
TFHE Gets Real: an Efficient and Flexible
Homomorphic Floating-Point Arithmetic

Loris Bergerat1,2, Ilaria Chillotti∗ , Damien Ligier∗ ,
Jean-Baptiste Orfila1, and Samuel Tap1

1Zama, Paris, France - https://zama.ai/
{loris.bergerat, jb.orfila, samuel.tap}@zama.ai

2Université Caen Normandie, ENSICAEN, CNRS, Normandie
Univ, GREYC UMR 6072, F-14000 Caen, France

Abstract

Floating-point arithmetic plays a central role in computer science
and is used in various domains where precision and computational
scale are essential. One notable application is in machine learning,
where Fully Homomorphic Encryption (FHE) can play a crucial role
in safeguarding user privacy. In this paper, we focus on TFHE and
develop novel homomorphic operators designed to enable the construc-
tion of precise and adaptable homomorphic floating-point operations.
Integrating floating-point arithmetic within the context of FHE is par-
ticularly challenging due to constraints such as small message space
and the lack of information during computation. Despite these chal-
lenges, we were able to determine parameters for common precisions
(e.g., 32-bit, 64-bit) and achieve remarkable computational speeds,
with 32-bit floating-point additions completing in 2.5 seconds and
multiplications in approximately 1 second in a multi-threaded environ-
ment. These metrics provide empirical evidence of the efficiency and
practicality of our proposed methods, which significantly outperform
previous efforts. Our results demonstrate a significant advancement
in the practical application of FHE, making it more viable for real-
world scenarios and bridging the gap between theoretical encryption
techniques and practical usability.

∗Ilaria Chillotti and Damien Ligier contributed to this work during a previous employ-
ment at Zama.

https://zama.ai/

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Contents

1 Introduction 3
1.1 Our Results . 3

1.1.1 Prior Approaches . 6
1.1.2 Roadmap . 8

2 Background and Notations 9
2.1 Notations . 9
2.2 FHE Ciphertext Types . 9
2.3 FHE Operators . 10
2.4 Representing Large Integers with TFHE 13

2.4.1 Integer Subtraction . 15
2.5 Traditional Floating-Point Representation 18

3 Homomorphic Floating-Points (HFP) 19
3.1 MiniFloats: WoP-PBS Based Floats 19
3.2 Homomorphic Floating-Point Encoding 20
3.3 Choosing Between Two Ciphertexts 24
3.4 Propagating the Carries . 25

4 Addition and Subtraction of HFP 29
4.1 Managing Mantissas and Exponents 29

4.1.1 Aligned Mantissa . 29
4.1.2 SubMantissa . 33

4.2 Addition and Subtraction . 37

5 Multiplication and Division 40
5.1 Multiplication . 41
5.2 Division . 44

6 Experimental Results 46

7 More Features over HFP 49
7.1 Managing Special Values . 49
7.2 Computing Function Approximations 50
7.3 Other Operations . 50

7.3.1 ReLU . 51
7.3.2 Approximate Sigmoid 52

2 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

1 Introduction

Fully homomorphic encryption (FHE) is a cryptographic paradigm that al-
lows evaluating any circuit over encrypted data, ensuring that the decrypted
output contains the results of the circuit evaluation. The concept of FHE
was first proven possible in the seminal paper by Gentry [Gen09]. Since then,
substantial work has been done to enhance performance. As of today, the fol-
lowing schemes are considered to be practical, BGV [BGV12], BFV [Bra12,
FV12], CKKS [CKKS17, CHK+18], FHEW [DM15], TFHE [CGGI20].
All these schemes are based on the Learning With Errors (LWE) prob-
lem [Reg05], its Ring variants (RLWE) [SSTX09, LPR10] and the Gen-
eral LWE (GLWE), also called Module LWE [LS15, BGV12]. How-
ever, there is a variation in their approach during computations: while
BGV/BFV/FHEW/TFHE perform exact integer computations, CKKS gen-
erally focuses on approximate computations using fixed-point arithmetic.
The easiest solution to adapt the other schemes to support real numbers
is to define a special encoding mapping modular integers to fixed-point num-
bers as done in [CJP21, CJL+20] for TFHE, or in [CSVW16] for BGV and
[Lai17] for BFV. A significant limitation of this method, inherent to fixed-
point arithmetic, is that the encoding range must be sufficiently large to
cover all values used in the application. Otherwise, the cumulative pre-
cision loss during computations becomes excessively large. In the case of
TFHE, this problem is twofold: one must either extend the precision and/or
bound the circuit depth. The former significantly impacts performance, as
the bootstrapping efficiency is closely linked to the number of bits required
to represent a message. In practical terms, TFHE’s bootstrapping is deemed
efficient when the precision is smaller than 10 bits [BBB+22]. The latter is
a direct contradiction with the TFHE construction, whose main advantage
is to have the possibility to evaluate any circuit depths through the func-
tional/programmable bootstrapping. Therefore, the only feasible approach
to handle real numbers within TFHE is to employ floating-point representa-
tion. Thus, the problem we are solving in this paper is: How to design an
efficient and customizable floating-point arithmetic based on TFHE?

1.1 Our Results

In the current landscape, FHE schemes, and especially TFHE, are not
designed to seamlessly integrate with established floating-point standards,

3 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

which are tailored to match hardware specifications, such as bit sizes and
the frequent use of conditional instructions. This paper introduces novel
homomorphic operators that can serve as the building blocks for construct-
ing homomorphic floating-point arithmetic with arbitrary precision within
a given FHE framework. As a matter of fact, our method is compliant
with any FHE scheme providing a bootstrapping which is exact and pro-
grammable, so FHEW/TFHE and any of their more optimized versions
([BIP+22, LMK+23]) should work.

Our innovative operators not only align with widely recognized floating-
point arithmetic standards like IEEE754 [Ins08], but also adapt to variants
with custom precision levels, boosting performance. This marks the first
feasible approach for performing homomorphic computation with floating-
points, significantly surpassing previous methods in time efficiency by a factor
of at least 10.

Currently, there is a substantial gap between cleartext floating-point
arithmetic and homomorphic floating-point arithmetic. Even if there re-
mains a considerable distance to achieving a fully practical deployment, our
work consistently narrows this gap. While not yet practical for general-
purpose applications, our solution may already be sufficiently efficient for
certain specialized use cases.

In TFHE, the process to encrypt large integers involves dividing the in-
teger message into several parts, each of which is then encrypted as its own
LWE ciphertext. This method is crucial for handling large numerical values
effectively by encrypting them in smaller, discrete units [BST20, GBA21,
KO22, CZB+22, LMP21, CLOT21, BBB+22]. Then, the operations are ei-
ther modular, or the number of blocks increases all along the computation.
To ensure correctness, part of the cleartext space, referred to as the carry
space, is reserved to accommodate the growth of the message during compu-
tation. Each ciphertext is also paired with public metadata, referred to as
the degree in previous studies [BBB+22], which tracks the maximum poten-
tial size of the message. When the public metadata indicates that the carry
space is nearing capacity, the carry buffer is either cleared or a new block is
added at each operation. This approach is based on worst-case size estima-
tions, meaning that in many cases, additional operations could be performed
before needing to clear the carry space or add a new block.

To construct floating-point arithmetic, we must represent mantissas and
exponents, which can be viewed as large integers. We aim to make this arith-
metic as efficient as possible, which requires circumventing the limitations of

4 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

worst-case estimations. In fact, an inherent challenge of FHE is the lack of
information about underlying values, due to the data being encrypted. This
limitation prevents the typical optimizations commonly used in floating-point
arithmetic implementations, such as those described in [PFH+20].

We introduce novel algorithms that automatically retain only the most
significant bits and discard some of the least significant bits, maintaining
the same representation throughout. This mimics a well-known round mode
of floats, called the rounding towards zero mode. We refer to [MBDD+18,
Section 2.2.1] or to [Hwa24] for more details. Our first method, based
on [BBB+22], ensures the correct encoding after each operation. This
method is effective for small mantissas and exponents but does not scale
well. The second method leverages circuit bootstrapping to obtain the carry
value, allowing the ciphertext to be updated accordingly. This approach is
faster than the first method for large mantissas or exponents.

Building on large integers, we introduce two different methods to build
efficient floating-point arithmetic, each with its own pros and cons. The
first approach, detailed in Section 3.1, heavily utilizes the alternative PBS
proposed in [BBB+22] (referred to as WoP-PBS) to perform operations on
floating-point numbers. This method allows for the efficient evaluation of
functions on ciphertexts that encrypt large integers. Our approach, while
straightforward, distinguishes itself from other homomorphic floating-point
methods by representing a floating-point number within a single ciphertext
(or more). This technique proves particularly efficient for floating-point num-
bers with small precision (up to 12 bits).

The second approach, which is the core of this contribution, constructs
floating-point arithmetic based on TFHE that can follow standards such
as [Ins08] and is not constrained by precision. Our new algorithms make
extensive use of an extended version of CMux, a homomorphic operator that
selects between two inputs based on an encrypted decision bit. This method
is key to developing faster homomorphic operations that effectively combine
the sign, mantissa, and exponent of one or more homomorphic floats. During
homomorphic float operations, to compute the resulting mantissa, an extra
LWE ciphertext will be used to make the operation both faster and more
precise. This approach, soberly titled homomorphic floating-point (HFP), is
the first that can be considered to be deployed for real use-cases. Practically,
on a typical server machine, an addition of two 32-bit HFP numbers takes
around 2 seconds, while a multiplication takes around 1 second. Beyond

5 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

the description of all arithmetic operations, including the division, we also
provide their noise analysis and the hypotheses done to generate the crypto-
graphic parameters and their associated failure probability. We also include
algorithms to efficiently compute the ReLU and the sigmoid, two of the most
used functions in machine learning. We show how to easily extend our ap-
proach to take into account some floating-point subtleties, like the special
values. As a simple application and showcase of the versatility of floating-
points, we briefly detail how to compute the approximation of any functions.
In the end, our method outperforms the state-of-the-art (as shown in the
next section), which was more about showing that floating-points might be
doable with TFHE, rather than giving a practical solution as we do here.

1.1.1 Prior Approaches

Efforts to develop efficient FHE computation methods for real numbers
can be categorized into two approaches: the fixed-point arithmetic ap-
proach and the floating-point arithmetic approach. Most of the first at-
tempts [CSVW16, Lai17, AN16] focus on the BFV scheme [Bra12, FV12].
In [CSVW16, Lai17], the authors chose the fixed-point approach. Roughly,
their idea is to decompose a real number into two integers, one representing
the value before the point and the second representing the value after the
point. The binary decomposition of the two integers is encrypted in one
RLWE ciphertext such that the integer part is encrypted over the coefficient
of small degree and the fractional part is encrypted on the coefficient of high
degree. This method encounters two significant limitations: first, after sev-
eral operations, accuracy is compromised due to the mixing of the fractional
and the integer parts of the number. Second, the computation must remain
within a certain modulus limit; exceeding this threshold also results in a loss
of correctness. Thus, using fixed-point arithmetic is particularly suitable for
FHE schemes where the depth of the circuit is somewhat bounded, since
they share a similar constraint. In fact, an encrypted floating-point number
is often represented by one ciphertext for the sign, one or several cipher-
texts for the mantissa and one or several ciphertexts for the exponent. Their
approach is also based on FV, whose bootstrapping is neither efficient nor
programmable. This results in unpractical methods that cannot be adapted
to TFHE.

In the TFHE context, to the best of our knowledge, only two techniques
have been studied [ML20] and [LS22]. The former [ML20] uses the tradi-

6 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

tional floating-point representation, where each LWE ciphertext contains one
boolean value. Then, they rely only on boolean gate operations to perform
the floating-point computation. Beyond the lack of space efficiency, the ma-
jor problem with this solution is its time complexity. In the latter [LS22], the
authors take advantage of RLWE ciphertexts to represent floats. They have
a floating-point in three parts: an RLWE for the sign, one for the mantissa
and another one for the exponent. In this representation, the sign and the
exponent are each represented on the first coefficient of their RLWE. The
mantissa is represented by several coefficients depending on the base of the
decomposition. In this work, they propose a method to detect overflow based
on an encrypted witness. As previously, the main drawback lies in the time
complexity, which suffers from an exponential factor related to the size of
the exponent and the use of tensor product and relinearisation.

In our work, we use the standard representation proposed before (several
LWE ciphertexts for the mantissa, several LWE ciphertexts for the exponent
and one LWE ciphertext for the sign). The main change in our algorithm is
the use of circuit bootstrapping (CBS) which is costlier than a PBS (CCBS ≈
ℓCBS ·CPBS) but gives the possibility to perform CMuxes and reduce the cost
of the TFHE algorithm used in the floating-point arithmetic. Note that our
work could benefit from recent optimizations done in [WWL+24].

The code for [ML20] is not publicly available, and despite significant
effort, we were unable to successfully run the code provided with [LS22].
As a result, the comparison below is based on the timings reported in the
respective papers. In [ML20], the experiments were conducted on an Intel i7-
6700@3.40 GHz (up to 4 GHz) with 8 threads. Since the computational model
(i.e., sequential or parallel) is not specified, we assume these experiments were
run sequentially. In the latter paper [LS22], experiments were run on an
Intel Xeon Silver 4210@2.40 GHz, with 40 threads. As shown in Table 1, our
approach significantly outperforms existing methods, achieving at least an
8-fold improvement (for 32-bit floating-point multiplication) and up to 100-
fold improvement (for 64-bit floating-point addition). Sequential timings are:

As explained above, each technique was evaluated on different machines,
with some assumptions regarding the nature of the computation (sequential
or parallel). To provide a more complete comparison, Table 2 presents a
complexity comparison in terms of the number of PBS operations required for
the main operations (addition and multiplication) between our work and the
state of the art. This comparison highlights the removal of the exponential

7 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Paper (Precision) Add Mul
[ML20] (32-bits) 490s 162s
[LS22] (32-bits) 530s 443s
Ours (32-bits) 7s 20s

[ML20] (64-bits) 1200s 686s
[LS22] (64-bits) 858s 808s
Ours (64-bits) 12s 82s

Table 1: Comparison of addition and multiplication times with the state-of-
the-art.

factor in the complexity formulas, further emphasizing the efficiency of our
approach.

In this context, the terms ρm · ℓm and ρe · ℓe represent the number of bits
in the mantissa and exponent, respectively. In our method, ρm (and ρe) cor-
responds to the message space in each LWE ciphertext for the mantissa (and
exponent), while ℓm (and ℓe) indicates the number of ciphertexts representing
the mantissa (and exponent). Considering the complexity of the two previ-
ous works based on TFHE, we achieve a significant gain by eliminating the
exponential factor for addition (present in both previous techniques) and for
multiplication specifically in [LS22]

Addition Complexity Multiplication Complexity

[ML20] ≈ 2ρeℓe(ℓmρm + ℓeρe) log(ℓmρm + ℓeρe) CPBS ≈ (ℓmρm)
2 + ℓeρe log(ℓeρe) CPBS

[LS22] > 2ρeℓe+1 CPBS > 2ρeℓe+1 CPBS

Ours (3 · ℓm + 6 · ℓe + 3)CPBS + (ℓm + ℓe · ρe + 3)CCBS

(
ℓm

2

2

(
1 + 1

ρe

)
+ ℓm

(
2 + 1

ρe

)
+ 4
)
CPBS + CCBS

Table 2: Our Method vs. Existing Works.

1.1.2 Roadmap

In Section 2, we give an overview of TFHE and floating-point arithmetic. Sec-
tion 3 presents our initial efforts in developing efficient floating-point arith-
metic using WoP-PBS from [BBB+22], followed by a new, more versatile
encoding methodology for floating-points tailored for TFHE, along with fun-
damental building blocks for advanced operations. Sections 4 and 5 focus on
detailing algorithms for floating-point number computation. Section 6 high-
lights the practicality of our methods, demonstrating their efficiency with

8 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

timing benchmarks for standard float precision. Finally, Section 7 describes
how to improve our representation with the infinity values and how to com-
pute approximate functions.

2 Background and Notations

2.1 Notations

Let q be a positive integer. We note Zq the ring Z/qZ. Let N be a power
of two, representing the degree of quotient polynomial. Then, we note Rq,N

the ring Zq[X]/(XN + 1). By convention, the vectors are written in bold x,
polynomials in upper case X, and integers are in lower case x. Moreover, the
values associated with floating-points will be written in the following manner:
m for the mantissa, e for the exponent, s for the sign, and z for any other
value. The number of ciphertexts associated with z is denoted by lz, and the
number of bits encoding this value by ρz. Regarding probability distributions,
the uniform distribution over a set S is denoted as 𝒰 (S) whereas a Gaussian
distribution with a mean set to zero and a variance σ2 is written 𝒩σ2 .

