
Garbled Lookup Tables from Homomorphic Secret Sharing

Liqiang Liu*, Tianren Liu�, and Bo Peng�

Peking University

February 16, 2025

Abstract

Garbled Circuit (GC) is a fundamental tool in cryptography, especially in secure
multiparty computation. Most garbling schemes follow a gate-by-gate paradigm. The
communication cost is proportional to the circuit size times the security parameter λ.

Recently, Heath, Kolesnikov and Ng (Eurocrypt 2024) partially transcend the cir-
cuit size barrier by considering large gates. To garble an arbitrary n-input m-output
gate, their scheme requires O(nmλ) + 2nm bits of communication. The security relies
on circular correlation robust hash functions (CCRH).

We further improve the communication cost to O(nλDCR+mλ), removing the expo-
nential term. The computation cost is O(2n(λDCR)

2), dominated by O(2nn) exponen-
tiations. Our construction is built upon recent progress in DCR-based Homomorphic
Secret Sharing (HSS), so it additionally relies on the decisional composite residuosity
(DCR) assumption.

As an intermediate step, we construct programmable distributed point functions
with decomposable keys, relying on the DCR assumption. Previously, such primitive
can only be constructed from multilinear maps or sub-exponential lattice assumptions.

1 Introduction

Garbled circuit (GC), introduced in the seminal work of Yao [Yao82], is one of the most
important technique in cryptography. GC allows a garbler to efficiently transform a boolean
circuit C into a garbled circuit C̃, along with a simple (usually linear) mapping that maps
any input x into its corresponding label L. If an evaluator is given the garbled circuit C̃
and the label L, it can efficiently compute C(x) and nothing else about x.

*lql@pku.edu.cn
�trl@pku.edu.cn
�bo.peng@stu.pku.edu.cn

1

GC enables constant-round practical multiparty secure computation. The bottleneck is
usually the communication cost, in particular, the size of the garbled circuit. The textbook
Yao’s GC requires O(|C| ·λ) bits of communication, where |C| denotes the Boolean circuit
size and λ denotes the security parameter. Since then, there has been a considerable amount
of works [BMR90, NPS99, KS08, PSSW09, KMR14, GLNP18, ZRE15, RR21] dedicated to
optimize the concrete efficiency of Yao’s GC construction. These works bind tightly with
the Boolean circuits basing on 2-input 1-output gates. In the state-of-the-art construction
of Rosulek and Roy [RR21], XOR and NOT gates are free, while every AND gate requires
1.5λ+ 5 bits of communication.

To get around the circuit size barrier, Heath, Kolesnikov and Ng [HKN24] initialize the
study of directly garbling large gates. Their communication cost of garbling an arbitrary
n-input m-output gate is 2nm+O(nmλ), saving roughly a factor of λ compared with the
traditional gate-by-gate garbling.

Communication Computation Assumpt. Hide f
Ours O(nλDCR +mλ) O(NλDCRcmult +NmλDCR) CCR & DCR

[HKN24] O(nmλ+Nm) O((N(1 + m
λ) + nm)chash +Nmλ) CCR #

Yao + [BPP00] O(
√
Nmλ) O(Nmchash) CCR

SGC [HK21b] O(n2λ+ nmλ) O(N2.389mchash) CCR

GPIR [HHK+22] Õ(
√
Nmλ) Õ(Nmchash) CCR

GRAM [PLS23] Õ(nmλ+ n3λ) amortized Õ(nmchash + n3chash) amortized CCR #

Table 1: Comparison of communication and computation complexities for different ap-
proaches for computing JxK 7→ Jf(x)K inside GC where f : {0, 1}n → {0, 1}m is a function
with N = 2n possible inputs. The GRAM approach amortizes the cost over Ω(N) function
evaluation. chash denotes the cost of evaluating a hash function. cmult denotes the cost of
multiplying two λDCR-bit integers.

Our Contribution. We further unbind the communication cost from the circuit size.
Our new scheme only requires O(nλDCR+mλ) bits to garble a n-inputm-output gate, where
λDCR denotes the required bit-length of the RSA modulus to achieve λ-bit security in the
Decision Composite Residuosity (DCR) assumption. Compared to [HKN24], we require
an additional computational assumption as we borrow technique from recent progresses
[OSY21, RS21] in Homomorphic Secret Sharing.

Theorem 1 (Main theorem, informal). Assuming the decisional composite residuosity
(DCR) assumption, there is a GC extension for garbling arbitrary n-bit-input m-bit-output
gates in the random oracle model and is compatible with free-XOR. The communication
cost per such gate is O(nλDCR + mλ). The computation cost is O(NλDCR

2 + NmλDCR),
including O(2nn) exponentiations 1.

1The time of multiplying two λDCR-bit integers is cmult = λDCR in the Word RAM model.

2

The key step of our construction is to garble “one-hot” gates. A n-input 2n-output
one-hot gate maps input x to a long output vector in which only the x-th bit is 1. The
communication complexity to garble a one-hot gate is O(nλDCR). Our garbling is not fully
compatible with free-XOR, otherwise it would imply the garbling of any n-input m-output
gate without any additional communication. Instead, we need mλ extra bits to close the
gap.

The garbling of one-hot gates is essentially a private puncturable PRF: The PRF F (x)
outputs the 0-label of the x-th output wire; and the punctured key F−x is the evaluator’s
view. While the works of one-hot garbling [HK21a, Hea24] can roughly be viewed as a
puncturable PRF – the evaluator must learn x, our work rebuild the privacy of x. Our core
technique essentially turns a puncturable PRF (PPRF) into a Programmable Distributed
Point Functions (PDPF) [BGIK22], which is a privately puncturable PRF along with an
additional programmability property: when deriving a punctured key, one can specify the
outputs the key yields at the punctured point. Roughly speaking, combing our technique
with the tree-based PPRF construction of [GGM86] gives a PDPF where the output range
is a cyclic Abelian group of size up to 2O(λDCR). The programmed key mainly consists of a
punctured key of GGM-PPRF and the garbled materials of our LUT. The key size of our
PDPF is O(nλDCR), while the full domain evaluation takes O(2nλDCR

2) time. Generation
of the master key and the programmed key takes O(nλDCR

2) and O(nλ + λDCR) time
respectively.

Theorem 2 (Programmable DPF). Assuming the decisional composite residuosity (DCR)
assumption, there exists a programmable distributed point function for fx,v : [2n] → G,
for any cyclic group G with size smaller than 2(ζ−1)λDCR−λ. Key generation runs in time
O(nλDCR

2), programming runs in time O(nλ + λDCR), key size is O(nλDCR), and full-
domain evaluation runs in time O(2nλDCR

2).

We compare our PDPF construction with previous works in Table 2.

Key Size Key Gen. Key Prog. Full Eval. Assumpt. Decomp.
Ours nλDCR nλDCRcmult nchash + λDCR NλDCRcmult DCR
Ours nλDCR NλDCR + nλDCRcmult nchash + λDCR NλDCRcmult DCR #

[BLW17] nλRSA n · poly(λRSA) n · poly(λRSA) N · poly(λRSA) MMap #

[PS18] poly(λLWE) poly(λLWE) poly(λLWE) N · poly(λLWE) subexp-LWE #

[BGIK22](∗) nmλ λ Nm2

ϵ2 chash
Nm2

ϵ2 chash OWF
[BGIK22] poly(n) λ poly(N) poly(N) OWF

Table 2: Comparison of key size and computation complexities for different approaches for con-
structing PDPF with domain size N = 2n and m-bit output. Constant factors are ignored. [PS18]
supports efficient evaluation on a single point, while all other approaches only support full-domain
evaluation. cmult denotes the cost of multiplying two λDCR-bit integers. chash denotes the cost of
evaluating a hash function or a pseudorandom number generator. [BGIK22] gives two constructions,
with the first (*) only offering ϵ-privacy. We assume m ≤ λDCR ≤ N and ϵ ≥ 1/N for simplicity.

3

Our PDPF construction can be further modified to achieve a property we call decom-
posability, at the cost of increasing the generation time of the master key to O(2nλDCR +
nλDCR

2). Basically, decomposability means that the programmed key can be decomposed
into n parts, where the i-th part depends solely on the i-th bit of the programming point.
The decomposability property is particularly valuable when the programmed key is gener-
ated in a distributed manner, eliminating the need for a trusted setup or a generic MPC
protocol in many cases. Therefore, we believe that our PDPF construction is of indepen-
dent interest.

Theorem 3 (Programmable DPF with Decomposable Key). Assuming the decisional com-
posite residuosity (DCR) assumption, there exists a programmable distributed point function
for fx,v : [2n] → G, for any cyclic group G with size smaller than 2(ζ−1)λDCR−λ. Key gen-
eration runs in time O(2nλDCR + nλDCR

2), programming runs in time O(nλ+ λDCR), key
size is O(nλDCR), and full-domain evaluation runs in time O(2nλDCR

2). Furthermore, the
programmed key is decomposable with respect to the bits of the programming position x.

1.1 Technical Overview

Background: Shifted Boolean One-Hot Label. Consider a wire value x ∈ Z2n

where x =
∑n−1

i=0 xi · 2i is its binary representation. The garbler (denoted by Garbler) holds
keys XG = (X[0], . . . , X[n − 1]), and the evaluator (denoted by Evaluator) holds labels
XE = (X[0] ⊕ x0∆, . . . , X[n − 1] ⊕ xn−1∆), where X[0], . . . , X[n − 1],∆ are random λ-
length boolean vectors. We call (XG, XE) a Boolean share of x. The goal of Garbler and
Evaluator is to obtain a Boolean share of f(x), where f : [2n]→ {0, 1}m is a predetermined
function.

The techniques in [HK21a] and [Hea24] allow Garbler and Evaluator to obtain a so-called
one-hot label of x, such that Garbler holds keys IG = (I[0], . . . , I[2n−1]), and Evaluator holds
labels IE = (I[0], . . . , I[x− 1], I[x]⊕∆, I[x+1], . . . , I[2n− 1]), where I[0], . . . , I[2n− 1] are
random λ-length boolean vectors, and ⊕ denotes the bitwise XOR operation. Observe that
for any predetermined function f : [2n] → {0, 1}, Garbler can calculate YG =

⊕2n−1
i=0 IG[i] ·

f(i), and Evaluator can calculate YE =
⊕2n−1

i=0 IE[i] · f(i), such that YE = YG ⊕ f(x)∆, i.e.,
(YG, YE) is a Boolean share of f(x). The same process can be repeated for many functions
without additional communication. There is a caveat, however: To generate a one-hot
label of x, x must be leaked to Evaluator.

[HK21a] and [Hea24] got around this issue by introducing a random offset c ∈ [2n],
and generating a one-hot label of (x + c) mod 2n instead of x. This preserves privacy, as
(x + c) mod 2n is uniformly distributed over [2n] indepedent of x. However, a Boolean
share of f(x + c) is useless in most setting, and applications of one-hot labels have been
limited to computing multiplication, with the single exception of [HKN24].

Our Contribution: Real One-Hot Label. Our core contribution is a way to remove
the random offset c from the one-hot label, without compromising privacy. Once this is

4

achieved, we can use one-hot labels to compute any function f : [2n] → {0, 1}m, with
almost no additional communication.

Suppose Garbler and Evaluator hold the following variant of one-hot label of y = x⊕c: 2

Garbler holds keys IG = (I[0], . . . , I[2n−1]), and Evaluator holds labels IE = (I[0], . . . , I[y−
1], I[y] +w, I[y + 1], . . . , I[2n − 1]), where I[0], . . . , I[2n − 1] are random integers, and w is
a payload to be specified later. From now on, it will be more convenient to view (IG, IE)
as a subtractive secret share of the one-hot vector

I(n)(y, w) := (0, . . . , 0︸ ︷︷ ︸
y

, w, 0, . . . , 0︸ ︷︷ ︸
2n−y−1

).

