ {h})⟩.

There exists a canonical basis for the vector space R/I whose elements are
given by all the monomials in R that are not in LM(I). The normal form of a
polynomial f ∈ R can be seen as the decomposition of f ∈ R/I in this basis.

Definition 4 (Normal form with respect to a Gröbner basis). Let I ⊂ R
be an ideal, let ≺ be a monomial order and let G be a Gröbner basis of I with
respect to ≺. For any f ∈ R, there exists a unique polynomial ρ ∈ R such
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that f − ρ ∈ I and such that either ρ = 0 or its leading monomial LM(ρ) is
not divisible by any element of LM(G). We will refer to this polynomial as the
normal form of f with respect to G or as the reduction of f modulo G.

Finally, an ideal I for which this basis is finite is said to be zero-dimensional. In
this case, its cardinality is called the ideal degree, denoted by dI .

In this paper, the complexity analysis will be conducted using degree esti-
mates with respect to a fixed weight vector, referred to as weighted degrees:

Definition 5 (Weighted degree). Given a weight vector w = (w0, . . . , wn) ∈
Rn+1

≥0 , the weighted degree of a monomial µ = xβ0
∏n

i=1 z
βi

i ∈ R is defined as:

dw

(
xβ0

n∏
i=1

zβi

i

)
=

n∑
i=0

wiβi.

From a weight vector w ∈ Rn+1
≥0 and a lexicographical order ≺lex on R, one can

define a particular weight order that we will call the wdeglex monomial order.

Definition 6 (wdeglex monomial order). The weighted graded lexicograph-
ical (wdeglex) monomial order ≺ with respect to the weight vector w ∈ Rn+1

≥0 and
the lexicographical order ≺lex on R is the monomial order defined as follows. For
monomials µ and µ′, we have

µ ≺ µ′ iff

{
dw(µ) < dw(µ′), or

dw(µ) = dw(µ′), and µ ≺lex µ′.

Given a fixed weight vector w, the weighted degree dw(f) of f can be defined as
the maximal weighted degree of the monomials in f . By definition of the above
order ≺, we have dw(f) = dw(LM≺(f)).

Resultants. The resultant of two univariate polynomials in X over a commuta-
tive ring R is an element of R defined as the determinant of the so-called Sylvester
matrix. Resultants are a powerful tool to eliminate variables in a multivariate
polynomial ring (in this case, R is itself a polynomial ring).

Definition 7 (Resultant of two polynomials). Let R be a commutative
ring, and let f, g be two non-constant polynomials in R[X]:

f =

γ∑
i=0

aiX
i, ai ∈ R, aγ ̸= 0, g =

δ∑
i=0

biX
i, bi ∈ R, bδ ̸= 0.
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The Sylvester matrix associated to f and g in R(γ+δ)×(γ+δ) is defined as:

Syl(f, g) =



aγ · · · a1 a0 0
. . .

. . .
. . .

0 aγ · · · a1 a0
bδ bδ−1 · · · b0 0

. . .
. . .

. . .

0 bδ bδ−1 · · · b0︸ ︷︷ ︸
γ+δ



 δ

 γ

.

The resultant of f and g with respect to X is defined as:

Res(f, g) = |Syl(f, g)| ∈ R.

When R[X] is a multivariate polynomial ring and when the choice of the variable
X is ambiguous, we denote the resultant of two multivariate polynomials f and
g with respect to X as ResX(f, g).

It is readily seen that ResX(f, g) ∈ R ∩ ⟨f, g⟩, and therefore it vanishes at any
potential common roots of f and g.

In addition to the determinant-based definition of the resultant, we will use
a specific case of the following result.

Proposition 1. Let R be an integral domain and let f, g ∈ R[X] as in Defini-
tion 7. Assume their roots (in some extension field) are ζ1, . . . , ζγ and η1, . . . , ηδ
respectively. Then their resultant is given by:

Res(f, g) = aδγb
γ
δ

γ∏
i=1

δ∏
j=1

(ζi − ηj)

= aδγ

γ∏
i=1

g(ζi) = (−1)γδbγδ
δ∏

j=1

f(ηj).

Proof. We refer for example to [10, Chapter 3, (1.4), page 79], which applies
when we take k as the field of fractions of R. ⊓⊔

Fast multivariate polynomial multiplication. An important building block
to derive the complexities of the methods in this paper is the cost of multiplying
two multivariate polynomials. We start by denoting the complexity of multi-
plying two univariate polynomials of degree ≤ d over Fq as M(d) operations
in Fq. The most efficient univariate multiplication algorithm is an FFT-based
technique with quasi-linear complexity [8],

M(d) = O(d log(d) log(log(d))). (1)

We will rely on this univariate algorithm to also compute the product of mul-
tivariate polynomials using the Kronecker trick presented in [19, §3.4]. In this
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way, the product of two polynomials in Fq[x1, . . . , xn] with degree αi and βi

respectively in the variable xi takes

M

(
n∏

i=1

(αi + βi + 1)

)
(2)

operations in Fq. This product has degree αi+βi in the variable xi and typically
has

∏n
i=1(αi + βi + 1) nonzero coefficients.

Univariate root finding. The roots of a univariate polynomial of degree d
in Fq can be computed by applying the efficient FFT-based technique of [4].
Assuming that M(d) = O(d log(d) log(log(d))) and that this polynomial has a
few roots in Fq, finding the roots of this polynomial requires

O(d log(d)(log(d) + log(q)) log(log(d))) (3)

operations in Fq.

2.2 The FreeLunch Approach

The approach of [3] relies on the existence of specific monomial orders for certain
AO permutations in which the initial modeling is already a Gröbner basis. In
these cases, the initial step of modeling the polynomial system (and, indeed,
Gröbner basis) is referred to as sysGen. Even though such a Gröbner basis is
conceptually easy to obtain, its elements can still contain variables of high degree,
making them difficult to compute in practice.

Instead of applying the FGLM algorithm to derive a second Gröbner basis
from the output of the sysGen step, [3] suggests a more tailored approach. As
such, the next two steps of the FreeLunch method involve constructing a multipli-
cation matrix (matGen) and computing its characteristic polynomial (polyDet).
Indeed, the structure of the first Gröbner basis makes this operation more effi-
cient than generic algorithms that can be applied to it6. The final step, uniSol,
is to find the roots of this polynomial, as described in Section 2.1.

This last uniSol step is typically negligible compared to the rest of the
attack. However, it is unclear which of the other steps is the most costly. In [3,
Appendix A], it is argued that sysGen is easier to perform than polyDet, but
this claim is based solely on heuristics. The comparison between matGen and
polyDet appears to be just as difficult. While the generic upper bound for
matGen [13, Proposition 3.1] is greater than the complexity estimate for polyDet,
[3] remarks that this is likely a loose upper bound that can be further improved
by taking into account the underlying structure. Experiments do not provide
more insight for this comparison, as there are examples where both matGen and
polyDet become the bottleneck [3, Section 6.1].

6 Faster algorithms exist, for example, [5], but they cannot be used in this setting.
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2.3 The Resultant Approach

The idea of [24] is to compute iterated resultants starting from the initial mod-
eling, which allows eliminating variables and eventually producing a univariate
polynomial. The authors consider two modelings: the direct modeling referred to
as “forward”, and the “start-from-the-middle” (SFTM) modeling. In both cases,
new variables are introduced each round at each output of inverse power map
S-boxes, which suggests a suitable elimination path. The construction of these
modelings is analogous to the sysGen step of [3]. Still, [24] does not estimate its
cost and assumes it to be negligible compared to the cost of subsequent steps.

Once the system has been generated, iterated resultants are computed effi-
ciently by exploiting the structure of the Sylvester matrices involved. After each
resultant computation, a so-called “cubic substitution procedure” is applied to
decrease the degree of the remaining variables in the resultant. This substitution
can be seen as a reduction by some of the polynomials of the initial modeling
whose leading monomials are of the form z3i (for a particular monomial order-
ing). We will only be interested in the direct modeling, where this approach
yields a univariate polynomial. When applied to the STFM modeling, the same
approach yields two bivariate polynomials, and the final bivariate resultant is
computed differently by a generic algorithm based on Fast Lagrange interpola-
tion [9]. Finally, [24] uses a standard uniSol step to extract the roots of the
univariate polynomial.

The computational bottleneck for this approach seems to depend on the
choice of modeling. In the SFTM modeling, the final bivariate resultant compu-
tation is estimated as the bottleneck (see [24, Figure 7 and 12, Table 4]), whereas
cubic substitutions seem to be the bottleneck in the forward modeling (see [24,
Table 2]).

3 Improved Resultant Approach

At a very high level, our work improves upon the Resultant attack, borrow-
ing theoretical tools from the FreeLunch approach. In this section, we give an
overview of our improved resultant attack and highlight the key differences be-
tween our attack and the resultant attack of [24]. We leave the complexity anal-
ysis for Section 4. This analysis allows us to precisely bound the complexity of
all steps, which was not the case in [3,24].