2.2 FHE Ciphertext Types

TFHE security is based on the Learning With Errors (LWE) assump-
tion [Reg05], its extension to polynomial rings [SSTX09, LPR10] RLWE and
the Generalized approach GLWE [BGV12, LS15].

Definition 1 (GLWE Ciphertexts [BGV12, LS15]) Let S =
(S0, · · · , Sk−1) ∈ Rk

q,N be the secret key, with Si =
∑N−1

j=0 si,jX
j, where

each coefficient si,j is sampled from a uniform binary, uniform ternary or

Gaussian distribution. Let A = (A0, · · · , Ak−1) ←↩ 𝒰 (Rq,N)
k be the mask

and let E ∈ Rq,N be the noise, where each coefficient ei is sampled from a
Gaussian distribution 𝒩σ2. Let ∆ ∈ N be the scaling factor depending on
the plaintext space p, such that ∆ = q

2·p . A GLWE ciphertext of a plaintext

∆ ·M ∈ Rq,N under a secret key S ∈ Rk
q,N is defined as:

CT =

(
A, B =

k−1∑
i=0

Ai · Si +∆ ·M + E

)
∈ GLWES(∆ ·M) ⊆ Rk+1

q,N .

In what follows, ∆ is implicit.

9 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Definition 2 (GLEV ciphertexts [CLOT21]) For a given decomposi-
tion base β ∈ N∗ and a level decomposition ℓ ∈ N∗, a GLEV ciphertext of a
message M ∈ Rq,N under a secret key S ∈ Rk

q,N is a ciphertext composed of
ℓ GLWE ciphertexts encrypting the same message M for different scaling fac-

tors (given by the base β and the level ℓ). Let CTi ∈ GLWES

(
q

βi+1M
)
⊆ Rk+1

q,N

for i ∈ [0, ℓ). Then, a GLEV ciphertext is defined as:

CT = (CT0, · · · ,CTℓ−1) ∈ GLEVβ,ℓ
S (M) ⊆ R

ℓ×(k+1)
q,N .

Definition 3 (GGSW ciphertexts [GSW13, CLOT21]) For a given
decomposition base β ∈ N∗ and a level decomposition ℓ ∈ N∗, a GGSW
ciphertext encrypting a message M ∈ Rq,N under a secret key S ∈ Rk

q,N

is composed of (k + 1) GLEV ciphertexts encrypting the same message M
multiplied by elements of the secret key for different scaling factors (given

by the base β and the level ℓ). Let CTj ∈ GLEVβ,ℓ
S (−Sj ·M) ⊆ R

ℓ×(k+1)
q,N for

j ∈ [0, k) and CTk ∈ GLEVβ,ℓ
S (M) ⊆ R

ℓ×(k+1)
q,N . Then, a GGSW ciphertext is

defined as:

CT = (CT0, · · · ,CTk) ∈ GGSWβ,ℓ
S (M) ⊆ R

(k+1)ℓ×(k+1)
q,N .

Remark 1 (LWE and RLWE) A GLWE ciphertext with N = 1 is a LWE
ciphertext. In this case, we consider n = k for the LWE size, and all the
elements of the ciphertext are denoted in lower case (i.e., ct, s,a and b). A
GLWE ciphertext with k = 1 and N > 1 is a RLWE ciphertext. This can be
extended to GLEV and GGSW ciphertext as well.

2.3 FHE Operators

In what follows, we recall some of the TFHE operators. We refer the reader to
the associated references for more details. We assume that all the correctness
conditions are fulfilled when one of these algorithms is called. More details
on these conditions are given in lemmas alongside almost every algorithm
introduced in this paper (see Lemma 6).

Extract and Insert LWE samples The sample extract is an algorithm
taking as input a GLWE ciphertext in Rk+1

q,N and returning its ith coefficient

10 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

as an LWE ciphertext in ZkN+1
q for i in [0, N). This operation is noiseless and

is detailed in [CGGI20].

ctout ← SampleExtract(CTin, i).

Usually, only the first coefficient is extracted. In this case, this is simply
denoted: SampleExtract(CTin) = SampleExtract(CTin, 0).

Conversely, inserting a sample is an operation that creates a GLWE ci-
phertext from a LWE ciphertext taken as input. The first coefficient of the
GLWE ciphertext encrypts the same plaintext as the LWE ciphertext. All the
other coefficients encrypt random values. See [BCL+23, Alg. 9] for more
details. The signature of this algorithm is:

CTout ← SampleInsert(ctin).

Keyswitch (KS) The keyswitch (e.g., detailed in [CGGI20, CLOT21])
is an homomorphic operation which changes the encryption secret key of
a ciphertext using only public material. This operation takes as input an
LWE ciphertext encrypting a message m under a secret key sin ∈ Znin

q and
returns an LWE ciphertext encrypting the same message m under a secret
key sout ∈ Znout

q . To perform this operation, a key-switching-key (KSK) is
required. A KSK is an encryption of sin with redundancy under the secret
key sout, i.e., KSK = (KSK0, · · · ,KSKnin−1) where KSKi ∈ LEVβ,ℓ

sout(sin,i) for
i ∈ [0, nin). The signature is:

ctout ← KS(ctin,KSK).

Programmable Bootstrapping (PBS) Unique among bootstrapping
techniques, TFHE’s bootstrapping not only reduces the noise in a ciphertext
but also has the distinct capability to evaluate any univariate function f rep-
resented as a Look-Up Table LUTf . This distinctive feature of evaluating a
function is the reason TFHE’s bootstrapping is often referred to as the func-
tional or programmable bootstrapping (PBS) [CGGI20, CJL+20, CJP21].
The PBS is done in three steps: a modulus switch (MS), a blind rotation
(BR) and a sample extract (SE). Taking as input the bootstrapping key BSK,
the look-up table LUTf and an encrypted LWE ciphertext of a message m
under a secret key sin, the bootstrapping outputs an LWE ciphertext which
encrypts the message f(m) under the secret key sout with a smaller noise.

ctout ← PBS(ctin, LUTf ,BSK).

11 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

The bootstrapping key is an encryption of each element of the input
secret key sin = (s0, · · · sn−1) as GGSW ciphertexts encrypted under a key
Sout ∈ Rk

q,N (note that each element of the input secret key sin is seen as an
element of Rq,N where si corresponds to the constant coefficient, and all the
other coefficients are set to zero). So we have BSK = (BSK0, · · · ,BSKn−1)
where BSKi ∈ GGSWβ,ℓ

S (si) for i ∈ [0, n) and where si corresponds to an
element of the LWE input secret key s. As introduced in [CJP21], to improve
the computational time of the PBS, a keyswitch always precedes a PBS. In
the following, the two operations are merged together.

ctout ← KS-PBS(ctin, LUTf ,KSK,BSK).

Circuit Bootstrapping (CBS) [CGGI20, Alg. 11] The circuit boot-
strapping (CBS) is an operation that takes as input an LWE ciphertext en-
crypting a binary message m ∈ {0, 1} under a secret key sin and returns a
GGSW ciphertext encrypting the same binary message m under the secret
key Sout.

CTout ← CBS(ctin,BSK,KSK,PFKSK).

BSK is the bootstrapping key as defined above and PFKSK stands for private
functional key switch key. A PFKSK = [PFKSK0, · · · ,PFKSKk] is a public key
encrypting the product of each input and output secret key where PFKSKi =
PFKSKsin→Sout(Sout,i) = [GLEVβ,ℓ

Sout
(−sin,0 · Sout,i), · · · ,GLEVβ,ℓ

Sout
(−sin,kN−1 ·

Sout,i)] for i ∈ [0, kout] with Sout,k = −1. With this public key, we can perform
an operation with an LWE ciphertext encrypting a message m under the se-
cret key s and PFKSKi to obtain a GLWE ciphertext under the secret key
Sout of the message m · Sout,i The CBS operation is done in two steps. The
first one consists in performing several bootstrappings on the input LWE ci-
phertext to obtain many LWE ciphertexts which encrypt the binary message
with different scaling factors depending on the decomposition base β and the
level decomposition ℓ of the GGSW ciphertext. This operation transforms the
input LWE ciphertext ct ∈ LWEs(m) into a LEV ciphertext ct ∈ LEVβ,ℓ

s (m).
The second step consists in using the PFKSK to multiply each of the LWE
ciphertext of the LEV obtained after the first operation to get k+1 new GLEV
ciphertexts CT encrypting m · Sout,i for i ∈ [0, k] (with Sout,k = −1). This
collection of CT corresponds to a GGSW ciphertext as defined in Definition 3.

Remark 2 In what follows, we constrain the input LWE secret key sin =
(s0, · · · , skN−1) to contain the same coefficients as the flattened GGSW output

12 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

secret key Sout = (S0, · · · , Sk−1) where Si =
∑N−1

j=0 siN+jX
j. Thanks to this

constraint, we can use the sample insert operation to cast an LWE ciphertext
encrypted under sin as a GLWE ciphertext encrypted under Sout.

CMux The CMux selects one of two GLWE ciphertexts, depending on the

value of an encrypted decision bit b. Let CT ∈ GGSWS(b) with b ∈ {0, 1},
CT0 ∈ GLWES(∆ ·m0) and CT1 ∈ GLWES(∆ ·m1). The output ciphertext
CTout is an encryption of ∆ ·mb. The signature of the algorithm is:

CTout ← CMux(CT0,CT1,CT).

Remark 3 (Public Keys) In what follows, the public key PUB encom-
passes the bootstrapping key (BSK), the keyswitching key (KSK) and the pri-
vate functional key switch key (PFKSK). To simplify the algorithms, we will
simply refer to PUB when the context is clear enough to decide which key
should be used.

2.4 Representing Large Integers with TFHE

Only integer plaintexts smaller than 10 bits can be encoded in
TFHE [BBB+22]. This is due to the bootstrapping, where the plaintext
precision is entangled with the degree N of the cyclotomic polynomial in
Rk

q,N . We briefly recall the techniques described in [BBB+22] to overcome
this limitation. We first describe the encoding of large integers, and then
focus on the programmable bootstrapping associated with such encoding.

Large Integer Encoding and Arithmetic Let m ∈ Zp be the cleartext
to encrypt such that log2(p) > 10. The idea is to apply a radix decomposition
tom before encrypting each part into a dedicated LWE ciphertext. Let ρ ∈ N
such that 2 ≤ ρ ≤ p < q. Intuitively, ρ defines the message space, whereas
p
2·ρ refers to the carry space, which is getting used all along homomorphic

computation. Let ℓz =
⌈
logρ(m)

⌉
. The encoded plaintext ptm is defined as

the ρ-radix decomposition of a message m ∈ N, i.e., ptm = [mℓz−1 · · ·m0]←
Encodingρ(m) with m =

∑ℓz−1
i=0 miρ

i. Then, each mi is independently en-
crypted, so that ctm = [ctm,ℓz−1, · · · , ctm,0] ∈ [LWEs (mℓz−1) , ..., LWEs (m0)].
Common modular integer operations are then defined on these ciphertexts,

13 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

in particular modular additions, subtractions, multiplications and division
are possible.

By construction, after a given number of operations, the carry space is
full and we need to call the CarryPropagate algorithm to homomorphically
propagate the carries. This algorithm was first introduced in [BBB+22]. The
goal of this algorithm is to clear the carry space of each input ciphertext
without losing information, except for the most significant carry, which is
lost. This loss occurs because, in [BBB+22], the authors work with integers

modulo ρ
ℓz
z .

When dealing with floating-point numbers, however, losing this informa-
tion is not acceptable, especially when the mantissa is full. By retaining this
information, we can grow the exponent if necessary. To address this limita-
tion, we modified the CarryPropagate algorithm from [BBB+22] and named
it CarryPropagateExtended, which is detailed in Algorithm 1 Note that to
recover the original CarryPropagate algorithm, it is sufficient to execute the
loop from 0 to ℓz − 2.

In what follows, we assume p = ρ2 to simplify the carry propagation. We
will refer to the algorithm computing an integer operation Op as IntOp.

Programmable Bootstrapping over Large Integers (WoP-PBS)
In [BBB+22], the authors present an algorithm designed for performing
function evaluation on large integers and reducing the noise. The Without
Padding Programmable Bootstrapping (WoP-PBS) algorithm, as described
in [BBB+22], is named for its unique feature of not requiring a padding bit
which distinguishes it from the typical TFHE’s PBS. Having no padding bit
enables the use of the total plaintext space instead of half of it, i.e., the scal-
ing factor ∆ becomes q

p
instead of q

2p
as described in Definition 1. Briefly,

given a plaintext m represented using ρ bits, a WoP-PBS starts by extracting
each bit of the plaintext m to obtain a list of LWEs where each one of them
encrypts a bit, i.e., {cti}i∈[0,...,ρ−1] ∈ LWEs(mi) ⊂ Z(n+1)×ρ

q . Then a circuit
bootstrapping is applied to convert them into GGSW ciphertexts. The next
step consists in computing a vertical packing (described in [CGGI20, Alg. 5])
to choose the right LUT depending on the value of the message. This ends
by a classical blind rotation to select the correct value into the LUT. The
detailed algorithm can be found in [BBB+22, Alg. 3]. The signature of the
WoP-PBS is:

ctout ←WoP-PBS(ctin, LUTf ,BSK,KSK,PFKSK) = WoP-PBS(ctin, LUTf ,PUB).

14 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 1: ctzout ← CarryPropagateExtended (ctzin ,PUB)

Context:



∆z : scaling factor

LUTCarry : LUT to return the carry of the ciphertext (return
⌊
m
βz

⌋
).

LUTMsg : LUT to return the message of the ciphertext (return m mod pz).
pz : the carry-message modulus
βz : the message modulus

Input:

{
ctzin = [ctzin,ℓz−1, · · · , ctzin,0] ∈ Z(n+1)·ℓz

q

PUB : Public materials for PBS-KS

Output:
{

ctzout = [cttmp, ctzout,ℓz−1
, · · · ctzout,0] ∈ Z(n+1)·(ℓz+1)

q

1 for i in [0..ℓz − 1] do
/* Extract the carry */

2 cttmp ← KS-PBS(ctzin,i,PUB, LUTCarry)
/* Extract the message */

3 ctzout,i ← KS-PBS(ctzin,i,PUB, LUTMsg)
4 if i ̸= ℓz−1 then
5 ctzin,i+1 ← ctzin,i+1 + cttmp

6 return (ctzout = [cttmp, ctzout,ℓz−1
, · · · ctzout,0])

2.4.1 Integer Subtraction

In the following floating-point algorithms, we require an operation that takes
as input two vectors of ciphertexts and returns the sign of the subtraction
along with a vector of ciphertexts representing the absolute value of the
subtraction. This method is detailed in Algorithm 2. Intuitively, in the initial
steps, an offset is added to ensure that the messages in each ciphertext of the
first input are larger than those of the second input. Next, we perform the
subtraction between the adjusted first input and the second input, followed
by a carry propagation as described in Algorithm 1. We then extract the
most significant bit (MSB) of the top block from the resulting ciphertext.
Finally, we traverse all the blocks, returning the value if the MSB is set to
1, or the opposite if it is not. The sign is encoded in the padding bit, with
an offset such that the most significant bit is 0 for positive values and 1 for
negative values.

15 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Lemma 1 (IntSub∗ (Algorithm 2)) Let ctzi = [ctzi,ℓz−1, · · · , ctzi,0] ∈[
LWEs(zi,ℓz−1), · · · LWEs(zi,0)

]
⊆ Z(n+1)·ℓz

q with i ∈ {0, 1} be two ciphertexts
encrypting zi ∈ N.

Let (ctzsub , cts)← IntSub∗(ctz1 , ctz2 ,PUB). Then Decrypts(ctzsub) = |z1−z2|
and Decrypts(cts) = Sign(z1 − z2).

The complexity of Algorithm 2 can be defined as Cz
IntSub∗ = (3·ℓz+1)·CPBS

Proof 1 (Correctness of IntSub∗ (Algorithm 2)) In this algorithm,
CTz can represent the mantissa or the exponent. The goal of this algorithm
is to return |z1 − z2| and Sign(z1 − z2). The first step of this algorithm is to
ensure that the message z1 is bigger than z2. To do that, we add 2(ℓz+1)·ρz−1

to z1, which automatically guarantees that all the LWE that compose z1 such
that all the LWE of z1 are bigger than the ones of z2. Now we can perform
the subtraction term by term. After a carry propagate, if z1 > z2, we re-
trieve on the most significant LWE the added value at the beginning of the
algorithm. Otherwise, this added value is used during the subtraction. This
value corresponds to Sign(z1 − z2). By extracting this sign, and adding it to
each LWE, with a PBS, we can see whether z1 > z2 or not and choose between
the ciphertext obtain after the subtraction or its opposite and get |z1 − z2|.