Our goal is to transform I(n)(y, w) into I(n)(x,w). For an array I = (I[0], . . . , I[2n−1]),
let shift(I, t) denote the array where each index is XORed with t, that is, shift(I, t)[j] =
I[j ⊕ t]. Then we want to obtain shift(I(n)(y, w), c) from I(n)(y, w).

Let c =
∑n−1

i=0 ci2
i be its binary representation. We decompose the task into n steps,

where the i-th step is to shift the secret share by 2i if ci = 1, and do nothing otherwise.
Note that for a secret-shared array I, the i-th step is equivalent to computing the linear
combination

ci · shift(I, 2i) + (1− ci) · I.

Since subtractive secret share is linearly homomorphic, the task is reduced to multiplying
the secret share I by ci and 1− ci entry-wise, without leaking c.

To this end, we borrow techniques from the Homomorphic Secret Sharing (HSS) litera-
ture. In the Damg̊ard-Jurik cryptosystem [DJ01], a public key is an RSA modulus N = pq,
and its corresponding secret key is sk = (p− 1)(q − 1). For any m ∈ ZN2 , we have

Enc(N,m)sk ≡ exp(m · sk) (mod N3),

where exp : ZN2 → 1+NZN3 is an exponential function in some sense. This fits particularly
well with subtractive secret share, where, say, Garbler holds r and Evaluator holds r + sk.
If Garbler sends e ← Enc(N, ci) to Evaluator, they can compute wG = er and wE = er+sk

locally, and wE · w−1
G ≡ exp(ci · sk) (mod N3). Garbler and Evaluator can then obtain a

subtractive secret share of ci · sk by computing the logarithm of wG and wE locally. This is
the so-called distributed discrete logarithm technique introduced in [OSY21].

Now the path is clear: Initially, Garbler and Evaluator hold I
(0)
G := IG, I

(0)
E := IE re-

spectively, which form a subtractive secret share of I(n)(y, sk). For each i from 0 to n− 1,
Garbler sends E[i][0]← EncN (1− ci) and E[i][1]← EncN (ci) to Evaluator, then they locally

compute E[i][0]I
(i)
G · E[i][1]shift(I

(i)
G ,2i) and E[i][0]I

(i)
E · E[i][1]shift(I

(i)
E ,2i) (the exponentiations

and multiplications are done entry-wise), and use distributed discrete logarithm of the re-

sult to obtain I
(i+1)
G and I

(i+1)
E . Finally, I

(n)
G and I

(n)
E form a subtractive secret share of

I(n)(x, sk).
2We choose x⊕ c instead of x+ c for simplicity in the formal description of the protocol.

5

Note that a subtractive secret share cannot be converted to a Boolean share directly.
By doing inner product with the truth table of a function f : [2n] → {0, 1}, Garbler and
Evaluator would obtain a subtractive secret share of f(x) · sk, which is still one step away
from the desired Boolean share of f(x). Fortunately, since Evaluator don’t know sk, this
can be solved with Garbler sending extra O(λ) bits to Evaluator.

1.2 Related Work

Arithmetic Garbled Circuits. There is a line of works garbling circuits that are com-
posed of arithmetic multiplication/addition gates and the conversion gates between arith-
metic labels and boolean labels. They mainly focused on optimizing the rate 3. By Yao’s
scheme, one can build a rate-O(1/(λℓ)) arithmetic garbling scheme with schoolbook mul-
tiplication, relying only on OWF. [AIK11] achieved rate O(1/λLWE) from LWE. [BMR16]
generalized Free-XOR and supported free addition, while multiplication is exponentially
expensive. [BLLL23] got the first constant rate scheme for bounded integer computation
from DCR (by Damg̊ard-Jurik). [LL24] further supported improved bit decomposition
gates in the random oracle model. [Hea24] gave the first construction of rate O(1/λ) that
only relies on minicrypt-style assumption (CCR hash). Recently [MORS24a] obtained
rate-1 garbling of multiplication gates from DCR. Similar to our work, they also borrowed
techniques from Damg̊ard-Jurik based HSS [RS21].

2-Party Homomorphic Secret Sharing. There are amount of works on constructing
2-party HSS for Branching Programs (BP) via Distributed Discrete Logarithm (DDLog)
based on various assumptions. For group based HSS, [BGI16, BGI17, BCG+17, DKK18]
gave constructions from DDH assumption. [FGJS17, OSY21, RS21] gave constructions
from DCR assumption. [ADOS22] gave a construction form class groups. For lattice
based HSS, [BKS19] bypassed fully/somewhat homomorphic encryption and gave a direct
construction from LWE (or Ring-LWE) with superpolynomial modulus (and thus large
ciphertexts). [ACK23] enhanced it to polynomial modulus but with a more involved re-
construction procedure. All these HSS schemes works on a relatively restricted computing
model called Restricted Multiplication Straight-line (RMS) program, in which multiplica-
tion is only allowed between an input value and a memory value and addition is allowed
between two memory values (this model captures BP). In comparison, our scheme allows
2PC for more complex functions at the expense of sublinear communication. One should
note that the share of one-hot vector of x is not directly tractable from the boolean share
of x via HSS: neither the garbler nor the evaluator knows x thus they cannot acquire the
encryptions of (the bits of) x to do multiplication.

3The rate of a garbling scheme is roughly defined as (|C|+n)ℓ/(|C̃|+ |L|). C̃ denotes the garbled circuit,
|L| is the size of all the input labels, n is the number of inputs to C, and ℓ is the bit-length of wire values.

6

Other Approaches to Garble Lookup Table [HKN24] mentioned several other GC
approaches that can be used to evaluate functions via their lookup tables. Classical GC
requiresO(|f |·λ) communication, which is Õ(2nmλ) in the worst case. The one-hot garbling
approach costs only O(nλ) communication to get shares of f(x), but x must be leaked
to the Evaluator [HK21a, Hea24]. Stacked garbling [Kol18, HK21b, HK20], which can
efficiently handle programs with conditional branching, can be used recursively to obtain
an O(n2λ + nmλ) communication scheme for garbling f . But it requires O((2n)2.389mλ)
hash function calls [HKN24, Hea22]. Garbled RAM [LO13] requires nearly O(nmλ +
n3λ) amortized communication and computation per access to an 2n-length array of size-
m elements [PLS23, HKO22]. If the cost is not amortized, Õ(2nmλ) communication is
required for each new lookup table. [HHK+22] considered how to garble a PIR gate,
where the database is publicly agreed by the garbler and evaluator, and the input index
is computed inside the evaluated circuit. They achieved Õ(

√
2nmλ) communication and

sublinear (to 2n) evaluator’s computation.

2-Round Secure 2-Party Computation. We can place our garbled LUT scheme in
the general context of 2-round 2PC, where Alice holds input xA ∈ {0, 1}n and Bob holds
input xB ∈ {0, 1}n. Alice sends the first round message to Bob and eventually gets the
output y = f(xA, xB) ∈ {0, 1}m after getting the second round message from Bob. The core
measures in this model are the size of the two messages and the computation of Alice and
Bob. Note that in the insecure setting they can simply send the inputs/outputs in plaintext
and let only one party evaluate f . For a circuit f , using Fully Homomorphic Encryption
(FHE) [Gen09] or Laconic Function Evaluation (LFE) [QWW18], one can get a protocol
that the communication is sublinear to |f | and the computation of one of Alice/Bob is
also sublinear to |f | 4. However, they are all based on lattice assumptions. [IP07] enabled
computation of branching programs on ciphertexts based on DCR, and their cipertext size
is proportional to the length of the BP.

Our garbled LUT scheme is suitable for securely computing functions with some small
segments that are sophisticated to be represented as boolean/arithmetic circuits. The rea-
son is that our communication is only linear to the input/output size of the function –
no matter how high its circuit complexity is – but the computation is exponentially large
(almost the worst case circuit size). For those suitable functions, one can use our LUT
garbling on those ‘small but sophisticated’ segments to get a garbled circuit of sublinear
size. Starting from this, one can further derive various 2PC with sublinear overall commu-
nication under non-lattice assumptions. For example, one can combine it with Laconic OT
[CDG+17] to get a Non-Interactive Secure Computation (NISC) for circuits, with the pub-
lic message sublinear to the database size and the online message sublinear to the circuit
size.

4To be precise, with FHE, the communication and Alice’s computation are proportional to the input
and output size of f . While with LFE, the communication and Bob’s computation are proportional to the
input and ouput size of f and the circuit depth of f .

7

Programmable Distributed Point Functions. What we have constructed partially
in this work is essentially a Privately Programmable Pseudorandom Function (PP-PRF)
or Programmable Distributed Point Function (PDPF). In a constrained PRF, the owner
of the PRF key k can generate constrained keys kf from k and a predict f , such that
anyone equipped with kf can evaluate the PRF on inputs x where f(x) = 0, while no in-
formation is revealed about the PRF evaluation on other inputs. A Privately Constrained
PRF (PC-PRF) additionally requires that the constrained key kf hides the predicate f .
[BKM17] gave a construction from LWE and the 1-dimensional SIS problem for the class
of point-function constraints (which is also known as Privately Puncturable PRF). After-
wards, there are many works constructing PC-PRF for more involved constraints and with
stronger privacy, mostly from LWE [CC17, BTVW17, CVW18, DKN+20]. Boneh, Lewi
and Wu [BLW17] initially proposed the concept of Privately Programmable PRF (PP-
PRF), which is a privately puncturable PRF along with an additional programmability
property: when deriving a constrained key, one can specify the outputs the key yields at
the points that f(x) = 1. They posed a construction from multilinear maps. [PS18] later
gave a construction from LWE. [BGIK22] proposed an equivalent primitive called Pro-
grammable Distributed Point Function (PDPF) 5 and degraded the assumption to OWF.
But their key generation time and the evaluation time are almost linear to the domain
size N even in the 1/poly-secure setting. To obtain negligible security error and arbitrary
payload set, their key size goes to polylog(N), the key generation time and the evaluation
time goes to poly(N).

Early works on Distributed Point Functions (DPF) gave graceful and efficient con-
structions based on OWF [GI14, BGI15], but they are not programmable. Furthermore,
[BDSS25] considered non-interactive DPF, where two parties can locally derive DPF keys
by simply reading each other’s public keys. Their construction has key size O(N2/3), and
evaluation time O(N5/3), and can be based on various assumptions including DCR.

There are some other works on PC-PRF under non-lattice assumptions. [CMPR23]
constructed PC-PRF from HSS for inner-product constraints. Their construction relies
on HSS in a relatively direct way and the technique is different from ours. [AMN+18]
constructed PC-PRF under DDH in prime-order cyclic groups, but only for bit-fixing
constraints.

2 Preliminaries

2.1 Notations

Let N+ = {0, 1, . . .}. For every n ∈ N+, we use [n] to represent the set {0, . . . , n− 1}. We
use Zn to denote the ring of integers modulo n. We will use Zn and [n] interchangeably,

5In most applications of PDPF, evaluations are done on the whole domain (a.k.a full-domain evaluation),
because the main task is to allocate additive shares of a point vector to two parties. We note that both ours
and [BGIK22]’s construction cannot evaluate on a single point in sublinear time w.r.t. the domain size.

8

and assume x mod n always falls into [n]. We use Z∗
n to denote the multiplicative group of

units in Zn. We use ← to denote assignment. We let x
$← D denote sampling x according

to the distribution D. If D is a set, we abuse the notation and let x
$← D denote uniformly

sampling from the elements of D. We denote using ⊕ the bitwise xor operation. Capital
letters denotes vectors, with an exception that N denotes the modulus in Damg̊ard-Jurik
cryptosystem. All vectors are 0-indexed unless otherwise specified.

2.2 Damg̊ard-Jurik Cryptosystem

The Damg̊ard-Jurik cryptosystem [DJ01], as described in Figure 1, is a generalization of
the Paillier cryptosystem [Pai99].