In most of this paper, we will consider the case where the unknown input
x of the CICO-1 problem has only one single degree of freedom (as opposed to
t−1), for instance, x ∈ {0}t−1×Fq, which allows us to model the CICO solutions
with a well-defined polynomial system, which has on average 1 CICO solution (as
opposed to qt−2). In concrete attacks, we usually use round-bypassing techniques,
as performed in [4,3,24], and manage to reduce the CICO-1 problem on a full-
round permutation into a CICO-like problem on a round-reduced variant where
the input has only one degree of freedom. The idea is to let the entries of x
consist of univariate polynomials in F[x] that are carefully chosen so that the
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growth of the degree in x induced by the first non-linear operations is limited,
thus effectively bypassing a small number of initial rounds. For simplicity, we
omit round-bypassing techniques in the presentation of our attack but will apply
them on concrete permutations in Section 5. We highlight that we only rely on
existing round-bypassing techniques and do not improve upon the state of the
art in that regard.

3.1 Modeling Strategy

Scope of application. Recall that the value of q is assumed to be sufficiently
large so that the CICO-1 problem of Definition 1 is not trivially broken by
a brute-force attack, i.e., q ≥ 2λ, where λ is the security parameter. In the
following, we will focus on a permutation F : Ft

q → Ft
q, t ≥ 2 that satisfies the

following two conditions:

1) It is built from affine layers denoted Ai and a non-linear layer denoted S,
both operating on Ft

q. These building blocks appear in an alternating pattern,
starting and ending with the affine layer (if needed, one can set A0 = Id).
In other words, the entire permutation can be described as:

F = Ar ◦ S ◦ . . . ◦A1 ◦ S ◦A0,

where the number of calls to S is referred to as the number of rounds, denoted
by r.

2) The only high-degree components in S are power maps y 7→ y1/α, denoted
as α-inversions, where α is coprime to q−1 and small (typically α = 3 or 5).
We write ℓ for the number of such α-inversions in S. As an example, ℓ = 1
for Anemoi, Arion and Griffin, while ℓ = t for Rescue-Prime.

We remark that many ZK-friendly AO permutations fall into this category, in-
cluding Rescue-Prime, Arion, Griffin, and Anemoi. The XHash construction also
belongs to this framework, but the authors only claimed CICO resistance with
multiple constraints in output.

Modeling the CICO Problem. As announced above, we let the input state
to F consist of polynomials in an unknown variable x, except for one element
that is set to 0. We can then compute the evolution of this polynomial state
through F by successively applying Ai and S on the state elements, interpreted
as polynomials in Fq[x] rather than field elements. The degree of the polynomials
in the internal state clearly increases after every application of S. When ℓ = 0,
which is the case for example in Poseidon and Poseidon2, S is of low degree
and this increase is simply exponential in the number of rounds. However, when
ℓ ≥ 1, the α-inversion is of very high degree (of the same order of magnitude as
q), so applying S directly to the polynomial state is in general not feasible.

Similarly to [3,24], we therefore introduce new variables zi for 1 ≤ i ≤ n
as the output of each α-inversion. Since we introduce these variables one after
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the other, we are ensured that the input of the α-inversion whose output is zi
is a low-degree polynomial in x, z1, . . . , zi−1 (independent of zi, . . . , zn), which
we call fi(x, z1, . . . , zi−1). For each such new variable zi, we add the equation
zαi − fi(x, z1, . . . , zi−1) = 0 to our polynomial system. In the current setting, we
need n = ℓr new variables zi. This number may be decreased thanks to round-
bypassing techniques that set the input of some α-inversions to polynomials of
the form f(x)α (possibly constant), so that there is no need to add an extra
variable for the output. We call them bypassed α-inversions.

One key improvement of our modeling compared to the modelings of [3,24]
is that we efficiently reduce state polynomials after each multiplication in S,
ensuring that their degree in each zi never exceeds α − 1. While [3,24] have
suggested computing normal forms for the same purpose, they do so näıvely,
without analyzing or optimizing the reduction.

Using this modeling strategy, the output of F consists of polynomials in
Fq[x, z1, . . . , zn], and we set the first polynomial of the output state equal to 0
to get a CICO solution. We denote this polynomial by h(x, z1, . . . , zn) and add
the equation h(x, z1, . . . , zn) = 0 to our polynomial system. Thus, we obtain the
following system modeling the CICO problem for F :

P =



zα1 − f1(x) = 0

zα2 − f2(x, z1) = 0
...

zαn − fn(x, z1, . . . , zn−1) = 0

h(x, z1, . . . , zn) = 0.

(4)

This modeling coincides with the forward modeling of [24]. We also recover
the modelings of [3], except for the modeling of Anemoi, in which the authors
artificially increase the degree of h to get directly a Gröbner basis.

FreeLunch systems. The main feature of the modelings of [3] is that they
yield Gröbner bases where the leading monomial of zαi − fi is z

α
i for 1 ≤ i ≤ n,

and the leading monomial of h(x, z1, . . . , zn) is univariate in x. To obtain these
Gröbner bases, the authors of [3] consider a particular wdeglex monomial order
(Definition 6), introduced in [3, Construction 1] with different notations.

Construction 1 For a system P following the structure of System (4), let ≺P
be the wdeglex monomial order associated with the order x ≺lex z1 ≺lex · · · ≺lex

zn and the weight vector w = (w0, . . . , wn) ∈ Rn+1
≥0 defined recursively by:{

w0 = 1,

wi = d(w0,...,wi−1)(fi)/α for 1 ≤ i ≤ n.

All the Gröbner bases studied in [3] correspond to systems P that are ≺P -
Gröbner bases. We refer to them as FreeLunch, following [3, Proposition 5].

Definition 8 (FreeLunch Gröbner basis). A system P as in (4) is said to
be FreeLunch Gröbner basis if it is a ≺P -Gröbner basis.
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Using the wdeglex order as an analysis tool. Contrary to [3], our work
applies to modelings that are not necessarily Gröbner bases with respect to the
order defined in Construction 1, i.e., the leading monomial of h is not necessarily
univariate in x. Still, we heavily rely on this order in our analysis.

Indeed, note that the complexity of multivariate multiplication depends on
the partial degrees in all variables (see Equation (2)). While the degree in zi
remains low due to reductions by zαi − fi polynomials, these reductions increase
the degree in x. Controlling this x-degree seems challenging. For instance, stan-
dard degree arguments based on partial or total degrees fail to upper-bound it.
However, we observe that the weighted degree used in Construction 1 may only
decrease after these reductions. Therefore, we use this quantity to rigorously
upper-bound the x-degree of polynomials at all points of the attack.

Definition 9 (Extra notation). For a system P = {zα1 − f1, . . . , z
α
n − fn, h}

as in (4) and a polynomial f ∈ R, we denote the weighted degree defined in
Construction 1 as dP(f) (instead of dw(f)). For 1 ≤ i ≤ n, we denote by Pi the
subsystem {zα1 −f1, . . . , zαi −fi} viewed in Ri. Using Construction 1, we similarly
consider ≺Pi

and its associated weighted degree dPi
(f) on Ri. In the following,

we will allow ourselves to use ≺P and dP(f) for these last two notations to
compare polynomials in Ri, even when the system P is not fully generated.

3.2 Attack Description

Adopting the taxonomy of Sections 2.2 and 2.3, we can – at a high level – divide
our framework into three steps: sysGen, iteRes and uniSol. The uniSol step
is performed using generic methods, as described in Section 2.1. In this section,
we point out how the other steps differ from that of [3,24].

sysGen. This step generates round by round a system of the form (4) where
the fi’s are reduced, i.e., where degzj (fi) < α for j < i. For that purpose, we
decompose the non-linear layer S into a sequence of multiplications, and apply
this sequence of multiplications to multivariate polynomials. As in [3,24], we also
immediately reduce the result of each multiplication to maintain reduced out-
puts. However, we do it efficiently with a dedicated algorithm (Algorithm 1) that
offers clear improvements over naive normal form computation. In particular, we
can estimate its complexity which introduces only a logarithmic overhead com-
pared to the complexity of multivariate multiplication. This leads to an accurate
complexity estimate for the entire sysGen step, which was missing in [3,24].

iteRes. This step computes a series of resultants starting from the output of
sysGen to produce a univariate polynomial. Similarly to the modelings of [24],
this output is of the form (4), allowing us to follow the same elimination path as
in their work. However, we take advantage of our efficient reduction procedure
(Algorithm 1) to improve the computation of resultants of [24]. More precisely,
instead of performing a cubic substitution after the computation of each resul-
tant, we apply reductions within their computation. Indeed, each resultant can

11



be computed as a series of multivariate additions and multiplications, and we
can apply Algorithm 1 on the output of each multiplication similarly to sysGen.
Ultimately, the iteRes step produces a univariate polynomial in x, whose roots
are computed in the uniSol step.