Lemma 2 (Noise Constraints of Algorithm 2) The output noise vari-
ances of ciphertexts of Algorithm 2, cts and ctzsub, are respectively 4 ·σ2

BR and
σ2
BR.
To guarantee correctness of this operation, we need to find parameters

that verify the following inequalities:

2 · σ2
in + σ2

BR + σ2
KS + σ2

MS ≤ t2.

with σBR the noise added by the blind rotation, σKS the noise added by
the keyswitch, σcmux the noise added by the CMux and finally σMS, the noise
added by the modulus switch.

Proof 2 (Proof of Lemma 2) Let us look at the noise propagation in Al-
gorithm 2. We assume that each input ciphertext contains a noise following
a centered Gaussian distribution with a variance σ2

in. These noises are also
assumed to be statistically independent.

At the end of line 6, the variance of the noise in ctzsub,i is 2 · σ2
in for

0 ≤ i < lz. The worst operation in terms of noise in the carry propagation

16 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 2: (ctzsub , ctsign)← IntSub∗ (ctz1 , ctz2 ,PUB)

Context:


∆z : scaling factor
LUTExtract : LUT to extract the MSB (i.e. the (log2(q)− 2)thbit)
LUTf : LUT to return z− q/4 if the MSB equals 1; q/4− z otherwise
pz : the carry-message modulus
βz : the message modulus

Input:


ctz1 = [ctz1,ℓz−1, · · · , ctz1,0] ∈ Z(n+1)·ℓz

q

ctz2 = [ctz2,ℓz−1, · · · , ctz2,0] ∈ Z(n+1)·ℓz
q

PUB : Public materials for PBS-KS and for CBS

Output:

{
ctzsub = [ctzsub,ℓz−1

, · · · ctzsub,0] ∈ Z(n+1)·ℓz
q

cts ∈ Zn+1
q

1 for i in [1..ℓz − 1] do
/* Ensure that ctz1,i is larger than ctz2,i */

2 ctz1,i ← ctz1,i + TrivialEncrypt(22·ρz−1, 1)
3 ctz1,i ← ctz1,i − TrivialEncrypt(2ρz−1, 1)
4 ctzsub,i ← ctz1,i − ctz2,i

5 ctz1,0 ← ctz1,0 + TrivialEncrypt(22·ρz−1, 1)
6 ctzsub,0 ← ctz1,0 − ctz2,0

7 ctzsub ← CarryPropagate(ctzsub = [ctzsub,ℓz−1, · · · , ctzsub,0],PUB)
/* Extract the msb to get the sign */

8 cts ← KS-PBS(ctzsub,ℓz−1,PUB, LUTExtract)

/* Return the value if MSB==1, the opposite otherwise */

9 for i in [0..ℓz − 1) do
10 ctzsub,i ← ctzsub,i + cts
11 ctzsub,i ← KS-PBS(ctzsub,i ,PUB, LUTf)

12 ctzsub,ℓz−1
← KS-PBS(ctzsub,ℓz−1

,PUB, LUTf)

/* Put the sign on the padding bit plus flip the bit to keep

the representation 0 is positive and 1 is negative */

13 cts ← cts · 2 + TrivialEncrypt(q/2, 1)

14 return (cts, ctzsub = [ctzsub,ℓz−1
, · · · , ctzsub,0])

on line 7 consists of adding a freshly bootstrapped ciphertext with one of the
ctzsub,i and applying to it a keyswitch and a bootstrapping. It means that to

17 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

have correctness we must verify the following inequality:

2 · σ2
in + σ2

BR + σ2
KS + σ2

MS ≤ t2.

with σ2
BR, σ

2
KS, σ

2
MS, the noise after respectively a bootstrapping, a keyswitch

and a modulus switch and t2, the noise bound as defined in the proof of the
noise constraints of Algorithm 6.

On line 8, another noise constraint appears.

σ2
BR + σ2

KS + σ2
MS ≤ t2.

As the left hand term is smaller than the one of the previous inequality,
we can discard this constraint. On lines 11 and 12, we have the following
constraints

2 · σ2
BR + σ2

KS + σ2
MS ≤ t2 & σ2

BR + σ2
KS + σ2

MS ≤ t2.

Using the fact that the last constraint is dominated by the others, we can
remove it from the set of constraints. In the end of Algorithm 2, the sign
cts has a noise variance of 4 · σ2

BR and the each ciphertext in the vector ctzsub
has a noise variance σ2

BR.

2.5 Traditional Floating-Point Representation

Floating-points have become the standard to represent real numbers in com-
puter science, as described in [Ins08]. Their main advantage lies in having
a variable precision all along computations, giving more flexibility and accu-
racy. Usually a floating-point is represented by three values: the sign, the
mantissa and the exponent. The most common floating-point encodings on
CPU are the single precision, represented on 32 bits (with 1 bit of sign, 8 bits
of exponent and 23 bits of mantissa) and the double precision over 64 bits (1
bit of sign, 11 bits of exponent and 52 bits of mantissa). Less common but
still useful encodings are the half-precision which represents 16-bit floats, or
some alternative called Bfloat [WK19]. Without getting into details, these
encodings mainly differ in the distribution of the bit number associated to
the mantissa and the exponent. Finally, another family called MiniFloat is
dedicated to floats whose the size is 8 bits. We refer to [MBDD+18] for more
information about floats.

18 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Definition 4 (Floating-Point) Let b ∈ N such that b ≥ 2. Let maxe ∈ N∗
and a fixed bias ∈ [0,maxe]. A floating-point number x ∈ R is partially
characterized by three values (s,m, e) ∈ {0; 1} × N × [0,maxe], such that:
x = (−1)s ·m ·be−bias. With this definition, a floating-point number may have
several representations. To obtain a unique representation, the mantissa m
must be in the interval [1, b) except for the value zero where m = 0.

3 Homomorphic Floating-Points (HFP)

In this section, we present a promising but limited approach in terms of
precision which leverages the WoP-PBS to efficiently compute any operation
over floating-point numbers. Then, we explain how to efficiently translate
the traditional representation of floating points into a TFHE-friendly way
for larger precisions. Finally, we describe the first building blocks needed to
perform higher-level operations on these homomorphic floating-points.

3.1 MiniFloats: WoP-PBS Based Floats

A powerful approach to defining homomorphic floats for TFHE-like schemes
relies on the WoP-PBS. The method is somewhat similar to the gate boot-
strapping approach defined in [CGGI20]: almost every operation is performed
using a WoP-PBS.

Minifloat Encoding Let ρ be the number of bits of precision for a message
in an LWE ciphertext, and let ρm (resp. ρe) be the number of bits of the man-
tissa (resp. the exponent). In this first attempt at building TFHE-minifloats,
we do not need to have distinct ciphertexts for the mantissa, the sign and
the exponent. For instance, we can define an 8-bit floating-point with ρ = 4,
ρm = 3 and ρe = 4 using only two LWEs, ct1 ∈ LWEs(s||m2||m1||m0) and
ct2 ∈ LWEs(e3||e2||e1||e0) where mi (resp. ei) corresponds to the ith bit of the
mantissa (resp. of the exponent). Each element can be dispatched in any
order, but the order must be publicly known to correctly generate the LUT.
We call this encoding the minifloat encoding and we write it as follows:

TFHE-Minifloatρ(ρm, ρe, bias) = Encodingρ(s||m||e||).

19 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Minifloat Operations Defining operations over the minifloat encoding is
easy: each one of them is computed with a WoP-PBS where the LUT as-
sociated with the operation is given. The WoP-PBS can easily be extended
to take many ciphertexts as input in order to compute multivariate opera-
tions: the bit extraction step can be done for every input and then a single
CMux tree using the bits of every input. Let Op be an operation (e.g., an
addition), and LUTOp its associated LUT (for more details on how to prop-
erly generate the LUT, we refer to [BBB+22]). For some k ∈ N, let ctfi
for i ∈ [0, k − 1] be the input ciphertexts. Then, the output is given by:
ctfout ←WoP-PBS({ctfi}

k−1
i=0 , LUTOp,PUB).

The main advantage is about the complexity of this method, which is not
dependent on the functions that have to be computed, i.e., any univariate
functions will take the same time (e.g., cosine, logarithm, . . .).

Remark 4 Some operations do not require a complete WoP-PBS. For ex-
ample, to perform a ReLU, we only need to extract the sign and perform a
CMux between input value and a trivial LWE (defined in 4) that encrypts zero.

We provide benchmarks for this method in Section 6. This method is
very efficient but it is limited in terms of precision. In fact, this method does
not work when the combined bit size of all inputs of a WoP-PBS exceeds
approximately twenty bits, because the number of values that need to be
represented is too large and the LUT quickly becomes too big [BBB+22, Re-
mark 8]. Next section explores another encoding that can efficiently support
large floating-point numbers.

3.2 Homomorphic Floating-Point Encoding

As in the traditional representation of floating-point numbers, the homomor-
phic floating point representation is divided into three parts: the sign, the
mantissa and the exponent.

The sign (s) is encoded by one LWE ciphertext. This ciphertext encrypts
the value 0 if the sign is positive or 1 if the sign is negative.

The mantissa (m) is encoded by several LWE ciphertexts (at least 2).
Each ciphertext associated with the mantissa encodes the same amount of
message bits (denoted ρm in the following). For a mantissa represented by
ℓm LWE ciphertexts, we can represent integers in

[
0; 2ℓm·ρm

)
. The ciphertext

encrypting the most significant bits (respectively, the least significant bits) of

20 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

the mantissa is called the most significant (respectively, the least significant)
ciphertext. With this representation, we can ensure that the precision of
the mantissa is at least ((ℓm − 1) · ρm + 1)-bits. Indeed, the least significant
ciphertext will be discarded after some operations, so the information in this
block must not be seen as additional precision: when the carry space of the
most significant LWE ciphertext is full, a new LWE ciphertext is added as the
new most significant block. The less significant block is then removed and
the exponent value is increased. In floating point arithmetic, this approach is
generally called rounding towards zero. This means that the least significant
bits from the mantissa are discarded. This way, the exponent can be smaller
and represent a large range of values. In our representation, to keep a unique
encoding for any floating-point, the most significant block should always be
different from zero (except for the special value zero where all the blocks
are equal to zero). So for any non-zero values, the mantissa is an integer in[
2ρm·(ℓm−1); 2ρm·ℓm

)
.

The exponent (e) is encoded by one or more LWE ciphertexts. Each
LWE ciphertext encrypts the same amount of bits ρe. The value represented
by the exponent is in base 2ρm (as already mentioned in the mantissa). So an

exponent encrypted in ℓe LWE ciphertexts represents values in
[
0; (2ρm)2

ℓe·ρe
)
.

To represent an exponent that can be negative or positive, the positive value
encoded in these ℓe LWE ciphertexts needs to be subtracted by a value named

bias. When we decode, we obtain, e ∈
[
(2ρm)−bias; (2ρm)2

ℓ·ρe−bias
)
. The en-

coding of the TFHE floating-point is illustrated in Figure 1, and we
refer to it as follows:

TFHE FP(ℓm, ρm, ℓe, ρe, bias).

Bias The value bias can be set to any value, but to represent a large range of
values, in the traditional floating-point, this value is often set to be half of the
range of the exponent. With our representation, this value should correspond
to 2ℓe·ρe−1, but in our algorithm we choose to use bias = 2ℓe·ρe−1 + ℓm − 1.
Through this specific value, we gain a speed-up in the homomorphic floating
multiplication proposed in Algorithm 10.

Special Values In the floating-point arithmetic, the subnormal values are
the closest values to zero: they are represented by an exponent equal to
zero and the leading significant digits equal to zero. In our implementation

21 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

we choose to not represent this values to have better performance, but our
algorithm can be easily modified to take these values into account. In what
follows, the leading significant block is always strictly positive except for the
zero value. This is the only value represented by each mantissa and exponent
blocks equals to zero. Thus, if an operation yields an encrypted float which
has its most significant LWE equal to zero, the result will encrypt the zero
value (i.e., all the mantissa and exponent LWE will be equal to zero). To keep
the algorithms easier to read, other special values like infinities, or NaN are
voluntary excluded. Note that the process to support these is nevertheless
detailed in Section 7.1.

Encoding and Encrypting We propose an algorithm to en-
code and decode real numbers for TFHE with the representation
TFHE Fp(ℓm, ρm, ℓe, ρe, bias). Let f be a real number. First, we need
to find m ∈ [0, ℓm · ρm) and e ∈ [0, ℓe · ρe) such that:

f = (−1)s ·m · (2ρm)e−bias.

To obtain a unique representation of these floating-point representations,
we impose that the most significant block of the mantissa must be strictly
positive (except for the value zero). From this first encoding, we split the
mantissa and the exponent according to the 2ρm and 2ρe-radix decomposi-
tions, i.e., m← Encoding2

ρm
(m) and e← Encoding2

ρe
(e). The final encoding

is given by:

f = (s,m = (mℓm−1, · · · ,m0)ρm , e = (eℓe−1, · · · , e0)ρe) .

In absolute value, the maximum value represented by this encoding is
max = (2ℓm·ρm−1)·(2ρm)2ℓe·ρe−bias−1. Since the subnormal values are not taken
into account, the minimum positive value reached by this encoding (without
zero) is min = (2ℓm·ρm−1) · (2ρm)−bias. In Algorithm 3 (resp. Algorithm 4), the
method to encrypt (resp. decrypt) a floating-point number is described. The
following lemma states the correctness and the notations used to represent
homomorphic floats.

22 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Figure 1: The figure illustrates the encoding of a homomorphic floating-
point. The Mantissa (in pink) and the Exponent (in green) are split in several
ciphertexts which each ciphertext encrypting 4 bits. The fully colored boxes
in the figure represent the bits of messages space and the empty colored boxes
correspond to the bits of carry space. The sign (in blue) is encoded in only
one ciphertext where the information is encrypted on the most significant
bit.

Algorithm 3: ctf ←

EncryptFloat(s,m, e)

Input: EncodeFloat(x) = (s,m, e)
Output: ctf = [cts, ctm, cte]

1 cts ← Encrypts(
q
2
· s) ∈ LWE(s)

2 ctm = (ctm,ℓm−1, · · · , ctm,0)←
Encrypts(m)

3 cte = (cte,ℓe−1, · · · , cte,0)← Encrypts(e)
4 return ctf = [cts, ctm, cte]

Algorithm 4: f ←

DecryptFloat(ctf)

Input: ctf = [cts, ctm, cte]

Output: f = (−1)s · m · (2ρm)e−bias ∈ R
1 If Decrypts(cts) = 0 then s = 1, Else s =
−1

2 m← Decrypts(ctm)
3 e← Decrypts(cte)

4 return f← (−1)s · m · (2ρm)e−bias

Lemma 3 (Correctness of DecryptFloat (4)) Let f = (s,m, e) ∈ {0, 1} ×
[0, ℓm · ρm)×[0, ℓe · ρe). Let ctf ← EncryptFloat(f) such that ctf = [cts, cte, ctm],
with cts ∈ LWEs (s), cte = [cte,ℓe−1, · · · , cte,0] ∈

[
LWEs

(
e1ℓe−1

)
, ..., LWEs (e10)

]
and ctm = [ctm,ℓm−1, · · · , ctm,0] ∈

[
LWEs

(
m1ℓm−1

)
, ..., LWEs (m10)

]
. Then,

DecryptFloats(ctf) = f.

Trivial Encrypt A trivial encryption is an LWE ciphertext where all
the ai are equal zero (for i ∈ [0, n)). This is trivially extendable to the
floats. This is denoted TrivialEncryptFloat(f). Sometimes, we only need to
trivially encrypt a part of a floating-point: which is suggested by the notation
TrivialEncrypt(Value,NumberOfBlocks). For instance, to encrypt the value v
as an exponent, we note TrivialEncrypt(v, ℓe).

23 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Definition 5 (Maximum error after operation) In the context of
floating-point, due to the encoding, after each operation a small error could
be introduced (this error is not tied to the TFHE noise). This added error
is denoted ϵ. To find the errors added after each operation by our encoding,
we look at the maximal error added in the mantissa and we multiply this
error by the exponent. For a floating-point f = (−1)s · m · (2ρm)e−bias, the
error after an operation can be bounded by errorm · (2ρm)e−bias. As we do not
represent the subnormal values, if the e is equal to 0, the error is bounded by
2ρm·(ℓm−1) · (2ρm)−bias.

Example: Encoding a 64 bits Floating-Point In the [Ins08] standard,
a floating-point is composed of 1 bit of sign, 11 bits of exponent and 52
bits plus one hidden bit of mantissa. So as mentioned in the beginning of
Section 3, to ensure a precision of at least 53 bits, we need to have (ℓm −
1) · ρm + 1 ≥ 53 i.e., one additional block to perform operations without
losing the precision of 53 bits. For the mantissa, we choose ℓm = 27 with
ρm = 2. In [Ins08], the exponent value e belongs to [−1023, 1024). To
simplify the implementation, we prefer to have ρe = ρm, and a bias equal to
2ℓe·ρe−1 + ℓm − 1 with ℓe = 5. Thus, this yields in a floating-point exponent
in
[
−bias · ρm, (2ℓe·ρe − bias− 1) · ρm

]
= [−1076, 970] with bias = 538. This

allows representing as many values as the standard one, but with a different
scale: the upper bound is lower, but more precision is given near values close
to zero. These parameters correspond to the representation :

TFHE Fp64b(ℓm = 27, ρm = 2, ℓe = 5, ρe = 2, bias = 538).