The Damg̊ard-Jurik Cryptosystem
Require:

� RSA.Gen(·) is an RSA modulus generation algorithm which, on input a security
parameter λ, samples two primes p, q from range [2λDCR−1, 2λDCR] (where λDCR =
λDCR(λ) is some polynomial chosen appropriately in order for the cryptosystem to
achieve λ bits of security) and then computes N ← p · q, and outputs (N, p, q).

� ζ ≥ 2 is a constant defining the plaintext size.

� Functions exp : ZNζ → 1 + NZNζ+1 and log : 1 + NZNζ+1 → ZNζ defined by the
following expressions, as in [RS21] and [MORS24b]:

exp(x) :=

ζ∑
k=0

(Nx)k

k!
mod N ζ+1 and log(1 +Nx) :=

ζ∑
k=1

(−N)k−1xk

k
mod N ζ .

Gen
(
1λ
)
:

� Sample (N, p, q) such that N = p · q.
� Output pk = N, sk = (p− 1)(q − 1).

Enc (pk = N, x):

� Sample a random g
$← Z∗

Nζ+1 .

� Output ct = gN
ζ
exp(x) mod N ζ+1.

Dec(sk, ct):

� Output x = sk−1 log(ctsk) mod N ζ .

Figure 1: Damg̊ard-Jurik Cryptosystem.

Theorem 4 (Damg̊ard-Jurik Cryptosystem [DJ01]). Assuming the DCR assumption, the
construction of Figure 1 is a CPA-secure encryption scheme.

9

In this paper, we always let ζ ≥ 2 denote the positive integer constant used in Damg̊ard-
Jurik cryptosystem.

Definition 5 (Decision Composite Residuosity (DCR) Assumption, [Pai99]). Let RSA.Gen
be a polynomial-time algorithm which, on input a security parameter λ, outputs (N, p, q)
where p and q are λ-bit primes and N = pq. We say that the Decision Composite Residu-
osity (DCR) problem is hard relative to modulus-sampling algorithm RSA.Gen if{

(N, x) :
(N, p, q)

$← RSA.Gen
x

$← Z∗
N2

}
c
≈

{(
N, xN mod N

)
:

(N, p, q)
$← RSA.Gen

x
$← Z∗

N2

}
2.3 Garbled Circuit

A garbling scheme [BHR12] is a tuple of procedures specifying how to garble a class of
circuits.

Definition 6 (Garbling Schemes). A garbling scheme for a class of circuits C is a tuple of
procedures (Garble,Encode,Evaluate,Decode), where:
� Garble maps a circuit C ∈ C to garbled circuit material Ĉ, an input encoding string e,
and an output decoding string d;

� Encode maps an input encoding string e and a cleartext bitstring x to an encoded input;
� Evaluate maps a circuit C, garbled circuit material Ĉ, and an encoded input to an
encoded output;

� Decode maps an output decoding string d and an encoded output to a cleartext output
string (or outputs ⊥ if the encoded output is invalid).

A garbling scheme must be correct, and it may satisfy any combination of oblivious-
ness, privacy, and authenticity [BHR12]. The most significant of these properties is
obliviousness, which informally states that the garbled material and encoded inputs reveal
nothing about the computation to the evaluator:

Definition 7 (Oblivious Garbling Scheme). A garbling scheme is oblivious if there exists a
simulator Sim such that for any circuit C ∈ C and for all inputs x, the pair (Ĉ,Encode(e, x))
is computationally indistinguishable from Sim(1λ, C), where (Ĉ, e, ·)← Garble(1λ, C).

For most garbled circuit techniques (including ours), authenticity and privacy naturally
follow from obliviousness.

3 Encoding and Secret Share

Boolean Encoding. For an n-bit integer x whose binary representation is x =
∑n−1

i=0 xi2
i,

and a λ-length boolean vector ∆, let B(x,∆) denote (x0 ·∆, . . . , xn−1 ·∆).

10

One-Hot Encoding. For an n-bit integer x and an integer w, let I(n)(x,w) denote the
length-2n vector where the x-th entry is w and all other entries are 0.

Secret Share. For any value v (which may be a scalar or a vector), a secret share of
v consists of two values vG, vE held by garbler and evaluator respectively. We will use
three types of secret share in this paper: XOR secret share, subtractive secret share, and
divisional secret share.

� For an length-n bit string v, we use JvKxor := {(vG, vE) : vG, vE ∈ {0, 1}n, vG⊕ vE = v}
to denote the set of all possible XOR secret shares of v.

� For an integer v and a modulus N , we use JvKsubN := {(vG, vE) : vG, vE ∈ [N], vE−vG ≡
v (mod N)} to denote the set of all possible subtractive secret shares of v.

� For an integer v, a Damg̊ard-Jurik public key N and a fixed constant ζ, we use

JvKdivN :=
{
(vG, vE) : vG, vE ∈ Z∗

Nζ+1 , vE · v−1
G ≡ exp(v) (mod N ζ+1)

}
to denote the set of all possible divisional secret shares of v, where exp(x) :=∑ζ

k=0
(Nx)k

k! mod N ζ+1 is defined as in Figure 1.

For a vector v, the notations JvKxor, JvKsubN , JvKdivN are extended element-wise.
We note that all three types of secret shares are linearly homomorphic in a certain

sense. We formulate the linear homomorphism property of the divisional secret share in
the following lemma.

Lemma 8. Fix a Damg̊ard-Jurik key pair (pk = N, sk) and a constant ζ. Let (aG, aE) ∈
JaKdivN , (bG, bE) ∈ JbKdivN and cE, cG ∈ Z such that cE − cG = c · sk, for some integers a, b, c.
Let e← Enc(N, t) for some integer t. Then we have:

� Addition: (aG · bG mod N ζ+1, aE · bE mod N ζ+1) ∈ Ja+ bKdivN .

� Multiplication: (akG mod N ζ+1, akE mod N ζ+1) ∈ Jk · aKdivN , for any constant k.

� Exponentiation: (ecG mod N ζ+1, ecE mod N ζ+1) ∈ Jt · c · skKdivN .

Proof. We note that the function exp(x) :=
∑ζ

k=0
(Nx)k

k! mod N ζ+1 indeed behaves like an
exponential function, in the sense that exp(x + y) ≡ exp(x) · exp(y) (mod N ζ+1), which
can be proved by direct calculation.

Thus, the first two items follow directly from the definition of the divisional secret
share. For the third item, we note that ecE · (ecG)−1 ≡ ec·sk ≡ exp(t · c · sk) (mod N ζ+1) by
correctness of the Damg̊ard-Jurik cryptosystem in Figure 1.

11

4 Full Construction

For ease of presentation, we will split the full construction into several parts, where each
part is a subprotocol that realizes a specific functionality, with its own correctness and
efficiency guarantee. In this section, we will present the construction of each part, and
prove their correctness and efficiency. The security of the full construction will be analyzed
in the next section.

Notations. We usually use lower-case letters like x, y to denote integers, and upper-case
letters like X,Y, I to denote bit strings or vectors, or vectors of bit strings. For an n-bit
integer x, we use subscript xi to denote its i-th bit. For a bit string (vector) X, we use X[i]
to denote its i-th bit (entry). We use x(0), x(1), · · · and X(0), X(1), · · · to denote relevant
(but different) values.

4.1 DDLog Gate

The DDLog gate converts a divisional secret share JxKdivN to a subtractive secret share
JxKsub

Nζ , without any communication. It is inspired by the distributed discrete logarithm
technique in HSS literature [OSY21, RS21]. The construction is presented in Figure 2.

Claim 9. Let zG and zE be the outputs of Garbler and Evaluator in ΠDDLog, Figure 2. Then
(zG, zE) ∈ JxKsub

Nζ . Further, ΠDDLog takes no communication and O(logN) computation.

Proof. Since (xG, xE) ∈ JxKdivN , i.e., xG ≡ xE (mod N) and log(x−1
G · xE) = x, we have

yG ≡ yE ≡ 1 (mod N) and (yG, yE) ∈ JxKdivN . Therefore zE − zG ≡ x (mod N ζ).
Computation bottleneck is the O(1) modular divisions and modular multiplications,

where each division and multiplication takes O(logN) time using algorithms like Fast
Fourier Transform (FFT) and Barrett reduction.

4.2 Shifted One-Hot Gate

The shifted one-hot gate converts an XOR secret share JB(x,∆)Kxor and a integer w into
JI(n)(x⊕ c, w)Ksub

Nζ , i.e., a subtractive secret share of the one-hot encoding of x⊕ c, where
c is randomly chosen from [2n]. The construction is conceptually similar to a bin-to-hot
gate followed by a scale gate, as defined in [Hea24]. Therefore, we defer the construction
to Figure 9, and the correctness proof to Appendix A.

Claim 10. Let (I ′G, c) and (I ′E, y) be the outputs of Garbler and Evaluator in Πshift
one-hot, Fig-

ure 9. Then y = x⊕c, and (I ′G, I
′
E) ∈ JI(n)(y, w)Ksub

Nζ . Further, Π
shift
one-hot takes O(nλ+logN)

communication and O(2n logN) computation.

12

ΠDDLog: DDLog Gate

Input.

� Public parameter: A Damg̊ard-Jurik public key N .

� From Garbler: xG ∈ Z∗
Nζ+1 .

� From Evaluator: xE ∈ Z∗
Nζ+1 .

� Required: (xG, xE) ∈ JxKdivN , where x ∈ [N ζ].

Output.

� Garbler: zG ∈ [N ζ].

� Evaluator: zE ∈ [N ζ].

� Expected: (zG, zE) ∈ JxKsub
Nζ .

Protocol. Can be applied to vectors element-wise.

1. Garbler computes yG = xG·(x−1
G mod N) mod N ζ+1 and zG = log(yG), where log(1+

Ny) :=
∑ζ

k=1
(−N)k−1yk

k mod N ζ .

2. Evaluator computes yE = xE · (x−1
E mod N) mod N ζ+1 and zE = log(yE), where

log(1 +Ny) :=
∑ζ

k=1
(−N)k−1yk

k mod N ζ .

3. Garbler outputs zG, and Evaluator outputs zE.

Figure 2: DDLog Gate

13

4.3 Real One-Hot Gate

The real one-hot gate is our main building block for the lookup gate. It converts an XOR
secret share JB(x,∆)Kxor into JI(n)(x, sk)Ksub

Nζ , i.e., a subtractive secret share of the one-
hot encoding of x, where sk is a random Damg̊ard-Jurik secret key. The construction is
presented in Figure 3.

We briefly explain the intuition behind our construction. We can obtain a subtractive
secret share of I(n)(x ⊕ c, sk) from the shifted one-hot gate, where c is known to Garbler
and x ⊕ c is known to Evaluator. Now we want to transform it into a subtractive secret
share of I(n)(x, sk).

Let I ′ = I(n)(x ⊕ c, sk) be the secret-shared array. We do the transformation step by
step, where in the i-th step we shift I ′ by 2i if ci = 1 and keep it unchanged if ci = 0,
where ci is the i-th bit of c. We note that this equivalent to computing

ci · shift(I ′, 2i) + (1− ci) · I ′,

so the problem is reduced to multiplying I ′ by ci and 1− ci, without leaking ci.
To this end, Garbler encrypts 1− ci and ci using the Damg̊ard-Jurik encryption scheme,

and sends the ciphertexts E[i][0], E[i][1] to Evaluator. By Lemma 8, the ciphertexts can
be used to multiply I ′ by 1− ci and ci, and the result is a divisional secret share. Finally,
Garbler and Evaluator use the DDLog gate to reduce it back to a subtractive secret share.

Claim 11. Let (IG, N, sk) and (IE, N) be the outputs of Garbler and Evaluator in Πreal
one-hot,

Figure 3. Then (IG, IE) ∈ JI(n)(x, sk)Ksub
Nζ , except with negligible probability. Further,

Πreal
one-hot takes O(nλDCR) communication and O(2nλDCR

2) computation.

