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Abstract

In this work, we construct distortion-free and unforgeable watermarks for language models
and generative agents. The watermarked output cannot be forged by a adversary nor removed
by the adversary without significantly degrading model output quality. That is, the water-
marked output is distortion-free: the watermarking algorithm does not noticeably change the
quality of the model output and without the public detection key, no efficient adversary can
distinguish output that is watermarked from outputs which are not. The core of the water-
marking schemes involve embedding a message and publicly-verifiable digital signature in the
generated model output. The message and signature can be extracted during the detection
phase and verified by any authorized entity that has a public key. We show that, assuming the
standard cryptographic assumption of one-way functions, we can construct distortion-free and
unforgeable watermark schemes. Our framework relies on analyzing the inaccessible entropy of
the watermarking schemes based on computational entropy notions derived from the existence
of one-way functions.
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1 Introduction

Generative agents powered by advances in artificial intelligence (AI) and machine learning are
revolutionizing fields ranging from creative content generation to autonomous decision-making and
scientific inquiry [BMR+20]. However, their widespread use has also introduced significant concerns
on the misuse of generated content, intellectual property rights, and authenticity of digital assets. In
this context, watermarking has emerged as a critical tool for ensuring traceability, authenticity, and
security in generative models [LMC+24], and is already seeing large-scale deployment [DSG+24].
Traditional watermarking methods in cryptography, while effective in many applications, cannot
be seamlessly integrated into generative agents [KJGR21].

At the same time, there has been a large body of work on detecting AI-generated content from
specific language models [GPT23, GSR19, Ber16, Hov16, DMFZ22]. The problem most detec-
tors tackle can be framed as follows: given some generated content from a language model, can
you detect if it was generated by a human or a specific language model? However, such detection
schemes have a high false-positive or false-negative rates, especially as models get better in out-
put quality [KSK+23, ZHR+19, JAML20, TCH23, CBZ+23, VKS20]. This difficulty necessitates
watermarking.

Instead of relying on a trained classifier to distinguish machine-generated content from human-
generated content, a recent line of work modifies the language model generation process itself to
introduce watermarks [Aar23, KGW+23, KTHL24]. The generation process intentionally makes
the watermarked output distribution different from its non-watermarked output distribution. Dur-
ing the detection phase, as long as the two distributions are far enough apart, the detector can
distinguish watermarked text from non-watermarked text for a particular language model. In par-
ticular, Christ et al. [CGZ23] take a cryptographic approach to develop distortion-free watermarks
for language models, assuming the minimal assumption of existence of one-way functions. Their wa-
termark provides strong theoretical guarantees of soundness, completeness, and distortion-freeness
(i.e., the watermarking process does not noticeably alter the output distribution). However, their
watermarks are neither publicly-verifiable nor provide unforgeability guarantees. Also, they assume
there is a shared key between the model provider and the detector.

We present distortion-free and unforgeable watermarks for generative models and language
models with theoretical guarantees of soundness and completeness (and relying on minimal cryp-
tographic assumptions without use of random oracles [GHR99]). Our work introduces a novel
framework—based on notions of inaccessible entropy—that can be tailored to generative models.
The watermarking scheme can be seamlessly integrated on top of existing generative models and
are:

• Distortion-free: The difference between watermarked model outputs and non-watermarked
model outputs are imperceptible to adversaries (that do not have access to a public key)
because the quality of the generated content does not degrade.

• Unforgeable: The cryptographic techniques ensure that only authorized entities can create
or validate the embedded watermarks. This prevents unauthorized replication or tampering
from adversaries who do not have access to the secret key. The model outputs can be verified
using a public key. In addition, the model designer cannot claim that the watermark does
not exist once it has been embedded in the output.
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In other words, the property of distortion-freeness ensures watermarks do not compromise the
quality or functionality of generated content, whereas unforgeability guarantees that only authorized
entities can embed these watermarks. Achieving both goals simultaneously in generative models
has been a significant challenge. Recent work [LPH+24] presents unforgeable watermarks but does
not come with theoretical security guarantees. Fairoze et al. [FGJ+23] present distortion-free and
unforgeable watermarks with formal guarantees of soundness and completeness. However, they rely
on random oracles, which are impossible to implement in practice [MMP14].

Our work can be seen as a way to remove the random oracle assumptions from previous water-
marking schemes via the lens of inaccessible entropy. We show soundness for the distortion-free and
unforgeability properties of watermarking schemes. That is, if the model output is not generated
without knowledge of the secret key, then the detector will not state otherwise (except with negligi-
ble probability). Unforgeability protects language model designers and users. Once the model user
generates content, they cannot remove or alter the watermark associated with the content. This
protects downstream content consumers from potentially malicious model providers who might, in
the future, claim that they did not generate some certain content. Also, unforgeability protects
model providers so that content consumers of their model cannot claim copyright over content that
traces back to the original model.

Next, we present the main results and describe their implications.

1.1 Main Results

We will prove the following theorem.

Theorem 1.1 (Informal version of Theorem 5.5). Suppose there exists a one-way function. Then
there exists a distortion-free and unforgeable publicly-detectable watermarking scheme. Further-
more, the scheme satisfies the properties of (weak) robustness, soundness, and completeness.

Theorem 1.1 can be shown via the construction of a publicly-detectable watermarking scheme.
The desired desiderata are distortion-freeness, weak robustness, soundness, and completeness. We
show that the watermarking scheme satisfies all these properties (assuming one-way permutations).

The scheme relies on a new construction of error-correcting codes with the primary goals of
ensuring: (1) The message-signature pair can be encoded and that, given the message, the signature
can be decoded; (2) The probability of finding message-signature pairs that result in a codeword
collision is negligible (with respect to the security parameter).

Theorem 1.2 (Informal version of Theorem 5.2). Let λ be the security parameter. Also, let σ be
a signature, m be a message, and c be a codeword. Then (HashEncode,HashDecode) are functions
such that HashDecode(HashEncode(m,σ),m) = σ with probability at least 1 − neg(λ). And for
every codeword c and message-signature pair (m,σ) such that c ← HashEncode(m,σ), only with
probability at most neg(λ) can a polynomial-time adversary find (m′,σ′) such that (m,σ) ̸= (m′,σ′)
and c = HashEncode(m,σ) = HashEncode(m′,σ′).

Suppose there exists a one-way function f : {0, 1}λ 7→ {0, 1}λ. Then there exists a family of
(HashEncode,HashDecode) functions with codeword length Õ(λ7).

We define the properties of the (HashEncode,HashDecode) functions in Definition 5.1. The
(HashEncode,HashDecode) functions are used in the generation and detection phases of the wa-
termarking scheme. Theorem 1.2 is agnostic to some specific properties of the error-correcting
code (e.g., the distance). The better the distance of the code, the better the construction of
(HashEncode,HashDecode).
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1.2 Comparison to Previous Works on Watermarking Generative Agents

Our scheme achieves a form of (weak) robustness: the output of the generative model can be
modified (up to some threshold) and the detector will still detect the presence of a watermark. In
the general case, Zhang et al. [ZEF+] show that it is impossible to achieve strong robustness (i.e.,
the watermarked output is still detectable after substantially changing its content). The attack
by Zhang et al. [ZEF+] works against shared-key watermarking schemes [CG24, GM24, GG24,
AAC+24, ZALW24, ZWL24, ZGC+24, Aar23, KTHL24]. Since our scheme only achieves weak
robustness, their attack is not applicable to our setting.

No previous work attains the same (or better) security and robustness properties as our water-
marking scheme while relying on the same (or weaker) assumptions.

Result Distortion-Free? Weak Robustness? Unforgeable? No Random Oracles?

[Aar22] NO NO NO YES
[KGW+23] NO YES NO YES
[CGZ23] YES YES NO YES
[FGJ+25] YES YES YES NO
This work YES YES YES YES

Table 1: Comparing watermarking schemes for language models. In this table, weak robustness
means that the watermark is resilient to a few edits. The distortion-free property means that
answers to a query to the watermarked model are computationally indistinguishable from those of
the non-watermarked model.

Recent work on pseudorandom codes derives constructions of codes that satisfy certain def-
initions of pseudorandomness and that are robust to edits in the model output. In particular,
Christ and Gunn [CG24] constructed pseudorandom error-correcting codes to tolerate a constant
rate of errors. They apply their codes to watermarking and to steganography. There have been
follow-ups on those codes [GM24, GG24]. Notably, their constructions are based on the hard-
ness of LPN (Learning Parity with Noise), the planted XOR problem at low density, or similar
assumptions [BFKL93, BKW03]. These assumptions are different (and arguably stronger) than
those in our work [BLVW19]: we aim to understand what formal guarantees we can achieve via the
use of one-way functions or permutations. Furthermore, our work is not focused on constructing
new codes with security parameters (i.e., code-based cryptography [EOS06]) but on using exist-
ing non-cryptographic codes to construct primitives with security properties. On the other hand,
the previous work on pseudorandom codes seem to result in constant-rate codes [CG24] whereas
Definition 1.2 does not result in a constant-rate encoding of the signature.

Another important distinction between our work and previous works is that we model the
interaction between generative agents in accessible entropy and make no assumption about whether
the receiver of the model output is human or another agent.

1.3 Overview of Techniques

We provide a brief overview of our modeling approach and techniques.
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1.3.1 Generative Agent as Noisy Channel

We can model token generation in the generative model (beyond auto-regressive models) as a noisy
channel. The noisy channel model assumes that there is an original message that passes through
a noisy channel, which introduces distortions or uncertainties, leading to a potentially different
observed message. The goal is to reconstruct the most likely original message given the noisy
output. In our work, the noisy channel is the scheme used to generate the tokens. In particular,
both the watermarked and non-watermarked generative model can be modeled as a noisy channel
which allows for analyses of the flow of information through the channel [Sha49a, Sha49b].

Using the noisy channel approach, we can improve token generation by: (1) Re-ranking token
candidates: Instead of taking the highest probability token at each step, we can use a noisy chan-
nel correction model to re-rank generated outputs. This is, essentially, what the watermarking
algorithm accomplishes in Watermark (Algorithm 4). The channel is able to embed a signal in the
output that allows for detecting the presence of a watermark. (2) Applying error correction: By
estimating the probability that a given token was generated due to controlled noise (i.e., due to
watermarking), we can decide if the given output is watermarked or not. However, the amount of
controlled noise introduced for watermarking might be excessive. As discussed in previous works,
this situation corresponds to low-entropy responses to prompts [KGW+23, CGZ23]. Thus, we
apply error-correction on the noisy channel. As we will show, the number of errors that the error-
correcting codes can handle is at most the number of low-entropy periods the watermarking scheme
can tolerate (Lemma 5.3).

1.3.2 Inaccessible Entropy in Error-Correcting Codes

Real and accessible entropy is defined and used in previous work of Haitner et al. to construct
statistically hiding commitments and to give statistical zero-knowledge arguments for any NP
statement. They defined computational notions of entropy (i.e., accessible and inaccessible entropy)
to measure the infeasibility of sampling high entropy strings that are consistent with a cryptographic
protocol [HNO+09, HRVW09, HHR+10, HV17].

In our work, the cryptographic protocol is the watermarking scheme and we analyze the scheme
via the lens of computational entropy notions. Specifically, we use accessible and inaccessible
entropy notions to analyze the construction of the family of (HashEncode,HashDecode) functions
which is used in the watermarking schemes. These functions are used to enforce computational
indistinguishability of the generative model outputs. See Definition 5.1 that defines properties that
(HashEncode,HashDecode) should have. See Theorem 5.1 that instantiates the inaccessible entropy
framework to construct the family of (HashEncode,HashDecode) functions. All error-correcting
codes are defined by encoding and decoding functions that map messages to codewords and vice
versa. In the watermarking scheme, the functions (HashEncode,HashDecode) are used to encode
the embedded signature and to recover the message during the detection phase.

1.3.3 Entropy Manipulations

We also rely on previous techniques for manipulation and quantification of real and accessible
entropy. Specifically, the construction of (HashEncode,HashDecode) functions applies some trans-
formations to obtain noticeable gaps between the real Shannon entropy and accessible average
max-entropy.
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The transformations can be summarized as follows: the gap amplification operation via a direct
product increases the gap between the real and accessible entropy; the entropy reduction operation
uses hashing on the inputs to reduce the accessible entropy of a function while (approximately)
preserving the gap between the real min-entropy and accessible max-entropy; then by hashing
outputs, the output length of the constructed function can be reduced. See Theorem 5.2 for more
details.

1.4 Organization of Subsequent Sections

Section 2 discussed some core related works in the information-hiding literature, connections to
digital signatures, and software watermarking. Section 3 sets up the rest of the paper by standard-
izing notation, providing definitions for accessible and inaccessible entropy, and giving the basics
of coding theory. Section 4 discusses the security model under which our watermarking schemes
operate. Section 5 defines and analyzes the constructions used to achieve the publicly-detectable
watermarking scheme.

2 Other Related Work

2.1 Information Hiding

Moulin and O’Sullivan [MO03] survey the information-theoretic foundations of information hiding
for pre-generated signals, which includes watermarking as a special case. The problem of informa-
tion hiding can be framed as a strategic interaction between two opposing teams—the embedder
(and decoder) and the attacker. Modeling information hiding allows for analysis of optimal informa-
tion embedding and attack strategies. The information-theoretic and associated coding-theoretic
framework [MO03, MK05] also yields approaches for designing near-optimal codes and universal
decoders for information hiding. Theoretical insights are illustrated through applications to image
watermarking and attacks on watermarked images [Mou03, Mou05]. Geometric attacks are a pop-
ular class of attacks in the image watermarking literature, where a warping operation is applied to
an image.

This previous work focuses on identifying the fundamental limits of how much hidden informa-
tion can be embedded into host signals (such as images, audio, or video) without being detected
by unauthorized parties or without incurring unacceptable distortion. By using tools from rate-
distortion theory, channel coding, and hypothesis testing, theoretical frameworks relate embedding
rate (how much data is hidden), embedding fidelity (how much distortion is introduced in the host
signal), and detectability (the probability that an adversary can detect and/or remove the hidden
signal). Recent work by He et al. revisits such basic information-theoretic trade-offs in the con-
text of dynamically-generated content (as in generative agents), rather than pre-generated signals
[HLW+24, HLW+25].

In other recent work, Abdelnabi and Fritz [AF21] address the challenge of tracing the origin of
text generated by language models. The authors propose the adversarial watermarking transformer
(AWT), an end-to-end model that unobtrusively encodes binary messages into input text. AWT
employs a jointly trained encoder-decoder architecture with adversarial training to ensure minimal
alterations to the original text’s semantics and correctness. The model automatically learns optimal
word substitutions and their placements without requiring ground truth data. This framework can
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be seen as an instance of information hiding where AWT acts as the embedder (and decoder) and
the adversarial trainer models the attacker.

In many watermarking applications, the adversary’s goal is to detect or estimate the hidden
information, so a natural question is: Under what conditions (and at what rates) can a watermark
be statistically indistinguishable from noise? In our work, we additionally consider computational
indistinguishability notions not typically considered in the information-theoretic information hiding
literature.

2.2 Software Watermarking

A closely related area to watermarking of generative model outputs is software watermarking. The
concept of software watermarking involves embedding unique identifiers into programs to assert
ownership and prevent unauthorized use or distribution [CT99].

Traditional approaches to software watermarking have faced challenges, particularly concerning
the robustness of the watermark against removal and the ability to publicly verify the watermark’s
presence. In their seminal work, Barak et al. [BGI+12] introduced the notion of cryptographic soft-
ware watermarking and demonstrated that the existence of indistinguishability obfuscation implies
the impossibility of certain forms of watermarking. This result suggested limitations in creating
watermarks that are both resilient and publicly verifiable. Subsequent research explored various
methods to overcome some of these impossibility results. Naccache, Shamir, and Stern [NSS99]
and Nishimaki [Nis13] proposed software watermarking schemes that offered only secret key verifi-
cation (rather than public key verification) and was susceptible to specific types of attacks. Cohen,
Holmgren, and Vaikuntanathan [CHV15] introduced a publicly-verifiable watermarking scheme for
families of puncturable pseudorandom functions (PPRF), leveraging indistinguishability obfusca-
tion and injective one-way functions. Instead of requiring the watermarked program to agree with
the original unmarked program on all inputs (to the program), it is only required that they agree
on a large fraction of inputs.

There is a large literature on watermarking of software and programs [CT99, BGI+12, NSS99,
Nis13, CHV15]. However, most of these programs cannot be readily applied to generative language
models without significant modifications to the weights of the trained language model (an expensive
process!). In our work, we do not require modification of model weights.