More encoding examples for 32-bits, 16-bits and 8-bits are given in Table 3
(Section 6).

3.3 Choosing Between Two Ciphertexts

In what follows, we extensively use Algorithm 5 to homomorphically make
a choice between two LWE ciphertext lists depending on an encrypted bit.
This algorithm is an extended version of the CMux described in [CGGI20,
Lemma 3.16]. The selector is a GGSW ciphertext, and the choice is done
between two lists of LWE ciphertexts.

Lemma 4 Let cti = [ctzi,ℓz−1, · · · , ctzi,0] ∈
[
LWEs(zi,ℓz−1), · · · LWEs(zi,0)

]
⊆

Z(n+1)·ℓz
q with i ∈ {0, 1} be two ciphertexts encrypting zi ∈ N. Let CTSel ∈

24 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 5: ctres ← ExtendedCMux(ct0, ct1,CTSel)

Input:


ct0 = [ct0,ℓz−1, · · · , ct0,0] ∈ Z(n+1)·ℓz

q with cti,j ∈ LWEs(mi,j) for some plaintext mi,j

ct1 = [ct1,ℓz−1, · · · , ct1,0] ∈ Z(n+1)·ℓz
q

CTSel ∈ GGSWβ,ℓ
S (b) (with b ∈ {0, 1})

Output:
{

ctres = [ctb,ℓz−1, · · · , ctb,0] ∈ Z(n+1)·ℓz
q

1 for i in [0..ℓz) do
2 CT0,i ← SampleInsert(ct0,i), CT1,i ← SampleInsert(ct1,i)

3 CTres,i ← CMux(CT0,i,CT1,i,CTSel)
4 ctres,i ← Sample extract(CTres,i)

5 return ctres = [ctres,ℓz−1, · · · , ctres,0]

GGSWβ,ℓ
S (b) (with b ∈ {0, 1}). Let ctres ← ExtendedCMux(ct0, ct1,CTSel).

Then, Decrypts(ctres) = zb.

Proof 3 (Correctness of Algorithm 5) Let us execute each instruction
of Algorithm 5. In Lines 2 and 3, both LWE ciphertexts are transformed
into GLWE ciphertexts with the message on the first coefficient and ran-
dom messages on all the other coefficients, i.e., CT (Mj,i) ∈ GLWES (Mj,i)

with Mj,i = mj,i +
∑N−1

α=1 rj,i,αX
α, for some ri,j,α ∈ Zq with j ∈ {0, 1}.

Next, in Line 4: CTres,i is the result of the CMux, i.e., CTres,i(Mb,i) ←
CMux

(
CT (M1,i) ,CT (M0,i) ,CTSel(b)

)
, (as define in 2.3), with b ∈ {0, 1}.

At Line 5, we extract the first coefficient of CTmres,i. The result is then
ct (mres,i) ∈ LWEs (mb,i).

Proof 4 (CMux Noise Analysis) We adapt [CLOT21, Proof 11] for an ex-
ternal product using a binary secret in the GGSW ciphertext. The only dif-
ference is that the GGSW ciphertext is obtained through a CBS rather than
a freshly encrypted ciphertext, so we use the same noise formula. However,
the noise of the bootstrapping key is defined as the output noise of circuit
bootstrapping instead of fresh encryption.

3.4 Propagating the Carries

Since HFP are based on radix-based homomorphic integers, the need to prop-
agate the carry must be considered to ensure correctness. Indeed, in each

25 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

block, carry might accumulate all along computation up to point where the
carry space is full. Differently from modular integer computation, where the
modulus is generally a power of two, we cannot simply remove the carry from
the most significant block. In our case, when the mantissa has a carry that
has been propagated to the most significant block, a new one must be created
and the last one can be removed. In Algorithm 6, we describe the process
to perform this homomorphically. It takes as input a ciphertext encrypting
a floating-point, and returns another ciphertext where the carries have been
propagated.

Algorithm 6: ctfout ← CarryPropagateFloat (ctf)

Context: LUTid : Lookup Table associated to the id function.

Input:


ctf =

 cts ∈ LWEs (s)
cte = [cte,ℓe−1, · · · , cte,0] ∈ [LWEs (eℓe−1) , ..., LWEs (e0)]
ctm = [ctm,ℓm−1, · · · , ctm,0] ∈ [LWEs (mℓm−1) , ..., LWEs (m0)]

PUB : Public keys for KS-PBS and for CBS

Output:

ctfout =

 ctsout ∈ LWEs (s)
cteout = [cteout,ℓe−1, · · · , cteout,0] ∈ [LWEs (eout,ℓe−1,) , ..., LWEs (eout,0)]
ctmout = [ctmout,ℓm−1, · · · , ctmout,0] ∈ [LWEs (mout,ℓm−1) , ..., LWEs (mout,0)]

1 ctsout ← KS-PBS (cts, LUTId,PUB)
2 cte′ ← CarryPropagate (cte,PUB)
3 ctm′ =

[
ctm′,ℓm , · · · , ctm′,0

]
← CarryPropagateExtend (ctm,PUB);

/* Algo 1 */

4 ctm+ =
[
ctm′,ℓm , · · · , ctm′,1

]
, ctm− =

[
ctm′,ℓm−1, · · · , ctm′,0

]
5 CT← CBS

(
ctm′

ℓm
,PUB

)
6 ctmout ← ExtendedCMux

(
ctm− , ctm+ ,CT

)
,

cteout ← ExtendedCMux
(
cte′ , cte′ + TrivialEncrypt(1, ℓe),CT

)
; /* Algo 5

*/

7 return ctfout = (ctsout ; cteout ; ctmout)

Lemma 5 Let ctf = [cts, ctm, cte] with cts ∈ LWEs (s) , cte =
[cte,ℓe−1, · · · , cte,0] ∈ [LWEs (eℓe−1) , ..., LWEs (e0)] , ctm =
[ctm,ℓm−1, · · · , ctm,0] ∈ [LWEs (mℓm−1) , ..., LWEs (m0)] such that some
ctm,i (resp. cte,i) encrypting some mi > 2ρm (resp. ei > 2ρe). Let
ctfout ← CarryPropagateFloat (ctf). Let f = DecryptFloats(ctf) =

26 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

(−1)s ·m · 2ρme−bias
and fout = DecryptFloats(ctfout) = (−1)sout ·mout · 2ρm

eout−bias
.

If m ∈
[
2ρm·(ℓm−1), 2ρm·ℓm

]
, then mout ∈

[
2ρm·(ℓm−1), 2ρm·ℓm

]
. Else if

m ∈
[
2ρm·ℓm , 2ρm·(ℓm+1)

]
, then mout ∈

[
2ρm·(ℓm−1), 2ρm·ℓm

]
and eout = e + 1.

Moreover, for all i ∈ [0, ℓm − 1] (resp. i ∈ [0, ℓe − 1]), mout,i ∈ [0, 2ρm − 1]
(resp. eout,i ∈ [0, 2ρe − 1]).

Proof 5 (Correctness of CarryPropagateFloat (Algorithm 6)) In Line
2, we get cte′ = [cte′,ℓe−1, · · · , cte′,0] such that ∀i ∈ [0, ℓe − 1],Decrypt(cte′,i) =
e′i < 2ρe after the carry propagation. Likewise, in Line 3, we do an extended
carry propagation of the mantissa, so that ctm′ = [ctm′,ℓm , · · · , ctm′,0] such
that, ∀i ∈ [0, ℓm],Decrypt(ctm′,i) = m′i < 2ρm. Note that the carry on the
most significant block is not lost and create a new LWE ciphertext ctm′,ℓm

encrypting the propagated carry of ctm,ℓm−1.
In the next steps, the idea is to decide if we need to keep this block ctm′,ℓm

and remove the least significant block (i.e., return ctm+) or if we can discard
it (i.e., return ctm−). This allows us to output a result which has the same
number of blocks ℓm than the input. To do so, in Line 6 we perform a circuit

bootstrapping returning a GGSW ciphertext: CT ∈ GGSWβ,ℓ
S (0) if the new

ctm′,ℓm is in LWEs(0), otherwise, CT is in GGSWβ,ℓ
S (1). Next in Line 7, Al-

gorithm 5 returns ctm+ if CT is in GGSWβ,ℓ
S (1), or ctm− otherwise. Likewise,

in the case where ctm′,ℓm does not encrypt 0, the exponent should be updated.
The condition is then the same as previously, so that we can use the same

selector CT to choose between the initial value of the exponent cte′ or the one
which has been increased by one cte′ + TrivialEncrypt(1, ℓe).

Remark 5 (Carry Propagation & Refresh) After most operations, we
will apply Algorithm 6 to properly propagate the carries and refresh the noise.
However, after operations like the ReLU (Algorithm 12) or the approximated
Sigmoid (Algorithm 13) that do not fill the carry block, we only need to per-
form a PBS on each ciphertext to obtain fresh noise.

Lemma 6 (Noise Constraints of Algorithm 6) The output ciphertexts
of Algorithm 6, ctmout has a noise variance σ2

BR + σ2
CMux, cteout has a noise

variance σ2
BR + σ2

CMux and ctsout has a noise variance σ2
BR.

To guarantee correctness of Algorithm 6, we need to find parameters that
verify the following inequalities:

σ2
in,e + σ2

BR + σ2
KS + σ2

MS ≤ t2 & σ2
in,m + σ2

BR + σ2
KS + σ2

MS ≤ t2.

27 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

With σin,e the noise variance of the input exponent ciphertexts, σin,m the
noise variance of the input mantissa ciphertexts and with σBR the noise added
by the blind rotation, σKS the noise added by the keyswitch, σCMux the noise
added by the CMux and finally σMS, the noise added by the modulus switch.

Proof 6 (Proof of Lemma 6) In this proof, we use the same techniques
as those introduced in [BBB+22]. In particular, we use the noise
bound [BBB+22, Def. 8], a quantity representing the maximum noise vari-
ance that still guarantees the correctness up to some failure probability. We
also use a simpler version of [BBB+22, Theorem 1] which consists of remov-
ing redundant inequalities and dominated constraints. Simply put, if we have
two inequalities f(x)+g(x) ≤ t and f(x) ≤ t with f and g two positive func-
tions, we can focus on the first one as the second one will be automatically
satisfied if the first is. In this proof and the next ones, when this situation
arises, we will say that the second inequality is dominated by the first.

Let us assume that the input ciphertexts cts, cte and ctm have respectively
the following noise variances σ2

in,s, σ
2
in,e and σ2

in,m. The first line of the algo-
rithm consists in a keyswitch and a bootstrapping. We have the following
noise constraint: σ2

in,s + σ2
KS + σ2

MS ≤ t2, with σ2
KS and σ2

MS the noise added
respectively by the keyswitch and the modulus switch. t is a noise bound such
that t = ∆

2·z∗(pfail)
with the standard score z∗(pfail) =

√
2 ·erf−1(1−pfail) and the

scaling factor ∆ introduced in Definition 1. If we find parameters that guar-
antee the inequality above, the bootstrapping will be successful with probability
1− pfail.

Then, we have a carry propagate and an extended carry propagate. We
refer to the analysis for Algorithm 2 for the explanation about the constraints
in these algorithms:

σ2
in,e + σ2

BR + σ2
KS + σ2

MS ≤ t2 & σ2
in,m + σ2

BR + σ2
KS + σ2

MS ≤ t2.

Finally, we have a circuit bootstrapping that also creates a noise constraint
σ2
BR + σ2

KS + σ2
MS ≤ t2. Notice that the left-hand side here is smaller than

in both inequalities above, so we can remove this last inequality from the
set of constraints. Then, the output ciphertexts ctmout , cteout and ctsout have
respectively a noise variance σ2

BR + σ2
cmux, σ

2
BR + σ2

cmux and σ2
BR with σ2

cmux the
variance added by an extended CMux using a GGSW coming from a circuit
bootstrapping.

28 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

4 Addition and Subtraction of HFP

In this section, we detail the algorithms used to perform addition and subtrac-
tion operations with our floating-point representation. Initially, we describe
the operations that manage the mantissa: the first aligns the two mantis-
sas, and the second carries out the subtraction between them, followed by
a realignment of the resulting value. Ultimately, the application of these
algorithms enables us to efficiently implement homomorphic floating-point
(HFP) addition and subtraction operations.

4.1 Managing Mantissas and Exponents

To add two floating-point numbers, we can not directly add their mantissas.
First, we need their exponents to be equal and the mantissas to be aligned
properly. In what follows, we describe the algorithms to homomorphically
perform these operations.

4.1.1 Aligned Mantissa

Algorithm 7 takes as input ciphertexts encrypting two mantissas and their
corresponding exponents, and returns the largest exponent emax along with
both aligned mantissas. The first step of this operation is to perform a
subtraction between the two exponents to obtain d = |e1−e2| and the sign of
this difference. The sign then allows us to select the larger exponent and the
mantissa that needs to be aligned. Finally, a tree of CMux, using the bits of
d, aligns the selected mantissa by removing the d least significant ciphertexts
from the mantissa associated with emin. All the steps of this operation are
illustrated in Figure 2.

Lemma 7 (Aligned mantissa (Algorithm 7)) Let ctmi
and ctei such

that ctei =
[
ctei,ℓe−1

, · · · , ctei,0
]
∈ [LWEs (ei,ℓe−1) , ..., LWEs (ei,0)] and ctmi

=[
ctmi,ℓm−1

, · · · , ctmi,0

]
∈ [LWEs (mi,ℓm−1) , ..., LWEs (mi,0)] with i ∈ {1, 2} be

two ciphertexts encrypting mi · (2ρm)ei−bias. Let (ctm′
1res

, ctm′
2res

, ctemax) ←
AlignMantissa(cte1 , ctm1 , cte2 , ctm2 ,PUB). Then, emax = max(e1, e2). If e1 >
e2, m

′
1res = m1, then m′2res =

⌊
m2/2

ρm·d
⌋
with d = e1 − e2. Else if e1 < e2,

m′2res = m2, then m′1res =
⌊
m1/2

ρm·d
⌋
with d = e2 − e1. Else if e1 = e2,

then m′1res = m1 and m′2res = m2. The complexity of the algorithm is:

CAlignMantissa = (ℓe · ρe + 1) · CCBS + Cℓe
IntSub∗

29 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 7:
(
ctm1′ , ctm2′ , cte

)
← AlignMantissa(cte1 , ctm1 , cte2 , ctm2 ,PUB)

Input:



cte1 = [cte1,ℓe−1, · · · , cte1,0] ∈
[
LWEs

(
e1ℓe−1

)
, ..., LWEs (e10)

]
ctm1

= [ctm1,ℓm−1, · · · , ctm1,0] ∈
[
LWEs

(
m1ℓm−1

)
, ..., LWEs (m10)

]
cte2 = [cte2,ℓe−1, · · · , cte2,0] ∈

[
LWEs

(
e2ℓe−1

)
, ..., LWEs (e20)

]
ctm2

= [ctm2,ℓm−1, · · · , ctm2,0] ∈
[
LWEs

(
m2ℓm−1

)
, ..., LWEs (m20)

]
PUB : Public materials for PBS-KS and for CBS

Output:



ctm′
1

=
[
ctm′

1,ℓm−1, · · · , ctm′
1,0

]
∈
[
LWEs

(
m′

1ℓm−1

)
, ..., LWEs

(
m′

10

)]
ctm′

2
=
[
ctm′

2,ℓm−1, · · · , ctm′
2,0

]
∈
[
LWEs

(
m′

2ℓm−1

)
, ..., LWEs

(
m′

20

)]
cte = [cte,ℓe−1, · · · , cte,0] ∈ [LWEs (eℓe−1) , ..., LWEs (e0)]

/* Subtraction between the two exponents follows by the bit

extraction */

1 (cts, ctd = [ctd,ℓe−1, · · · , ctd,0])← IntSub∗ (cte1 , cte2 ,PUB) ; /* Algo 2 */

2 for i in [0..ℓe-1] do
3 for j in [0..ρe-1] do

/* Extract each bit of ctd */

4 CTd(i·ρe+j)
← CBS (ctd,i,PUB)

5 CTds
← CBS (cts,PUB)

/* selects the CT we need to align */

6 ct
⟨0⟩
mout = [ctmout,ℓm−1, · · · , ctmout,0]← ExtendedCMux

(
ctm2 , ctm1 ,CTds

)
; /* Algo

5 */

7 for i in [1..ℓm] do
/* Remove the ith less significant blocks and add i trivial Zero