Proof. We will prove the loop invariant by induction on i. The claim directly follows from
the loop invariant, since y(n) = y ⊕ c = x.

For i = 0, we have y(i) = y, and by correctness of Πshift
one-hot, (I

(0)
G , I

(0)
E) ∈ JI(n)(y, sk)Ksub

Nζ .

Suppose the loop invariant holds for i. By adding r to all entries in I
(i)
G and I

(i)
E , it

remains that (I
(i)
G , I

(i)
E) ∈ JI(n)(y(i), sk)Ksub

Nζ . Further, since sk ≪ N ζ , we now have I
(i)
E −

I
(i)
G = I(n)(y(i), sk) with overwhelming probability, even when they are viewed as vectors

in Z2n . Thus, by Lemma 8, (E[i][0]I
(i)
G , E[i][0]I

(i)
E) is a divisional share of I(n)(y(i), (1 −

ci)sk), and (E[i][1]shift(I
(i)
G ,2i), E[i][1]shift(I

(i)
E ,2i)) is a divisional share of I(n)(y(i) ⊕ 2i, cisk).

Putting them together, (Ĩ
(i)
G , Ĩ

(i)
E) ∈ JI(n)(y(i) ⊕ ci2

i, sk)KdivN , and by correctness of ΠDDLog,

(I
(i+1)
G , I

(i+1)
E) ∈ JI(n)(y(i) ⊕ ci2

i, sk)Ksub
Nζ . Note that y(i) ⊕ ci2

i = y(i+1).

Calling Πshift
one-hot takes O(nλ + logN) communication and O(2n logN) computation.

Sending E[i][0], E[i][1] takes O(n logN) communication in total, and computing Ĩ
(i)
G , Ĩ

(i)
E

takesO(2n log2N) computation in total 6. Calling ΠDDLog takesO(2nn logN) = O(2nλDCR
2)

6Naively, computing each Ĩ
(i)
G and Ĩ

(i)
E requires O(2n log2 N) time, leading to a total computation time

14

Πreal
one-hot: Real One-Hot Gate

Input.

� Public parameter: A positive integer n.

� From Garbler: XG = (XG[0], . . . , XG[n− 1]) ∈ ({0, 1}λ)n, and ∆ ∈ 1{0, 1}λ−1.

� From Evaluator: XE = (XE[0], . . . , XE[n− 1]) ∈ ({0, 1}λ)n.
� Required: (XG, XE) ∈ JB(x,∆)Kxor, where x ∈ [2n].

Output.

� Garbler: IG, N, sk.

� Evaluator: IE, N .

� Expected: (IG, IE) ∈ JI(n)(x, sk)Ksub
Nζ .

Protocol.

1. Garbler samples a Damg̊ard-Jurik key pair (pk = N, sk) ← Gen(1λ), and sends N
to Evaluator. Garbler samples r

$← [N ζ] and sends r to Evaluator.

2. Garbler and Evaluator call Πshift
one-hot(n,N ;XG, sk,∆;XE), and obtain (I

(0)
G , c) and

(I
(0)
E , y), respectively. Let c =

∑n−1
i=0 ci2

i be its binary representation.

3. For i from 0 to n− 1:

(a) Invariant: (I
(i)
G , I

(i)
E) ∈ JI(n)(y(i), sk)Ksub

Nζ , where y(i) = y ⊕
∑i−1

j=0 cj2
j .

(b) Garbler computes E[i][0] ← Enc(N, 1 − ci), E[i][1] ← Enc(N, ci), and sends
E[i][0], E[i][1] to Evaluator.

(c) Garbler and Evaluator add r to all entries in I
(i)
G and I

(i)
E , modulo N ζ .

(d) Garbler and Evaluator compute Ĩ
(i)
G = E[i][0]I

(i)
G ·E[i][1]shift(I

(i)
G ,2i) mod N ζ+1 and

Ĩ
(i)
E = E[i][0]I

(i)
E · E[i][1]shift(I

(i)
E ,2i) mod N ζ+1, where shift(I, 2i)[j] = I[j ⊕ 2i].

(e) Garbler and Evaluator call ΠDDLog(N ; Ĩ
(i)
G ; Ĩ

(i)
E), and obtain I

(i+1)
G and I

(i+1)
E .

4. Garbler outputs (I
(n)
G , N, sk), and Evaluator outputs (I

(n)
E , N).

Figure 3: Real One-Hot Gate

15

computation in total. Therefore, the total communication is O(nλDCR), and the total com-
putation is O(2nλDCR

2).

4.4 Lookup Gate

The lookup gate is a simple application of the real one-hot gate. It takes m functions
f0, . . . , fm−1 : {0, 1}n → {0, 1}, and converts an XOR secret share JB(x,∆)Kxor into
JB(fi(x),∆O)Kxor for i ∈ [m], where ∆O is another λ-length boolean vector used to encode
the output. The construction is presented in Figure 4.

Claim 12. Let (YG[0], . . . , YG[m− 1]) and (YE[0], . . . , YE[m− 1]) be the outputs of Garbler
and Evaluator in Πlookup, Figure 4. Then (YG[i], YE[i]) ∈ JB(fi(x),∆O)Kxor for i ∈ [m],
except with negligible probability. Further, Πlookup takes O(nλDCR + λm) communication
and O(2nλDCR

2 + 2nλDCRm) computation.

Proof. By correctness of Πreal
one-hot, (IG, IE) ∈ JI(n)(x, sk)Ksub

Nζ . It follows that WE[i] = WG[i]+

fi(x)sk (mod N ζ) and H3(WE[i]) = H3((WG[i] + fi(x)sk) mod N ζ). Thus YE[i] = YG[i] ⊕
fi(x)∆O, i.e., (YG[i], YE[i]) ∈ JB(fi(x),∆O)Kxor.

Calling Πreal
one-hot takes O(nλDCR) communication and O(2nλDCR

2) computation. Sending
ct0, ct1 for all i ∈ [m] takes O(λm) communication, and computing WG[i],WE[i] for all
i ∈ [m] takes O(2nλDCRm) computation. Therefore, the total communication is O(nλDCR+
λm), and the total computation is O(2nλDCR

2 + 2nλDCRm).

5 Privacy

We first present a privacy lemma for the shifted one-hot gate.

Lemma 13. There exists a PPT simulator Sim such that for any positive integer n, integer
x ∈ [2n], Damg̊ard-Jurik public key N < 2λDCR, integer w ∈ [N ζ], the following experiments
are computationally indistinguishable.

� RealShiftOneHotPriv: Uniformly sample ∆
$← 1{0, 1}λ−1 and (XG, XE)

$← JB(x,∆)Kxor.
Run the protocol Πshift

one-hot with public parameters n,N and inputs XG, w,∆, XE, and
output the view of Evaluator.

� IdealShiftOneHotPriv: Output Sim(n,N).

We defer the proof of Lemma 13 to Appendix A. Next, we define and prove the privacy
of our full construction.

of O(n2n log2 N). However, since the base is the same for every 2n exponentiations, we can optimize this
using the Method of Four Russians, reducing the overall computation to O(2n log2 N).

16

Πlookup: Lookup Gate

Input.

� Public parameter: A positive integer n, a positive integer m, m functions
f0, . . . , fm−1 : {0, 1}n → {0, 1}, and two random oracles H3, H4 : Z→ {0, 1}λ.

� From Garbler: XG = (XG[0], . . . , XG[n − 1]) ∈ ({0, 1}λ)n, and ∆O ∈ {0, 1}λ, ∆ ∈
1{0, 1}λ−1.

� From Evaluator: XE = (XE[0], . . . , XE[n− 1]) ∈ ({0, 1}λ)n.
� Required: (XG, XE) ∈ JB(x,∆)Kxor, where x ∈ [2n].

Output.

� Garbler: (YG[0], . . . , YG[m− 1]).

� Evaluator: (YE[0], . . . , YE[m− 1]).

� Expected: (YG[i], YE[i]) ∈ JB(fi(x),∆O)Kxor for i ∈ [m].

Protocol.

1. Garbler and Evaluator call Πreal
one-hot(n;XG,∆;XE), and obtain (IG, N, sk) and (IE, N)

respectively. // (IG, IE) ∈ JI(n)(x, sk)Ksub
Nζ

2. For i from 0 to m− 1:

(a) Garbler samples YG[i]
$← {0, 1}λ.

(b) Garbler computes WG[i] ≡
∑2n−1

j=0 fi(j)IG[j] (mod N ζ), and Evaluator computes

WE[i] ≡
∑2n−1

j=0 fi(j)IE[j] (mod N ζ).

(c) Garbler computes ctt =
(
H3

(
(WG[i]+ tsk) mod N ζ

)
, H4

(
(WG[i]+ tsk) mod N ζ

)
⊕YG[i] ⊕ t∆O

)
for t ∈ {0, 1}, randomly permutes ct0, ct1, and sends them to

Evaluator.

(d) Evaluator receives ct′0 = (u0, v0), ct
′
1 = (u1, v1). Let t ∈ {0, 1} be the index such

that ut = H3(WE[i]), and let YE[i] = vt ⊕H4(WE[i]).

3. Garbler outputs (YG[0], . . . , YG[m−1]), and Evaluator outputs (YE[0], . . . , YE[m−1]).

Figure 4: Lookup Gate

17

Theorem 14. There exists a PPT simulator Sim such that for any positive integers n,m,
integer x ∈ [2n], bit string ∆O ∈ {0, 1}λ, and functions f0, f1, . . . , fm−1 : {0, 1}n → {0, 1},
the following experiments are computationally indistinguishable.

� RealLookupPriv: Uniformly sample ∆
$← 1{0, 1}λ−1 and (XG, XE)

$← JB(x,∆)Kxor.
Run the protocol Πlookup with public parameters n,m, f0, . . . , fm−1 and inputs XG,∆O,∆, XE,
and output the view of Evaluator.

� IdealLookupPriv: Output Sim(n,m, f0, . . . , fm−1).

5.1 Proof of Theorem 14

We first expand all subroutine calls in the experiment RealLookupPriv (except Πshift
one-hot).

Experiment Hyb0.

1. Uniformly sample ∆
$← 1{0, 1}λ−1 and (XG, XE)

$← JB(x,∆)Kxor. Output XE.

2. Sample a Damg̊ard-Jurik key pair (pk = N, sk)← Gen(1λ). Output N .

3. Run Πshift
one-hot with public parameters n,N , Garbler input (XG, sk,∆), Evaluator input

XE. Let (I
′
G, c), (I

′
E, y) denote the output of Garbler and Evaluator, respectively. Output

the view of Evaluator.

4. Let c =
∑n−1

i=0 ci · 2i be its binary representation. For i ∈ [n], let E[i][0] ← Enc(N, 1−
ci), E[i][1]← Enc(N, ci). Output E.

5. Sample and output r
$← [N ζ]. Compute (IG, IE) ∈ JI(n)(x, sk)Ksub

Nζ with I ′E, y and r, E 7.

6. For i ∈ [m], sample YG[i]
$← {0, 1}λ, let WG[i] =

∑2n−1
j=0 fi(j)IG[j] (mod N ζ), let ctt =(

H3((WG[i] + tsk) mod N ζ), H4((WG[i] + tsk) mod N ζ)⊕ YG[i]⊕ t∆O

)
for t ∈ {0, 1},

randomly permute ct0, ct1 and output them.

Identity Substitution. We start by replacing c with x⊕y, and IG with IE−I(n)(x, sk).
The new experiment Hyb1 is statistical indistinguishable from Hyb0. The changes are
marked in blue.

Experiment Hyb1.

1. Uniformly sample ∆
$← 1{0, 1}λ−1 and (XG, XE)

$← JB(x,∆)Kxor. Output XE.

