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Abstract. Publicly identifiable abort is a critical feature for ensur-
ing accountability in outsourced computations using secure multiparty
computation (MPC). Despite its importance, no prior work has specif-
ically addressed identifiable abort in the context of outsourced compu-
tations. In this paper, we present the first MPC protocol that supports
publicly identifiable abort with minimal overhead for external clients.
Our approach minimizes client-side computation by requiring only a few
pseudorandom function evaluations per input. On the server side, the
verification process involves lightweight linear function evaluations us-
ing homomorphic encryption. This results in verification times of a few
nanoseconds per operation for servers, with client overhead being ap-
proximately two orders of magnitude lower. Additionally, the publicly
verifiable nature of our protocol reduces client input/output costs com-
pared to SPDZ-based protocols, on which we base our protocol. For ex-
ample, in secure aggregation use cases, our protocol achieves over twice
the efficiency during the offline phase and up to an 18% speedup in the
online phase, significantly outperforming SPDZ.

1 Introduction

Outsourced computations are of utmost importance in today’s world of comput-
ing. This can easily be seen with current advances in machine learning (ML).
Especially there, outsourced computation comes with many challenges, includ-
ing for security and privacy. On the one hand, the increasing computational
requirements – both in memory and compute resources – mean that only top-
tier compute servers can handle them, necessitating outsourced computation. On
the other hand, evaluating or training machine learning algorithms often requires
access to sensitive information, such as personal data, confidential algorithms,
or model weights. Simply sending this data obviously risks the privacy of the
data. Additionally, any distributed computation raises the question of correct-
ness: Does the other party really compute what they are supposed to? While
secure multiparty computation (MPC) can be used in such settings to guarantee
privacy of the inputs to the computation and correctness of the outputs, not all
protocols proposed in the literature are ready to solve this in practice.

Firstly, additional security properties become relevant for outsourced com-
putation, namely public verifiability [34,6] and identifiable abort [29,30]. Public
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verifiability allows parties not involved in performing the computation to get a
guarantee that a computed output was correct. For outsourced computations in
particular, the parties that give the inputs to the computation are not directly
involved in computation [24,3] (from a classical MPC perspective), exemplifying
the need for public verifiability. Additionally, even external parties can verify the
computation, which can be relevant in high-stakes computations or if there was
a dispute (e.g., in combination with identifiable abort described next). The other
security property is identifiable abort. With this, the MPC protocol guarantees
to find a responsible party if the computation has to abort, which happens if
a party misbehaves, e.g., trying to influence the computation result or trying
to break privacy. In combination with public verifiability, we get publicly (ver-
ifiable) identifiable abort, i.e., everyone can learn the identity of misbehaving
parties. This is a strong deterrent against misbehavior because parties can be
publicly identified and, for example, contractual punishments can be enforced.
It, therefore, not only prevents denial-of-service attacks but also allows poten-
tial clients of outsourced computations to find trustable servers that did not
misbehave in the past.

Secondly, not all MPC protocols – especially those that provide the above
additional security guarantees – are ready for outsourced computation. Of the
few protocols that support identifiable abort, even fewer provide publicly iden-
tifiable abort (see Sec. 1.1). As argued above, the publicly verifiable version of
this property is much more useful for outsourced computation. Orthogonally, the
desired efficiency gain from outsourced computation is only possible if a protocol
supports lightweight clients and more capable servers. Clients are input/output
parties whose amount of work should be independent of the computed func-
tion, while servers are compute parties that perform the actual computation.
This is not supported in the standard paradigm for MPC protocols, where every
party is involved and has to contribute to the whole computation. Therefore, we
specifically need protocols that support clients for outsourced computation [3].
Moreover, it is usually not straightforward to extend protocols with identifi-
able abort to support such clients while still getting (publicly) identifiable abort
for the whole protocol, because of the way cryptographic primitives are used
for identifiable abort. Overall, we only identified one prior work that combines
publicly identifiable abort with support for outsourced computations [42]. Our
work improves on this by introducing a unique construction that enables pub-
licly verifiable identifiable abort while supporting outsourced computation, while
achieving performance comparable to non-identifiable MPC protocols.

Our protocol features a novel combination of homomorphic encryption (HE)
and pseudorandom functions (PRFs) to achieve publicly identifiable abort. We
use PRF-based message authentication codes (MACs) that can be publicly ver-
ified to check every operation done by the compute parties (i.e., servers). In-
put/output parties (i.e., clients) only have to check these lightweight MACs for
private inputs/outputs. MAC tags are generated by the compute parties using
HE. We construct homomorphically encrypted tags such that the same infor-
mation to verify MAC tags – with only little extra information – is also used
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to verify the tag generation. This allows us to minimize the use of zero-knowl-
edge proofs (ZKPs) and other expensive cryptographic primitives by verifying
homomorphically encrypted messages at the same time as the MACs. By doing
so, we shift some work that is normally done in a preprocessing phase to the
verification phase. However, the overhead is relatively low and only relevant for
the compute parties, not the clients.

We evaluate the practicality of our protocol by comparing it to standard (non-
identifiable) actively secure MPC protocols (see Sec. 8) because prior protocols
with identifiable abort lack an implementation. Our implementation1 shows that
the concrete overhead to achieve identifiable abort is relatively low. Notably, the
overhead for verification is as low as a few nanoseconds per operation. Addition-
ally, our focus on outsourced computations leads to faster protocols for inputs
and outputs, allowing us to outperform even non-identifiable protocols. The main
driver for this improvement is simpler correlated randomness that is used for in-
put and outputs, where the public verifiability of our protocol avoids the need
for more complex correlated randomness [24]. Next, we outline the current land-
scape of MPC protocols with identifiable abort and compare our protocol on a
theoretical level. Section 8 contains our practical evaluation.

1.1 Related Work

While MPC with identifiable abort (IA) in its current form was first formally
discussed by Ishai et al. [29,30], identifying misbehaving parties has already
been part of protocols and security definitions for a long time, e.g., [28,4]. After
these first mainly theoretical works, Baum et al. [8] showed that IA can be
achieved efficiently. Efficiency of protocols with IA was further improved after
this, with the goal of reducing the overhead compared to protocols without
IA, i.e., protocols that only achieve security with abort. Our discussion in this
section focuses on such efficient protocols, i.e., not on protocols that focus on
feasibility or minimal requirements for IA [29,30,15,44], or minimizing the round
complexity [1,20], without trying to improve concrete efficiency. We also do not
discuss publicly verifiable protocols [6,31] in detail. Additionally, we focus on
protocols that evaluate arithmetic circuits, as opposed to, e.g., identifiable abort
for garbled circuits [10], due to systematical differences between the different
types of protocols.

As all protocols with IA that we compare below are based on the SPDZ
protocol [26] or its predecessor BeDOZa [12], we also include two SPDZ variants
as baseline for the comparison: Overdrive LowGear [33] and TopGear [5]. These
are optimized SPDZ-based protocols without identifiable abort (cf. Tab. 1). The
overhead of protocols with IA can be better judged by comparing them to the
non-identifiable protocols. Additionally, our protocol takes inspiration from both
LowGear and TopGear for the offline phase, which is why we include these
specific non-identifiable versions of SPDZ in the comparison. The other protocols
in our comparison are Baum et al.’s aforementioned first efficient protocol with
1 Our implementation is available online: https://github.com/sec-stuttgart/pia-mpc.
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Table 1: Security Properties of Related Protocols
SPDZa [8] [45] [23] [21] [7] Ours

Secure with Abort ✓ ✓ ✓ ✓ ✓ ✓ ✓

Identifiable Abort ✗ ✓ ✓ ✓ ✓ ✓ ✓

Publicly Identifiable Abort ✗ [9] ✗b ✓ ✓ ✗ ✓

Supports Outsourcing Computation [24] ✗ ✗ [42] ✗ ✗ ✓

✓: Protocol has this property ✗: Protocol does not have this property
[X]: Reference [X] describes modifications to achieve this property
a SPDZ-like protocols, e.g., [26,25,33,5] b might be without agreement on cheaters

IA (BOS [8]), the protocol of Spini and Fehr (SF [45]), the commitment-based
protocol of Cunningham et al. (CFY [23]), the committed OT-based protocol
by Cohen et al. (CDKS [21]), and the PCG [13]-based protocol by Baum et
al. (BMRS [7]).

Security Table 1 describes the differences in security properties of these proto-
cols. Of the protocols that support identifiable abort, only BOS [8], the commit-
ment-based CFY [23], and CDKS [21] achieve publicly identifiable abort (PIA),
i.e., they let the compute parties convince even external parties of the iden-
tity of malicious parties that caused an abort. As mentioned before, PIA can
be essential, especially for outsourced computation. BOS [8] achieves PIA by
(conceptually) running a second copy of the non-PIA protocol and publishing
information from the duplicated protocol to convince external parties. This is a
modification presented in [9]. CFY and CDKS achieve PIA with (publicly verifi-
able) homomorphic commitments and committed OT, respectively. Similarly to
CFY, SF [45] can publicly identify cheaters by using encryptions from the offline
phase as homomorphic commitments – however, only in some cases (depending
on adversarial behavior). The adversary can avoid this public identification and
instead cause a situation where the compute parties do not agree on the set of
corrupted parties that are identified, making it unsuitable for outsourced com-
putation where the external parties should learn the identity of cheaters and also
the identity of all cheaters. Finally, BMRS [7] uses pairwise correlations between
the compute parties, which does not straightforwardly support PIA.

Pairwise constructions like this are the main reason why many of the pro-
tocols [8,21,7] also do not support outsourced computation. Roughly speaking,
these protocols do the following to make pairwise correlations publicly verifiable
(if the respective protocol supports this [8,21]): If a party detects misbehavior
and aborts, they reveal information that that party used to detect the misbe-
havior. Then, external parties can perform the same check. However, this cannot
be easily done for external inputs or outputs, where the input/output parties
always need to verify data but the protocol does not necessarily abort. Addition-
ally, the information that would be sent to, e.g., the input parties would include
the MAC keys and must stay secret for the remainder of the online phase.
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Existing generic mechanisms like the one by Damgård et al. [24] could be
used in all protocols, but this does not allow identification of a party that cheats
towards the client: The client could only detect that some misbehavior hap-
pened, resulting in a protocol that is only secure with (non-identifiable) abort
w.r.t. client inputs or outputs. The commitment-based protocol of Rivinius et
al. (RRRK [42]) is a variant of CFY [23] that supports clients but via expensive
HE and ZKPs. In contrast, our protocol is designed for PIA and lets clients pub-
licly identify cheaters during the inputs or outputs without heavy cryptographic
primitives.

Efficiency All protocols operate in multiple phases: (i) A setup phase that is in-
dependent of the computed function, (ii) an input-independent offline phase used
to speed up the online phase, (iii) an online phase that operates on preprocess-
ing material from the offline phase and the actual inputs, and (iv) a verification
phase to assert correctness and identify malicious parties. Note that (iv) is some-
times also integrated into the online phase, e.g., in [21,7]. Tables 2 and 3 give an
overview of the asymptotic communication and computation complexity of the
protocols in these phases.2 For communication complexity (Tab. 2), we analyze
the asymptotic number of broadcasts and peer-to-peer (P2P) messages depend-
ing on the number of compute parties n and the size of the computed function
(the number of multiplications M when represented as an arithmetic circuit).
As multiple protocols, e.g., [8,23], describe ways to reduce costly broadcasts (es-
pecially in the online phase; by first sending P2P messages and later checking
consistency), we count the number of conceptual broadcasts for the protocols to
make them more comparable. Similar techniques to reduce the number of broad-
casts could then be used in all protocols. E.g., our protocol could send O(Mn2)
P2P messages in the online phase instead of O(Mn) broadcasts and use tech-
niques to check the consistency of the P2P messages at the end. For computation
complexity (Tab. 3), we give the asymptotic number of operations performed by
all parties depending on the number of parties n and the function size M . As out-
sourced computations are not supported by all protocols (cf. Tab. 1), we assume
there are no external clients in our comparison. We compare the communication
and computation efficiency of the protocols next.