LWEs on the most significant blocks */

8 ct
⟨i⟩
mout ← [TrivialEncrypt (0, i), ctmout,ℓm−1, ..., ctmout,i]

9 for i in [0..ℓe · ρe) do
10 if

⌊
ℓm/2

i+1
⌋
= 0 then

11 ct
⟨0⟩
mout ← ExtendedCMux

(
ct

⟨0⟩
mout ,TrivialEncrypt (0, ℓm) ,CTdi

)
; /* Algo 5

*/
12 else
13 for j in

[
0..
⌊
ℓm/2

i+1
⌋]

do

/* If ct
⟨2·j+1⟩
mout is not defined, then it is equal to

TrivialEncrypt (0, ℓm) */

14 ct
⟨i⟩
mout ← ExtendedCMux

(
ct

⟨2·j⟩
mout , ct

⟨2·j+1⟩
mout ,CTdi

)
; /* Algo 5 */

15 ctm′
1
← ExtendedCMux

(
ctm1 , ct

⟨0⟩
mout ,CTds

)
,

ctm′
2
← ExtendedCMux

(
ct

⟨0⟩
mout , ctm2 ,CTds

)
; /* Algo 5 */

16 cte ← ExtendedCMux
(
cte1 , cte2 ,CTds

)
; /* Algo 5 */

17 return
(
ctm′

1
, ctm′

2
, cte

)

30 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Proof 7 (Correctness of AlignMantissa (Algorithm 7)) In what follows,
we use the index of a ciphertext to refer to the plaintext value it encrypts, i.e.,
z = Decrypts(ctz). From Algorithm 2, we have that d = |e1 − e2| and s = 0
if e1 ≥ e2, 1 otherwise. Each bits of cts and ctd are converted to GGSW via

a CBS, so that after Line 5, we have:
{
CTdi ∈ GGSWS

}
(di)i∈[0,ℓe·ρe−1] (such

that d =
∑ℓe·ρe

i=0 di2
i) and CTs ∈ GGSWS(ds). From Algorithm 5, after Line 6,

we get m
⟨0⟩
out = m2 if ds = 0, m1 otherwise. This gives which of the mantissa

needs to be aligned, i.e., if the ciphertext CTds is in GGSWβ,ℓ
S (0), e1 ≥ e2 so

we need to align m2, otherwise e1 < e2, and thus m1 needs to be aligned). In
next loop, encryption of all possible mantissa shifts are created, i.e., M ⟨0⟩ ={
ct

⟨i⟩
mout = [0, . . . ,0, ctmout,ℓm−1, ..., ctmout,i]

}
i∈[1,ℓm−1]

with 0 ∈ LWEs(0), s.t. m
⟨i⟩
out =⌊

m
⟨0⟩
out/2

ρm·i
⌋
. The next steps consists in choosing the right mantissa from this

set, depending on the value of d. Informally, d is the number of blocks by
which the mantissa should be shifted. At each step i of the loop, the set M ⟨i⟩

is updated with respect of the binary value of d, to contains the encryption of

each value in
{
ct⟨α⟩mout =

⌊
m
⟨0⟩
out/2

ρm·α
⌋

s.t. α =
∑i−1

j=0 dj2
j mod 2i+1

}
. Note

that in the case where e1 = e2, the cmux tree will return the selected mantissa
without any change. In the end, the set is reduced to a singleton containing⌊
m
⟨0⟩
out/2

ρm·d
⌋
. Finally, the last three CMux replace the mantissa value by the

aligned one and select the bigger exponent.

Lemma 8 (Noise Constraints of Algorithm 7) The output noise vari-
ances of the ciphertexts of Algorithm 7, ctm′

i
and cte, are respectively

σ2
in,m + (ρe·ℓe+3)

2
· σ2

cmux and σ2
in,e + σ2

cmux.
To guarantee correctness of Algorithm 7, we need to find parameters that

verify the following inequalities:

4 · σ2
BR + σ2

KS + σ2
MS ≤ t2

With σin,e the noise variance of the input exponent ciphertexts, σin,m the
noise variance of the input mantissa ciphertexts and with σBR the noise added
by the blind rotation, σKS the noise added by the keyswitch, σCMux the noise
added by the CMux and finally σMS, the noise added by the modulus switch.

Proof 8 (Proof of Lemma 8) Let us assume that the input ciphertexts
ctei and ctmi

have respectively a noise variance σ2
in,e and σ2

in,m. The first

31 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Figure 2: This figure illustrates the main steps of the Homomorphic Align-
Mantissa operation (see Algorithm 7). The goal is to align the mantissas
based on their exponents. At a high level, we first use Algorithm 2 on the
two exponents (in green) to compute the difference between the two expo-
nents, along with the sign. Using the sign, we can determine which mantissa
(in pink) is smaller. Then, with the difference and a tree of Extended CMux
operations, we can decide how many ciphertexts are needed to increase the
smaller mantissa and align the exponents. The final step involves correctly
ordering the two mantissas and selecting the larger exponent.

line calls Algorithm 2 (see Lemma 2 for more details). In particular, we
compute the output noise of Algorithm 2. The noise variances of cts and
ctd are respectively 4 · σ2

BR and σ2
BR with σ2

BR, the noise variance of a
freshly bootstrapped ciphertext. In the next lines, the algorithm heavily re-
lies on circuit bootstrapping which gives us the following noise constraints :
σ2
BR + σ2

KS + σ2
MS ≤ t2 & 4 · σ2

BR + σ2
KS + σ2

MS ≤ t2, with σ2
KS and σ2

MS re-
spectively the noise variance added by a keyswitch and by a modulus switch.
t2 represents the noise bound as previously defined in the proof of Lemma 6.
As the first constraint is dominated by the second, we can remove it from

32 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

the set of constraints. Then, we apply an extended cmux and we create
ℓm vectors of ciphertexts composed of outputs of the previous extended cmux
and trivial ciphertexts. At this stage, we assume that every ciphertext in
these vectors has the same noise variance σ2

in,m + σ2
cmux with σ2

cmux the noise
added by a cmux using a GGSW coming from a circuit bootstrap with a
noise variance σ2

BR + σ2
PPKS. Then, we apply an extended cmux tree of depth

ρe · ℓe. Therefore, at the end of the tree, the ciphertexts have a noise variance
σ2
in,m+(ρe·ℓe+1)·σ2

cmux. At the end of the algorithm, assuming that cts encrypt

0 or 1 with probability 1
2
, the noise variance of ctm′

i
is σ2

in,m + (ρe·ℓe+3)
2
· σ2

cmux.
The noise variance of cte is σ2

in,e + σ2
cmux.

4.1.2 SubMantissa

SubMantissa performs the subtraction of two mantissas and shifts the result
such that the most significant block is not empty (unless the result is zero or
too small to be represented). It changes the value of the exponent and the
sign consequently. To perform this operation, the two mantissas must to be
aligned. Algorithm 8 takes as input the encryption of two aligned mantissas,
the exponent and the sign, and returns the encryption of the absolute value of
the difference of the mantissas, the exponent and the sign of this subtraction.

Lemma 9 (SubMantissa (Algorithm 8)) Let ctmi
= [ctmi,ℓm−1, ...ctmi,0] ∈[

LWEs

(
miℓm−1

)
, ...LWEs (mi0)

]
with i ∈ {0, 1} be ciphertexts encrypting

mi < 2ρm. Let cte = [cte,ℓe−1, ...cte,0] ∈ [LWEs (eℓe−1) , ...LWEs (e0)] a cipher-
texts encrypting e < 2ρe. Let cts1 ∈ LWEs(s1) and cts2 ∈ LWEs(s2) with
s1 = 1−s2 such that f1 = (−1)s1 ·m1·(2ρm)e−bias and f2 = (−1)s2 ·m2·(2ρm)e−bias.
Let ctfsub = (ctmsub

, ctesub , ctssub) ← SubMantissa(ctmin,1
, ctmin,2

, cte, cts1 ,PUB).
Then DecryptFloats(ctfsub) = f1 − f2 = (−1)ssub · msub · (2ρm)esub−bias such
that ssub = s1 if m1 ≥ m2, or s2 if m1 < m2. Assuming m1 ̸= m2,
let α be the index of the first non zero block of m = |m1 − m2| i.e.,
α = mini∈J0,ℓm−1K {ℓm − 1− i s.t. mi ̸= 0} then, if e ≥ α esub = e − α and
msub = |m1 − m2| · 2ρm·α. Else if m1 = m2 or if e − α < 0, then, msub = 0,
esub = 0.
The complexity of the algorithm is: CSubMantissa = Cℓm

IntSub∗ + Cℓe
IntSub∗ + (ℓm +

1) · CCBS

33 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 8: (ctmsub , ctesub , ctssub)← SubMantissa(ctmin,1 , ctmin,2 , cte, cts1 ,PUB)

Input:


ctmin,1 =

[
ctmin,1,ℓm−1, ...ctmin,1,0

]
∈
[
LWEs

(
min,1ℓm−1

)
, ...LWEs (min,10)

]
ctmin,2 =

[
ctmin,2,ℓm−1, ...ctmin,2,0

]
∈
[
LWEs

(
min,2ℓm−1

)
, ...LWEs (min,20)

]
cte = [cte,ℓe−1, ...cte,0] ∈ [LWEs (eℓe−1) , ...LWEs (e0)]
cts1 ∈ LWEs (sign1)
PUB : Public keys for KS-PBS and for CBS

Output:


ctmsub

= [ctmsub,ℓm−1, ...ctmsub,0] ∈
[
LWEs

(
msubℓm−1

)
, ...LWEs (msub0)

]
ctesub = [ctesub,ℓe−1, ...ctesub,0] ∈

[
LWEs

(
esubℓe−1

)
, ...LWEs (esub0)

]
ctssub ∈ LWEs (ssub)

1 (cts, ctm0 = [ctm0,ℓm−1, ...ctm0,0])← IntSub∗
(
ctmin,1 , ctmin,2 ,PUB

)
2 cte0 ← TrivialEncrypt (0, ℓe)
3 for i in [1..ℓm] do
4 ct′ei ← TrivialEncrypt (i, ℓe)
5 ct0 ← TrivialEncrypt (0, 1)
6 ctmi ←

[
ctmi−1,ℓm−2, · · · , ctmi−1,0, ct0

]
/* CT ∈ GGSWβ,ℓ

S (0) if ctmi−1,ℓm−1 ∈ LWEs (0), CT ∈ GGSWβ,ℓ
S (1)

otherwise */

7 CT← CBS
(
ctmi−1,ℓm−1,PUB

)
8 ctmi ← ExtendedCMux

(
ctmi , ctmi−1 ,CT

)
9 if i ̸= ℓm then ct′ei ← ExtendedCMux

(
ct′ei , ct

′
ei−1

,CT
)

else

ct′ei ← ExtendedCMux
(
cte, ct′ei−1

,CT
)
;

10 (ctse , cteres)← IntSub∗
(
cte, ct′eℓm ,PUB

)
; /* Algo 2 */

/* CTse ∈ GGSWβ,ℓ
S (0) if ctse ∈ LWEs (0), CTse ∈ GGSWβ,ℓ

S (1)
otherwise */

11 CTse ← CBS (ctse ,PUB)

12 ctmsub
← ExtendedCMux

(
TrivialEncrypt (0, ℓm), ctmℓm

,CTse

)
,

ctesub ← ExtendedCMux
(
TrivialEncrypt (0, ℓe), cteres ,CTse

)
13 ctssub ← cts1 + cts
14 return (ctesub ; ctmsub

; ctssub)

Proof 9 (Correctness of SubMantissa (Algorithm 8)) The first step of
the algorithm is to subtract the two mantissas. We obtain ctm0 which is
equals to |ctmin,1

− ctmin,2
| and cts the sign of this subtraction. As the two

mantissas are aligned, we have m0 in [0, 2ℓm·ρm).

34 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

At each step i of the loop, we take the previously computed ciphertext
ctmi−1

encrypting a message mi−1 and build another ciphertext ctmi
encrypting

the message mi = mi−1 · 2ρm. On line 7, we create a GGSW ciphertext CT
encrypting 0 if the most significant block of the mantissa mi−1,ℓm−1 is equal
to 0 and 1 if it contains some non-zero integer. Remember, our goal is
to realign the mantissa to stay in the classical representation (i.e., msub ∈[
2(ℓm−1)·ρm , 2ℓm·ρm

)
or msub = 0 if min,1 = min,2). Therefore, we use a cmux

to select ctmi−1
if mi−1,ℓm−1 ̸= 0 and ctmi

if mi−1,ℓm−1 = 0. In the same
way, we use the cmux to update the value of the exponent. To do so, we
take the previously computed ctei−1

and create a new ciphertext ctei, a trivial
encryption of i. As we want to select ctei−1

(respectively ctei) if we selected
ctmi−1

(resp. ctmi
) in the previous step, we can perform a cmux with the same

GGSW ciphertext CT. Assuming that we have m0 ̸= 0, at the end of the for-
loop, ctei is encrypting a value α such that m0 ·2ρm·α ∈

[
2(ℓm−1)·ρm , 2ℓm·ρm

)
and

ctmi
is encrypting m0 · 2ρm·α. If we have m0 = 0, ctmi will still be equal to 0.
The next step is to update the exponent. In line 13, we subtract the value

α encrypted in cteℓm to cte. The sign of this subtraction is in LWEs(0) if we
can do the subtraction (e > α) otherwise, the result is in LWEs(1), the value
of the subtraction is too small to be represented with our encoding. With this

sign we create a new GGSW ciphertext CT. Finally, the last CMux returns
the ciphertexts encrypting mantissa msub = m0 · 2ρm·α and the ciphertexts
encrypting the exponent esub = e−α if the subtraction can be done, otherwise
it returns the ciphertexts encrypting 0.

Lemma 10 (Noise Constraints of Algorithm 8) The output noise
variances of ciphertexts of Algorithm 8, ctmsub

, ctesub and ctssub, are respec-
tively σ2

BR + (ℓm + 1) · σ2
cmux, σ

2
BR + σ2

cmux and σ2
in,s + 4σ2

BR.
To guarantee correctness of Algorithm 8, we need to find parameters that

verify the following inequalities:

σ2
BR + (i− 1) · σ2

cmux + σ2
KS + σ2

MS ≤ t2 & 4σ2
BR + σ2

KS + σ2
MS ≤ t2

With σin,s the noise variance of the input sign ciphertext and with σBR

the noise added by the blind rotation, σKS the noise added by the keyswitch,
σCMux the noise added by the CMux and finally σMS, the noise added by the
modulus switch.

35 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Figure 3: This figure represents the main steps of Algorithm 8. At a high
level, we first subtract the two mantissas using Algorithm 2, obtaining the
absolute value of the subtraction along with the sign. Next, we perform a loop
where, at each step, the first ciphertext of the new mantissa is transformed
into a GGSW ciphertext using a CBS. Using this GGSW ciphertext, we remove
the most significant ciphertext if it is empty otherwise, we keep the mantissa.
At the same time, at each step, we count the number of ciphertexts removed.
When the loop finishes, we subtract the number of removed ciphertexts from
the exponent. Finally, we use an extended Cmux to return 0 if the exponent
is negative or if the mantissa is empty.

Proof 10 (Proof of Lemma 10) Let us assume that the input ciphertexts
cte, ctmi

and cts1 have respectively a noise variance σ2
in,e, σ

2
in,m and σ2

in,s.
Using the noise analysis of Algorithm 2 presented in Lemma 2, we know

that the noise variance of ctm0 and cts are respectively σ2
BR and 4·σ2

BR. In the
for-loop, for each index 1 ≤ i ≤ ℓm, we can compute the noise constraint σ2

BR+
(i−1)·σ2

cmux+σ2
KS+σ2

MS ≤ t2 and the noise variance of ctmi
is σ2

BR+i·σ2
cmux, the

noise variance of ctei is i · σ2
cmux for i ̸= ℓm and max

(
(ℓm − 1) · σ2

cmux, σ
2
in,e

)
+

σ2
cmux for i = ℓm. As in the previous proofs, we only need to retain the

noise constraint for i = ℓm, as it dominates the other constraints. Then, we

36 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

have a call to Algorithm 2 which gives us ciphertexts of variances respectively
4σ2

BR and σ2
BR. Next, we perform a circuit bootstrapping which gives us the

following constraint 4σ2
BR + σ2

KS + σ2
MS ≤ t2. Finally, the algorithm outputs

ctmsub
, ctesub and ctssub of respective variances σ

2
BR+(ℓm+1) ·σ2

cmux, σ
2
BR+σ2

cmux

and σ2
in,s + 4σ2

BR.

4.2 Addition and Subtraction

This operation performs the addition of two homomorphic floating-point
numbers. To perform a subtraction, we only need to change the input sign
of the second ciphertext. This operation is straightforward, as the sign is on
a padding bit, adding the clear integer q/2 to the sign ciphertext change the
sign of the floating-point.