2.3 Code-Based Cryptography

Code-based cryptography is the study of cryptographic systems in which the security relies on
hardness of solving coding-theoretic problems. This field was pioneered by McEliece [McE78] and
Niederreiter [Nie86, Sen11] decades ago. The McEliece cryptosystem is based on the difficulty
of decoding general linear codes, has withstood decades of cryptanalysis and remains a strong
candidate for post-quantum cryptography [MTSB13]. The cryptosystem is one of the earliest
public-key encryption schemes based on error-correcting codes [EOS06]. It leverages the hardness
of syndrome decoding in general linear codes, particularly Goppa codes [Ber73].

There is, by now, a large literature on code-based cryptography. Recent work on pseudorandom
error-correcting codes [CG24] show applications of code-based cryptography to watermarking.
They design new codes with pseudorandom and robustness properties. In our work, we focus on
modifying existing codes (or incorporating non-cryptographic codes) to achieve security guarantees
rather than creating new code constructions.
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2.4 Digital Signatures

Digital signatures have been extensively studied as a fundamental tool for ensuring authenticity,
integrity, and non-repudiation in digital communication. The development of digital signatures
can be traced back to Diffie and Hellman’s pioneering work on public-key cryptography [DH76],
which laid the foundation for modern cryptographic protocols. Since then, numerous schemes have
been proposed, each with varying security guarantees and efficiency considerations [RSA78, Lam79,
BG89, Mer87, GMR88, EGM89, BG89].

The earliest and most widely used digital signature schemes are based on number-theoretic prob-
lems, including the Discrete Logarithm Problem and the Integer Factorization Problem [RSA78,
Lam79, BG89, Mer87]. Some of the most significant works in this area include the work by Rivest,
Shamir, and Adleman that introduces the RSA Digital Signature Algorithm [RSA78, DHT12]. El-
Gamal proposed a signature scheme based on the discrete logarithm problem, later leading to the
development of the digital signature algorithm [ElG84]. In addition, there is work on post-quantum
digital signatures that, generally, do not rely on hardness of discrete logarithm and factorization
problems [TSZ19]. Our work does not concern the development of new digital signature schemes
but use of existing signature schemes for watermarking schemes.

Our watermarking scheme cannot directly use previous works on digital signatures as the
message-signature pair would make the resulting model output no longer “distortion-free.” Our
scheme uses hashing to embed the signature into the language model output.

2.5 Generative Agents

In classical cryptography, security guarantees are with respect to users that are usually assumed to
be human. Here, we make no distinction in providing security guarantees for humans versus genera-
tive agents. Generative agents are autonomous systems powered by generative artificial intelligence
(AI) models, designed to create, adapt, and respond in various contexts by producing new and
contextually relevant outputs. These agents leverage underlying generative technologies—such as
language models, image generation models, or multi-modal AI systems—to perform tasks, engage
in interactions, and learn from their environments. Examples of generative agents include chat-
bots and online virtual characters. Generative agents are already deployed for use in healthcare,
education, and customer support [POC+23].

3 Preliminaries

3.1 Notation

We use calligraphy to denote sets, lowercase for values, uppercase for random variables, bold face
for vectors, and sans serif for algorithms (i.e., Turing machines). For n ∈ N, let [n] = {1, . . . , n}.
For vector y = (y1, . . . , yn) and J ⊆ [n], let yJ = (yi1 , . . . , yi|J |), where i1 < · · · < i|J | are the
elements of J . Let ai denote the ith bit of vector a. For clarify, we also use slicing notation: a[−i]
refers to the ith last element of a list and a[j:k] extracts the elements ai for i ∈ [j, k). Let a ∥ b
denote the concatenation of a to b. We use log(·) to take logarithms base 2. Let () denote an empty
list or empty string. Also, let ppt denote a probabilistic polynomial-time algorithm and let poly
denote the set of all positive polynomials. The operation ⊕ corresponds to the simple XOR that
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is applied bit by bit. That is, for any a,b of length n, for any i ∈ [n], (a ⊕ b)i = ai ⊕ bi where
ai ⊕ bi is the bit XOR of ai and bi.

For the cryptographic primitives in this paper, we use λ for the security parameter. A negligible
function neg(λ) in λ are those functions that decay faster than the inverse of any polynomials. That
is, for all poly(λ), it holds that neg(λ) < 1

poly(λ) for all large enough λ.

Definition 3.1 (Negligible Function). A function ν : N 7→ [0, 1] is negligible, denoted ν(λ) =
neg(λ), if ν(λ) < 1/p(λ) for every p ∈ poly and large enough λ.

We use
R← to denote a random sample, e.g., r

R← {0, 1}n to sample n random bits. We use an
asterisk to denote an arbitrary-length string of tokens from a set of possible tokens, e.g., S∗ for a
given set S. Often, we use Un to represent the uniform distribution supported on {0, 1}n and

R← Un

to denote a random sample from the distribution, e.g., r
R← Un.

For an event E, P[E] is the probability of event E occurring. Let X and Y be random variables
taking values in a discrete universe U . We adopt the convention that, when the same random vari-
able appears multiple times in a specific expression, all occurrences refer to the same instantiation.
For example, P[Y = Y ] is 1. For an event E, we write X|E to denote the random variable X
conditioned on E. We let PX|Y [x|y] stand for P[X = x | Y = y]. The support of a random variable
X, denoted Supp(X), is defined as {x : P[X = x] > 0}. Let Un denote a random variable that is

uniform over {0, 1}n(λ). For t ∈ N, let X(t) = (X1, . . . , Xt), where X1, . . . , Xt are independent
copies of X. We write X ≡ Y to indicate that X and Y are identically distributed.

Definition 3.2 (Statistical Difference). We write SD(X,Y ) to denote the statistical difference
(also known as variational distance) between X and Y , i.e.,

SD(X,Y ) := max
T⊆U
|P[X ∈ T ]− P[Y ∈ T ]|.

If SD(X,Y ) ≤ ε [resp., SD(X,Y ) > ε], we say that X and Y are ε-close [resp., ε-far].

Indistinguishability Two random variables X = X(λ) and Y = Y (λ) are statistically indistin-
guishable, denoted X ≈s Y , if for any unbounded algorithm D, it holds that∣∣∣P[D(1λ, X(λ)) = 1]− P[D(1λ, Y (λ)) = 1]

∣∣∣ = neg(λ).

Note that this is equivalent to requiring that SD(X(λ), Y (λ)) = neg(λ).
Similarly, X and Y are computationally indistinguishable, denoted X ≈c Y , if∣∣∣P[D(1λ, X(λ)) = 1]− P[D(1λ, Y (λ)) = 1]

∣∣∣ = neg(λ),

for every ppt D.

3.2 Digital Signatures

A digital signature is a scheme used to verify the authenticity of digital documents or mes-
sages [DH76]. The recipient of a signed message should be able to confidently verify that the
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digital signature has not been forged by an adversary and that the message came from the pur-
ported sender [KL14]. It is known that signature schemes can be constructed from one-way func-
tions [Lam79, Rom90].

For generative models, we will embed the digital signature directly into the model output. We
rely on a public-key signature scheme with the following properties.

Definition 3.3 (Public-Key Signature Scheme). A public-key signature scheme S is a tuple of
algorithms S = (Gen,Sign,Verify) where:

• Gen(1λ)→ (sk, pk) outputs a key pair (sk, pk) with respect to the security parameter λ, where
(sk, pk) are the private key and public key, respectively.

• Signsk(m) → σ produces a signature σ, given a message m, using the secret signing key sk.
We denote the signature size |σ| by λσ.

• Verifypk(m,σ) → {true, false} outputs true or false, given a candidate message m and
signature σ, using the public verification key. Verifypk is a deterministic verification algorithm
that outputs true if and only if the message-signature pair is valid.

Except with negligible probability over (sk, pk) output by Gen(1λ), we require that

Verifypk(m,Signsk(m)) = 1,

for every legal message m. We call σ a valid signature on a message m if Verifypk(m,σ) = true.

Definition 3.4 (Unforgeability). For every adversary D, we have

P
[
Verifypk(m

∗,σ∗) = true :
(sk, pk)← Gen(1λ)

(m∗,σ∗)← DSignsk(·)(pk)

]
≤ neg(λ).

Here, the adversary gets oracle access to the signing oracle Signsk(·), but m∗ in the final forgery
output (m∗,σ∗) must have never been queried using the signing oracle. As a signature scheme, we
will require this property to guarantee that it is hard to forge a watermark.

3.2.1 Hash-and-Sign Paradigm

The Hash-and-Sign paradigm is an approach in the use of digital signature schemes that allows for
the signing of arbitrarily long model outputs.

It involves two main steps:

• Hashing : Before signing, the message is first fed to a (target) collision resistant hash function
to produce a fixed-size digest.

• Signing : The signer then applies a digital signature algorithm to the hash, rather than the
full message, to generate the signature.

As long as we have (target) collision-resistant hash functions, we can construct digital signa-
tures [GHR99].

Theorem 3.5 (Theorem 12.4 in [KL14]). If Π is a secure signature scheme for messages of length
ℓ and ΠH is target collision-resistant, then the construction in Algorithm 1 is a secure (unforgeable)
signature scheme for arbitrary-length messages, satisfying Definition 3.4.

10



Algorithm 1 HashAndSign Paradigm

1: Let Π = (Gen, Sign,Verify) be a signature scheme for messages of length ℓ(λ).
2: Let ΠH = (GenH , H) be a hash function with output length ℓ(λ).
3: Construct signature scheme Π′ = (Gen′,Sign′,Verify′) as follows:

• Gen′: on input 1λ:

– Run Gen(1λ) to obtain (sk, pk)

– Run GenH(1λ) to obtain r

– The public key is (pk, r) and the private key is (sk, r)

• Sign′: On input a private key (sk, r) and messagem ∈ {0, 1}∗, output Signsk(H(r ∥ m))→ σ

• Verify′: On input a public key (pk, r), a message m ∈ {0, 1}∗, and a signature σ, output
true if and only if Verifypk(H(r ∥ m),σ) is true.

3.3 Entropy Definitions

Throughout this paper, we refer to and use several measures of entropy. The entropy definitions
can be stated in terms of the sample entropy.

Definition 3.6 (Sample Entropy). For a random variable X and x ∈ Supp(X), the sample entropy
of x with respect to X is the quantity

HX(x) := log 1
P[X=x] ,

letting HX(x) =∞ for x /∈ Supp(X), and 2−∞ = 0.

For the specific sample x, the sample entropy measures the amount of “randomness” in x,
assuming that x has been generated according to X. Using this notion, we can define the Shannon
entropy H(X), min-entropy H∞(X), and max-entropy as follows.

Definition 3.7 (Shannon Entropy).

H(X) := E
x

R←X

[HX(x)].

Definition 3.8 (Min-Entropy).

H∞(X) := min
x∈Supp(X)

HX(x).

Definition 3.9 (Max-Entropy).

H0(X) := log |Supp(X)|.

Definition 3.10 (Collision Probability). The collision probability of X is

CP(X) :=
∑

x∈Supp(X)

PX [x]2 = P
(x,x′)

R←X2

[
x = x′

]
.
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This leads to a corresponding Rényi entropy as follows.

Definition 3.11 (Rényi Entropy).

H2(X) := − log CP(X).

It can be shown that
H∞(X) ≤ H2(X) ≤ H(X) ≤ H0(X).

Further, H∞(X) = H2(X) = H(X) = H0(X) if and only if X is flat (uniform on its support).
In general, stating that H∞(X) ≥ k is a strong way of saying that X has “high entropy” and

H0(X) ≤ k a strong way of saying that X has “low entropy”.
We will also be interested in conditional versions of entropy.

Definition 3.12 (Conditional Entropy). For jointly distributed random variables (X,Y ) and (x, y) ∈
Supp(X,Y ), the conditional sample-entropy is HX|Y (x|y) = log 1

PX|Y [x|y] = log 1
P[X=x|Y=y] . Then

the standard conditional Shannon entropy can be written as

H(X | Y ) = E
(x,y)

R←(X,Y )

[
H

X|Y
(x | y)

]
= E

y
R←Y

[H(X|Y=y)] = H(X,Y )−H(Y ).

3.4 Inaccessible Entropies

In this section, we recall definitions of real and accessible entropy from [HNO+09, HRVW09,
HHR+10, HV17].

3.4.1 Real Entropy

For a computable function F, we define the real entropy of F−1 to be the amount of entropy left
in the input after revealing the output. We measure the entropy using Shannon entropy (average
case), min-entropy, and max-entropy.

Let F : {0, 1}n(λ) → {0, 1}m and let F−1 : {0, 1}m → ({0, 1}n(λ))∗ where we define

F−1(y) = {x : F (x) = y},

and
F−1(Y) = {x : ∃y ∈ Y, x ∈ F−1(y)}.

Definition 3.13 (Real Entropy). Let n = n(λ) be a security parameter, and F : {0, 1}n(λ) 7→ {0, 1}m
a function. We say that F−1 has real Shannon entropy k if

H(X | F(X)) = k,

where X is uniformly distributed on {0, 1}n(λ). We say that F−1 has real min-entropy at least k if
there is a negligible function neg = neg(n(λ)) such that

P
x

R←X

[
H

X|F(X)
(x | F(x)) ≥ k

]
≥ 1− neg(n(λ)).

We say that F−1 has real max-entropy at most k if there is a negligible function neg = neg(n(λ))
such that

P
x

R←X

[
H

X|F(X)
(x | F(x)) ≤ k

]
≥ 1− neg(n(λ)).

12



It is easy to verify that, ignoring negligible terms, the min-entropy of F−1 is at most its Shannon
entropy, which in turn is at most its max-entropy, where equality holds only if F is regular.

We can construct universal one-way hash functions (UOWHFs) that are shrinking, achieving
high real entropy as a natural intermediate step. Indeed, the amount by which F shrinks is a lower
bound on the real entropy of F−1.

Proposition 3.14 (See [HHR+20]). If F : {0, 1}n(λ) 7→ {0, 1}m, then the real Shannon entropy of
F−1 is at least n−m, and the real min-entropy of F−1 is at least n−m− s for any s = ω(log n).

Proof. For Shannon entropy, we have

H(X | F(X)) ≥ H(X)−H(F(X)) ≥ n−m.

For min-entropy, let S = {y ∈ {0, 1}m : P[F(X) = y] < 2−m−s}. Then P[F(X) ∈ S] ≤ 2m ·
2−m−s = neg(n(λ)), and for every x such that F (x) /∈ S, we have

H
X|F(X)

(x | F(x)) = log
1

P[X = x | F(X) = F(x)]
= log

P[F(X) = F(x)]

P[X = x]
≥ log

2−m−s

2−n
= n−m− s.

□

3.4.2 Accessible Entropy

We define accessible entropy of F−1 using the notion of “collision-finding” algorithm, an algorithm
that aims to find a second-pre-image of F(X) with “maximal entropy”. The accessible entropy of
F will be defined as the entropy of the best efficient collision-finding algorithm.

Definition 3.15 (Collision Finding Algorithm). For a function F : {0, 1}n(λ) 7→ {0, 1}m, an F-

collision-finder is a randomized algorithm A such that for every x ∈ {0, 1}n(λ) and coin tosses r for
A, we have A(x; r) ∈ F−1(F(x)).

Note that A is required to always produce an input x′ ∈ {0, 1}n(λ) such that F(x) = F(x′).
This is a reasonable constraint because A has the option of outputting x′ = x if it does not find a
true collision. We consider A’s goal to be maximizing the entropy of its output x′ = A(x), given a
random input x.

It follows directly that if A is computationally unbounded, then the optimum is exactly equal to
the real entropy.

Proposition 3.16 (See [HHR+20]). Let F : {0, 1}n(λ) 7→ {0, 1}m. Then the real Shannon entropy
of F−1 equals the maximum of H(A(X;R) | X) over all (computationally unbounded) F-collision

finders A, where the random variable X is uniformly distributed in {0, 1}n(λ) and R is uniformly
random coin tosses for A. That is,

H(X | F(X)) = max
A

H(A(X;R) | X),

where the maximum is taken over all F-collision finders A.

13



Proof. Entropy is maximal when the random variable is flat. Thus, the “optimal” F-collision finder
A that maximizes H(A(X) | X) is the algorithm Ã that, on input x, outputs a uniformly random
element of F−1(F(x)). Then

H(Ã(X;R) | X) = E[log |F−1(F(X))|] = H(X | F(X)).

□

The notion of accessible entropy simply restricts the above to ppt algorithms. We consider
both Shannon and max-entropy variants (since we aim to upper bound the accessible entropy, we
do not consider the min-entropy variant).

Definition 3.17 (Accessible Entropy [HHR+20]). Let n(λ) be a security parameter and F : {0, 1}n(λ) 7→
{0, 1}m a function. We say that F−1 has accessible Shannon entropy at most k if for every ppt F-
collision-finder A, we have

H(A(X;R) | X) ≤ k

for all sufficiently large n(λ), where the random variable X is uniformly distributed on {0, 1}n(λ)
and R is uniformly random coin tosses for A.