The precise complexity estimates for sysGen and iteRes can be found in
Section 4. Beyond improving upon [3,24], the fact that both steps are based on
Algorithm 1 enables a straightforward comparison to identify the dominant cost,
which was again not possible in [3,24].

3.3 Improved Reduction Algorithm

This section describes and analyzes the reduction algorithm we use, presented
in Algorithm 1. This algorithm is a normal form computation (in the sense of
Definition 4) with respect to a lexicographical Gröbner basis extracted from a
system as in (4).

Proposition 2. For any 1 ≤ k ≤ n, let Pk be the polynomial system composed
of the first k equations of a system P as in (4). Then Pk is a Gröbner basis with
respect to the lex ordering defined by x ≺lex z1 ≺lex · · · ≺lex zk.

Proof. The leading terms of its elements are pairwise coprime, hence the result
by Buchberger’s second criterion [11, Chapter 2, §9, Prop 4 and Thm 3]. ⊓⊔

We will say that a polynomial g ∈ Fq[x, z1 . . . zk] is reduced with respect to P
if it is reduced with respect to Pk and the lex order defined in Proposition 2,
i.e., if degzi(g) ≤ α − 1 for all 1 ≤ j ≤ k. We will also adopt the notation Sk

for the quotient ring Rk/⟨Pk⟩, which can be seen as our working ring. Note that
contrary to [3], we never consider the reduction by the polynomial h. Since P is
not a Gröbner basis in general, we cannot directly define normal forms associated
to P.

Given g ∈ Fq[x, z1 . . . zk] and Pk, Algorithm 1 efficiently computes the desired
normal form of g with respect to Pk. This algorithm operates under two key
conditions, namely that degzi(g) ≤ 2α−2 for 1 ≤ i ≤ k and that the set Pk is also
reduced. The first condition is always met when g is the product of two reduced
polynomials, and we always apply Algorithm 1 after running a multivariate
multiplication in sysGen and iteRes. Algorithm 1 is a recursive procedure that
heavily relies on the fact that the reduction of zi does not introduce variables zj
for j ≥ i, so that we can reduce the zi sequentially for decreasing i.

12



Algorithm 1 Reducek(g(x, z1, . . . , zk),Pk)

Input: A polynomial g ∈ Fq[x, z1 . . . zk], where degzi(g) < 2α− 1 for 1 ≤ i ≤ k, and a
reduced polynomial system Pk that shares the same first k polynomials with (4).

Output: The normal form of g with respect to Pk and x ≺lex z1 ≺lex · · · ≺lex zk.
1: if k = 0 then
2: return g
3: end if

4: write g as g =

2α−2∑
i=0

gi(x, z1, . . . , zk−1)z
i
k

5: ρ← Reducek−1(gα−1,Pk−1) · zα−1
k

6: for i = 0 to α− 2 do
7: ρ← ρ+ Reducek−1(gi + Reducek−1(gα+i,Pk−1) · fk,Pk−1) · zik

▷ 2α− 1 calls to Reducek−1 in total
8: end for
9: return ρ

In our analysis, we bound the complexity of Algorithm 1 depending on k and
on the maximum possible x-degree observed in this algorithm, denoted by dx.

Proposition 3. Let C(k, dx) be the complexity of Algorithm 1 in Fq-operations,
expressed as a function of k and dx the maximum possible x-degree of polynomials
manipulated in this algorithm. We have

C(k, dx) = Õ
(
dx(2α− 1)k

)
.

Proof. When k = 0, Algorithm 1 returns g and the complexity is approximately
0. Otherwise, when k ≥ 1, we perform 2α − 1 recursive calls to Reducek−1 and
α − 1 multivariate multiplications between Reducek−1(gα+i,Pk) and fk. These
polynomials only involve variables x, z1, . . . zk−1, and their degrees in each zi
are all bounded by α− 1. In addition, by definition of this quantity, the degree
in x of the product is bounded by dx. Thus, using fast multivariate multipli-
cation (Equation (2)), each multiplication costs M

(
(dx + 1)(2α− 1)k−1

)
field

operations. This gives:

C(0, dx) = 0

C(k, dx) = (2α− 1)C(k − 1, dx) + (α− 1)M((dx + 1)(2α− 1)k−1) for k > 0.

This complexity can be unfolded as follows, withM(d) = Õ(d) and dx ≥ 1:

C(k, dx) =

k∑
i=1

(2α− 1)k−i(α− 1)M((dx + 1)(2α− 1)i−1) (5)

= Õ

(
k∑

i=1

(2α− 1)k−1(α− 1)dx

)
(6)

= Õ
(
kdx(2α− 1)k

)
= Õ

(
dx(2α− 1)k

)
.
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⊓⊔

Remark 1. Each depth k − j for 0 ≤ j ≤ k − 1 induces approximately the same
cost in the final complexity of Algorithm 1, as all terms in the sum in front of
(6) are independent of i.

As stated at the end of Section 3.1, the value of dx is difficult to obtain in general
and cannot be easily upper-bounded using standard tools. Therefore, Lemma 1
gives another complexity expression that depends on the weighted degree dPk

(g)
of the input polynomial, that indeed bounds dx and that will be much simpler
to compute in our context.

Lemma 1. Let Pk be as in Definition 9 where the polynomials are reduced, and
let g ∈ Rk such that degzi(g) ≤ 2α−2 for 1 ≤ i ≤ k. The complexity of reduction
of g by Pk with Algorithm 1 can be upper-bounded by:

Õ
(
dPk

(g)(2α− 1)k
)
.

Proof. All polynomials manipulated by Reducek are reductions of parts of the
input polynomial g, therefore the weighted degree of these polynomials can only
be less than dPk

(g). Since the x-degree is less than the weighted degree, we have
dx ≤ dPk

(g) and conclude with Proposition 3. ⊓⊔

While reducing FreeLunch systems using Algorithm 1, the leading terms of the
polynomials involved are often univariate in x, so that dx = dPk

(g), and Lemma 1
gives a tight bound. This bound is also easier to apply than the one given by
Proposition 3.

Finally, Corollary 1 bounds the cost of multiplication in Sk, assuming that
each element of Sk is represented as its normal form with respect to Pk and ≺Pk

.
As mentioned above, this cost is higher than that of multivariate multiplication
in Fq[x, z1, . . . zk] by only a logarithmic factor.

Corollary 1. Let g1, g2 be two reduced polynomials in Sk = Rk/⟨Pk⟩. The
complexity of computing their product g1g2 and reducing it using Algorithm 1 is
given by:

Õ
(
dx(2α− 1)k

)
= Õ

(
dPk

(g1)dPk
(g2)(2α− 1)k

)
,

where dx is the maximum possible x-degree of polynomials manipulated in Algo-
rithm 1 applied to g1g2.

Proof. Since dx is also a bound on the x-degree of g1g2, computing the mere
product costs Õ

(
dx(2α− 1)k

)
by fast multivariate multiplication. Then, using

Proposition 3, the reduction has the same cost up to a logarithmic factor. One
can finally upper-bound dx by dPk

(g1g2) = dPk
(g1)dPk

(g2). ⊓⊔
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4 Complexity Analysis

We now estimate the complexity of sysGen and iteRes based on the cost of
Algorithm 1. As with our estimate for the reduction algorithm, we first provide
complexity bounds using x-degrees and then adapt them to give bounds depend-
ing on the weighted degree of the last polynomial h ∈ P. In Section 5, we will see
that this quantity is relatively straightforward to compute in practice, so that
complexity estimates for our attack are easily derivable on concrete ciphers.

4.1 Complexity Analysis of sysGen

Recall that sysGen corresponds to the modeling strategy outlined in Section 3.1
but where Algorithm 1 is applied after every multiplication of two polynomials
when computing the round function. The same method was outlined in [3, Com-
plexity of computing P ′

G , p. 37], though without a detailed analysis, as the cost
of the reductions was heuristically neglected compared to the other steps of the
FreeLunch attack. To proceed with this analysis, let us rewrite sysGen more ex-
plicitly for an unspecified scheme that fits into our framework. This may be done
in two steps: first, create an arithmetic circuit and then evaluate it with a given
procedure. Recall that due to round-bypass techniques, some α-inversions do not
require the introduction of new variables zi, namely the bypassed α-inversions.

Arithmetic circuit generation

1. Write the permutation as an arithmetic circuit over Fq where the gates are
linear operations, field multiplications and α-inversions. This circuit pos-
sesses t input wires and t output wires.

2. Generalize these arithmetic gates to operations over the multivariate poly-
nomial ring Fq[x, z1, . . . , zn], where n is the number of non-bypassed α-
inversions in the circuit. The wires now contain polynomials in Fq[x, z1, . . . , zn].