This operation is based on the previous algorithm. We first need to align
the mantissas (Algorithm 7). Next, we perform both the addition and the
subtraction (Algorithm 8) of the mantissas and then we choose which of the
two results to output based on the signs. All the steps of this operation are
illustrated in Figure 4.

After this operation, we need to perform the operation CarryPropagate-
Float (Algorithm 6) to retrieve the homomorphic floating-point representa-
tion.

Lemma 11 (Addition (Algorithm 9)) Let ctfi such that ctsi ∈
LWEs (si),ctei =

[
ctei,ℓe−1

, · · · , ctei,0
]
∈ [LWEs (ei,ℓe−1) , ..., LWEs (ei,0)]

encrypting ei < 2ρe and ctmi
=

[
ctmi,ℓm−1

, · · · , ctmi,0

]
∈

[LWEs (mi,ℓm−1) , ..., LWEs (mi,0)] encrypting mi < 2ρm with i ∈ {1, 2}
be two ciphertexts encrypting fi = (−1)si · mi · (2ρm)ei−bias. Let
(ctmres , cteres , ctsres) = ctfres ← Addition(ctf1 , ctf2 ,PUB). Then
DecryptFloat(ctfres) = (−1)sres · mres · (2ρm)eres−bias = fres = f1 + f2 + ϵ
such that if e1 ≥ e2, then m′1 = m1 and m′2 = ⌊m2/2

ρm·γ⌋ with γ = e1 − e2.
Else if e1 ≤ e2, then m′2 = m2 and m′1 = ⌊m1/2

ρm·γ⌋ with γ = e2 − e1. For
ϵ, we refer to Definition 5. If s1 = s2, then sres = s1, eres = max(e1, e2)
and mres = m′1 + m′2. Else if s1 ̸= s2 and if m′1 ≥ m′2, then sres = s1; or
if m′1 < m′2, then sres = s2. Assuming m′1 ̸= m′2 and s1 ̸= s2, let α be the
index of the first non zero block of m = |m′1 − m′2|, if max(e1, e2) ≥ α, then
eres = max(e1, e2) − α and mres = |m′1 − m′2| · 2ℓm·α. Else if max(e1, e2) < α,
then eres = 0, mres = 0 and eres = 0. The complexity of the algorithm is:
CAddition = CSubMantissa + CAlignMantissa + CCBS.

37 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 9: ctfres ← Addition (ctf1 , ctf2 ,PUB)

Input:



ctf1 =


cts1 ∈ LWEs (s1)
cte1 =

[
cte1,ℓe−1

, · · · , cte1,0
]
∈ [LWEs (e1,ℓe−1) , ..., LWEs (e1,0)]

ctm1 =
[
ctm1,ℓm−1

, · · · , ctm1,0

]
∈ [LWEs (m1,ℓm−1) , ..., LWEs (m1,0)]

ctf2 =


cts2 ∈ LWEs (s2)
cte2 =

[
cte2,ℓe−1

, · · · , cte2,0
]
∈ [LWEs (e2,ℓe−1) , ..., LWEs (e2,0)]

ctm2 =
[
ctm2,ℓm−1

, · · · , ctm2,0

]
∈ [LWEs (m2,ℓm−1) , ..., LWEs (m2,0)]

PUB : Public materials for PBS-KS and for CBS

Output:

 ctfres =


LWEs (sres)
cteres = [cteres , · · · , cte0] ∈ [LWEs (eres,ℓe−1) , ..., LWEs (eres,0)]
ctmres = [LWEs (mres,ℓm−1) , ..., LWEs (mres,0)]

1

(
ctm′

1
, ctm′

2
, cte

)
← AlignMantissa(cte1 , ctm1 , cte2 , ctm2 ,PUB) ; /* Algo 7

*/

2 ctmadd
← ctm′

1
+ ctm′

2

3 (ctmsub
, ctesub , ctssub)← SubMantissa(ctm′

1
, ctm′

2
, cte, cts1 ,PUB) ; /* Algo 8

*/

/* CTs ∈ GGSWβ,ℓ
S (0) if cts1 + cts2 ∈ LWEs (0);CTs ∈ GGSWβ,ℓ

S (1)
otherwise. */

4 CTs = CBS (cts1 + cts2 ,PUB)

5 cteres ← ExtendedCMux
(
cte , ctesub ,CTs

)
,

ctmres ← ExtendedCMux
(
ctmadd

, ctmsub
,CTs

)
; /* Algo 5 */

6 ctsres ← ExtendedCMux
(
cts1 , ctssub ,CTs

)
; /* Algo 5 */

7 return ctfres = (ctsres , cteres , ctmres)

Proof 11 (Correctness of Addition (Algorithm 9)) As defined in
AlignMantissa (Algorithm 7), line 1 returns e = max(e1, e2) and ctm′

1
and

ctm′
2
aligned (such that if e1 ≥ e2, m′1 = m1 and m′2 = ⌊m2/2

ρm·γ⌋ with
γ = e1− e2. And if e1 ≤ e2, m

′
2 = m2 and m′1 = ⌊m1/2

ρm·γ⌋ with γ = e2− e1.).
Line 2 adds the two aligned mantissas m′1 and m′2 by adding together each

LWE ciphertext. As the carry block is empty, these operations can be done
directly.

As defined in Algorithm 8, line 3 returns ctmsub
= |m′1−m′2|·2ℓm·α, ssub = s1

if m′1 > m′2, or ssub = s2 if m
′
1 < m′2. Assuming m′1 ̸= m′2, let α be the index of

the first non zero block of mres = |m′1−m′2| · 2ℓm·α, then if e > α the algorithm
returns esub = e− α. If m′1 = m′2 or e < α, msub = 0, esub = 0 and ssub = s1.

38 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Figure 4: This figure gives an overview of each step needed to perform the
homomorphic floating-point addition.

By adding the sign on line 4 and performing a CBS over the result, we

obtain a GGSW ciphertext which encrypt s1+ s2. So CT ∈ GGSWβ,ℓ
S (0) if the

two signs are equal or CT ∈ GGSWβ,ℓ
S (1) if the signs are different.

So with this GGSW ciphertext, we will return the mantissa, the exponent
and the sign corresponding to the addition if the signs are equal and if they
are different, we return the mantissa, the exponent and the sign corresponding
to the subtraction as proposed on the lemma 11.

Lemma 12 (Noise Constraints of Algorithm 9) The output noise
variances of ciphertexts of Algorithm 9, ctmres , cteres and ctsres, are respectively
max (2σ2

BR + (ρeℓe + 5) · σ2
cmux, σ

2
BR + (ℓm + 1) · σ2

cmux) + σ2
cmux, σ

2
BR + 2σ2

cmux

and 5σ2
BR + σ2

cmux.
To guarantee correctness of this operation, we need to find parameters

that verify the following inequalities:

2max
(
(ℓm − 1) · σ2

cmux, σ
2
BR + 2 · σ2

cmux

)
+ σ2

BR + σ2
KS + σ2

MS ≤ t2

max
(
2σ2

BR + (ρeℓe + 5)σ2
cmux, σ

2
BR + (ℓm + 1)σ2

cmux

)
+ σ2

cmux + σ2
BR + σ2

KS + σ2
MS ≤ t2.

39 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

With σin,e the noise variance of the input exponent ciphertexts, σin,m the
noise variance of the input mantissa ciphertexts and with σBR the noise added
by the blind rotation, σKS the noise added by the keyswitch, σcmux the noise
added by the CMux and finally σMS, the noise added by the modulus switch.

Proof 12 (Proof of Lemma 12) Let us assume that the inputs of this al-
gorithm are the outputs of Algorithm 6. It means that the variances of
ctsi , ctei and ctmi

are respectively σ2
BR, σ

2
BR + σ2

cmux and σ2
BR + σ2

cmux (see
Lemma 6).

The first line calls Algorithm 7, we use Lemma 8 to estimate the noise
variances of ctm′

1
, ctm′

2
which are equal to σ2

BR +
(
ρeℓe+5

2

)
· σ2

cmux and the noise
variance of cte′ which is equal to σ2

BR + 2 · σ2
cmux. Then, ctm′

1
and ctm′

2
are

added which doubles the variance.
Next, we call Algorithm 8 and using Lemma 10, we deduce that the noise

variances of ctmsub
, ctesub and ctssub are respectively σ2

BR+(ℓm + 1)·σ2
cmux, σ

2
BR+

σ2
cmux and 5σ2

BR.
Then, we have a circuit bootstrap which must satisfies the following con-

straint 2σ2
BR + σ2

KS + σ2
MS ≤ t2. Finally, we have an extended cmux for the

mantissa, the exponent and the sign. The noise variances of ctmres , cteres and
ctsres are respectively max (2σ2

BR + (ρeℓe + 5) · σ2
cmux, σ

2
BR + (ℓm + 1) · σ2

cmux) +
σ2
cmux, σ

2
BR + 2σ2

cmux and 5σ2
BR + σ2

cmux.
Using Lemmas 6, 2, 8 and 10 and by noticing that some of the inequalities

are dominated by others, we find the complete set of constraints. As we want
to be able to chain several additions, we will assume that after the addition,
we apply Algorithm 6. The non-dominated set of constraints is the following:

2max
(
(ℓm − 1) · σ2

cmux, σ
2
BR + 2 · σ2

cmux

)
+ σ2

BR + σ2
KS + σ2

MS ≤ t2

max
(
2σ2

BR + (ρeℓe + 5)σ2
cmux, σ

2
BR + (ℓm + 1)σ2

cmux

)
+ σ2

cmux + σ2
BR + σ2

KS + σ2
MS ≤ t2.

We need to find parameters that verify these inequalities to guarantee cor-
rectness.

5 Multiplication and Division

In this section, we introduce a very efficient floating-point multiplication
with the HFP representation. Then, we detail a second algorithm to per-
form division. Finally, we briefly describe how to perform the ReLU and an
approximated Sigmoid.

40 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

5.1 Multiplication

This operation computes the product of two HFPs. Following this procedure,
it is necessary to apply the CarryPropagateFloat algorithm (Algorithm 6).
This step ensures that the homomorphic floating-point number is returned to
its standard representation, aligning it with the conventional HFP formalism.
At a high level, the goal is to multiply the two mantissas without losing
precision. Next, the exponent is updated by computing the sum of the two
exponents and subtracting the bias. We note that we selected this bias to
allow for efficient computation of this step. Due to the representation, we
know that if the most significant ciphertext of the mantissa equals zero, or
if the exponent is negative, the result of the operation is zero since we do
not work with subnormal values. Otherwise, we return the result of the
multiplication along with the updated exponent.

Lemma 13 (Multiplication (Algorithm 10)) Let ctfi such that
ctsi ∈ LWEs (si), ctei =

[
ctei,ℓe−1

, · · · , ctei,0
]
∈ [LWEs (ei,ℓe−1) , ..., LWEs (ei,0)]

encrypting ei < 2ρe and ctmi
=

[
ctmi,ℓm−1

, · · · , ctmi,0

]
∈

[LWEs (mi,ℓm−1) , ..., LWEs (mi,0)] encrypting mi < 2ρm with i ∈ {1, 2}
be two ciphertexts encrypting fi = (−1)si · mi · (2ρm)ei−bias. Let
(ctmres , cteres , ctsres) = ctfres ← Multiplication(ctf1 , ctf2 ,PUB).

Then DecryptFloat(ctfres) = fres = (−1)sres ·mres ·(2ρm)eres−bias = f1 ·f2+ϵ such
that ctsres = cts1 + cts2 and ϵ is the maximum error added by the operation
as express in Definition 5. If m1 ̸= 0 and m2 ̸= 0, if e1 + e2 ≥ bias − ℓm + 1
then mres =

⌊
m1 ·m2/2

(ℓm−1)·ρm
⌋
and eres = e1 + e2 − bias + ℓm − 1 with |ϵ| <

(2ρm)eres−bias. If e1 + e2 < bias − ℓm + 1 then mres = 0 and eres = 0 with
|ϵ| < 2ρm·(ℓm−1)(2ρm)−bias. If m1 = 0 or m2 = 0 then mres = 0 and eres = 0 with
|ϵ| < 2ρm·(ℓm−1)(2ρm)−bias.

The complexity of the algorithm is: CMultiplication = Cℓm
IntMul+2·CPBS+CCBS.

Lemma 14 (Cℓm
IntMul) To simplify the algorithm, the operation IntMul pro-

posed in the algorithm, have a complexity which can be bound by(
2 · ℓm2 + ℓm

2/ρm
)
· CPBS . However, in our implementation, we use a slight

modification of this algorithm to remove unnecessary computations (the part
of the multiplication which does not appear in the final mantissa). In practice,
the complexity is bounded by (2 · (ℓm/2 + 1)2 + ℓm · (ℓm/2 + 1)/ρm) · CPBS.

Proof 13 (Proof of complexity Cℓm
IntMul) The mantissa m rep-

resents a value in
[
2ρm·(ℓm−1), 2ρm·ℓm − 1

]
. So m2 is in

41 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

[
22·ρm·(ℓm−1), 22ρm·ℓm − 2ρm·ℓm+1 + 1

]
. After a multiplication, the smallest

reachable value is 22·ρm·(ℓm−1) and as we keep only the ℓm most significant
blocks, all the values smaller than 22·ρm·(ℓm−1)−ℓm·ρm = 2ρm·ℓm−2ρm are lost
so we don’t need to compute them. These values correspond to the part
of the mantissa m′ such that m′2 < 2ρm·ℓm−2ρm so the part m′ such that
m′ < 2ρm·(ℓm−2)/2. The part of the mantissa m′ corresponds to the ℓm/2 − 1
less significant blocks of the mantissa m. So we only need to compute the
multiplication on the ℓm/2 + 1 most significant blocks.

Proof 14 (Correctness of Multiplication (Algorithm 10)) In the
first step of the operation, we compute the sign of the multiplication by
summing the two signs s1 and s2. As the sign is on the padding bit, the
addition is done modulo 2. If the signs are equal, after the operation,
the sign is positive (cts1 + cts2 ∈ LWEs(0)), otherwise the sign is negative
(cts1 + cts2 ∈ LWEs (1)).

Next, we compute the multiplication of the two mantissas. IntMul
return the product of two integers. If m1 ̸= 0 and m2 ̸= 0,
we have mi ∈

[
2(ℓm−1)·ρm , 2ℓm·ρm − 1

]
for i ∈ {0, 1}, so m1 · m2 ∈[

22·(ℓm−1)·ρm , 22·ℓm·ρm − 2ℓm·ρm+1 + 1
]
(note that the value is stored in 2 · ℓm

blocks). As we want to keep the classical representation of the mantissa
(ℓm blocks, where the most significant block is non-zero except when the result
equals zero), we will remove the least significant blocks, ensuring that only
the ℓm most significant blocks remain.