We say that F−1 has p-accessible max-entropy at most k if for every ppt F-collision-finder A,
there exists a family of sets {L(x)}x∈Supp(X) each of size at most 2k, such that

P[A(X;R) ∈ L(X)] ≥ 1− p

for all sufficiently large n(λ), where the random variable X is uniformly distributed on {0, 1}n(λ)
and R is uniformly random coin tosses for A. In addition, if p = neg(n(λ)) for some negligible
function neg(·), then we simply say that F−1 has accessible max-entropy at most k.

It is straightforward to verify that, ignoring negligible terms, the accessible Shannon entropy
of F−1 is at most its accessible max-entropy, i.e., if the accessible max-entropy of F−1 is at most
k, then its accessible Shannon entropy is at most k. We will later, in Section 3.4.3, introduce an
in-between variant of accessible entropy that is larger than Shannon but smaller than max.

Having an upper bound on accessible entropy is useful as an intermediate step towards con-
structing UOWHFs since accessible max-entropy 0 is equivalent to target collision resistance (on
random inputs).

Definition 3.18 (q-collision-resistant). Let F : {0, 1}n(λ) 7→ {0, 1}m be a function and q = q(n) ∈
[0, 1]. We say that F is q-collision-resistant on random inputs if for every ppt F-collision-finder A,

P[A(X;R) = X] ≥ q,

for all sufficiently large n(λ), where the random variable X is uniformly distributed on {0, 1}n(λ)
and R is uniformly random coin tosses for A. In addition, if q = 1− neg(n(λ)) for some negligible
function neg(·), we say that F is collision-resistant on random inputs.

Lemma 3.19 (See [HHR+20]). Let n(λ) be a security parameter and F : {0, 1}n(λ) 7→ {0, 1}m be a
function. Then, for any p = p(n) ∈ (0, 1), the following statements are equivalent:

14



(1) F−1 has p-accessible max-entropy 0.

(2) F is (1− p)-collision-resistant on random inputs.

In particular, F−1 has accessible max-entropy 0 iff F is collision-resistant on random inputs.

Proof. Note that (1) implies (2) follows readily from the definition. To see that (2) implies (1),
simply take L(x) = {x}. □

While bounding p-accessible max-entropy with negligible p is our ultimate goal, one of our
constructions will work by first giving a bound on accessible Shannon entropy, and then deducing
a bound on p-accessible max-entropy for a value of p < 1 using the following lemma.

Lemma 3.20 (See [HHR+20]). Let n(λ) be a security parameter and F : {0, 1}n(λ) 7→ {0, 1}m be a
function. If F−1 has accessible Shannon entropy at most k, then F−1 has p-accessible max-entropy
at most k/p+O(2−k/p) for any p = p(n) ∈ (0, 1).

Proof. Fix any ppt F-collision-finder A. From the bound on accessible Shannon entropy, we have
that H(A(X;R) | X) ≤ k. Applying Markov’s inequality, we have

P
x

R←X,r
R←R

[
H

A(X;R)|X
(A(x; r) | x) ≤ k/p

]
≥ 1− p.

Take L(x) to be the set:

L(x) = {x} ∪
{
x′ : H

A(X;R)|X
(x′ | x) ≤ k/p

}
.

We may rewrite L(x) as {x}∪
{
x′ : Pr[A(x; r) = x′] ≥ 2−k/p

}
. Then it follows |L(x)| ≤ 2k/p+1 and

thus F−1 has p-accessible max-entropy at most k/p+O(2−k/p). □

Once we have a bound on p-accessible max-entropy for some p < 1, we must apply several
transformations to obtain a function with a good bound on neg(n)λ))-accessible max-entropy.

3.4.3 Accessible Average Max-Entropy

The second construction in [HHR+20] (which achieves better parameters) starts with a bound on
a different average-case form of accessible entropy, which is stronger than bounding the accessible
Shannon entropy. The benefit of this notion is that it can be converted more efficiently to neg(n(λ))-
accessible max-entropy, by simply taking repetitions.

To motivate the definition, recall that a bound on accessible Shannon entropy means that the
sample entropy HA(X;R)|X(x′ | x) is small on average over x

R← X and x′
R← A(x;R). This sample

entropy may depend on both the input x and the output x′ by the adversary (which in turn may
depend on its coin tosses). A stronger requirement is to say that we have upper bounds k(x) on
the sample entropy that depend only on x. The following definition captures this idea, thinking of
k(x) = log|L(x)|.
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Definition 3.21 (Accessible Average Max-Entropy [HHR+20]). Let n(λ) be a security parameter

and F : {0, 1}n(λ) 7→ {0, 1}m a function. We say that F−1 has accessible average max-entropy at most
k if for every ppt F-collision-finder A, there exists a family of sets {L(x)}x∈Supp(X) and a negligible
function neg = neg(n(λ)) such that x ∈ L(x) for all x ∈ Supp(X), E[log|L(X)|] ≤ k and

P[A(X;R) ∈ L(X)] ≥ 1− neg(n(λ)),

for all sufficiently large n(λ), where the random variable X is uniformly distributed on {0, 1}n(λ)
and R is uniformly random coin tosses for A.

It is easy to verify that, ignoring negligible terms, the accessible average max-entropy of F−1 is
at least its accessible Shannon entropy and at most its accessible max-entropy.

3.5 Hash Functions

Consider the family of functions F =
{
f : {0, 1}n(λ) 7→ {0, 1}m

}
. Here, F is explicit if given the

description of a function f ∈ F and x ∈ {0, 1}n(λ), the value f(x) can be computed in time

poly(n,m). F is constructible if it is explicit and there is a ppt that given x ∈ {0, 1}n(λ), and
y ∈ {0, 1}m, outputs a random f

R← F such that f(x) = y.
We will use two types of (combinatorial) hash functions.

3.5.1 Two-Universal Hashing

Definition 3.22 (Two-universal function family). A function family H = {h : D 7→ R} is two-
universal if for all x ̸= x′ ∈ D, it holds that P

h
R←H

[h(x) = h(x′)] ≤ 1/|R|.

An example of such a function family is the set Hs,t = {0, 1}s×t of Boolean matrices, where for
h ∈ Hs,t and x ∈ {0, 1}s, we let h(x) = h× x (i.e., the matrix vector product over GF2). Another
canonical example is Hs,t = {0, 1}s defined by h(x) := h · x over GF(2s), truncated to its first t
bits.

A useful application of two-universal hash functions is to convert a source of high Rényi entropy
to a (close to) uniform distribution.

Lemma 3.23 (Leftover hash lemma [ILL89, IZ89]). Let X be a random variable over {0, 1}n(λ)

with H2(X) ≥ k, let H =
{
g : {0, 1}n(λ) 7→ {0, 1}m

}
be two-universal, and let H

R←H. Then

SD((H,H(X)), (H,Um)) ≤ 1

2
· 2(m−k)/2,

where Um is uniform over {0, 1}m.

3.5.2 Many-Wise Independent Hashing

Definition 3.24 (ℓ-wise independent function family). A function family H = {h : D 7→ R} is

ℓ-wise independent if for any distinct x1, . . . , xℓ ∈ D, it holds that (H(x1), . . . ,H(xℓ)) for H
R←H is

uniform over Rℓ.
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The canonical example of such an ℓ-wise independent function family is Hs,t,ℓ = ({0, 1}s)ℓ
defined by

(h0, . . . , hℓ−i)(x) :=
∑

0≤i≤ℓ−1
hi · xi,

over GF(2s), truncated to its first t bits.
Notice that, for ℓ > 1, an ℓ-wise independent function family is also two-universal, but ℓ-wise

independent function families, in particular with larger value of ℓ, have stronger guarantees on their
output distribution compared with two-universal hashing.

3.6 One-Way Functions

A random oracle is a random function drawn uniformly randomly from the set of all possible
functions (over specific input and output domains). Random oracle models are commonly used in
cryptographic construction [BR93] to obtain guarantees of collision resistance. However, we can
rely on one-way functions to provide such guarantees.

Let us recall the standard definition of one-way functions.

Definition 3.25 (one-way functions). A polynomial-time computable f : {0, 1}λ 7→ {0, 1}∗ is one-
way if for every ppt A

P
y

R←f(Us(λ))

[
A(1λ, y) ∈ f−1(y)

]
= neg(λ). (1)

Without loss of generality, it can be assumed that s(λ) = λ and f is length-preserving (i.e.,
|f(x)| = |x|).

However, we actually only need a weaker notion of one-way functions, namely distributional one-
way functions. Such a function is easy to compute, but it is hard to compute uniformly random
preimages of random images.

Definition 3.26. A polynomial-time computable f : {0, 1}n(λ) → {0, 1}ℓ(λ) is distributional one-way,
if there exists a p ∈ poly such that

SD
(
(x, f(x))

x
R←{0,1}n(λ) , (A(1

λ, f(x)), f(x))
x

R←{0,1}n(λ)

)
≥ 1

p(λ)

for any pptm A and large enough n(λ).

3.7 Collision Resistance

To obtain guarantees of unforgeability, we can rely on collision resistance of hash functions [KL14,
HPS08]. However, universal one-way hash functions, as introduced by [NY89], are a weaker form
of collision-resistant hash functions.

Definition 3.27 (Collision-Resistant Functions). A function family F is collision-resistant if given
a randomly chosen function f ∈ F , it is infeasible to find any pair of distinct inputs x, x′ such that
f(x) = f(x′).

Universal one-way hash functions only require target collision resistance, where the adversary
must specify one of the inputs x before seeing the description of the function f .
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Definition 3.28 (Universal one-way hash functions). Let (x, state)
R← A(1λ).

A family of functions Fλ =
{
Fz : {0, 1}n(λ) 7→ {0, 1}m(λ)

}
z∈{0,1}λ

, for n(λ),m(λ) ∈ poly(λ), is

a family of universal one-way hash functions if it satisfies:

Efficiency: given z ∈ {0, 1}λ and x ∈ {0, 1}n(λ), Fz(x) can be evaluated in time poly(λ).

Shrinking: m(λ) < n(λ).

Target Collision Resistance: the probability that a ppt adversary A succeeds in the following
game is negligible in λ:

i. Let (x, state)
R← A(1λ).

- Abort if (x, state) /∈ {0, 1}n(λ) × {0, 1}∗.

ii. Let z
R←{0, 1}λ.

iii. Let x′
R← A(state, z).

- Abort if x′ /∈ {0, 1}n(λ).
iv. A succeeds if x ̸= x′ and Fz(x) = Fz(x

′).

For universal one-way hash function family, Fλ =
{
Fz : {0, 1}n(λ) 7→ {0, 1}m(λ)

}
, a function

Fz : {0, 1}n(λ) 7→ {0, 1}m(λ) has input length n(λ), key length λ, and output length m(λ).
The ← notation in the definition above corresponds to the following: on security parameter

1λ, algorithm A first samples an element x in the function family input domain. Then given the
description of a function Fz uniformly drawn from the family, algorithm A has to find a collision
with x: an element x′ ̸= x that Fz maps to the same output value.

3.8 Coding Theory Basics

We review basic notions in coding theory, most of which can be found in the text of MacWilliams
and Sloane [MS78].

The primary purpose of codes is to correct errors that occur over noisy communication channels.
Messages are encoded from a block of k message symbols u = u1u2 . . . uk into a codeword x =
x1x2 . . . xn where n ≥ k. A codeword can be decoded into the original message even if some of
the message symbols are corrupted. We measure the difference between messages or codewords in
terms of Hamming distance.

Definition 3.29 (Hamming Distance). For alphabet Σ (e.g., Σ = {0, 1}) and x,y ∈ Σn, define the
Hamming distance between x and y as:

dist(x,y) := |{i ∈ [n] : xi ̸= yi}|.

Now we define an error-correcting code.
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Definition 3.30 (Error-Correcting Code). For an alphabet Σ, an [n, k, d]Σ error-correcting code is
a 2-tuple (Encode,Decode) algorithm where Encode : Σk → Σn is an encoding algorithm such that
for all m,m′ ∈ Σk where m ̸= m′,

dist(Encode(m),Encode(m′)) ≥ d

and Decode : Σn → Σk is the decoding algorithm such that, for all messages m ∈ Σk and possibly
erroneous codewords c ∈ Σn, we have:

dist(Encode(m), c) ≤ emax =⇒ Decode(c) = m

where emax ≤ (d− 1)/2 is the maximum number of erroneous symbols that Decode can correct. We
denote the codeword size |c| by λc (i.e., the security parameter for the codeword).

We might write [n, k, d] to denote the code [n, k, d]{0,1} over the binary alphabet.
For an error-correcting code [n, k, d]Σ, n is the length of the code, k is the dimension, and d is

the minimum distance.

Definition 3.31 (Minimum Distance). The minimum distance (or simply distance) of a code is
the minimum Hamming distance between its codewords:

d = min
u,v∈Σk:u̸=v

dist(Encode(u),Encode(v)).

The number of errors that a code can correct is related to its distance.

Theorem 3.32 (Theorem 2 in [MS78]). A code with minimum distance d can correct ⌊12(d − 1)⌋
errors. If d is even, the code can simultaneously correct 1

2(d− 1) errors and detect d/2 errors.

An important property of codes is the rate.

Definition 3.33 (Rate). For an error-correcting code [n, k, d]Σ, the rate (or efficiency) is R = k/n.

We often measure the efficacy of codes in terms of the distance and the rate. The core problem
in coding theory is to find codes with large rate and large distance.

The following theorems give upper and lower bounds on the size of a code with a given minimum
distance.

Theorem 3.34 (Singleton Bound; see Theorem 11 in [MS78]). For error-correcting code with
parameters [n, k, d], n− k ≥ d− 1.

Theorem 3.35 (Gilbert-Varshamov Bound; see Theorem 12 in [MS78]). There exists a binary
linear code of length n, with at most r parity checks and minimum distance at least d, provided that

1 +

(
n− 1

1

)
+ · · ·+

(
n− 1

d− 2

)
< 2r.

These theorems imply the existence of good codes.
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4 Security Definitions

For watermarking of language model outputs, we provide security definitions for publicly-detectable
watermarking schemes. The definitions are derived from the main definitions of distortion-freeness
and unforgeability given in previous works [FGJ+25, CGZ23, CG24]. In the next section, we show
that the constructions satisfy the definitions.

4.1 Entities in Security Model

In most of the literature on watermarking of generative models, there are two distinct entities:
the model provider and the user. The model provider trains the generative model and provides
an interface to the model (e.g., through an API or direct user interface). The user, on the other
hand, is responsible for sending prompts to the model provider. Often, the user can be modeled as
an adversary against which the security and robustness properties must hold [Aar23, HKAAL23,
Aar22].

In our work, we generalize this entity modeling approach. We make no distinction between a user
and another language model to allow for interaction between artificial intelligence (AI) generative
agents. There are two roles any generative agent can take on: sender or receiver. This allows us
to model the interaction between the sender and receiver and import analyses from the literature
on multi-round cryptography and for our results to apply to multi-round cryptography [Geh98,
HHRS15, RRR19, AH91, GK96, Dam93].

4.1.1 Sender

The sender is a generative agent that is responsible for providing the response to a prompt sent by
a receiver. This agent provides the following service: given a prompt, it returns the model output
for that prompt based on its (already-trained) model. When necessary, an honest sender will run
the watermarking protocol at generation time to product the model output. At setup time, the
sender generates a secret key and public key. The secret key is used to generate the model output
if the output should be watermarked. The public key is used to detect the presence of a watermark
if the output is watermarked. The sender has (white-box) access to the weights of the model, as
well as to the private information for the watermarking scheme (e.g., the secret keys). However, in
this work, the sender does not need to have access to the weights of the model as modeled in some
previous works [ZWL24, ZGC+24, ZALW24, DMFZ22, TCH23].

4.1.2 Receiver

The receiver is a generative agent: a human user or another language model. The receiver generates
one or more prompts at different stages of the interaction. Each prompt consists of one or more
tokens that the language model can interpret and recognize. i.e., tokens are part of the vocabulary
of the language model. The receiver sends a prompt to the language model provider in exchange
for the model output. The receiver receives the model output and can test for the presence of
a watermark by running the public detection algorithm using the public key of the sender. A
receiver can become a sender at a later stage during the interaction between the agents. Also,
modeling the receiver interactions with the sender allows the results to apply to the information
hiding literature [Mou03, Mou05, MK05, HLW+24, HLW+25].
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4.2 Generative Model

Our results could apply for more general classes of generative models. However, we primarily
assume that the generative model is an auto-regressive model:

Definition 4.1 (Auto-regressive Model). An auto-regressive model Model over token vocabulary
T is a deterministic algorithm that takes in a prompt ρ ∈ T ∗ and tokens previously output by the
model t ∈ T ∗ and outputs a probability distribution p = Model(ρ, t) over T .