3. After each polynomial multiplication gate, add a gate representing a call
to Algorithm 1 on the output, reducing it with the polynomial system Pk,
where k is the current number of introduced variables.

Evaluation of the circuit

1. Set the first input wire to 0 and the other input wires to polynomials in x.
2. Initialize an array P = [ ] of length j = 0 at the start and proceed in the

evaluation of the circuit in any coherent order. P will eventually contain the
zαi − fi polynomials of the final system.

3. When encountering a non-bypassed α-inversion, perform the following in-
structions:
(a) Let f be the input of the α-inversion.
(b) Increment j.
(c) Append zαj − f to P.
(d) Assign the polynomial zj to the output wire of the α-inversion.
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4. The first output wire is returned along with P. They form a polynomial
system as in (4) where degzj (fi) < α for 1 ≤ j < i, 1 ≤ i ≤ n, degzj (fi) = 0
for j ≥ i, and degzj (h) < α, 1 ≤ j ≤ n.

Throughout this procedure, the table P always contains polynomials of the form
zαi − fi where fi is reduced. We upper-bound the complexity of sysGen in the
following proposition, using the bound previously found for Algorithm 1.

Proposition 4. The complexity of sysGen in terms of Fq-operations is upper-
bounded by:

Õ (Mdx(2α− 1)n) ,

where M is the number of multiplications in the cipher, n the number of non-
bypassed α-inversions, and dx the highest degree in x observed in the procedure.

Proof. We apply M times the multiplication and reduction procedure analyzed
in Corollary 1. The number of variables in such a procedure is always ≤ n, and
the degree in x is by definition ≤ dx. This yields the announced upper bound.

⊓⊔

Remark 2. The bound of Proposition 4 is given in terms of field multiplications.
However, it is common to compare the cost of an attack in terms of the number
of permutation evaluations, each of them costing at least M field multiplications.
Therefore, the cost of sysGen can be estimated to Õ (dx(2α− 1)n) permutation
evaluations. In addition, for iterated-round constructions, the costliest opera-
tions of sysGen lie in the last permutation round, which accounts for a factor
1/r of the total number of multiplications.

On some ciphers, such as Rescue, computing the value dx in Proposition 4 is
straightforward. However, we may want to adapt this proposition using weighted
degrees to tackle ciphers where this value is harder to bound. To do so, we
observe that the x-degree may only decrease with monomial cancellations (and
not reductions). This leads to the following bound on dx, with a slight tweak on
the procedure to avoid some theoretical cases where the x-degree grows inside
the procedure but is canceled in the final polynomial system.

Proposition 5. The maximum x-degree observed throughout sysGen, denoted
dx in Proposition 4, can be upper-bounded by:

dx ≤ max(dP(f1), . . . , dP(fn), dP(h)),

up to a little tweak in the procedure.

Proof. Let d = max(dP(f1), . . . , dP(fn), dP(h)) where P is created by the origi-
nal sysGen procedure. We show that we can tweak the procedure without chang-
ing the outcome P and by keeping a dx ≤ d. Indeed, one can discard all en-
countered monomials with a x-degree strictly more than d, since their x-degree
cannot be reduced in the procedure, and since no monomial with larger or equal
x-degrees appear in the final P (since degx(f) ≤ dP(f) for all f ∈ R). This does
not change the output system P, as such monomials can not affect it.
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In order to make the complexity analysis of this paper easier, we assume
the following, which is not always verified, but which is in practice not far from
reality.

Assumption 1 We assume dP(h) = max(dP(f1), . . . , dP(fn), dP(h)).

4.2 Complexity Analysis of iteRes

Recall that the system P output of sysGen follows the structure of System (4),
where furthermore the fi’s and h are reduced modulo the ≺lex-Gröbner basis
formed by the first n polynomials. The structure of this system naturally suggests
eliminating the zi’s from top to bottom, by computing the series of resultants
hn, . . . , h0, where:

hn = h, and hi−1 = Reszi(hi, z
α
i − fi) for i = n, . . . , 1.

Indeed, it is readily seen that hi ∈ Ri = Fq[x, z1, . . . , zi] for 0 ≤ i ≤ n, and
in particular h0 is univariate in x. To limit degree growth in the remaining
variables, this approach was tweaked in [24] by applying cubic substitution (in
our terminology, reduction) after the computation of each resultant.

As mentioned earlier, our approach applies the reduction of Algorithm 1 after
each multiplication in the resultant computation, rather than only on the resul-
tant itself. We denote the non-reduced resultant as Resi = Reszi+1(hi+1, z

α
i+1 −

fi+1) and reserve the notation hi for the reduced polynomial considered in our
approach. Each resultant hi can in theory be computed directly as a Sylvester
determinant, i.e., a polynomial expression in Ri on fi+1 and the coefficients of
hi+1, interpreted as a polynomial of Ri−1[zi]. This method can be efficient for
small α’s – we will indeed use it in our applications in Section 5 for α = 3 – but
for large α’s, the polynomial expression is too heavy and this technique becomes
inefficient. Hence for general α’s we use another approach based on Proposition
1. The complexity estimates of this section correspond to this latter algorithm,
and assume an unbounded α.

Resultant computation for general α. Our method to compute resultants
for α > 3 consists in applying the following proposition.

Proposition 6. Let us denote FRi−1 the algebraic closure of the fraction field
of Ri−1. We have:

Resi−1 = Reszi(hi, z
α
i − fi) =

α−1∏
j=0

hi(θχ
j), (7)

where χ ∈ Fq is an α-th primitive root of unity and θ ∈ FRi−1 is an α-th root of
fi.
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Proof. We use Proposition 1 by making the roots of zαi −fi explicit, namely θχj

for 0 ≤ j ≤ α− 1. We obtain

Reszi(hi, z
α
i − fi) = (−1)α(α−1)

α−1∏
j=0

hi(θχ
j) =

α−1∏
j=0

hi(θχ
j).

⊓⊔

Using Proposition 6, the computation of this resultant boils down to α multipli-
cations of multivariate polynomials in FRi−1

. In order to perform the computa-
tion on a simpler ring, we introduce new formal variables θ and χ and perform
the computation in Ri−1[θ, χ]/⟨θα − fi, χ

0 + . . . + χα−1⟩. In addition, we aim
at producing a reduced polynomial hi−1 by applying a variant of Algorithm 1
after each multiplication. Therefore, we will directly perform the multiplications
in the subring Si−1[θ, χ]/⟨θα − fi, χ

0 + . . .+ χα−1⟩ where Si−1 = Ri−1/⟨Pi−1⟩.
With a slight abuse of notation, we can identify the formal variable zi with θ,
yielding the natural isomorphism:

Si−1[θ, χ]/⟨θα − f, χ0 + . . .+ χα−1⟩ ∼= Si[χ]/⟨χ0 + . . .+ χα−1⟩,

which essentially allows us to compute in the familiar ring Si with one extra
variable χ. In order to account for χ, we show that we may use Algorithm 1 with
i+1 variables. The complexity of this computation is estimated in the following
lemma, whose proof provides more details on how we apply Algorithm 1.

Lemma 2. For 1 ≤ i ≤ n, the reduced resultant hi−1 can be computed from hi

and P in
Õ(dP(hi)(2α− 1)i+2).

Proof. The idea is similar to the fast multivariate multiplication and reduction
in Si, but with an extra variable χ and equation χ0 + ... + χα−1. In order to
reuse the bounds of Corollary 1, we perform all operations in Si[χ]/⟨χα − 1⟩,
and reduce by χ0 + ... + χα−1 at the end. Let us consider the reduced system
Pχ
i = Pi ∪ {χα − 1 = 0}. Note that χα − 1 = 0 fits the shape of the first n

equations of System 4 (in a very simple manner). We can thus treat Pχ
i as a

polynomial system composed of the first i + 1 equations of System 4, and we
can directly use the bounds of Corollary 1: the multivariate multiplication and
reduction cost Õ(dx(2α − 1)i+1) operations altogether, where dx is a bound on
the x-degrees during the computation. Following Lemma 1, dx can be bounded
by the product of the weighted degrees of the two inputs of the multiplication.
Note that Construction 1 for Pχ

i defines the weighted degree of χ as dPχ
i
(χ) = 0,

so χ is not involved in the weighted degree dPχ
i
. Therefore, for all j, we have

dPχ
i
(hi(ziχ

j)) = dPχ
i
(hi(zi)) = dP(hi). In order to perform this product of α

terms of weighted degree dP(hi), we may apply a divide-and-conquer method
to minimize the number of high weighted degree multiplication (as sketched

in Appendix A): this costs Õ(αdP(hi)(2α − 1)i+1) = Õ(dP(hi)(2α − 1)i+2).
operations. The final reduction by χ0 + ...+ χα−1 has linear cost w.r.t. the size
of the output of the previous steps. ⊓⊔
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Remark 3. Based on our analysis, if we first give a complexity bound using x-
degrees and then bound these x-degrees by weighted degrees as was done in
sysGen, the resulting bound is weaker by a factor approximately α. Indeed, the
multiplication grouping seems harder to take into account.