Communication Complexity The baseline SPDZ-based protocols come in
two flavors: Pairwise preprocessing protocols like Overdrive LowGear [33], which
show practical efficiency for a low number of parties, and somewhat homomor-
phic encryption (SHE)-based protocols like TopGear [5], which have a better
asymptotic complexity w.r.t. the number of parties n in the offline phase. The
online complexity for both is O(Mn). BOS [8], CDKS [21], and BMRS [7] use
2 [21] does not include a full description of their MPC protocol and the full version

of the paper is not updated to reflect the Crypto paper at the time of writing.
Therefore, we estimate the complexity based on the rough description in [21]. The
PCGs in [7] can be initiated with different protocols. We assume a pairwise setup.
Note that [21,7] have no verification phase as they eagerly verify.
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Table 2: Communication Complexity of Related Protocols.2 Complexity is
given in O-notation depending on the number of compute parties n and circuit
size M (number of multiplications).

Phase Com. [33] [5] [8] [45] [23] [21] [7] Ours

Setup P2P n2 n2

BC n n2 n n n n

Offline P2P Mn2 n Mn2 Mn2

BC Mn Mn Mn3 Mn+n2 Mn Mn3 Mn+n2 Mn

Online P2P n Mn Mn2 Mn2

BC Mn Mn Mn2 n2 Mn Mn

Verif. P2P
BC n n n2 n n n

P2P:Peer-to-peer communication BC: Broadcast communication

Table 3: Computation Complexity of Related Protocols.2 Complexity is
given in O-notation depending on the number of compute parties n and
circuit size M (number of multiplications).
Phase [33] [5] [8] [45] [23] [21] [7] Ours

Setup n2 n2 n3 n2 n2 n n2 n

Offline Mn2 Mn2 Mn4 Mn2+n3 Mn2 Mn3 Mn2+n3 Mn2

Online Mn2 Mn2 Mn3 Mn+n3 Mn2 Mn2 Mn2 Mn2

Verif. Mn+n2 Mn+n2 Mn2+n3 n2 Mn+n2 Mn2

pairwise MACs for their protocols. These have O(Mn2) complexity in the online
phase. However, for BOS this is broadcast complexity and for the others only
P2P. The offline complexity is O(Mn3), except for BMRS, which generates the
pairwise correlations differently in the offline phase with O(Mn2) P2P messages
and O(Mn+n2) broadcasts for verifying the correlations. SF [45] operates sim-
ilarly to SPDZ but adds a verification step with O(n2) complexity both online
and offline. This step is independent of the circuit size, and the remaining pro-
tocol complexity stays O(Mn) as in SPDZ (online and offline). CFY [23] also
models the protocol closely to SPDZ but generates homomorphic commitments
that are used to identify malicious parties if the parties abort. This keeps the
communication complexity similar to SPDZ but has an overhead for concrete
instantiations (an overhead of around factor 4; cf. [42]). Our protocol combines
parts of LowGear and TopGear in the offline phase, resulting in similar efficiency.
Also, the online complexity is just like SPDZ, with different computations for
verification. We discuss the computation complexity next.
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Computation Complexity As shown in Tab. 3, the computation complexity
is usually the same as the number of P2P messages and a factor of n larger than
the broadcast complexity for all protocols in each phase. This is unsurprising as
the parties have to use and check all incoming messages. Another relevant factor
for practical protocol deployments is the type of cryptographic primitives used.
SPDZ-based protocols [33,5] often use HE in the offline phase, as do [8,45,23].
CDKS [21] uses correlated OTs and BMRS [7] uses PCGs that avoid such pub-
lic-key operations.3 Furthermore, all protocols use cheap field operations in the
online phase. SF [45] implements a multi-stage identification mechanism if mis-
behavior is detected. This uses HE also in the online phase if certain types of
misbehavior are detected. CFY [23] uses homomorphic commitments to a similar
effect, which has a significant impact on real-world performance – up to orders of
magnitude overhead [42]. Our offline phase is based on LowGear and TopGear.
Therefore, we also use HE. We only use cheap field operations in the online
phase – and, importantly, for all client operations. In the verification phase, our
protocol uses HE to verify some parts of the offline phase. However, compared to
other protocols [45,23], we use HE independently of the circuit structure and can
completely parallelize it. Therefore, the concrete overhead is very low (see Sec. 8).

1.2 Contributions

– We present the first MPC protocol with publicly identifiable abort and sup-
port for outsourced computation that is practically relevant for clients. While
one existing protocol [42] technically supports clients, they do so by utilizing
heavy cryptographic primitives (homomorphic encryption together with zero-
knowledge proofs) on the client side. In our protocol, clients perform only a
few cheap field operations and PRF evaluations for inputs and outputs.

– Our implementation1 is one of the few available for identifiable protocols and
the first to support outsourced computations with publicly identifiable abort.

– Our protocol uses novel verification techniques with little overhead in the on-
line phase. This overhead for servers is as low as 19 ns (for 64 bit operations)
or 34 ns (at 128 bit) per input and three times as much per multiplication.
Verification time for clients is almost two orders of magnitude less at around
384 ps (64 bit) or 1 ns (128 bit) per input. Overall, our protocol is around
2 to 4× slower than non-identifiable protocols when performing multiplica-
tions in the online phase, compared to previous protocols that are 4 to 18×
slower [23,42].

– Our protocol directly supports outsourced computation, unlike SPDZ [26]
which uses Damgård et al.’s input/output subprotocols [24]. In use cases such
as secure aggregation, our protocol can achieve 2.3× faster preprocessing and
18% faster online computation than this protocol without identifiable abort.

3 State-of-the-art PCG-based protocols also have the prospect of requiring sublinear
communication in the circuit size. However, [7] cannot benefit from this for improved
offline complexity because the protocol adds checks that require communication
linear in the circuit size.
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2 Background

Before we present our protocol in Secs. 3 to 6, we discuss the required concepts
used in SPDZ and related protocols. This includes secret-sharing, the general
protocol structure, HE, and MACs. We use P for the set of compute parties.

2.1 Maliciously Secure Multiparty Computation: SPDZ

Secret-Sharing In our work, we use additive secret-sharing. For party Pi ∈ P,
let [x]i denote Pi’s share of a secret x. We assume that [x]i and x are elements
of a finite field F. We use F = Zp := Z/pZ in this work. Shares are chosen such
that one can reconstruct the secret by summing up all n = |P| shares:

Rec([x]) := Rec([x]0, . . . , [x]n−1) :=

n−1∑
i=0

[x]i = x. (1)

When we talk about shared values in general, but not specific shares [x]i, we use
the notation [x] as above in Eq. (1).

This secret-sharing scheme allows for reconstruction, only if all shares are
known. Furthermore, we use the well-known fact that if all shares [x]i are selected
uniformly at random, the overall secret is uniformly random as well. This is true,
even if only one party chose their share uniformly at random (the other parties
could be malicious and colluding), which is necessary in the security setting that
we discuss.

The scheme is also linearly homomorphic:

[x+ y]i := [x]i + [y]i, [c · x]i := c · [x]i, [x+ c]i := [x]i + c · δi (2)

for shared values x, y, and public constant c ∈ F (with δi being the Kronecker
delta). This allows parties to perform linear operations on shares non-interac-
tively.

The SPDZ Protocol SPDZ [26] is one of the first maliciously secure MPC pro-
tocols with practical efficiency. Many later protocols follow its general protocol
structure and improve upon it (in efficiency or by adding additional capabil-
ities). As mentioned before, our protocol and all protocols we compare to in
Sec. 1.1 are based on SPDZ. The general structure is based on the above se-
cret-sharing scheme and works as follows: Parties (i) transform secret inputs to
shares, (ii) perform operations on shares – linear operations as in Eq. (2) and
multiplication with so-called Beaver multiplication (cf. Sec. 4.2), (iii) publish
the shares of the output, and (iv) verify that the operations on shares were done
correctly. Like this, arbitrary functions (representable as arithmetic circuits) can
be computed.

For inputs, multiplications, and outputs (steps (i) to (iii)), auxiliary data in
the form of preprocessing material is generated to speed up the protocol. While
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steps (i) to (iv) happen in a so-called online phase, the preprocessing happens in
a more demanding offline phase before that. This kind of separation is applicable
for many use cases as the offline phase only requires knowing an upper bound
on the operations in the online phase, but the actual data does not have to be
known at that time. The verification (iv) is done with so-called authenticated
secret-sharing based on MACs.

SPDZ MACs SPDZ uses a MAC scheme to detect misbehavior. The tag for
message x is computed as α · x with MAC key α. In the protocol, the parties
compute [α · x], i.e., no party knows the MAC tag – only shares of it (and
shares [α]). The MAC can be checked without revealing the MAC key [25]. With
this scheme, only the overall values are tagged, not the individual shares. Several
protocols [8,21,7] adapt this and generate MACs for the individual shares, which
allows the parties to detect misbehavior on a per-party basis (see Sec. 2.3).

2.2 Homomorphic Encryption: BGV

In the offline phase of SPDZ [26] (cf. Sec. 2.1), homomorphic encryption (HE) is
used to generate the preprocessing material. HE allows operations on encrypted
data, e.g., we can add up two ciphertexts and obtain a ciphertext that con-
tains the sum of the encrypted summands. In SPDZ and later works, the BGV
encryption scheme [14] is used.

While we describe the basic concepts here, more technical details can be
found in [14,26,25]. Let R := Z[X]/Φm(X) be the integer polynomials modulo
the m-th cyclotomic polynomial Φm(X) := Xm/2 + 1 for m > 2 a power of two.
Let N := m/2. Let Rp := Zp[X]/Φm(X) = R/pR for a prime p ≡ 1 mod m.

For plaintext modulus p and ciphertext modulus q > p, the BGV scheme
consists of a public key / private key pair (pk, sk) ∈ R2

q × Rq, the encryption
function Encpk : Rp×R3

q → R2
q (that uses randomness sampled from R3

q), and the
decryption function Decsk : R

2
q → Rp. We can embed plaintext vectors x,y ∈ ZN

p

into Rp such that (note that we denote vectors in bold, e.g., x)

Decsk(Encpk(x, r) + Encpk(y, r
′)) = x+ y (3a)

Decsk(x · Encpk(y, r′)) = x⊙ y (3b)

for (suitable) randomness r, r′, i.e., BGV allows linear homomorphic operations
on ciphertexts. We use this linear version of BGV, as well as a somewhat ho-
momorphic version, where we can also multiply two encrypted values (instead
of one encrypted and one unencrypted value as in Eq. (3b)). We use a linear
BGV key pair (pki, ski) per compute party Pi ∈ P, as well as a somewhat homo-
morphic BGV key pk known to all parties, but the private key is secret-shared
between the parties. This way, encryptions with pk can only be decrypted if all
parties participate in a distributed decryption subprotocol DistDec. We use the
notation ⟨x⟩i for encryptions of x under key pki and ⟨⟨x⟩⟩ for encryptions under
pk. Additionally, we use so-called drowning encryption EncDrown, which hides
the noise in homomorphically computed ciphertexts [33,41].
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2.3 MAC Scheme

We use a MAC scheme that is conceptually similar to the ones used in other
protocols with identifiable abort [8,21,7]. There, and in this work, the MAC is
of the form α ·x+ρ for message x, MAC key α, and per-message randomness ρ.
Like Baum et al. (BMRS [7]), we use pseudorandomness for the per-message
randomization and define the tag for message x as

LxMα,fkctx := MAC(α, fk, x, ctx) := α · x+ PRF(fk, ctx) (4)

where ctx is a unique context for x, e.g., an increasing counter, and fk is a PRF
key. This is equivalent to using the MAC scheme presented by Catalano and
Fiore [18] (see Appendix A for a proof of equivalence of the representations).
The main difference to prior work is how we use the MAC scheme. Previously,
the MAC scheme was instantiated once for every party and applied to every
share, i.e., the protocols would compute αj · [x]i + ρij for every pair of parties
(Pi, Pj) ∈ P2 (with Pi ̸= Pj). This allows all parties to check the shares of
all other parties. Our protocol uses a global (not party-dependent) MAC key
instead. This has two main benefits: (i) Now there is only a single tag per share,
reducing the complexity by a factor of n compared to, e.g., BOS [8]; and (ii)
all parties – including external parties – verify all tags with the same MAC key,
giving us a straightforward way to achieve public verifiability. The challenge
lies in generating and handing tags in a way that does not reveal the MAC
key to any party before the verification phase and also allows for verifying the
tag generation itself. Our subprotocols for tag generation and verification are
designed to handle these challenges. Before we describe our protocols in Secs. 3
to 6, we describe MAC-related notation and the intuition for tag generation
below.