GenModel uses Model as an oracle to implement a generative model as shown in Algorithm 2.
We use Model and GenModel in subsequent definitions and proofs. We use subscript notation as
shorthand for the N input, i.e., GenModelN (ρ) = GenModel(N,ρ).

Algorithm 2 GenModel

1: input: N , ρ
2: t← ()
3: for i = 1 to N do
4: t← t ∥ LMDecode(Model(ρ, t))
5: end for
6: output: t

LMDecode is the specific decoding method that implements multinomial sampling algorithm. It is
used to sample from Model. The GenModel procedure is used to iteratively generate any number
of tokens. LMDecode is the specific decoding method.

4.3 Definitions

Now, we can formally define the publicly-detectable watermarking scheme, which should satisfy
soundness, completeness, (weak) robustness, and the distortion-free property. The watermarking
schemes in this paper meets these definitions.

4.3.1 Publicly-Detectable Watermarking Scheme

Definition 4.2 (Publicly-Detectable Watermarking Scheme). A (∆s,∆c,∆r)-publicly-detectable
watermarking scheme WatScheme for a model Model over token vocabulary T is a tuple of algorithms
WatScheme = (Setup,Watermark,Detect) where:

• Setup(1λ) → (sk, pk) outputs a key pair (sk, pk) with respect to the security parameter λ. sk
is the secret key whereas pk is the public key.

• Watermarksk(ρ)
R→ t produces response output t ∈ T ∗ given a prompt ρ ∈ T ∗. The water-

marking algorithm requires the secret key sk.

• Detectpk(t
∗) → {true, false} outputs true or false given a candidate watermarked output

t∗. The detection algorithm requires the public key pk.
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The algorithms (Setup,Watermark,Detect) can be implemented in time that is polynomial in the
security parameter(s). AWatScheme scheme is considered secure if the following security definitions
are met.

4.3.2 Soundness

Definition 4.3 (Soundness/Unforgeability). A WatScheme is ∆s-sound if any adversary D cannot
generate watermarked output given the public detection key and any polynomial number of genuinely-
watermarked outputs. That is, the following must be satisfied:

P
[

Detectpk(t
∗) = true ∧

non overlappingk(t
∗, t1, t2, . . .) = true

:
(sk, pk)← Setup(1λ)

t∗ ← DWatermarksk(·)(pk)

]
≤ neg(λ).

Here, the adversary is allowed to make a polynomial number of queries to the oracle Watermarksk(·).
We use t1, t2, . . . to denote the watermarked output that the adversary receives as output when it
queries the model Watermarksk(·). The predicate non overlapping∆s

(t∗, t1, t2, . . .) outputs true if
t∗ does not share a ∆s-length window of tokens with any of the genuinely-watermarked outputs
t1, t2, . . . and outputs false otherwise.

Unforgeability as soundness We provided some intuition for the soundness definition. If the
adversary manages to output t∗ that is labeled as watermarked, it must be the case that the
adversary copied a sufficiently long sequence of tokens from the genuinely-watermarked outputs it
received from the model (i.e., t1, t2, . . .). This implies that any attempted forgery of a watermarked
message must contain an overwhelming portion of tokens from genuinely watermarked output. This
notion of unforgeability is parametrized by the overlapping length ∆s. The larger ∆s is, the more
sound our scheme is. Looking ahead, the main constructions are flexible in that, for any desired
overlapping parameter ∆s, the construction can be adapted to meet the corresponding soundness
guarantee.

4.3.3 Completeness

Definition 4.4 (Completeness). A WatScheme is ∆c-complete if for every prompt ρ and token
sequence t ∈ T ∗ of length |t| ≥ ∆c, it holds that

P
[
Detectpk(t) = false :

(sk, pk)← Setup(1λ)
t←Watermarksk(ρ)

]
≤ neg(λ).

The ∆c-completeness ensures that output of sufficient length that was watermarked with the
honest protocol results in non-detection only with negligible probability. As noted by [FGJ+25],
this definition is an asymmetric-key analogue of the symmetric-key completeness definition in [CGZ23].

As noted by previous work of [KGW+23, CGZ23], completeness is not straightforward to satisfy
when the response to the prompt has low-entropy. However, the watermarking algorithm can
acquire more “empirical entropy” via increasing the output length [CGZ23] or use error-correction
to handle low-entropy periods [FGJ+25, CG24] during generation.
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4.3.4 Robustnesss

Definition 4.5 (Robustness). A publicly-detectable watermarking scheme is ∆r-robust if, for every
prompt ρ and security parameter λ,

P
[
Detectpk(D(t)) = false :

(sk, pk)← Setup(1λ)
t←Watermarksk(ρ)

]
≤ neg(λ)

where the adversary is allowed to transform the input tokens t however it pleases so long as a
∆r-length contiguous sequence of tokens remains. Let t∗ be the adversarially-modified output (i.e.
t∗ ← D(t)). Then, there must exist a ∆r-length window of tokens in t∗ that exactly matches a
∆r-length window in t.

The robustness definition is meant to ensure the following: as long as a ∆r-length contiguous
sequence of tokens is preserved, the watermarked is also preserved.

Relationships between ∆s, ∆c, and ∆r As noted by the previous work of [FGJ+25], it must be
that ∆s ≤ ∆c ≤ ∆r. Intuitively, the watermarking scheme requires at least ∆c tokens to embed a
watermark. Thus, any block of ∆r consecutive tokens is guaranteed to contain a block of ∆c tokens
that embeds the watermark. Additionally, any adversary that forges an accepting watermarked
output must copy a segment of at least ∆s tokens from the observed watermarked test.

4.3.5 Distortion-Free Property

The notion of distortion-freeness ensures that the watermarking algorithm does not noticeably
change the quality of the model output. Without the public detection key, no ppt machine can
distinguish between watermarked output (from DModel,Watermark) and non-watermarked output (from
DModel,GenModel).

Definition 4.6 (Distortion-freeness). A WatScheme is (computationally) distortion-free if, for all
ppt distinguishers D,∣∣P[DModel,GenModel(1λ) = 1

]
− P(sk,pk)←Setup(1λ)

[
DModel,Watermark(1λ) = 1

]∣∣ ≤ neg(λ),

where λ is the security parameter.

The distortion-free property is very similar to the “undetectability” notion from previous work
of [CGZ23]. We will refer to the notion as distortion-free so as not to confuse the reader with the
property of public-detectability of the watermark scheme.

5 Constructions

Our constructions are similar to those of previous work of Fairoze, Garg, Jha, Mahloujifar, Mah-
moody, and Wang [FGJ+25], which we build upon. However there are important differences, as
follows.

i. Random Oracles: They assume access to a random oracle. In our work, we instead make
the minimal assumption of one-way functions (specifically, one-way permutations) and use it
to construct distortion-free and unforgeable watermarking schemes.
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ii. Inaccessible Entropy: We leverage the framework of inaccessible entropy [HRVW09] to
analyze the model output generation and detection phases. During the generation and detec-
tion phases, hash error-correcting functions (Definition 5.1) are used to encode the generated
message-signature pair and recover the signature. The generated codewords would be pseu-
dorandom to a computationally bounded adversary. The analysis of the construction that
satisfies Definition 5.1 is done via the framework of inaccessible entropy. We believe that our
techniques extend beyond this particular use-case for watermarking.

iii. Min-Entropy Assumptions: The previous work of [FGJ+25] assume min-entropy lower
bounds on the token sampling distribution. We find that such min-entropy lower bound
assumptions are not needed. In particular, our security guarantees do not assume that the
min-entropy of the token sampling distribution is high. (Intuitively, this is because of how we
use the hashing strategies. In addition, you can always amplify the min-entropy of the output
via, for example, the direct product operation on the hashing mechanism. See Lemma A.7.)
Another approach to circumvent the min-entropy assumption is to use the “empirical entropy”
approach of [CGZ23, CG24] used to collect more entropy from the token sampling distribution.

5.1 High-Level Discussion on Approach

The construction has two major components: one for the generation of the auto-regressive model
tokens and the other for the detection of whether the tokens are generated from watermarked
schemes or not. The generation algorithm is private (i.e., a private key is used to generate the
output) while the detection phase is public (i.e., the public key is needed for detection).

The constructions adhere to Definition 4.2 for publicly-detectable watermarks. (See Section 4
for the suite of security definitions.) The constructions for output generation and detection form
a publicly-detectable watermark. See Algorithm 3, Algorithm 4, and Algorithm 7 for the setup,
output generation, and detection algorithms, respectively.

Prior to watermarking or detection, the Setup algorithm (Algorithm 3) is used to initialize
the secret key (sk, r) and public key (pk, r) where sk and pk are generated by the native signature
key generation algorithm and r is a uniformly random string to seed the hash functions. See the
Hash-and-Sign paradigm review in the preliminaries (Section 3.2.1). Theorem 3.5 shows that using
an already-secure signature scheme for fixed-length messages and a target collision-resistant hash
function, there exists a secure scheme for arbitrary-length messages. This brings positive news
since language model outputs can be of arbitrary length. Thus, our approach for security would
be to prove that the insecurity of our model would contradict the insecurity of secure signature
schemes. Thus, our model must be secure (according to Definition 3.4).

The main watermarking scheme (Algorithm 4) uses a fixed-length prompt (denoted ρ) to gener-
ate N total tokens. GenModel (Algorithm 2) is able to generate any number of (non-watermarked)
tokens using the auto-regressive model Model. For some settings of ℓ, λc, exactly (ℓ+ ℓ · λc) tokens
are used to map the message (the N total tokens to be generated) to a signature. In other words,
the (ℓ+ℓ ·λc) tokens represent a message-signature pair. We only need one such for detectability of
the watermark. Once the message-signature pair is planted in the sequence of tokens t, then N−|t|
more tokens can be generated to complete the response of length N . Note that N is an arbitrary
length but the settings of ℓ, λc have to be such that N ≥ (ℓ+ ℓ ·λc). The procedure to generate the
message-signature pair is imported from [FGJ+25] with a few modifications in how the codewords
are generated. The use of error-correcting codes enables low-entropy periods. Further, the codes
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Algorithm 3 Setup

1: input: 1λ

2: r
R← {0, 1}λ

3: sk, pk← Gen(1λ)
4: output: (sk, r), (pk, r)

Setup denotes the key generation algorithm for the watermarking procedure. It relies on Gen, a
key generation procedure for a digital signature scheme (see Section 3.2). Gen produces a secret
key sk and public key pk. Also, a random string r is generated in Setup. r is used to seed the hash
functions that will be used to implement the Hash-and-Sign paradigm (see Section 3.2.1) that will
ensure the distortion-free property.

satisfy security properties to enforce the distortion-free property. See Definition 5.1.
The detection phase is accomplished via Algorithm 7. Essentially, a linear search (with a window

determined by ℓ) is done over the N tokens until a message and signature pair can be recovered.
Next, we describe the assumptions we make.

5.2 Assumptions

Previous work of Fairoze et al. [FGJ+25] assumed that any contiguous block of ℓ tokens is lower
bounded by a min-entropy threshold. That is, there exists some t > 0 such that no particular
sample is more than 2−t likely to happen in any ℓ-length contiguous group of tokens. There are
few ways to alleviate this assumption. One immediate way is to increase the length ℓ until the
“empirical entropy” is guaranteed to be at least (a constant multiple of) the security parameters.
Then through an analysis similar to that used by Christ et al. [CGZ23], one can argue that the
security can be broken with exponentially small probability in the security parameters. This is
essentially what we accomplish: we can argue that the input to the hash function has enough
min-entropy and the construction of the hash function allows for amplifying the min-entropy of the
hash outputs (up to a point that does not violate the data processing inequality).

In the algorithms, the parameter ℓ effectively serves as a parameter to tune the trade-off between
robustness and distortion-freeness. Higher ℓ values lead to more distortion-free text at the cost of
robustness and vice versa. This has been discussed in [FGJ+25].

In order to avoid relying on random oracles, we use one-way permutations to construct hash
error-correcting functions (Definition 5.1). First, the functions are used to enforce the distortion-free
property of the watermarked (i.e., a computationally bounded adversary cannot tell the difference
between watermarked and non-watermarked model outputs). These functions also enable tolerating
low-entropy periods. In fact, the maximum number of low-entropy periods the scheme can tolerate
is exactly the maximum number of errors that the underlying hash error-correcting functions scheme
can correct (Lemma 5.3). Furthermore, there always exists constructions of Definition 5.1 that can
withstand the maximum number of low-entropy periods (Lemma 5.4).
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Algorithm 4 Watermark

1: input: (sk, r), ρ, N , ℓ, λc, amax, emax

2: t← ()
3: while |t|+ (ℓ+ ℓ · λc) < N do
4: t← GenerateMessageSignaturePair(ρ, t, amax, emax)
5: end while
6: if |t| < N then
7: t← t ∥ GenModelN−|t|(ρ, t)
8: end if
9: output: t

Watermark is the overarching watermarking algorithm. Given input prompt ρ, the algorithm gen-
erates N watermarked tokens in response to the prompt.

Algorithm 5 GenerateMessageSignaturePair

1: input: ρ, t, amax, emax

2: t← t ∥ GenModelℓ(ρ)
3: σ ← Signsk(Hpk,1(r ∥ t[−ℓ:]))
4: c← HashEncodepk(r ∥ t[−ℓ:],σ)
5: m, cprev ← (), ()
6: e← 0
7: while c ̸= () do
8: c, c← c[0], c[1:]
9: t,m, cprev ← RejectSampleTokens(c, t,m, cprev, e, amax, emax)

10: end while
11: output: t

GenerateMessageSignaturePair is the main procedure that is responsible for “planting” the message-
signature pair gadget into the ℓ+ ℓ · λc tokens. The ℓ-length message is sampled directly from the
underlying auto-regressive model. Then the message is signed to obtain σ. Then an encoding of σ
is obtained as c which will be embedded into ℓ · λc tokens via a rejection sampling procedure.

26



Algorithm 6 RejectSampleTokens

1: input: c, t,m, cprev, e, amax, emax

2: a← 0
3: xbest, dbest ← (),∞
4: repeat
5: x← GenModelℓ(ρ, t)
6: a← a+ 1
7: d← dist(Hpk,2(r ∥m ∥ x ∥ cprev), c)
8: if d < dbest then
9: dbest,xbest ← d,x

10: end if
11: if (a > amax ∧ e < emax) then
12: x← xbest

13: e← e+ 1
14: break
15: end if
16: until Hpk,2(r ∥m ∥ x ∥ cprev) = c
17: m←m ∥ x
18: t← t ∥ x
19: cprev ← cprev ∥ c
20: output: t,m, cprev

RejectSampleTokens implements the rejection sampling loop from the previous work of [FGJ+25].
It is used to generate ℓ tokens such that each contiguous block of ℓ tokens encodes one bit of
information.
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5.3 Output Generation

Algorithm 4 is used for generating the watermarked output. Note that the construction can be
applied repeatedly to generate arbitrarily long outputs from the model. The core idea is to embed
a message and a corresponding publicly-verifiable signature in the generated text. The message-
signature pair should be extractable during detection. Once extracted, it can be verified using the
public key.

Once a single message-signature pair is embedded in the output, the watermark has been planted
in the output. To perform watermarking, the first step is to sample a fixed number of tokens
determined by the parameter ℓ. Ideally, the entropy of the tokens will be large enough to plant the
message-signature pair. But even if it is not large enough, we rely on error-correction to plant the
message-signature pair regardless of the entropy requirement. Then the planted message-signature
can be error-corrected during the detection phase. The ℓ tokens are generated using the prompt ρ.
The generated t is used to denote the ℓ generated from the underlying autoregressive model.

The generated t is then hashed, signed, and encoded. It is known that not every codeword is a
pseudorandom string [CG24]. Therefore, directly embedding the codeword distorts the distribution
of the resulting output. Then using implementations for Definition 5.1, we can generate codewords
that satisfy the pseudorandomness property that prevents detectability of the model outputs. One
direct way to handle the problem of regaining pseudorandomness is to use a one-time pad on the
codeword. This is the approach taken by [FGJ+25]. In our work, we circumvent the use of one-time
pads and random oracles.

To do so, we encode c ← HashEncodepk(r ∥ t,σ) where HashEncodepk is the encoding function
for the hash error-correcting primitive. The seed r is used for the hash functions to ensure com-
putational indistinguishability. Then the pseudorandom signature codeword c is computed and
embedded into the model output.