Estimating the cost of iteRes comes down to estimating the weighted degrees
of the hi’s, which is done in the following lemma.

Lemma 3. For 1 ≤ i ≤ n, we have:

dP(hi) ≤ αn−idP(h).

Proof. Let 1 ≤ i ≤ n. Since hi is obtained from Resi from reductions that cannot
increase the weighted degree, we have dPi(hi) ≤ dPi(Resi). Using Proposition 6,
and the polynomial system Pχ

i defined in the proof of Lemma 2, we have:

dP(hi−1) = dPχ
i
(hi−1) ≤ dPχ

i
(Resi−1) =

α−1∑
j=0

dPχ
i
(hi(ziχ

j)) = αdP(hi).

As dP(hn) = dP(h), we can conclude by induction on i = n, ..., 1. ⊓⊔

We can finally give a bound for the iteRes step that depends on the weighted
degree of the last polynomial h ∈ P.

Proposition 7. Given a reduced polynomial system P, the complexity of iteRes
in Fq-operations can be upper-bounded by:

Õ
(
dP(h)(2α− 1)n+2

)
.

Proof. By combining Lemma 2 and 3, obtaining the i-th polynomial hi from
previously computed data costs Õ(dP(hi)(2α − 1)i+2). Computing the entire
series hn, . . . , h1 therefore costs

Õ

(
n∑

i=1

dP(hi)(2α− 1)i+2

)
= Õ

(
n∑

i=1

αn−idP(h)(2α− 1)i+2

)

= Õ

(
dP(h)(2α− 1)n+2

n∑
i=1

(
α

2α− 1

)n−i
)

= Õ
(
dP(h)(2α− 1)n+2

)
.

⊓⊔

4.3 Overall Attack Complexity

We now have everything needed to upper-bound the entire attack complexity.
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Proposition 8. Let dx be the maximum x-degree observed throughout sysGen,
and let M be the number of multiplications in the cipher. The complexity of the
resultant attack in terms of Fq-operations is

Õ
(
Mdx(2α− 1)n + dP(h)(2α− 1)n+2

)
.

Proof. Proposition 4 states that sysGen costs Õ(Mdx(2α − 1)n) operations in

Fq, and Proposition 7 states that iteRes costs Õ
(
dP(h)(2α− 1)n+2

)
operations

in Fq. Finally, the last univariate resultant is of degree dP(h0) ≤ dP(h)α
n by

Lemma 3. Therefore, uniSol costs Õ(dP(h)αn) using Equation (3), which is less
than iteRes. ⊓⊔

Using Assumption 1, and assuming that the number M of multiplications in the
cipher is small, the previous bound can be simplified as a function of dP(h).
As explained in Remark 2, the second assumption is sound because the cost of
sysGen is dominated by the last modeling round, which effectively comprises a
small number of multiplications.

Corollary 2. Under Assumption 1, and assuming that the number of multi-
plications M in the cipher is small, the complexity of the resultant attack in
Fq-operations is:

Õ
(
dP(h)(2α− 1)n+2

)
.

Proof. Using the two assumptions, the complexity of sysGen can be simplified as
Õ (dP(h)(2α− 1)n). The cost of the other steps is the same as in Proposition 8.

⊓⊔

Under Assumption 1, our analysis shows that the complexity of sysGen and
iteRes differ only by logarithmic factors when α is small, and that uniSol has
a lower cost. Finally, we remark that in the special case when P is a FreeLunch
Gröbner basis (see Definition 8), we have a particularly succinct complexity
estimate depending only on α and the ideal degree.

Corollary 3. If P is a FreeLunch Gröbner basis generating an ideal of degree
dI , the complexity of the resultant attack in Fq-operations is:

Õ

(
dIα

2

(
2α− 1

α

)n+2
)
.

Proof. As P is a FreeLunch Gröbner basis with respect to ≺P , the leading mono-
mial of the last polynomial h is of the form xd, so dP(h) = d. Lemma 7 together
with the fact that dI = dαn concludes the proof. ⊓⊔

For realistic values of α and n, this last result improves upon the asymptotic
complexity of the FreeLunch attack, where the cost of polyDet was estimated
to be Õ(dIαn(ω−1)) operations in Fq [3, Section 3.2].
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5 Application to Specific Primitives

In this section, we estimate the complexity of our attack against the permutations
of Griffin, Arion, Rescue and Anemoi, where the respective primitives are briefly
recalled in Appendix C. To this end, we re-use existing bypassing techniques
from [4] and [3]. We also slightly refine the complexity estimates to include
logarithmic factors and we instantiate the parameters that were left unspecified
in Section 4, such as dx or dP(h), noting that these parameters are influenced
by the application of bypassing techniques. We support this theoretical analysis
with experimental results on round-reduced Griffin, Anemoi and Rescue.

Resultant computation when α = 3. As briefly mentioned in Section 4.2, our
applications for α = 3 use a different resultant algorithm than the one derived
from Proposition 6. For these cases, we compute directly the Sylvester deter-
minant by using the method sketched in [24, Proof of Lemma 3]. More details
are given in Appendix B. Concretely, this method requires 9 products in the
quotient ring Sk (and thus 9 multivariate multiplications and calls to Algorithm
1) to compute the resultant hk from hk+1.

5.1 Keeping Track of Logarithmic Factors

Most of the complexities in the previous sections of this paper were given with
Õ(·) to lighten the formulae. In this subsection, we explicit the logarithmic fac-

tors behind the Õ(·) and give new bounds in O(·) that we will instantiate on the
different primitives. A common assumption in previous works is that the con-
stants behind those O(·) are small, given that all logarithmic factors have been
accounted for. We will also make this assumption, which allows us to evaluate
the expression inside the O(·) to evaluate the complexity of the attack steps.

Refining Proposition 3 and Corollary 1. For the cost of a single multiplica-
tion and reduction (in other words, a product in Sk) in sysGen, we adopt a more
precise estimate that includes logarithmic factors. To express this complexity,
we introduce the notation Di = (dx+1)(2α−1)i for 1 ≤ i ≤ k. Referring back to
Equation (5) with the univariate multiplication complexity of Equation (3), we
get the following estimate for Algorithm 1 when the first k variables are involved
and where dx is still the maximal x-degree observed in this algorithm:

C(k, dx) = O

(
Dk

k−1∑
i=0

log(Di) log(log(Di))

)
= O (Dkk log(Dk) log(log(Dk))) .

At the same time, the multiplication that precedes the reduction costs:

O (Dk log(Dk) log(log(Dk))) ,

which corresponds to a negligible fraction of 1/k of the complexity estimate
C(k, dx) for this reduction. Therefore, we consider that the complexity of one
product in the quotient ring Sk is C(k, dx).
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Concrete estimate of sysGen. Let M ′ be the number of multivariate multi-
plications needed to evaluate one round of the permutation circuit as described
in Section 4.1. From now on, dx refers to the maximum x-degree in the com-
putations of sysGen. Let Di = (dx + 1)(2α − 1)i and let ki be the number
of introduced variables in rounds 1, ..., i (thus kr = n). We then estimate the
complexity of sysGen to be

M ′
r∑

i=1

C(ki, dx) = O

(
M ′

r∑
i=1

Dki
ki log(Dki

) log(log(Dki
))

)

= O

(
M ′kr log(Dn) log(log(Dn))

r∑
i=1

Dki

)

= O

(
M ′(dx + 1)n log(Dn) log(log(Dn))

r∑
i=1

(2α− 1)ki

)
.

Even if this condition is not indispensable, our discussion so far assumed the
same number ℓ of variables introduced per round. In this case, ki follows an
arithmetic progression with common difference ℓ. Assuming that ℓ > 0, the last
sum is dominated by (2α− 1)kr = (2α− 1)n. We thus obtain:

CsysGen = O(M ′(dx + 1)(2α− 1)nn log(Dn) log(log(Dn))). (8)

Concrete estimate of iteRes. As suggested by the proof of Proposition 7, the
cost of computing the first resultant, corresponding to the last round, dominates.
Indeed, the weighted degree dP(hi) increases by a factor α while the number of
variables reduces by 1 at each step, thereby the cost of multiplication in Si

decreases by a factor (2α − 1)/α in each step. We now consider two variants.
In the α = 3 case, we use the method described in Appendix B, which costs 9
operations in Si. The argument mentioned above applies, and we bound this step
with the complexity of the first resultant. We thus define D = αdP(h)(2α−1)n−1

and estimate the complexity of iteRes for α = 3 as:

CiteRes = 9 · C(n− 1, α · dP(h))
= O(9n(αdP(h) + 1)(2α− 1)n−1 log(D) log(log(D))).