To do so, we distinguish two cases after the multiplication. The
case where m1 · m2 ∈

[
22·(ℓm−1)·ρm , 2(2·ℓm−1)·ρm

)
(the most significant block

after the multiplication contains zero) and the case where m1 · m2 ∈[
2(2·ℓm−1)·ρm , 22·ℓm·ρm − 2ℓm·ρm+1 + 1

]
. During the operation IntMul, the carry

buffer of each ciphertext in ctmmul
is emptied. As the carry buffer of

ctmmul,2ℓm−1 and ctmmul,2ℓm−2 are empty, by multiplying ctmmul,2ℓm−1 by 2ρm, we
have ctmmul,2ℓm−1 ·2ρm ∈ {0}∪[2ρm , 22·ρm). As ctmmul,2ℓm−2 ∈ [0, 2ρm), we can sum
these two values such that ctmmul,2ℓm−1 = ctmmul,2ℓm−1 ·2ρm+ctmmul,2ℓm−2 (Line 3).
We have now m1 ·m2 ∈

[
22·(ℓm−1)·ρm , 22·ℓm·ρm − 2ℓm·ρm+1 + 1

]
stored in 2 · ℓm−1

blocks. Now, we remove the ℓm − 1 less significant block of the multiplica-
tion which represents too small values for the mantissa precision and the
most significant block which have its information already stored in the second
most significant block ctmmul,2ℓm−1. We obtain mres =

⌊
m1 ·m2/2

(ℓm−1)·ρm
⌋
∈[

2(ℓm−1)·ρm , 2(ℓm+1)·ρm
)
(Line 4). (In practice, we have modified the algorithm

42 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 10: CTfres ← Multiplication(ctf1 , ctf2 ,PUB)

Context:

{
LUTm : LUT to return 1 if the value equals 0; 0 otherwise
LUTe : LUT to return 0 if

(
x ≥ 2ρe−1

)
; 1 otherwise

Input:



ctf1 =


cts1 ∈ LWEs (s1)
cte1 = [cte1,ℓe−1, · · · , cte1,0] ∈

[
LWEs

(
e1ℓe−1

)
, ..., LWEs (e10)

]
ctm1

= [ctm1,ℓm−1, · · · , ctm1,0] ∈
[
LWEs

(
m1ℓm−1

)
, ..., LWEs (m10)

]
ctf2 =


cts2 ∈ LWEs (s2)
cte2 = [cte2,ℓe−1, · · · , cte2,0] ∈

[
LWEs

(
e2ℓe−1

)
, ..., LWEs (e20)

]
ctm2

= [ctm2,ℓm−1, · · · , ctm2,0] ∈
[
LWEs

(
m2ℓm−1

)
, ..., LWEs (m20)

]
PUB : Public materials for PBS-KS and for CBS

Output:

 ctfres =


ctsres ∈ LWEs (sres)
cteres = [cteres,ℓe−1, ..., cteres,0] ∈

[
LWEs

(
eresℓe−1

)
, ..., LWEs (eres0)

]
ctmres = [ctmres,ℓm−1, ..., ctmres,0] ∈

[
LWEs

(
mresℓm−1

)
, ..., LWEs (mres0)

]
1 ctsres ← cts1 + cts2
2 ctmmul

= [ctmmul,2ℓm−1, ...ctmmul,0]← IntMul (ctm1
, ctm2

,PUB)
3 ctmmul,2ℓm−2 ← ctmmul,2ℓm−1 · 2ρm + ctmmul,2ℓm−2

4 ctmres = [ctmres,ℓm−1, ...ctmres,0]← [ctmmul,2ℓm−2, ...ctmmul,ℓm−1]
/* cttmpm ∈ LWEs (1) if ctmres,ℓm−1 ∈ LWEs (0); cttmpe ∈ LWEs (0) otherwise

*/

5 cttmpm ← KS-PBS (ctmres,ℓm−1, LUTm,PUB)
6 cteres = [cteres,ℓe−1, ...cteres,0]← IntAdd (cte1 , cte2 ,PUB)
/* cttmpe ∈ LWEs (0) if cteres,ℓe−1 ∈ LWEs (x) with x ≥ 2ρe−1;

cttmpe ∈ LWEs (1) otherwise */

7 cttmpe ← KS-PBS (cteres,ℓe−1, LUTe,PUB)

/* bias have been choose such that bias− ℓm + 1 is equal to 2ℓe·ρe−1 so

this subtraction can be done only on the most significant block

*/

8 cteres,ℓe−1 ← cteres,ℓe−1 − TrivialEncrypt(2ρe−1, 1)
/* cttmp ∈ LWEs(0) if e is big enough and the most significant

mantissa LWE is not null */

9 cttmp ← cttmpm + cttmpe
/* encrypt 0 if cttmp ∈ LWEs (0), 1 otherwise */

10 CT← CBS (cttmp,PUB)

11 cteres ← ExtendedCMux
(
cteres ,TrivialEncrypt (0, ℓe) ,CT

)
,

ctmres ← ExtendedCMux
(
ctmres ,TrivialEncrypt (0, ℓm) ,CT

)
; /* Algo 5 */

12 return ctres = (ctsres ; cteres ;CTmres)

IntMul such that the carry propagation of the most significant block is not
done and such that the useless parts of the multiplication are not computed

43 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

(Proof 13)). In the special case where m1 = 0 or m2 = 0, the previous step
has no impact and IntMul will return the value 0 on each block. To distin-
guish the two cases, line 5, a PBS checks if the most significant block of the
mantissa is equal to zero, such that cttmpm is in LWEs(1) if ctmres,ℓm−1 is in
LWEs(0), otherwise it returns cttmpm in LWEs(0).

Now, we need to update the exponent e. First we will sum the two expo-
nents (Line 6). Next, as the exponent has the shape e′i + bias after the sum
we obtain e1 + e2 = eres = e′res + 2 · bias. So to keep the same representa-
tion, we need to remove one bias. Moreover, in the previous step, we have
removed the ℓm − 1 blocks of the mantissa, so we need to add ℓm − 1 to the
exponent. In Section 2.5, we chose the bias such that bias− ℓm + 1 = 2ℓe·ρe−1

so we only need to subtract 2ℓe·ρe−1 from the sum of the exponents. Line 4, a
PBS checks if the exponent is big enough and return an LWE ciphertext such
that cttmpe ∈ LWEs(0) if cteres,ℓe−1

is in LWEs(x) with x ≥ 2ρe−1, otherwise it
returns cttmpe ∈ LWEs(1). We can now subtract 2ℓe·ρe−1 from the sum of the
exponent (Line 8). This operation impacts only the most significant block of
the exponent and can be performed directly.

Now, looking at the two previous control LWE ciphertexts (cttmpm and
cttmpe), by summing these two values, we obtain cttmpm + cttmpe ∈ LWEs(0)
if ctmres,ℓm−1 /∈ LWEs(0) and cteres,ℓe−1

∈ LWEs(x) with x ≥ 2ρe−1. Otherwise,
one of the two conditions to perform the multiplication is unmet and the
multiplication is not feasible. By using a circuit bootstrapping, we obtain

a GGSW ciphertext CT such that CT ∈ GGSWβ,ℓ
S (0) if we can perform the

multiplication and CT ∈ GGSWβ,ℓ
S (1) otherwise. With the last 2 lines, if

CT is in GGSWβ,ℓ
S (0), the algorithm returns the result of the multiplication,

otherwise the multiplication is not doable and it returns zero.

5.2 Division

This operation computes the division of two HFPs. Following this procedure,
it is necessary to apply the CarryPropagateFloat algorithm (Algorithm 6).
This step will ensure that the homomorphic floating-point number is re-
turned to its standard representation, aligning it with the conventional HFP
formalism.

Lemma 15 (Division (Algorithm 11)) Let ctfi such that ctsi ∈
LWEs (si), ctei =

[
ctei,ℓe−1

, · · · , ctei,0
]
∈ [LWEs (ei,ℓe−1) , ..., LWEs (ei,0)]

44 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

encrypting e < 2ρe and ctmi
=

[
ctmi,ℓm−1

, · · · , ctmi,0

]
∈

[LWEs (mi,ℓm−1) , ..., LWEs (mi,0)] encrypting m < 2ρm with i ∈ {1, 2}
be two ciphertexts encrypting fi = (−1)si · mi · (2ρm)ei−bias. Let
(ctmres , cteres , ctsres) = ctfres ← Division(ctf1 , ctf2 ,PUB). Then,
DecryptFloat(ctfres) = fres = (−1)sres · mres · (2ρm)eres−bias = f1/f2 + ϵ with
|ϵ| < (2ρm)eres−bias s.t. ctsres = cts1 + cts2. If cte2 < cte1 + bias + ℓm − 1,
then ctmres =

⌊
ctm1 · 2ℓm−1/ctm2

⌋
and cteres = cte1 + bias + ℓm − 1 − cte2.

Else, cteres = 0 and ctmres = 0. The complexity of the algorithm is:
CDivision = Cℓe

IntSub∗ + C2·ℓm
IntDiv + CCBS.

Algorithm 11: ctf ← Division(ctf1 , ctf2 ,PUB)

Input:



ctf1 =


cts1 ∈ LWEs (s1)
cte1 =

[
cte1,ℓe−1

, · · · , cte1,0
]
∈ [LWEs (e1,ℓe−1) , ..., LWEs (e1,0)]

ctm1 =
[
ctm1,ℓm−1

, · · · , ctm1,0

]
∈ [LWEs (m1,ℓm−1) , ..., LWEs (m1,0)]

ctf2 =


cts2 ∈ LWEs (s2)
cte2 =

[
cte2,ℓe−1

, · · · , cte2,0
]
∈ [LWEs (e2,ℓe−1) , ..., LWEs (e2,0)]

ctm2 =
[
ctm2,ℓm−1

, · · · , ctm2,0

]
∈ [LWEs (m2,ℓm−1) , ..., LWEs (m2,0)]

PUB : Public materials for PBS-KS and for CBS

Output:

ctfres =


ctsres ∈ LWEs(sres)
cteres = [cteres,ℓe−1, · · · , cteres,0] ∈ [LWEs(eresℓe−1

), ..., LWEs(eres0)]
ctmres = [ctmres,ℓm−1, · · · , ctmres,0] ∈ [LWEs(mresℓm−1

), ..., LWEs(mres0)]

1 ctsres ← cts1 + cts2
2 cte1 ← cte1 + TrivialEncrypt(bias+ ℓm − 1, ℓe)
3 (ctes , cte = [cte,ℓe , · · · , cte,0])← IntSub∗ (cte1 , cte2 ,PUB)
4 ctm1 = [ctm1,ℓm−1, · · · , ctm1,0, ct0, · · · , ct0]← ctm1 ||TrivialEncrypt(0, ℓm − 1)
5 ctm2 = [ct0, · · · , ct0, ctm2,ℓm−1, · · · , ctm2,0]← TrivialEncrypt(0, ℓm − 1)||ctm2

6 ctmdiv
= [ctmdiv,2·ℓm−1, · · · , ctmdiv,0]← IntDiv(ctm1 , ctm2 ,PUB)

7 ctmdiv,2ℓm−2 ← ctmdiv,2ℓm−1 · 2ρm + ctmdiv,2ℓm−2
8 ctmres = [ctmres,ℓm−1, ...ctmres,0]← [ctmdiv,2ℓm−2, ...ctmdiv,ℓm−1]

9 CTes ← CBS (ctes ,PUB)

10 cteres ← ExtendedCMux
(
cte,TrivialEncrypt(0, ℓe),CTes

)
,

ctmres ← ExtendedCMux
(
ctmres ,TrivialEncrypt(0, ℓm),CTes

)
; /* Algo 5

*/

11 return ctf = (ctsres , cteres , ctmres)

45 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Proof 15 (Correctness of Division (Algorithm 11)) On the first line,
we compute the output sign. If the signs are equal, the sign after the operation
is positive (cts1 +cts2 ∈ LWEs(0)), otherwise the sign is negative (cts1 +cts2 ∈
LWEs (1)).

The algorithm IntDiv takes two vectors of ciphertexts that represent two
integers and returns the quotient of the division. In our context, we can not
divide directly the mantissas. In fact, the mantissas are in the same interval
and very close, if we were to divide them directly, the quotient would only
be a value of a few digits. In our case, we want a value in the interval[
2ρm·(ℓm−1), 2ρm·ℓm

)
. To get a result in the right interval, we add some blocks

encrypting zeros after the blocks of the first mantissa m1 (Line 4). Adding the
zeros to ctm1 corresponds to compute m1 · 2ℓm·ρm ∈

[
2ρm·(2ℓm−1), 2ρm·2ℓm

)
. Now

if we divide m1 ·2ℓm·ρm by m2, we will obtain a result in
[
2(ℓm−1)·ρm , 2(ℓm+1)·ρm

)
.

As explained in Proof 14, this value can be stored in ℓm blocks if we use
the carry buffer of the most significant block. The carry buffer will be later
cleaned during the call to CarryPropagateFloat (Algorithm 6). So after the
shift of the mantissa (Line 4) and the division (Line 6), we obtain a new
mantissa in the interval

[
2(ℓm−1)·ρm , 2(ℓm+1)·ρm

)
.

After the division of the mantissa, we need to update the exponent. To
do so, we need to subtract (Line 3) the two exponents, then add the bias
and finally add the number of trivial ciphertexts added in Line 4. If the
subtraction of the exponent returns a negative result (Line 3, ctes ∈ LWEs(0)),
the division can not be done. In this case, Algorithm 11 returns the value
zero (Line 10 and 11), otherwise it returns the result of the division of the
two floating-point numbers.

6 Experimental Results

In this section, we demonstrate the practicability of our results by providing
all cryptographic parameters, encodings, and both sequential and parallel
timings.

Encodings In Table 3, we describe the different encodings used to repre-
sent 64, 32, 16 and 8 bits floating-point numbers (Sec. 3.2) in the homomor-
phic world. Research in [BBB+22] indicates that a 4-bit precision message
leads to the best precision-cost ratio; therefore, we focus on representations
with ρm = ρe = 2. However, variations with ρm ̸= ρe may yield better tim-

46 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

ings depending on the specific use case. Additionally, in Table 3, we give the
encoding for the TFHE-minifloats encoded over 8 bits as detailed in Sec. 3.1.
For the TFHE-Minifloats, the value of the bias does not impact the timings
and can be freely chosen.

ℓm ρm ℓe ρe bias

TFHE FP64b 27 2 5 2 539
TFHE FP32b 13 2 4 2 140
TFHE FP16b 6 2 3 2 37
TFHE FP8b 3 2 2 2 10

TFHE-Minifloatρ=4 3 ∅ 4 ∅ 8

TFHE-Minifloatρ=2 3 ∅ 4 ∅ 8

Table 3: Encodings for HFP and Minifloats

Parameter Selection In Lemma 12, we found two noise constraints that
the parameters must satisfy in order to guarantee the correctness of Algo-
rithm 9. We applied the same reasoning to Algorithm 10 and found that
all the additional noise constraints are dominated by the constraints intro-
duced in Lemma 12. It means that parameters that satisfy the constraints
of Algorithm 9 will also satisfy the constraints of Algorithm 10.

As explained in Lemmas 11 and 13, the number of PBSs in each algorithm
is different and this has an impact on the failure probability of each algo-
rithm. We followed [BBB+22]’s blueprint to compute the individual PBS
failure probability using the number of dominant PBS in each algorithm.
Using the parameters presented in Table ??, the maximal failure probability
for the homomorphic addition and for the homomorphic multiplication are
respectively 2−13.9 and 2−12.8 (note that the failure probability of one KS-PBS
is smaller than 2−40). We tested these parameters on a chain of a hundred
operations on random inputs with random operations without detecting any
errors due to the noise, only errors due to floating-point approximations.

Timings All of our experiments have been carried out on AWS with a
m6i.metal instance Intel Xeon 8375C (Ice Lake) at 3.5 GHz, with 128 vCPUs
and 512.0 GiB of memory using the TFHE-rs library [Zam22]. Our code
is available here1. In Table 5, we give the timings in seconds for all the

1https://github.com/zama-ai/tfhe-rs/tree/artifact_tches_2025

47 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://github.com/zama-ai/tfhe-rs/tree/artifact_tches_2025

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

arithmetic operations (i.e., add, sub, mul, div) and the ReLU and Sigmoid
functions. Both sequential and parallel timings are given when possible (e.g.
the division over integers is only implemented in parallel in TFHE-rs). Note
that all arithmetic operations are followed by a carry propagation, which is
obviously taken into account in the timings.

Finally, in Table 6, we present the timings for the WoP-PBS based ap-
proach. Although the multiplication timings are quite similar between HFP
and minifloats, the addition operations perform significantly better using
the WoP-PBS. This means that when computing with 8-bit floats, using the
minifloats is generally better. Any larger precision requires to run the HFP
method, whose timings show that many circuits based on floats can be prac-
tically evaluated for the first time. Only the division operation cannot be
considered as practical. Note that the division is suffering from the slowness
of the division over the integers, and not really from the approach described
in here.

Addition Multiplication Division Sigmoid Relu
(Alg.9 & 6) (Alg.10 & 6) (Alg.11 & 6) (Alg.13) (Alg.12)

TFHE FP64b Sequential 12.32 s 87.15 s ∅ 0.342 s 0.122 s
Parallel 3.98 s 2.26 s 39.75 s ∅ ∅

TFHE FP32b Sequential 7.10 s 20.57 s ∅ 0.342 s 0.120 s
Parallel 2.50 s 1.03 s 15.18 s ∅ ∅

TFHE FP16b Sequential 3.89 s 3.83 s ∅ 0.361 s 0.155 s
Parallel 1.52 s 0.558 s 4.34 s ∅ ∅

TFHE FP8b Sequential 2.21 s 1.19 s ∅ 0.388 s 0.153 s
Parallel 1.13 s 0.444 s 1.76 s ∅ ∅

Table 5: Timings of the HFP depending on the precision.

TFHE-Minifloatρ=4 TFHE-Minifloatρ=2

Bivariate Operation
1.2819 s 0.9957 s

(e.g., add, mul, . . .)

Table 6: Timings for the 8 bit representations of the TFHE-Minifloat.

In the previous table, we present benchmarks obtained with a failure
probability around 2−14. To better evaluate our new algorithms, we also
include benchmarks of the addition and the multiplication with a failure
probability of around 2−40 (see Table 7). We observe that reducing the

48 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

failure probability has only a minor impact on execution time which proves
that our contribution scales well with small failure probabilities.

Add Mul
TFHE FP32b Sequential 7.49s 23.2s
TFHE FP32b Parallelized 2.83s 1.24s

TFHE FP64b Sequential 13.3s 98.2s
TFHE FP64b Parallelized 4.28s 2.75s

Table 7: Performance for Addition and Multiplication using pfail ≤ 2−40

7 More Features over HFP

This section extends our approach to cover a wider range of practical ap-
plications by adding the support of special values and efficient approximate
functions.