Notation If the context and keys are clear, we use the simplified notation LxM in-
stead of LxMα,fkctx . If we want to highlight the use of a specific key, we use the short-
hand LxMα, where we omit the PRF key and assume it is implicitly associated
with the MAC key. In particular, the notation LxMω implies that another PRF
key fk′ associated with ω is used. We define tag randomness ρx := PRF(fk, ctx)
used for LxM. With this, we define linear operations on tags and randomness
(subtraction works analogously):

Lx+ yM := LxM + LyM, Lc · xM := c · LxM, Lx+ cM := LxM, (5)
ρx+y := ρx + ρy, ρc·x := c · ρx, ρx+c := ρx − α · c (6)

for messages x, y and public constants c. Verification is simply defined as

Check(α, z, ρz, LzM) = 1 ⇔ LzM = α · z + ρz. (7)

As mentioned above, we want to use MACs for each of the shares. This
gives us an authenticated secret-sharing scheme. For a share [x]i, we define the
corresponding authenticated share as JxKi := ([x]i, L[x]iM) with linear operations
derived from combining Eqs. (2) and (5):

Jx+ yKi := JxKi + JyKi, Jc · xKi := c · JxKi, Jx+ cKi := JxKi + (c · δi, 0). (8)
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Multiparty MACs A core part of our protocols is the generation of MAC
tags for every party’s shares obliviously, without revealing the share to other
parties or the MAC key to any party. We can achieve this by secret-sharing the
MAC key α into shares [α]i and selecting a PRF that allows simple distributed
evaluation. For this, we define

PRF(fk, ctx) :=
n−1∑
i=0

PRF(fki, ctx), fk := (fki)
n−1
i=0 , (9)

(abusing the notation) to get a PRF that each party can partially evaluate
without leaking the overall PRF key fk. Concretely, the parties compute

LxMα,fkctx =

n−1∑
i=0

[α]i · x+ PRF(fki, ctx), (10)

where party Pi computes the i-th summand. Note that the PRF in Eq. (9)
is pseudorandom if at least one party is honest in computing their summand.
Consequently, Eq. (10) is equivalent to Eq. (4), i.e., a valid MAC, but every
party Pi can only compute one summand. This summand is also linear in x, so
this can be easily done with linear HE, as we do in Sec. 5.1. This protects the
privacy of x, which will be replaced by a share of each party in our protocol
(recall that we want to generate tags for all shares).

3 Our Protocol

With the required background on secret-sharing, HE, and our MAC scheme
covered in Sec. 2, we describe our protocol setting (security and communication
model) next. Then, we give an overview of our protocol before we describe it in
more detail in Secs. 4 to 6. We then prove its security in Sec. 7.

Security and Communication Model Our protocols are designed to be
maliciously secure even in the presence of a dishonest majority, where all but
at most one compute party may be malicious. Any number of clients can be
malicious – even all clients. We assume that external auditor parties are honest
as these parties cannot influence the computation [6]. We use P, I,O for the
set of compute parties, input parties, and output parties, respectively. Note that
the latter two types of parties can be clients in a client-server setting, while
the compute parties are the servers. However, input/output parties could be
compute parties as well.

Our security proofs are done in the universal composability (UC) model [17].
This means we prove that our protocol is equivalent to an ideal functionality that
models our security properties: correctness of the computation, privacy of the
inputs, independence of inputs, and publicly identifiable abort. We present the
ideal functionality in Fig. 1 and our full protocol in Fig. 2. Our formal security
proof can be found in Sec. 7, and additional (standard) functionalities that we
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use can be found in Appendix B. In our protocol and functionality notation, we
omit explicitly sending session IDs and security parameters for a more concise
presentation. Similarly, we omit explicitly prefixing messages with unique strings
that specify the context of the message, e.g., our functionality implicitly sends
(comp-result, sessionID,ypub,yj) in Line 11 of Fig. 1 to the adversary A.

In the following, process the init, prep, and comp phases at most once and only
in order. Additionally, only accept audit messages after the init phase.

1: On input (init) from all P:
2: StoreM←⊥ and z ← ⊥; receive the set of statically corrupted parties C from

the adversary A
3: On input (prep, I,M,O) from all P:
4: Receive and store the initial set of misbehaving parties M⊆ C ∩ P from A
5: Below, only accept circuits with at most I inputs, M multiplications, O outputs
6: On input (comp, f) from all P ∪ O and (comp, f,xj) from all Pj ∈ I:
7: if M = ∅ then // i.e., no misbehavior in preprocessing
8: Receive x′

j from A for each Pj ∈ C ∩ I and use x′
j instead of xj

9: Evaluate the function on all inputs, i.e., compute y := f((xj)Pj∈I)
10: Let ypub be all public outputs and yj be the private outputs for Pj ∈ O
11: Send ypub and yj for Pj ∈ C ∩ O to A
12: Receive and store M⊆ C from A; ifM = ∅, store z ← y
13: Send (zpub,M) to all parties and also zj to all Pj ∈ O // z = ⊥ if M ̸= ∅
14: On input (audit) from Paudit:
15: Send (M,zpub) to Paudit and also zj for any Pj ∈ O with Paudit = Pj .

Note that z can be ⊥; then, we define zpub and zj as ⊥ as well.

Fig. 1: Functionality FMPC with Publicly Identifiable Abort

We assume that the parties can communicate via secret authenticated chan-
nels. We also require an authenticated broadcast functionality. In our protocols,
this is expressed by a Broadcast instruction. The use of broadcasts, or al-
ternatively a public bulletin board, is standard in protocols that try to achieve
properties that can be publicly checked (e.g., public verifiability [6], publicly
identifiable abort [8,23], or public accountability [42]). With a bulletin board,
an external auditor does not have to exist during the run of the protocol, but
instead, a transcript of the public messages can be obtained from the bulletin
board [6]. Additionally, parties can Forward messages in our protocol. This
means that they broadcast messages that were received over private channels
and all other parties can see that this message came from the original sender. In
practice, we would implement this with signatures. In general, we assume then
that all parties implicitly ignore messages without valid signatures.

Protocol Overview Our protocol is shown in Fig. 2, with more details in Figs. 3
and 4. We structure it in a setup, offline, online, and verification phase. The setup
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The parties process the following phases only in order and at most once (except for
auditing). Parties can abort at any step where they verify data from other parties
and misbehaving parties are identified, e.g., Line 14 in Fig. 4.

1: Setup:
2: Each Pi ∈ P does the following:
3: Run Fsetup to obtain BGV keys and setup the commitment functionality
4: Sample symmetric keys ki, kij , k

′
i, k

′
ik for Pj ∈ I, Pk ∈ O

5: Sample MAC key shares and PRF/PRG keys [α]i, [ω]i, fki, gki, fk
′
i, gk

′
i

6: Publicly commit to the keys
7: Preprocessing: // Parties agreed on circuit size: I inputs, M muls., O outputs
8: // Offline phase (see Fig. 4):
9: Each Pi ∈ P does the following:

10: Run AuthInputShare(I) for inputs, AuthTripleShare(M) for multi-
plications, and AuthOutputShare(O) for outputs (including verifying all
ZKPs; note that Auth is verified after the offline phase)

11: Broadcast prep-ok
12: Computation: // Parties agreed on circuit f
13: // Online phase (input, circuit evaluation, output; see Fig. 3):
14: Each Pi ∈ P and Pj ∈ I does the following:
15: Run Input for each input
16: Each Pi ∈ P does the following:
17: Traverse f in topological order and evaluate each arithmetic gate in f with

Add, AddConst, MulConst, or Mul
18: Each Pi ∈ P does the following:
19: Run Output for each public or private output
20: // Verification phase (see Fig. 3):
21: Each Pi ∈ P does the following:
22: Decommit [α]i, fki, gki and verify all calls to Auth that used these keys
23: Broadcast auth-ok and decommit ki, kij
24: Each Pi ∈ P and Pj ∈ I does the following:
25: Verify all calls to Input
26: Broadcast input-ok
27: Each Pi ∈ P does the following:
28: Verify the remaining arithmetic gates from online phase and Output
29: Broadcast online-ok
30: Each Pi ∈ P and Pj ∈ O does the following:
31: Run FinOutput for each public and FinOutputTo for each private output
32: Each Pi ∈ P does the following:
33: Decommit [ω]i, fk

′
i, gk

′
i and verify all calls to Auth that used these keys

34: Broadcast auth-ok′ and decommit k′i, k
′
ij

35: Each Pi ∈ P and Pj ∈ O does the following:
36: Verify all calls to FinOutput and calls to FinOutputTo
37: Broadcast output-ok
38: Audit:
39: If any party did not send prep-ok, verify the ZKPs
40: Verify any message that was Forwarded during the protocol

Fig. 2: Protocol ΠMPC with Publicly Identifiable Abort
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simply generates the necessary keys for encryption, commitments, and MACs.
Then, the offline phase produces authenticated shares as preprocessing material
used in the online phase. The preprocessing material is similar to SPDZ-like
protocols: authenticated masks for inputs and outputs, as well as authenticated
multiplication triples for multiplications. In the online phase, we use authenti-
cated secret-sharing to perform computations on private data. We use the homo-
morphic property of the secret-sharing scheme, as well as Beaver’s trick [11] to
multiply shares. We give specialized input and output subprotocols that directly
use our authenticated shares. As input and output parties can verify shares they
receive themselves, we avoid overhead from protocols such as Damgård et al.’s
input/output protocols [24]. For verification, we release verification data (keys
for MACs and encryption) step-by-step to verify the computation locally with
relatively low cost. Only after verifying the protocol are the outputs revealed,
followed by an additional (final) verification step to also verify the outputs. In
particular, our protocol proceeds as follows after the setup (see also Fig. 2).

(i) The authenticated preprocessing material is generated using HE. However,
we only verify the correlations of the preprocessing material (e.g., for multiplica-
tion triples) in the offline phase, not correct authentication of shares (see Eq. (10)
and Sec. 5.1). This avoids heavy cryptographic mechanisms like additional ZKPs
and comes almost for free: The information needed to verify the authentication
is revealed later anyway for MAC checks, so we defer it to the verification phase
and perform a few more operations there.

(ii) The online phase proceeds as in any SPDZ-like protocol, utilizing the
homomorphic properties of the secret-sharing scheme and the MACs. However,
we only proceed until just before the outputs of the protocol and publicly open
masked versions of the outputs (these can be verified in the next steps). Another
caveat of our protocol is that we cannot reveal the MAC tags just yet as the tag
generation was not checked, and faulty tags might leak information (see Sec. 6.1).
Therefore, we only reveal symmetrically encrypted tags in the online phase. The
parties commit to the corresponding symmetric keys in a setup phase, which are
decommitted before verification of the tags in (iv), allowing everyone to decrypt
the tags. Compared to homomorphic encryption in the offline phase, symmetric
encryption has virtually no overhead (next to none for communication and very
little computationally).

(iii) As the first step of the verification, the MAC and PRF keys are revealed.
With this (and some auxiliary information in form of PRG keys used to deter-
ministically derive randomness in for encryptions such that they can be recom-
puted in the verification), the parties can verify the authentication locally. Unlike
protocols that use homomorphic commitments for identifiable abort [45,23,42],
verifying the public-key primitives in our authentication does not depend on the
circuit structure. Therefore, this is trivially parallelizable and fast to verify in a
few nanoseconds per operation on modern hardware (see Sec. 8.2).

(iv) After the parties ensure that the tags are correctly authenticated in the
offline phase, they can reveal the symmetric keys used to hide the MAC tags
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in the online phase. Then, the online phase can be verified with simple MAC
checks. This can also be done very efficiently (see Sec. 8.2).