(9)

When α > 3, we use the method described in Section 4.2 by computing the re-
sultant as the polynomial product in Proposition 6. From the proof of Lemma 2,
we recall that computing hi−1 can be done through operations in the ring
Si+1. The polynomial product is computed through a standard divide-and-
conquer approach, as described in Appendix A. Writing E = 2⌈log2 α⌉, D =
αdP(h)(2α− 1)n+1 and referring to Appendix A for the first equality, we obtain
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the following bound for iteRes by bounding the cost for the first resultant:

CiteRes =
log2 E∑
j=1

E

2j
C
(
n+ 1, 2jdP(h)

)

= O

log2 E∑
j=1

α

2j
(2jdP(h) + 1)(n+ 1)(2α− 1)n+1 log(D) log(log(D))


= O(dP(h)(2α− 1)n+1(n+ 1)α log(α) log(D) log(log(D))).

(10)

5.2 Griffin

We focus on the proposed instances of the Griffin hash function with α ∈ {3, 5},
and the number of branches t is 3 or a multiple of 4 (up to t = 24) [15, Table 2].

Primitive-specific considerations. From the round function of Griffin in Ap-
pendix C.1, it is easy to see that evaluating the Griffin circuit can be performed
in M ′ = α + 2(t − 2) (multivariate) multiplications each round. Let us denote
b the number of bypassed rounds, and db be the x-degree after the bypass. We
follow the techniques of [3, Section 4.1] to bypass the b first α-inversions. For
t = 3, 4, we have b = 1 and d1 = 1; for t = 8, we have b = 2 and d2 = 3; for
t ≥ 12, we have b = 3 and d3 = 6α+3. Following the analysis of [3] for a given t,
and using the order of Construction 1, the leading monomial of the state poly-
nomials after the (i+ b)-th round is xdi with di = db(2α+ 1)i, and the weights
of the zi’s are dP(zi) = di/α. We easily observe that the weighted degrees of the
manipulated polynomials never exceed dP(h), therefore dx ≤ dP(h). Since P is
a FreeLunch Gröbner basis, we have dP(h) = degx(h) = db(2α+1)r−b, which we
use to estimate the complexity of sysGen and iteRes. The degree of the final
univariate polynomial in uniSol is αr−bdP(h) = dbα

r−b(2α+ 1)r−b, which also
corresponds to the ideal degree.

Complexity. Table 1 presents the estimated complexities for the sysGen, iteRes
and uniSol steps against the parameters proposed in [15, Table 2]. The complex-
ity of uniSol was computed using (3) with log2(q) ≈ 128 for the field size. For
comparison, we also give the complexity of the polyDet step from the FreeLunch
attack, as reported in [3, Table 2].

5.3 ArionHash

We focus on the Arion parameters given in [20, Table 3], which include normal
parameters, as well as a more aggressive variant named “α-ArionHash”. Fol-
lowing the nomenclature of Appendix C.2, these variants have t ∈ {3, 4, 5, 6, 8}
branches and an additional parameter e ∈ {3, 5}, both of which affect the degree
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α t r sysGen iteRes uniSol [3, polyDet]

3 3 16 92 92 82 120
4 15 87 87 78 112
8 11 63 61 56 76
≥12 10 55 53 50 64

5 3 14 102 106 92 141
4 11 81 85 74 110
8 9 63 66 57 81
≥12 9 60 62 55 74

Table 1. Complexity (in log2 Fq-multiplications) of the steps of our attack on full-
round variants of Griffin with 128-bit security claim.

growth of the involved polynomials. There is ℓ = 1 α-inversion per round, and
the exponent α used for inversions can lie in the range 121 ≤ α ≤ 257, though
we will focus on the case α = 121.

Primitive-specific considerations. Evaluating the Arion circuit can be done
in M ′ = 5(t − 1) multivariate polynomial multiplications for each round (for
both e = 3 and e = 5). We follow the bypass technique of [3, Section 4.2], which
achieves a one-round bypass with x-degree d1 = 3e after the first round and
n = r − 1. Following this analysis under the order defined in Construction 1,
the leading term of state polynomials after the (i + 1)-th round is xdi with
di = d1(2

t−1(e + 1) − e)i and the weight of the zi’s are defined as dP(zi) =
di/α. We observe that the manipulated polynomials have a weighted degree less
than dP(h) at any time, therefore dx ≤ dP(h). Eventually, dP(h) = degx(h) =
d1(2

t−1(e+1)−e)r−1 = 3e(2t−1(e+1)−e)r−1, and the final univariate polynomial
is of degree 3e(α(2t−1(e+ 1)− e))r−1, which is also the degree of the ideal.

Complexity. In Table 2, we present the estimated attack complexities for the
parameter sets of ArionHash proposed in [20, Table 3], including the more aggres-
sive α-Arion parameters. For the estimate of uniSol we have used log2(q) ≈ 250
(as specified in [20, Table 3]).

5.4 Rescue

The Rescue Prime [1] hash function allows for a wide array of choices in terms of
α and number of branches t. Unlike the two previous examples, Rescue applies
an α-inversion in each branch for every round, for a total of rt inversions. We
focus here on the choice of t = α = 3, which has received the most attention in
the literature [4,24].

Primitive-specific considerations. The round function of Rescue applies a
polynomial of degree α before applying α-inversions at all branches. A conse-
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e t r sysGen iteRes uniSol [3, polyDet]

3 3 6 75 90 73 128
4 6 82 96 79 134
5 5 73 87 71 114
6 5 78 92 75 119
8 4 69 82 67 98

5 3 6 79 94 76 132
4 5 72 86 70 113
5 5 76 90 74 118
6 5 81 95 79 122
8 4 71 85 70 101

e t r sysGen iteRes uniSol [3, polyDet]

3 3 5 63 78 62 104
4 4 55 69 54 84
5 4 59 73 58 88
6 4 62 76 61 92
8 4 69 82 67 98

5 3 4 53 68 53 83
4 4 57 72 57 87
5 4 61 75 60 91
6 4 65 79 64 94
8 4 71 85 70 101

Table 2. Theoretical complexities (in log2 Fq-multiplications) of attacks against full-
round variants of Arion with 128-bit security using α = 121. Normal parameters are
in the left table, and the more aggressive α-Arion parameters are in the right table.

quence of this for our modeling is that all fi’s are expected to be of degree α,
and hence all weights in Construction 1 will be 1; this property is kept on all
rounds. An observation of a similar effect was also made in [24, Lemma 2]. For
the sysGen step, this means that we only have to reduce elements of the form
zαi , which is done by simple additions of zαi − fi. As no costly multiplications
and calls to Algorithm 1 are required, the cost of sysGen is considered negligible
for Rescue; this is also what we observed in practice.

For t = 3, [4, Section 4.4] describes how to bypass one round with d1 = 1,
which leads to n = 3(r − 1). Since h is simply an affine polynomial in the 3 zi-
variables of the last round, we have dP(h) = 1. For α = t = 3, and one bypassed
round, we expect a univariate degree of dP(h0) ≤ 33(r−1)dP(h) = 33(r−1). In
practice, we observe that this upper bound is reached and corresponds to the
ideal degree for reduced-round instances.

Complexity. In Table 3, we present the complexity of the dominant iteRes

step computed with Equation (9) for t = α = 3. We consider reduced-round
variants to compare with [24, Table 4], and full-round variants to compare with
the security claim of the designers of Rescue [21]. Note that they derived the
number of rounds for security level λ by first computing the number of rounds to
withstand the best (previously) known attack in 2λ, and multiplying this number
with 1.5 for a 50% security margin. In Table 3, we can see that the full-round
versions for security levels 80 and 128 remain secure but with a significantly
smaller margin, while the 256-bit level has essentially no security margin. Finally,
the 512-bit level fails to guarantee this amount of security.

5.5 Anemoi

A quick reminder of Anemoi is given in C.4. We especially refer to this for details
on the non-linear component H, which will be useful in the following. We remark
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Estimated
r Ours [24] bit security [21]

6 49 60 -
7 57 69 -
8 64 81 -
12 93 - 80
18 137 - 128
35 257 - 256
66 475 - 512

Table 3. Theoretical complexities (in log2 Fq-multiplications) for attacking variants of
Rescue with t = α = 3. The complexity of our attack is clearly dominated by iteRes.

that the system P produced by sysGen for Anemoi is not a FreeLunch Gröbner
basis7. We consider Anemoi with any number t = 2ℓ of branches, extending on
the work of [3] which only considered 2 branches. This gives rise to the possibility
of bypassing a round, which we explain below.