2. Sample a Damg̊ard-Jurik key pair (pk = N, sk)← Gen(1λ). Output N .

7Concretely, act as Evaluator in Step 3 in Figure 3 to compute I
(n)
E , let IE := I

(n)
E and let IG :=

I
(n)
E − I(n)(x, sk). We will omit the details in the following hybrid worlds.

18

3. Run Πshift
one-hot with public parameters n,N , Garbler input (XG, sk,∆), Evaluator input

XE. Let (I
′
G, c), (I

′
E, y) denote the output of Garbler and Evaluator, respectively. Output

the view of Evaluator.

4. Let x =
∑n−1

i=0 xi · 2i, y =
∑n−1

i=0 yi · 2i be their binary representation. For i ∈ [n], let
E[i][0]← Enc(N, 1− xi ⊕ yi), E[i][1]← Enc(N, xi ⊕ yi). Output E.

5. Sample and output r
$← [N ζ]. Compute IE ∈ Z2n

Nζ with I ′E, y and r, E.

6. For i ∈ [m], sample YE[i]
$← {0, 1}λ, let WE[i] =

∑2n−1
j=0 fi(j)IE[j] (mod N ζ),

ctt =
(
H3((WE[i] + (−1)fi(x)tsk) mod N ζ),

H4((WE[i] + (−1)fi(x)tsk) mod N ζ)⊕ YE[i]⊕ t∆O

)
,

randomly permute ct0, ct1 and output them.

Claim 15. The experiments Hyb0 and Hyb1 are statistical indistinguishable.

Proof. In Step 4, we replace ci with xi ⊕ yi, using the fact that ci = xi ⊕ yi as guaranteed
by the correctness of Πshift

one-hot in Claim 10.
In Step 6, we sample YE[i]

$← {0, 1}λ and compute WE[i] using IE, while implicitly
setting YG[i] = YE[i] ⊕ ∆O and WG[i] = WE[i] − fi(x)sk. The order of ct0, ct1 may be
changed, but they will be randomly permuted anyway.

Remove Πshift
one-hot. Next, we replace the invocation of protocol Πshift

one-hot with a suitable
simulator Sim0, as guaranteed by Lemma 13.

Experiment Hyb2.

1. Sample a Damg̊ard-Jurik key pair (pk = N, sk)← Gen(1λ). Output N .

2. Run Sim0(n,N) and output the result. Use the result to compute I ′E and y.

3. Let x =
∑n−1

i=0 xi · 2i, y =
∑n−1

i=0 yi · 2i be their binary representation. For i ∈ [n], let
E[i][0]← Enc(N, 1− xi ⊕ yi), E[i][1]← Enc(N, xi ⊕ yi). Output E.

4. Sample and output r
$← [N ζ]. Compute IE ∈ Z2n

Nζ with I ′E, y and r, E.

5. For i ∈ [m], sample YE[i]
$← {0, 1}λ, let WE[i] =

∑2n−1
j=0 fi(j)IE[j] (mod N ζ),

ctt =
(
H3((WE[i] + (−1)fi(x)tsk) mod N ζ),

H4((WE[i] + (−1)fi(x)tsk) mod N ζ)⊕ YE[i]⊕ t∆O

)
,

randomly permute ct0, ct1 and output them.

Claim 16. The experiments Hyb1 and Hyb2 are computationally indistinguishable.

Proof. Follows from Lemma 13.

19

Random Oracle. Next, since Evaluator cannot compute the secret key sk, it’s safe to
use sk as encryption key for the ciphertexts.

Experiment Hyb3.

1. Sample a Damg̊ard-Jurik key pair (pk = N, sk)← Gen(1λ). Output N .

2. Run Sim0(n,N) and output the result. Use the result to compute I ′E and y.

3. Let x =
∑n−1

i=0 xi · 2i, y =
∑n−1

i=0 yi · 2i be their binary representation. For i ∈ [n], let
E[i][0]← Enc(N, 1− xi ⊕ yi), E[i][1]← Enc(N, xi ⊕ yi). Output E.

4. Sample and output r
$← [N ζ]. Compute IE ∈ Z2n

Nζ with I ′E, y and r, E.

5. For i ∈ [m], sample YE[i]
$← {0, 1}λ, let WE[i] =

∑2n−1
j=0 fi(j)IE[j] (mod N ζ). Let ct0 =

(H3(WE[i]), H4(WE[i])⊕ YE[i]), and let ct1
$← {0, 1}2λ. Randomly permute ct0, ct1 and

output them.

Claim 17. The experiments Hyb2 and Hyb3 are computationally indistinguishable.

Proof. Consider any PPT adversary A that can distinguish Hyb3 from Hyb2. It’s clear that
one of the following events must happen with non-negligible probability, when A is run on

the output of Hyb3: 1) sk = WE[i]−W
(j)
E (mod N)ζ for some i ̸= j, or 2) A queries H3 or

H4 on WE[i]± sk for some i.
We will show that from such an adversary A, we can construct a PPT adversary

A′ that breaks the security of the Damg̊ard-Jurik encryption scheme with non-negligible
probability.

The adversary A′ works as follows. Given a Damg̊ard-Jurik public key pk = N and a

ciphertext, it simulates Hyb3 starting from Step 2, checks if sk = WE[i]−W
(j)
E (mod N)ζ

for some i ̸= j, and if not, give the output to A. Now, whenever A queries the random
oracles H3 or H4 at position p, A′ checks if p = WE[i]± sk (mod N ζ) for some i. If any of
the above checks succeeds, A′ recovers sk, so it can decrypt the ciphertext.

This contradicts the security of the Damg̊ard-Jurik encryption scheme, so suchA cannot
exist.

Damg̊ard-Jurik Encryption. Finally, we replace the Damg̊ard-Jurik ciphertexts with
encryptions of zero.

Experiment Hyb4.

1. Sample a Damg̊ard-Jurik key pair (pk = N, sk)← Gen(1λ). Output N .

2. Run Sim0(n,N) and output the result. Use the result to compute I ′E and y.

3. For i ∈ [n], let E[i][0]← Enc(N, 0), E[i][1]← Enc(N, 0). Output E.

4. Sample and output r
$← [N ζ]. Compute IE ∈ Z2n

Nζ with I ′E, y and r, E.

20

5. For i ∈ [m], sample YE[i]
$← {0, 1}λ, let WE[i] =

∑2n−1
j=0 fi(j)IE[j] (mod N ζ). Let ct0 =

(H3(WE[i]), H4(WE[i])⊕ YE[i]), and let ct1
$← {0, 1}2λ. Randomly permute ct0, ct1 and

output them.

Claim 18. The experiments Hyb3 and Hyb4 are computationally indistinguishable.

Proof. Follows from the CPA security of the Damg̊ard-Jurik encryption scheme.

Note that Hyb4 only requires knowledge of the public parameters n,m, f0, . . . , fm−1, so
it’s simulatable by a PPT simulator Sim. This concludes the proof of the theorem.

Remark 19. The proof also works if H3, H4 are modeled as Circular Correlation Robust
Hash functions (CCRH), under appropriate definition that allows replacing H3(WE[i]± sk)
and H4(WE[i]±sk)⊕∆O with random values. Combining this proof with another version of
Lemma 13, we can prove the privacy of the full construction under the CCRH assumption
in the plain model. See Appendix B for details.

6 Programmable Distributed Point Functions

In this section, we demonstrate how to construct small-domain programmable distributed
point functions (PDPFs) using the techniques developed in previous sections. We present
two constructions: the first offers highly efficient key generation and programming times
(poly-logarithmic in the domain size), while the second introduces a property we call de-
composability. Decomposability means that the programmed key can be decomposed into
n parts, where the i-th part depends solely on the i-th bit of the programming point.

The decomposability property is particularly valuable when the programmed key is
generated in a distributed manner. Consider a scenario where one party (the sender)
knows the programming value v, and another party (the receiver) knows the programming
point x. The sender generates the master key and, for each i ∈ [n] and b ∈ {0, 1}, computes
the i-th part of the programmed key corresponding to the i-th bit of x being b. The sender
and receiver then execute n parallel instances of oblivious transfer (OT), such that the
receiver obtains the correct parts. This results in a highly efficient, two-round protocol for
distributed key generation.

This protocol can be extended to the case where the two parties hold x0, v0 and x1, v1,
respectively, such that x0 ⊕ x1 = x and v0 + v1 = v. In this case, the parties run two
parallel instances of the previous protocol, with each party acting as the sender in one
instance and the receiver in the other. When the party holding xt, vt acts as the sender, it
simply uses vt as the payload and permutes the i-th part of the programmed key according
to the i-th bit of xt. This gives the two parties shares of fx,v0 and fx,v1 with payloads at
different sides. Finally they can locally subtract the two shares they take and get shares
of fx,v. The resulting protocol remains two-round, with each round involving simultaneous
messages from both parties.

21

RealProgPrivA(1λ,M,G):

x, v ← A(1λ,M,G)

k0 ← Gen0(1
λ,M,G)

k1 ← Gen1(k0, (M,G, x, v))

Output A(k1)

IdealProgPrivA,Sim(1λ,M,G):

x, v ← A(1λ,M,G)

k1 ← Sim(1λ,M,G)

Output A(k1)

Figure 5: Security experiments for Programmable DPF, where the adversary A is stateful.

6.1 Definition

We follow the definition of PDPF in [BGIK22].

Notations. We use G to denote an Abelian group. Given a domain size M and an
Abelian group G, a point function fx,v : [M] → G evaluates to v on input x and to 0 on
all other inputs.

Syntax. A programmable DPF is a tuple (Gen0,Gen1,Eval0,Eval1) of possibly random-
ized algorithms with the following syntax:

� Gen0(1
λ,M,G): given the security parameter λ, the input domain M and group de-

scription G, output a key k0.

� Gen1(k0, f̂): given the key k0 and the description of a point function f̂ = (M,G, x, v),
output a key k1.

� Evali(ki, x): given a key ki and an input x ∈ [M], output the evaluation outcome v ∈ G.

Correctness. For any polynomially bounded function M(·), there exists a negligible
function negl(·) such that for all λ, for all point function descriptions f̂ = (M,G, x, v)
where x ∈ [M] and v ∈ G, we have the following:

Pr

[
k0 ← Gen0(1

λ,M,G),

k1 ← Gen1(k0, f̂)
:

Eval1(k1, x) = Eval0(k0, x) + v and
∀x′ ̸= x,PEval(k1, x

′) = Eval(k0, x
′)

]
≥ 1− negl(λ).

Security. We require there exists a PPT algorithm Sim such that for any polynomially
bounded function M(·), the experiments RealProgPriv and IdealProgPriv given in Figure 5
are computationally indistinguishable.

6.2 Construction

In this section, we assume the domain size M is a power of 2, and set n = log2M .

22

Overview. The construction is in the same spirit as our real one-hot gate. Basically,
Gen0 generates the Boolean share XG and the one-hot share IG held by Garbler, and Gen1
generates the garbled materials and the Boolean share XE held by Evaluator. Eval1 acts as
Evaluator, using XE and the garbled materials to compute the one-hot share IE. Since our
real one-hot gate is secure, the resulting PDPF does not leak any information about the
programmed point.

However, the result of our real one-hot gate is always an instance of JI(n)(x, sk)Ksub
Nζ ,

while the PDPF requires replacing sk with a specific value v. We can send v · sk instead
of sk when calling Πshift

one-hot, such that the result would be JI(n)(x, v · sk)Ksub
Nζ . We can then

naively use Enc(N, sk−1 mod N ζ) to remove sk from the result. It works, but requires the
key-dependent message (KDM) security of the Damg̊ard-Jurik encryption scheme, which
is not ideal.

A natural idea is to use d = sk·(sk−1 mod N ζ) instead of sk, which satisfies Enc(N, c)d =
exp(c) for any c ∈ [N ζ], so the extra sk is removed from the result. This has a fatal flaw,
though: d can be as large as N ζ+1, too large to be stored in a ciphertext or a subtractive
secret share, where the values are modulo N ζ .