(v) Finally, the parties can reveal the output masks (used to publicly reveal
masked outputs at the end of the online phase). To verify these, we proceed just
as in (iii) and (iv) – with another caveat: The MAC and PRF keys are already
public, so we cannot rely on MACs for verification for anything that is sent at
this point in the protocol. Therefore, we switch to a second MAC and PRF key
for the outputs and can then perform the verification of the authentication (like
in (iii)) and the MACs (like in (iv)) for the output masks. Note that the offline
phase with the second MAC and PRF key is also performed in step (i) together
with the preprocessing using the primary MAC key.

In the following, we describe the online phase first (Sec. 4) so it is more
clear what the offline phase (Sec. 5) has to generate. Finally, we describe how
the parties verify the computation (Sec. 6). In the online and offline protocols
(Figs. 3 and 4), we highlight steps that belong to the verification phase like this.
Note that parties broadcast certain messages to synchronize the protocol into
well-defined phases (see, for example, Line 11 in Fig. 2). Whenever a party
identifies cheaters (e.g., Line 14 in Fig. 4), they finish verifying the remaining
phase and then abort. Then, they do not participate in the next broadcast to
end the current phase. This is done implicitly in all protocols.

4 The Online Protocol

In the online protocol, the compute parties P evaluate an agreed-upon function f
(an arithmetic circuit) on private inputs from the input parties I. The result can
be partially public and partially private. In the latter case, there is also a set of
output parties O. As with standard SPDZ, all that is necessary for this are four
main components: (i) Securely transforming private inputs into (authenticated)
secret shares, (ii) performing linear operations and multiplications on shared val-
ues, (iii) securely sending the result to the parties that should obtain the result,
and (iv) verifying the computation. Note that linear operations on shared values
can be performed directly without interaction with the used linear secret-sharing
scheme (cf. Eq. (8)). Therefore, we focus on multiplication for (ii). Additionally,
we present the verification (iv) later in Sec. 6.2. The following Secs. 4.1 to 4.3
describe how we handle steps (i) to (iii) in more detail.

4.1 Input

In the client-server setting, we have dedicated input parties I that are allowed
to give inputs to the multiparty computation (for I ⊆ P, see an optimization
in Appendix C). With our publicly verifiable MAC scheme, the input parties
can follow an input procedure that is very similar to existing input subprotocols
where only compute parties can give inputs. The Input subprotocol (depicted
in Fig. 3) works as follows. First, the compute parties obtain a fresh, uniformly
random, and authenticated (shared) mask JrK. This mask is computed in the
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1: procedure Open(Secret JxKi)
2: Broadcast [x]i and enc(ki, L[x]iM) If Check(α, [x]i, ρ[x]i , L[x]iM) ̸= 1, identify Pi

3: return x := Rec([x])

4: procedure OpenTo(Recipient Pj , Secret JxKi)
5: Send [x]i and enc(kij , L[x]iM) to Pj

6: if partyID = j then // partyID is the ID of the party running/verifying this
7: If Check(α, [x]i, ρ[x]i , L[x]iM) ̸= 1, identify Pi and Forward enc(kij , L[x]iM)
8: return x := Rec([x])

9: If Pj Forwarded a message and if Check(α, [x]i, ρ[x]i , L[x]iM) ̸= 1, identify Pi

10: procedure Input(Recipient Pj , Input x at Pj)
11: Obtain a mask JrKi from preprocessing
12: OpenTo(Pj , JrKi) Verify OpenTo(Pj , JrKi) with tag randomness ρ[r]i
13: if partyID = j then // Pj receives r with OpenTo
14: Broadcast u := x− r
15: return JxKi := JrKi + (u · δi, 0) Store ρ[r]i − αuδi as tag randomness of JxKi

16: procedure Add(Secret JxKi, Secret JyKi)
17: return JzKi := JxKi + JyKi Store ρ[x]i + ρ[y]i as tag randomness of JzKi

18: procedure AddConst(Secret JxKi, Constant c)
19: return JzKi := JxKi + (c · δi, 0) Store ρ[x]i − αcδi as tag randomness of JzKi

20: procedure MulConst(Constant c, Secret JxKi)
21: return JzKi := c · JxKi Store c · ρ[x]i as tag randomness of JzKi

22: procedure Mul(Secret JxKi, Secret JyKi)
23: Obtain a triple (JaKi, JbKi, JcKi) from preprocessing
24: u := Open(JxKi − JaKi); v := Open(JyKi − JbKi) Verify both calls to Open
25: return JzKi := JcKi + JaKi · v + u · JbKi + (u · v · δi, 0)

Store ρ[c]i + ρ[a]i · v + u · ρ[b]i − α · u · v · δi as tag randomness of JzKi

26: procedure Output(Secret JxKαi )
27: Obtain a double-authenticated mask (JrKαi , JrKωi ) from preprocessing
28: u := Open(JxKαi − JrKαi ) Verify Open with tag randomness ρα[x]i − ρα[r]i

29: procedure FinOutput(Secret JxKαi ) // use k′i instead of ki in Open below
30: Let u and JrKωi be as in Output(JxKαi )
31: r := Open(JrKωi ) Verify Open(JrKωi ) with tag randomness ρω[r]i using ω, fk′

32: return x := u+ r

33: procedure FinOutputTo(Recipient Pj , Secret JxKαi ) // use k′ij instead of kij
34: Let u and JrKωi be as in Output(JxKαi )
35: OpenTo(Pj , JrKωi ) Verify OpenTo(Pj , JrKωi ) with ρω[r]i using ω, fk′

36: if partyID = j then // Pj receives r with OpenTo
37: return x := u+ r

Fig. 3: Online Protocol at Party Pi. See Sec. 4 for details on the online phase
and Sec. 6.2 for the verification. The verification phase is marked like this.
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preprocessing (see Sec. 5.1). The compute parties send their shares and the
MAC tags for their shares (for later verification, see Sec. 6.2) to an input party
Pj ∈ I that holds an input x. Note that the tags are symmetrically encrypted to
avoid leaking information via incorrectly tagged shares; we describe the reason
for this in more detail in Sec. 6.1. The mask r can be reconstructed from the
shares [r], and Pj broadcasts x− r. As r is uniformly random, this does not leak
information about x. Furthermore, the linear secret-sharing scheme allows the
compute parties to compute JxK = Jr + (x− r)K, which is then used to perform
the remaining computations in the online phase.

4.2 Multiplication

Multiplication of shares is done with a standard technique: Beaver triples [11].
For this, authenticated triples (JaK, JbK, JcK) with uniform random a, b, and c =
a · b are required. These triples can be precomputed in the offline phase (see
Sec. 5.2). In the online phase, the triples are used as shown in Fig. 3: The values
a and b mask the values x and y that should be multiplied. As the masks are
uniformly random, we can open masked values u := x−a and v := y− b without
leaking any information. Finally, we can use the opened values together with
the authenticated triple to get a share of the product x · y. More concretely, the
classical Beaver multiplication is

x · y = a · b+ a · (y − b) + (x− a) · b+ (x− a) · (y − b) (11)
⇒ Jx · yK := JcK + JaK · v + u · JbK + u · v (12)

for scalar multiplication. This technique can be extended to any bilinear oper-
ation, such as matrix multiplication or convolutions [37,19,39,41]. Then, multi-
plication is replaced by the corresponding bilinear operation (matrix multipli-
cation/convolution), and a, b, c are shared matrices or tensors. For the latter,
the sharing scheme is (trivially) extended element-wise to matrices or tensors.
As the above only uses linear operations, the operations can be verified with
the authenticated secret-sharing scheme described in Sec. 2.3. We describe the
verification in more detail in Sec. 6.2. Also note that, analogously to inputs
(Sec. 4.1), only symmetrically encrypted tags are opened in the online phase (to
avoid information leakage; see Sec. 6.1). During verification, the corresponding
keys are decommitted to allow access to the tags via decryption.

4.3 Output

After evaluating all arithmetic gates, the parties hold authenticated shares of
the outputs. The final outputs of the protocol are revealed in a multi-stage
procedure, as shown in Figs. 2 and 3. This prevents an adversary from obtaining
more information than only the output, similar to what is done in SPDZ [26].

The following example makes clear why this is necessary. Assume the MPC
parties want to compute f(x, y, c) := x + c · (y − x) =: z for inputs x, y ∈ F
and c ∈ {0, 1} ⊂ F, i.e., z = x for c = 0 and z = y for c = 1. This uses only
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one multiplication and two linear addition/subtraction gates. Let x, y be secret
inputs by honest parties. Additionally, we assume that the adversary knows or
chooses c := 0 and controls at least one compute party. Then, a single malicious
party Pj can use [c]j + 1 instead of [c]j in the multiplication protocol, which
results in the final computation result z′ = y instead of z = x. In the security
proof for our protocol (cf. Sec. 7), a simulator for the protocol would only obtain
the real output z = x and has no way to provide any value related to y, so an
adversary could easily distinguish the simulation from the real protocol.

Our proposed multi-stage output in Fig. 3 reveals a masked value (in the Out-
put subprotocol) before the computation is verified. Only if the computation
was performed without error, the final result is revealed using FinOutput for
public outputs and FinOutputTo for private outputs. While an adversary can
still introduce errors in the final result at this stage, this cannot be related to
intermediate values in the computation.

For the multi-stage output, we use double-authenticated masks, i.e., shares
of a mask authenticated with two different MAC (and PRF) keys. As the mask
is uniformly random, we can publicly open masked values without risking pri-
vacy. Then, the computation can be publicly verified until the public opening of
the masked value. Finally, the mask is opened – publicly for public outputs or
privately for private outputs. The opened mask is then verified with the second
key pair (cf. Sec. 6.2), and the mask can be removed locally to obtain the out-
put. Note that, as for the rest of the online phase, all opened tags are first only
published in an encrypted form to allow more controlled step-by-step verification
(cf. Sec. 6.1).

Note that we can skip the multi-stage output if the function to be computed
in MPC is linear, i.e., we can use Open/OpenTo instead of Output and Fin-
Output/FinOutputTo (Fig. 3). This is because linear functions are computed
locally by the compute parties, without the influence of the adversary. Introduc-
ing errors in Open/OpenTo is then equivalent to introducing errors in the final
stage of the multi-stage output procedure above.

5 The Offline Protocol

To perform computations in the online phase as described in Sec. 4, we need
to generate the necessary authenticated shares: authenticated masks for inputs
(used in Sec. 4.1), authenticated triples for multiplications (used in Sec. 4.2), and
double-authenticated masks for outputs (used in Sec. 4.3). The base for these
authenticated shares will be our share authentication subprotocol presented in
Sec. 5.1, on which we build a triple generation subprotocol (Sec. 5.2) and a
subprotocol to generate double-authenticated masks (Sec. 5.3).

5.1 Authentication

Our authentication subprotocol Auth is shown in Fig. 4. With it, each compute
party Pi authenticates their share [r]i and helps all other compute parties au-
thenticate their share as well. We assume all parties hold their share [r]i, their
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share of the MAC key [α]i, their PRF key fki, and a PRG key gki. Additionally,
all parties hold encryptions ⟨[r]j⟩j of [r]j (encrypted under Pj ’s public key pkj)
for all Pj ∈ P.

The parties proceed then in a pairwise manner, similar to Overdrive’s Low-
Gear protocol [33]: Every other party’s encrypted share is multiplied with the
own [α]i and masked with a (pseudo)random (drowned) encryption. The pair-
wise results are then summed up to obtain a tag for the input share (instead of
a share of a MAC as in Overdrive; see Eq. (10)). Using fixed pseudorandomness
for the masks si,j and the drowning encryption allows us to delay verification
of the authentication. Like this, we can reveal the PRF/PRG keys later in the
protocol, and parties locally recompute what was sent to them while keeping the
shares [r]i still secret (see Sec. 6.1).

All that is left to generate authenticated masks in the AuthInputShare
subprotocol (used for inputs; see Sec. 4.1) is to obtain the encrypted shares of
all parties. This can be done with standard zero-knowledge proofs as in SPDZ [26]
or with more recent optimizations such as (variants of the) TopGear proofs [5].4
We use a ZKP subprotocol Enc-ZK for this, which we describe in Appendix B.