Primitive-specific considerations. The specifications of Anemoi slightly dif-
fer over Fp (called odd characteristic) and over F2n (even characteristic): the
round function is different and α is fixed to 3 in F2n . A common property of
both settings is that ℓ α-inversions are performed in separate components H
each round, and a straightforward sysGen gives equations even more structured
than System (4): for 1 ≤ i ≤ r and 1 ≤ j ≤ ℓ, the j-th equation of round
i is zαi,j = fi,j(x, z1,1, . . . , zi−1,ℓ), and the last equation h(x, z1,1, . . . , zr,ℓ) = 0.
At first glance, this gives n = rℓ, but round-bypass techniques may reduce the
number of variables, for both types of fields.

Bypassing rounds. For ℓ ≥ 2, let us denote (v1, . . . , vℓ) = M−1
y (0, . . . , 0, 1),

where My is the matrix from Figure 4, Appendix C.4. From the same figure
one can then see that the input (0, . . . , 0)||(v1x, . . . , vℓx) leads to ℓ− 1 constant
components H at the first round. This implies that we can remove ℓ−1 variables
in the first round, for instance z1,1, ..., z1,ℓ−1, and their corresponding equations.
This gives n = r(ℓ− 1) + 1.

Lemma 4 (Odd characteristic parameters). Let P be the output of sysGen
from an input state of degree 1 in x allowing for a round-bypass. We have:

M ′ = ℓ, dP(h) ≤
(
α+ 2

α

)r

.

Proof. First, for a non constant component H with inputs a, b, we can see that

H(a, b) = (a− 2gbz + gz2 − g−1, b− z), zα = −gb2 − g−1 + a,

7 To circumvent this, the authors of [3] instead consider a subideal of ⟨P⟩ for which a
FreeLunch Gröbner basis can easily be computed. We do not proceed as such.
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where z is the newly introduced variable and g a non-zero field element. The
multiplication with z being essentially free, we need one multiplication per H

(to compute b2), which gives M ′ = ℓ. The fact that dP(h) ≤
(
α+ 2

α

)r

can be

proven inductively on the number of rounds. It is clearly true for i = 0, since
the initial input has degree 1 in x. Now let us suppose that the polynomial state

after round i is of weighted degree

(
α+ 2

α

)i

. Given the expression of H shown

above, we have, for any variable z introduced at round j, dP(z) = dP(b
2)/α ≤

2

α

(
α+ 2

α

)i

by definition (see Construction 1). Now the leading term of the

output of H comes from the term zb since dP(z
2) ≤ dP(zb), and

dP(zb) = dP(z) + dP(b) ≤
(
α+ 2

α

)i+1

.

⊓⊔

Characteristic 2. The characteristic 2 case was not studied in [3], but we can
analyze it in our framework without much additional work. We can also apply
the same round-skip trick. However, sysGen is more costly, because of the change
to x 7→ x3 operations instead of x 7→ x2.

Lemma 5 (Even characteristic parameters). Let P be the system output
by sysGen from an input state of degree 1 in x allowing for a round-bypass. We
have:

M ′ = 2ℓ, dP(h) ≤ 3r.

Proof. Using the same notations as previously,

H(a, b) = (a⊕ gb2z ⊕ gbz2 ⊕ gz3 ⊕ g−1, b⊕ z), z3 = gb3 ⊕ g−1 ⊕ a.

This time, since multiplication by z is essentially free, we need two multi-
plications per H (to compute b2 and b3), which gives M ′ = 2ℓ. We prove that
dP(h) ≤ 3r inductively on the number of rounds. For i = 0, the initial input
has degree 1 in x. Suppose that the state after round i has weighted degree 3i.
We have that dP(z) = dP(b

3)/3 ≤ 3i by definition. So, in the output of H, the
terms of highest weighted degree come from b2z, bz2 and z3. They all have the
same weighted degree, 3i+1, which completes the induction. ⊓⊔

We can use the conservative bound dx ≤ max
p∈P

(dP(p)). The polynomials with

the highest weighted degree in P are the zαr,j − fr,j , for any j. They have

a weighted degree of 2

(
α+ 2

α

)r−1

in odd characteristic (slightly larger than

dP(h)), and 3r in characteristic 2 (equal to dP(h)). Using the parameters from
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Lemmata 4 and 5, we give complexity estimates for the most costly iteRes step
in Tables 4 and 5. For comparison, we also give estimates from [3,24] on the ℓ = 1
parameters. Although [24] only considered the case of α = 3, we have computed
the complexities for larger α’s using [24, Theorem 5] with dl = (α+ 2)⌊r/2⌋ and
dh = (α+ 2)⌈r/2⌉ (assuming that the cubic substitution step can be generalized
in an efficient manner).

α ℓ r Ours [3, polyDet] [24]

3 1 21 79 118 110
2 14 88 - -
3 12 104 - -
4 12 130 - -
6 10 153 - -

5 1 21 96 156 133
2 14 113 - -
3 12 135 - -
4 12 170 - -
6 10 202 - -

7 1 20 102 174 141
2 13 119 - -
3 12 153 - -
4 11 179 - -
6 10 231 - -

11 1 19 111 198 158
2 13 136 - -
3 11 163 - -
4 11 208 - -
6 10 270 - -

α ℓ r Ours [3, polyDet] [24]

3 1 37 130 203 191
2 22 133 - -
3 17 144 - -
4 16 171 - -
6 13 198 - -

5 1 37 157 270 231
2 22 169 - -
3 17 186 - -
4 16 224 - -
6 13 261 - -

7 1 36 169 307 252
2 21 182 - -
3 17 211 - -
4 15 240 - -
6 13 300 - -

11 1 35 187 358 288
2 21 210 - -
3 17 245 - -
4 15 280 - -
6 13 351 - -

Table 4. Theoretical complexities (in log2 Fq-multiplications) for attacking full-round
variants of Anemoi in odd characteristic proposed for 128-bit security on the left-hand
side table, and 256-bit security on the right-hand side table. To stay consistent with
the assumptions of previous work, we used ω = 2.81 for the attack of [3] and ω = 2.376
for [24]. The complexity of our attack is clearly dominated by iteRes.

5.6 Experimental Attacks

The computational experiments were conducted on a system with the following
hardware specifications:

– Processor: AMD EPYC 9354, 32-core
– Memory: 1 TB DDR5 RAM (16 × 64 GB HMCG94AEBRA109N, 4800

MT/s)
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ℓ r sysGen iteRes uniSol

1 24 49 110 93
2 15 38 107 86
3 13 38 123 96
4 12 40 141 107
6 11 44 177 132
8 10 48 204 150

ℓ r sysGen iteRes uniSol

1 44 81 190 158
2 25 55 171 135
3 20 50 184 141
4 17 48 196 148
6 14 49 224 166
8 12 52 245 178

Table 5. Theoretical complexities (in log2 Fq-multiplications) for attacking full-round
variants of Anemoi in even characteristic proposed for 128-bit security on the left-hand
side table, and 256-bit security on the right-hand side table.

Overall sysGen iteRes uniSol

Cipher t r Type T M T M T M T M Ref

Anemoi 2 7 FL 2d 42 - - - - - - [3]
Res. 49m < 256 - - - - - [24]
Res. 9.5s 0.16 40ms 0.05 6.5s 0.16 3s 0.08 New

8 Res. 10h < 256 - - - - - - [24]
Res. 1m25s 1.2 0.4s 0.3 65s 1.2 20s 0.58 New

9 Res. 13m51s 9.5 4s 0.4 12m27s 9.5 1m24s 4.3 New

10 Res. 2h38m 77 31s 1.3 2h28m 77 10m 34 New

11 Res. 1d22h 283 5m57s 8 1d21h 283 58m 194 New

Griffin 12 6 FL 1m 0.5 4s - - - - - [3]
Res. 10s 0.1 1.4s 0.06 1.15s 0.1 7.45s 0.08 New

7 FL 3h32m 28 43m - - - - - [3]
Res. 5m30s 2.5 1m12s 1.5 1m05s 2.5 3m13s 1.53 New

8 Res. 4h20m 81.1 1h14m 75.4 1h11m 81.1 1h55m 40.5 New

Rescue 3 4 GB 3d 59 - - - - - - [4]
Res. 15m < 256 - - - - - - [24]
Res. 2.4s 0.1 0.1s 0.02 1.6s 0.1 0.7s 0.06 New

5 Res. 1d < 256 - - - - - - [24]
Res. 6m6s 10.1 2.5s 0.1 5m41s 10.1 12s 5.1 New

6 Res. 2d4h 570 0.1s 0.2 2d3h 570 11m27 210 New

Table 6. Summary of practical attacks against round-reduced permutations for α = 3.
Time (T) and memory (M) in GigaBytes are provided for each step. The number of
rounds are given as r and the number of branches in the state is given as t. Type refers
to type of attack, where FL indicates FreeLunch, Res is resultant attack of this paper,
and GB indicates Gröbner basis.
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To ensure as fair a comparison as possible with previous works (especially
[3] and [4]), we executed all experiments in a single-threaded setting. However,
it is worth noting that many computational steps in our approach could be
parallelized to some extent. Also, note that [24] used 8 threads in their attack
against Anemoi, and 32 threads against Rescue–Prime.