Then the construct attempts to embed each bit of the pseudorandom codeword into the block
of tokens of length ℓ. If the length of each codeword is λc, this results in a plant of length ℓ ·λc. The
rejection sampling procedure of [FGJ+25] is used (Algorithm 6). A number of attempts (denoted
by amax) are made to find the best next ℓ tokens that hash to the next 1 embedded bit. During such
attempts, a fresh block of length ℓ is sampled. The tokens are rejected if the resulting hash does not
match with the codeword bit: For the bit c that is part of the codeword, Hpk,2(r ∥m ∥ x ∥ cprev) is
computed (for fresh token samples x) until it matches with the bit c. After amax attempts, a “noisy
version” of c is used instead (i.e., Hpk,2(r ∥ m ∥ x ∥ cprev)). This is why the resulting codeword
would need to be error-corrected eventually in the detection phase via Algorithm 7.

Even though the “planting” of bits of the codeword is done bit-by-bit, as noted by [FGJ+25],
a contiguous sequence of bits of the codewords could be used instead. For simplicity and clarity,
we focus on planting the codewords bit-by-bit. If more than one bit of the codeword is planted at
a time, the procedure (Algorithm 6) is written to take advantage of the distance between Hpk,2(r ∥
m ∥ x ∥ cprev) and the bits from the codeword.

The input to the hash Hpk,2 depends on all previous inputs to hashes for the current signature
codeword. Once the codeword bit matches with the output of the hash function (or after amax

attempts if the output does not match with the codeword bit), we accept the token block and move
on to the next 1 bit of the signature codeword.

As done in [FGJ+25], at the end of the rejection sampling process, the signature will be embed-
ded in ℓ ·λc tokens where λc is the length of the signature codeword. This corresponds to embedded
one message-signature pair in the generated output of the model. Depending on the preference of
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Algorithm 7 Detect

1: input: (pk, r), N , ℓ, λc, t
′

2: for i ∈ {0, . . . , N − (ℓ+ ℓ · λc)} do
3: t← Hpk,1(r ∥ t′[i:i+ℓ])

4: m, c′ ← (), ()
5: for j ∈ {0, . . . , λc − 1} do
6: m←m ∥ t′[(i+ℓ+1)+(j·ℓ):(i+ℓ+1)+((j+1)·ℓ)]
7: c′ ← c′ ∥ Hpk,2(r ∥m ∥ c′)
8: end for
9: σ ← HashDecodepk(c

′, r ∥ t′[i:i+ℓ])

10: if Verifypk(t,σ) = true then
11: output: true
12: end if
13: end for
14: output: false

The watermark detection algorithm is Detect. Given a (potentially watermarked) input t′, it
searches for a single embedded message-signature pair that passes authentication. If one such pair
is found, the input text is flagged as watermarked.

the watermark designer, the process can be repeated to embed multiple message-signature pairs
for better security guarantees.

Also, amax is the parameter that is used to control how many times fresh tokens can be resampled
during the rejection sampling loop until the loop condition is satisfied. And emax is the maximum
number of errors that (HashEncodepk,HashDecodepk) can correct. This quantity can be determined
based on the construction of the code (i.e., based on the distance of the underlying error-correcting
code).

5.4 Output Detection

As previously noted, even though the token generation process requires a secret key, the detection
phase only requires the public key. Given some input that could be watermarked, Algorithm 7
performs an exhaustive search on ℓ-length tokens to extract a message-signature pair that is verified
via the public verification scheme of the underlying signature Verifypk.

Specifically, in Algorithm 7, we iterate over all token windows of length ℓ. Once the message t is
assigned, the signature is iteratively reconstructed. Since we employed the encoding function from
the hash error-correcting function family, we would need to apply the decoding function during the
detection phase. Error correction is used to handle the cases where the entropy is low to embed
the bits of the codewords. This is what Line 9, σ ← HashDecodepk(c

′, r ∥ t′[i:i+ℓ]), accomplishes.
If the signature verification step passes at least once, then we know with overwhelming proba-

bility the text was watermarked (refer to Lemma 5.7). At the end of the procedure, if no message-
signature pair passes verification, then we can conclude that the model was not watermarked (refer
to Lemma 5.6). The security of the scheme depends on the underlying security of the signature
scheme. See Section 3.2.
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5.5 Encoding and Decoding

To obtain the security properties outlined in Section 4, we can rely on the hash-and-sign paradigm
outlined in Section 3.2.1. Theorem 3.5 implies that as long we have access to an underlying signature
scheme, we can get a secure scheme via σ ← Signsk(Hpk,1(r ∥ t[−ℓ:])) in Algorithm 5.

However, σ is a string of bits that cannot be directly embedded in the model output as that
would render the model output detectable (and thus violate Definition 4.6). So, instead we can
encode the signature σ into the model output so that the model remains distortion-free. However,
we must also be able to recover the signature σ during the detection phase. This motivates our
definition (Definition 5.1) and use of HashEncodepk,HashDecodepk.

In the watermarking scheme, there are two methods for encoding and decoding into codewords
that can preserve the distortion-free property. In Algorithm 5, after signing the message, the
following line is used to encode the signature:

c← HashEncodepk(r ∥ t[−ℓ:],σ).

In Algorithm 7, the following line is used to recover the signature during the detection phase:

σ ← HashDecodepk(c
′, r ∥ t′[i:i+ℓ]).

Thus, HashEncodepk and HashDecodepk ensure that we can encode and decode the signature
into codewords that satisfy target collision resistance.

Definition 5.1 (HashEncodez,HashDecodez). Let λ be the security parameter and z ∈ {0, 1}λ. Also,
let σ be a signature, m be a message, and c be a codeword. We denote (HashEncodez,HashDecodez)
as Hash Error-Correcting functions that satisfy the following:

• Error-Correcting: HashDecodez(HashEncodez(m,σ),m) = σ with probability at least 1 −
neg(λ).

• Target Collision Resistance: For every codeword c and message-signature pair (m,σ)
such that c← HashEncodez(m,σ), only with probability at most neg(λ) can a ppt adversary
find (m′,σ′) such that (m,σ) ̸= (m′,σ′) and c = HashEncodez(m,σ) = HashEncodez(m

′,σ′).

We show a construction of a family of (HashEncodez,HashDecodez) functions, as follows.

Theorem 5.2 (See Theorem A.2). Let λ be the security parameter. Suppose there exists a one-
way permutation f : {0, 1}λ 7→ {0, 1}λ. Then, there exists a family of (HashEncodez,HashDecodez)
functions with codeword length Õ(λ7). That is, for any k ∈ N such that k ≤ m(λ) < n(λ), there
exists a family of functions{

HashEncodez : {0, 1}n(λ) × {0, 1}k 7→ {0, 1}m(λ)
}
z∈{0,1}λ

,

{
HashDecodez : {0, 1}m(λ) × {0, 1}n(λ) 7→ {0, 1}k

}
z∈{0,1}λ

,

where m(λ) = Õ(λ7) and satisfies the properties in Definition 5.1.
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There are some main goals that Theorem 5.2 is meant to accomplish: (1) The message-signature
pair should be able to be encoded and that, given the message, the signature should be able to be
decoded; (2) The probability of finding message-signature pairs that result in a codeword collision
should be negligible (with respect to the security parameter).

There are a few ways to construct (HashEncodez,HashDecodez). But intuitively, it can be built
“on top” of an error-correcting code (Encode,Decode) and hash function Hz where HashEncodez(m,σ) =
Encode(σ) ⊕ Hz(m) and HashDecodez(c,m) = Decode(Hz(m) ⊕ c). Then clearly the collision-
resistance of Hz would transfer to (HashEncodez,HashDecodez). Furthermore, the error-correcting
of (Encode,Decode) would transfer to the error-correcing abilities of (HashEncodez,HashDecodez)
since Hz(m)⊕ Hz(m) will equals the all-zeros string.

For some pk ∈ {0, 1}λ, we note that the use of (HashEncodepk,HashDecodepk) allows for the
watermarking scheme to tolerate low-entropy prompts. A low-entropy period is a block of ℓ tokens
that do not hash to the bit value of the codeword.

Lemma 5.3. Let pk ∈ {0, 1}λ. The number of low-entropy periods that the watermarking scheme
can handle is at most the number of errors that (HashEncodepk,HashDecodepk) can correct.

Proof. Consider the rejection sampling loop in Algorithm 6. Fix r, m, x, cprev. If c is the codeword,
then an iteration corresponds to some i ∈ [λc] and ci = c. Recall that Hpk,2 is target collision
resistant.

In iteration i, at most amax attempts are made to sample x such that the following condition is
satisfied: Hpk,2(r ∥m ∥ x ∥ cprev) = c. After the (failed) attempts, instead of c, 1−c = Hpk,2(r ∥m ∥
x ∥ cprev) would be used to plant x. This corresponds to an error occurring due to the low-entropy
of the sampling distribution. In particular, instead of the encoding c = c1c2 . . . ci . . . cλc being used
to plant x, c′ = c1c2 . . . (1− ci) . . . cλc is used instead.

An error has occurred on bit i of c. And this occurred exactly because the output of the hash
did not change after a few attempts (i.e., the sampling distribution from which x was sampled
from has low-entropy). As a result, an error would occur as many times as there are low-entropy
sampling periods. So, the maximum number of low-entropy periods the scheme can handle is at
most the number of errors that (HashEncodepk,HashDecodepk) can correct.

□

Lemma 5.4. There exists (HashEncodepk,HashDecodepk) function families such that the scheme
WatScheme can withstand the maximum number of low-entropy periods.

Proof. Fix a token sampling distribution from which GenModel generates tokens from in the
Watermark procedure (Algorithm 4). Fix parameters N, ℓ ∈ N in Algorithm 4. Then by Lemma 5.3,
we just have to show the existence of codes that can correct as many errors as there are low-entropy
periods. It might be helpful to consider (HashEncodepk,HashDecodepk) to be equivalent to:{

HashEncodez,p : {0, 1}k 7→ {0, 1}m(λ)
}
z∈{0,1}λ,p∈{0,1}n(λ)

={
HashEncodez : {0, 1}n(λ) × {0, 1}k 7→ {0, 1}m(λ)

}
z∈{0,1}λ

,

{
HashDecodez,p : {0, 1}m(λ) 7→ {0, 1}k

}
z∈{0,1}λ,p∈{0,1}n(λ)

={
HashDecodez : {0, 1}m(λ) × {0, 1}n(λ) 7→ {0, 1}k

}
z∈{0,1}λ

.
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Thus, (HashEncodez,p,HashDecodez,p)z∈{0,1}λ,p∈{0,1}n(λ) are just error-correcting codes (Defini-

tion 3.30). By Theorem 3.32, codes with minimum distance d can correct at most e = ⌊12(d − 1)⌋
errors. For some ℓ ∈ N, note that the maximum number of low-entropy periods that Watermark
(Algorithm 4) will encounter is the number of errors the error-correcting code can handle. So the
code distance can be adjusted appropriately. By Theorem 3.35, for some m(λ) there exists codes to
instantiate (HashEncodez,p,HashDecodez,p) that can correct e errors which is equivalent to distance
at least 2⌈e⌉+1. This can be accomplished by appropriately adjusting m(λ) = λc until it matches
the bound given in Theorem 3.35 for the fixed distance of 2⌈e⌉+ 1.

□

5.6 Security and Robustness Properties

In this section, we show that the watermarking scheme WatScheme = (Setup,Watermark,Detect)
defined via Algorithms 3, 4 and 7 satisfies security and robustness properties outlined in Section 4.

The analysis of robustness and security will follow from our use of hash functions in the algo-
rithms: the hash error-correcting functions (Definition 5.1) and universal one-way hash functions
(Definition 3.28).

Recall the hash functions are of the form:

Hpk,1 : {0, 1}∗ 7→ {0, 1}λσ , Hpk,2 : {0, 1}∗ 7→ {0, 1},

where λσ = |σ| ≥ λ, σ is the signature, and Hpk,2 is the hash function that outputs a single bit

(e.g., derived from any bit from the result of Hpk,2 : {0, 1}∗ 7→ {0, 1}λc), and

HashEncodepk : {0, 1}∗ × {0, 1}λσ 7→ {0, 1}λc ,

where λc = |c| ≥ λ, c is the codeword used to encode the message-signature pair.
Both Hpk,1,Hpk,2 will be instantiated as universal one-way hash functions which can be con-

structed via one-way permutations. Naor and Yung [NY89] showed that digital signatures can
be constructed from universal one-way hash functions (UOWHF). In particular, they show that
the random oracle assumption is not necessary to construct UOWHF. In a similar fashion, we
show that the random oracle assumption is not necessary for publicly-verifiable watermarking. See
Theorem B.2 that can be used to instantiate Hpk,1,Hpk,2.

HashEncodepk satisfies properties outlined in Definition 5.1. See Theorem 5.2 that can be
used to instantiate HashEncodepk. The analysis follows by building on the work of Haitner et
al. [HHR+20, HHR+10] that provide the framework of inaccessible entropy.

We will prove the following theorem.

Theorem 5.5. Suppose there exists a one-way function. Let λc be the length of the codewords in
WatScheme. For any λc, ℓ,N ∈ N, the scheme WatScheme defined in Algorithms 3, 4 and 7 is an
(ℓ, ℓ+ ℓ · λc, 2(ℓ+ ℓ · λc))-publicly-detectable watermark that satisfies Definition 4.2.

Theorem 5.5 follows immediately from the following:

• It is known that one-way functions can be used to construct the underlying digital signature
that satisfies Definition 3.3 [Lam79, Rom90].

• Lemmas 5.6 to 5.9.
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First, we consider soundness. Output that is not watermarked by WatScheme should not be
marked as watermarked during the detection phase.

Lemma 5.6 (Soundness). WatScheme is an ℓ-sound (Definition 4.3) publicly-detectable water-
marking scheme.

Proof. We can show this via contradiction: the violation of the soundness property (Definition 4.3)
would lead to a violation of the unforgeability property of the underlying signature scheme.

Recall that from Definition 3.3, for any message m ∈ {0, 1}∗, Signsk(m), Verifypk(m,σ) are for
signing and verifying the message. Theorem 3.5 implies the unforgeability property (Definition 3.4)
of the hash-and-sign paradigm outlined in Algorithm 1. Let D be an adversary that breaks the
ℓ-soundness of the watermarking scheme. Then consider the following adversary D′ that can break
the unforgeability of the underlying signature scheme: D′ will use D to break Definition 4.3. D′

will also use an external signing oracle to obtain new signatures that it feeds to D to break the
soundness guarantee in Definition 4.3 with a greater-than-negligible probability. This means that
D can output contiguous blocks of tokens which a detector will say is watermarked. The detector
will say the block of tokens is watermarked if and only if a message-signature pair (denote by (t,σ))
has been extracted. By Definition 4.3, no ℓ-length sub-string of the output of D is a sub-string of
the watermarked outputs that D has received previously. But recall that t is the output of the hash
Hpk,1 on ℓ consecutive tokens. By the target collision-resistance property of Hpk,1, with probability
at least 1 − neg(λ), t has not previously appeared in any of the oracle queries of D′. This must
mean that D′ is able to violate Definition 3.4. Thus D′ breaks the unforgeability of the underlying
signature scheme.

□

Next, we consider the completeness guarantee. Output that is watermarked by WatScheme
should be detectable by WatScheme.

Lemma 5.7 (Completeness). Let λc be the length of the codewords in WatScheme. For any
λc, ℓ,N ∈ N, WatScheme is a (ℓ+ ℓ ·λc)-complete (Definition 4.4) publicly detectable watermarking
scheme.

Proof. To satisfy Definition 4.4, we need only show that with only with neg(λ) probability will
watermarked output with (ℓ+ ℓ · λc) tokens fail to be detected.

In Algorithm 5, c ← HashEncodepk(r ∥ t[−ℓ:],σ) is used to encode the last ℓ tokens and the
signature σ. Then an attempt is made to embed each bit of the codeword c = c1c2 . . . cj . . . cλc .
Consider any j ∈ [λc] and fix r,m,x, cprev in the jth iteration of going through the rejection
sampling loop. Because of the (possibly low) entropy of the token sampling distribution from
which x is drawn, during rejection sampling in Algorithm 6, the condition might not hold: Hpk,2(r ∥
m ∥ x ∥ cprev) = c = cj . So, instead c′ = c′1c

′
2 . . . (1 − cj) . . . c

′
λc

is used instead to plant x. So
the codeword c is transformed (by errors which correspond to low-entropy periods) to c′. The
codeword c will be recoverable from c′ if the number of errors is within a constant of the distance
of the code. And we know that by Lemma 5.3 and Lemma 5.4, during the detection phase,
c can always be recovered from the noisy codeword c′. The bad case is when the number of
errors is greater than a constant of the distance (or length) of the code. However, this happens
with probability at most neg(λ). This is because that case would correspond to producing c′ =
(1−c1)(1−c2) . . . (1−ci−1)(1−ci)ci+1 . . . cλc for some i ∈ [λc] where i is within a constant multiple
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of λc (e.g., i = 1/2 ·λc where i is the number of errors). However, by the target collision resistance
of Hpk,2 and HashEncodepk, the chance of producing such c′ will be neg(λ) which would guarantee
that c can be recovered. Thus, Detect can, with probability at least 1−neg(λ), recover the original
signature in the line σ ← HashDecodepk(c

′, r ∥ t′[i:i+ℓ]) in Algorithm 7 and the verification stage will
pass.