5.2 Multiplication

To multiply shared values in the online phase, we require Beaver triples (see
Sec. 4.2). Our triple generation subprotocol AuthTripleShare is shown in
Fig. 4. Its high-level goal is to generate encrypted shares for all components of
the triple (a, b, c = a · b) and then re-use the authentication from Sec. 5.1. This
approach is similar to SPDZ [26] and related protocols like [6,8]. However, we use
a different protocol for authentication. Additionally, we need to ensure PIA. The
straightforward way to achieve this is to use somewhat homomorphic encryption
(as the mentioned related work) and (verifiable) distributed decryption. How-
ever, all parties’ shares need to be encrypted with the respective party’s public
key for our authentication subprotocol. This prevents us from homomorphically
combining different parties’ encryptions or from using standard distributed de-
cryption. Therefore, we require the parties to additionally encrypt their shares
with a common public key pk, so all parties’ shares can be homomorphically
summed and multiplied. For this, we use the PubEnc-ZK subprotocol, which is
similar to Enc-ZK (used in Fig. 4; cf. Sec. 5.1 and Appendix B). It outputs not
only the encryptions of each party’s share but also an encryption of the sum of
all parties’ shares under the shared public key pk. This can be achieved with a
ZKP that combines the one from Enc-ZK with a TopGear proof [5] to also get
the encrypted sum of all shares.5

4 Opposed to [5], we do not require n-party proofs but 1-party proofs. Furthermore,
TopGear ZKPs require the shares and ciphertexts to be multiplied by 2 as these
proofs only guarantee small noise for encryptions of 2 · r. For simpler presentation,
this is omitted in Fig. 4.

5 As mentioned in Footnote 4, we have to multiply the individual parties’ shares and
ciphertexts by 2 if we use TopGear ZKPs. Again, this is omitted in Fig. 4 for simpler
presentation.
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1: procedure Auth([α]i, fki, gki, [r]i, (⟨[r]j⟩j)
n−1
j=0 )

2: Let ctx be a string describing the context of this call, e.g., triple-a for Line 29
3: for j from 0 to n− 1 do
4: si,j := PRF(fki, (ctx, j))
5: if partyID = j then
6: ti,i := [α]i · [r]i + si,i

7: else
8: // access PRG output at index determined by (ctx, j)
9: ⟨si,j⟩j := EncDrown(pkj , si,j ,PRG(gki)[ctx, j])

10: ⟨ti,j⟩j := [α]i · ⟨[r]j⟩j + ⟨si,j⟩j
11: Send ⟨ti,j⟩j to Pj and receive ⟨tj,i⟩i from Pj

12: Compute ⟨tj,i⟩i analogously to above; let the computed value be ⟨t′j,i⟩i
13: If partyID = i and if ⟨tj,i⟩i ̸= ⟨t′j,i⟩i, identify Pj and Forward ⟨tj,i⟩i
14: If Pi Forwarded ⟨tj,i⟩i and if ⟨tj,i⟩i ̸= ⟨t′j,i⟩i, identify Pj as cheater
15: tj,i := Dec(ski, ⟨tj,i⟩i)
16: return JrKi := ([r]i, L[r]iM) := ([r]i,

∑n−1
j=0 tj,i)

17: procedure AuthInputShare(Count m)
18: [r]i

$← Fm // sample random shares
19: (⟨[r]j⟩j)n−1

j=0
$← Enc-ZK([r]i) // includes verification via ZKPs

20: return Auth([α]i, fki, gki, [r]i, (⟨[r]j⟩j)
n−1
j=0 ) Verify Auth as above

21: procedure AuthTripleShare(Count m)
22: ([a]i, [b]i, [r]i)

$← F3×m // sample random shares
23: ((⟨[a]j⟩j)n−1

j=0 , ⟨⟨a⟩⟩)
$← PubEnc-ZK([a]i) // includes verification via ZKPs

24: ((⟨[b]j⟩j)n−1
j=0 , ⟨⟨b⟩⟩)

$← PubEnc-ZK([b]i) // includes verification via ZKPs
25: ((⟨[r]j⟩j)n−1

j=0 , ⟨⟨r⟩⟩)
$← PubEnc-ZK([r]i) // includes verification via ZKPs

26: m $← DistDec(⟨⟨a⟩⟩ · ⟨⟨b⟩⟩ − ⟨⟨r⟩⟩) // includes verification via ZKPs
27: [c]i := [r]i + δi ·m
28: (⟨[c]j⟩j)n−1

j=0 := (⟨[r]j⟩j + δj ·m)n−1
j=0

29: JaKi := Auth([α]i, fki, gki, [a]i, (⟨[a]j⟩j)
n−1
j=0 ) Verify Auth as above

30: JbKi := Auth([α]i, fki, gki, [b]i, (⟨[b]j⟩j)
n−1
j=0 ) Verify Auth as above

31: JcKi := Auth([α]i, fki, gki, [c]i, (⟨[c]j⟩j)
n−1
j=0 ) Verify Auth as above

32: return (JaKi, JbKi, JcKi)
33: procedure AuthOutputShare(Count m)
34: [r]i

$← Fm // sample random shares
35: (⟨[r]j⟩j)n−1

j=0
$← Enc-ZK([r]i) // includes verification via ZKPs

36: JrKαi := Auth([α]i, fki, gki, [r]i, (⟨[r]j⟩j)
n−1
j=0 ) Verify Auth as above

37: JrKωi := Auth([ω]i, fk′i, gk
′
i, [r]i, (⟨[r]j⟩j)

n−1
j=0 ) Verify Auth with ω, fk′, gk′

38: return (JrKαi , JrKωi )

Fig. 4: Offline Protocol at Party Pi. See Sec. 5 for details on the offline phase
and Sec. 6.1 for the verification. The verification phase is marked like this.
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With the encryptions of a and b, everyone can compute a ciphertext that
encrypts the component-wise product a ⊙ b. The parties can use an encryp-
tion of r to mask this ciphertext and decrypt a masked version of the product
with the distributed decryption subprotocol DistDec. For the latter, ZKPs (as
in [8,23,42]) give us PIA. Now, parties can homomorphically compute their own
share [c] = [a ⊙ b] from [r] and encrypted shares for all parties from encryp-
tions of [r], respectively. Finally, the authenticated shares can be computed with
Auth as in Sec. 5.1. Note that one can easily modify our protocol to generate,
e.g., convolution triples instead [41].

5.3 Output

As mentioned in Sec. 4.3, we require double-authenticated masks to prevent
leaking intermediate values through outputs in the online phase. These masks
are similar to those used for inputs (cf. Sec. 5.1) but need to be authenticated
with two independent MAC and PRF keys. Therefore, AuthOutputShare (see
Fig. 4) follows the same process as AuthInputShare, but we call Auth once
for each set of keys.

6 The Verification Protocol

The final step of our protocol is verifying the computation. This happens after the
online phase (or could be seen as the final step of the online phase). Verification
is mainly done by the compute parties, which verify the remaining parts of
the offline phase (Sec. 6.1) and the online phase (Sec. 6.2). Verification that
depends on private data is done by input parties (Sec. 6.2) and output parties
that receive private outputs (Sec. 6.2). If cheating is detected by compute parties,
input parties, or output parties, the (private) messages that failed verification
are published and can be verified by every party, including external auditors.
The only part that involves expensive cryptographic primitives is verifying the
offline phase, done by the compute parties. Therefore, our protocol has relatively
low resource requirements for clients, i.e., input and/or output parties.

Note that once the verification phase is reached, no more messages that de-
pend on the MAC key α and PRF key fk are sent. Therefore, the compute parties
can reveal these, which allows for a more efficient verification than if we tried
to keep the keys secret for the whole protocol. We discuss the verification of the
offline phase next, followed by the verification of the online phase (see Sec. 6.2).

6.1 Verifying the Offline Phase

After ZKPs for the well-formedness of ciphertexts and distributed decryption are
already verified in the offline phase, only verification of the Auth subprotocol
is left. As mentioned before, this is deferred to the verification phase to improve
the overall efficiency of our protocol, as we avoid more expensive verification
mechanisms for this part of the protocol. We now describe the verification for
this subprotocol in more detail.
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Authentication In the offline phase (see Sec. 5.1 and Fig. 4), every compute
party Pi sends an encryption ⟨ti,j⟩j to every other compute party Pj . This value
is used to construct Pj ’s MAC tag for their share [r]j , and conversely, each Pj

sends a ciphertext to Pi to construct the tag for their share. If any party Pj

cheated in the construction of this encryption, Pi’s share would later fail a MAC
check, making it look like Pi was cheating. Therefore, it is critical to prevent
this from happening in our protocol. Luckily, verifying the encryption comes
almost for free with our protocol, as the MAC and PRF keys are published
anyway to perform the MAC check. Therefore, the encryptions can simply be
recomputed during verification to see which party cheated in the offline phase.
The only missing information to recompute the encryption is the randomness
used for the drowning encryption. We let the parties use PRGs to compute this
randomness, meaning everyone can deterministically recompute the encryptions
once the PRG keys are revealed (together with the MAC key shares and PRF
keys). Note that revealing this randomness does not impact the privacy of any
values in our protocol, as the drowning encryption is only used to hide Pi’s [α]i
and si,j from other parties Pj . These values are already public at the time of
the verification, so hiding the encryption randomness is no longer necessary.

If Pi detects that Pj cheated during the authentication step by sending a
different ciphertext than the one Pi locally computed, Pi can publish ⟨tj,i⟩i that
was sent via P2P communication in the offline phase. Now, everyone can see if
this ciphertext matches the expected one. A malicious Pi cannot falsely blame an
honest Pj because the ⟨tj,i⟩i is accompanied by a signature that Pi would have
to forge in order to convince others that Pj sent a wrong value. As mentioned
before, all parties simply ignore messages that do not have valid signatures.

For double-authenticated masks, we have a second set of MAC and PRF
keys. Calls to Auth that used these keys will be verified as soon the second set
of keys is published (after verifying the computation with the first set of keys).

On Verifying the Authentication Before the Online Phase As can be
seen in Figs. 2 and 3, the tags for messages are not simply revealed during
openings but only encrypted versions thereof. Only after successful verification of
the offline phase (including calls to Auth) are the encryption keys decommitted
to reveal the MAC tags via decryption. (The decryption is not shown in Fig. 2
but happens implicitly after decommiting the keys.) Directly revealing the tags
would make our protocol vulnerable to attacks via manipulated tags. For this,
take the example of opening a share Jx − rKi for honest Pi.6 If Pj would cheat
in Auth by sending an encryption of ([α]j + 1) · [r]i + PRF(fkj , i), the MAC
tag for [x − r]i would be off by [r]i. With public knowledge of the MAC and
PRF keys (as we are now in the verification phase), Pj could take the difference
between the tag published by Pi and the (locally computed) expected tag to

6 During multiplication or for each output, values like this are opened where r is
supposed to be uniformly random and unknown to all parties.
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find out [r]i.7 In case Pi is the only honest party, this is enough information to
infer r and thus also x. Pj would be identified when verifying Auth, but private
information has already been leaked at that point. This is why we reveal the
tags only after successful verification of Auth (indirectly by first sending only
encryptions and later revealing the key; this acts as a commitment, but we only
have a one-time cost for decommiting symmetric encryption keys).

6.2 Verifying the Online Phase

After the preprocessing in the offline phase and evaluating the circuit in the
online phase, messages sent in the online phase have to be verified (see Fig. 3).
This can be done by verifying tagged messages. Note that the offline phase is
now fully verified, and the encryption keys to decrypt the MAC tags can be
published (as discussed above). Next, we discuss all types of verifications for the
online phase.

Input As seen in Fig. 3, input parties receive authenticated masks for each
input (see Sec. 4.1). This includes shares from each compute party and tags for
each share. To verify these, the input parties simply recompute the tag random-
ness, i.e., the PRF evaluation, and perform a MAC check for each authenticated
share that they received. If any check fails, the corresponding share and tag can
be published, and others can verify that the input party really received faulty
shares. Note that publishing authenticated shares of the mask that failed verifi-
cation does not risk the privacy of inputs. Firstly, these shares had to come from
malicious parties as honest parties do not send wrong messages, so these shares
are already known to an adversary attacking the protocol. Secondly, we assume
that the offline phase was verified, i.e., shares of honest parties are ensured to
be correctly tagged and thus not revealed. Because at least one compute party
is honest, at least one share is not revealed, keeping the input secret.