Following the idea of [RS21, MORS24b], we use ν = N−ζ mod sk instead of d in the
secret share. By Chinese Remainder Theorem, it must be that d ≡ 1−N ζ ·ν (mod sk ·N ζ),
so we can obtain a subtractive secret share of v·d by combining the subtractive secret shares
of v and v · ν.

Now d disappears after exponentiation, but we still need secret shares of v · ν in the
next round. We can send Enc(N, (1 − ci)ν) and Enc(N, ciν) alongside Enc(N, 1 − ci) and
Enc(N, ci), but this defeats the purpose of not relying on KDM security. Instead, we use the
key switching technique, where we use different Damg̊ard-Jurik keys for different rounds,
and use the current key to encrypt the ν of the next round.

Formal Construction. For a Damg̊ard-Jurik public keyN , let expN (x) :=
∑ζ

k=0
(Nx)k

k! mod

N ζ+1, logN (1 + Nx) :=
∑ζ

k=1
(−N)k−1xk

k mod N ζ , and ddlogN (x) := logN (x · (x−1 mod
N) mod N ζ+1). Further, these functions are extended element-wise to vectors.

We first define the procedure OblivShift in Figure 6, which corresponds to the transform
from a shifted one-hot share to a real one-hot share. The procedure satisfies the following
correctness property:

Claim 20. Let (N0, sk0), . . . , (Nn−1, skn−1) be Damg̊ard-Jurik key pairs, let di = ski ·
(sk−1

i mod N ζ
i), and let νi = N−ζ

i mod ski. Let 0 ≤ v ≤ 2(ζ−1)λDCR−λ be an integer. Let
I ′G, I

′
E ∈ Z2n, such that I ′E − I ′G = I(n)(y, v · d0). Let c ∈ [2n] be an integer with binary

representation c =
∑n−1

i=0 ci2
i. Let E[i][b] be an encryption of ci ⊕ b ⊕ 1 and F [i][b] be

an encryption of (ci ⊕ b ⊕ 1) · νi+1, for i ∈ [n] and b ∈ {0, 1}. In particular, F [n − 1][b]
can be anything. Let r be a random integer in [22ζλDCR]. Then OblivShift(N,E, F, r, I ′E) −
OblivShift(N,E, F, r, I ′G) = I(n)(y ⊕ c, v) expect with negligible probability in λ.

23

Procedure OblivShift

Input.

� n Damg̊ard-Jurik public keys N0, . . . , Nn−1.

� 2n Damg̊ard-Jurik ciphertexts E[0][0], E[0][1], . . . , E[n − 1][0], E[n − 1][1], where
E[i][0], E[i][1] are encrypted under Ni.

� 2n Damg̊ard-Jurik ciphertexts F [0][0], F [0][1], . . . , F [n − 1][0], F [n − 1][1], where
F [i][0], F [i][1] are encrypted under Ni.

� A random integer r ∈ [22ζλDCR].

� A vector I ′ ∈ Z2n .

Procedure.

1. Let I(0) = I ′.

2. For i from 0 to n− 1:

(a) Let Ĩ(i)[0] = E[i][0]I
(i) · E[i][1]shift(I

(i),2i), Ĩ(i)[1] = F [i][0]I
(i) · F [i][1]shift(I

(i),2i),
where shift(I, 2i)[j] = I[j ⊕ 2i].

(b) Let Î(i)[0] = ddlogNi
(Ĩ(i)[0]) and Î(i)[1] = ddlogNi

(Ĩ(i)[1]). Then add r to all

entries in Î(i) modulo N ζ
i .

(c) If i ̸= n− 1, let I(i+1) = Î(i)[0]−N ζ
i+1 · Î(i)[1], viewed as integers.

3. Output Î(n)[0] as integers.

Figure 6: Oblivious Shift

24

Proof. Define I
(i)
G to be the intermediate value I(i) when running OblivShift(I ′G), and define

I
(i)
E , Ĩ

(i)
G , Ĩ

(i)
E , Î

(i)
G , Î

(i)
E in a similar way.

Let y(i) = y ⊕
∑i−1

j=0 cj2
j . By using induction on i, we can prove that except with

negligible probability in λ (which comes from converting vectors from Z2n

Nζ
i

to Z2n),

� I
(i)
E − I

(i)
G ≡ I

(n)(y(i), v · di) (mod ski ·N ζ
i).

� (Ĩ
(i)
G [b], Ĩ

(i)
E [b]) ∈ JI(n)(y(i+1), v · νbi+1)K

div
Ni
.

� Î
(i)
E [b]− Î

(i)
G [b] = I(n)(y(i+1), v · νbi+1) (viewed as integers, after adding r).

� I
(i+1)
G − I

(i+1)
E ≡ I(n)(y(i+1), v · di+1) (mod ski+1 ·N ζ

i+1).

where we used the facts that d ≡ 1 − N ζ · ν (mod sk · N ζ), Enc(N,w)d ≡ expN (w)

(mod N ζ+1) and Enc(N,w)sk·N
ζ ≡ 1 (mod N ζ+1) for any w ∈ [N ζ].

Now all we need to do is generate the initial I ′G and I ′E. Since we are allowed to
reveal the punctured point x⊕ c, this can be achieved using the classical puncturable PRF
construction based on the GGM tree. The full construction is given in Figure 7.

Theorem 21. Assuming the DCR assumption, the construction in Figure 7 is a pro-
grammable distributed point function for fx,v : [2n] → G, for any cyclic group G with size
smaller than 2(ζ−1)λDCR−λ. Gen0 runs in time O(nλDCR

2), Gen1 runs in time O(nλ+λDCR),
key size is O(nλDCR), and full-domain evaluation runs in time O(2nλDCR

2).

Correctness. It’s clear from definition that I ′E− I ′G = I(n)(y, v · d0), and the rest follows
from the correctness of OblivShift.

Security. Note that L is generated similar to a GGM tree, and each P [i] represents a
sibling to the path from the root to L(n)[y], so P and L(n)[y] are pseudorandom. Then
G2(L

(n)[y]) is pseudorandom in range [22ζλDCR], which is much larger than v · d0, so w is
also computationally indistinguishable from a random integer in range [22ζλDCR]. Now we
removed all dependency on sk0, so E[0][0], E[0][1], F [0][0], F [0][1] can all be replaced by
encryptions of zero. We can then continue to replace E[1][0], E[1][1], F [1][0], F [1][1], and
so on.

Efficiency. Gen0 runs in time O(nλDCR
2) for generating O(n) ciphertexts. Gen1 only

needs to expand the GGM tree through a single path, and do several calculation in [22ζλDCR],
so it runs in time O(nλ+λDCR).

8 Both Eval0 and Eval1 have the same bottleneck, which oc-
curs during the execution of OblivShift, running in O(2nλDCR

2) time. Similar to [BGIK22],

8We disregarded the time required to output N,E, F , as it merely involves data transfer without any
actual computation.

25

Programmable Distributed Point Function

Notation. We assume two pseudorandom number generators (PRG) G1 : {0, 1}λ →
{0, 1}2λ, G2 : {0, 1}λ → [22ζλDCR].

Gen0(1
λ,M,G):

1. Sample L(0) $← ({0, 1}λ)1, i.e. a vector with a single element.

2. Sample c
$← [2n], and let c =

∑n−1
i=0 ci2

i be its binary representation.

3. Sample n Damg̊ard-Jurik key pairs (N0, sk0), . . . , (Nn−1, skn−1) ← Gen(1λ). Let

νi = N−ζ
i mod ski for i ∈ [n].

4. For i ∈ [n], let E[i][0]← Enc(Ni, 1− ci), E[i][1]← Enc(Ni, ci).

5. For i ∈ [n], let F [i][0]← Enc(Ni, (1− ci)νi+1), F [i][1]← Enc(Ni, ciνi+1).

6. Sample r
$← [22ζλDCR].

7. Output k0 = (L(0), c,N,E, F, r).

Gen1(k0 = (L(0), c,N,E, F, r), f̂ = (M,G, x, v)):

1. For i ∈ [n], define L(i+1) to be a vector of length 2i+1, where L(i+1)[j]∥L(i+1)[j +
2i] = G1(L

(i)[j]) for j ∈ [2i].

2. Let y = x⊕ c, and let y =
∑n−1

i=0 yi2
i be its binary representation.

3. For i ∈ [n− 1], let P [i] = L(i+1)
[
(1− yi)2

i +
∑i−1

j=0 yj2
j
]
.

4. Let w = v · d0 +G2(L
(n)[y]), where d0 = sk0 · (sk−1

0 mod N ζ
0).

5. Output k1 = (N,E, F, r, y, P, w).

Eval0(k0 = (L(0), c,N,E, F, r), x):

1. Compute L(n) as defined in Gen1.

2. Let I ′G[j] = G2(L
(n)[j]) for j ∈ [2n].

3. Output OblivShift(N,E, F, r, I ′G)[x].

Eval1(k1 = (N,E, F, r, y, P, w), x):

1. Use P to compute L(n) except L(n)[y]. We omit the details since this is a standard
construction of puncturable PRF based on GGM tree.

2. Let I ′E[j] = G2(L
(n)[j]) for j ∈ [2n] \ {y}, and set I ′E[y] = w.

3. Output OblivShift(N,E, F, r, I ′E)[x].

Figure 7: Programmable Distributed Point Function.

26

our construction has the same efficiency for evaluating at a single point and for evaluating
at all points.

6.3 Recovering Decomposability

While the construction in Figure 7 is quite efficient in terms of key generation, it lost an
important property of the real one-hot gate – independency between bits of the programmed
point (i.e. decomposability).

We explain this property in more details. The input to the real one-hot gate is an XOR
secret share of the Boolean label of x, where each bit of x is shared independently. The
garbled materials does not depend on x. Thus, the information held by Evaluator can be
split into n independent parts, each corresponding to a bit of x. Ideally, we would like to
have the same decomposable property in the PDPF, i.e., the programmed key k1 should
be split into n independent parts, each corresponding to a bit of x.

We give a construction in Figure 8 that recovers this property, using techniques in the
shifted one-hot gate. However, this comes at the cost of slower key generation. We mark
the changes in blue compared to the original construction.

Theorem 22. Assuming the DCR assumption, the construction in Figure 8 is a pro-
grammable distributed point function for fx,v : [2n] → G, for any cyclic group G with size
smaller than 2(ζ−1)λDCR−λ. Gen0 runs in time O(2nλDCR + nλDCR

2), Gen1 runs in time
O(nλ+λDCR), key size is O(nλDCR), and full-domain evaluation runs in time O(2nλDCR

2).

Proof. Correctness is satisfied by the same argument as before.
Compared to the original construction, the P is XORed with some extra terms, and w

is added with some extra terms. However, the extra terms are meant to be known to the
adversary anyway, so they do not affect security.

Remark. While Gen0 runs in time linear in the domain size, Gen1 remains efficient. We
argue that Gen0 is generally run as the offline phase (before the point function is known) in
applications of PDPF, allowing for more computational time. In contrast, an efficient Gen1
is critical for ensuring an efficient online phase, which is often more important in practice.

References

[ACK23] Thomas Attema, Pedro Capitão, and Lisa Kohl. On homomorphic secret
sharing from polynomial-modulus LWE. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part II, volume 13941 of LNCS, pages 3–32.
Springer, Cham, May 2023.

[ADOS22] Damiano Abram, Ivan Damg̊ard, Claudio Orlandi, and Peter Scholl. An al-
gebraic framework for silent preprocessing with trustless setup and active se-
curity. In Dodis and Shrimpton [DS22], pages 421–452.

27

Programmable Distributed Point Function with decomposable key

Notation. We assume two pseudorandom number generators (PRG) G1 : {0, 1}λ →
{0, 1}2λ, G2 : {0, 1}λ → [22ζλDCR].

Gen0(1
λ,M,G):

1. Sample L(0) $← ({0, 1}λ)1, i.e. a vector with a single element.

2. Sample c
$← [2n], and let c =

∑n−1
i=0 ci2

i be its binary representation.