□

Here we discuss the (weak) robustness guarantee the scheme can tolerate.

Lemma 5.8 (Robustness). WatScheme is a 2(ℓ+ ℓ · λc)-robust (Definition 4.5) publicly-detectable
watermarking scheme.

Proof. Definition 4.5 allows for an adversary to transform the text as long as a contiguous block of
tokens remains that allows for extracting the message-signature pair. Once the message-signature
pair is extracted, verification should pass (by the completeness guarantees provided by Lemma 5.7).

Let D be an adversary that has access to the watermarked output t. Then if after the adversary’s
changes, D(t) contains at least 2(ℓ + ℓ · λc) tokens from t, then it is guaranteed that (with all
but neg(λ) probability), a message-signature pair can be extracted from the output D(t) and the
detection phase would still pass.

□

One of the most important properties for the watermarking scheme is distortion-freeness: a
polynomial-time adversary should not be able to distinguish watermarked outputs from non-
watermarked output. Definition 4.6 assumes that the adversary does not have access to the public
key (pk, r). Clearly, distortion-freeness cannot hold when the adversary has access to (pk, r) (since
it can run detect and confidently tell if the content is watermarked or not). See Definition 4.6 for
the definition of the distortion-free property. We show that WatScheme achieves the property.

Lemma 5.9 (Distortion-freeness). WatScheme is a distortion-free publicly-detectable watermarking
scheme (according to Definition 4.6).

Proof. To satisfy Definition 4.6, we have to show that only with probability at most neg(λ) can a
poly-time adversary D distinguish model outputs from GenModel (non-watermarked) versus model
outputs from Watermark.

It is easy to see that an adversary D can distinguish GenModel and Watermark if and only if it
can distinguish their token sampling process.

Consider the following sampling processes:

(A) Sample tokens x through GenModel.

(B) Sample tokens x′ through Watermark (i.e., uses Signsk, Hpk,1, Hpk,2, HashEncodepk).

Since x′ could have been generated from GenModel, the only way for the adversary to distinguish
the sampling processes corresponding to items (A) and (B) is to simulate the process of generating
x′ or of detecting x′. First, we discuss the adversary attempting to simulate generating x′ and then
discuss the adversary attempting to simulate the process of detecting x′. In both cases, the chance
of success would be negligible (in the security parameter).

In Algorithm 5, with access to σ, without access to the secret key, the chance of obtaining a
collision of one of sk, pk, r is negligible. So the chance of obtaining the codeword c is negligible. We
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can interpret Hpk,2 to be of the form Hpk,2 : {0, 1}∗ 7→ {0, 1}λc since it is used to match tokens to
each bit of the codeword. By the target collision properties of Hpk,2, HashEncodepk, the chance of
obtaining the codeword, or using it to sample x′, would be negligible.

Next, we focus on simulating the detection algorithm (Algorithm 7) but without access to
the public key (pk, r). For the adversary let t′ = x′ in Algorithm 7. By the target collision
resistance of Hpk,1, it is infeasible (except with negligible probability) for the adversary to generate
(r, pk) ̸= (r, pk) such that t← Hpk,1(r ∥ t′), t← Hp̄k,1(̄r ∥ t′). So, except with negligible probability
(in the security parameter λ), the adversary cannot learn any of t, pk, r nor values that obtain hash
collisions for t. The adversary can attempt to reconstruct σ (via the line σ ← HashDecodepk(c

′, r ∥
t′) in Algorithm 7). Again, by the target collision resistance of HashDecodepk, only with negligible
probability can the adversary generate (r, pk) ̸= (r, pk) such that σ ← HashDecodepk(c

′, r ∥ t′).
(Even if the adversary has access to σ, its goal is to get a hash collision to σ or to learn (pk, r).)
The only “weak” link here is from c′ which the adversary can attempt to reconstruct bit by bit.
However, due to the target collision resistance of Hpk,2, the adversary cannot have chance of greater
than neg(λ) of correctly obtaining c′ without knowledge of the public key. Thus, only with negligible
probability will the detection phase pass on x′.

So, without the private key (sk, r) or public key (pk, r), a ppt adversary cannot simulate the gen-
eration or detection phases for x′. So, the sampling process for (A) and (B) will be computationally
indistinguishable and the distortion-free property would be satisfied.

□

6 Conclusion

We constructed distortion-free and unforgeable watermarks for language models and generative
agents. The distortion-free property guarantees that the sampling process of the watermarking
scheme is computationally indistinguishable from the process of the non-watermarking scheme.
That is, the adversary cannot detect any noticeable changes in the quality of the model output.
Furthermore, no efficient adversary can forge the watermark. Our scheme embeds a (publicly-
verifiable) digital signature into the language model output. The message and signature can be
extracted during the detection phase. Any authorized entity with the public key can verify the
message and signature. Our analysis relies on the minimal cryptographic assumption of one-way
functions (specifically, permutations). This assumption implies a gap between the accessible entropy
and real entropy of certain hash functions. These hash functions are used to instantiate the digital
signature scheme for the language model. Furthermore, we have additional analysis on the use of
error-correcting codes. The codes are also used to handle (possibly) low-entropy token sampling
distributions.

There are several rooms for improvement in the scheme. For example, the detection phase could
possibly be made much more efficient. Also, is there an efficient way to embed more information
beyond the message-signature pair (e.g., model version or date of creation) into the model output
(as in the information-theoretic information hiding literature)? We believe the use of inaccessible
entropy for language model analysis could find applications beyond watermarking. In addition, the
use of error-correcting codes in watermarking schemes is still under-explored. Constructing such
codes that allow for robustness and indistinguishability remains an active area of study.
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A Hash Error-Correcting Functions from One-Way Permutations

In this section, we derive a family of HashEncodez,HashDecodez functions based on the assumption
of one-way permutations. These functions combine semantics of error-correcting codes and hash
functions to ensure: (1) errors can be corrected during the process of embedding the message-
signature pairs into the model output; (2) the chance of distinguishing the message-signature pairs
from the model output is negligible in the security parameter.

First, we recall the definition of hash error-correcting functions.

Definition A.1 (HashEncodez,HashDecodez). Let λ be the security parameter and z ∈ {0, 1}λ.
Also, let σ be a signature, m be a message, and c be a codeword. We denote (HashEncodez,HashDecodez)
as Hash Error-Correcting functions that satisfy the following:

• Error-Correcting: HashDecodez(HashEncodez(m,σ),m) = σ with probability at least 1 −
neg(λ).

• Target Collision Resistance: For every codeword c and message-signature pair (m,σ)
such that c← HashEncodez(m,σ), only with probability at most neg(λ) can a ppt adversary
find (m′,σ′) such that (m,σ) ̸= (m′,σ′) and c = HashEncodez(m,σ) = HashEncodez(m

′,σ′).

The goal of hash error-correcting functions (Definition A.1) is to prevent an adversary from
distinguishing message-signature pairs that will be embedded into generative model outputs. Dis-
tinguishing message-signature pairs would violate the distortion-free property (Definition 4.6).

We show how the existence of one-way permutations imply hash error-correcting functions
via the use of inaccessible entropy. Along the way, several notions of entropy are quantified,
manipulated, and amplified. We can rely on such operations to further manipulate the entropy of
the tokens generated by the watermarking schemes.

See [HHR+20, HHR+10] for details—beyond signature-based watermarking schemes—on how
one-way permutations imply inaccessible entropy generators which lead to hash error-correcting
functions. We generally follow the approach of [HHR+20, HHR+10] in our proofs, with a few
modifications and clarifications.

In the previous work of [HHR+20, HHR+10], there are two main constructions that yield uni-
versal one-way hash functions. For security parameter λ, one construction in [HHR+20, HHR+10]
yields key and output length of Õ(λ22) and the other (more efficient one) yields key and output
length of Õ(λ7). Our construction yields key and output length of Õ(λ7).

In all the constructions, the procedure involves first obtaining a noticeable gap between real
Shannon entropy and accessible max-entropy.

The following is the main theorem to be shown.

Theorem A.2. Let λ be the security parameter. Suppose there exists a one-way permutation
f : {0, 1}λ 7→ {0, 1}λ. Then, there exists a family of (HashEncodez,HashDecodez) functions with
codeword length Õ(λ7). That is, for any k ∈ N such that k ≤ m(λ) < n(λ), there exists a family of
functions {

HashEncodez : {0, 1}n(λ) × {0, 1}k 7→ {0, 1}m(λ)
}
z∈{0,1}λ

,{
HashDecodez : {0, 1}m(λ) × {0, 1}n(λ) 7→ {0, 1}k

}
z∈{0,1}λ

,

where m(λ) = Õ(λ7) and satisfies the properties in Definition A.1.
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Proof. We will construct the hash error-correcting functions of the form:

HashEncodez : {0, 1}n(λ) × {0, 1}k 7→ {0, 1}m(λ),

HashDecodez : {0, 1}m(λ) × {0, 1}n(λ) 7→ {0, 1}k.

The family of hash error-correcting functions (HashEncodez,HashDecodez) will follow the se-
mantics of Definition A.1.

Let m(λ) < n(λ) and define Hz : {0, 1}n(λ) → {0, 1}m(λ) to be a target collision-resistant
function. Recall that the property of target collision resistance guarantees that the probability
that a ppt adversary A succeeds in the following game is negligible in λ:

i. Let (x, state)
R← A(1λ).

- Abort if (x, state) /∈ {0, 1}n(λ) × {0, 1}∗.

ii. Let z
R←{0, 1}λ.

iii. Let x′
R← A(state, z).

- Abort if x′ /∈ {0, 1}n(λ).

iv. A succeeds if x ̸= x′ and Hz(x) = Hz(x
′).

For some k ≤ m(λ) − d + 1, let (Encode,Decode) be any [m(λ), k, d] error-correcting code
(Definition 3.30) of the form:

Encode : {0, 1}k 7→ {0, 1}m(λ),

Decode : {0, 1}m(λ) 7→ {0, 1}k.

Such codes exist by Theorem 3.34 and Theorem 3.35.
Now we can define HashEncodez in terms of Hz and Encode functions.

c← HashEncodez(m,σ) (2)

= Hz(m)⊕ Encode(σ), (3)

Also, define HashDecodez in terms of Hz and Decode functions.

σ ← HashDecodez(c,m) (4)

= Decode(Hz(m)⊕ c). (5)

Then for any m ∈ {0, 1}n(λ) and σ ∈ {0, 1}k,

Decode(Hz(m)⊕ HashEncodez(σ,m)) (6)

= Decode(Hz(m)⊕ Hz(m)⊕ Encode(σ)) (7)

= Decode(Encode(σ)) (8)

= σ. (9)
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This ensures the error-correcting property in Definition A.1, as long as the distance of the code is
large enough to correct errors. (In the context of watermarking, we can show that with probability
at least 1−neg(λ), the codewords can be error-corrected.) Now, for the rest of the proof, we focus on
proving the property of target collision-resistance. For m(λ) < n(λ), let Hz : {0, 1}n(λ) → {0, 1}m(λ)

Clearly, the target collision-resistance of Hz would imply the target collision-resistance property in
Definition A.1.

Fix s := log2(λ). Then we use Theorem A.3 to get a function F : {0, 1}λ̃ 7→ {0, 1}m with
λ̃ = O(λ) and gap ∆ = log λ/λ between real Shannon entropy and accessible average max-entropy.

Now by Theorem A.6 we get a family of hash error-correcting functions with output length
O(λ̃4s/∆3) = O(λ7 log2(λ)/ log3(λ)) = Õ(λ7), and key length

O(λ̃4s/∆3 · log(λ)) = Õ(λ7).

□

A.1 Inaccessible Entropy from One-Way Permutations

Recall that the accessible entropy of a function F is the entropy of the best efficient collision-finding
algorithm F−1. The inaccessible entropy of is the gap between its (real) entropy and its accessible
entropy. The goal is to use the assumption of one-way permutations to obtain inaccessible entropy.
This result is implied by Theorem A.3, which shows that a simplified variant of the some analysis
in the work of Rompel [Rom90, KK05] yields inaccessible entropy with strong guarantees.

The function that is constructed is

F(x, g, i) = (g(f(x))1,...,i, g),

where g : {0, 1}λ 7→ {0, 1}λ is a three-wise independent function. Recall that for any ℓ > 1,
a canonical example of an ℓ-wise independent function family is Hs,t,ℓ = ({0, 1}s)ℓ defined by
(h0, . . . , hℓ−i)(x) :=

∑
0≤i≤ℓ−1 hi · xi over GF(2s), truncated to its first t bits.

The benefits of the three-wise independence hashing step are that:

i. As shown in [HHR+20], obtaining a bound on accessible average max-entropy rather than
accessible Shannon entropy could give better parameter settings. In particular, Theorem A.3
yields a bound on accessible average max-entropy rather than accessible Shannon entropy.

ii. As shown in [HHR+20], we get more inaccessible entropy (Θ̃(1/λ) bits rather than Θ̃(1/λ2)
bits).

These allow for a more efficient (and arguably simpler) transformation of F into functions with
target collision-resistance.

Theorem A.3 (Inaccessible average max-entropy from one-way permutation). Let f : {0, 1}λ 7→
{0, 1}λ be a one-way permutation and let

G =
{
g : {0, 1}λ 7→ {0, 1}λ

}
be a family of constructible, three-wise independent hash functions. Define F over D(F ) := {0, 1}λ×
G × [λ] by

F(x, g, i) = (g(f(x))1,...,i, g, i).
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Then F−1 has accessible average max-entropy at most

H(Z | F(Z))− Ω(log λ/λ),

where Z is uniformly distributed over D(F).

Proof. The sets {L(x, g, i)}x∈{0,1}λ,i∈[λ],g∈G realizing the inaccessible entropy of F−1 are defined by

L(x, g, i) = {(x′, g, i) : f(x′) ∈ L̃(f(x), i) ∧ g(f(x′))1,...,i = g(f(x))1,...,i} (10)

where for y ∈ {0, 1}λ and i ∈ [n], we let

L̃(y, i) = {y} ∪
{
y′ ∈ {0, 1}λ : H

f(X)
(y′) ≥ (i+ c · log λ)

}
(11)

= {y} ∪
{
y′ ∈ {0, 1}λ : |f−1(y′)| ≤ 2λ−i/λc

}
.

where c is a sufficiently large constant. Namely, L̃(y, i) consists, in addition to y itself, of “i-light”
images with respect to f . Recall that the sample entropy is defined as

H
f(X)

(y) = log(1/P[f(X) = y]) = λ− log
∣∣f−1(y)∣∣,

so the “heavy” images, where f−1(y) is large, have low sample entropy. As a warm-up, it is helpful
to write down L̃(y, i) and L(x, g, i) for the case where f is a one-way permutation. If f is a
permutation, then L̃(y, i) is given by:

L̃(y, i) =

{
{0, 1}λ if i ≤ λ− c log λ

{y} otherwise.

Then, for all x ∈ {0, 1}λ, we have E[|L(x,G, i)|] = 2λ−i for all i ≤ λ − c log λ and |L(x, g, i)| = 1
for all g ∈ G and all i > λ − c log λ. This means that the entropy gap between F−1(F (Z)) and
L(X,G, I) is roughly

1

λ

∑
i>λ−c log λ

λ− i,

which is Ω(c2 log2 λ/λ).
The proof of the theorem immediately follows by the following two claims.

Claim A.4 (Claim 4.6 in [HHR+20]). For every ppt F-collision-finder A and every constant c > 0,
it holds that

P[A(Z;R) /∈ L(Z)] ≤ neg(λ),

where Z is uniformly distributed over D(F ) and R is uniformly distributed over the random coins
of A.

Claim A.5 (Claim 4.7 in [HHR+20]). For any constant c it holds that

E[log|L(Z)|] ≤ E
[
log

∣∣F−1(F(Z))
∣∣]− Ω

(
c log λ

λ

)
,

where Z is uniformly distributed in D(F).
□
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A.2 Collision Resistance from Inaccessible Entropy

Here, we can show how to construct the collision-resistant function from any efficiently computable
function with a noticeable gap between real Shannon entropy and either accessible average max-
entropy or accessible Shannon entropy.

As done in previous work [HRVW09], we first transform the entropy gap into a noticeable gap
between real Shannon entropy and accessible max-entropy. In this construction, we start from a
gap between real Shannon entropy and accessible average max-entropy.