From an implementation standpoint, the core computational routines are
written in C++ for performance reasons, while the round-skipping preprocessing
and the verification of the CICO solutions are handled in Python.

The codebase uses the NTL library [23] exclusively for univariate polyno-
mial multiplication, using its optimized implementation of the small-prime Fast
Fourier Transform. For multivariate polynomial multiplication, we extend the bi-
variate polynomial multiplication algorithm used in PML [22], utilizing the Kro-
necker substitution method to obtain the complexity described in Equation (2)
for any number of variables. Note that the polyDet step of the experimental
attacks in [3] was also coded with NTL and PML. [24] instead used maple for
the core of their experimental attacks. The complete implementation is available
on github : github.com/maelhos/improved-resultant-attack.

In all our attacks, we use a 55-bit prime p = 0x64ec6dd0392073, as in [3] and
as in the attack of [24] against Anemoi. Note that [24] used the 64-bit prime
p = 264 − 59 for their experimental attack against Rescue–Prime, to compare
to [4] which used the same prime. We stress that the multi-threading of [24]
somewhat compensates this prime difference, so that we can fairly compare our
single-thread attack on Rescue–Prime to theirs.

6 Conclusion

This paper shows that we still need better estimates of the security of AO prim-
itives against algebraic attacks. Building upon recent works [3,24], we can derive
an improved algebraic attack based on resultants. With a detailed and refined
complexity analysis, we show the new attack has a significantly lower complexity
than was known before on the hash functions Griffin, Arion, Rescue, and Anemoi.
These theoretical estimates are verified by extensive practical implementations
that solve the associated CICO problems. The new insights should lead to a
more robust foundation when selecting parameters for new AO primitives.
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A Products of Polynomials

We briefly describe a divide-and-conquer method for performing the multiplica-
tions when computing the product in Equation (7), in order to limit the num-
ber of high-degree computations. We present the case of univariate polynomials
for simplicity, noting that the multivariate case generalizes in a straightforward
manner. Consider the product

∏α
i=1 hi, where h1, h2, . . . , hα are univariate poly-

nomials of degree d. The idea is to first compute pairs of products h2ih2i−1,
1 ≤ i ≤ α/2, of degree at most 2d. Then compute new pairs of products of
degree at most 4d, and so on. Writing e = ⌈log2 α⌉, and E = 2e, this will cost
at most

E

2
M(2d) +

E

4
M(4d) + . . .+

E

E
M(Ed). (11)

By applying Equation (1) forM and suppressing log-factors, this requires

Õ
(
d

(
2
E

2
+ 4

E

4
+ . . .+ E

))
= Õ(deE) = Õ(dα).

B Resultant Computation via Determinants

We recall the method outlined in [24] for computing resultants in the context of
Rescue where α = 3, that we can easily generalize for any system as in (4). This
approach exploits the specific structure of the Sylvester matrix, noting that the
second polynomial, zα − f , contains only a single non-constant monomial in z.

Proposition 9. Let R, f and h be defined as above. The following statement
holds:

Resz(h, z
α − f) =

∣∣∣∣∣∣∣∣∣∣∣

a0 faα−1 . . . fa2 fa1
a1 a0 faα−1 . . . fa2
. . .

. . .
. . .

. . .
. . .

aα−2 . . . a1 a0 faα−1

aα−1 aα−2 . . . a1 a0

∣∣∣∣∣∣∣∣∣∣∣
.
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Proof. The Sylvester matrix associated to h and zα − f is:

Syl(h, zα − f) =



aα−1 . . . a1 a0 0
aα−1 . . . a1 a0

. . .
. . .

. . .
. . .

0 aα−1 . . . a1 a0

1
. . . −f 0

. . . 0
. . .

0 1 −f


.

In order to compute the determinant of this matrix, let us denote its i-th column
by Ci for 0 ≤ i ≤ 2α − 2. We perform the determinant-preserving operations
Ci+α ← Ci+α + f × Ci for i = 0, . . . , α − 2 to cancel the bottom-right part of
the matrix. This gives:

|Syl(h, zα − f)| =
∣∣∣∣ A B
Iα−1 0α−1,α

∣∣∣∣ ,
where B ∈ Rα×α corresponds to the desired matrix. Finally, the determinant of
the block matrix is equal to |B|. ⊓⊔

In the α = 3 case, [24] explicitly expressed the determinant on the right-
hand side in terms of f and the coefficients ai, then analyzed the number of
multiplications in the resulting polynomial. This computation led to a total of
12 multiplications:∣∣∣∣∣∣

a0 fa2 fa1
a1 a0 fa2
a2 a1 a0

∣∣∣∣∣∣ = a32f
2 − 3a2a1a0f + a31f + a30.

This precise number is used in the proof of [24, Theorem 2]. We remark that we
can bring the number of multiplications down to 9, by computing

c1 = a1f, c2 = a2f, Res(h, z3 − f) = a2c
2
2 + a21c1 + a0(3a1c2 + a20).

We use the value 9 in our applications when α = 3, yielding a modest constant-
factor improvement over the naive counting. In the context of iteRes, recall
that these 9 multiplications are over a quotient ring of the form Sk, each of
them corresponding to one standard multiplication followed by a reduction via
Algorithm 1.

For larger values of α, writing out the determinant symbolically quickly be-
comes infeasible. Moreover, the common algorithms for computing determinants
in O (αω) perform inversions in the coefficient ring, and are hence not appli-
cable when working over multivariate polynomial rings. A notable exception is
the method of [18], which computes the determinant for matrices over univariate
polynomial rings, but it is not clear to us whether these techniques can be gener-
alized to the multivariate case. These observations led us to adopt the algorithm
presented in Section 4.2 for any α > 3.
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C Round Functions of Selected Primitives

C.1 Griffin

The Griffin permutation works over Ft
q, where α is the smallest integer coprime

to q−1. The number of branches t is either chosen to be 3, or a multiple of four.
The non-linear layer of Griffin is (x0, . . . , xt−1) 7→ (y0, . . . , yt−1), where each yi
is defined by the equations:

yi :=


x
1/α
0 if i = 0

xα
1 if i = 1

x2 · (L2(y0, y1, 0)
2 + δ2 · L2(y0, y1, 0) + µ2) if i = 2

xi · (Li(y0, y1, xi−1)
2 + δi · Li(y0, y1, xi−1) + µi) otherwise,

where δi, µi ∈ Fq are constants, and Li denote linear functions. The Griffin round
applies an invertible t× t matrix and adds round constants after each non-linear
layer. One round with t = 4 is depicted in Figure 1.

Fig. 1. Round function of Griffin with t = 4. (Figure from [3].)

C.2 Arion

The Arion permutation [20] operates over Ft
q, where e is the smallest integer

coprime to q − 1, and 121 ≤ α ≤ 257 is another integer coprime q − 1. The
non-linear layer of Arion is defined as (x0, . . . , xt−1) 7→ (y0, . . . , yt−1}, such that

yt−1 = x
1/α
t−1,

yi = xe
i · gi(σi,t) + hi(σi,t), t− 2 ≥ i ≥ 0,
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where gi and hi are univariate polynomial functions of degree 2, and σi,t is the
sum of all previously computed inputs and outputs:

σi,t =

t−1∑
j=i+1

xj + yj(x0, . . . , xt−1) .

An affine function is applied after each non-linear layer. One round of the Arion
permutation is depicted in Figure 2 for t = 4.

Fig. 2. Round function Arion with t = 4. (Figure from [3].)

C.3 Rescue

The Rescue permutation [1] operates with t branches over Fq, and α is chosen as
the smallest integer coprime to q − 1. The round function is depicted in Figure
3, where the S-box is given by x 7→ xα and S−1 is defined as x 7→ x1/α. An MDS
matrix and round constants are applied after each S/S−1-layer.

...

S

S

S

MDS

...

AddC

...

S−1

S−1

S−1

MDS

...

AddC

...

Fig. 3. The round function of Rescue.
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C.4 Anemoi

The Anemoi families of permutations operate over Fq, where q = 2n or q is an
odd prime. They take as parameters ℓ, which is twice the number of branches, α
in the odd characteristic case, the number of rounds r, and some non-zero field
element g. The rounds functions are depicted in Figure 4. The nonlinear layers
H are depicted in Figure 5.Mx andMy correspond to multiplications by MDS
matrices.

Fig. 4. The r-th round of Anemoi, figure taken from [7].
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Fig. 5. The nonlinear layer H of Anemoi. On the left-hand side is the characteristic
2 variant, and on the right-hand side is the odd characteristic variant. Figures taken
from [7].
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