7.1 Managing Special Values

In the classical floating-point arithmetic, when a value overflows the highest
bound of the exponent, this value can not be represented anymore. In this
case, the floating-point reaches the infinity. As previously described, our
algorithms do not manage the values plus/minus infinity and Not a Number
(NaN), but as we show now, they can easily be extended to do so. The idea is
to add two encrypted Booleans to represent +∞ and −∞ such that: if only
one is set, then it means that we have reached plus (resp. minus) infinity;
if both are set, the value is interpreted as NaN. During an operation, the
infinity value is reached as soon as an overflow occurs on the exponent, i.e.,
if the carry of the most significant block of the exponent is not empty. This
check is done by computing a simple PBS on ctres,ℓe−1, which returns a flag
encrypting 0 if the carry is empty, or 1 otherwise. This flag is then given as
an additional input to the CarryPropagateFloat (Alg. 6). Then, by computing
a CBS on the sign, this will return the correct sign of the flag, i.e., plus or
minus infinity (or 0). This process ends with the computation of a simple
CMux tree which will properly update Booleans ciphertext depending on the
flag value. Regarding the support of special values, the overhead is linear
in the number of blocks composing the HFP. Thus, in comparison with the

49 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

numbers of PBS or CBS needed to perform operations without any special
values, the overhead should be negligible.

7.2 Computing Function Approximations

Beyond the arithmetic operations, floating-point numbers are particularly
convenient to compute approximations of complex functions, via the Taylor
series. A Taylor series of a real function f(x) that is infinitely differentiable

at a real number a is the power series
∑∞

n=0
f (n)(a)

n!
(x− a)n, where n! denotes

the factorial of n and f (n)(a) denotes the n-th derivative of f evaluated at
the point a. When a = 0, this is called a Maclaurin serie and takes the

form
∑∞

n=0
f (n)(0)

n!
xn. The Maclaurin method is advantageous when working

with homomorphic floating-point numbers, given that the value of f(a) is
not known. Computing such a serie is a direct application of our method,
as each of its term can be computed using the previously defined arithmetic
operators. Another advantage is that the needed precision and the computa-
tional time can be adjusted to fit the use case, i.e., by changing the value of
n. For instance, we have practically computed sin(x) ≈

∑2
n=0

(−1)n
(2n+1)!

x2n+1 =

x − x3

3!
+ x5

5!
and cos(x) ≈

∑2
n=0

(−1)n
(2n)!

x2n = 1 − x2

2!
+ x4

4!
, which gives good

results for values of x ∈ [−1, 1]. In Table 8, we present numerical values
obtained from our approximations of the cosine and sine functions using the
Maclaurin series.

Cos(0.9636989235877991) Sin(0.41880202293395996)

Exact value (64 bits) 0.5704859425112639 0.4066663011129846

Approximate value (64 bits) 0.5715802311897278 0.4066667483866177

Approximate value (32 bits) 0.57158023 0.40666676

This work (32bits) 0.5715802311897278 0.40666675567626953

Table 8: Result obtain for the cosinus and sinus with Maclaurin series. The
bold digits are the one which are equal to the digits of the approximate result
of the clear double precision value.

7.3 Other Operations

With the homomorphic floating-point representation, we can efficiently sup-
port usual functions used in machine learning. To evaluate the ReLU func-
tion, we can apply a circuit bootstrapping on the sign s and return either the

50 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

input floating-point or an encryption of zero using a cmux. The complete
algorithm is detailed in Algorithm 12 in Section 7.3.

In the same manner, we can evaluate an approximate sigmoid function
that returns the identity for values in the interval [−1, 1], and returns the
constant value 1 or −1 otherwise. More details are provided in Algorithm 13
in Section 7.3. To be closer to the classical sigmoid, we can combine this
approximate sigmoid with the Maclaurin series introduced in Section 7.2.
Other classical operations like the minimum, the maximum or the equality
between two values can be easily performed on homomorphic floating-point
numbers.

7.3.1 ReLU

Lemma 16 (ReLU (Algorithm 12)) Let ctf such that cts ∈
LWEs (s),cte =

[
cteℓe−1

, · · · , cte0
]
∈ [LWEs (eℓe−1) , ..., LWEs (e0)] encrypting

e < 2ρe and ctm =
[
ctmℓm−1

, · · · , ctm0

]
∈ [LWEs (mℓm−1) , ..., LWEs (m0)]

encrypting m < 2ρm be ciphertexts encrypting f = (−1)s ·m · (2ρm)e−bias.
Let (ctmres , cteres , ctsres) = ctfres ← Relu(ctfPUB). Then

DecryptFloat(ctfres) = fres with fres = (−1)sres · mres · (2ρm)eres−bias such
that if cts ∈ LWEs(0), ctsres = cts, cteres = cte and ctmres = ctm Else ctfres
encrypt zero.
The complexity of the algorithm is: CDivision = Cℓe

IntSub∗ + C2·ℓm
IntDiv + CCBS

Algorithm 12: ctf ← ReLU(ctf,PUB)

Input:


ctf =

 cts ∈ LWEs (s)
cte = [cte,ℓe−1, · · · , cte,0] ∈ [LWEs (eℓe−1) , ..., LWEs (e0)]
ctm = [ctm,ℓm−1, · · · , ctm,0] ∈ [LWEs (mℓm − 1) , ..., LWEs (m0)]

PUB : Public materials for PBS-KS and for CBS

Output:

 ctf =

 cts ∈ LWEs (sres)
cteres = [cteres,ℓe−1, · · · , cteres,0] ∈ [LWEs (eres,ℓe−1) , ..., LWEs (eres,0)]
ctmres =

[
ctmres,ℓm−1

, · · · , ctm,res,0

]
∈ [LWEs (mres, ℓm − 1) , ..., LWEs (mres,0)]

/* encrypt 0 if sign == 0, 1 otherwise */

1 CT← CBS(cts,PUB)

2 cteres ← ExtendedCMux(cte,TrivialEncrypt(0, ℓe),CT)

3 ctmres ← ExtendedCMux(ctm,TrivialEncrypt(0, ℓm),CT)
4 return ctf = [cts, ctmres , cteres]

51 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Proof 16 (ReLU (Algorithm 12)) First we use a CBS on the sign to ob-

tain a GGSW ciphertext such that CT ∈ GGSWβ,ℓ
S (0) if cts is in LWEs(0),

otherwise, CT is in GGSWβ,ℓ
S (1)

Next with the GGSW ciphertext, we return the input ciphertext if the sign
is positive otherwise we return zero.

7.3.2 Approximate Sigmoid

An efficient algorithm to compute an approximation of the sigmoid function
compatible with the HFP representation is presented in Algorithm 13.

52 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Algorithm 13: ctf ← ApproxSigmoid (ctf,PUB)

Context:

{
LUTm : LUT to return 1 if the value equals 1, 1 otherwise
LUTe : LUT to return 0 if

(
x >= 2ρe−1

)
; 1 otherwise

Input:


ctf =

 cts ∈ LWEs (s)
cte = [cte,ℓe−1, · · · , cte,0] ∈ [LWEs (eℓe−1) , ..., LWEs (e0)]
ctm = [ctm,ℓm−1, · · · , ctm,0] ∈ [LWEs (mℓm − 1) , ..., LWEs (m0)]

PUB : Public materials for PBS-KS and forCBS

Output:

 ctf =

 cts ∈ LWEs (s)
cte = [cte,ℓe−1, · · · , cte,0] ∈ [LWEs (eℓe−1) , ..., LWEs (e0)]
ctm = [ctm,ℓm−1, · · · , ctm,0] ∈ [LWEs (mℓm − 1) , ..., LWEs (m0)]

1 ct1 = [cte1 , ctm1
, cts1]← TrivialEncryptFloat (1)

2 ct−1 = [cte−1
, ctm−1

, cts−1
]← TrivialEncryptFloat (−1)

3 CTs ← CBS (cts,PUB); /* encrypt 0 if sign == 0, 1 otherwise */

4 ctstmp ← ExtendedCMux
(
cts1 , cts−1

,CTs

)
,

ctetmp ← ExtendedCMux
(
cte1 , cte−1 ,CTs

)
,

ctmtmp ← ExtendedCMux
(
ctm1 , ctm−1 ,CTs

)
/* If cteℓe−1

∈ LWEs(x) with x < 2ρe−1 then LWEs(1) else LWEs(0) */

5 cttmpe ← KS-PBS
(
cteℓe−1

,PUB, LUTe

)
/* If ctmℓm−1

∈ LWEs(x) with x < 2ρm−1 then LWEs(1) else LWEs(0) */

6 cttmpm ← KS-PBS
(
ctmℓm−1

,PUB, LUTm

)
7 cttmp ← cttmpm + cttmpe ; /* tmp equals zero only if |Dec(ctf)| > 1 */

/* encrypt 0 if tmp == 0, 1 otherwise */

8 CTtmp ← CBS (cttmp,PUB)

9 cts ← ExtendedCMux
(
cts, ctstmp ,CTtmp

)
,

cte ← ExtendedCMux
(
cte, ctetmp ,CTtmp

)
,

ctm ← ExtendedCMux
(
ctm, ctmtmp ,CTtmp

)
10 return ctf = [cts, ctm, cte]

53 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Future works

In future works, we aim to integrate the strengths of both methodologies
presented in this paper: the minifloat and the HFP approaches. As detailed
in Section 3.1, the WoP-PBS faces limitations when evaluating bivariate
functions due to the exponential growth of the LUT. However, this constraint
is less significant when WoP-PBS is used solely for computing univariate
functions. Therefore, for intermediate precision (around 16 bits), we could
adopt the representation proposed in Section 3.2, utilizing all algorithms
introduced for HFP in combination with WoP-PBS where it proves efficient.

Additionally, recent improvements to the CBS in [WWL+24] should im-
mediately enhance the running time of the algorithms introduced in this
paper.

Although there is still a long way to go before achieving a fully practical
deployment, this work narrows the gap between plaintext and homomorphic
floating-point computations. This could open new avenues for implementing
confidential machine learning algorithms, which often require a wide range
of values.

54 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

References

[AN16] Seiko Arita and Shota Nakasato. Fully homomorphic encryption
for point numbers. In International Conference on Information
Security and Cryptology, pages 253–270. Springer, 2016.

[BBB+22] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti,
Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Parame-
ter optimization & larger precision for (T)FHE. IACR Cryptol.
ePrint Arch., page 704, 2022.

[BCL+23] Loris Bergerat, Ilaria Chillotti, Damien Ligier, Jean-Baptiste
Orfila, Adeline Roux-Langlois, and Samuel Tap. Faster secret
keys for (t) fhe. Cryptology ePrint Archive, 2023.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrapping.
In Innovations in Theoretical Computer Science 2012, Cam-
bridge, MA, USA, January 8-10, 2012, pages 309–325, 2012.

[BIP+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder VL
Pereira, and Nigel P Smart. Final: Faster fhe instantiated with
ntru and lwe. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 188–
215. Springer, 2022.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without mod-
ulus switching from classical gapsvp. IACR Cryptology ePrint
Archive, 2012:78, 2012.

[BST20] Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved
secure integer comparison via homomorphic encryption. In
Cryptographers’ Track at the RSA Conference, pages 391–416.
Springer, 2020.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. TFHE: fast fully homomorphic encryption over the
torus. Journal of Cryptology, 33(1):34–91, 2020.

55 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim,
and Yongsoo Song. A full rns variant of approximate homomor-
phic encryption. In International Conference on Selected Areas
in Cryptography, pages 347–368. Springer, 2018.

[CJL+20] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila,
and Samuel Tap. Concrete: Concrete operates on ciphertexts
rapidly by extending TfhE. In WAHC 2020, 2020.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable
bootstrapping enables efficient homomorphic inference of deep
neural networks. In CSCML 2021. Springer, 2021.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.
Homomorphic encryption for arithmetic of approximate num-
bers. In Advances in Cryptology - ASIACRYPT 2017 - 23rd In-
ternational Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, pages 409–437, 2017.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and
Samuel Tap. Improved programmable bootstrapping with
larger precision and efficient arithmetic circuits for tfhe. In In-
ternational Conference on the Theory and Application of Cryp-
tology and Information Security, pages 670–699. Springer, 2021.

[CSVW16] Anamaria Costache, Nigel P Smart, Srinivas Vivek, and Adrian
Waller. Fixed-point arithmetic in she schemes. In International
Conference on Selected Areas in Cryptography, pages 401–422.
Springer, 2016.

[CZB+22] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Re-
naud Sirdey, and Cédric Gouy-Pailler. Putting up the swiss
army knife of homomorphic calculations by means of tfhe
functional bootstrapping. Cryptology ePrint Archive, Report
2022/149, 2022. https://ia.cr/2022/149.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping ho-
momorphic encryption in less than a second. In Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International

56 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://ia.cr/2022/149

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, pages 617–640, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practi-
cal fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revis-
iting the functional bootstrap in TFHE. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(2):229–253, 2021.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 169–178, 2009.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. IACR Cryptology ePrint
Archive, 2013:340, 2013.

[Hwa24] Vincent Hwang. Formal verification of emulated floating-point
arithmetic in falcon. In International Workshop on Security,
pages 125–141. Springer, 2024.

[Ins08] Institute of Electrical and Electronics Engineers. Ieee standard
for floating-point arithmetic. IEEE Std 754-2008, pages 1–70,
2008.

[KO22] Jakub Klemsa and Melek Onen. Parallel operations over tfhe-
encrypted multi-digit integers. Cryptology ePrint Archive, Re-
port 2022/067, 2022.

[Lai17] Kim Laine. Simple encrypted arithmetic library 2.3.
1. Microsoft Research https://www. microsoft. com/en-
us/research/uploads/prod/2017/11/sealmanual-2-3-1. pdf,
2017.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi,
Maxim Deryabin, Jieun Eom, and Donghoon Yoo. Efficient

57 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

fhew bootstrapping with small evaluation keys, and applica-
tions to threshold homomorphic encryption. In Annual Inter-
national Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 227–256. Springer, 2023.

[LMP21] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-
precision homomorphic sign evaluation using fhew/tfhe boot-
strapping. Cryptology ePrint Archive, Report 2021/1337, 2021.
https://ia.cr/2021/1337.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. In EUROCRYPT
2010. Springer, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-
case reductions for module lattices. Designs, Codes and Cryp-
tography, 75(3):565–599, 2015.

[LS22] Seunghwan Lee and Dong-Joon Shin. Overflow-detectable
floating-point fully homomorphic encryption. Cryptology ePrint
Archive, 2022.

[MBDD+18] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin,
Claude-Pierre Jeannerod, Vincent Lefevre, Guillaume
Melquiond, Nathalie Revol, Damien Stehlé, Serge Torres,
et al. Handbook of floating-point arithmetic. Springer, 2018.

[ML20] Subin Moon and Younho Lee. An efficient encrypted floating-
point representation using heaan and tfhe. Security and Com-
munication Networks, 2020, 2020.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul
Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ri-
cosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Fal-
con. Post-Quantum Cryptography Project of NIST, 2020.

[Reg05] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In STOC 2005. ACM, 2005.

58 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://ia.cr/2021/1337

TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xa-
gawa. Efficient public key encryption based on ideal lattices. In
ASIACRYPT 2009. Springer, 2009.

[WK19] Shibo Wang and Pankaj Kanwar. Bfloat16: The secret to high
performance on cloud tpus. Google Cloud Blog, 4, 2019.

[WWL+24] Ruida Wang, Yundi Wen, Zhihao Li, Xianhui Lu, Benqiang
Wei, Kun Liu, and Kunpeng Wang. Circuit bootstrapping:
faster and smaller. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages
342–372. Springer, 2024.

[Zam22] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE
Scheme for Boolean and Integer Arithmetics Over Encrypted
Data, 2022. https://github.com/zama-ai/tfhe-rs.

59 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://github.com/zama-ai/tfhe-rs

	Introduction
	Our Results
	Prior Approaches
	Roadmap

	Background and Notations
	Notations
	FHE Ciphertext Types
	FHE Operators
	Representing Large Integers with TFHE
	Integer Subtraction

	Traditional Floating-Point Representation

	Homomorphic Floating-Points (HFP)
	MiniFloats: WoP-PBS Based Floats
	Homomorphic Floating-Point Encoding
	Choosing Between Two Ciphertexts
	Propagating the Carries

	Addition and Subtraction of HFP
	Managing Mantissas and Exponents
	Aligned Mantissa
	SubMantissa

	Addition and Subtraction

	Multiplication and Division
	Multiplication
	Division

	Experimental Results
	More Features over HFP
	Managing Special Values
	Computing Function Approximations
	Other Operations
	ReLU
	Approximate Sigmoid