Theorem A.6. Suppose there exists a polynomial-time computable function F : {0, 1}λ̃ 7→ {0, 1}m
such that F−1 has a noticeable gap ∆ between real Shannon entropy and accessible average max-
entropy. Then, there exists a family of collision-resistant hash functions with output length O(λ̃4s/∆3)
and key length O(λ̃4s/∆3 · log λ) for any s = ω(log λ), where λ is the security parameter.

Overview. To prove Theorem A.6, the construction proceeds via a series of transformations: gap
amplification (via repetition), entropy reduction (by hashing inputs), and reducing output length
(by hashing outputs). In some of these transformations, λ0 denotes the input length of the function
F we start with, and λ to denote the security parameter.

A.2.1 Gap Amplification

Here, we show a standard result that the direct product construction increases the gap between
real entropy and accessible entropy. As noted by the previous work of [HRVW09], another useful
effect of direct product (for certain settings of parameters) is turning real Shannon entropy into
real min-entropy, and turning accessible average max-entropy into accessible max-entropy.

Lemma A.7 (Gap amplification). Let λ be a security parameter and λ̃ = O(λ). Define the function

F : {0, 1}λ̃ 7→ {0, 1}m. For t ∈ poly(λ), let Ft be the t-fold direct product of F. Then, Ft satisfies the
following properties:

i. If F−1 has real Shannon entropy at least k, then (Ft)−1 has real min-entropy at least t·k−λ̃·
√
st

for any s = ω(log λ) and t > s.

ii. If F−1 has accessible average max-entropy at most k, then (Ft)−1 has accessible max-entropy
at most t · k + λ̃ ·

√
st for any s = ω(log λ).

Proof. In the following X and X(t) = (X1, . . . , Xt) are uniformly distributed over {0, 1}λ̃ and

({0, 1}λ̃)t , respectively.

i. Follows readily from appling Lemma C.5 with ϵ = 2−s.

ii. Given any ppt Ft-collision-finder A′, we construct a ppt F-collision-finder A that:

On input x, picks a random i in [t] along with random x1, . . . , xi−1, xi+1, . . . , xt,
computes A′(x1, . . . , xt) 7→ (x′1, . . . , x

′
t), and outputs x′i.
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By the bound on the accessible average max-entropy of F−1, we know that there exists a
family of sets {L(x)} such that E

[
log|L(X)|

]
≤ k, x ∈ L(x), and P[A(X) /∈ L(X)] ≤ neg(λ).

Consider the family of sets
{
L′(x(t)) : x(t) ∈ ({0, 1}λ̃)t

}
given by:

L′(x(t)) = L(x(t)1 )× L(x(t)2 )× · · · × L(x(t)t ).

By linearity of expectations, we have E
[
log|L′(X1, . . . , Xt)|

]
≤ t·k. Moreover, by the Chernoff-

Hoeffding bound and using the fact that log|L(X)| assumes values in [0, λ̃], we have

P
[
log

∣∣∣L′(X(t))
∣∣∣ ≥ t · k + λ̃

√
st
]

(12)

= P
[
log

∣∣∣L(X(t)
1 )

∣∣∣+ · · ·+ log
∣∣∣L(X(t)

t )
∣∣∣ ≥ t · k + λ̃

√
st
]
≤ e−2s.

We claim that this implies that A′ has accessible max-entropy at most t · k + λ̃
√
st. Suppose

otherwise, then there exists a non-negligible function ϵ such that

P[A′(Ft(X(t))) /∈ L′(X(t))] ≥ ϵ− e−2s ≥ ϵ/2

Therefore,

P[A(F(X)) /∈ L(X)] = P[A′(Ft(X(t))) /∈ L′(X(t))]/t ≥ ϵ/2t

which contradicts our assumption on A.
□

A.2.2 Entropy Reduction

Next, consider a construction that, given F and any parameter ℓ, reduces the accessible max-entropy
of F−1 by roughly ℓ bits. At the same time, the construction (approximately) preserves the gap
between real min-entropy and accessible max-entropy.

Lemma A.8 (Reducing entropy). Let λ be a security parameter and define λ̃ = O(λ). Fix the

function F : {0, 1}λ̃ 7→ {0, 1}m. Consider the family of pairwise independent hash functions G ={
g : {0, 1}λ̃ 7→ {0, 1}ℓ

}
. Then,

F′ : {0, 1}λ̃ × G 7→ {0, 1}m × G × {0, 1}ℓ,

as defined by F′(x, g) = (F(x), g, g(x)) satisfies the following properties:

i. Assuming F−1 has real min-entropy at least k, then (F′)−1 has real min-entropy at least k−ℓ−s
for any s = ω(log λ).

ii. Assuming F−1 has accessible max-entropy at most k, then (F′)−1 has accessible max-entropy
at most max{k − ℓ+ s, 0} for any s = ω(log λ).

Proof. Let X be uniformly distributed over {0, 1}λ̃ and G be uniformly distributed over the set of
functions G.
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i. Fix g ∈ G and let Sg =
{
z ∈ {0, 1}ℓ : P[g(X) = z] ≤ 2−ℓ−s

}
. Observe the following.

(a) P[g(X) ∈ Sg] ≤ 2−s (by a union bound over z ∈ Sg);

(b) Fix any z /∈ Sg and any x ∈ {0, 1}λ such that HX|F (X)(x | F (x)) ≥ k. Then,

P[X = x | F′(X, g) = (F(x), g, z)] = P[X = x | F(X) = F(x) ∧ g(X) = z]

≤ P[X = x | F(X) = F (x)]

P[g(X) = z]

≤ 2−k

2−ℓ−s
= 2−(k−ℓ−s).

where the second inequality follows from our assumptions on z and x.

Combining the above two observations and the bound on the real min-entropy of F , it follows
that for all g ∈ G, with probability 1− 2−s − neg(λ) over x

R←X, we have

P[X = x | F′(X, g) = F′(x, g)] ≤ 2−(k−ℓ−s).

The bound on the real min-entropy of F′ follows readily.

ii. Given a ppt F′-collision-finder A′, we construct a ppt F-collision-finder A as follows:

On input x, picks a pair (g, r) uniformly at random and output A′(x, g; r).

By the bound on the accessible max-entropy of F−1, we know that there exists a family of

sets
{
L(x) ⊆ {0, 1}λ̃ : x ∈ {0, 1}λ̃

}
such that |L(x)| ≤ 2k, x ∈ L(x), and

P
[
A(X,G;R) ∈ L(X)

]
≥ 1− neg(λ), (13)

where R is uniformly distributed over the random coins of A.

Let L′(x, g) := {(x′, g) : x′ ∈ L(x) ∧ g(x′) = g(x)}. Equation (13) yields that

P
[
A′(X,G;R) ∈ L′(X,G)

]
≥ 1− neg(λ). (14)

We next bound the size of the set L′(x, g). Fix any x ∈ {0, 1}λ. For any x′ ̸= x, pairwise
independence of G tells us that P[G(x′) = G(x)] = 2−ℓ. It follows from linearity of expectation
that

E
[∣∣L′(x,G) \ {x}

∣∣] ≤ |L(x)| · 2−ℓ ≤ 2k−ℓ.

Then, by Markov’s inequality, we have

P
[∣∣L′(x,G)

∣∣ ≤ 2k−ℓ+s−1 + 1}
]
≥ 1− 2−(s−1), (15)

Combining the last two inequalities, we obtain

P
[
A′(X,G;R) ∈ L′(X,G) ∧

∣∣L′(X,G)
∣∣ ≤ max

{
2k−ℓ+s, 1

}]
≥ 1− neg(λ)− 2−(s−1). (16)

This yields an upper bound of max{k − ℓ+ s, 0} on the accessible max-entropy of (F′)−1.
□
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A.2.3 Reducing Output Length

In Lemma A.9, a transformation is given that derives a function that is both length-decreasing and
collision-resistant on random inputs.

Lemma A.9 (Reducing output length). Let λ be a security parameter and λ̃ = O(λ). Then

define the function F : {0, 1}λ̃ 7→ {0, 1}m. Fix a family of pairwise independent hash functions

G =
{
g : {0, 1}m 7→ {0, 1}λ̃−log λ

}
and let F′ : G×{0, 1}λ̃ 7→ {0, 1}λ̃−log λ×G be defined by F′(x, g) =

(g, g(F(x))). The following holds: if F−1 has real min-entropy at least ω(log λ) and F is collision-
resistant on random inputs, then F′ is collision-resistant on random inputs.

Proof. Let Im(F) be the image of the function F.

The bound on real min-entropy implies there exists a subset S ⊆ {0, 1}λ̃ of density at most
neg(λ), such that for all x /∈ S it holds that

∣∣F−1(F(x))∣∣ = λω(1). Hence,

|Im(F)| ≤ |F(S)|+
∣∣F(S̄)∣∣ ≤ |S|+ ∣∣S̄∣∣/λω(1) ≤ neg(λ) · 2λ. (17)

By the two-wise independence of G,

P
[
∃y′ ∈ Im(F) : y′ ̸= F(X) ∧G(y′) = G(F(X))

]
≤ |Im(F)|

2λ̃−log λ
≤ neg(λ). (18)

Namely, g(F(x)) uniquely determines F(x) with high probability. In particular, a collision for g ◦ F
is also a collision for F. Given any ppt F′-collision-finder A′, we construct a ppt F-collision-finder
A as follows:

On input x, pick g and r at random and compute x′ = A′(x, g; r). If F(x′) = F(x),
output x′, else output x.

Equation (18) implies that P[A′(X,G;R) ̸= (A(X; G, R),G)] ≤ neg(λ). Therefore, P[A′(X,G;R) =
(X,G)] ≥ 1− neg(λ). Namely, F′ is also collision-resistant on random inputs. □

A.2.4 Additional Transformations

Next are two more standard transformations that can be used to complete the construction.

Lemma A.10 (From random inputs to targets, folklore). Let λ be a security parameter and λ̃ =

O(λ). Define the length-decreasing function F : {0, 1}λ̃ 7→ {0, 1}m. Suppose F is collision-resistant

on random inputs. Then,
{
F′y : {0, 1}

λ̃ 7→ {0, 1}m
}
y∈{0,1}λ̃

as defined by F′y(x) = F(y + x) is a

family of target collision-resistant hash functions.

Proof. Let A′ be a ppt adversary that breaks target collision-resistance of F′y, we can construct a
ppt adversary A that breaks F as follows:

On input x, run A′(1λ) to compute (x0, state), and then run A′(state, x⊕x0) to compute
x1. Output x⊕ x0 ⊕ x1.

Note that (x0, x1) is a collision for F′x⊕x0
iff (x, x⊕x0⊕x1) is a collision for F. It then follows quite

readily that A breaks F with the same probability that A′ breaks F′y. □
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The following result is from [Sho00] and improves on the work of [NY89, BR97]. The result
implies that we can construct target collision-resistant hash functions for arbitrarily long inputs
starting from one for a fixed input length.

Lemma A.11 (Increasing the input length [Sho00]). Let λ be a security parameter, t = poly(λ) be

a parameter and let
{
Fy : {0, 1}λ̃+log λ 7→ {0, 1}λ̃

}
be a family of target collision-resistant hash func-

tions. Then, there exists a family of target collision-resistant hash functions
{
F′y′ : {0, 1}

λ̃+t log λ 7→ {0, 1}λ̃
}

where |y′| = O(|y| log t).

A.2.5 Putting Everything Together

Now using the previous transformations, one can prove Theorem A.6:

Proof of Theorem A.6. The security parameter is λ and λ0 = O(λ).
Below the entropy gap is ∆ and the parameter s is set to s ∈ ω(log λ).
Recall that we have given F : {0, 1}λ0 7→ {0, 1}m0 ,

step 1 (gap amplification): For a parameter t, we define F1 as F1(x1, . . . , xt) = (F(x1), . . . ,F(xt)),
the t-fold direct product of F. We choose the parameter t ∈ O(λ2

0s/∆
2) such that

t · kreal − λ0 ·
√
st ≥ t · (kreal −∆/2) + λ0 ·

√
st+ 3s.

Lemma A.7 yields that this repetition increases both the real and accessible entropies of F1
by a factor of t (compared to F). In addition, this repetition converts real Shannon entropy
to real min-entropy and accessible average max-entropy to accessible max-entropy (up to
additive terms that are sublinear in t). More precisely, we have the following properties:

• F1 : {0, 1}λ1 7→ {0, 1}m1 , where λ1(λ) = t · λ0 and m1(λ) = t ·m0.

• F−11 has real min-entropy at least t · kreal − λ0 ·
√
st ≥ t · (kreal −∆/2) + λ0 ·

√
st+ 3s.

• F−11 has accessible max-entropy at most t · (kreal −∆) + λ0 ·
√
st.

In steps 2 to 4, the construction uses non-uniform advice k, which corresponds to an approx-
imation to kreal. In step 5, we will remove this non-uniform advice via “exhaustive search”.
Concretely, for steps 2 to 4, we are given k satisfying

k ∈ [kreal, kreal +∆/2] (19)

This means that

• F−11 has real min-entropy at least t · (k −∆) + λ0 ·
√
st+ 3s.

• F−11 has accessible max-entropy at most t · (k −∆) + λ0 ·
√
st.

This yields a gap of 3s between real min-entropy and accessible max-entropy.

step 2 (entropy reduction): We next apply entropy reduction to F1 to obtain F
(k)
2 . That is,

F
(k)
2 (x, g) = (F1(x), g, g(x)), where g : {0, 1}λ1 7→ {0, 1}ℓ is selected from a family of pairwise

independent hash functions with ℓ = t · (k −∆) + λ0 ·
√
st+ s = O(tλ0). Lemma A.8 yields

that this additional hashing reduces the real min-entropy and accessible max-entropy by ℓ
(up to an additive term of s). More exactly, we have the following properties:
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• F
(k)
2 : {0, 1}λ2 7→ {0, 1}m2 where λ2(λ, k) = O(tλ0) and m2(λ, k) = O(tλ0). Note that in

particular λ2 and m2 also depend on k (unlike λ1 and m1).

• If (19) holds, then (F
(k)
2 )−1 has real min-entropy at least s.

• If (19) holds, then (F
(k)
2 )−1 has accessible max-entropy at most 0. Hence, F

(k)
2 is collision-

resistant on random inputs (by Lemma 3.19).

step 3 (reducing the output length): We next reduce the output length of F
(k)
2 by hashing the

output to λ2−log λ bits. That is, F
(k)
3 (x, g) = (g, g(F

(k)
2 (x))) where g : {0, 1}m2 7→ {0, 1}λ2−log λ

is selected from a family of pairwise-independent hash functions.

• F
(k)
3 : {0, 1}λ3 7→ {0, 1}m3 where λ3(λ, k) = O(tλ0) and m3(λ, k) = λ3 − log λ.

• By Lemma A.9, F
(k)
3 is collision-resistant on random inputs, assuming that (19) holds.

step 4 (adding random shifts) We then transform F
(k)
3 into a family

{
G

(k)
y

}
of target collision-

resistant hash functions via a random shift, following Lemma A.10. That is, G
(k)
y (x) =

F
(k)
3 (y + x). We then have that

• G
(k)
y (x) : {0, 1}λ3 7→ {0, 1}m3 and G

(k)
y uses a key y of length λ3(λ, k).

• If (19) holds, then
{
G

(k)
y

}
is target collision-resistant.

step 5 (removing non-uniformity): To remove the non-uniform advice k, we do a brute-force
search from 0 to λ0 in steps of size ∆/2, similar to the approach used in [Rom90] (see also
[KK05, Section 3.6]).

i. First, we construct κ = λ0 · 2/∆ families of functions
{
G

(k)
y

}
, where we instantiate{

G
(k)
y

}
for all k ∈

{
∆
2 , 2 ·

∆
2 , 3 ·

∆
2 , . . . , λ0

}
. These κ families of functions satisfy the

following properties:

• Each of G
(k)
y is length-decreasing; in particular, G

(k)
y has input length λ3(λ, k) and

output length λ3(λ, k) − log λ. Note that G
(λ0)
y has the longest input length, i.e.,

λ3(λ, i∆/2) ≤ λ3(λ, λ0) for all i because ℓ(λ, k) increases as a function of k. We may
then assume that all κ functions G1

y, . . . , G
κ
y have the same input length λ3(λ, λ0)

and the same output length λ3(λ, λ0) − log λ by padding the “extra part” of the
input to the output.