3. Sample n Damg̊ard-Jurik key pairs (N0, sk0), . . . , (Nn−1, skn−1) ← Gen(1λ). Let

νi = N−ζ
i mod ski for i ∈ [n].

4. For i ∈ [n], let E[i][0]← Enc(Ni, 1− ci), E[i][1]← Enc(Ni, ci).

5. For i ∈ [n], let F [i][0]← Enc(Ni, (1− ci)νi+1), F [i][1]← Enc(Ni, ciνi+1).

6. Sample r
$← [22ζλDCR].

7. For i ∈ [n], let L(i+1) be a vector of length 2i+1, where L(i+1)[j]∥L(i+1)[j + 2i] =
G1(L

(i)[j]) for j ∈ [2i].

8. For i ∈ [n− 1], let Q[i][b] =
⊕(b+1)2i−1

j=b2i
L(i+1)[j]. Let s =

∑2n−1
j=0 G2(L

(n)[j]).

9. Output k0 = (L(0), c,N,E, F, r,Q, s).

Gen1(k0 = (L(0), c,N,E, F, r,Q, s), f̂ = (M,G, x, v)):

1. Let y = x⊕ c, and let y =
∑n−1

i=0 yi2
i be its binary representation.

2. For i ∈ [n− 1], let P [i] = Q[i][1− yi].

3. Let w = v · d0 + s, where d0 = sk0 · (sk−1
0 mod N ζ

0).

4. Output k1 = (N,E, F, r, y, P, w).

Eval0(k0 = (L(0), c,N,E, F, r,Q, s), x):

1. Compute L(n) as defined in Gen0.

2. Let I ′G[j] = G2(L
(n)[j]) for j ∈ [2n].

3. Output OblivShift(N,E, F, r, I ′G)[x].

Eval1(k1 = (N,E, F, r, y, P, w), x):

1. Use P to compute L(n) except L(n)[y].

2. Let I ′E[j] = G2(L
(n)[j]) for j ∈ [2n] \ {y}, and set I ′E[y] = w −

∑
j ̸=y I

′
E[j].

3. Output OblivShift(N,E, F, r, I ′E)[x].

Figure 8: Programmable Distributed Point Function with decomposable key.

28

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arith-
metic circuits. In Rafail Ostrovsky, editor, 52nd FOCS, pages 120–129. IEEE
Computer Society Press, October 2011.

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa. Constrained PRFs for NC1 in traditional groups. In
Shacham and Boldyreva [SB18], pages 543–574.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù.
Homomorphic secret sharing: Optimizations and applications. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 2105–2122. ACM Press, October / November 2017.

[BDSS25] Elette Boyle, Lalita Devadas, and Sacha Servan-Schreiber. Non-interactive
distributed point functions. Cryptology ePrint Archive, Paper 2025/095, 2025.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Oswald
and Fischlin [OF15], pages 337–367.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier
for secure computation under DDH. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539.
Springer, Berlin, Heidelberg, August 2016.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computa-
tion: Optimizing rounds, communication, and computation. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume
10211 of LNCS, pages 163–193. Springer, Cham, April / May 2017.

[BGIK22] Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable
distributed point functions. In Dodis and Shrimpton [DS22], pages 121–151.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012, pages 784–796. ACM Press, October 2012.

[BKM17] Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable prfs
from standard lattice assumptions. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, pages 415–
445, Cham, 2017. Springer International Publishing.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from
lattices without FHE. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part II, volume 11477 of LNCS, pages 3–33. Springer, Cham,
May 2019.

29

[BLLL23] Marshall Ball, Hanjun Li, Huijia Lin, and Tianren Liu. New ways to garble
arithmetic circuits. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part II, volume 14005 of LNCS, pages 3–34. Springer, Cham,
April 2023.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom func-
tions privately. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of
LNCS, pages 494–524. Springer, Berlin, Heidelberg, March 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513.
ACM Press, May 1990.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for Boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 565–577. ACM Press, October 2016.

[BPP00] Joan Boyar, René Peralta, and Denis Pochuev. On the multiplicative com-
plexity of boolean functions over the basis (cap, +, 1). Theor. Comput. Sci.,
235(1):43–57, 2000.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee.
Private constrained PRFs (and more) from LWE. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 264–302.
Springer, Cham, November 2017.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1

from LWE. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 446–476. Springer,
Cham, April / May 2017.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 33–65. Springer, Cham, August 2017.

[CMPR23] Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia.
Constrained pseudorandom functions from homomorphic secret sharing. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, vol-
ume 14006 of LNCS, pages 194–224. Springer, Cham, April 2023.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond per-
mutation branching programs: Proofs, attacks, and candidates. In Shacham
and Boldyreva [SB18], pages 577–607.

30

[DD22] Orr Dunkelman and Stefan Dziembowski, editors. EUROCRYPT 2022, Part I,
volume 13275 of LNCS. Springer, Cham, May / June 2022.

[DJ01] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Kwangjo Kim,
editor, PKC 2001, volume 1992 of LNCS, pages 119–136. Springer, Berlin,
Heidelberg, February 2001.

[DKK18] Itai Dinur, Nathan Keller, and Ohad Klein. An optimal distributed discrete log
protocol with applications to homomorphic secret sharing. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 213–242. Springer, Cham, August 2018.

[DKN+20] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Adaptively secure constrained pseudorandom functions
in the standard model. In Daniele Micciancio and Thomas Ristenpart, edi-
tors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 559–589. Springer,
Cham, August 2020.

[DS22] Yevgeniy Dodis and Thomas Shrimpton, editors. CRYPTO 2022, Part IV,
volume 13510 of LNCS. Springer, Cham, August 2022.

[FGJS17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith.
Homomorphic secret sharing from paillier encryption. In Tatsuaki Okamoto,
Yong Yu, Man Ho Au, and Yannan Li, editors, Provable Security, pages 381–
399, Cham, 2017. Springer International Publishing.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press,
May / June 2009.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct ran-
dom functions. J. ACM, 33(4), August 1986.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 640–658. Springer, Berlin, Heidelberg, May 2014.

[GLNP18] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of
circuits under standard assumptions. Journal of Cryptology, 31(3):798–844,
July 2018.

[Hea22] David Heath. New Directions in Garbled Circuits. PhD thesis, Georgia Insti-
tute of Technology, Atlanta, GA, USA, 2022.

31

[Hea24] David Heath. Efficient arithmetic in garbled circuits. In Joye and Leander
[JL24], pages 3–31.

[HHK+22] Abida Haque, David Heath, Vladimir Kolesnikov, Steve Lu, Rafail Ostrovsky,
and Akash Shah. Garbled circuits with sublinear evaluator. In Dunkelman
and Dziembowski [DD22], pages 37–64.

[HK20] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit
proportional to longest execution path. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
763–792. Springer, Cham, August 2020.

[HK21a] David Heath and Vladimir Kolesnikov. One hot garbling. In Giovanni Vi-
gna and Elaine Shi, editors, ACM CCS 2021, pages 574–593. ACM Press,
November 2021.

[HK21b] David Heath and Vladimir Kolesnikov. LogStack: Stacked garbling with
O(b log b) computation. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 3–32.
Springer, Cham, October 2021.

[HKN24] David Heath, Vladimir Kolesnikov, and Lucien K. L. Ng. Garbled circuit
lookup tables with logarithmic number of ciphertexts. In Joye and Leander
[JL24], pages 185–215.

[HKO22] David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky. EpiGRAM: Prac-
tical garbled RAM. In Dunkelman and Dziembowski [DD22], pages 3–33.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted
data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages
575–594. Springer, Berlin, Heidelberg, February 2007.

[JL24] Marc Joye and Gregor Leander, editors. EUROCRYPT 2024, Part V, volume
14655 of LNCS. Springer, Cham, May 2024.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible
garbling for XOR gates that beats free-XOR. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 440–
457. Springer, Berlin, Heidelberg, August 2014.

[Kol18] Vladimir Kolesnikov. Free IF: How to omit inactive branches and implement
S-universal garbled circuit (almost) for free. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages
34–58. Springer, Cham, December 2018.

32

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
XOR gates and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, ed-
itors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer,
Berlin, Heidelberg, July 2008.

[LL24] Hanjun Li and Tianren Liu. How to garble mixed circuits that combine
boolean and arithmetic computations. In Marc Joye and Gregor Leander,
editors, EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 331–
360. Springer, Cham, May 2024.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 719–734. Springer, Berlin, Heidelberg, May 2013.

[MORS24a] Pierre Meyer, Claudio Orlandi, Lawrence Roy, and Peter Scholl. Rate-1 arith-
metic garbling from homomorphic secret-sharing. Cryptology ePrint Archive,
Report 2024/820, 2024.

[MORS24b] Pierre Meyer, Claudio Orlandi, Lawrence Roy, and Peter Scholl. Rate-1 arith-
metic garbling from homomorphic secret sharing. In Elette Boyle and Mo-
hammad Mahmoody, editors, TCC 2024, Part IV, volume 15367 of LNCS,
pages 71–97. Springer, Cham, December 2024.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions
and mechanism design. In EC, pages 129–139. ACM, 1999.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part II,
volume 9057 of LNCS. Springer, Berlin, Heidelberg, April 2015.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume
12696 of LNCS, pages 678–708. Springer, Cham, October 2021.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, vol-
ume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer,
1999.

[PLS23] Andrew Park, Wei-Kai Lin, and Elaine Shi. NanoGRAM: Garbled RAM
with Õ(logN) overhead. In Carmit Hazay and Martijn Stam, editors, EU-
ROCRYPT 2023, Part I, volume 14004 of LNCS, pages 456–486. Springer,
Cham, April 2023.

33

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming
PRFs, the LWE way. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part II, volume 10770 of LNCS, pages 675–701. Springer, Cham,
March 2018.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, Berlin, Hei-
delberg, December 2009.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation
and applications. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE
Computer Society Press, October 2018.

[RR21] Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the
half-gates lower bound for garbled circuits. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94–124, Virtual
Event, August 2021. Springer, Cham.

[RS21] Lawrence Roy and Jaspal Singh. Large message homomorphic secret shar-
ing from DCR and applications. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 687–717, Virtual
Event, August 2021. Springer, Cham.

[SB18] Hovav Shacham and Alexandra Boldyreva, editors. CRYPTO 2018, Part II,
volume 10992 of LNCS. Springer, Cham, August 2018.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Oswald and
Fischlin [OF15], pages 220–250.

A Shifted One-Hot Gate

A.1 Construction

We present our version of the shifted one-hot gate in Figure 9.

Proof of Claim 10. Correctness follows by verifying the loop invariant using induction.
Sending P incurs O(nλ) communication, and sending w′ incurs O(logN) communica-

tion. Computation bottleneck is the O(2n) random oracle queries, where each query takes
O(logN) time.

34

Πshift
one-hot: Shifted One-Hot Gate

Input.

� Public parameter: A positive integer n, a Damg̊ard-Jurik public key N ≤ 2λDCR ,
two random oracles H1 : {0, 1}λ → {0, 1}λ, H2 : {0, 1}λ → [22ζλDCR].

� From Garbler: XG = (XG[0], . . . , XG[n− 1]) ∈ ({0, 1}λ)n, an integer w ∈ [N ζ], and
a λ-length bit string ∆ ∈ 1{0, 1}λ−1.

� From Evaluator: XE = (XE[0], . . . , XE[n− 1]) ∈ ({0, 1}λ)n.
� Required: (XG, XE) ∈ JB(x,∆)Kxor, where x ∈ [2n].

Output. Garbler outputs (I ′G, c), and Evaluator outputs (I ′E, y), where y = x⊕ c and
(I ′G, I

′
E) ∈ JI(n)(y, w)Ksub

Nζ .

Protocol.