Multiplication In each multiplication, two values are publicly opened (see
Sec. 4.2 and Fig. 3). Verification of these messages works similarly to the input
verification with the following differences. Firstly, every (compute) party verifies
the opened values instead of individual designated input parties. Secondly, the
tag randomness is not directly determined by the offline phase but is a linear
combination of tag randomness: partly from the tuple entries a, b and partly
from the inputs to Mul. (For the input masks, the tag randomness for the
verifications is exactly what is used in the offline phase to authenticate the
masks.) Therefore, the parties have to traverse the circuit again to compute the
tag randomness for each multiplication (see Eq. (5) and Fig. 3). By computing
the tag randomness as in Fig. 3 for the output of every gate (e.g., Input or Add
gates), we maintain the invariant that the tag randomness of the input of every

7 This can be generalized to let Pi act as a decryption oracle for any ciphertext en-
crypted under Pi’s public key.
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gate is known using Eqs. (5) and (6). This way, the MAC checks (cf. Eq. (7))
can be performed for all authenticated shares opened during multiplications.

Output Also for outputs, parties have to verify tags. The tag and its tag ran-
domness for the publicly opened value in Output (cf. Fig. 3) depend on inter-
mediate values of the circuit, similar to the opened values for multiplications.
Therefore, they can be computed and checked in the same way. In contrast, the
values that need to be verified in FinOutput and FinOutputTo only depend
on masks from the preprocessing. This means that output parties do not have to
traverse the whole circuit to check the tags they received, but they can perform
the MAC check directly, as for inputs (see above).

As seen in Fig. 2, the whole computation except FinOutput/FinOutputTo
is verified using the first key pair α, fk. Only after this is done, is the second key
pair ω, fk′ revealed, and the verification proceeds analogously to before: First,
Auth is verified, and only then, are the keys to decrypt the final tags revealed.
These tags are then checked to verify FinOutput/FinOutputTo.

6.3 Auditing the Protocol

As seen above, the verification of the protocol is done mainly by compute parties,
and only very little is done by input/output parties. An external auditor also
has to perform only few operations for the verification. In fact, if at least one
party is honest, receiving the final output-ok message from all parties implies
that the whole computation was successful. If a party cheated, on the other
hand, either a public message did not verify or at least one honest party would
Forward a private message that identifies a cheater. For the former, a public
message is a ZKP during the offline phase or publicly opened tags during the
online phase. For the latter, a private message is a ciphertext sent in Auth or
an authenticated share for inputs/outputs. Verifying this only requires a single
check of the Auth subprotocol or a MAC check.

7 Security of the Protocol

With our protocol described in Secs. 3 to 6, we can now prove that it is UC-
secure. We describe our UC simulator in the proof of the theorem below. The
detailed simulator can be found in Appendix B (Fig. 7).

Theorem 1. Our protocol ΠMPC (see Fig. 2) securely realizes FMPC (see Fig. 1)
in the (Fcomm,Fsetup,Frand)-hybrid model. We assume static corruption of up to
n− 1 of the n compute parties P, as well as static corruption of any number of
input parties I and output parties O. Furthermore, we assume HomUF-CMA se-
curity of the used MAC scheme [18], the meaningless keys property of BGV [26],
and enhanced CPA-security for BGV [33].
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Proof. Correctness of the Offline Phase. We start with the correctness of gener-
ating random authenticated shares in the offline phase (Fig. 4). The shares [r]i
are uniformly random shares of a uniformly random value as required by our
protocols. The tags for these shares are

n−1∑
j=0

tj,i =

n−1∑
j=0

[α]j · [r]i + sj,i

=

n−1∑
j=0

[α]j · [r]i + PRF(fkj , i)

= α · [r]i +
n−1∑
j=0

PRF(fkj , i)

= α · [r]i + PRF(fk, i)

= L[r]iM (13)

as required. The correctness of the generated output shares (Fig. 4) follows
trivially from this. For triple shares (Fig. 4), we note that a and b are correctly
shared and authenticated by the above as well. The masked value m = a⊙b−r
implies that

c =

n−1∑
j=0

[c]j = m+

n−1∑
j=0

[r]j = a⊙ b,

i.e., the shares of c are correct, and similarly, ⟨[c]j⟩j are correct encryptions of
these shares. Finally, the correct authentication for shares of c follows from the
correctness of Auth.

Correctness of the Online Phase. The correctness of the online phase (Fig. 3)
follows from correctness of the offline phase, the linearity of the authenticated
secret-sharing scheme, and Eq. (11).

Correctness of the Verification. With a correct offline phase, all compute par-
ties have valid tags for their preprocessing material. Together with the linearity
of shares and tags, i.e., Eqs. (2), (5) and (8), the MACs of opened values ver-
ify correctly. Additionally, the verification of Auth only (correctly) recomputes
what is done in the offline phase.

In the remainder of the proof, we describe why the interaction of an adversary
with the real protocol is indistinguishable from an interaction with our simula-
tor (see Fig. 7) and the ideal functionality (see Fig. 1). Again, we structure the
proof by the phases of our protocol (offline, online, and verification phase).

Simulator. Before arguing our protocol’s simulation security, we have to define
our simulator. Similar to other SPDZ-like protocols, the simulator internally
emulates the real protocol where the simulated honest input parties set their
inputs to zero. This results in the simulated output z. Additionally, the simulator
gets the computation result from the ideal functionality y (if the interaction does
not already abort in the offline phase). With this, it can modify the share of one
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honest compute party such that the output in the real world and the ideal
world are the same (by adding the difference y − z to one share). Because the
simulator fully controls the simulation, it can generate a valid MAC tag for this
modified share. Next, we argue why the simulation and a real protocol run are
indistinguishable, phase by phase.

Setup. The simulator can obtain all MAC and PRF keys through the com-
mitment functionality (or a trapdoor if we instantiate it with an extractable
commitment scheme). Similarly, it obtains the private BGV keys through Fsetup.

Offline Phase. The distributions of the real and ideal world are indistinguish-
able in the offline phase as the simulator simply runs the protocol. The simulation
aborts if some parties fail to provide valid ZKPs, e.g., as part of the distributed
decryption. Then, the simulator forwards the identified parties to the function-
ality and the ideal world also aborts. The simulator correctly detects all invalid
values that could lead to wrong results later (due to correctness and soundness
of the ZKPs). If all proofs are valid, the simulator obtains all shares of corrupted
parties by decrypting the corresponding ciphertexts. With this and the obtained
MAC and PRF keys from the setup, it is able to generate all expected values
that a non-misbehaving (corrupted) party would compute in the online phase.

Online Phase. Note that we assume now that the protocol did not abort
in the offline phase. As mentioned above, honest inputs are set to zero and
corrupted inputs are recovered using the published masked values in the Input
protocol and the masks extracted from the offline phase. The simulator forwards
the inputs of corrupted parties to the functionality and obtains the public results
and results for corrupted parties. With these values, the simulator can adapt the
masked outputs (in the Output subprotocol) to make the simulated protocol
output the same result as the functionality. For this, the simulator adjusts the
shares of one honest compute party as described above. It can also compute
corresponding MAC tags that would pass the MAC check. As there is exactly one
MAC tag for each possible value of a share, once the MAC key and PRF are fixed,
the tag is indistinguishable iff. the share is indistinguishable. Overall, all values in
the online phase are distributed uniformly at random because they are all masked
as in the family of SPDZ protocols, and thus, the simulation is indistinguishable.
This does not include the encrypted MAC tags, but those are simply encryptions
of indistinguishable values and are thus also indistinguishable.

Verification and Final Output. After publishing the MAC keys, the parties
verify the computation. Verification of Auth is done first. This does not reveal
information about the honest shares [r]i as these are still encrypted, and now
we just compute linear functions of these ciphertexts. The simulation is also in-
distinguishable as we do not change the simulated behavior in the offline phase.
If the verification of Auth identified some cheaters, the parties in the simula-
tion abort now. Note that missing a wrong tag generation is impossible as there
is exactly one value that the honest parties expect. If there was no abort, the
simulation continues as follows. After verifying the tag generation in the offline
phase as above, the opened tags are checked. As argued before, the revealed
shares are indistinguishable as they are randomly masked, and the tags are also
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indistinguishable. For the final tags, detecting that [z]j − [r]j + (y − z) is used
and tagged instead of [z]j − [r]j is equivalent to distinguishing encryptions of
[r]j − (y− z) and [r]j (for the authentication), therefore these are indistinguish-
able (following a reduction to CPA-security similarly to Overdrive [33]). Also
other uses of ciphertext, namely SHE-BGV ciphertexts used for triple genera-
tion, are indistinguishable as in SPDZ [26] or BOS [8]: via a reduction to the
meaningless keys property of BGV. Note that, similar to BOS, our simulator
does not need to extract private values from ZKPs to generate authenticated
shares with indistinguishable distributions. This is because we can also use a
setup functionality, which enables the simulator to decrypt any value (and a
commitment functionality for the initial MAC keys), to do extract the necessary
values. Finally, the final steps in FinOutput/FinOutputTo are the same in
the real and ideal world and thus indistinguishable as well. ⊓⊔

8 Evaluation

Now that we have presented our protocol and proved it secure (in Secs. 3 to 7),
we describe its practicality in more detail. We focus on the theoretical aspects
(see Sec. 8.1) as well as real-world efficiency (see Sec. 8.2). For the latter, we per-
form multiple benchmarks and consider the example use case of secure aggrega-
tion. Note that we mostly compare our protocol to SPDZ-like protocols without
identifiable abort and protocols with identifiable abort outlined in Sec. 1.1. All
protocols with identifiable abort discussed before only provide an asymptotic
analysis, i.e., no concrete parameters or benchmarks, except RRRK [42], which
compares their protocol to SPDZ [26] and CFY [23]. However, they only mi-
crobenchmark the protocols for use cases that are not in the client-server setting,
which is our focus. Moreover, their results show that both identifiable protocols
have an overhead of factor 3 to 20 compared to SPDZ, while our protocol is
much closer to SPDZ – partially even faster (see Sec. 8.2).

8.1 Theoretical Evaluation

A comparison of asymptotic protocol complexities can be found in Sec. 1.1
(Tabs. 2 and 3). There, we also compare the main cryptographic primitives
used in the different protocols. As mentioned above, most identifiable protocols
do not provide more than their asymptotic complexity. In the remainder of this
section, we focus on how our protocol efficiency differs from SPDZ on a theo-
retical level, while Sec. 8.2 shows the results of our experimental comparison to
SPDZ.

For the offline phase, notice that our protocol is very similar to a hybrid of
LowGear [33] for authentication and TopGear [5] for generating multiplication
triples. Our main overhead is using verifiable distributed decryption once per
multiplication instead of non-verifiable distributed decryption. On the positive
side, this avoids the need for sacrificing (see [8]: SPDZ has to over-produce triples,
which is not necessary if decryption is verifiable), but that can be avoided in come
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cases, as shown recently [39]. Also, our ciphertext parameters are essentially the
same (see Appendix D). A main difference to SPDZ is that we can use simpler
correlated randomness for inputs and outputs. Concretely, SPDZ requires two
correlated Beaver triples or alternatively a 5-tuple (y, r, v, w = y · r, u = v · r)
per input, and two Beaver triples per private output [24]. Our protocol requires
no triples for inputs or outputs. Instead, we only require a single authenticated
share per input and a double-authenticated share per output. These are cheaper
to generate in the offline phase.

In the online phase, our protocol has a similar advantage over SPDZ-like pro-
tocols for inputs and outputs, as our protocol supports public verification. This
means the clients can verify the random masks they receive for inputs themselves
(see Secs. 4.1 and 6.2). Therefore, in our protocol, each compute party sends only
two field elements to a client. In contrast, for SPDZ-like protocols, each compute
party sends correlated Beaver triples (five field elements) to a client [24]. After
the clients receive their elements, both our protocol and [24] require the clients
to broadcast one element. Similarly, for private outputs [24], a Beaver multipli-
cation (exchanging two field elements between compute parties) and sending five
field elements to clients is required for SPDZ. Our protocol requires exchanging
two field elements between compute parties (Open in Output) and sending two
elements to clients (OpenTo in FinOutputTo).