• At least one of the
{
G

(k)
y

}
is target collision-resistant; this is because kreal ∈ [0, λ0],

and so (19) holds for some k which we picked.

ii. Next, for each k, we construct a family of functions
{
G̃

(k)
ỹ

}
from

{
G

(k)
y

}
with input

length κ · λ3(λ, λ0), key length O(λ3(λ, λ0) · log λ), and output length λ3(λ, λ0)− log λ,

by following the construction given by Lemma A.11. Again, at least one of the
{
G̃

(k)
ỹ

}
for k as above is target collision-resistant.

iii. Finally, we define a family of functions {Gỹ1,...,ỹκ} to be the concatenation of all G̃
(k)
ỹ on

the same input. That is, Gỹ1,...,ỹκ(x) = G̃
(∆/2)
ỹ1

(x) ◦ · · · ◦ G̃(n0)
ỹκ

(x).
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• Note that G has input length κ · λ3(λ, λ0) and output length κ · (λ3(λ, λ0)− log λ),
so G is length-decreasing.

• Moreover, since at least one of
{
G̃

(∆/2)
ỹ1

(x)
}
, . . . ,

{
G̃

(n0)
ỹκ

}
is target collision-resistant,

{Gỹ1,...,ỹκ} must also be target collision-resistant. This is because a collision for

Gỹ1,...,ỹκ is a collision for each of G̃
(∆/2)
ỹ1

, . . . , G̃
(n0)
ỹκ

.

The family {Gỹ1,...,ỹκ} is the hash error-correcting function we wanted to construct, and so this
finishes the proof of Theorem A.6. □

B Universal One-Way Hash Functions from One-Way Permuta-
tions

Let us recall the definition of a Universal One-Way Function.

For universal one-way hash function family, Fλ =
{
Fz : {0, 1}n(λ) 7→ {0, 1}m(λ)

}
, a function

Fz : {0, 1}n(λ) 7→ {0, 1}m(λ) has input length n(λ), key length λ, and output length m(λ).
A function Fz is a Universal One-Way Function (UOWF) if:

i. Efficiently Computable: Given an input x, it is easy to compute Fz(x).

ii. Target Collision Resistance: Given a randomly chosen x, it is computationally hard to
find any different x′ such that Fz(x) = Fz(x

′).

Unlike standard one-way functions (OWFs), which require that it is hard to invert Fz(x) for
a randomly chosen output y, UOWFs only require that after seeing x, an adversary cannot find a
different input x′ that maps to the same output.

Here are some key differences between universal one-way functions and one-way functions:

Property One-Way Function (OWF) Universal One-Way Function (UOWF)

Hardness Hard to invert f(x) Hard to find a second preimage x′ for random x

Input Selection Adversary picks y and tries to invert Adversary sees x first and must find x′ ̸= x

Strength Stronger security assumption Weaker, but still useful

Haitner et al. [HHR+20, HHR+10] show how inaccessible entropy generators lead to universal
one-way hash functions (UOWHF). One of their main results is the following:

Theorem B.1 (See [HHR+20, HHR+10]). Suppose there exists a one-way permutation f : {0, 1}λ 7→
{0, 1}λ. Then, there exists a family of universal one-way hash functions with key and output length
Õ(λ22).

And the other is:

Theorem B.2 (See [HHR+20, HHR+10]). Suppose there exists a one-way permutation f : {0, 1}λ 7→
{0, 1}λ. Then, there exists a family of universal one-way hash functions with key and output length
Õ(λ7).
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C Relations Between Entropy Notions

In this section, we state and prove some (known) statements about how the different entropic
notions (i.e., H∞(X),H2(X),H(X),H0(X)) relate. For completeness, we show the proofs of the
relations. However, these are all standard information-thoeretic manipulations.

The following fact quantifies the probability that the sample-entropy is larger than the max-
entropy.

Lemma C.1. For random variable X it holds that

i. E
x

R←X

[
2HX(x)

]
= |Supp(X)|.

ii. P
x

R←X

[
HX(x) > log 1

ε +H0(X)
]
< ε, for any ε > 0.

Proof. For the first item, compute

E
x

R←X

[
2HX(x)

]
=

∑
x∈Supp(X)

2−HX(x) · 2HX(x)

=
∑

x∈Supp(X)

1

= |Supp(X)|.

The second item follows by the first item and Markov’s inequality.

P
x

R←X

[
H
X
(x) > log

1

ε
+H0(X)

]
= P

x
R←X

[
2HX(x) >

1

ε
· |Supp(X)|

]
< ε.

□

The following fact quantifies the contribution of unlikely events with high sample-entropy to
the overall entropy of a random variable.

Lemma C.2. Let X be a random variable with P
x

R←X
[HX(x) > k] ≤ ε ∈ [0, 1]. Then H(X) ≤

(1− ε)k + ε · (H0(X)− log ε) ≤ k + ε ·H0(X) + 1.

Proof. Let Y = {x ∈ Supp(X) : HX(x) > k} and let Y = X|X∈Y . Note that

H(Y ) = Ey←Y

[
H
Y
(y)

]
= Ey←Y

[
H
X
(y)

]
+ logP

x
R←X

[
H
X
(x) > k

]
. (20)

Let ε′ = P
x

R←X
[HX(x) > k] (hence, ε′ ≤ ε). We conclude that

H(X) =
∑

x∈Supp(X)\Y

P[X = x] ·H
X
(x) +

∑
x∈Y

P[X = x] ·H
X
(x)

≤ (1− ε′)k + ε′ ·
∑
x∈Y

P[Y = x] ·H
X
(x)

= (1− ε′)k + ε′ · (H(Y )− log ε′)

≤ (1− ε′)k + ε′ · (H0(X)− log ε′)

≤ (1− ε)k + ε · (H0(X)− log ε)

≤ k + ε ·H0(X) + 1.
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□

Conditional entropies. We will also be interested in conditional versions of entropy. For jointly
distributed random variables (X,Y ) and (x, y) ∈ Supp(X,Y ), we define the conditional sample-
entropy to be

H
X|Y

(x|y) = log 1
PX|Y [x|y] = log 1

P[X=x|Y=y] .

Then the standard conditional Shannon entropy can be written as

H(X | Y ) = E
(x,y)

R←(X,Y )

[
H

X|Y
(x | y)

]
(21)

= E
y

R←Y

[H(X|Y=y)] (22)

= H(X,Y )−H(Y ). (23)

The following known lemma states that conditioning on a variable with small support is unlikely
to change the sample-entropy significantly. The result below can be further improved by considering
the average sample-entropy induced by the conditioning, and in particular the average min-entropy
of the variable [DORS08]. However, it could only improve by results by a constant. So we state
the simpler statement below.

Lemma C.3. Let X and Y be random variables, let k = H∞(X), and let ℓ = H0(Y ). Then, for
any t > 0, it holds that

P
(x,y)

R←(X,Y )

[
H

X|Y
(x|y) < k − ℓ− t

]
< 2−t.

Proof. For y ∈ Supp(Y ), let

Xy =

{
x ∈ Supp(X) : H

X|Y
(x|y) < k − ℓ− t

}
.

We have |Xy| < 2k−ℓ−t. Hence,∣∣∣∣∣∣X =
⋃

y∈Supp(Y )

Xy

∣∣∣∣∣∣ < 2ℓ · 2k−ℓ−t = 2k−t.

It follows that

P
(x,y)

R←(X,Y )

[
H

X|Y
(x|y) < k − ℓ− t

]
≤ P

(x,y)
R←(X,Y )

[x ∈ X ] < 2−k · 2k−t = 2−t.

□

Smoothed entropies. The following lemma implies that a random variable X whose sample-
entropy is high, with high probability, behaves like a random variable that has high min-entropy
(i.e., with sample-entropy function that is “smoother” without any peaks).

Lemma C.4. Let X and Y be random variables and let ε > 0.
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i. Suppose P
x

R←X
[HX(x) ≥ k] ≥ 1−ε. Then X is ε-close to a random variable X ′ with H∞(X ′) ≥

k.

ii. Suppose P
(x,y)

R←(X,Y )

[
HX|Y (x|y) ≥ k

]
≥ 1 − ε. Then (X,Y ) is ε-close to a random variable

(X ′, Y ′) with HX′|Y ′(x|y) ≥ k for any (x, y) ∈ Supp(X ′, Y ′). Further, Y ′ and Y are identically
distributed.

Proof. For the first item, one can modify X on an ε fraction of the probability space (corresponding
to when X takes on a value x such that HX(x) ≥ k) to bring all probabilities to be smaller than
or equal to 2−k.

The second item is proved via similar means, while when changing (X,Y ), we do so without
changing the “Y ” coordinate. □

Flattening Shannon entropy. It is known that, up to small statistical distance, the Shannon
entropy of a random variable can be converted to min-entropy by taking independent copies of this
variable. We state the more exact version from [Yan15]:

Lemma C.5 ([Yan15], Theorem 3.14). Let X be a random variable taking values in a universe U ,
let t ∈ N, and let 0 < ε ≤ 1/e2. Then with probability at least 1− ε over x

R←X(t),

H
X(t)

(x) ≥ t ·H(X)−
√
8t · log 1

ε ·
(
log |U|+ 1

2
log t

)
.

We will make use of the following “conditional variant” of Lemma C.5:

Lemma C.6. Let X and Y be jointly distributed random variables where X takes values in a
universe U , let t ∈ N, and let 0 < ε ≤ 1/e2. Then with probability at least 1 − ε over (x, y) ←
(X ′, Y ′) = (X,Y )(t),

H
X′|Y ′

(x | y) ≥ t ·H(X | Y )−
√

8t · log 1
ε ·

(
log |U|+ 1

2
log t

)
.

Proof. Follows the same line as the proof of Lemma C.5, by considering the random variable
HX|Y (X|Y ) instead of HX(X). □

Sequence of random variables. For measuring the real and accessible entropy, we can measure
the entropy of a subset of random variables, conditioned on the previous elements in the sequence.
The following lemma generalizes Lemma C.2 to some other settings that come up when measuring
the accessible entropy.

Definition C.7. For a t-tuple random variable X = (X1, . . . , Xt), x ∈ Supp(X) and J ⊆ [t], let

H
X,J

(x) =
∑
i∈J

H
Xi|X<i

(xi|x<i).

The following fact is immediate by the chain rule.

Proposition C.8. Let X = (X1, . . . , Xt) be a sequence of random variables and let J ⊆ [t]. Then,
E
x

R←X
[HX,J (x)] =

∑
j∈J H(Xj |X<j) ≤ H0(XJ ).
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Proof. Compute

E
x

R←X

[
H

X,J
(x)

]
= E

x
R←X

∑
j∈J

H
Xj |X<j

(xj |x<j)


=

∑
j∈J

E
x

R←X

[
H

Xj |X<j

(xj |x<j)

]
=

∑
j∈J

H(Xj |X<j)

≤
∑
j∈J

H0(Xj) ≤ H0(XJ ).

□

The following lemma generalizes Lemma C.2 to such a sequence of random variables.

Lemma C.9. Let X = (X1, . . . , Xt) be a sequence of random variables and let J ⊆ [t]. If
P
x

R←X
[HX,J (x) > k] ≤ ε ∈ [0, 1], then E

x
R←X

[HX,J (x)] ≤ (1 − ε)k + ε · (H0(XJ ) − log 1/ε) ≤
k + ε ·H0(XJ ) + 1.

Proof. The proof is similar to that of Lemma C.2. Let Y = {x ∈ Supp(X) : HX,J (x) > k}, let
Y = X|X∈Y , and for y≤k ∈ Supp(Y<j) let εy≤j

=
P[Yj=yj |Y<j=y<j ]
P[Xj=yj |X<j=y<j ]

. Compute

E
y

R←Y

[
H

Y,J
(y)

]
= E

y
R←Y

∑
j∈J

H
Yi|Y<j

(yj |y<j)


= E

y
R←Y

∑
j∈J

H
Xj |X<j

(yj |y<j) + log
P[Yj=yj |Y<j=y<j ]

P[Xj=yj |X<j=y≤j]


= E

y
R←Y

∑
j∈J

H
Xj |X<j

(yj |y<j) + log εy≤j


= E

y
R←Y

∑
j∈J

H
Xj |X<j

(yj |y<j)

+ E
y

R←Y

∑
j∈J

log εy≤j

, (24)

and note that

E
y

R←Y

∑
j∈J

log εy≤j

 ≥ E
y

R←Y

∑
j∈[t]

log εy≤j

 (25)

= E
y

R←Y

log∏
j

εy≤j


= E

y
R←Y

[
log

P[Y = y]

P[X = y]

]
= log 1/P[X ∈ Y].

58



Let ε′ = P[X ∈ Y]. We conclude that

E
x

R←X

[
H

Y,J
(x)

]
=

∑
x∈Supp(X)\Y

P[X = x] · H
X,J

(x) +
∑
x∈Y

P[X = x] · H
X,J

(x)

≤ (1− ε′)k + ε′ ·
∑
x∈Y

P[Y = x] · H
X,J

(x)

≤ (1− ε′)k + ε′ · (E
y

R←Y

[
H

Y,J
(y)

]
− log 1/ε′)

≤ (1− ε′)k + ε′ · (H0(XJ )− log 1/ε′)

≤ (1− ε)k + ε · (H0(XJ )− log 1/ε)

≤ k + ε ·H0(XJ ) + 1.

□

The next two lemmas are only needed when measuring the max accessible entropy.

Lemma C.10. Let X = (X1, . . . , Xt) be a sequence of random variables and let J ⊆ [t]. Then,

i. E
x

R←X

[
2HX,J (x)

]
≤ H0(XJ ).

ii. P
x

R←X

[
HX,J (x) > log 1

ε +H0(XJ )
]
< ε, for any ε > 0.

Proof. The second item follows from the first one as in the proof of Lemma C.1. We prove the first
item by induction on t and |J |. The case t = 1 is immediate, so we assume for all (t′,J ′) with
(t′, |J ′|) < (t, |J |) and prove it for (t,J ). Assume that 1 ∈ J (the case 1 /∈ J is analogous) and
let X−1 = (X2, . . . , Xt) and J−1 = {i− 1: i ∈ J \ {1}}. Compute

E
x

R←X

[
2HX,J (x)

]
=

∑
x1∈Supp(X1)

2−HX1
(x1) · 2HX1

(x1) · E
x

R←X−1|X1=x1

[
2
HX−1|X1=x1

,J−1
(x)

]
≤

∑
x1∈Supp(X1)

1 ·
∣∣Supp((X−1)J−1 |X1=x1)

∣∣
=

∑
x1∈Supp(X1)

∣∣Supp(XJ\{1}|X1=x1)
∣∣

= |Supp(XJ )|.

□

Sub-additivity. The chain rule for Shannon entropy yields that

H(X = (X1, . . . , Xt)) =
∑
i

H(Xi|X1, . . . , Xi−1) (26)

≤
∑
i

H(Xi). (27)

The following lemma shows that a variant of the above also holds for sample-entropy.
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Lemma C.11. For random variables X = (X1, . . . , Xt), it holds that

i. E
x

R←X

[
2HX(x)−

∑
t HXi

(xi)
]
≤ 1, and

ii. P
x

R←X

[
HX(x) > log 1

ε +
∑

i∈[t]HXi(xi)
]
< ε, for any ε > 0.

Proof. As in Lemma C.1, the second part follows from the first by Markov’s inequality. For the
first part, compute

E
x

R←X

[
2HX(x)−

∑
t HXi

(xi)
]
=

∑
x∈Supp(X)

P[X = x] ·
∏

i∈[t] P[Xi = xi]

P[X = x]

=
∑

x∈Supp(X)

∏
i

P[Xi = xi]

≤ 1.

□

60


	Introduction
	Main Results
	Comparison to Previous Works on Watermarking Generative Agents
	Overview of Techniques
	Generative Agent as Noisy Channel
	Inaccessible Entropy in Error-Correcting Codes
	Entropy Manipulations

	Organization of Subsequent Sections

	Other Related Work
	Information Hiding
	Software Watermarking
	Code-Based Cryptography
	Digital Signatures
	Generative Agents

	Preliminaries
	Notation
	Digital Signatures
	Hash-and-Sign Paradigm

	Entropy Definitions
	Inaccessible Entropies
	Real Entropy
	Accessible Entropy
	Accessible Average Max-Entropy

	Hash Functions
	Two-Universal Hashing
	Many-Wise Independent Hashing

	One-Way Functions
	Collision Resistance
	Coding Theory Basics

	Security Definitions
	Entities in Security Model
	Sender
	Receiver

	Generative Model
	Definitions
	Publicly-Detectable Watermarking Scheme
	Soundness
	Completeness
	Robustnesss
	Distortion-Free Property


	Constructions
	High-Level Discussion on Approach
	Assumptions
	Output Generation
	Output Detection
	Encoding and Decoding
	Security and Robustness Properties

	Conclusion
	Hash Error-Correcting Functions from One-Way Permutations
	Inaccessible Entropy from One-Way Permutations
	Collision Resistance from Inaccessible Entropy
	Gap Amplification
	Entropy Reduction
	Reducing Output Length
	Additional Transformations
	Putting Everything Together


	Universal One-Way Hash Functions from One-Way Permutations
	Relations Between Entropy Notions