1. Garbler let ci = XG[i][0] for i ∈ [n], and let c =
∑n−1

i=0 ci2
i.

2. Evaluator let yi = XE[i][0] for i ∈ [n], and let y =
∑n−1

i=0 yi2
i. // y = x⊕ c

3. Garbler samples L
(0)
G

$← ({0, 1}λ)1, i.e. a vector where the only element is a random

λ-bit string. Garbler sends L
(0)
G ⊕∆ to Evaluator, who sets it to be L

(0)
E .

4. For i from 0 to n− 1:

(a) Invariant: (L
(i)
G , L

(i)
E) ∈ JI(i)(y(i),∆)Kxor, where y(i) :=

∑i−1
i′=0 yi′2

i′ . a

(b) Garbler computes L̂
(i)
G [j] = H1(L

(i)
G [j]) for j ∈ [2i], and sends P [i] = XG[i] ⊕⊕2i−1

j=0 L̂
(i)
G [j] to Evaluator.

(c) Evaluator computes L̂
(i)
E [j] = H1(L

(i)
E [j]) for j ∈ [2i]\{y(i)}, and sets L̂

(i)
E [y(i)] =

XE[i]⊕ P [i]⊕
⊕

j∈[2i]\{y(i)} L̂
(i)
E [j]. // (L̂

(i)
G , L̂

(i)
E) ∈ JI(i)(y(i), yi∆)Kxor

(d) Garbler and Evaluator set L
(i+1)
G = (L̂

(i)
G ⊕ L

(i)
G)∥L̂(i)

G and L
(i+1)
E = (L̂

(i)
E ⊕

L
(i)
E)∥L̂(i)

E .

5. Garbler computes I ′G[i] = H2(L
(n)
G [i]) for i ∈ [2n], and Evaluator computes I ′E[i] =

H2(L
(n)
E [i]) for i ∈ [2n] \ {y}.

6. Garbler computes w′ = w +
∑2n−1

i=0 I ′G[i] (mod N ζ), sends w′ to Evaluator, and
Evaluator sets I ′E[y] = w′ −

∑
i ̸=y I

′
E[i] (mod N ζ). // I ′E[y] = I ′G[y] + w

7. Garbler outputs (I ′G, c), and Evaluator outputs (I ′E, y).

aWe slightly abused notation here by putting ∆ in the one-hot encoding. It should be viewed as
an integer in [2λ].

Figure 9: Shifted One-Hot Gate
35

A.2 Proof of Lemma 13

We first rewrite the experiment RealShiftOneHotPriv, highlighting the outputs.

Experiment Hyb0.

1. Uniformly sample ∆
$← 1{0, 1}λ−1 and (XG, XE)

$← JB(x,∆)Kxor. Output XE.

2. Sample L
(0)
G

$← ({0, 1}λ)1, and output L
(0)
G ⊕∆.

3. For i ∈ [n], for j ∈ [2i], let L̂
(i)
G [j] = H1(L

(i)
G [j]), and output P [i] = XG[i]⊕

⊕2i−1
j=0 L̂

(i)
G [j].

Let L
(i+1)
G = (L̂

(i)
G ⊕ L

(i)
G)∥L̂(i)

G .

4. Let w′ ≡ w +
∑2n−1

i=0 H2(L
(n)
G [i]) (mod N ζ). Output w′.

Identity Substitution. Next, we replace XG[i] with XE[i] ⊕ xi∆, L
(i)
G with L

(i)
E ⊕

I(i)(y(i),∆), and L̂
(i)
G with L̂

(i)
E ⊕ I

(i)(y(i), yi∆).

Experiment Hyb1.

1. Uniformly sample ∆
$← 1{0, 1}λ−1 and XE

$← {0, 1}λ. Output XE.

2. Sample L
(0)
E

$← ({0, 1}λ)1, and output L
(0)
E .

3. For i ∈ [n], let yi = XE[i][0], and y(i) =
∑i−1

i′=0 yi′2
i′ . Let y =

∑n−1
i=0 yi2

i.

4. For i ∈ [n], for j ∈ [2i] \ y(i), let L̂
(i)
E [j] = H1(L

(i)
E [j]), output P [i] = XE[i] ⊕ xi∆ ⊕

H1(L
(i)
E [y(i)]⊕∆)⊕

⊕
j∈[2i]\y(i) L̂

(i)
E [j], and let L̂

(i)
E [y(i)] = XE[i]⊕P [i]⊕

⊕
j∈[2i]\y(i)⊕{y(i)} L̂

(i)
E [j].

Let L
(i+1)
E = (L̂

(i)
E ⊕ L

(i)
E)∥L̂(i)

E .

5. Let w′ ≡ w +H2(L
(n)
E [y]⊕∆) +

∑
i∈[2n]\{y}H2(L

(n)
E [i]) (mod N ζ). Output w′.

Claim 23. The experiments Hyb0 and Hyb1 are identical.

Proof. We are substituting equal values in Hyb0 and Hyb1.

Random Oracles. Next, we note that ∆ is only used in computing xi∆⊕H1(L
(i)
E [y(i)]⊕

∆) and w+H2(L
(n)
E [y]⊕∆). Since ∆ is uniformly random from 2λ−1 possibilities, we can

replace them with random values.

Experiment Hyb2.

1. Uniformly sample XE
$← {0, 1}λ. Output XE.

2. Sample L
(0)
E

$← ({0, 1}λ)1, and output L
(0)
E .

3. For i ∈ [n], let yi = XE[i][0], and y(i) =
∑i−1

i′=0 yi′2
i′ . Let y =

∑n−1
i=0 yi2

i.

36

4. For i ∈ [n], for j ∈ [2i] \ y(i), let L̂
(i)
E [j] = H1(L

(i)
E [j]), output P [i]

$← {0, 1}λ, and let

L̂
(i)
E [y(i)] = XE[i]⊕ P [i]⊕

⊕
j∈[2i]\y(i)⊕{y(i)} L̂

(i)
E [j]. Let L

(i+1)
E = (L̂

(i)
E ⊕ L

(i)
E)∥L̂(i)

E .

5. Let w′ $← [N ζ]. Output w′.

Claim 24. The experiments Hyb1 and Hyb2 are computationally indistinguishable.

Proof. Follows immediately from the definition of H1, H2.

Note that Hyb2 only requires knowledge of the public parameters n,N , so it’s simulat-
able by a PPT simulator Sim. This concludes the proof of the theorem.

Remark 25. The proof also works when H1, H2 are modeled as Circular Correlation Ro-
bust Hash functions (CCRH), under appropriate definition that allows replacing xi∆ ⊕
H1(L

(i)
E [y(i)]⊕∆) and w +H2(L

(n)
E [y]⊕∆) with random values.

B Compatibility with Free XOR

In this section, we show that the lookup gate is compatible with the free XOR technique
under the circular correlation robust hash (CCRH) assumption, in the plain model. The
proof can also be extended to show compatibility with other techniques that use the CCRH
assumption, e.g., arithmetic garbled circuits [Hea24].

B.1 Circular Correlation Robust Hash

We define a new notion of circular correlation robustness that is tailored for our purpose.

Definition 26 (Circular Correlation Robustness). LetH1 : {0, 1}λ → {0, 1}λ, H2 : {0, 1}λ →
[22ζλDCR], H3 : Z → {0, 1}λ, H4 : Z → {0, 1}λ be four functions. For any Damg̊ard-Jurik
key pair (pk = N, sk), we define four oracles:

� O∆
1 (X, b): On input X ∈ {0, 1}λ, b ∈ {0, 1}, output H1(X ⊕∆)⊕ b∆.

� O∆,sk
2 (X): On input X ∈ {0, 1}λ, output H2(X ⊕∆) + sk.

� O∆,sk
3 (X, b): On input X ∈ ZNζ , b ∈ {−1, 1}, output H3((X + bsk) mod N ζ).

� O∆,sk
4 (X, b): On input X ∈ ZNζ , b ∈ {−1, 1}, output H4((X + bsk) mod N ζ).

A sequence of oracle queries is legal if and only if O1 is never queried with the same X
and different b. H1, H2, H3, H4 is circular correlation robust if the following two experiments
are computationally indistinguishable:

� RealCCRH: Sample ∆
$← 1{0, 1}λ−1 and a Damg̊ard-Jurik key pair (pk = N, sk) ←

Gen(1λ). Run AO1,O2,O3,O4(N), but only allowing legal queries.

37

� IdealCCRH: Sample a Damg̊ard-Jurik key pair (pk = N, sk)← Gen(1λ). RunAR1,R2,R3,R4(N),
but only allowing legal queries, where R1,R2,R3,R4 are random oracles with the
same domain and range as O1,O2,O3,O4.

B.2 Lookup Gate with Free XOR

We show that the lookup gate is compatible with the free XOR technique. Concretely, we
set ∆ to be the free XOR key, which is also used in Πlookup, and set ∆O = ∆ such that the
output of the lookup gate can directly be used afterwards. We use H1 as the hash function
for garbling the AND gates.

Theorem 27. Let H1, H2, H3, H4 be circular correlation robust hash functions, as per
Definition 26. Let Πlookup be the lookup gate protocol with ∆O = ∆. Then, a garbled circuit
with Free XOR and lookup gates is secure.

Proof. We only outline the proof, as most of the work is already done in the proof of
Lemma 13 and Theorem 14.

Experiment Hyb0. In Hyb0, we sample ∆
$← 1{0, 1}λ−1, (pk = N, sk) ← Gen(1λ), and

sample the labels of all wire values in the circuit (including the input labels XG and output
labels YG of the lookup gates). We then prepare the garbled materials for each AND gate
using H1, and the garbled materials for each lookup gate using H1, H2, H3, H4.

Experiment Hyb1. In Hyb1, we view the labels as secret shares held by Garbler. Instead of
sampling the shares of Garbler from random, we equivalently sample the shares of Evaluator
from random. We then prepare the garbled materials as before. This corresponds to Hyb1
in the proof of Lemma 13 and Theorem 14.

Experiment Hyb2. In Hyb2, we split the experiment into two parts, where the first part
samples ∆

$← 1{0, 1}λ−1, (pk = N, sk)← Gen(1λ), and the second part samples the shares

and prepares the garbled materials, but only has oracle access to O∆
1 ,O∆,sk

2 ,O∆,sk
3 ,O∆,sk

4 ,
where the oracles are defined as in Definition 26. As seen from Hyb1 in the proof of
Lemma 13 and Hyb2 in the proof of Theorem 14, this split is possible.

Experiment Hyb3. In Hyb3, we replace O∆
1 ,O∆,sk

2 ,O∆,sk
3 ,O∆,sk

4 with R1,R2,R3,R4, i.e.,
random oracles. This is computationally indistinguishable from Hyb2, by the circular cor-
relation robustness of H1, H2, H3, H4. After this is done, we arrive at Hyb2 in the proof of
Lemma 13 and Hyb3 in the proof of Theorem 14.

38

Experiment Hyb4. In Hyb4, we conclude by replacing the Damg̊ard-Jurik ciphertexts
generated in Πlookup with encryptions of zero. This is computationally indistinguishable
from Hyb3 by the security of the Damg̊ard-Jurik encryption scheme. Now we arrive at Hyb4
in the proof of Theorem 14, and the experiment is independent of all private information
held by Garbler.

39

	Introduction
	Technical Overview
	Related Work

	Preliminaries
	Notations
	Damgård-Jurik Cryptosystem
	Garbled Circuit

	Encoding and Secret Share
	Full Construction
	DDLog Gate
	Shifted One-Hot Gate
	Real One-Hot Gate
	Lookup Gate

	Privacy
	Proof of thm:lookup-privacy

	Programmable Distributed Point Functions
	Definition
	Construction
	Recovering Decomposability

	Shifted One-Hot Gate
	Construction
	Proof of Lemma 13

	Compatibility with Free XOR
	Circular Correlation Robust Hash
	Lookup Gate with Free XOR