For evaluating an arithmetic circuit in the online phase, compute parties have
to perform the same work per linear operation as in SPDZ: two field operations
(one for the share and one for the MAC tag). Multiplications require twice as
much communication with our protocol because parties send two field elements
instead of one per opening. Additionally, our protocol performs HE operations
for verification. We show below that the overhead for these is very low.

In addition to the aforementioned communication cost, our protocol comes
with a more involved verification. The MAC tags for all shares have to be checked
after the circuit evaluation (Sec. 6.2) and also some computation of the offline
phase has to be verified (Sec. 6.1). Fortunately, MACs are very cheap to verify
and checks of the Auth subprotocol are relatively cheap as well. We demonstrate
this next.

8.2 Real-World Evaluation

We implemented1 our protocol to confirm the theoretical observations from
Sec. 8.1 and to show the concrete practicality of our protocol. This allows us
to benchmark the additional overhead over SPDZ in the time-critical online
phase – our MAC checks and checks of the Auth subprotocol – and enables
comparisons of the overall runtime for concrete use cases. Our implementation
uses GPU acceleration and/or multi-threading to speed up the computationally
intensive local operations in the offline phase and the verification phase. We also
built a LowGear-based [33] version of the SPDZ protocol using the same under-
lying implementation for a fair comparison. For consistent results, we ran the
following experiments on a single machine (unless stated otherwise: Intel Core i9-
9940X CPU, 14 cores, 3.3GHz; Nvidia Titan RTX GPU), emulating commonly
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Table 4: Runtime for Verifying Authentication and MACs. Times are given in
nanoseconds and per party and verified element, i.e., the time per ciphertext
slot for computing Lines 12 to 13 of Fig. 4 (i.e., verifying Auth) and Eq. (7)
(i.e., a MAC check), respectively.

Device

Verif. log2 p sec-stat Laptopa HPC-Nodeb GPU-Tc GPU-Ad

Auth 64 64 1309.288 211.440 106.545 18.366
Auth 128 80 3758.054 408.305 283.509 33.712
MAC 64 64 20.760 1.047 0.443 0.192
MAC 128 80 297.831 15.836 2.788 0.515

a Intel Core i7-8565U CPU, 4 cores, 1.8GHz c Nvidia Titan RTX GPU
b Intel Xeon Gold 6230 CPU, 40 cores, 2.1GHz d Nvidia A100 80GB GPU

used network setups [33,32,39,41] between the parties: LAN with 10ms network
delay and maximum bandwidth of 1Gbit/s; and WAN (50ms delay, 50Mbit/s
bandwidth). Appendix E contains additional figures for our evaluation.

Benchmark: Verifying Authentication and MACs In the online phase, the
computational overhead of our protocol compared to SPDZ consists of verifying
the Auth subprotocol and checking MACs. In Tab. 4, we show the runtime
for verifying a single drowned ciphertext in the Auth subprotocol (see Fig. 4)
and the runtime for performing a MAC check (see Eq. (7)). As can be seen by
the results, the MAC checks are approximately two orders of magnitude faster
to verify than the authentication. This means the overhead for clients, which
only perform MAC checks if there is no abort, is very low compared to the
server overhead. Additionally, all types of verification can be performed (again,
up to two orders of magnitude) faster with more capable hardware (faster CPUs
or GPUs), leading to only a few nanoseconds of verification time. Combined
with the lower communication overhead for inputs/outputs (see Sec. 8.1), our
protocol can even outperform SPDZ. We show this after presenting our results
for benchmarking general multiplications.

Benchmark: Multiplication Throughput For a more complete picture, we
also measured the throughput for multiplications in the online phase, including
verification of the Auth subprotocol and checking MACs (the secure aggre-
gation use case in the next section also considers inputs/outputs). Our proto-
col achieves up to 595080 multiplications per second in the LAN setting and
133662 multiplications per second in the WAN setting. Our SPDZ implementa-
tion achieves 2507579 and 314709 multiplications per second in these settings.
See Fig. 9 (in Appendix E) for more details. Our protocol is thus 4.21× and
2.35× slower, respectively. This approaches the communication overhead of 2×
that our protocol has over plain non-identifiable SPDZ. Additionally, our over-
head is lower than what was observed in prior available benchmarks for protocols
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with PIA [42]: The overhead of CFY [23] compared to SPDZ is at least 4× and
the overhead of RRRK [42] is around 15 to 18×. This shows that our protocol
compares favorably to protocols that use commitments to achieve IA.

Use Case: Secure Aggregation To demonstrate the practicality of our ap-
proach, we implemented1 a secure aggregation [35] use case with our protocol
and SPDZ, which could be used, e.g., in federated learning. For SPDZ, we imple-
mented Damgård et al.’s input protocol [24].8 As mentioned above, this requires
each server to send five field elements per input to each client. The 5-tuple can
be computed entirely in the offline phase (as opposed to a naive implementation
of [24] that might perform two multiplications in the online phase). Additionally,
we only authenticate one component of the tuple in the offline phase and do not
check the consistency of the tuple, i.e., we do not check that the multiplicative
relations of the 5-tuple are upheld. This gives a lower bound on the runtime for
SPDZ, and more checks might not be required as the clients check the 5-tuple.
(However, [24] does not include this optimization, and we do not prove security
of this optimization here in this paper.) Figure 10 (in Appendix E) shows the
detailed results of our experiments.

In the LAN setting, the computational overhead of our protocol leads to a
4 to 22% slower online phase (overhead in server time). On the other hand,
the communication overhead of SPDZ leads to an 18% slower online phase for
SPDZ servers in the WAN setting compared to our protocol, where communica-
tion becomes the bottleneck (see Fig. 10b). Both protocols show little difference
between the runtime for clients and servers. For SPDZ, we can see that the fi-
nal MAC check (where the clients do not participate) makes a small but visible
difference. For our protocol, the clients have to wait for servers to finish verify-
ing the authentication before the clients can check their MACs. This leads to
virtually the same runtime for clients and servers in our protocol, where clients
are idle most of the time. When running additional experiments with twice the
number of clients, the overall runtime increased by slightly less than a factor of
two, confirming that both protocols scale linearly in the number of clients and
the number of inputs.

In the offline phase (see Figs. 10c and 10d), generating a (partially authen-
ticated) 5-tuple in SPDZ is more demanding than generating an authenticated
share in our protocol. Concretely, SPDZ is 2.27 to 2.30× slower in the LAN
setting and 2.30 to 2.33× slower in the WAN setting. Overall, this shows that
our protocol is a good candidate for secure outsourced computations. Not only
does our protocol achieve stronger security guarantees, namely publicly identi-
fiable abort, but we also require fewer resources to prepare inputs in the offline
phase, the online overhead is quite small, and our protocol can be even faster
than SPDZ in the online phase for communication-bound settings.

8 used in practice, e.g., in Carbyne Stack (https://github.com/carbynestack/amphora)
or MP-SPDZ (https://github.com/data61/MP-SPDZ)

https://github.com/carbynestack/amphora
https://github.com/carbynestack/amphora
https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ
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A MAC Scheme

Here, we show that the MAC scheme presented in Sec. 2.3 is equivalent to the
scheme proven secure by Catalano and Fiore [18]. They define the tag as

LxMorig,α,fkctx := (x, (PRF(fk, ctx)− x) · α−1) (14)

and verification as

MACCheck(α, fk, x, ctx, LxMorig) = 1

⇔ LxMorig[0] + LxMorig[1] · α = PRF(fk, ctx) ∧ LxMorig[0] = x

i.e., LxMorig can be interpreted as coefficients of a degree-1 polynomial p with
p(0) = x and p(α) = PRF(fk, ctx). Despite superficial differences, our construc-
tion is equivalent to this.

Theorem 2. Our MAC scheme from Sec. 2.3 is equivalent to the scheme of
Catalano and Fiore [18].

Proof. First, note that omitting the message part from the MAC is a trivial
change and does not change anything as our definition of verification always
requires the message in addition to the MAC tag.

Second, as we require the MAC key α to be invertible, our scheme is equiv-
alent to the above scheme with MAC key β := −α−1 and PRF PRF′(fk, ctx) :=

β ·PRF(fk, ctx). Let LxMorig
′,β,fk

ctx be the MAC as in Eq. (14) but with PRF′ instead
of PRF and with keys β, fk. Then,

LxMorig
′,β,fk

ctx [1] = (PRF′(fk, ctx)− x) · β−1

= PRF′(fk, ctx) · β−1 − x · β−1

= PRF(fk, ctx) + x · α

= LxMα,fkctx .

Therefore, our MAC scheme is equivalent to the above scheme with a different
key β and a slightly altered PRF PRF′ (which is still pseudorandom if the original
PRF is a pseudorandom function).

Another difference in the definitions is that Catalano and Fiore define evalua-
tion of whole (linear) functions on tags, compared to our step-by-step evaluation
of linear functions via Eq. (5). This change can be trivially shown to be equiva-
lent as well. ⊓⊔

B Protocols and Functionalities

In addition to a functionality for communication Fcomm that we handle trans-
parently (see Sec. 3), our protocol uses a few (standard) functionalities and
subprotocols that we omitted in the main body of this paper and that we de-
scribe in more detail now. Firstly, we assume there is a setup functionality Fsetup
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that generates valid BGV keys and distributes these among the parties. This in-
cludes the public key / private key pairs (pki, ski), as well as the shared public
key pk for which all parties have a share [sk]i of the private key. This is used in
the distributed decryption subprotocol DistDec (not shown here). The latter
simply runs a verifiable distributed decryption algorithm from the literature,
where parties perform their part of the decryption and prove in zero-knowledge
that they performed it correctly [42,43,2]. This is a subprotocol with identifiable
abort and standard for several protocols with identifiable abort [8,23,42]. An-
other component of Fsetup is that it allows parties to commit and decommit to
values. (This could also be handled by a separate commitment functionality.)

1: procedure Enc-ZK([r]i)
2: ⟨[r]i⟩i $← Enc(pki, [r]i)
3: Generate a zero-knowledge proof that [r]i is correctly encrypted and that the

norm of the plaintext and encryption randomness is short (as defined by the
encryption scheme and the concrete ZKP instantiation). Use either a random
oracle to produce a non-interactive proof or interactively generate the challenge
used in the proof with Frand (see, e.g., Fig. 6). Let πi be an encoding of the
ZKP (that includes ⟨[r]i⟩i).

4: Broadcast πi

5: // Verification (can also be done by external parties):
6: for j from 0 to n− 1 do
7: Verify πj and identify Pj as cheater if the verification failed
8: return (⟨[r]j⟩j)n−1

j=0

9: procedure PubEnc-ZK([r]i)
10: ⟨[r]i⟩i $← Enc(pki, [r]i)
11: ⟨⟨[r]i⟩⟩ $← Enc(pk, [r]i)
12: Generate a zero-knowledge proof that [r]i is correctly encrypted and that the

norm of the plaintext and encryption randomness is short (as above); addition-
ally prove that ⟨⟨r⟩⟩ :=

∑n−1
j=0 ⟨⟨[r]j⟩⟩ is a valid ciphertext with short norm (note

that the latter is not an n-party proof as in HighGear [33] or in TopGear [5] be-
cause we perform checks for each party; see also Fig. 6). Let πi be an encoding
of the ZKP (that includes ⟨[r]i⟩i and ⟨⟨[r]i⟩⟩).

13: Broadcast πi

14: // Verification (can also be done by external parties):
15: for j from 0 to n− 1 do
16: Verify πj and identify Pj as cheater if the verification fails
17: return (⟨[r]j⟩j)n−1

j=0 , ⟨⟨r⟩⟩

Fig. 5: Zero-Knowledge Protocol at Party Pi

In the offline phase, we let parties prove in zero-knowledge that they correctly
encrypted their shares, prove knowledge of these shares, and prove that the
ciphertext was generated with small plaintexts/randomness, which implies that
the noise of the ciphertext is bounded. Protocols for this are shown in Fig. 5.
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A TopGear-style (interactive) instantiation is shown in Fig. 6. These protocols
might use the (standard) functionality to generate public randomness Frand,
which is used for interactive zero-knowledge proofs. Frand samples the required
amount of random bits (or field/ring elements, depending on the usage) and
outputs these to all parties. Finally, the detailed simulator for our security proof
(Sec. 7) can be found in Fig. 7.

C Possible Protocol Modifications

If we want to deploy the protocol in a setup where no inputs from external
clients are required, i.e., only compute parties give inputs to the protocol, one
can modify the offline phase and online phase as in Fig. 8. In the modified share
authentication AuthInputShareFrom, the compute party Pj that is supposed
to give the input later choses the shares for all parties. This way, in the online
phase (InputFrom), Pj already knows the mask that will be used for the input,
eliminating some communication that would be necessary with the client-server
centric design presented before. Note that this approach can also be used if only
some inputs come from compute parties, i.e., it can be combined with Input
and AuthInputShare from Figs. 3 and 4.

D Parameter Estimation

Table 5 shows the parameters for our linear BGV instantiation, used for pairwise
operations in the Auth subprotocol (see Sec. 5.1). The parameters are similar
to the ones used for Overdrive LowGear [33], where the difference in parameters
is due to our use of TopGear ZKPs [5]. The latter requires fewer auxiliary ci-
phertexts per proven statement than older amortization techniques [22,26] used
in LowGear (see Tab. 5). This means we send around half as many ciphertexts
per amortized proof.

Table 5: Ciphertext Parameters. Ciphertext modulus q is given depending
on plaintext modulus p, number of ciphertext slots N ,∗ and statistical/
computational security parameters. U, V are ZKP parameters: We prove a state-
ment for U ciphertexts simultaneously, using V auxiliary ciphertexts. We use
the following security parameters for zero-knowledge and soundness: sec-zk :=
sec-stat, sec-so := sec-comp.

log2 p log2 N sec-stat sec-comp U V log2 q

64 16 64 128 16 8 279
128 16 80 128 16 8 440
128 16 128 128 16 8 536
∗ N is chosen as in Overdrive [33]; TopGear [5] uses

smaller values
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Below, we highlight parts that are only required for PubEnc-ZK with boxes.
Additionally, we only describe the interactive variant of the proof. Let C := {0} ∪
{Xk | 0 ≤ k < 2N = m} be the polynomials of the challenge space.

1: procedure ZK(xi ∈ RU , ⟨xi⟩i, ⟨⟨xi⟩⟩)

2: Broadcast ⟨xi⟩i and ⟨⟨xi⟩⟩
3: // Commitment phase:
4: Let Ri ∈ RU×3 be the randomness used for ⟨xi⟩i
5: Let R′

i ∈ RU×3 be the randomness used for ⟨⟨xi⟩⟩
6: Sample yi ∈ RV and Si ∈ RV ×3 with norms that are 2sec-zk larger than the

upper bounds for xi and Ri, respectively
7: Compute and broadcast Ai := Enc(pki,yi,Si)

8: Sample y′
i ∈ RV and S′

i ∈ RV ×3 with norms that are 2sec-zk larger than the
upper bounds for xi and R′

i, respectively
9: Compute and broadcast A′

i := Enc(pk,y′
i,S′

i)

10: // Challenge phase:
11: Use Frand to sample Wj ∈ CV ×U for all Pj ∈ P

and additionally a common W ∈ CV ×U

12: // Response phase:
13: Compute and broadcast zi := yi + Wixi and Ti := Si + WiRi

14: Compute and broadcast z′
i := y′

i + Wxi and T′
i := S′

i + WR′
i

15: // Verification phase:
16: for j from 0 to n− 1 do
17: Compute Dj := Enc(pkj ,zj ,Tj)
18: Check that Dj = Aj + Wj⟨xj⟩j
19: Check that the norms of zj and Tj are at most 2 · 2sec-zk larger than the

upper bounds for xi and Ri, respectively
20: Compute D′

j := Enc(pk,z′
j ,T′

j)
21: Check that D′

j = A′
j + W⟨⟨xj⟩⟩

22: Check that the norms of z′
j and T′

j are at most 2 · 2sec-zk larger than the
upper bounds for xi and R′

i, respectively
23: If any check failed, identify Pj as cheater

24: Let ⟨⟨x⟩⟩ :=
∑n−1

j=0 ⟨⟨xj⟩⟩

Fig. 6: TopGear [5] ZKP Protocol at Party Pi
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In the following, our simulator S interacts with adversary-controlled parties C. For
each honest Phonest ∈ (P ∪ I ∪ O) \ C, a simulated instance is generated that acts
just like in the protocol, except with the differences noted below.

1: Setup:
2: Run the setup phase of the protocol but with a simulator-controlled instance

of Fsetup that gives S access to the private keys for all parties.
3: Extract [α]i, fki, gki for all Pi ∈ P ∩ C using controlled commitment function-

ality. Do the same for [ω]i, fk′i, gk′i.
4: Preprocessing:
5: Simulate the offline phase of the protocol and add each Pi ∈ P to a set M for

which the verification of some instance of Enc-ZK, PubEnc-ZK, or DistDec
fails.

6: Obtain and store all shares of parties by decrypting (⟨[r]i⟩i)Pi∈P (and analo-
gously for encrypted shares that will be used for Beaver triples or outputs).

7: Send M to FMPC.
8: Computation:
9: If the protocol aborted above (M ̸= ∅ in the previous phase), skip the following

steps.
10: Simulate the input phase for honest parties Phonest ∈ I \ C but set their input

values to zero.
11: For every input x of a corrupted Pj ∈ I ∩ C, retrieve the stored shares for the

mask r that is designated to be used for Pj ’s input and collect x′ := u + r
(where u is the value broadcasted by Pi during Input) into a vector x′

j .
12: Send the collected x′

j for all Pj ∈ C ∩ I to FMPC.
13: Receive ypub and yj for all Pj ∈ C ∩ O from FMPC.
14: Simulate the rest of the online phase by following the protocol but do the

following for outputs:
For every public output y (obtained previously from FMPC and to be computed
from JzKα using mask JrKα), (i) compute the corresponding output z in the
simulation (note that the simulator knows the corrupted inputs x′

j and the
inputs of honest parties in the simulation, which are set to zero), (ii) adjust the
share [u]i of one honest Pi ∈ P \ C in Output such that u = y − r, i.e., use
[z]i − [r]i + y − z instead of [z]i − [r]i, (iii) compute L[u]iMα using the extracted
key from the setup and use this when opening u, and (iv) continue the rest of
the protocol normally. Analogously adjust u for private outputs to corrupted
parties Pj ∈ C ∩ O using the yj obtained from FMPC.

15: Simulate the verification phase as in the protocol.
16: Collect all parties that failed verification in a set M and send it to FMPC.
17: Audit:
18: Do nothing (operations for honest parties are not observable except for the

output, which is given directly by FMPC; operations for corrupted parties cannot
be influenced by the simulator).

Fig. 7: Simulator for Our Protocol
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1: procedure AuthInputShareFrom(Recipient Pj , Count m)
2: if partyID = j then
3: ([r]k)

n−1
k=0

$← Fm×n // sample shares for all parties
4: r := Rec([r]) // store for use in online phase
5: (⟨[r]k⟩k)n−1

k=0
$← Enc-ZK’([r]i) // this uses a subprotocol analogous to Fig. 5

but a single party generates all proofs and all other parties verify them
6: return Auth([α]i, fki, gki, [r]i, (⟨[r]k⟩k)

n−1
k=0 ) Verify Auth as in Fig. 4

7: procedure InputFrom(Recipient Pj , Input x at Pj)
8: Obtain a mask JrKi from preprocessing
9: if partyID = j then

10: Broadcast u := x− r // Pj knows r from preprocessing
11: return JxKi := JrKi + (u · δi, 0) Store ρ[r]i − αuδi as tag randomness of JxKi

Fig. 8: Protocol for Compute Party Inputs at Party Pi

To generate multiplication triples, we use a second instantiation of BGV that
is somewhat homomorphic (see Sec. 5.2). The parameters for this depend on the
number of compute parties n, as well as the concrete subprotocol used for pub-
licly identifiable distributed decryption. If the identifiable distributed decryption
subprotocol does not influence the BGV parameters, we can use the same pa-
rameters as in the SPDZ-like TopGear protocol [5], because we perform the same
operations on ciphertexts: We compute ⟨⟨a⟩⟩ · ⟨⟨b⟩⟩ − ⟨⟨r⟩⟩ where ⟨⟨a⟩⟩, ⟨⟨b⟩⟩, ⟨⟨r⟩⟩ are
sums of n ciphertext, each. Otherwise, the ciphertext modulus is at most sec-stat
bit larger than with TopGear (e.g., via [42,43,2]).

E Evaluation

First note that all results presented in Sec. 8 and here were obtained by running
ten experiments, each, and averaging the runtime results. Additionally, we aver-
age the runtime over all clients and servers, respectively. Our implementation is
uploaded via the Eurocrypt submission server as accompanying code. We plan
to publish our implementation on Github once we publish the ePrint version
of this paper. Below, we give more detailed results for our practical evaluation
from Sec. 8.2.

Benchmark: Multiplication Throughput Figure 9 shows the runtime for
our protocol and SPDZ when evaluation many multiplications in the online
phase. With SPDZ, we do not perform a MAC check, as this could be amortized
with the remaining computations that the parties want to perform in MPC.
With our protocol, we perform MAC checks and verify theAuth subprotocol
as these operations scale with the number of multiplications. For the largest
tested number of multiplications (6 553 600), we achieve the throughput pre-
sented in Sec. 8.2: 595 080 and 133 662 multiplications per second (LAN and
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WAN, respectively) for our protocol; as well as 2 507 579 and 314 709 multipli-
cations per second (LAN/WAN) for SPDZ.
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Fig. 9: Runtime for the Multiplication Benchmark in the Online Phase. See
also Sec. 8.2. The plots show the runtime in seconds. The number servers is
fixed to two. We vary the number of 64 bit multiplications from 10N to 100N
(N = 65536).

Use Case: Secure Aggregation In Sec. 8.2, we apply our protocol to secure
aggregation, as used, e.g., in federated learning (FL) [36]. FL is a technique to
train ML models in a distributed way without performing the entire training with
MPC or HE. Instead, clients train ML models locally and aggregate their mod-
els after several local training iterations. While constructing a full maliciously
secure FL protocol with identifiable abort is out of scope for this work, using
our protocol for secure aggregation could be used as the basis of such a protocol.
Note that only a few MPC protocols for FL are maliciously secure [35] (excep-
tions include [16,46,38,27]), let alone secure with identifiable abort. Embedding
our MPC protocol in an FL protocol would lead to the first maliciously secure
FL protocol with publicly identifiable abort. However, our evaluation only in-
cludes running the secure aggregation in MPC, i.e., without training a machine
learning locally. Still, our results show that using our protocol can be even more
efficient than using standard (non-identifiable) MPC for this purpose.

Figure 10 shows the runtime for running our protocol and SPDZ in different
network settings and with different problem sizes. We report the runtime for
both the online phase and the offline phase. In the online phase, our protocol
performs similarly to SPDZ in the LAN setting (Fig. 10a) and even outperforms
SPDZ in the WAN setting (Fig. 10b). This is due to our input subprotocol that
requires the parties to send less data. In the offline phase, our protocol is faster
than SPDZ in both network settings (Figs. 10c and 10d). Here, our protocol
outperforms SPDZ because our correlated randomness for inputs is simpler to
generate than what is used in input protocols for SPDZ [24].
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Fig. 10: Runtime for Secure Aggregation. The plots show the runtime in seconds.
The number of clients and servers is fixed to two, each. For the online phase, we
vary the number of 64 bit inputs at each client from 10N to 100N (N = 65536).
Note, the client and server time is virtually the same for our protocol (dashed
lines for better visibility). In the offline phase, we vary the number of ciphertexts
from 16 to 196, each generating preprocessing material for N = 65536 inputs.
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